1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 }; 278 279 /* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284 enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290 }; 291 292 293 /* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297 struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300 }; 301 #define NETDEV_BOOT_SETUP_MAX 8 302 303 int __init netdev_boot_setup(char *str); 304 305 /* 306 * Structure for NAPI scheduling similar to tasklet but with weighting 307 */ 308 struct napi_struct { 309 /* The poll_list must only be managed by the entity which 310 * changes the state of the NAPI_STATE_SCHED bit. This means 311 * whoever atomically sets that bit can add this napi_struct 312 * to the per-CPU poll_list, and whoever clears that bit 313 * can remove from the list right before clearing the bit. 314 */ 315 struct list_head poll_list; 316 317 unsigned long state; 318 int weight; 319 unsigned int gro_count; 320 int (*poll)(struct napi_struct *, int); 321 #ifdef CONFIG_NETPOLL 322 int poll_owner; 323 #endif 324 struct net_device *dev; 325 struct sk_buff *gro_list; 326 struct sk_buff *skb; 327 struct hrtimer timer; 328 struct list_head dev_list; 329 struct hlist_node napi_hash_node; 330 unsigned int napi_id; 331 }; 332 333 enum { 334 NAPI_STATE_SCHED, /* Poll is scheduled */ 335 NAPI_STATE_MISSED, /* reschedule a napi */ 336 NAPI_STATE_DISABLE, /* Disable pending */ 337 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 338 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 339 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 340 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 341 }; 342 343 enum { 344 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 345 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 346 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 347 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 348 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 349 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 350 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 351 }; 352 353 enum gro_result { 354 GRO_MERGED, 355 GRO_MERGED_FREE, 356 GRO_HELD, 357 GRO_NORMAL, 358 GRO_DROP, 359 GRO_CONSUMED, 360 }; 361 typedef enum gro_result gro_result_t; 362 363 /* 364 * enum rx_handler_result - Possible return values for rx_handlers. 365 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 366 * further. 367 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 368 * case skb->dev was changed by rx_handler. 369 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 370 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 371 * 372 * rx_handlers are functions called from inside __netif_receive_skb(), to do 373 * special processing of the skb, prior to delivery to protocol handlers. 374 * 375 * Currently, a net_device can only have a single rx_handler registered. Trying 376 * to register a second rx_handler will return -EBUSY. 377 * 378 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 379 * To unregister a rx_handler on a net_device, use 380 * netdev_rx_handler_unregister(). 381 * 382 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 383 * do with the skb. 384 * 385 * If the rx_handler consumed the skb in some way, it should return 386 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 387 * the skb to be delivered in some other way. 388 * 389 * If the rx_handler changed skb->dev, to divert the skb to another 390 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 391 * new device will be called if it exists. 392 * 393 * If the rx_handler decides the skb should be ignored, it should return 394 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 395 * are registered on exact device (ptype->dev == skb->dev). 396 * 397 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 398 * delivered, it should return RX_HANDLER_PASS. 399 * 400 * A device without a registered rx_handler will behave as if rx_handler 401 * returned RX_HANDLER_PASS. 402 */ 403 404 enum rx_handler_result { 405 RX_HANDLER_CONSUMED, 406 RX_HANDLER_ANOTHER, 407 RX_HANDLER_EXACT, 408 RX_HANDLER_PASS, 409 }; 410 typedef enum rx_handler_result rx_handler_result_t; 411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 412 413 void __napi_schedule(struct napi_struct *n); 414 void __napi_schedule_irqoff(struct napi_struct *n); 415 416 static inline bool napi_disable_pending(struct napi_struct *n) 417 { 418 return test_bit(NAPI_STATE_DISABLE, &n->state); 419 } 420 421 bool napi_schedule_prep(struct napi_struct *n); 422 423 /** 424 * napi_schedule - schedule NAPI poll 425 * @n: NAPI context 426 * 427 * Schedule NAPI poll routine to be called if it is not already 428 * running. 429 */ 430 static inline void napi_schedule(struct napi_struct *n) 431 { 432 if (napi_schedule_prep(n)) 433 __napi_schedule(n); 434 } 435 436 /** 437 * napi_schedule_irqoff - schedule NAPI poll 438 * @n: NAPI context 439 * 440 * Variant of napi_schedule(), assuming hard irqs are masked. 441 */ 442 static inline void napi_schedule_irqoff(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule_irqoff(n); 446 } 447 448 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 449 static inline bool napi_reschedule(struct napi_struct *napi) 450 { 451 if (napi_schedule_prep(napi)) { 452 __napi_schedule(napi); 453 return true; 454 } 455 return false; 456 } 457 458 bool napi_complete_done(struct napi_struct *n, int work_done); 459 /** 460 * napi_complete - NAPI processing complete 461 * @n: NAPI context 462 * 463 * Mark NAPI processing as complete. 464 * Consider using napi_complete_done() instead. 465 * Return false if device should avoid rearming interrupts. 466 */ 467 static inline bool napi_complete(struct napi_struct *n) 468 { 469 return napi_complete_done(n, 0); 470 } 471 472 /** 473 * napi_hash_del - remove a NAPI from global table 474 * @napi: NAPI context 475 * 476 * Warning: caller must observe RCU grace period 477 * before freeing memory containing @napi, if 478 * this function returns true. 479 * Note: core networking stack automatically calls it 480 * from netif_napi_del(). 481 * Drivers might want to call this helper to combine all 482 * the needed RCU grace periods into a single one. 483 */ 484 bool napi_hash_del(struct napi_struct *napi); 485 486 /** 487 * napi_disable - prevent NAPI from scheduling 488 * @n: NAPI context 489 * 490 * Stop NAPI from being scheduled on this context. 491 * Waits till any outstanding processing completes. 492 */ 493 void napi_disable(struct napi_struct *n); 494 495 /** 496 * napi_enable - enable NAPI scheduling 497 * @n: NAPI context 498 * 499 * Resume NAPI from being scheduled on this context. 500 * Must be paired with napi_disable. 501 */ 502 static inline void napi_enable(struct napi_struct *n) 503 { 504 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 505 smp_mb__before_atomic(); 506 clear_bit(NAPI_STATE_SCHED, &n->state); 507 clear_bit(NAPI_STATE_NPSVC, &n->state); 508 } 509 510 /** 511 * napi_synchronize - wait until NAPI is not running 512 * @n: NAPI context 513 * 514 * Wait until NAPI is done being scheduled on this context. 515 * Waits till any outstanding processing completes but 516 * does not disable future activations. 517 */ 518 static inline void napi_synchronize(const struct napi_struct *n) 519 { 520 if (IS_ENABLED(CONFIG_SMP)) 521 while (test_bit(NAPI_STATE_SCHED, &n->state)) 522 msleep(1); 523 else 524 barrier(); 525 } 526 527 enum netdev_queue_state_t { 528 __QUEUE_STATE_DRV_XOFF, 529 __QUEUE_STATE_STACK_XOFF, 530 __QUEUE_STATE_FROZEN, 531 }; 532 533 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 534 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 535 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 536 537 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 539 QUEUE_STATE_FROZEN) 540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 541 QUEUE_STATE_FROZEN) 542 543 /* 544 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 545 * netif_tx_* functions below are used to manipulate this flag. The 546 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 547 * queue independently. The netif_xmit_*stopped functions below are called 548 * to check if the queue has been stopped by the driver or stack (either 549 * of the XOFF bits are set in the state). Drivers should not need to call 550 * netif_xmit*stopped functions, they should only be using netif_tx_*. 551 */ 552 553 struct netdev_queue { 554 /* 555 * read-mostly part 556 */ 557 struct net_device *dev; 558 struct Qdisc __rcu *qdisc; 559 struct Qdisc *qdisc_sleeping; 560 #ifdef CONFIG_SYSFS 561 struct kobject kobj; 562 #endif 563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 564 int numa_node; 565 #endif 566 unsigned long tx_maxrate; 567 /* 568 * Number of TX timeouts for this queue 569 * (/sys/class/net/DEV/Q/trans_timeout) 570 */ 571 unsigned long trans_timeout; 572 /* 573 * write-mostly part 574 */ 575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 576 int xmit_lock_owner; 577 /* 578 * Time (in jiffies) of last Tx 579 */ 580 unsigned long trans_start; 581 582 unsigned long state; 583 584 #ifdef CONFIG_BQL 585 struct dql dql; 586 #endif 587 } ____cacheline_aligned_in_smp; 588 589 extern int sysctl_fb_tunnels_only_for_init_net; 590 591 static inline bool net_has_fallback_tunnels(const struct net *net) 592 { 593 return net == &init_net || 594 !IS_ENABLED(CONFIG_SYSCTL) || 595 !sysctl_fb_tunnels_only_for_init_net; 596 } 597 598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599 { 600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602 #else 603 return NUMA_NO_NODE; 604 #endif 605 } 606 607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608 { 609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611 #endif 612 } 613 614 #ifdef CONFIG_RPS 615 /* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619 struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623 }; 624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626 /* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631 struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635 }; 636 #define RPS_NO_FILTER 0xffff 637 638 /* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641 struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645 }; 646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649 /* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659 struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663 }; 664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666 #define RPS_NO_CPU 0xffff 667 668 extern u32 rps_cpu_mask; 669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673 { 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684 } 685 686 #ifdef CONFIG_RFS_ACCEL 687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689 #endif 690 #endif /* CONFIG_RPS */ 691 692 /* This structure contains an instance of an RX queue. */ 693 struct netdev_rx_queue { 694 #ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697 #endif 698 struct kobject kobj; 699 struct net_device *dev; 700 struct xdp_rxq_info xdp_rxq; 701 } ____cacheline_aligned_in_smp; 702 703 /* 704 * RX queue sysfs structures and functions. 705 */ 706 struct rx_queue_attribute { 707 struct attribute attr; 708 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 const char *buf, size_t len); 711 }; 712 713 #ifdef CONFIG_XPS 714 /* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718 struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723 }; 724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728 /* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731 struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734 }; 735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 737 #endif /* CONFIG_XPS */ 738 739 #define TC_MAX_QUEUE 16 740 #define TC_BITMASK 15 741 /* HW offloaded queuing disciplines txq count and offset maps */ 742 struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745 }; 746 747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748 /* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752 struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761 }; 762 #endif 763 764 #define MAX_PHYS_ITEM_ID_LEN 32 765 766 /* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769 struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772 }; 773 774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776 { 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779 } 780 781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784 enum tc_setup_type { 785 TC_SETUP_QDISC_MQPRIO, 786 TC_SETUP_CLSU32, 787 TC_SETUP_CLSFLOWER, 788 TC_SETUP_CLSMATCHALL, 789 TC_SETUP_CLSBPF, 790 TC_SETUP_BLOCK, 791 TC_SETUP_QDISC_CBS, 792 TC_SETUP_QDISC_RED, 793 TC_SETUP_QDISC_PRIO, 794 }; 795 796 /* These structures hold the attributes of bpf state that are being passed 797 * to the netdevice through the bpf op. 798 */ 799 enum bpf_netdev_command { 800 /* Set or clear a bpf program used in the earliest stages of packet 801 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 802 * is responsible for calling bpf_prog_put on any old progs that are 803 * stored. In case of error, the callee need not release the new prog 804 * reference, but on success it takes ownership and must bpf_prog_put 805 * when it is no longer used. 806 */ 807 XDP_SETUP_PROG, 808 XDP_SETUP_PROG_HW, 809 /* Check if a bpf program is set on the device. The callee should 810 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 811 * is equivalent to XDP_ATTACHED_DRV. 812 */ 813 XDP_QUERY_PROG, 814 /* BPF program for offload callbacks, invoked at program load time. */ 815 BPF_OFFLOAD_VERIFIER_PREP, 816 BPF_OFFLOAD_TRANSLATE, 817 BPF_OFFLOAD_DESTROY, 818 BPF_OFFLOAD_MAP_ALLOC, 819 BPF_OFFLOAD_MAP_FREE, 820 }; 821 822 struct bpf_prog_offload_ops; 823 struct netlink_ext_ack; 824 825 struct netdev_bpf { 826 enum bpf_netdev_command command; 827 union { 828 /* XDP_SETUP_PROG */ 829 struct { 830 u32 flags; 831 struct bpf_prog *prog; 832 struct netlink_ext_ack *extack; 833 }; 834 /* XDP_QUERY_PROG */ 835 struct { 836 u8 prog_attached; 837 u32 prog_id; 838 /* flags with which program was installed */ 839 u32 prog_flags; 840 }; 841 /* BPF_OFFLOAD_VERIFIER_PREP */ 842 struct { 843 struct bpf_prog *prog; 844 const struct bpf_prog_offload_ops *ops; /* callee set */ 845 } verifier; 846 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 847 struct { 848 struct bpf_prog *prog; 849 } offload; 850 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 851 struct { 852 struct bpf_offloaded_map *offmap; 853 }; 854 }; 855 }; 856 857 #ifdef CONFIG_XFRM_OFFLOAD 858 struct xfrmdev_ops { 859 int (*xdo_dev_state_add) (struct xfrm_state *x); 860 void (*xdo_dev_state_delete) (struct xfrm_state *x); 861 void (*xdo_dev_state_free) (struct xfrm_state *x); 862 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 863 struct xfrm_state *x); 864 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 865 }; 866 #endif 867 868 struct dev_ifalias { 869 struct rcu_head rcuhead; 870 char ifalias[]; 871 }; 872 873 /* 874 * This structure defines the management hooks for network devices. 875 * The following hooks can be defined; unless noted otherwise, they are 876 * optional and can be filled with a null pointer. 877 * 878 * int (*ndo_init)(struct net_device *dev); 879 * This function is called once when a network device is registered. 880 * The network device can use this for any late stage initialization 881 * or semantic validation. It can fail with an error code which will 882 * be propagated back to register_netdev. 883 * 884 * void (*ndo_uninit)(struct net_device *dev); 885 * This function is called when device is unregistered or when registration 886 * fails. It is not called if init fails. 887 * 888 * int (*ndo_open)(struct net_device *dev); 889 * This function is called when a network device transitions to the up 890 * state. 891 * 892 * int (*ndo_stop)(struct net_device *dev); 893 * This function is called when a network device transitions to the down 894 * state. 895 * 896 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 897 * struct net_device *dev); 898 * Called when a packet needs to be transmitted. 899 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 900 * the queue before that can happen; it's for obsolete devices and weird 901 * corner cases, but the stack really does a non-trivial amount 902 * of useless work if you return NETDEV_TX_BUSY. 903 * Required; cannot be NULL. 904 * 905 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 906 * struct net_device *dev 907 * netdev_features_t features); 908 * Called by core transmit path to determine if device is capable of 909 * performing offload operations on a given packet. This is to give 910 * the device an opportunity to implement any restrictions that cannot 911 * be otherwise expressed by feature flags. The check is called with 912 * the set of features that the stack has calculated and it returns 913 * those the driver believes to be appropriate. 914 * 915 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 916 * void *accel_priv, select_queue_fallback_t fallback); 917 * Called to decide which queue to use when device supports multiple 918 * transmit queues. 919 * 920 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 921 * This function is called to allow device receiver to make 922 * changes to configuration when multicast or promiscuous is enabled. 923 * 924 * void (*ndo_set_rx_mode)(struct net_device *dev); 925 * This function is called device changes address list filtering. 926 * If driver handles unicast address filtering, it should set 927 * IFF_UNICAST_FLT in its priv_flags. 928 * 929 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 930 * This function is called when the Media Access Control address 931 * needs to be changed. If this interface is not defined, the 932 * MAC address can not be changed. 933 * 934 * int (*ndo_validate_addr)(struct net_device *dev); 935 * Test if Media Access Control address is valid for the device. 936 * 937 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 938 * Called when a user requests an ioctl which can't be handled by 939 * the generic interface code. If not defined ioctls return 940 * not supported error code. 941 * 942 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 943 * Used to set network devices bus interface parameters. This interface 944 * is retained for legacy reasons; new devices should use the bus 945 * interface (PCI) for low level management. 946 * 947 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 948 * Called when a user wants to change the Maximum Transfer Unit 949 * of a device. 950 * 951 * void (*ndo_tx_timeout)(struct net_device *dev); 952 * Callback used when the transmitter has not made any progress 953 * for dev->watchdog ticks. 954 * 955 * void (*ndo_get_stats64)(struct net_device *dev, 956 * struct rtnl_link_stats64 *storage); 957 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 958 * Called when a user wants to get the network device usage 959 * statistics. Drivers must do one of the following: 960 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 961 * rtnl_link_stats64 structure passed by the caller. 962 * 2. Define @ndo_get_stats to update a net_device_stats structure 963 * (which should normally be dev->stats) and return a pointer to 964 * it. The structure may be changed asynchronously only if each 965 * field is written atomically. 966 * 3. Update dev->stats asynchronously and atomically, and define 967 * neither operation. 968 * 969 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 970 * Return true if this device supports offload stats of this attr_id. 971 * 972 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 973 * void *attr_data) 974 * Get statistics for offload operations by attr_id. Write it into the 975 * attr_data pointer. 976 * 977 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 978 * If device supports VLAN filtering this function is called when a 979 * VLAN id is registered. 980 * 981 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 982 * If device supports VLAN filtering this function is called when a 983 * VLAN id is unregistered. 984 * 985 * void (*ndo_poll_controller)(struct net_device *dev); 986 * 987 * SR-IOV management functions. 988 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 989 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 990 * u8 qos, __be16 proto); 991 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 992 * int max_tx_rate); 993 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 994 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 995 * int (*ndo_get_vf_config)(struct net_device *dev, 996 * int vf, struct ifla_vf_info *ivf); 997 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 998 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 999 * struct nlattr *port[]); 1000 * 1001 * Enable or disable the VF ability to query its RSS Redirection Table and 1002 * Hash Key. This is needed since on some devices VF share this information 1003 * with PF and querying it may introduce a theoretical security risk. 1004 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1005 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1006 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1007 * void *type_data); 1008 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1009 * This is always called from the stack with the rtnl lock held and netif 1010 * tx queues stopped. This allows the netdevice to perform queue 1011 * management safely. 1012 * 1013 * Fiber Channel over Ethernet (FCoE) offload functions. 1014 * int (*ndo_fcoe_enable)(struct net_device *dev); 1015 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1016 * so the underlying device can perform whatever needed configuration or 1017 * initialization to support acceleration of FCoE traffic. 1018 * 1019 * int (*ndo_fcoe_disable)(struct net_device *dev); 1020 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1021 * so the underlying device can perform whatever needed clean-ups to 1022 * stop supporting acceleration of FCoE traffic. 1023 * 1024 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1025 * struct scatterlist *sgl, unsigned int sgc); 1026 * Called when the FCoE Initiator wants to initialize an I/O that 1027 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1028 * perform necessary setup and returns 1 to indicate the device is set up 1029 * successfully to perform DDP on this I/O, otherwise this returns 0. 1030 * 1031 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1032 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1033 * indicated by the FC exchange id 'xid', so the underlying device can 1034 * clean up and reuse resources for later DDP requests. 1035 * 1036 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1037 * struct scatterlist *sgl, unsigned int sgc); 1038 * Called when the FCoE Target wants to initialize an I/O that 1039 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1040 * perform necessary setup and returns 1 to indicate the device is set up 1041 * successfully to perform DDP on this I/O, otherwise this returns 0. 1042 * 1043 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1044 * struct netdev_fcoe_hbainfo *hbainfo); 1045 * Called when the FCoE Protocol stack wants information on the underlying 1046 * device. This information is utilized by the FCoE protocol stack to 1047 * register attributes with Fiber Channel management service as per the 1048 * FC-GS Fabric Device Management Information(FDMI) specification. 1049 * 1050 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1051 * Called when the underlying device wants to override default World Wide 1052 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1053 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1054 * protocol stack to use. 1055 * 1056 * RFS acceleration. 1057 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1058 * u16 rxq_index, u32 flow_id); 1059 * Set hardware filter for RFS. rxq_index is the target queue index; 1060 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1061 * Return the filter ID on success, or a negative error code. 1062 * 1063 * Slave management functions (for bridge, bonding, etc). 1064 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1065 * Called to make another netdev an underling. 1066 * 1067 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1068 * Called to release previously enslaved netdev. 1069 * 1070 * Feature/offload setting functions. 1071 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1072 * netdev_features_t features); 1073 * Adjusts the requested feature flags according to device-specific 1074 * constraints, and returns the resulting flags. Must not modify 1075 * the device state. 1076 * 1077 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1078 * Called to update device configuration to new features. Passed 1079 * feature set might be less than what was returned by ndo_fix_features()). 1080 * Must return >0 or -errno if it changed dev->features itself. 1081 * 1082 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1083 * struct net_device *dev, 1084 * const unsigned char *addr, u16 vid, u16 flags) 1085 * Adds an FDB entry to dev for addr. 1086 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1087 * struct net_device *dev, 1088 * const unsigned char *addr, u16 vid) 1089 * Deletes the FDB entry from dev coresponding to addr. 1090 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1091 * struct net_device *dev, struct net_device *filter_dev, 1092 * int *idx) 1093 * Used to add FDB entries to dump requests. Implementers should add 1094 * entries to skb and update idx with the number of entries. 1095 * 1096 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1097 * u16 flags) 1098 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1099 * struct net_device *dev, u32 filter_mask, 1100 * int nlflags) 1101 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1102 * u16 flags); 1103 * 1104 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1105 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1106 * which do not represent real hardware may define this to allow their 1107 * userspace components to manage their virtual carrier state. Devices 1108 * that determine carrier state from physical hardware properties (eg 1109 * network cables) or protocol-dependent mechanisms (eg 1110 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1111 * 1112 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1113 * struct netdev_phys_item_id *ppid); 1114 * Called to get ID of physical port of this device. If driver does 1115 * not implement this, it is assumed that the hw is not able to have 1116 * multiple net devices on single physical port. 1117 * 1118 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1119 * struct udp_tunnel_info *ti); 1120 * Called by UDP tunnel to notify a driver about the UDP port and socket 1121 * address family that a UDP tunnel is listnening to. It is called only 1122 * when a new port starts listening. The operation is protected by the 1123 * RTNL. 1124 * 1125 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1126 * struct udp_tunnel_info *ti); 1127 * Called by UDP tunnel to notify the driver about a UDP port and socket 1128 * address family that the UDP tunnel is not listening to anymore. The 1129 * operation is protected by the RTNL. 1130 * 1131 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1132 * struct net_device *dev) 1133 * Called by upper layer devices to accelerate switching or other 1134 * station functionality into hardware. 'pdev is the lowerdev 1135 * to use for the offload and 'dev' is the net device that will 1136 * back the offload. Returns a pointer to the private structure 1137 * the upper layer will maintain. 1138 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1139 * Called by upper layer device to delete the station created 1140 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1141 * the station and priv is the structure returned by the add 1142 * operation. 1143 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1144 * int queue_index, u32 maxrate); 1145 * Called when a user wants to set a max-rate limitation of specific 1146 * TX queue. 1147 * int (*ndo_get_iflink)(const struct net_device *dev); 1148 * Called to get the iflink value of this device. 1149 * void (*ndo_change_proto_down)(struct net_device *dev, 1150 * bool proto_down); 1151 * This function is used to pass protocol port error state information 1152 * to the switch driver. The switch driver can react to the proto_down 1153 * by doing a phys down on the associated switch port. 1154 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1155 * This function is used to get egress tunnel information for given skb. 1156 * This is useful for retrieving outer tunnel header parameters while 1157 * sampling packet. 1158 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1159 * This function is used to specify the headroom that the skb must 1160 * consider when allocation skb during packet reception. Setting 1161 * appropriate rx headroom value allows avoiding skb head copy on 1162 * forward. Setting a negative value resets the rx headroom to the 1163 * default value. 1164 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1165 * This function is used to set or query state related to XDP on the 1166 * netdevice and manage BPF offload. See definition of 1167 * enum bpf_netdev_command for details. 1168 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1169 * This function is used to submit a XDP packet for transmit on a 1170 * netdevice. 1171 * void (*ndo_xdp_flush)(struct net_device *dev); 1172 * This function is used to inform the driver to flush a particular 1173 * xdp tx queue. Must be called on same CPU as xdp_xmit. 1174 */ 1175 struct net_device_ops { 1176 int (*ndo_init)(struct net_device *dev); 1177 void (*ndo_uninit)(struct net_device *dev); 1178 int (*ndo_open)(struct net_device *dev); 1179 int (*ndo_stop)(struct net_device *dev); 1180 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1181 struct net_device *dev); 1182 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1183 struct net_device *dev, 1184 netdev_features_t features); 1185 u16 (*ndo_select_queue)(struct net_device *dev, 1186 struct sk_buff *skb, 1187 void *accel_priv, 1188 select_queue_fallback_t fallback); 1189 void (*ndo_change_rx_flags)(struct net_device *dev, 1190 int flags); 1191 void (*ndo_set_rx_mode)(struct net_device *dev); 1192 int (*ndo_set_mac_address)(struct net_device *dev, 1193 void *addr); 1194 int (*ndo_validate_addr)(struct net_device *dev); 1195 int (*ndo_do_ioctl)(struct net_device *dev, 1196 struct ifreq *ifr, int cmd); 1197 int (*ndo_set_config)(struct net_device *dev, 1198 struct ifmap *map); 1199 int (*ndo_change_mtu)(struct net_device *dev, 1200 int new_mtu); 1201 int (*ndo_neigh_setup)(struct net_device *dev, 1202 struct neigh_parms *); 1203 void (*ndo_tx_timeout) (struct net_device *dev); 1204 1205 void (*ndo_get_stats64)(struct net_device *dev, 1206 struct rtnl_link_stats64 *storage); 1207 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1208 int (*ndo_get_offload_stats)(int attr_id, 1209 const struct net_device *dev, 1210 void *attr_data); 1211 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1212 1213 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1214 __be16 proto, u16 vid); 1215 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1216 __be16 proto, u16 vid); 1217 #ifdef CONFIG_NET_POLL_CONTROLLER 1218 void (*ndo_poll_controller)(struct net_device *dev); 1219 int (*ndo_netpoll_setup)(struct net_device *dev, 1220 struct netpoll_info *info); 1221 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1222 #endif 1223 int (*ndo_set_vf_mac)(struct net_device *dev, 1224 int queue, u8 *mac); 1225 int (*ndo_set_vf_vlan)(struct net_device *dev, 1226 int queue, u16 vlan, 1227 u8 qos, __be16 proto); 1228 int (*ndo_set_vf_rate)(struct net_device *dev, 1229 int vf, int min_tx_rate, 1230 int max_tx_rate); 1231 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1232 int vf, bool setting); 1233 int (*ndo_set_vf_trust)(struct net_device *dev, 1234 int vf, bool setting); 1235 int (*ndo_get_vf_config)(struct net_device *dev, 1236 int vf, 1237 struct ifla_vf_info *ivf); 1238 int (*ndo_set_vf_link_state)(struct net_device *dev, 1239 int vf, int link_state); 1240 int (*ndo_get_vf_stats)(struct net_device *dev, 1241 int vf, 1242 struct ifla_vf_stats 1243 *vf_stats); 1244 int (*ndo_set_vf_port)(struct net_device *dev, 1245 int vf, 1246 struct nlattr *port[]); 1247 int (*ndo_get_vf_port)(struct net_device *dev, 1248 int vf, struct sk_buff *skb); 1249 int (*ndo_set_vf_guid)(struct net_device *dev, 1250 int vf, u64 guid, 1251 int guid_type); 1252 int (*ndo_set_vf_rss_query_en)( 1253 struct net_device *dev, 1254 int vf, bool setting); 1255 int (*ndo_setup_tc)(struct net_device *dev, 1256 enum tc_setup_type type, 1257 void *type_data); 1258 #if IS_ENABLED(CONFIG_FCOE) 1259 int (*ndo_fcoe_enable)(struct net_device *dev); 1260 int (*ndo_fcoe_disable)(struct net_device *dev); 1261 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1262 u16 xid, 1263 struct scatterlist *sgl, 1264 unsigned int sgc); 1265 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1266 u16 xid); 1267 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1268 u16 xid, 1269 struct scatterlist *sgl, 1270 unsigned int sgc); 1271 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1272 struct netdev_fcoe_hbainfo *hbainfo); 1273 #endif 1274 1275 #if IS_ENABLED(CONFIG_LIBFCOE) 1276 #define NETDEV_FCOE_WWNN 0 1277 #define NETDEV_FCOE_WWPN 1 1278 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1279 u64 *wwn, int type); 1280 #endif 1281 1282 #ifdef CONFIG_RFS_ACCEL 1283 int (*ndo_rx_flow_steer)(struct net_device *dev, 1284 const struct sk_buff *skb, 1285 u16 rxq_index, 1286 u32 flow_id); 1287 #endif 1288 int (*ndo_add_slave)(struct net_device *dev, 1289 struct net_device *slave_dev, 1290 struct netlink_ext_ack *extack); 1291 int (*ndo_del_slave)(struct net_device *dev, 1292 struct net_device *slave_dev); 1293 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1294 netdev_features_t features); 1295 int (*ndo_set_features)(struct net_device *dev, 1296 netdev_features_t features); 1297 int (*ndo_neigh_construct)(struct net_device *dev, 1298 struct neighbour *n); 1299 void (*ndo_neigh_destroy)(struct net_device *dev, 1300 struct neighbour *n); 1301 1302 int (*ndo_fdb_add)(struct ndmsg *ndm, 1303 struct nlattr *tb[], 1304 struct net_device *dev, 1305 const unsigned char *addr, 1306 u16 vid, 1307 u16 flags); 1308 int (*ndo_fdb_del)(struct ndmsg *ndm, 1309 struct nlattr *tb[], 1310 struct net_device *dev, 1311 const unsigned char *addr, 1312 u16 vid); 1313 int (*ndo_fdb_dump)(struct sk_buff *skb, 1314 struct netlink_callback *cb, 1315 struct net_device *dev, 1316 struct net_device *filter_dev, 1317 int *idx); 1318 1319 int (*ndo_bridge_setlink)(struct net_device *dev, 1320 struct nlmsghdr *nlh, 1321 u16 flags); 1322 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1323 u32 pid, u32 seq, 1324 struct net_device *dev, 1325 u32 filter_mask, 1326 int nlflags); 1327 int (*ndo_bridge_dellink)(struct net_device *dev, 1328 struct nlmsghdr *nlh, 1329 u16 flags); 1330 int (*ndo_change_carrier)(struct net_device *dev, 1331 bool new_carrier); 1332 int (*ndo_get_phys_port_id)(struct net_device *dev, 1333 struct netdev_phys_item_id *ppid); 1334 int (*ndo_get_phys_port_name)(struct net_device *dev, 1335 char *name, size_t len); 1336 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1337 struct udp_tunnel_info *ti); 1338 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1339 struct udp_tunnel_info *ti); 1340 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1341 struct net_device *dev); 1342 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1343 void *priv); 1344 1345 int (*ndo_get_lock_subclass)(struct net_device *dev); 1346 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1347 int queue_index, 1348 u32 maxrate); 1349 int (*ndo_get_iflink)(const struct net_device *dev); 1350 int (*ndo_change_proto_down)(struct net_device *dev, 1351 bool proto_down); 1352 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1353 struct sk_buff *skb); 1354 void (*ndo_set_rx_headroom)(struct net_device *dev, 1355 int needed_headroom); 1356 int (*ndo_bpf)(struct net_device *dev, 1357 struct netdev_bpf *bpf); 1358 int (*ndo_xdp_xmit)(struct net_device *dev, 1359 struct xdp_buff *xdp); 1360 void (*ndo_xdp_flush)(struct net_device *dev); 1361 }; 1362 1363 /** 1364 * enum net_device_priv_flags - &struct net_device priv_flags 1365 * 1366 * These are the &struct net_device, they are only set internally 1367 * by drivers and used in the kernel. These flags are invisible to 1368 * userspace; this means that the order of these flags can change 1369 * during any kernel release. 1370 * 1371 * You should have a pretty good reason to be extending these flags. 1372 * 1373 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1374 * @IFF_EBRIDGE: Ethernet bridging device 1375 * @IFF_BONDING: bonding master or slave 1376 * @IFF_ISATAP: ISATAP interface (RFC4214) 1377 * @IFF_WAN_HDLC: WAN HDLC device 1378 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1379 * release skb->dst 1380 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1381 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1382 * @IFF_MACVLAN_PORT: device used as macvlan port 1383 * @IFF_BRIDGE_PORT: device used as bridge port 1384 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1385 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1386 * @IFF_UNICAST_FLT: Supports unicast filtering 1387 * @IFF_TEAM_PORT: device used as team port 1388 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1389 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1390 * change when it's running 1391 * @IFF_MACVLAN: Macvlan device 1392 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1393 * underlying stacked devices 1394 * @IFF_L3MDEV_MASTER: device is an L3 master device 1395 * @IFF_NO_QUEUE: device can run without qdisc attached 1396 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1397 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1398 * @IFF_TEAM: device is a team device 1399 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1400 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1401 * entity (i.e. the master device for bridged veth) 1402 * @IFF_MACSEC: device is a MACsec device 1403 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1404 */ 1405 enum netdev_priv_flags { 1406 IFF_802_1Q_VLAN = 1<<0, 1407 IFF_EBRIDGE = 1<<1, 1408 IFF_BONDING = 1<<2, 1409 IFF_ISATAP = 1<<3, 1410 IFF_WAN_HDLC = 1<<4, 1411 IFF_XMIT_DST_RELEASE = 1<<5, 1412 IFF_DONT_BRIDGE = 1<<6, 1413 IFF_DISABLE_NETPOLL = 1<<7, 1414 IFF_MACVLAN_PORT = 1<<8, 1415 IFF_BRIDGE_PORT = 1<<9, 1416 IFF_OVS_DATAPATH = 1<<10, 1417 IFF_TX_SKB_SHARING = 1<<11, 1418 IFF_UNICAST_FLT = 1<<12, 1419 IFF_TEAM_PORT = 1<<13, 1420 IFF_SUPP_NOFCS = 1<<14, 1421 IFF_LIVE_ADDR_CHANGE = 1<<15, 1422 IFF_MACVLAN = 1<<16, 1423 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1424 IFF_L3MDEV_MASTER = 1<<18, 1425 IFF_NO_QUEUE = 1<<19, 1426 IFF_OPENVSWITCH = 1<<20, 1427 IFF_L3MDEV_SLAVE = 1<<21, 1428 IFF_TEAM = 1<<22, 1429 IFF_RXFH_CONFIGURED = 1<<23, 1430 IFF_PHONY_HEADROOM = 1<<24, 1431 IFF_MACSEC = 1<<25, 1432 IFF_NO_RX_HANDLER = 1<<26, 1433 }; 1434 1435 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1436 #define IFF_EBRIDGE IFF_EBRIDGE 1437 #define IFF_BONDING IFF_BONDING 1438 #define IFF_ISATAP IFF_ISATAP 1439 #define IFF_WAN_HDLC IFF_WAN_HDLC 1440 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1441 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1442 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1443 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1444 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1445 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1446 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1447 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1448 #define IFF_TEAM_PORT IFF_TEAM_PORT 1449 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1450 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1451 #define IFF_MACVLAN IFF_MACVLAN 1452 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1453 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1454 #define IFF_NO_QUEUE IFF_NO_QUEUE 1455 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1456 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1457 #define IFF_TEAM IFF_TEAM 1458 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1459 #define IFF_MACSEC IFF_MACSEC 1460 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1461 1462 /** 1463 * struct net_device - The DEVICE structure. 1464 * 1465 * Actually, this whole structure is a big mistake. It mixes I/O 1466 * data with strictly "high-level" data, and it has to know about 1467 * almost every data structure used in the INET module. 1468 * 1469 * @name: This is the first field of the "visible" part of this structure 1470 * (i.e. as seen by users in the "Space.c" file). It is the name 1471 * of the interface. 1472 * 1473 * @name_hlist: Device name hash chain, please keep it close to name[] 1474 * @ifalias: SNMP alias 1475 * @mem_end: Shared memory end 1476 * @mem_start: Shared memory start 1477 * @base_addr: Device I/O address 1478 * @irq: Device IRQ number 1479 * 1480 * @state: Generic network queuing layer state, see netdev_state_t 1481 * @dev_list: The global list of network devices 1482 * @napi_list: List entry used for polling NAPI devices 1483 * @unreg_list: List entry when we are unregistering the 1484 * device; see the function unregister_netdev 1485 * @close_list: List entry used when we are closing the device 1486 * @ptype_all: Device-specific packet handlers for all protocols 1487 * @ptype_specific: Device-specific, protocol-specific packet handlers 1488 * 1489 * @adj_list: Directly linked devices, like slaves for bonding 1490 * @features: Currently active device features 1491 * @hw_features: User-changeable features 1492 * 1493 * @wanted_features: User-requested features 1494 * @vlan_features: Mask of features inheritable by VLAN devices 1495 * 1496 * @hw_enc_features: Mask of features inherited by encapsulating devices 1497 * This field indicates what encapsulation 1498 * offloads the hardware is capable of doing, 1499 * and drivers will need to set them appropriately. 1500 * 1501 * @mpls_features: Mask of features inheritable by MPLS 1502 * 1503 * @ifindex: interface index 1504 * @group: The group the device belongs to 1505 * 1506 * @stats: Statistics struct, which was left as a legacy, use 1507 * rtnl_link_stats64 instead 1508 * 1509 * @rx_dropped: Dropped packets by core network, 1510 * do not use this in drivers 1511 * @tx_dropped: Dropped packets by core network, 1512 * do not use this in drivers 1513 * @rx_nohandler: nohandler dropped packets by core network on 1514 * inactive devices, do not use this in drivers 1515 * @carrier_up_count: Number of times the carrier has been up 1516 * @carrier_down_count: Number of times the carrier has been down 1517 * 1518 * @wireless_handlers: List of functions to handle Wireless Extensions, 1519 * instead of ioctl, 1520 * see <net/iw_handler.h> for details. 1521 * @wireless_data: Instance data managed by the core of wireless extensions 1522 * 1523 * @netdev_ops: Includes several pointers to callbacks, 1524 * if one wants to override the ndo_*() functions 1525 * @ethtool_ops: Management operations 1526 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1527 * discovery handling. Necessary for e.g. 6LoWPAN. 1528 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1529 * of Layer 2 headers. 1530 * 1531 * @flags: Interface flags (a la BSD) 1532 * @priv_flags: Like 'flags' but invisible to userspace, 1533 * see if.h for the definitions 1534 * @gflags: Global flags ( kept as legacy ) 1535 * @padded: How much padding added by alloc_netdev() 1536 * @operstate: RFC2863 operstate 1537 * @link_mode: Mapping policy to operstate 1538 * @if_port: Selectable AUI, TP, ... 1539 * @dma: DMA channel 1540 * @mtu: Interface MTU value 1541 * @min_mtu: Interface Minimum MTU value 1542 * @max_mtu: Interface Maximum MTU value 1543 * @type: Interface hardware type 1544 * @hard_header_len: Maximum hardware header length. 1545 * @min_header_len: Minimum hardware header length 1546 * 1547 * @needed_headroom: Extra headroom the hardware may need, but not in all 1548 * cases can this be guaranteed 1549 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1550 * cases can this be guaranteed. Some cases also use 1551 * LL_MAX_HEADER instead to allocate the skb 1552 * 1553 * interface address info: 1554 * 1555 * @perm_addr: Permanent hw address 1556 * @addr_assign_type: Hw address assignment type 1557 * @addr_len: Hardware address length 1558 * @neigh_priv_len: Used in neigh_alloc() 1559 * @dev_id: Used to differentiate devices that share 1560 * the same link layer address 1561 * @dev_port: Used to differentiate devices that share 1562 * the same function 1563 * @addr_list_lock: XXX: need comments on this one 1564 * @uc_promisc: Counter that indicates promiscuous mode 1565 * has been enabled due to the need to listen to 1566 * additional unicast addresses in a device that 1567 * does not implement ndo_set_rx_mode() 1568 * @uc: unicast mac addresses 1569 * @mc: multicast mac addresses 1570 * @dev_addrs: list of device hw addresses 1571 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1572 * @promiscuity: Number of times the NIC is told to work in 1573 * promiscuous mode; if it becomes 0 the NIC will 1574 * exit promiscuous mode 1575 * @allmulti: Counter, enables or disables allmulticast mode 1576 * 1577 * @vlan_info: VLAN info 1578 * @dsa_ptr: dsa specific data 1579 * @tipc_ptr: TIPC specific data 1580 * @atalk_ptr: AppleTalk link 1581 * @ip_ptr: IPv4 specific data 1582 * @dn_ptr: DECnet specific data 1583 * @ip6_ptr: IPv6 specific data 1584 * @ax25_ptr: AX.25 specific data 1585 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1586 * 1587 * @dev_addr: Hw address (before bcast, 1588 * because most packets are unicast) 1589 * 1590 * @_rx: Array of RX queues 1591 * @num_rx_queues: Number of RX queues 1592 * allocated at register_netdev() time 1593 * @real_num_rx_queues: Number of RX queues currently active in device 1594 * 1595 * @rx_handler: handler for received packets 1596 * @rx_handler_data: XXX: need comments on this one 1597 * @miniq_ingress: ingress/clsact qdisc specific data for 1598 * ingress processing 1599 * @ingress_queue: XXX: need comments on this one 1600 * @broadcast: hw bcast address 1601 * 1602 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1603 * indexed by RX queue number. Assigned by driver. 1604 * This must only be set if the ndo_rx_flow_steer 1605 * operation is defined 1606 * @index_hlist: Device index hash chain 1607 * 1608 * @_tx: Array of TX queues 1609 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1610 * @real_num_tx_queues: Number of TX queues currently active in device 1611 * @qdisc: Root qdisc from userspace point of view 1612 * @tx_queue_len: Max frames per queue allowed 1613 * @tx_global_lock: XXX: need comments on this one 1614 * 1615 * @xps_maps: XXX: need comments on this one 1616 * @miniq_egress: clsact qdisc specific data for 1617 * egress processing 1618 * @watchdog_timeo: Represents the timeout that is used by 1619 * the watchdog (see dev_watchdog()) 1620 * @watchdog_timer: List of timers 1621 * 1622 * @pcpu_refcnt: Number of references to this device 1623 * @todo_list: Delayed register/unregister 1624 * @link_watch_list: XXX: need comments on this one 1625 * 1626 * @reg_state: Register/unregister state machine 1627 * @dismantle: Device is going to be freed 1628 * @rtnl_link_state: This enum represents the phases of creating 1629 * a new link 1630 * 1631 * @needs_free_netdev: Should unregister perform free_netdev? 1632 * @priv_destructor: Called from unregister 1633 * @npinfo: XXX: need comments on this one 1634 * @nd_net: Network namespace this network device is inside 1635 * 1636 * @ml_priv: Mid-layer private 1637 * @lstats: Loopback statistics 1638 * @tstats: Tunnel statistics 1639 * @dstats: Dummy statistics 1640 * @vstats: Virtual ethernet statistics 1641 * 1642 * @garp_port: GARP 1643 * @mrp_port: MRP 1644 * 1645 * @dev: Class/net/name entry 1646 * @sysfs_groups: Space for optional device, statistics and wireless 1647 * sysfs groups 1648 * 1649 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1650 * @rtnl_link_ops: Rtnl_link_ops 1651 * 1652 * @gso_max_size: Maximum size of generic segmentation offload 1653 * @gso_max_segs: Maximum number of segments that can be passed to the 1654 * NIC for GSO 1655 * 1656 * @dcbnl_ops: Data Center Bridging netlink ops 1657 * @num_tc: Number of traffic classes in the net device 1658 * @tc_to_txq: XXX: need comments on this one 1659 * @prio_tc_map: XXX: need comments on this one 1660 * 1661 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1662 * 1663 * @priomap: XXX: need comments on this one 1664 * @phydev: Physical device may attach itself 1665 * for hardware timestamping 1666 * @sfp_bus: attached &struct sfp_bus structure. 1667 * 1668 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1669 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1670 * 1671 * @proto_down: protocol port state information can be sent to the 1672 * switch driver and used to set the phys state of the 1673 * switch port. 1674 * 1675 * FIXME: cleanup struct net_device such that network protocol info 1676 * moves out. 1677 */ 1678 1679 struct net_device { 1680 char name[IFNAMSIZ]; 1681 struct hlist_node name_hlist; 1682 struct dev_ifalias __rcu *ifalias; 1683 /* 1684 * I/O specific fields 1685 * FIXME: Merge these and struct ifmap into one 1686 */ 1687 unsigned long mem_end; 1688 unsigned long mem_start; 1689 unsigned long base_addr; 1690 int irq; 1691 1692 /* 1693 * Some hardware also needs these fields (state,dev_list, 1694 * napi_list,unreg_list,close_list) but they are not 1695 * part of the usual set specified in Space.c. 1696 */ 1697 1698 unsigned long state; 1699 1700 struct list_head dev_list; 1701 struct list_head napi_list; 1702 struct list_head unreg_list; 1703 struct list_head close_list; 1704 struct list_head ptype_all; 1705 struct list_head ptype_specific; 1706 1707 struct { 1708 struct list_head upper; 1709 struct list_head lower; 1710 } adj_list; 1711 1712 netdev_features_t features; 1713 netdev_features_t hw_features; 1714 netdev_features_t wanted_features; 1715 netdev_features_t vlan_features; 1716 netdev_features_t hw_enc_features; 1717 netdev_features_t mpls_features; 1718 netdev_features_t gso_partial_features; 1719 1720 int ifindex; 1721 int group; 1722 1723 struct net_device_stats stats; 1724 1725 atomic_long_t rx_dropped; 1726 atomic_long_t tx_dropped; 1727 atomic_long_t rx_nohandler; 1728 1729 /* Stats to monitor link on/off, flapping */ 1730 atomic_t carrier_up_count; 1731 atomic_t carrier_down_count; 1732 1733 #ifdef CONFIG_WIRELESS_EXT 1734 const struct iw_handler_def *wireless_handlers; 1735 struct iw_public_data *wireless_data; 1736 #endif 1737 const struct net_device_ops *netdev_ops; 1738 const struct ethtool_ops *ethtool_ops; 1739 #ifdef CONFIG_NET_SWITCHDEV 1740 const struct switchdev_ops *switchdev_ops; 1741 #endif 1742 #ifdef CONFIG_NET_L3_MASTER_DEV 1743 const struct l3mdev_ops *l3mdev_ops; 1744 #endif 1745 #if IS_ENABLED(CONFIG_IPV6) 1746 const struct ndisc_ops *ndisc_ops; 1747 #endif 1748 1749 #ifdef CONFIG_XFRM_OFFLOAD 1750 const struct xfrmdev_ops *xfrmdev_ops; 1751 #endif 1752 1753 const struct header_ops *header_ops; 1754 1755 unsigned int flags; 1756 unsigned int priv_flags; 1757 1758 unsigned short gflags; 1759 unsigned short padded; 1760 1761 unsigned char operstate; 1762 unsigned char link_mode; 1763 1764 unsigned char if_port; 1765 unsigned char dma; 1766 1767 unsigned int mtu; 1768 unsigned int min_mtu; 1769 unsigned int max_mtu; 1770 unsigned short type; 1771 unsigned short hard_header_len; 1772 unsigned char min_header_len; 1773 1774 unsigned short needed_headroom; 1775 unsigned short needed_tailroom; 1776 1777 /* Interface address info. */ 1778 unsigned char perm_addr[MAX_ADDR_LEN]; 1779 unsigned char addr_assign_type; 1780 unsigned char addr_len; 1781 unsigned short neigh_priv_len; 1782 unsigned short dev_id; 1783 unsigned short dev_port; 1784 spinlock_t addr_list_lock; 1785 unsigned char name_assign_type; 1786 bool uc_promisc; 1787 struct netdev_hw_addr_list uc; 1788 struct netdev_hw_addr_list mc; 1789 struct netdev_hw_addr_list dev_addrs; 1790 1791 #ifdef CONFIG_SYSFS 1792 struct kset *queues_kset; 1793 #endif 1794 unsigned int promiscuity; 1795 unsigned int allmulti; 1796 1797 1798 /* Protocol-specific pointers */ 1799 1800 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1801 struct vlan_info __rcu *vlan_info; 1802 #endif 1803 #if IS_ENABLED(CONFIG_NET_DSA) 1804 struct dsa_port *dsa_ptr; 1805 #endif 1806 #if IS_ENABLED(CONFIG_TIPC) 1807 struct tipc_bearer __rcu *tipc_ptr; 1808 #endif 1809 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1810 void *atalk_ptr; 1811 #endif 1812 struct in_device __rcu *ip_ptr; 1813 #if IS_ENABLED(CONFIG_DECNET) 1814 struct dn_dev __rcu *dn_ptr; 1815 #endif 1816 struct inet6_dev __rcu *ip6_ptr; 1817 #if IS_ENABLED(CONFIG_AX25) 1818 void *ax25_ptr; 1819 #endif 1820 struct wireless_dev *ieee80211_ptr; 1821 struct wpan_dev *ieee802154_ptr; 1822 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1823 struct mpls_dev __rcu *mpls_ptr; 1824 #endif 1825 1826 /* 1827 * Cache lines mostly used on receive path (including eth_type_trans()) 1828 */ 1829 /* Interface address info used in eth_type_trans() */ 1830 unsigned char *dev_addr; 1831 1832 struct netdev_rx_queue *_rx; 1833 unsigned int num_rx_queues; 1834 unsigned int real_num_rx_queues; 1835 1836 struct bpf_prog __rcu *xdp_prog; 1837 unsigned long gro_flush_timeout; 1838 rx_handler_func_t __rcu *rx_handler; 1839 void __rcu *rx_handler_data; 1840 1841 #ifdef CONFIG_NET_CLS_ACT 1842 struct mini_Qdisc __rcu *miniq_ingress; 1843 #endif 1844 struct netdev_queue __rcu *ingress_queue; 1845 #ifdef CONFIG_NETFILTER_INGRESS 1846 struct nf_hook_entries __rcu *nf_hooks_ingress; 1847 #endif 1848 1849 unsigned char broadcast[MAX_ADDR_LEN]; 1850 #ifdef CONFIG_RFS_ACCEL 1851 struct cpu_rmap *rx_cpu_rmap; 1852 #endif 1853 struct hlist_node index_hlist; 1854 1855 /* 1856 * Cache lines mostly used on transmit path 1857 */ 1858 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1859 unsigned int num_tx_queues; 1860 unsigned int real_num_tx_queues; 1861 struct Qdisc *qdisc; 1862 #ifdef CONFIG_NET_SCHED 1863 DECLARE_HASHTABLE (qdisc_hash, 4); 1864 #endif 1865 unsigned int tx_queue_len; 1866 spinlock_t tx_global_lock; 1867 int watchdog_timeo; 1868 1869 #ifdef CONFIG_XPS 1870 struct xps_dev_maps __rcu *xps_maps; 1871 #endif 1872 #ifdef CONFIG_NET_CLS_ACT 1873 struct mini_Qdisc __rcu *miniq_egress; 1874 #endif 1875 1876 /* These may be needed for future network-power-down code. */ 1877 struct timer_list watchdog_timer; 1878 1879 int __percpu *pcpu_refcnt; 1880 struct list_head todo_list; 1881 1882 struct list_head link_watch_list; 1883 1884 enum { NETREG_UNINITIALIZED=0, 1885 NETREG_REGISTERED, /* completed register_netdevice */ 1886 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1887 NETREG_UNREGISTERED, /* completed unregister todo */ 1888 NETREG_RELEASED, /* called free_netdev */ 1889 NETREG_DUMMY, /* dummy device for NAPI poll */ 1890 } reg_state:8; 1891 1892 bool dismantle; 1893 1894 enum { 1895 RTNL_LINK_INITIALIZED, 1896 RTNL_LINK_INITIALIZING, 1897 } rtnl_link_state:16; 1898 1899 bool needs_free_netdev; 1900 void (*priv_destructor)(struct net_device *dev); 1901 1902 #ifdef CONFIG_NETPOLL 1903 struct netpoll_info __rcu *npinfo; 1904 #endif 1905 1906 possible_net_t nd_net; 1907 1908 /* mid-layer private */ 1909 union { 1910 void *ml_priv; 1911 struct pcpu_lstats __percpu *lstats; 1912 struct pcpu_sw_netstats __percpu *tstats; 1913 struct pcpu_dstats __percpu *dstats; 1914 struct pcpu_vstats __percpu *vstats; 1915 }; 1916 1917 #if IS_ENABLED(CONFIG_GARP) 1918 struct garp_port __rcu *garp_port; 1919 #endif 1920 #if IS_ENABLED(CONFIG_MRP) 1921 struct mrp_port __rcu *mrp_port; 1922 #endif 1923 1924 struct device dev; 1925 const struct attribute_group *sysfs_groups[4]; 1926 const struct attribute_group *sysfs_rx_queue_group; 1927 1928 const struct rtnl_link_ops *rtnl_link_ops; 1929 1930 /* for setting kernel sock attribute on TCP connection setup */ 1931 #define GSO_MAX_SIZE 65536 1932 unsigned int gso_max_size; 1933 #define GSO_MAX_SEGS 65535 1934 u16 gso_max_segs; 1935 1936 #ifdef CONFIG_DCB 1937 const struct dcbnl_rtnl_ops *dcbnl_ops; 1938 #endif 1939 u8 num_tc; 1940 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1941 u8 prio_tc_map[TC_BITMASK + 1]; 1942 1943 #if IS_ENABLED(CONFIG_FCOE) 1944 unsigned int fcoe_ddp_xid; 1945 #endif 1946 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1947 struct netprio_map __rcu *priomap; 1948 #endif 1949 struct phy_device *phydev; 1950 struct sfp_bus *sfp_bus; 1951 struct lock_class_key *qdisc_tx_busylock; 1952 struct lock_class_key *qdisc_running_key; 1953 bool proto_down; 1954 }; 1955 #define to_net_dev(d) container_of(d, struct net_device, dev) 1956 1957 static inline bool netif_elide_gro(const struct net_device *dev) 1958 { 1959 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1960 return true; 1961 return false; 1962 } 1963 1964 #define NETDEV_ALIGN 32 1965 1966 static inline 1967 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1968 { 1969 return dev->prio_tc_map[prio & TC_BITMASK]; 1970 } 1971 1972 static inline 1973 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1974 { 1975 if (tc >= dev->num_tc) 1976 return -EINVAL; 1977 1978 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1979 return 0; 1980 } 1981 1982 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1983 void netdev_reset_tc(struct net_device *dev); 1984 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1985 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1986 1987 static inline 1988 int netdev_get_num_tc(struct net_device *dev) 1989 { 1990 return dev->num_tc; 1991 } 1992 1993 static inline 1994 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1995 unsigned int index) 1996 { 1997 return &dev->_tx[index]; 1998 } 1999 2000 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2001 const struct sk_buff *skb) 2002 { 2003 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2004 } 2005 2006 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2007 void (*f)(struct net_device *, 2008 struct netdev_queue *, 2009 void *), 2010 void *arg) 2011 { 2012 unsigned int i; 2013 2014 for (i = 0; i < dev->num_tx_queues; i++) 2015 f(dev, &dev->_tx[i], arg); 2016 } 2017 2018 #define netdev_lockdep_set_classes(dev) \ 2019 { \ 2020 static struct lock_class_key qdisc_tx_busylock_key; \ 2021 static struct lock_class_key qdisc_running_key; \ 2022 static struct lock_class_key qdisc_xmit_lock_key; \ 2023 static struct lock_class_key dev_addr_list_lock_key; \ 2024 unsigned int i; \ 2025 \ 2026 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2027 (dev)->qdisc_running_key = &qdisc_running_key; \ 2028 lockdep_set_class(&(dev)->addr_list_lock, \ 2029 &dev_addr_list_lock_key); \ 2030 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2031 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2032 &qdisc_xmit_lock_key); \ 2033 } 2034 2035 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2036 struct sk_buff *skb, 2037 void *accel_priv); 2038 2039 /* returns the headroom that the master device needs to take in account 2040 * when forwarding to this dev 2041 */ 2042 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2043 { 2044 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2045 } 2046 2047 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2048 { 2049 if (dev->netdev_ops->ndo_set_rx_headroom) 2050 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2051 } 2052 2053 /* set the device rx headroom to the dev's default */ 2054 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2055 { 2056 netdev_set_rx_headroom(dev, -1); 2057 } 2058 2059 /* 2060 * Net namespace inlines 2061 */ 2062 static inline 2063 struct net *dev_net(const struct net_device *dev) 2064 { 2065 return read_pnet(&dev->nd_net); 2066 } 2067 2068 static inline 2069 void dev_net_set(struct net_device *dev, struct net *net) 2070 { 2071 write_pnet(&dev->nd_net, net); 2072 } 2073 2074 /** 2075 * netdev_priv - access network device private data 2076 * @dev: network device 2077 * 2078 * Get network device private data 2079 */ 2080 static inline void *netdev_priv(const struct net_device *dev) 2081 { 2082 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2083 } 2084 2085 /* Set the sysfs physical device reference for the network logical device 2086 * if set prior to registration will cause a symlink during initialization. 2087 */ 2088 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2089 2090 /* Set the sysfs device type for the network logical device to allow 2091 * fine-grained identification of different network device types. For 2092 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2093 */ 2094 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2095 2096 /* Default NAPI poll() weight 2097 * Device drivers are strongly advised to not use bigger value 2098 */ 2099 #define NAPI_POLL_WEIGHT 64 2100 2101 /** 2102 * netif_napi_add - initialize a NAPI context 2103 * @dev: network device 2104 * @napi: NAPI context 2105 * @poll: polling function 2106 * @weight: default weight 2107 * 2108 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2109 * *any* of the other NAPI-related functions. 2110 */ 2111 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2112 int (*poll)(struct napi_struct *, int), int weight); 2113 2114 /** 2115 * netif_tx_napi_add - initialize a NAPI context 2116 * @dev: network device 2117 * @napi: NAPI context 2118 * @poll: polling function 2119 * @weight: default weight 2120 * 2121 * This variant of netif_napi_add() should be used from drivers using NAPI 2122 * to exclusively poll a TX queue. 2123 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2124 */ 2125 static inline void netif_tx_napi_add(struct net_device *dev, 2126 struct napi_struct *napi, 2127 int (*poll)(struct napi_struct *, int), 2128 int weight) 2129 { 2130 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2131 netif_napi_add(dev, napi, poll, weight); 2132 } 2133 2134 /** 2135 * netif_napi_del - remove a NAPI context 2136 * @napi: NAPI context 2137 * 2138 * netif_napi_del() removes a NAPI context from the network device NAPI list 2139 */ 2140 void netif_napi_del(struct napi_struct *napi); 2141 2142 struct napi_gro_cb { 2143 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2144 void *frag0; 2145 2146 /* Length of frag0. */ 2147 unsigned int frag0_len; 2148 2149 /* This indicates where we are processing relative to skb->data. */ 2150 int data_offset; 2151 2152 /* This is non-zero if the packet cannot be merged with the new skb. */ 2153 u16 flush; 2154 2155 /* Save the IP ID here and check when we get to the transport layer */ 2156 u16 flush_id; 2157 2158 /* Number of segments aggregated. */ 2159 u16 count; 2160 2161 /* Start offset for remote checksum offload */ 2162 u16 gro_remcsum_start; 2163 2164 /* jiffies when first packet was created/queued */ 2165 unsigned long age; 2166 2167 /* Used in ipv6_gro_receive() and foo-over-udp */ 2168 u16 proto; 2169 2170 /* This is non-zero if the packet may be of the same flow. */ 2171 u8 same_flow:1; 2172 2173 /* Used in tunnel GRO receive */ 2174 u8 encap_mark:1; 2175 2176 /* GRO checksum is valid */ 2177 u8 csum_valid:1; 2178 2179 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2180 u8 csum_cnt:3; 2181 2182 /* Free the skb? */ 2183 u8 free:2; 2184 #define NAPI_GRO_FREE 1 2185 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2186 2187 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2188 u8 is_ipv6:1; 2189 2190 /* Used in GRE, set in fou/gue_gro_receive */ 2191 u8 is_fou:1; 2192 2193 /* Used to determine if flush_id can be ignored */ 2194 u8 is_atomic:1; 2195 2196 /* Number of gro_receive callbacks this packet already went through */ 2197 u8 recursion_counter:4; 2198 2199 /* 1 bit hole */ 2200 2201 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2202 __wsum csum; 2203 2204 /* used in skb_gro_receive() slow path */ 2205 struct sk_buff *last; 2206 }; 2207 2208 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2209 2210 #define GRO_RECURSION_LIMIT 15 2211 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2212 { 2213 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2214 } 2215 2216 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2217 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2218 struct sk_buff **head, 2219 struct sk_buff *skb) 2220 { 2221 if (unlikely(gro_recursion_inc_test(skb))) { 2222 NAPI_GRO_CB(skb)->flush |= 1; 2223 return NULL; 2224 } 2225 2226 return cb(head, skb); 2227 } 2228 2229 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2230 struct sk_buff *); 2231 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2232 struct sock *sk, 2233 struct sk_buff **head, 2234 struct sk_buff *skb) 2235 { 2236 if (unlikely(gro_recursion_inc_test(skb))) { 2237 NAPI_GRO_CB(skb)->flush |= 1; 2238 return NULL; 2239 } 2240 2241 return cb(sk, head, skb); 2242 } 2243 2244 struct packet_type { 2245 __be16 type; /* This is really htons(ether_type). */ 2246 struct net_device *dev; /* NULL is wildcarded here */ 2247 int (*func) (struct sk_buff *, 2248 struct net_device *, 2249 struct packet_type *, 2250 struct net_device *); 2251 bool (*id_match)(struct packet_type *ptype, 2252 struct sock *sk); 2253 void *af_packet_priv; 2254 struct list_head list; 2255 }; 2256 2257 struct offload_callbacks { 2258 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2259 netdev_features_t features); 2260 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2261 struct sk_buff *skb); 2262 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2263 }; 2264 2265 struct packet_offload { 2266 __be16 type; /* This is really htons(ether_type). */ 2267 u16 priority; 2268 struct offload_callbacks callbacks; 2269 struct list_head list; 2270 }; 2271 2272 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2273 struct pcpu_sw_netstats { 2274 u64 rx_packets; 2275 u64 rx_bytes; 2276 u64 tx_packets; 2277 u64 tx_bytes; 2278 struct u64_stats_sync syncp; 2279 }; 2280 2281 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2282 ({ \ 2283 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2284 if (pcpu_stats) { \ 2285 int __cpu; \ 2286 for_each_possible_cpu(__cpu) { \ 2287 typeof(type) *stat; \ 2288 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2289 u64_stats_init(&stat->syncp); \ 2290 } \ 2291 } \ 2292 pcpu_stats; \ 2293 }) 2294 2295 #define netdev_alloc_pcpu_stats(type) \ 2296 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2297 2298 enum netdev_lag_tx_type { 2299 NETDEV_LAG_TX_TYPE_UNKNOWN, 2300 NETDEV_LAG_TX_TYPE_RANDOM, 2301 NETDEV_LAG_TX_TYPE_BROADCAST, 2302 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2303 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2304 NETDEV_LAG_TX_TYPE_HASH, 2305 }; 2306 2307 struct netdev_lag_upper_info { 2308 enum netdev_lag_tx_type tx_type; 2309 }; 2310 2311 struct netdev_lag_lower_state_info { 2312 u8 link_up : 1, 2313 tx_enabled : 1; 2314 }; 2315 2316 #include <linux/notifier.h> 2317 2318 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2319 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2320 * adding new types. 2321 */ 2322 enum netdev_cmd { 2323 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2324 NETDEV_DOWN, 2325 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2326 detected a hardware crash and restarted 2327 - we can use this eg to kick tcp sessions 2328 once done */ 2329 NETDEV_CHANGE, /* Notify device state change */ 2330 NETDEV_REGISTER, 2331 NETDEV_UNREGISTER, 2332 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2333 NETDEV_CHANGEADDR, 2334 NETDEV_GOING_DOWN, 2335 NETDEV_CHANGENAME, 2336 NETDEV_FEAT_CHANGE, 2337 NETDEV_BONDING_FAILOVER, 2338 NETDEV_PRE_UP, 2339 NETDEV_PRE_TYPE_CHANGE, 2340 NETDEV_POST_TYPE_CHANGE, 2341 NETDEV_POST_INIT, 2342 NETDEV_RELEASE, 2343 NETDEV_NOTIFY_PEERS, 2344 NETDEV_JOIN, 2345 NETDEV_CHANGEUPPER, 2346 NETDEV_RESEND_IGMP, 2347 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2348 NETDEV_CHANGEINFODATA, 2349 NETDEV_BONDING_INFO, 2350 NETDEV_PRECHANGEUPPER, 2351 NETDEV_CHANGELOWERSTATE, 2352 NETDEV_UDP_TUNNEL_PUSH_INFO, 2353 NETDEV_UDP_TUNNEL_DROP_INFO, 2354 NETDEV_CHANGE_TX_QUEUE_LEN, 2355 NETDEV_CVLAN_FILTER_PUSH_INFO, 2356 NETDEV_CVLAN_FILTER_DROP_INFO, 2357 NETDEV_SVLAN_FILTER_PUSH_INFO, 2358 NETDEV_SVLAN_FILTER_DROP_INFO, 2359 }; 2360 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2361 2362 int register_netdevice_notifier(struct notifier_block *nb); 2363 int unregister_netdevice_notifier(struct notifier_block *nb); 2364 2365 struct netdev_notifier_info { 2366 struct net_device *dev; 2367 struct netlink_ext_ack *extack; 2368 }; 2369 2370 struct netdev_notifier_change_info { 2371 struct netdev_notifier_info info; /* must be first */ 2372 unsigned int flags_changed; 2373 }; 2374 2375 struct netdev_notifier_changeupper_info { 2376 struct netdev_notifier_info info; /* must be first */ 2377 struct net_device *upper_dev; /* new upper dev */ 2378 bool master; /* is upper dev master */ 2379 bool linking; /* is the notification for link or unlink */ 2380 void *upper_info; /* upper dev info */ 2381 }; 2382 2383 struct netdev_notifier_changelowerstate_info { 2384 struct netdev_notifier_info info; /* must be first */ 2385 void *lower_state_info; /* is lower dev state */ 2386 }; 2387 2388 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2389 struct net_device *dev) 2390 { 2391 info->dev = dev; 2392 info->extack = NULL; 2393 } 2394 2395 static inline struct net_device * 2396 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2397 { 2398 return info->dev; 2399 } 2400 2401 static inline struct netlink_ext_ack * 2402 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2403 { 2404 return info->extack; 2405 } 2406 2407 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2408 2409 2410 extern rwlock_t dev_base_lock; /* Device list lock */ 2411 2412 #define for_each_netdev(net, d) \ 2413 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2414 #define for_each_netdev_reverse(net, d) \ 2415 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2416 #define for_each_netdev_rcu(net, d) \ 2417 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2418 #define for_each_netdev_safe(net, d, n) \ 2419 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2420 #define for_each_netdev_continue(net, d) \ 2421 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2422 #define for_each_netdev_continue_rcu(net, d) \ 2423 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2424 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2425 for_each_netdev_rcu(&init_net, slave) \ 2426 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2427 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2428 2429 static inline struct net_device *next_net_device(struct net_device *dev) 2430 { 2431 struct list_head *lh; 2432 struct net *net; 2433 2434 net = dev_net(dev); 2435 lh = dev->dev_list.next; 2436 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2437 } 2438 2439 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2440 { 2441 struct list_head *lh; 2442 struct net *net; 2443 2444 net = dev_net(dev); 2445 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2446 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2447 } 2448 2449 static inline struct net_device *first_net_device(struct net *net) 2450 { 2451 return list_empty(&net->dev_base_head) ? NULL : 2452 net_device_entry(net->dev_base_head.next); 2453 } 2454 2455 static inline struct net_device *first_net_device_rcu(struct net *net) 2456 { 2457 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2458 2459 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2460 } 2461 2462 int netdev_boot_setup_check(struct net_device *dev); 2463 unsigned long netdev_boot_base(const char *prefix, int unit); 2464 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2465 const char *hwaddr); 2466 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2467 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2468 void dev_add_pack(struct packet_type *pt); 2469 void dev_remove_pack(struct packet_type *pt); 2470 void __dev_remove_pack(struct packet_type *pt); 2471 void dev_add_offload(struct packet_offload *po); 2472 void dev_remove_offload(struct packet_offload *po); 2473 2474 int dev_get_iflink(const struct net_device *dev); 2475 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2476 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2477 unsigned short mask); 2478 struct net_device *dev_get_by_name(struct net *net, const char *name); 2479 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2480 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2481 int dev_alloc_name(struct net_device *dev, const char *name); 2482 int dev_open(struct net_device *dev); 2483 void dev_close(struct net_device *dev); 2484 void dev_close_many(struct list_head *head, bool unlink); 2485 void dev_disable_lro(struct net_device *dev); 2486 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2487 int dev_queue_xmit(struct sk_buff *skb); 2488 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2489 int register_netdevice(struct net_device *dev); 2490 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2491 void unregister_netdevice_many(struct list_head *head); 2492 static inline void unregister_netdevice(struct net_device *dev) 2493 { 2494 unregister_netdevice_queue(dev, NULL); 2495 } 2496 2497 int netdev_refcnt_read(const struct net_device *dev); 2498 void free_netdev(struct net_device *dev); 2499 void netdev_freemem(struct net_device *dev); 2500 void synchronize_net(void); 2501 int init_dummy_netdev(struct net_device *dev); 2502 2503 DECLARE_PER_CPU(int, xmit_recursion); 2504 #define XMIT_RECURSION_LIMIT 10 2505 2506 static inline int dev_recursion_level(void) 2507 { 2508 return this_cpu_read(xmit_recursion); 2509 } 2510 2511 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2512 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2513 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2514 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2515 int netdev_get_name(struct net *net, char *name, int ifindex); 2516 int dev_restart(struct net_device *dev); 2517 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2518 2519 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2520 { 2521 return NAPI_GRO_CB(skb)->data_offset; 2522 } 2523 2524 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2525 { 2526 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2527 } 2528 2529 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2530 { 2531 NAPI_GRO_CB(skb)->data_offset += len; 2532 } 2533 2534 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2535 unsigned int offset) 2536 { 2537 return NAPI_GRO_CB(skb)->frag0 + offset; 2538 } 2539 2540 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2541 { 2542 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2543 } 2544 2545 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2546 { 2547 NAPI_GRO_CB(skb)->frag0 = NULL; 2548 NAPI_GRO_CB(skb)->frag0_len = 0; 2549 } 2550 2551 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2552 unsigned int offset) 2553 { 2554 if (!pskb_may_pull(skb, hlen)) 2555 return NULL; 2556 2557 skb_gro_frag0_invalidate(skb); 2558 return skb->data + offset; 2559 } 2560 2561 static inline void *skb_gro_network_header(struct sk_buff *skb) 2562 { 2563 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2564 skb_network_offset(skb); 2565 } 2566 2567 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2568 const void *start, unsigned int len) 2569 { 2570 if (NAPI_GRO_CB(skb)->csum_valid) 2571 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2572 csum_partial(start, len, 0)); 2573 } 2574 2575 /* GRO checksum functions. These are logical equivalents of the normal 2576 * checksum functions (in skbuff.h) except that they operate on the GRO 2577 * offsets and fields in sk_buff. 2578 */ 2579 2580 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2581 2582 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2583 { 2584 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2585 } 2586 2587 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2588 bool zero_okay, 2589 __sum16 check) 2590 { 2591 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2592 skb_checksum_start_offset(skb) < 2593 skb_gro_offset(skb)) && 2594 !skb_at_gro_remcsum_start(skb) && 2595 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2596 (!zero_okay || check)); 2597 } 2598 2599 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2600 __wsum psum) 2601 { 2602 if (NAPI_GRO_CB(skb)->csum_valid && 2603 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2604 return 0; 2605 2606 NAPI_GRO_CB(skb)->csum = psum; 2607 2608 return __skb_gro_checksum_complete(skb); 2609 } 2610 2611 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2612 { 2613 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2614 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2615 NAPI_GRO_CB(skb)->csum_cnt--; 2616 } else { 2617 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2618 * verified a new top level checksum or an encapsulated one 2619 * during GRO. This saves work if we fallback to normal path. 2620 */ 2621 __skb_incr_checksum_unnecessary(skb); 2622 } 2623 } 2624 2625 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2626 compute_pseudo) \ 2627 ({ \ 2628 __sum16 __ret = 0; \ 2629 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2630 __ret = __skb_gro_checksum_validate_complete(skb, \ 2631 compute_pseudo(skb, proto)); \ 2632 if (!__ret) \ 2633 skb_gro_incr_csum_unnecessary(skb); \ 2634 __ret; \ 2635 }) 2636 2637 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2638 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2639 2640 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2641 compute_pseudo) \ 2642 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2643 2644 #define skb_gro_checksum_simple_validate(skb) \ 2645 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2646 2647 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2648 { 2649 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2650 !NAPI_GRO_CB(skb)->csum_valid); 2651 } 2652 2653 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2654 __sum16 check, __wsum pseudo) 2655 { 2656 NAPI_GRO_CB(skb)->csum = ~pseudo; 2657 NAPI_GRO_CB(skb)->csum_valid = 1; 2658 } 2659 2660 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2661 do { \ 2662 if (__skb_gro_checksum_convert_check(skb)) \ 2663 __skb_gro_checksum_convert(skb, check, \ 2664 compute_pseudo(skb, proto)); \ 2665 } while (0) 2666 2667 struct gro_remcsum { 2668 int offset; 2669 __wsum delta; 2670 }; 2671 2672 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2673 { 2674 grc->offset = 0; 2675 grc->delta = 0; 2676 } 2677 2678 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2679 unsigned int off, size_t hdrlen, 2680 int start, int offset, 2681 struct gro_remcsum *grc, 2682 bool nopartial) 2683 { 2684 __wsum delta; 2685 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2686 2687 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2688 2689 if (!nopartial) { 2690 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2691 return ptr; 2692 } 2693 2694 ptr = skb_gro_header_fast(skb, off); 2695 if (skb_gro_header_hard(skb, off + plen)) { 2696 ptr = skb_gro_header_slow(skb, off + plen, off); 2697 if (!ptr) 2698 return NULL; 2699 } 2700 2701 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2702 start, offset); 2703 2704 /* Adjust skb->csum since we changed the packet */ 2705 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2706 2707 grc->offset = off + hdrlen + offset; 2708 grc->delta = delta; 2709 2710 return ptr; 2711 } 2712 2713 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2714 struct gro_remcsum *grc) 2715 { 2716 void *ptr; 2717 size_t plen = grc->offset + sizeof(u16); 2718 2719 if (!grc->delta) 2720 return; 2721 2722 ptr = skb_gro_header_fast(skb, grc->offset); 2723 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2724 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2725 if (!ptr) 2726 return; 2727 } 2728 2729 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2730 } 2731 2732 #ifdef CONFIG_XFRM_OFFLOAD 2733 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2734 { 2735 if (PTR_ERR(pp) != -EINPROGRESS) 2736 NAPI_GRO_CB(skb)->flush |= flush; 2737 } 2738 #else 2739 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2740 { 2741 NAPI_GRO_CB(skb)->flush |= flush; 2742 } 2743 #endif 2744 2745 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2746 unsigned short type, 2747 const void *daddr, const void *saddr, 2748 unsigned int len) 2749 { 2750 if (!dev->header_ops || !dev->header_ops->create) 2751 return 0; 2752 2753 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2754 } 2755 2756 static inline int dev_parse_header(const struct sk_buff *skb, 2757 unsigned char *haddr) 2758 { 2759 const struct net_device *dev = skb->dev; 2760 2761 if (!dev->header_ops || !dev->header_ops->parse) 2762 return 0; 2763 return dev->header_ops->parse(skb, haddr); 2764 } 2765 2766 /* ll_header must have at least hard_header_len allocated */ 2767 static inline bool dev_validate_header(const struct net_device *dev, 2768 char *ll_header, int len) 2769 { 2770 if (likely(len >= dev->hard_header_len)) 2771 return true; 2772 if (len < dev->min_header_len) 2773 return false; 2774 2775 if (capable(CAP_SYS_RAWIO)) { 2776 memset(ll_header + len, 0, dev->hard_header_len - len); 2777 return true; 2778 } 2779 2780 if (dev->header_ops && dev->header_ops->validate) 2781 return dev->header_ops->validate(ll_header, len); 2782 2783 return false; 2784 } 2785 2786 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2787 int len, int size); 2788 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2789 static inline int unregister_gifconf(unsigned int family) 2790 { 2791 return register_gifconf(family, NULL); 2792 } 2793 2794 #ifdef CONFIG_NET_FLOW_LIMIT 2795 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2796 struct sd_flow_limit { 2797 u64 count; 2798 unsigned int num_buckets; 2799 unsigned int history_head; 2800 u16 history[FLOW_LIMIT_HISTORY]; 2801 u8 buckets[]; 2802 }; 2803 2804 extern int netdev_flow_limit_table_len; 2805 #endif /* CONFIG_NET_FLOW_LIMIT */ 2806 2807 /* 2808 * Incoming packets are placed on per-CPU queues 2809 */ 2810 struct softnet_data { 2811 struct list_head poll_list; 2812 struct sk_buff_head process_queue; 2813 2814 /* stats */ 2815 unsigned int processed; 2816 unsigned int time_squeeze; 2817 unsigned int received_rps; 2818 #ifdef CONFIG_RPS 2819 struct softnet_data *rps_ipi_list; 2820 #endif 2821 #ifdef CONFIG_NET_FLOW_LIMIT 2822 struct sd_flow_limit __rcu *flow_limit; 2823 #endif 2824 struct Qdisc *output_queue; 2825 struct Qdisc **output_queue_tailp; 2826 struct sk_buff *completion_queue; 2827 #ifdef CONFIG_XFRM_OFFLOAD 2828 struct sk_buff_head xfrm_backlog; 2829 #endif 2830 #ifdef CONFIG_RPS 2831 /* input_queue_head should be written by cpu owning this struct, 2832 * and only read by other cpus. Worth using a cache line. 2833 */ 2834 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2835 2836 /* Elements below can be accessed between CPUs for RPS/RFS */ 2837 call_single_data_t csd ____cacheline_aligned_in_smp; 2838 struct softnet_data *rps_ipi_next; 2839 unsigned int cpu; 2840 unsigned int input_queue_tail; 2841 #endif 2842 unsigned int dropped; 2843 struct sk_buff_head input_pkt_queue; 2844 struct napi_struct backlog; 2845 2846 }; 2847 2848 static inline void input_queue_head_incr(struct softnet_data *sd) 2849 { 2850 #ifdef CONFIG_RPS 2851 sd->input_queue_head++; 2852 #endif 2853 } 2854 2855 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2856 unsigned int *qtail) 2857 { 2858 #ifdef CONFIG_RPS 2859 *qtail = ++sd->input_queue_tail; 2860 #endif 2861 } 2862 2863 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2864 2865 void __netif_schedule(struct Qdisc *q); 2866 void netif_schedule_queue(struct netdev_queue *txq); 2867 2868 static inline void netif_tx_schedule_all(struct net_device *dev) 2869 { 2870 unsigned int i; 2871 2872 for (i = 0; i < dev->num_tx_queues; i++) 2873 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2874 } 2875 2876 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2877 { 2878 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2879 } 2880 2881 /** 2882 * netif_start_queue - allow transmit 2883 * @dev: network device 2884 * 2885 * Allow upper layers to call the device hard_start_xmit routine. 2886 */ 2887 static inline void netif_start_queue(struct net_device *dev) 2888 { 2889 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2890 } 2891 2892 static inline void netif_tx_start_all_queues(struct net_device *dev) 2893 { 2894 unsigned int i; 2895 2896 for (i = 0; i < dev->num_tx_queues; i++) { 2897 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2898 netif_tx_start_queue(txq); 2899 } 2900 } 2901 2902 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2903 2904 /** 2905 * netif_wake_queue - restart transmit 2906 * @dev: network device 2907 * 2908 * Allow upper layers to call the device hard_start_xmit routine. 2909 * Used for flow control when transmit resources are available. 2910 */ 2911 static inline void netif_wake_queue(struct net_device *dev) 2912 { 2913 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2914 } 2915 2916 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2917 { 2918 unsigned int i; 2919 2920 for (i = 0; i < dev->num_tx_queues; i++) { 2921 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2922 netif_tx_wake_queue(txq); 2923 } 2924 } 2925 2926 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2927 { 2928 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2929 } 2930 2931 /** 2932 * netif_stop_queue - stop transmitted packets 2933 * @dev: network device 2934 * 2935 * Stop upper layers calling the device hard_start_xmit routine. 2936 * Used for flow control when transmit resources are unavailable. 2937 */ 2938 static inline void netif_stop_queue(struct net_device *dev) 2939 { 2940 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2941 } 2942 2943 void netif_tx_stop_all_queues(struct net_device *dev); 2944 2945 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2946 { 2947 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2948 } 2949 2950 /** 2951 * netif_queue_stopped - test if transmit queue is flowblocked 2952 * @dev: network device 2953 * 2954 * Test if transmit queue on device is currently unable to send. 2955 */ 2956 static inline bool netif_queue_stopped(const struct net_device *dev) 2957 { 2958 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2959 } 2960 2961 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2962 { 2963 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2964 } 2965 2966 static inline bool 2967 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2968 { 2969 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2970 } 2971 2972 static inline bool 2973 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2974 { 2975 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2976 } 2977 2978 /** 2979 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2980 * @dev_queue: pointer to transmit queue 2981 * 2982 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2983 * to give appropriate hint to the CPU. 2984 */ 2985 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2986 { 2987 #ifdef CONFIG_BQL 2988 prefetchw(&dev_queue->dql.num_queued); 2989 #endif 2990 } 2991 2992 /** 2993 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2994 * @dev_queue: pointer to transmit queue 2995 * 2996 * BQL enabled drivers might use this helper in their TX completion path, 2997 * to give appropriate hint to the CPU. 2998 */ 2999 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3000 { 3001 #ifdef CONFIG_BQL 3002 prefetchw(&dev_queue->dql.limit); 3003 #endif 3004 } 3005 3006 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3007 unsigned int bytes) 3008 { 3009 #ifdef CONFIG_BQL 3010 dql_queued(&dev_queue->dql, bytes); 3011 3012 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3013 return; 3014 3015 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3016 3017 /* 3018 * The XOFF flag must be set before checking the dql_avail below, 3019 * because in netdev_tx_completed_queue we update the dql_completed 3020 * before checking the XOFF flag. 3021 */ 3022 smp_mb(); 3023 3024 /* check again in case another CPU has just made room avail */ 3025 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3026 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3027 #endif 3028 } 3029 3030 /** 3031 * netdev_sent_queue - report the number of bytes queued to hardware 3032 * @dev: network device 3033 * @bytes: number of bytes queued to the hardware device queue 3034 * 3035 * Report the number of bytes queued for sending/completion to the network 3036 * device hardware queue. @bytes should be a good approximation and should 3037 * exactly match netdev_completed_queue() @bytes 3038 */ 3039 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3040 { 3041 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3042 } 3043 3044 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3045 unsigned int pkts, unsigned int bytes) 3046 { 3047 #ifdef CONFIG_BQL 3048 if (unlikely(!bytes)) 3049 return; 3050 3051 dql_completed(&dev_queue->dql, bytes); 3052 3053 /* 3054 * Without the memory barrier there is a small possiblity that 3055 * netdev_tx_sent_queue will miss the update and cause the queue to 3056 * be stopped forever 3057 */ 3058 smp_mb(); 3059 3060 if (dql_avail(&dev_queue->dql) < 0) 3061 return; 3062 3063 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3064 netif_schedule_queue(dev_queue); 3065 #endif 3066 } 3067 3068 /** 3069 * netdev_completed_queue - report bytes and packets completed by device 3070 * @dev: network device 3071 * @pkts: actual number of packets sent over the medium 3072 * @bytes: actual number of bytes sent over the medium 3073 * 3074 * Report the number of bytes and packets transmitted by the network device 3075 * hardware queue over the physical medium, @bytes must exactly match the 3076 * @bytes amount passed to netdev_sent_queue() 3077 */ 3078 static inline void netdev_completed_queue(struct net_device *dev, 3079 unsigned int pkts, unsigned int bytes) 3080 { 3081 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3082 } 3083 3084 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3085 { 3086 #ifdef CONFIG_BQL 3087 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3088 dql_reset(&q->dql); 3089 #endif 3090 } 3091 3092 /** 3093 * netdev_reset_queue - reset the packets and bytes count of a network device 3094 * @dev_queue: network device 3095 * 3096 * Reset the bytes and packet count of a network device and clear the 3097 * software flow control OFF bit for this network device 3098 */ 3099 static inline void netdev_reset_queue(struct net_device *dev_queue) 3100 { 3101 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3102 } 3103 3104 /** 3105 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3106 * @dev: network device 3107 * @queue_index: given tx queue index 3108 * 3109 * Returns 0 if given tx queue index >= number of device tx queues, 3110 * otherwise returns the originally passed tx queue index. 3111 */ 3112 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3113 { 3114 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3115 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3116 dev->name, queue_index, 3117 dev->real_num_tx_queues); 3118 return 0; 3119 } 3120 3121 return queue_index; 3122 } 3123 3124 /** 3125 * netif_running - test if up 3126 * @dev: network device 3127 * 3128 * Test if the device has been brought up. 3129 */ 3130 static inline bool netif_running(const struct net_device *dev) 3131 { 3132 return test_bit(__LINK_STATE_START, &dev->state); 3133 } 3134 3135 /* 3136 * Routines to manage the subqueues on a device. We only need start, 3137 * stop, and a check if it's stopped. All other device management is 3138 * done at the overall netdevice level. 3139 * Also test the device if we're multiqueue. 3140 */ 3141 3142 /** 3143 * netif_start_subqueue - allow sending packets on subqueue 3144 * @dev: network device 3145 * @queue_index: sub queue index 3146 * 3147 * Start individual transmit queue of a device with multiple transmit queues. 3148 */ 3149 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3150 { 3151 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3152 3153 netif_tx_start_queue(txq); 3154 } 3155 3156 /** 3157 * netif_stop_subqueue - stop sending packets on subqueue 3158 * @dev: network device 3159 * @queue_index: sub queue index 3160 * 3161 * Stop individual transmit queue of a device with multiple transmit queues. 3162 */ 3163 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3164 { 3165 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3166 netif_tx_stop_queue(txq); 3167 } 3168 3169 /** 3170 * netif_subqueue_stopped - test status of subqueue 3171 * @dev: network device 3172 * @queue_index: sub queue index 3173 * 3174 * Check individual transmit queue of a device with multiple transmit queues. 3175 */ 3176 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3177 u16 queue_index) 3178 { 3179 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3180 3181 return netif_tx_queue_stopped(txq); 3182 } 3183 3184 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3185 struct sk_buff *skb) 3186 { 3187 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3188 } 3189 3190 /** 3191 * netif_wake_subqueue - allow sending packets on subqueue 3192 * @dev: network device 3193 * @queue_index: sub queue index 3194 * 3195 * Resume individual transmit queue of a device with multiple transmit queues. 3196 */ 3197 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3198 { 3199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3200 3201 netif_tx_wake_queue(txq); 3202 } 3203 3204 #ifdef CONFIG_XPS 3205 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3206 u16 index); 3207 #else 3208 static inline int netif_set_xps_queue(struct net_device *dev, 3209 const struct cpumask *mask, 3210 u16 index) 3211 { 3212 return 0; 3213 } 3214 #endif 3215 3216 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3217 unsigned int num_tx_queues); 3218 3219 /* 3220 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3221 * as a distribution range limit for the returned value. 3222 */ 3223 static inline u16 skb_tx_hash(const struct net_device *dev, 3224 struct sk_buff *skb) 3225 { 3226 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3227 } 3228 3229 /** 3230 * netif_is_multiqueue - test if device has multiple transmit queues 3231 * @dev: network device 3232 * 3233 * Check if device has multiple transmit queues 3234 */ 3235 static inline bool netif_is_multiqueue(const struct net_device *dev) 3236 { 3237 return dev->num_tx_queues > 1; 3238 } 3239 3240 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3241 3242 #ifdef CONFIG_SYSFS 3243 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3244 #else 3245 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3246 unsigned int rxq) 3247 { 3248 return 0; 3249 } 3250 #endif 3251 3252 static inline struct netdev_rx_queue * 3253 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3254 { 3255 return dev->_rx + rxq; 3256 } 3257 3258 #ifdef CONFIG_SYSFS 3259 static inline unsigned int get_netdev_rx_queue_index( 3260 struct netdev_rx_queue *queue) 3261 { 3262 struct net_device *dev = queue->dev; 3263 int index = queue - dev->_rx; 3264 3265 BUG_ON(index >= dev->num_rx_queues); 3266 return index; 3267 } 3268 #endif 3269 3270 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3271 int netif_get_num_default_rss_queues(void); 3272 3273 enum skb_free_reason { 3274 SKB_REASON_CONSUMED, 3275 SKB_REASON_DROPPED, 3276 }; 3277 3278 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3279 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3280 3281 /* 3282 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3283 * interrupt context or with hardware interrupts being disabled. 3284 * (in_irq() || irqs_disabled()) 3285 * 3286 * We provide four helpers that can be used in following contexts : 3287 * 3288 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3289 * replacing kfree_skb(skb) 3290 * 3291 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3292 * Typically used in place of consume_skb(skb) in TX completion path 3293 * 3294 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3295 * replacing kfree_skb(skb) 3296 * 3297 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3298 * and consumed a packet. Used in place of consume_skb(skb) 3299 */ 3300 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3301 { 3302 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3303 } 3304 3305 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3306 { 3307 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3308 } 3309 3310 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3311 { 3312 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3313 } 3314 3315 static inline void dev_consume_skb_any(struct sk_buff *skb) 3316 { 3317 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3318 } 3319 3320 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3321 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3322 int netif_rx(struct sk_buff *skb); 3323 int netif_rx_ni(struct sk_buff *skb); 3324 int netif_receive_skb(struct sk_buff *skb); 3325 int netif_receive_skb_core(struct sk_buff *skb); 3326 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3327 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3328 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3329 gro_result_t napi_gro_frags(struct napi_struct *napi); 3330 struct packet_offload *gro_find_receive_by_type(__be16 type); 3331 struct packet_offload *gro_find_complete_by_type(__be16 type); 3332 3333 static inline void napi_free_frags(struct napi_struct *napi) 3334 { 3335 kfree_skb(napi->skb); 3336 napi->skb = NULL; 3337 } 3338 3339 bool netdev_is_rx_handler_busy(struct net_device *dev); 3340 int netdev_rx_handler_register(struct net_device *dev, 3341 rx_handler_func_t *rx_handler, 3342 void *rx_handler_data); 3343 void netdev_rx_handler_unregister(struct net_device *dev); 3344 3345 bool dev_valid_name(const char *name); 3346 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3347 bool *need_copyout); 3348 int dev_ifconf(struct net *net, struct ifconf *, int); 3349 int dev_ethtool(struct net *net, struct ifreq *); 3350 unsigned int dev_get_flags(const struct net_device *); 3351 int __dev_change_flags(struct net_device *, unsigned int flags); 3352 int dev_change_flags(struct net_device *, unsigned int); 3353 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3354 unsigned int gchanges); 3355 int dev_change_name(struct net_device *, const char *); 3356 int dev_set_alias(struct net_device *, const char *, size_t); 3357 int dev_get_alias(const struct net_device *, char *, size_t); 3358 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3359 int __dev_set_mtu(struct net_device *, int); 3360 int dev_set_mtu(struct net_device *, int); 3361 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3362 void dev_set_group(struct net_device *, int); 3363 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3364 int dev_change_carrier(struct net_device *, bool new_carrier); 3365 int dev_get_phys_port_id(struct net_device *dev, 3366 struct netdev_phys_item_id *ppid); 3367 int dev_get_phys_port_name(struct net_device *dev, 3368 char *name, size_t len); 3369 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3370 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3371 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3372 struct netdev_queue *txq, int *ret); 3373 3374 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3375 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3376 int fd, u32 flags); 3377 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3378 struct netdev_bpf *xdp); 3379 3380 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3381 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3382 bool is_skb_forwardable(const struct net_device *dev, 3383 const struct sk_buff *skb); 3384 3385 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3386 struct sk_buff *skb) 3387 { 3388 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3389 unlikely(!is_skb_forwardable(dev, skb))) { 3390 atomic_long_inc(&dev->rx_dropped); 3391 kfree_skb(skb); 3392 return NET_RX_DROP; 3393 } 3394 3395 skb_scrub_packet(skb, true); 3396 skb->priority = 0; 3397 return 0; 3398 } 3399 3400 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3401 3402 extern int netdev_budget; 3403 extern unsigned int netdev_budget_usecs; 3404 3405 /* Called by rtnetlink.c:rtnl_unlock() */ 3406 void netdev_run_todo(void); 3407 3408 /** 3409 * dev_put - release reference to device 3410 * @dev: network device 3411 * 3412 * Release reference to device to allow it to be freed. 3413 */ 3414 static inline void dev_put(struct net_device *dev) 3415 { 3416 this_cpu_dec(*dev->pcpu_refcnt); 3417 } 3418 3419 /** 3420 * dev_hold - get reference to device 3421 * @dev: network device 3422 * 3423 * Hold reference to device to keep it from being freed. 3424 */ 3425 static inline void dev_hold(struct net_device *dev) 3426 { 3427 this_cpu_inc(*dev->pcpu_refcnt); 3428 } 3429 3430 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3431 * and _off may be called from IRQ context, but it is caller 3432 * who is responsible for serialization of these calls. 3433 * 3434 * The name carrier is inappropriate, these functions should really be 3435 * called netif_lowerlayer_*() because they represent the state of any 3436 * kind of lower layer not just hardware media. 3437 */ 3438 3439 void linkwatch_init_dev(struct net_device *dev); 3440 void linkwatch_fire_event(struct net_device *dev); 3441 void linkwatch_forget_dev(struct net_device *dev); 3442 3443 /** 3444 * netif_carrier_ok - test if carrier present 3445 * @dev: network device 3446 * 3447 * Check if carrier is present on device 3448 */ 3449 static inline bool netif_carrier_ok(const struct net_device *dev) 3450 { 3451 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3452 } 3453 3454 unsigned long dev_trans_start(struct net_device *dev); 3455 3456 void __netdev_watchdog_up(struct net_device *dev); 3457 3458 void netif_carrier_on(struct net_device *dev); 3459 3460 void netif_carrier_off(struct net_device *dev); 3461 3462 /** 3463 * netif_dormant_on - mark device as dormant. 3464 * @dev: network device 3465 * 3466 * Mark device as dormant (as per RFC2863). 3467 * 3468 * The dormant state indicates that the relevant interface is not 3469 * actually in a condition to pass packets (i.e., it is not 'up') but is 3470 * in a "pending" state, waiting for some external event. For "on- 3471 * demand" interfaces, this new state identifies the situation where the 3472 * interface is waiting for events to place it in the up state. 3473 */ 3474 static inline void netif_dormant_on(struct net_device *dev) 3475 { 3476 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3477 linkwatch_fire_event(dev); 3478 } 3479 3480 /** 3481 * netif_dormant_off - set device as not dormant. 3482 * @dev: network device 3483 * 3484 * Device is not in dormant state. 3485 */ 3486 static inline void netif_dormant_off(struct net_device *dev) 3487 { 3488 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3489 linkwatch_fire_event(dev); 3490 } 3491 3492 /** 3493 * netif_dormant - test if device is dormant 3494 * @dev: network device 3495 * 3496 * Check if device is dormant. 3497 */ 3498 static inline bool netif_dormant(const struct net_device *dev) 3499 { 3500 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3501 } 3502 3503 3504 /** 3505 * netif_oper_up - test if device is operational 3506 * @dev: network device 3507 * 3508 * Check if carrier is operational 3509 */ 3510 static inline bool netif_oper_up(const struct net_device *dev) 3511 { 3512 return (dev->operstate == IF_OPER_UP || 3513 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3514 } 3515 3516 /** 3517 * netif_device_present - is device available or removed 3518 * @dev: network device 3519 * 3520 * Check if device has not been removed from system. 3521 */ 3522 static inline bool netif_device_present(struct net_device *dev) 3523 { 3524 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3525 } 3526 3527 void netif_device_detach(struct net_device *dev); 3528 3529 void netif_device_attach(struct net_device *dev); 3530 3531 /* 3532 * Network interface message level settings 3533 */ 3534 3535 enum { 3536 NETIF_MSG_DRV = 0x0001, 3537 NETIF_MSG_PROBE = 0x0002, 3538 NETIF_MSG_LINK = 0x0004, 3539 NETIF_MSG_TIMER = 0x0008, 3540 NETIF_MSG_IFDOWN = 0x0010, 3541 NETIF_MSG_IFUP = 0x0020, 3542 NETIF_MSG_RX_ERR = 0x0040, 3543 NETIF_MSG_TX_ERR = 0x0080, 3544 NETIF_MSG_TX_QUEUED = 0x0100, 3545 NETIF_MSG_INTR = 0x0200, 3546 NETIF_MSG_TX_DONE = 0x0400, 3547 NETIF_MSG_RX_STATUS = 0x0800, 3548 NETIF_MSG_PKTDATA = 0x1000, 3549 NETIF_MSG_HW = 0x2000, 3550 NETIF_MSG_WOL = 0x4000, 3551 }; 3552 3553 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3554 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3555 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3556 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3557 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3558 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3559 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3560 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3561 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3562 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3563 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3564 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3565 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3566 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3567 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3568 3569 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3570 { 3571 /* use default */ 3572 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3573 return default_msg_enable_bits; 3574 if (debug_value == 0) /* no output */ 3575 return 0; 3576 /* set low N bits */ 3577 return (1 << debug_value) - 1; 3578 } 3579 3580 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3581 { 3582 spin_lock(&txq->_xmit_lock); 3583 txq->xmit_lock_owner = cpu; 3584 } 3585 3586 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3587 { 3588 __acquire(&txq->_xmit_lock); 3589 return true; 3590 } 3591 3592 static inline void __netif_tx_release(struct netdev_queue *txq) 3593 { 3594 __release(&txq->_xmit_lock); 3595 } 3596 3597 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3598 { 3599 spin_lock_bh(&txq->_xmit_lock); 3600 txq->xmit_lock_owner = smp_processor_id(); 3601 } 3602 3603 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3604 { 3605 bool ok = spin_trylock(&txq->_xmit_lock); 3606 if (likely(ok)) 3607 txq->xmit_lock_owner = smp_processor_id(); 3608 return ok; 3609 } 3610 3611 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3612 { 3613 txq->xmit_lock_owner = -1; 3614 spin_unlock(&txq->_xmit_lock); 3615 } 3616 3617 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3618 { 3619 txq->xmit_lock_owner = -1; 3620 spin_unlock_bh(&txq->_xmit_lock); 3621 } 3622 3623 static inline void txq_trans_update(struct netdev_queue *txq) 3624 { 3625 if (txq->xmit_lock_owner != -1) 3626 txq->trans_start = jiffies; 3627 } 3628 3629 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3630 static inline void netif_trans_update(struct net_device *dev) 3631 { 3632 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3633 3634 if (txq->trans_start != jiffies) 3635 txq->trans_start = jiffies; 3636 } 3637 3638 /** 3639 * netif_tx_lock - grab network device transmit lock 3640 * @dev: network device 3641 * 3642 * Get network device transmit lock 3643 */ 3644 static inline void netif_tx_lock(struct net_device *dev) 3645 { 3646 unsigned int i; 3647 int cpu; 3648 3649 spin_lock(&dev->tx_global_lock); 3650 cpu = smp_processor_id(); 3651 for (i = 0; i < dev->num_tx_queues; i++) { 3652 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3653 3654 /* We are the only thread of execution doing a 3655 * freeze, but we have to grab the _xmit_lock in 3656 * order to synchronize with threads which are in 3657 * the ->hard_start_xmit() handler and already 3658 * checked the frozen bit. 3659 */ 3660 __netif_tx_lock(txq, cpu); 3661 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3662 __netif_tx_unlock(txq); 3663 } 3664 } 3665 3666 static inline void netif_tx_lock_bh(struct net_device *dev) 3667 { 3668 local_bh_disable(); 3669 netif_tx_lock(dev); 3670 } 3671 3672 static inline void netif_tx_unlock(struct net_device *dev) 3673 { 3674 unsigned int i; 3675 3676 for (i = 0; i < dev->num_tx_queues; i++) { 3677 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3678 3679 /* No need to grab the _xmit_lock here. If the 3680 * queue is not stopped for another reason, we 3681 * force a schedule. 3682 */ 3683 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3684 netif_schedule_queue(txq); 3685 } 3686 spin_unlock(&dev->tx_global_lock); 3687 } 3688 3689 static inline void netif_tx_unlock_bh(struct net_device *dev) 3690 { 3691 netif_tx_unlock(dev); 3692 local_bh_enable(); 3693 } 3694 3695 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3696 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3697 __netif_tx_lock(txq, cpu); \ 3698 } else { \ 3699 __netif_tx_acquire(txq); \ 3700 } \ 3701 } 3702 3703 #define HARD_TX_TRYLOCK(dev, txq) \ 3704 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3705 __netif_tx_trylock(txq) : \ 3706 __netif_tx_acquire(txq)) 3707 3708 #define HARD_TX_UNLOCK(dev, txq) { \ 3709 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3710 __netif_tx_unlock(txq); \ 3711 } else { \ 3712 __netif_tx_release(txq); \ 3713 } \ 3714 } 3715 3716 static inline void netif_tx_disable(struct net_device *dev) 3717 { 3718 unsigned int i; 3719 int cpu; 3720 3721 local_bh_disable(); 3722 cpu = smp_processor_id(); 3723 for (i = 0; i < dev->num_tx_queues; i++) { 3724 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3725 3726 __netif_tx_lock(txq, cpu); 3727 netif_tx_stop_queue(txq); 3728 __netif_tx_unlock(txq); 3729 } 3730 local_bh_enable(); 3731 } 3732 3733 static inline void netif_addr_lock(struct net_device *dev) 3734 { 3735 spin_lock(&dev->addr_list_lock); 3736 } 3737 3738 static inline void netif_addr_lock_nested(struct net_device *dev) 3739 { 3740 int subclass = SINGLE_DEPTH_NESTING; 3741 3742 if (dev->netdev_ops->ndo_get_lock_subclass) 3743 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3744 3745 spin_lock_nested(&dev->addr_list_lock, subclass); 3746 } 3747 3748 static inline void netif_addr_lock_bh(struct net_device *dev) 3749 { 3750 spin_lock_bh(&dev->addr_list_lock); 3751 } 3752 3753 static inline void netif_addr_unlock(struct net_device *dev) 3754 { 3755 spin_unlock(&dev->addr_list_lock); 3756 } 3757 3758 static inline void netif_addr_unlock_bh(struct net_device *dev) 3759 { 3760 spin_unlock_bh(&dev->addr_list_lock); 3761 } 3762 3763 /* 3764 * dev_addrs walker. Should be used only for read access. Call with 3765 * rcu_read_lock held. 3766 */ 3767 #define for_each_dev_addr(dev, ha) \ 3768 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3769 3770 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3771 3772 void ether_setup(struct net_device *dev); 3773 3774 /* Support for loadable net-drivers */ 3775 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3776 unsigned char name_assign_type, 3777 void (*setup)(struct net_device *), 3778 unsigned int txqs, unsigned int rxqs); 3779 int dev_get_valid_name(struct net *net, struct net_device *dev, 3780 const char *name); 3781 3782 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3783 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3784 3785 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3786 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3787 count) 3788 3789 int register_netdev(struct net_device *dev); 3790 void unregister_netdev(struct net_device *dev); 3791 3792 /* General hardware address lists handling functions */ 3793 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3794 struct netdev_hw_addr_list *from_list, int addr_len); 3795 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3796 struct netdev_hw_addr_list *from_list, int addr_len); 3797 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3798 struct net_device *dev, 3799 int (*sync)(struct net_device *, const unsigned char *), 3800 int (*unsync)(struct net_device *, 3801 const unsigned char *)); 3802 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3803 struct net_device *dev, 3804 int (*unsync)(struct net_device *, 3805 const unsigned char *)); 3806 void __hw_addr_init(struct netdev_hw_addr_list *list); 3807 3808 /* Functions used for device addresses handling */ 3809 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3810 unsigned char addr_type); 3811 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3812 unsigned char addr_type); 3813 void dev_addr_flush(struct net_device *dev); 3814 int dev_addr_init(struct net_device *dev); 3815 3816 /* Functions used for unicast addresses handling */ 3817 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3818 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3819 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3820 int dev_uc_sync(struct net_device *to, struct net_device *from); 3821 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3822 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3823 void dev_uc_flush(struct net_device *dev); 3824 void dev_uc_init(struct net_device *dev); 3825 3826 /** 3827 * __dev_uc_sync - Synchonize device's unicast list 3828 * @dev: device to sync 3829 * @sync: function to call if address should be added 3830 * @unsync: function to call if address should be removed 3831 * 3832 * Add newly added addresses to the interface, and release 3833 * addresses that have been deleted. 3834 */ 3835 static inline int __dev_uc_sync(struct net_device *dev, 3836 int (*sync)(struct net_device *, 3837 const unsigned char *), 3838 int (*unsync)(struct net_device *, 3839 const unsigned char *)) 3840 { 3841 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3842 } 3843 3844 /** 3845 * __dev_uc_unsync - Remove synchronized addresses from device 3846 * @dev: device to sync 3847 * @unsync: function to call if address should be removed 3848 * 3849 * Remove all addresses that were added to the device by dev_uc_sync(). 3850 */ 3851 static inline void __dev_uc_unsync(struct net_device *dev, 3852 int (*unsync)(struct net_device *, 3853 const unsigned char *)) 3854 { 3855 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3856 } 3857 3858 /* Functions used for multicast addresses handling */ 3859 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3860 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3861 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3862 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3863 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3864 int dev_mc_sync(struct net_device *to, struct net_device *from); 3865 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3866 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3867 void dev_mc_flush(struct net_device *dev); 3868 void dev_mc_init(struct net_device *dev); 3869 3870 /** 3871 * __dev_mc_sync - Synchonize device's multicast list 3872 * @dev: device to sync 3873 * @sync: function to call if address should be added 3874 * @unsync: function to call if address should be removed 3875 * 3876 * Add newly added addresses to the interface, and release 3877 * addresses that have been deleted. 3878 */ 3879 static inline int __dev_mc_sync(struct net_device *dev, 3880 int (*sync)(struct net_device *, 3881 const unsigned char *), 3882 int (*unsync)(struct net_device *, 3883 const unsigned char *)) 3884 { 3885 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3886 } 3887 3888 /** 3889 * __dev_mc_unsync - Remove synchronized addresses from device 3890 * @dev: device to sync 3891 * @unsync: function to call if address should be removed 3892 * 3893 * Remove all addresses that were added to the device by dev_mc_sync(). 3894 */ 3895 static inline void __dev_mc_unsync(struct net_device *dev, 3896 int (*unsync)(struct net_device *, 3897 const unsigned char *)) 3898 { 3899 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3900 } 3901 3902 /* Functions used for secondary unicast and multicast support */ 3903 void dev_set_rx_mode(struct net_device *dev); 3904 void __dev_set_rx_mode(struct net_device *dev); 3905 int dev_set_promiscuity(struct net_device *dev, int inc); 3906 int dev_set_allmulti(struct net_device *dev, int inc); 3907 void netdev_state_change(struct net_device *dev); 3908 void netdev_notify_peers(struct net_device *dev); 3909 void netdev_features_change(struct net_device *dev); 3910 /* Load a device via the kmod */ 3911 void dev_load(struct net *net, const char *name); 3912 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3913 struct rtnl_link_stats64 *storage); 3914 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3915 const struct net_device_stats *netdev_stats); 3916 3917 extern int netdev_max_backlog; 3918 extern int netdev_tstamp_prequeue; 3919 extern int weight_p; 3920 extern int dev_weight_rx_bias; 3921 extern int dev_weight_tx_bias; 3922 extern int dev_rx_weight; 3923 extern int dev_tx_weight; 3924 3925 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3926 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3927 struct list_head **iter); 3928 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3929 struct list_head **iter); 3930 3931 /* iterate through upper list, must be called under RCU read lock */ 3932 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3933 for (iter = &(dev)->adj_list.upper, \ 3934 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3935 updev; \ 3936 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3937 3938 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3939 int (*fn)(struct net_device *upper_dev, 3940 void *data), 3941 void *data); 3942 3943 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3944 struct net_device *upper_dev); 3945 3946 bool netdev_has_any_upper_dev(struct net_device *dev); 3947 3948 void *netdev_lower_get_next_private(struct net_device *dev, 3949 struct list_head **iter); 3950 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3951 struct list_head **iter); 3952 3953 #define netdev_for_each_lower_private(dev, priv, iter) \ 3954 for (iter = (dev)->adj_list.lower.next, \ 3955 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3956 priv; \ 3957 priv = netdev_lower_get_next_private(dev, &(iter))) 3958 3959 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3960 for (iter = &(dev)->adj_list.lower, \ 3961 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3962 priv; \ 3963 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3964 3965 void *netdev_lower_get_next(struct net_device *dev, 3966 struct list_head **iter); 3967 3968 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3969 for (iter = (dev)->adj_list.lower.next, \ 3970 ldev = netdev_lower_get_next(dev, &(iter)); \ 3971 ldev; \ 3972 ldev = netdev_lower_get_next(dev, &(iter))) 3973 3974 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3975 struct list_head **iter); 3976 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3977 struct list_head **iter); 3978 3979 int netdev_walk_all_lower_dev(struct net_device *dev, 3980 int (*fn)(struct net_device *lower_dev, 3981 void *data), 3982 void *data); 3983 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3984 int (*fn)(struct net_device *lower_dev, 3985 void *data), 3986 void *data); 3987 3988 void *netdev_adjacent_get_private(struct list_head *adj_list); 3989 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3990 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3991 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3992 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 3993 struct netlink_ext_ack *extack); 3994 int netdev_master_upper_dev_link(struct net_device *dev, 3995 struct net_device *upper_dev, 3996 void *upper_priv, void *upper_info, 3997 struct netlink_ext_ack *extack); 3998 void netdev_upper_dev_unlink(struct net_device *dev, 3999 struct net_device *upper_dev); 4000 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4001 void *netdev_lower_dev_get_private(struct net_device *dev, 4002 struct net_device *lower_dev); 4003 void netdev_lower_state_changed(struct net_device *lower_dev, 4004 void *lower_state_info); 4005 4006 /* RSS keys are 40 or 52 bytes long */ 4007 #define NETDEV_RSS_KEY_LEN 52 4008 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4009 void netdev_rss_key_fill(void *buffer, size_t len); 4010 4011 int dev_get_nest_level(struct net_device *dev); 4012 int skb_checksum_help(struct sk_buff *skb); 4013 int skb_crc32c_csum_help(struct sk_buff *skb); 4014 int skb_csum_hwoffload_help(struct sk_buff *skb, 4015 const netdev_features_t features); 4016 4017 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4018 netdev_features_t features, bool tx_path); 4019 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4020 netdev_features_t features); 4021 4022 struct netdev_bonding_info { 4023 ifslave slave; 4024 ifbond master; 4025 }; 4026 4027 struct netdev_notifier_bonding_info { 4028 struct netdev_notifier_info info; /* must be first */ 4029 struct netdev_bonding_info bonding_info; 4030 }; 4031 4032 void netdev_bonding_info_change(struct net_device *dev, 4033 struct netdev_bonding_info *bonding_info); 4034 4035 static inline 4036 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4037 { 4038 return __skb_gso_segment(skb, features, true); 4039 } 4040 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4041 4042 static inline bool can_checksum_protocol(netdev_features_t features, 4043 __be16 protocol) 4044 { 4045 if (protocol == htons(ETH_P_FCOE)) 4046 return !!(features & NETIF_F_FCOE_CRC); 4047 4048 /* Assume this is an IP checksum (not SCTP CRC) */ 4049 4050 if (features & NETIF_F_HW_CSUM) { 4051 /* Can checksum everything */ 4052 return true; 4053 } 4054 4055 switch (protocol) { 4056 case htons(ETH_P_IP): 4057 return !!(features & NETIF_F_IP_CSUM); 4058 case htons(ETH_P_IPV6): 4059 return !!(features & NETIF_F_IPV6_CSUM); 4060 default: 4061 return false; 4062 } 4063 } 4064 4065 #ifdef CONFIG_BUG 4066 void netdev_rx_csum_fault(struct net_device *dev); 4067 #else 4068 static inline void netdev_rx_csum_fault(struct net_device *dev) 4069 { 4070 } 4071 #endif 4072 /* rx skb timestamps */ 4073 void net_enable_timestamp(void); 4074 void net_disable_timestamp(void); 4075 4076 #ifdef CONFIG_PROC_FS 4077 int __init dev_proc_init(void); 4078 #else 4079 #define dev_proc_init() 0 4080 #endif 4081 4082 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4083 struct sk_buff *skb, struct net_device *dev, 4084 bool more) 4085 { 4086 skb->xmit_more = more ? 1 : 0; 4087 return ops->ndo_start_xmit(skb, dev); 4088 } 4089 4090 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4091 struct netdev_queue *txq, bool more) 4092 { 4093 const struct net_device_ops *ops = dev->netdev_ops; 4094 int rc; 4095 4096 rc = __netdev_start_xmit(ops, skb, dev, more); 4097 if (rc == NETDEV_TX_OK) 4098 txq_trans_update(txq); 4099 4100 return rc; 4101 } 4102 4103 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4104 const void *ns); 4105 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4106 const void *ns); 4107 4108 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4109 { 4110 return netdev_class_create_file_ns(class_attr, NULL); 4111 } 4112 4113 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4114 { 4115 netdev_class_remove_file_ns(class_attr, NULL); 4116 } 4117 4118 extern const struct kobj_ns_type_operations net_ns_type_operations; 4119 4120 const char *netdev_drivername(const struct net_device *dev); 4121 4122 void linkwatch_run_queue(void); 4123 4124 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4125 netdev_features_t f2) 4126 { 4127 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4128 if (f1 & NETIF_F_HW_CSUM) 4129 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4130 else 4131 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4132 } 4133 4134 return f1 & f2; 4135 } 4136 4137 static inline netdev_features_t netdev_get_wanted_features( 4138 struct net_device *dev) 4139 { 4140 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4141 } 4142 netdev_features_t netdev_increment_features(netdev_features_t all, 4143 netdev_features_t one, netdev_features_t mask); 4144 4145 /* Allow TSO being used on stacked device : 4146 * Performing the GSO segmentation before last device 4147 * is a performance improvement. 4148 */ 4149 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4150 netdev_features_t mask) 4151 { 4152 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4153 } 4154 4155 int __netdev_update_features(struct net_device *dev); 4156 void netdev_update_features(struct net_device *dev); 4157 void netdev_change_features(struct net_device *dev); 4158 4159 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4160 struct net_device *dev); 4161 4162 netdev_features_t passthru_features_check(struct sk_buff *skb, 4163 struct net_device *dev, 4164 netdev_features_t features); 4165 netdev_features_t netif_skb_features(struct sk_buff *skb); 4166 4167 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4168 { 4169 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4170 4171 /* check flags correspondence */ 4172 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4173 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4174 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4175 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4176 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4177 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4178 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4179 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4180 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4181 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4182 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4183 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4184 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4185 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4186 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4187 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4188 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4189 4190 return (features & feature) == feature; 4191 } 4192 4193 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4194 { 4195 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4196 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4197 } 4198 4199 static inline bool netif_needs_gso(struct sk_buff *skb, 4200 netdev_features_t features) 4201 { 4202 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4203 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4204 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4205 } 4206 4207 static inline void netif_set_gso_max_size(struct net_device *dev, 4208 unsigned int size) 4209 { 4210 dev->gso_max_size = size; 4211 } 4212 4213 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4214 int pulled_hlen, u16 mac_offset, 4215 int mac_len) 4216 { 4217 skb->protocol = protocol; 4218 skb->encapsulation = 1; 4219 skb_push(skb, pulled_hlen); 4220 skb_reset_transport_header(skb); 4221 skb->mac_header = mac_offset; 4222 skb->network_header = skb->mac_header + mac_len; 4223 skb->mac_len = mac_len; 4224 } 4225 4226 static inline bool netif_is_macsec(const struct net_device *dev) 4227 { 4228 return dev->priv_flags & IFF_MACSEC; 4229 } 4230 4231 static inline bool netif_is_macvlan(const struct net_device *dev) 4232 { 4233 return dev->priv_flags & IFF_MACVLAN; 4234 } 4235 4236 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4237 { 4238 return dev->priv_flags & IFF_MACVLAN_PORT; 4239 } 4240 4241 static inline bool netif_is_bond_master(const struct net_device *dev) 4242 { 4243 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4244 } 4245 4246 static inline bool netif_is_bond_slave(const struct net_device *dev) 4247 { 4248 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4249 } 4250 4251 static inline bool netif_supports_nofcs(struct net_device *dev) 4252 { 4253 return dev->priv_flags & IFF_SUPP_NOFCS; 4254 } 4255 4256 static inline bool netif_is_l3_master(const struct net_device *dev) 4257 { 4258 return dev->priv_flags & IFF_L3MDEV_MASTER; 4259 } 4260 4261 static inline bool netif_is_l3_slave(const struct net_device *dev) 4262 { 4263 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4264 } 4265 4266 static inline bool netif_is_bridge_master(const struct net_device *dev) 4267 { 4268 return dev->priv_flags & IFF_EBRIDGE; 4269 } 4270 4271 static inline bool netif_is_bridge_port(const struct net_device *dev) 4272 { 4273 return dev->priv_flags & IFF_BRIDGE_PORT; 4274 } 4275 4276 static inline bool netif_is_ovs_master(const struct net_device *dev) 4277 { 4278 return dev->priv_flags & IFF_OPENVSWITCH; 4279 } 4280 4281 static inline bool netif_is_ovs_port(const struct net_device *dev) 4282 { 4283 return dev->priv_flags & IFF_OVS_DATAPATH; 4284 } 4285 4286 static inline bool netif_is_team_master(const struct net_device *dev) 4287 { 4288 return dev->priv_flags & IFF_TEAM; 4289 } 4290 4291 static inline bool netif_is_team_port(const struct net_device *dev) 4292 { 4293 return dev->priv_flags & IFF_TEAM_PORT; 4294 } 4295 4296 static inline bool netif_is_lag_master(const struct net_device *dev) 4297 { 4298 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4299 } 4300 4301 static inline bool netif_is_lag_port(const struct net_device *dev) 4302 { 4303 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4304 } 4305 4306 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4307 { 4308 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4309 } 4310 4311 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4312 static inline void netif_keep_dst(struct net_device *dev) 4313 { 4314 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4315 } 4316 4317 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4318 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4319 { 4320 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4321 return dev->priv_flags & IFF_MACSEC; 4322 } 4323 4324 extern struct pernet_operations __net_initdata loopback_net_ops; 4325 4326 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4327 4328 /* netdev_printk helpers, similar to dev_printk */ 4329 4330 static inline const char *netdev_name(const struct net_device *dev) 4331 { 4332 if (!dev->name[0] || strchr(dev->name, '%')) 4333 return "(unnamed net_device)"; 4334 return dev->name; 4335 } 4336 4337 static inline bool netdev_unregistering(const struct net_device *dev) 4338 { 4339 return dev->reg_state == NETREG_UNREGISTERING; 4340 } 4341 4342 static inline const char *netdev_reg_state(const struct net_device *dev) 4343 { 4344 switch (dev->reg_state) { 4345 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4346 case NETREG_REGISTERED: return ""; 4347 case NETREG_UNREGISTERING: return " (unregistering)"; 4348 case NETREG_UNREGISTERED: return " (unregistered)"; 4349 case NETREG_RELEASED: return " (released)"; 4350 case NETREG_DUMMY: return " (dummy)"; 4351 } 4352 4353 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4354 return " (unknown)"; 4355 } 4356 4357 __printf(3, 4) 4358 void netdev_printk(const char *level, const struct net_device *dev, 4359 const char *format, ...); 4360 __printf(2, 3) 4361 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4362 __printf(2, 3) 4363 void netdev_alert(const struct net_device *dev, const char *format, ...); 4364 __printf(2, 3) 4365 void netdev_crit(const struct net_device *dev, const char *format, ...); 4366 __printf(2, 3) 4367 void netdev_err(const struct net_device *dev, const char *format, ...); 4368 __printf(2, 3) 4369 void netdev_warn(const struct net_device *dev, const char *format, ...); 4370 __printf(2, 3) 4371 void netdev_notice(const struct net_device *dev, const char *format, ...); 4372 __printf(2, 3) 4373 void netdev_info(const struct net_device *dev, const char *format, ...); 4374 4375 #define netdev_level_once(level, dev, fmt, ...) \ 4376 do { \ 4377 static bool __print_once __read_mostly; \ 4378 \ 4379 if (!__print_once) { \ 4380 __print_once = true; \ 4381 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4382 } \ 4383 } while (0) 4384 4385 #define netdev_emerg_once(dev, fmt, ...) \ 4386 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4387 #define netdev_alert_once(dev, fmt, ...) \ 4388 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4389 #define netdev_crit_once(dev, fmt, ...) \ 4390 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4391 #define netdev_err_once(dev, fmt, ...) \ 4392 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4393 #define netdev_warn_once(dev, fmt, ...) \ 4394 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4395 #define netdev_notice_once(dev, fmt, ...) \ 4396 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4397 #define netdev_info_once(dev, fmt, ...) \ 4398 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4399 4400 #define MODULE_ALIAS_NETDEV(device) \ 4401 MODULE_ALIAS("netdev-" device) 4402 4403 #if defined(CONFIG_DYNAMIC_DEBUG) 4404 #define netdev_dbg(__dev, format, args...) \ 4405 do { \ 4406 dynamic_netdev_dbg(__dev, format, ##args); \ 4407 } while (0) 4408 #elif defined(DEBUG) 4409 #define netdev_dbg(__dev, format, args...) \ 4410 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4411 #else 4412 #define netdev_dbg(__dev, format, args...) \ 4413 ({ \ 4414 if (0) \ 4415 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4416 }) 4417 #endif 4418 4419 #if defined(VERBOSE_DEBUG) 4420 #define netdev_vdbg netdev_dbg 4421 #else 4422 4423 #define netdev_vdbg(dev, format, args...) \ 4424 ({ \ 4425 if (0) \ 4426 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4427 0; \ 4428 }) 4429 #endif 4430 4431 /* 4432 * netdev_WARN() acts like dev_printk(), but with the key difference 4433 * of using a WARN/WARN_ON to get the message out, including the 4434 * file/line information and a backtrace. 4435 */ 4436 #define netdev_WARN(dev, format, args...) \ 4437 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4438 netdev_reg_state(dev), ##args) 4439 4440 #define netdev_WARN_ONCE(dev, format, args...) \ 4441 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4442 netdev_reg_state(dev), ##args) 4443 4444 /* netif printk helpers, similar to netdev_printk */ 4445 4446 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4447 do { \ 4448 if (netif_msg_##type(priv)) \ 4449 netdev_printk(level, (dev), fmt, ##args); \ 4450 } while (0) 4451 4452 #define netif_level(level, priv, type, dev, fmt, args...) \ 4453 do { \ 4454 if (netif_msg_##type(priv)) \ 4455 netdev_##level(dev, fmt, ##args); \ 4456 } while (0) 4457 4458 #define netif_emerg(priv, type, dev, fmt, args...) \ 4459 netif_level(emerg, priv, type, dev, fmt, ##args) 4460 #define netif_alert(priv, type, dev, fmt, args...) \ 4461 netif_level(alert, priv, type, dev, fmt, ##args) 4462 #define netif_crit(priv, type, dev, fmt, args...) \ 4463 netif_level(crit, priv, type, dev, fmt, ##args) 4464 #define netif_err(priv, type, dev, fmt, args...) \ 4465 netif_level(err, priv, type, dev, fmt, ##args) 4466 #define netif_warn(priv, type, dev, fmt, args...) \ 4467 netif_level(warn, priv, type, dev, fmt, ##args) 4468 #define netif_notice(priv, type, dev, fmt, args...) \ 4469 netif_level(notice, priv, type, dev, fmt, ##args) 4470 #define netif_info(priv, type, dev, fmt, args...) \ 4471 netif_level(info, priv, type, dev, fmt, ##args) 4472 4473 #if defined(CONFIG_DYNAMIC_DEBUG) 4474 #define netif_dbg(priv, type, netdev, format, args...) \ 4475 do { \ 4476 if (netif_msg_##type(priv)) \ 4477 dynamic_netdev_dbg(netdev, format, ##args); \ 4478 } while (0) 4479 #elif defined(DEBUG) 4480 #define netif_dbg(priv, type, dev, format, args...) \ 4481 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4482 #else 4483 #define netif_dbg(priv, type, dev, format, args...) \ 4484 ({ \ 4485 if (0) \ 4486 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4487 0; \ 4488 }) 4489 #endif 4490 4491 /* if @cond then downgrade to debug, else print at @level */ 4492 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4493 do { \ 4494 if (cond) \ 4495 netif_dbg(priv, type, netdev, fmt, ##args); \ 4496 else \ 4497 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4498 } while (0) 4499 4500 #if defined(VERBOSE_DEBUG) 4501 #define netif_vdbg netif_dbg 4502 #else 4503 #define netif_vdbg(priv, type, dev, format, args...) \ 4504 ({ \ 4505 if (0) \ 4506 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4507 0; \ 4508 }) 4509 #endif 4510 4511 /* 4512 * The list of packet types we will receive (as opposed to discard) 4513 * and the routines to invoke. 4514 * 4515 * Why 16. Because with 16 the only overlap we get on a hash of the 4516 * low nibble of the protocol value is RARP/SNAP/X.25. 4517 * 4518 * 0800 IP 4519 * 0001 802.3 4520 * 0002 AX.25 4521 * 0004 802.2 4522 * 8035 RARP 4523 * 0005 SNAP 4524 * 0805 X.25 4525 * 0806 ARP 4526 * 8137 IPX 4527 * 0009 Localtalk 4528 * 86DD IPv6 4529 */ 4530 #define PTYPE_HASH_SIZE (16) 4531 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4532 4533 #endif /* _LINUX_NETDEVICE_H */ 4534