xref: /openbmc/linux/include/linux/netdevice.h (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 /*
306  * Structure for NAPI scheduling similar to tasklet but with weighting
307  */
308 struct napi_struct {
309 	/* The poll_list must only be managed by the entity which
310 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
311 	 * whoever atomically sets that bit can add this napi_struct
312 	 * to the per-CPU poll_list, and whoever clears that bit
313 	 * can remove from the list right before clearing the bit.
314 	 */
315 	struct list_head	poll_list;
316 
317 	unsigned long		state;
318 	int			weight;
319 	unsigned int		gro_count;
320 	int			(*poll)(struct napi_struct *, int);
321 #ifdef CONFIG_NETPOLL
322 	int			poll_owner;
323 #endif
324 	struct net_device	*dev;
325 	struct sk_buff		*gro_list;
326 	struct sk_buff		*skb;
327 	struct hrtimer		timer;
328 	struct list_head	dev_list;
329 	struct hlist_node	napi_hash_node;
330 	unsigned int		napi_id;
331 };
332 
333 enum {
334 	NAPI_STATE_SCHED,	/* Poll is scheduled */
335 	NAPI_STATE_MISSED,	/* reschedule a napi */
336 	NAPI_STATE_DISABLE,	/* Disable pending */
337 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
338 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
339 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
340 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
341 };
342 
343 enum {
344 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
345 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
346 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
347 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
348 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
349 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
350 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
351 };
352 
353 enum gro_result {
354 	GRO_MERGED,
355 	GRO_MERGED_FREE,
356 	GRO_HELD,
357 	GRO_NORMAL,
358 	GRO_DROP,
359 	GRO_CONSUMED,
360 };
361 typedef enum gro_result gro_result_t;
362 
363 /*
364  * enum rx_handler_result - Possible return values for rx_handlers.
365  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
366  * further.
367  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
368  * case skb->dev was changed by rx_handler.
369  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
370  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
371  *
372  * rx_handlers are functions called from inside __netif_receive_skb(), to do
373  * special processing of the skb, prior to delivery to protocol handlers.
374  *
375  * Currently, a net_device can only have a single rx_handler registered. Trying
376  * to register a second rx_handler will return -EBUSY.
377  *
378  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
379  * To unregister a rx_handler on a net_device, use
380  * netdev_rx_handler_unregister().
381  *
382  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
383  * do with the skb.
384  *
385  * If the rx_handler consumed the skb in some way, it should return
386  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
387  * the skb to be delivered in some other way.
388  *
389  * If the rx_handler changed skb->dev, to divert the skb to another
390  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
391  * new device will be called if it exists.
392  *
393  * If the rx_handler decides the skb should be ignored, it should return
394  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
395  * are registered on exact device (ptype->dev == skb->dev).
396  *
397  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
398  * delivered, it should return RX_HANDLER_PASS.
399  *
400  * A device without a registered rx_handler will behave as if rx_handler
401  * returned RX_HANDLER_PASS.
402  */
403 
404 enum rx_handler_result {
405 	RX_HANDLER_CONSUMED,
406 	RX_HANDLER_ANOTHER,
407 	RX_HANDLER_EXACT,
408 	RX_HANDLER_PASS,
409 };
410 typedef enum rx_handler_result rx_handler_result_t;
411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
412 
413 void __napi_schedule(struct napi_struct *n);
414 void __napi_schedule_irqoff(struct napi_struct *n);
415 
416 static inline bool napi_disable_pending(struct napi_struct *n)
417 {
418 	return test_bit(NAPI_STATE_DISABLE, &n->state);
419 }
420 
421 bool napi_schedule_prep(struct napi_struct *n);
422 
423 /**
424  *	napi_schedule - schedule NAPI poll
425  *	@n: NAPI context
426  *
427  * Schedule NAPI poll routine to be called if it is not already
428  * running.
429  */
430 static inline void napi_schedule(struct napi_struct *n)
431 {
432 	if (napi_schedule_prep(n))
433 		__napi_schedule(n);
434 }
435 
436 /**
437  *	napi_schedule_irqoff - schedule NAPI poll
438  *	@n: NAPI context
439  *
440  * Variant of napi_schedule(), assuming hard irqs are masked.
441  */
442 static inline void napi_schedule_irqoff(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule_irqoff(n);
446 }
447 
448 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
449 static inline bool napi_reschedule(struct napi_struct *napi)
450 {
451 	if (napi_schedule_prep(napi)) {
452 		__napi_schedule(napi);
453 		return true;
454 	}
455 	return false;
456 }
457 
458 bool napi_complete_done(struct napi_struct *n, int work_done);
459 /**
460  *	napi_complete - NAPI processing complete
461  *	@n: NAPI context
462  *
463  * Mark NAPI processing as complete.
464  * Consider using napi_complete_done() instead.
465  * Return false if device should avoid rearming interrupts.
466  */
467 static inline bool napi_complete(struct napi_struct *n)
468 {
469 	return napi_complete_done(n, 0);
470 }
471 
472 /**
473  *	napi_hash_del - remove a NAPI from global table
474  *	@napi: NAPI context
475  *
476  * Warning: caller must observe RCU grace period
477  * before freeing memory containing @napi, if
478  * this function returns true.
479  * Note: core networking stack automatically calls it
480  * from netif_napi_del().
481  * Drivers might want to call this helper to combine all
482  * the needed RCU grace periods into a single one.
483  */
484 bool napi_hash_del(struct napi_struct *napi);
485 
486 /**
487  *	napi_disable - prevent NAPI from scheduling
488  *	@n: NAPI context
489  *
490  * Stop NAPI from being scheduled on this context.
491  * Waits till any outstanding processing completes.
492  */
493 void napi_disable(struct napi_struct *n);
494 
495 /**
496  *	napi_enable - enable NAPI scheduling
497  *	@n: NAPI context
498  *
499  * Resume NAPI from being scheduled on this context.
500  * Must be paired with napi_disable.
501  */
502 static inline void napi_enable(struct napi_struct *n)
503 {
504 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
505 	smp_mb__before_atomic();
506 	clear_bit(NAPI_STATE_SCHED, &n->state);
507 	clear_bit(NAPI_STATE_NPSVC, &n->state);
508 }
509 
510 /**
511  *	napi_synchronize - wait until NAPI is not running
512  *	@n: NAPI context
513  *
514  * Wait until NAPI is done being scheduled on this context.
515  * Waits till any outstanding processing completes but
516  * does not disable future activations.
517  */
518 static inline void napi_synchronize(const struct napi_struct *n)
519 {
520 	if (IS_ENABLED(CONFIG_SMP))
521 		while (test_bit(NAPI_STATE_SCHED, &n->state))
522 			msleep(1);
523 	else
524 		barrier();
525 }
526 
527 enum netdev_queue_state_t {
528 	__QUEUE_STATE_DRV_XOFF,
529 	__QUEUE_STATE_STACK_XOFF,
530 	__QUEUE_STATE_FROZEN,
531 };
532 
533 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
534 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
535 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
536 
537 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
541 					QUEUE_STATE_FROZEN)
542 
543 /*
544  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
545  * netif_tx_* functions below are used to manipulate this flag.  The
546  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
547  * queue independently.  The netif_xmit_*stopped functions below are called
548  * to check if the queue has been stopped by the driver or stack (either
549  * of the XOFF bits are set in the state).  Drivers should not need to call
550  * netif_xmit*stopped functions, they should only be using netif_tx_*.
551  */
552 
553 struct netdev_queue {
554 /*
555  * read-mostly part
556  */
557 	struct net_device	*dev;
558 	struct Qdisc __rcu	*qdisc;
559 	struct Qdisc		*qdisc_sleeping;
560 #ifdef CONFIG_SYSFS
561 	struct kobject		kobj;
562 #endif
563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
564 	int			numa_node;
565 #endif
566 	unsigned long		tx_maxrate;
567 	/*
568 	 * Number of TX timeouts for this queue
569 	 * (/sys/class/net/DEV/Q/trans_timeout)
570 	 */
571 	unsigned long		trans_timeout;
572 /*
573  * write-mostly part
574  */
575 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
576 	int			xmit_lock_owner;
577 	/*
578 	 * Time (in jiffies) of last Tx
579 	 */
580 	unsigned long		trans_start;
581 
582 	unsigned long		state;
583 
584 #ifdef CONFIG_BQL
585 	struct dql		dql;
586 #endif
587 } ____cacheline_aligned_in_smp;
588 
589 extern int sysctl_fb_tunnels_only_for_init_net;
590 
591 static inline bool net_has_fallback_tunnels(const struct net *net)
592 {
593 	return net == &init_net ||
594 	       !IS_ENABLED(CONFIG_SYSCTL) ||
595 	       !sysctl_fb_tunnels_only_for_init_net;
596 }
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 	struct xdp_rxq_info		xdp_rxq;
701 } ____cacheline_aligned_in_smp;
702 
703 /*
704  * RX queue sysfs structures and functions.
705  */
706 struct rx_queue_attribute {
707 	struct attribute attr;
708 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 			 const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
736 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 enum tc_setup_type {
785 	TC_SETUP_QDISC_MQPRIO,
786 	TC_SETUP_CLSU32,
787 	TC_SETUP_CLSFLOWER,
788 	TC_SETUP_CLSMATCHALL,
789 	TC_SETUP_CLSBPF,
790 	TC_SETUP_BLOCK,
791 	TC_SETUP_QDISC_CBS,
792 	TC_SETUP_QDISC_RED,
793 	TC_SETUP_QDISC_PRIO,
794 };
795 
796 /* These structures hold the attributes of bpf state that are being passed
797  * to the netdevice through the bpf op.
798  */
799 enum bpf_netdev_command {
800 	/* Set or clear a bpf program used in the earliest stages of packet
801 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
802 	 * is responsible for calling bpf_prog_put on any old progs that are
803 	 * stored. In case of error, the callee need not release the new prog
804 	 * reference, but on success it takes ownership and must bpf_prog_put
805 	 * when it is no longer used.
806 	 */
807 	XDP_SETUP_PROG,
808 	XDP_SETUP_PROG_HW,
809 	/* Check if a bpf program is set on the device.  The callee should
810 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
811 	 * is equivalent to XDP_ATTACHED_DRV.
812 	 */
813 	XDP_QUERY_PROG,
814 	/* BPF program for offload callbacks, invoked at program load time. */
815 	BPF_OFFLOAD_VERIFIER_PREP,
816 	BPF_OFFLOAD_TRANSLATE,
817 	BPF_OFFLOAD_DESTROY,
818 	BPF_OFFLOAD_MAP_ALLOC,
819 	BPF_OFFLOAD_MAP_FREE,
820 };
821 
822 struct bpf_prog_offload_ops;
823 struct netlink_ext_ack;
824 
825 struct netdev_bpf {
826 	enum bpf_netdev_command command;
827 	union {
828 		/* XDP_SETUP_PROG */
829 		struct {
830 			u32 flags;
831 			struct bpf_prog *prog;
832 			struct netlink_ext_ack *extack;
833 		};
834 		/* XDP_QUERY_PROG */
835 		struct {
836 			u8 prog_attached;
837 			u32 prog_id;
838 			/* flags with which program was installed */
839 			u32 prog_flags;
840 		};
841 		/* BPF_OFFLOAD_VERIFIER_PREP */
842 		struct {
843 			struct bpf_prog *prog;
844 			const struct bpf_prog_offload_ops *ops; /* callee set */
845 		} verifier;
846 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
847 		struct {
848 			struct bpf_prog *prog;
849 		} offload;
850 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
851 		struct {
852 			struct bpf_offloaded_map *offmap;
853 		};
854 	};
855 };
856 
857 #ifdef CONFIG_XFRM_OFFLOAD
858 struct xfrmdev_ops {
859 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
860 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
861 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
862 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
863 				       struct xfrm_state *x);
864 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
865 };
866 #endif
867 
868 struct dev_ifalias {
869 	struct rcu_head rcuhead;
870 	char ifalias[];
871 };
872 
873 /*
874  * This structure defines the management hooks for network devices.
875  * The following hooks can be defined; unless noted otherwise, they are
876  * optional and can be filled with a null pointer.
877  *
878  * int (*ndo_init)(struct net_device *dev);
879  *     This function is called once when a network device is registered.
880  *     The network device can use this for any late stage initialization
881  *     or semantic validation. It can fail with an error code which will
882  *     be propagated back to register_netdev.
883  *
884  * void (*ndo_uninit)(struct net_device *dev);
885  *     This function is called when device is unregistered or when registration
886  *     fails. It is not called if init fails.
887  *
888  * int (*ndo_open)(struct net_device *dev);
889  *     This function is called when a network device transitions to the up
890  *     state.
891  *
892  * int (*ndo_stop)(struct net_device *dev);
893  *     This function is called when a network device transitions to the down
894  *     state.
895  *
896  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
897  *                               struct net_device *dev);
898  *	Called when a packet needs to be transmitted.
899  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
900  *	the queue before that can happen; it's for obsolete devices and weird
901  *	corner cases, but the stack really does a non-trivial amount
902  *	of useless work if you return NETDEV_TX_BUSY.
903  *	Required; cannot be NULL.
904  *
905  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
906  *					   struct net_device *dev
907  *					   netdev_features_t features);
908  *	Called by core transmit path to determine if device is capable of
909  *	performing offload operations on a given packet. This is to give
910  *	the device an opportunity to implement any restrictions that cannot
911  *	be otherwise expressed by feature flags. The check is called with
912  *	the set of features that the stack has calculated and it returns
913  *	those the driver believes to be appropriate.
914  *
915  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
916  *                         void *accel_priv, select_queue_fallback_t fallback);
917  *	Called to decide which queue to use when device supports multiple
918  *	transmit queues.
919  *
920  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
921  *	This function is called to allow device receiver to make
922  *	changes to configuration when multicast or promiscuous is enabled.
923  *
924  * void (*ndo_set_rx_mode)(struct net_device *dev);
925  *	This function is called device changes address list filtering.
926  *	If driver handles unicast address filtering, it should set
927  *	IFF_UNICAST_FLT in its priv_flags.
928  *
929  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
930  *	This function  is called when the Media Access Control address
931  *	needs to be changed. If this interface is not defined, the
932  *	MAC address can not be changed.
933  *
934  * int (*ndo_validate_addr)(struct net_device *dev);
935  *	Test if Media Access Control address is valid for the device.
936  *
937  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
938  *	Called when a user requests an ioctl which can't be handled by
939  *	the generic interface code. If not defined ioctls return
940  *	not supported error code.
941  *
942  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
943  *	Used to set network devices bus interface parameters. This interface
944  *	is retained for legacy reasons; new devices should use the bus
945  *	interface (PCI) for low level management.
946  *
947  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
948  *	Called when a user wants to change the Maximum Transfer Unit
949  *	of a device.
950  *
951  * void (*ndo_tx_timeout)(struct net_device *dev);
952  *	Callback used when the transmitter has not made any progress
953  *	for dev->watchdog ticks.
954  *
955  * void (*ndo_get_stats64)(struct net_device *dev,
956  *                         struct rtnl_link_stats64 *storage);
957  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
958  *	Called when a user wants to get the network device usage
959  *	statistics. Drivers must do one of the following:
960  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
961  *	   rtnl_link_stats64 structure passed by the caller.
962  *	2. Define @ndo_get_stats to update a net_device_stats structure
963  *	   (which should normally be dev->stats) and return a pointer to
964  *	   it. The structure may be changed asynchronously only if each
965  *	   field is written atomically.
966  *	3. Update dev->stats asynchronously and atomically, and define
967  *	   neither operation.
968  *
969  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
970  *	Return true if this device supports offload stats of this attr_id.
971  *
972  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
973  *	void *attr_data)
974  *	Get statistics for offload operations by attr_id. Write it into the
975  *	attr_data pointer.
976  *
977  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
978  *	If device supports VLAN filtering this function is called when a
979  *	VLAN id is registered.
980  *
981  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
982  *	If device supports VLAN filtering this function is called when a
983  *	VLAN id is unregistered.
984  *
985  * void (*ndo_poll_controller)(struct net_device *dev);
986  *
987  *	SR-IOV management functions.
988  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
989  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
990  *			  u8 qos, __be16 proto);
991  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
992  *			  int max_tx_rate);
993  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
994  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
995  * int (*ndo_get_vf_config)(struct net_device *dev,
996  *			    int vf, struct ifla_vf_info *ivf);
997  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
998  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
999  *			  struct nlattr *port[]);
1000  *
1001  *      Enable or disable the VF ability to query its RSS Redirection Table and
1002  *      Hash Key. This is needed since on some devices VF share this information
1003  *      with PF and querying it may introduce a theoretical security risk.
1004  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1005  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1006  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1007  *		       void *type_data);
1008  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1009  *	This is always called from the stack with the rtnl lock held and netif
1010  *	tx queues stopped. This allows the netdevice to perform queue
1011  *	management safely.
1012  *
1013  *	Fiber Channel over Ethernet (FCoE) offload functions.
1014  * int (*ndo_fcoe_enable)(struct net_device *dev);
1015  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1016  *	so the underlying device can perform whatever needed configuration or
1017  *	initialization to support acceleration of FCoE traffic.
1018  *
1019  * int (*ndo_fcoe_disable)(struct net_device *dev);
1020  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1021  *	so the underlying device can perform whatever needed clean-ups to
1022  *	stop supporting acceleration of FCoE traffic.
1023  *
1024  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1025  *			     struct scatterlist *sgl, unsigned int sgc);
1026  *	Called when the FCoE Initiator wants to initialize an I/O that
1027  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1028  *	perform necessary setup and returns 1 to indicate the device is set up
1029  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1030  *
1031  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1032  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1033  *	indicated by the FC exchange id 'xid', so the underlying device can
1034  *	clean up and reuse resources for later DDP requests.
1035  *
1036  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1037  *			      struct scatterlist *sgl, unsigned int sgc);
1038  *	Called when the FCoE Target wants to initialize an I/O that
1039  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1040  *	perform necessary setup and returns 1 to indicate the device is set up
1041  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1042  *
1043  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1044  *			       struct netdev_fcoe_hbainfo *hbainfo);
1045  *	Called when the FCoE Protocol stack wants information on the underlying
1046  *	device. This information is utilized by the FCoE protocol stack to
1047  *	register attributes with Fiber Channel management service as per the
1048  *	FC-GS Fabric Device Management Information(FDMI) specification.
1049  *
1050  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1051  *	Called when the underlying device wants to override default World Wide
1052  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1053  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1054  *	protocol stack to use.
1055  *
1056  *	RFS acceleration.
1057  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1058  *			    u16 rxq_index, u32 flow_id);
1059  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1060  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1061  *	Return the filter ID on success, or a negative error code.
1062  *
1063  *	Slave management functions (for bridge, bonding, etc).
1064  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1065  *	Called to make another netdev an underling.
1066  *
1067  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1068  *	Called to release previously enslaved netdev.
1069  *
1070  *      Feature/offload setting functions.
1071  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1072  *		netdev_features_t features);
1073  *	Adjusts the requested feature flags according to device-specific
1074  *	constraints, and returns the resulting flags. Must not modify
1075  *	the device state.
1076  *
1077  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1078  *	Called to update device configuration to new features. Passed
1079  *	feature set might be less than what was returned by ndo_fix_features()).
1080  *	Must return >0 or -errno if it changed dev->features itself.
1081  *
1082  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1083  *		      struct net_device *dev,
1084  *		      const unsigned char *addr, u16 vid, u16 flags)
1085  *	Adds an FDB entry to dev for addr.
1086  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1087  *		      struct net_device *dev,
1088  *		      const unsigned char *addr, u16 vid)
1089  *	Deletes the FDB entry from dev coresponding to addr.
1090  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1091  *		       struct net_device *dev, struct net_device *filter_dev,
1092  *		       int *idx)
1093  *	Used to add FDB entries to dump requests. Implementers should add
1094  *	entries to skb and update idx with the number of entries.
1095  *
1096  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1097  *			     u16 flags)
1098  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1099  *			     struct net_device *dev, u32 filter_mask,
1100  *			     int nlflags)
1101  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1102  *			     u16 flags);
1103  *
1104  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1105  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1106  *	which do not represent real hardware may define this to allow their
1107  *	userspace components to manage their virtual carrier state. Devices
1108  *	that determine carrier state from physical hardware properties (eg
1109  *	network cables) or protocol-dependent mechanisms (eg
1110  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1111  *
1112  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1113  *			       struct netdev_phys_item_id *ppid);
1114  *	Called to get ID of physical port of this device. If driver does
1115  *	not implement this, it is assumed that the hw is not able to have
1116  *	multiple net devices on single physical port.
1117  *
1118  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1119  *			      struct udp_tunnel_info *ti);
1120  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1121  *	address family that a UDP tunnel is listnening to. It is called only
1122  *	when a new port starts listening. The operation is protected by the
1123  *	RTNL.
1124  *
1125  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1126  *			      struct udp_tunnel_info *ti);
1127  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1128  *	address family that the UDP tunnel is not listening to anymore. The
1129  *	operation is protected by the RTNL.
1130  *
1131  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1132  *				 struct net_device *dev)
1133  *	Called by upper layer devices to accelerate switching or other
1134  *	station functionality into hardware. 'pdev is the lowerdev
1135  *	to use for the offload and 'dev' is the net device that will
1136  *	back the offload. Returns a pointer to the private structure
1137  *	the upper layer will maintain.
1138  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1139  *	Called by upper layer device to delete the station created
1140  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1141  *	the station and priv is the structure returned by the add
1142  *	operation.
1143  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1144  *			     int queue_index, u32 maxrate);
1145  *	Called when a user wants to set a max-rate limitation of specific
1146  *	TX queue.
1147  * int (*ndo_get_iflink)(const struct net_device *dev);
1148  *	Called to get the iflink value of this device.
1149  * void (*ndo_change_proto_down)(struct net_device *dev,
1150  *				 bool proto_down);
1151  *	This function is used to pass protocol port error state information
1152  *	to the switch driver. The switch driver can react to the proto_down
1153  *      by doing a phys down on the associated switch port.
1154  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1155  *	This function is used to get egress tunnel information for given skb.
1156  *	This is useful for retrieving outer tunnel header parameters while
1157  *	sampling packet.
1158  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1159  *	This function is used to specify the headroom that the skb must
1160  *	consider when allocation skb during packet reception. Setting
1161  *	appropriate rx headroom value allows avoiding skb head copy on
1162  *	forward. Setting a negative value resets the rx headroom to the
1163  *	default value.
1164  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1165  *	This function is used to set or query state related to XDP on the
1166  *	netdevice and manage BPF offload. See definition of
1167  *	enum bpf_netdev_command for details.
1168  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1169  *	This function is used to submit a XDP packet for transmit on a
1170  *	netdevice.
1171  * void (*ndo_xdp_flush)(struct net_device *dev);
1172  *	This function is used to inform the driver to flush a particular
1173  *	xdp tx queue. Must be called on same CPU as xdp_xmit.
1174  */
1175 struct net_device_ops {
1176 	int			(*ndo_init)(struct net_device *dev);
1177 	void			(*ndo_uninit)(struct net_device *dev);
1178 	int			(*ndo_open)(struct net_device *dev);
1179 	int			(*ndo_stop)(struct net_device *dev);
1180 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1181 						  struct net_device *dev);
1182 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1183 						      struct net_device *dev,
1184 						      netdev_features_t features);
1185 	u16			(*ndo_select_queue)(struct net_device *dev,
1186 						    struct sk_buff *skb,
1187 						    void *accel_priv,
1188 						    select_queue_fallback_t fallback);
1189 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1190 						       int flags);
1191 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1192 	int			(*ndo_set_mac_address)(struct net_device *dev,
1193 						       void *addr);
1194 	int			(*ndo_validate_addr)(struct net_device *dev);
1195 	int			(*ndo_do_ioctl)(struct net_device *dev,
1196 					        struct ifreq *ifr, int cmd);
1197 	int			(*ndo_set_config)(struct net_device *dev,
1198 					          struct ifmap *map);
1199 	int			(*ndo_change_mtu)(struct net_device *dev,
1200 						  int new_mtu);
1201 	int			(*ndo_neigh_setup)(struct net_device *dev,
1202 						   struct neigh_parms *);
1203 	void			(*ndo_tx_timeout) (struct net_device *dev);
1204 
1205 	void			(*ndo_get_stats64)(struct net_device *dev,
1206 						   struct rtnl_link_stats64 *storage);
1207 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1208 	int			(*ndo_get_offload_stats)(int attr_id,
1209 							 const struct net_device *dev,
1210 							 void *attr_data);
1211 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1212 
1213 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1214 						       __be16 proto, u16 vid);
1215 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1216 						        __be16 proto, u16 vid);
1217 #ifdef CONFIG_NET_POLL_CONTROLLER
1218 	void                    (*ndo_poll_controller)(struct net_device *dev);
1219 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1220 						     struct netpoll_info *info);
1221 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1222 #endif
1223 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1224 						  int queue, u8 *mac);
1225 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1226 						   int queue, u16 vlan,
1227 						   u8 qos, __be16 proto);
1228 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1229 						   int vf, int min_tx_rate,
1230 						   int max_tx_rate);
1231 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1232 						       int vf, bool setting);
1233 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1234 						    int vf, bool setting);
1235 	int			(*ndo_get_vf_config)(struct net_device *dev,
1236 						     int vf,
1237 						     struct ifla_vf_info *ivf);
1238 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1239 							 int vf, int link_state);
1240 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1241 						    int vf,
1242 						    struct ifla_vf_stats
1243 						    *vf_stats);
1244 	int			(*ndo_set_vf_port)(struct net_device *dev,
1245 						   int vf,
1246 						   struct nlattr *port[]);
1247 	int			(*ndo_get_vf_port)(struct net_device *dev,
1248 						   int vf, struct sk_buff *skb);
1249 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1250 						   int vf, u64 guid,
1251 						   int guid_type);
1252 	int			(*ndo_set_vf_rss_query_en)(
1253 						   struct net_device *dev,
1254 						   int vf, bool setting);
1255 	int			(*ndo_setup_tc)(struct net_device *dev,
1256 						enum tc_setup_type type,
1257 						void *type_data);
1258 #if IS_ENABLED(CONFIG_FCOE)
1259 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1260 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1261 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1262 						      u16 xid,
1263 						      struct scatterlist *sgl,
1264 						      unsigned int sgc);
1265 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1266 						     u16 xid);
1267 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1268 						       u16 xid,
1269 						       struct scatterlist *sgl,
1270 						       unsigned int sgc);
1271 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1272 							struct netdev_fcoe_hbainfo *hbainfo);
1273 #endif
1274 
1275 #if IS_ENABLED(CONFIG_LIBFCOE)
1276 #define NETDEV_FCOE_WWNN 0
1277 #define NETDEV_FCOE_WWPN 1
1278 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1279 						    u64 *wwn, int type);
1280 #endif
1281 
1282 #ifdef CONFIG_RFS_ACCEL
1283 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1284 						     const struct sk_buff *skb,
1285 						     u16 rxq_index,
1286 						     u32 flow_id);
1287 #endif
1288 	int			(*ndo_add_slave)(struct net_device *dev,
1289 						 struct net_device *slave_dev,
1290 						 struct netlink_ext_ack *extack);
1291 	int			(*ndo_del_slave)(struct net_device *dev,
1292 						 struct net_device *slave_dev);
1293 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1294 						    netdev_features_t features);
1295 	int			(*ndo_set_features)(struct net_device *dev,
1296 						    netdev_features_t features);
1297 	int			(*ndo_neigh_construct)(struct net_device *dev,
1298 						       struct neighbour *n);
1299 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1300 						     struct neighbour *n);
1301 
1302 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1303 					       struct nlattr *tb[],
1304 					       struct net_device *dev,
1305 					       const unsigned char *addr,
1306 					       u16 vid,
1307 					       u16 flags);
1308 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1309 					       struct nlattr *tb[],
1310 					       struct net_device *dev,
1311 					       const unsigned char *addr,
1312 					       u16 vid);
1313 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1314 						struct netlink_callback *cb,
1315 						struct net_device *dev,
1316 						struct net_device *filter_dev,
1317 						int *idx);
1318 
1319 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1320 						      struct nlmsghdr *nlh,
1321 						      u16 flags);
1322 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1323 						      u32 pid, u32 seq,
1324 						      struct net_device *dev,
1325 						      u32 filter_mask,
1326 						      int nlflags);
1327 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1328 						      struct nlmsghdr *nlh,
1329 						      u16 flags);
1330 	int			(*ndo_change_carrier)(struct net_device *dev,
1331 						      bool new_carrier);
1332 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1333 							struct netdev_phys_item_id *ppid);
1334 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1335 							  char *name, size_t len);
1336 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1337 						      struct udp_tunnel_info *ti);
1338 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1339 						      struct udp_tunnel_info *ti);
1340 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1341 							struct net_device *dev);
1342 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1343 							void *priv);
1344 
1345 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1346 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1347 						      int queue_index,
1348 						      u32 maxrate);
1349 	int			(*ndo_get_iflink)(const struct net_device *dev);
1350 	int			(*ndo_change_proto_down)(struct net_device *dev,
1351 							 bool proto_down);
1352 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1353 						       struct sk_buff *skb);
1354 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1355 						       int needed_headroom);
1356 	int			(*ndo_bpf)(struct net_device *dev,
1357 					   struct netdev_bpf *bpf);
1358 	int			(*ndo_xdp_xmit)(struct net_device *dev,
1359 						struct xdp_buff *xdp);
1360 	void			(*ndo_xdp_flush)(struct net_device *dev);
1361 };
1362 
1363 /**
1364  * enum net_device_priv_flags - &struct net_device priv_flags
1365  *
1366  * These are the &struct net_device, they are only set internally
1367  * by drivers and used in the kernel. These flags are invisible to
1368  * userspace; this means that the order of these flags can change
1369  * during any kernel release.
1370  *
1371  * You should have a pretty good reason to be extending these flags.
1372  *
1373  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1374  * @IFF_EBRIDGE: Ethernet bridging device
1375  * @IFF_BONDING: bonding master or slave
1376  * @IFF_ISATAP: ISATAP interface (RFC4214)
1377  * @IFF_WAN_HDLC: WAN HDLC device
1378  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1379  *	release skb->dst
1380  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1381  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1382  * @IFF_MACVLAN_PORT: device used as macvlan port
1383  * @IFF_BRIDGE_PORT: device used as bridge port
1384  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1385  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1386  * @IFF_UNICAST_FLT: Supports unicast filtering
1387  * @IFF_TEAM_PORT: device used as team port
1388  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1389  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1390  *	change when it's running
1391  * @IFF_MACVLAN: Macvlan device
1392  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1393  *	underlying stacked devices
1394  * @IFF_L3MDEV_MASTER: device is an L3 master device
1395  * @IFF_NO_QUEUE: device can run without qdisc attached
1396  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1397  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1398  * @IFF_TEAM: device is a team device
1399  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1400  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1401  *	entity (i.e. the master device for bridged veth)
1402  * @IFF_MACSEC: device is a MACsec device
1403  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1404  */
1405 enum netdev_priv_flags {
1406 	IFF_802_1Q_VLAN			= 1<<0,
1407 	IFF_EBRIDGE			= 1<<1,
1408 	IFF_BONDING			= 1<<2,
1409 	IFF_ISATAP			= 1<<3,
1410 	IFF_WAN_HDLC			= 1<<4,
1411 	IFF_XMIT_DST_RELEASE		= 1<<5,
1412 	IFF_DONT_BRIDGE			= 1<<6,
1413 	IFF_DISABLE_NETPOLL		= 1<<7,
1414 	IFF_MACVLAN_PORT		= 1<<8,
1415 	IFF_BRIDGE_PORT			= 1<<9,
1416 	IFF_OVS_DATAPATH		= 1<<10,
1417 	IFF_TX_SKB_SHARING		= 1<<11,
1418 	IFF_UNICAST_FLT			= 1<<12,
1419 	IFF_TEAM_PORT			= 1<<13,
1420 	IFF_SUPP_NOFCS			= 1<<14,
1421 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1422 	IFF_MACVLAN			= 1<<16,
1423 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1424 	IFF_L3MDEV_MASTER		= 1<<18,
1425 	IFF_NO_QUEUE			= 1<<19,
1426 	IFF_OPENVSWITCH			= 1<<20,
1427 	IFF_L3MDEV_SLAVE		= 1<<21,
1428 	IFF_TEAM			= 1<<22,
1429 	IFF_RXFH_CONFIGURED		= 1<<23,
1430 	IFF_PHONY_HEADROOM		= 1<<24,
1431 	IFF_MACSEC			= 1<<25,
1432 	IFF_NO_RX_HANDLER		= 1<<26,
1433 };
1434 
1435 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1436 #define IFF_EBRIDGE			IFF_EBRIDGE
1437 #define IFF_BONDING			IFF_BONDING
1438 #define IFF_ISATAP			IFF_ISATAP
1439 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1440 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1441 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1442 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1443 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1444 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1445 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1446 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1447 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1448 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1449 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1450 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1451 #define IFF_MACVLAN			IFF_MACVLAN
1452 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1453 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1454 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1455 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1456 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1457 #define IFF_TEAM			IFF_TEAM
1458 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1459 #define IFF_MACSEC			IFF_MACSEC
1460 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1461 
1462 /**
1463  *	struct net_device - The DEVICE structure.
1464  *
1465  *	Actually, this whole structure is a big mistake.  It mixes I/O
1466  *	data with strictly "high-level" data, and it has to know about
1467  *	almost every data structure used in the INET module.
1468  *
1469  *	@name:	This is the first field of the "visible" part of this structure
1470  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1471  *		of the interface.
1472  *
1473  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1474  *	@ifalias:	SNMP alias
1475  *	@mem_end:	Shared memory end
1476  *	@mem_start:	Shared memory start
1477  *	@base_addr:	Device I/O address
1478  *	@irq:		Device IRQ number
1479  *
1480  *	@state:		Generic network queuing layer state, see netdev_state_t
1481  *	@dev_list:	The global list of network devices
1482  *	@napi_list:	List entry used for polling NAPI devices
1483  *	@unreg_list:	List entry  when we are unregistering the
1484  *			device; see the function unregister_netdev
1485  *	@close_list:	List entry used when we are closing the device
1486  *	@ptype_all:     Device-specific packet handlers for all protocols
1487  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1488  *
1489  *	@adj_list:	Directly linked devices, like slaves for bonding
1490  *	@features:	Currently active device features
1491  *	@hw_features:	User-changeable features
1492  *
1493  *	@wanted_features:	User-requested features
1494  *	@vlan_features:		Mask of features inheritable by VLAN devices
1495  *
1496  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1497  *				This field indicates what encapsulation
1498  *				offloads the hardware is capable of doing,
1499  *				and drivers will need to set them appropriately.
1500  *
1501  *	@mpls_features:	Mask of features inheritable by MPLS
1502  *
1503  *	@ifindex:	interface index
1504  *	@group:		The group the device belongs to
1505  *
1506  *	@stats:		Statistics struct, which was left as a legacy, use
1507  *			rtnl_link_stats64 instead
1508  *
1509  *	@rx_dropped:	Dropped packets by core network,
1510  *			do not use this in drivers
1511  *	@tx_dropped:	Dropped packets by core network,
1512  *			do not use this in drivers
1513  *	@rx_nohandler:	nohandler dropped packets by core network on
1514  *			inactive devices, do not use this in drivers
1515  *	@carrier_up_count:	Number of times the carrier has been up
1516  *	@carrier_down_count:	Number of times the carrier has been down
1517  *
1518  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1519  *				instead of ioctl,
1520  *				see <net/iw_handler.h> for details.
1521  *	@wireless_data:	Instance data managed by the core of wireless extensions
1522  *
1523  *	@netdev_ops:	Includes several pointers to callbacks,
1524  *			if one wants to override the ndo_*() functions
1525  *	@ethtool_ops:	Management operations
1526  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1527  *			discovery handling. Necessary for e.g. 6LoWPAN.
1528  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1529  *			of Layer 2 headers.
1530  *
1531  *	@flags:		Interface flags (a la BSD)
1532  *	@priv_flags:	Like 'flags' but invisible to userspace,
1533  *			see if.h for the definitions
1534  *	@gflags:	Global flags ( kept as legacy )
1535  *	@padded:	How much padding added by alloc_netdev()
1536  *	@operstate:	RFC2863 operstate
1537  *	@link_mode:	Mapping policy to operstate
1538  *	@if_port:	Selectable AUI, TP, ...
1539  *	@dma:		DMA channel
1540  *	@mtu:		Interface MTU value
1541  *	@min_mtu:	Interface Minimum MTU value
1542  *	@max_mtu:	Interface Maximum MTU value
1543  *	@type:		Interface hardware type
1544  *	@hard_header_len: Maximum hardware header length.
1545  *	@min_header_len:  Minimum hardware header length
1546  *
1547  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1548  *			  cases can this be guaranteed
1549  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1550  *			  cases can this be guaranteed. Some cases also use
1551  *			  LL_MAX_HEADER instead to allocate the skb
1552  *
1553  *	interface address info:
1554  *
1555  * 	@perm_addr:		Permanent hw address
1556  * 	@addr_assign_type:	Hw address assignment type
1557  * 	@addr_len:		Hardware address length
1558  *	@neigh_priv_len:	Used in neigh_alloc()
1559  * 	@dev_id:		Used to differentiate devices that share
1560  * 				the same link layer address
1561  * 	@dev_port:		Used to differentiate devices that share
1562  * 				the same function
1563  *	@addr_list_lock:	XXX: need comments on this one
1564  *	@uc_promisc:		Counter that indicates promiscuous mode
1565  *				has been enabled due to the need to listen to
1566  *				additional unicast addresses in a device that
1567  *				does not implement ndo_set_rx_mode()
1568  *	@uc:			unicast mac addresses
1569  *	@mc:			multicast mac addresses
1570  *	@dev_addrs:		list of device hw addresses
1571  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1572  *	@promiscuity:		Number of times the NIC is told to work in
1573  *				promiscuous mode; if it becomes 0 the NIC will
1574  *				exit promiscuous mode
1575  *	@allmulti:		Counter, enables or disables allmulticast mode
1576  *
1577  *	@vlan_info:	VLAN info
1578  *	@dsa_ptr:	dsa specific data
1579  *	@tipc_ptr:	TIPC specific data
1580  *	@atalk_ptr:	AppleTalk link
1581  *	@ip_ptr:	IPv4 specific data
1582  *	@dn_ptr:	DECnet specific data
1583  *	@ip6_ptr:	IPv6 specific data
1584  *	@ax25_ptr:	AX.25 specific data
1585  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1586  *
1587  *	@dev_addr:	Hw address (before bcast,
1588  *			because most packets are unicast)
1589  *
1590  *	@_rx:			Array of RX queues
1591  *	@num_rx_queues:		Number of RX queues
1592  *				allocated at register_netdev() time
1593  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1594  *
1595  *	@rx_handler:		handler for received packets
1596  *	@rx_handler_data: 	XXX: need comments on this one
1597  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1598  *				ingress processing
1599  *	@ingress_queue:		XXX: need comments on this one
1600  *	@broadcast:		hw bcast address
1601  *
1602  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1603  *			indexed by RX queue number. Assigned by driver.
1604  *			This must only be set if the ndo_rx_flow_steer
1605  *			operation is defined
1606  *	@index_hlist:		Device index hash chain
1607  *
1608  *	@_tx:			Array of TX queues
1609  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1610  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1611  *	@qdisc:			Root qdisc from userspace point of view
1612  *	@tx_queue_len:		Max frames per queue allowed
1613  *	@tx_global_lock: 	XXX: need comments on this one
1614  *
1615  *	@xps_maps:	XXX: need comments on this one
1616  *	@miniq_egress:		clsact qdisc specific data for
1617  *				egress processing
1618  *	@watchdog_timeo:	Represents the timeout that is used by
1619  *				the watchdog (see dev_watchdog())
1620  *	@watchdog_timer:	List of timers
1621  *
1622  *	@pcpu_refcnt:		Number of references to this device
1623  *	@todo_list:		Delayed register/unregister
1624  *	@link_watch_list:	XXX: need comments on this one
1625  *
1626  *	@reg_state:		Register/unregister state machine
1627  *	@dismantle:		Device is going to be freed
1628  *	@rtnl_link_state:	This enum represents the phases of creating
1629  *				a new link
1630  *
1631  *	@needs_free_netdev:	Should unregister perform free_netdev?
1632  *	@priv_destructor:	Called from unregister
1633  *	@npinfo:		XXX: need comments on this one
1634  * 	@nd_net:		Network namespace this network device is inside
1635  *
1636  * 	@ml_priv:	Mid-layer private
1637  * 	@lstats:	Loopback statistics
1638  * 	@tstats:	Tunnel statistics
1639  * 	@dstats:	Dummy statistics
1640  * 	@vstats:	Virtual ethernet statistics
1641  *
1642  *	@garp_port:	GARP
1643  *	@mrp_port:	MRP
1644  *
1645  *	@dev:		Class/net/name entry
1646  *	@sysfs_groups:	Space for optional device, statistics and wireless
1647  *			sysfs groups
1648  *
1649  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1650  *	@rtnl_link_ops:	Rtnl_link_ops
1651  *
1652  *	@gso_max_size:	Maximum size of generic segmentation offload
1653  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1654  *			NIC for GSO
1655  *
1656  *	@dcbnl_ops:	Data Center Bridging netlink ops
1657  *	@num_tc:	Number of traffic classes in the net device
1658  *	@tc_to_txq:	XXX: need comments on this one
1659  *	@prio_tc_map:	XXX: need comments on this one
1660  *
1661  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1662  *
1663  *	@priomap:	XXX: need comments on this one
1664  *	@phydev:	Physical device may attach itself
1665  *			for hardware timestamping
1666  *	@sfp_bus:	attached &struct sfp_bus structure.
1667  *
1668  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1669  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1670  *
1671  *	@proto_down:	protocol port state information can be sent to the
1672  *			switch driver and used to set the phys state of the
1673  *			switch port.
1674  *
1675  *	FIXME: cleanup struct net_device such that network protocol info
1676  *	moves out.
1677  */
1678 
1679 struct net_device {
1680 	char			name[IFNAMSIZ];
1681 	struct hlist_node	name_hlist;
1682 	struct dev_ifalias	__rcu *ifalias;
1683 	/*
1684 	 *	I/O specific fields
1685 	 *	FIXME: Merge these and struct ifmap into one
1686 	 */
1687 	unsigned long		mem_end;
1688 	unsigned long		mem_start;
1689 	unsigned long		base_addr;
1690 	int			irq;
1691 
1692 	/*
1693 	 *	Some hardware also needs these fields (state,dev_list,
1694 	 *	napi_list,unreg_list,close_list) but they are not
1695 	 *	part of the usual set specified in Space.c.
1696 	 */
1697 
1698 	unsigned long		state;
1699 
1700 	struct list_head	dev_list;
1701 	struct list_head	napi_list;
1702 	struct list_head	unreg_list;
1703 	struct list_head	close_list;
1704 	struct list_head	ptype_all;
1705 	struct list_head	ptype_specific;
1706 
1707 	struct {
1708 		struct list_head upper;
1709 		struct list_head lower;
1710 	} adj_list;
1711 
1712 	netdev_features_t	features;
1713 	netdev_features_t	hw_features;
1714 	netdev_features_t	wanted_features;
1715 	netdev_features_t	vlan_features;
1716 	netdev_features_t	hw_enc_features;
1717 	netdev_features_t	mpls_features;
1718 	netdev_features_t	gso_partial_features;
1719 
1720 	int			ifindex;
1721 	int			group;
1722 
1723 	struct net_device_stats	stats;
1724 
1725 	atomic_long_t		rx_dropped;
1726 	atomic_long_t		tx_dropped;
1727 	atomic_long_t		rx_nohandler;
1728 
1729 	/* Stats to monitor link on/off, flapping */
1730 	atomic_t		carrier_up_count;
1731 	atomic_t		carrier_down_count;
1732 
1733 #ifdef CONFIG_WIRELESS_EXT
1734 	const struct iw_handler_def *wireless_handlers;
1735 	struct iw_public_data	*wireless_data;
1736 #endif
1737 	const struct net_device_ops *netdev_ops;
1738 	const struct ethtool_ops *ethtool_ops;
1739 #ifdef CONFIG_NET_SWITCHDEV
1740 	const struct switchdev_ops *switchdev_ops;
1741 #endif
1742 #ifdef CONFIG_NET_L3_MASTER_DEV
1743 	const struct l3mdev_ops	*l3mdev_ops;
1744 #endif
1745 #if IS_ENABLED(CONFIG_IPV6)
1746 	const struct ndisc_ops *ndisc_ops;
1747 #endif
1748 
1749 #ifdef CONFIG_XFRM_OFFLOAD
1750 	const struct xfrmdev_ops *xfrmdev_ops;
1751 #endif
1752 
1753 	const struct header_ops *header_ops;
1754 
1755 	unsigned int		flags;
1756 	unsigned int		priv_flags;
1757 
1758 	unsigned short		gflags;
1759 	unsigned short		padded;
1760 
1761 	unsigned char		operstate;
1762 	unsigned char		link_mode;
1763 
1764 	unsigned char		if_port;
1765 	unsigned char		dma;
1766 
1767 	unsigned int		mtu;
1768 	unsigned int		min_mtu;
1769 	unsigned int		max_mtu;
1770 	unsigned short		type;
1771 	unsigned short		hard_header_len;
1772 	unsigned char		min_header_len;
1773 
1774 	unsigned short		needed_headroom;
1775 	unsigned short		needed_tailroom;
1776 
1777 	/* Interface address info. */
1778 	unsigned char		perm_addr[MAX_ADDR_LEN];
1779 	unsigned char		addr_assign_type;
1780 	unsigned char		addr_len;
1781 	unsigned short		neigh_priv_len;
1782 	unsigned short          dev_id;
1783 	unsigned short          dev_port;
1784 	spinlock_t		addr_list_lock;
1785 	unsigned char		name_assign_type;
1786 	bool			uc_promisc;
1787 	struct netdev_hw_addr_list	uc;
1788 	struct netdev_hw_addr_list	mc;
1789 	struct netdev_hw_addr_list	dev_addrs;
1790 
1791 #ifdef CONFIG_SYSFS
1792 	struct kset		*queues_kset;
1793 #endif
1794 	unsigned int		promiscuity;
1795 	unsigned int		allmulti;
1796 
1797 
1798 	/* Protocol-specific pointers */
1799 
1800 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1801 	struct vlan_info __rcu	*vlan_info;
1802 #endif
1803 #if IS_ENABLED(CONFIG_NET_DSA)
1804 	struct dsa_port		*dsa_ptr;
1805 #endif
1806 #if IS_ENABLED(CONFIG_TIPC)
1807 	struct tipc_bearer __rcu *tipc_ptr;
1808 #endif
1809 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1810 	void 			*atalk_ptr;
1811 #endif
1812 	struct in_device __rcu	*ip_ptr;
1813 #if IS_ENABLED(CONFIG_DECNET)
1814 	struct dn_dev __rcu     *dn_ptr;
1815 #endif
1816 	struct inet6_dev __rcu	*ip6_ptr;
1817 #if IS_ENABLED(CONFIG_AX25)
1818 	void			*ax25_ptr;
1819 #endif
1820 	struct wireless_dev	*ieee80211_ptr;
1821 	struct wpan_dev		*ieee802154_ptr;
1822 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1823 	struct mpls_dev __rcu	*mpls_ptr;
1824 #endif
1825 
1826 /*
1827  * Cache lines mostly used on receive path (including eth_type_trans())
1828  */
1829 	/* Interface address info used in eth_type_trans() */
1830 	unsigned char		*dev_addr;
1831 
1832 	struct netdev_rx_queue	*_rx;
1833 	unsigned int		num_rx_queues;
1834 	unsigned int		real_num_rx_queues;
1835 
1836 	struct bpf_prog __rcu	*xdp_prog;
1837 	unsigned long		gro_flush_timeout;
1838 	rx_handler_func_t __rcu	*rx_handler;
1839 	void __rcu		*rx_handler_data;
1840 
1841 #ifdef CONFIG_NET_CLS_ACT
1842 	struct mini_Qdisc __rcu	*miniq_ingress;
1843 #endif
1844 	struct netdev_queue __rcu *ingress_queue;
1845 #ifdef CONFIG_NETFILTER_INGRESS
1846 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1847 #endif
1848 
1849 	unsigned char		broadcast[MAX_ADDR_LEN];
1850 #ifdef CONFIG_RFS_ACCEL
1851 	struct cpu_rmap		*rx_cpu_rmap;
1852 #endif
1853 	struct hlist_node	index_hlist;
1854 
1855 /*
1856  * Cache lines mostly used on transmit path
1857  */
1858 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1859 	unsigned int		num_tx_queues;
1860 	unsigned int		real_num_tx_queues;
1861 	struct Qdisc		*qdisc;
1862 #ifdef CONFIG_NET_SCHED
1863 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1864 #endif
1865 	unsigned int		tx_queue_len;
1866 	spinlock_t		tx_global_lock;
1867 	int			watchdog_timeo;
1868 
1869 #ifdef CONFIG_XPS
1870 	struct xps_dev_maps __rcu *xps_maps;
1871 #endif
1872 #ifdef CONFIG_NET_CLS_ACT
1873 	struct mini_Qdisc __rcu	*miniq_egress;
1874 #endif
1875 
1876 	/* These may be needed for future network-power-down code. */
1877 	struct timer_list	watchdog_timer;
1878 
1879 	int __percpu		*pcpu_refcnt;
1880 	struct list_head	todo_list;
1881 
1882 	struct list_head	link_watch_list;
1883 
1884 	enum { NETREG_UNINITIALIZED=0,
1885 	       NETREG_REGISTERED,	/* completed register_netdevice */
1886 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1887 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1888 	       NETREG_RELEASED,		/* called free_netdev */
1889 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1890 	} reg_state:8;
1891 
1892 	bool dismantle;
1893 
1894 	enum {
1895 		RTNL_LINK_INITIALIZED,
1896 		RTNL_LINK_INITIALIZING,
1897 	} rtnl_link_state:16;
1898 
1899 	bool needs_free_netdev;
1900 	void (*priv_destructor)(struct net_device *dev);
1901 
1902 #ifdef CONFIG_NETPOLL
1903 	struct netpoll_info __rcu	*npinfo;
1904 #endif
1905 
1906 	possible_net_t			nd_net;
1907 
1908 	/* mid-layer private */
1909 	union {
1910 		void					*ml_priv;
1911 		struct pcpu_lstats __percpu		*lstats;
1912 		struct pcpu_sw_netstats __percpu	*tstats;
1913 		struct pcpu_dstats __percpu		*dstats;
1914 		struct pcpu_vstats __percpu		*vstats;
1915 	};
1916 
1917 #if IS_ENABLED(CONFIG_GARP)
1918 	struct garp_port __rcu	*garp_port;
1919 #endif
1920 #if IS_ENABLED(CONFIG_MRP)
1921 	struct mrp_port __rcu	*mrp_port;
1922 #endif
1923 
1924 	struct device		dev;
1925 	const struct attribute_group *sysfs_groups[4];
1926 	const struct attribute_group *sysfs_rx_queue_group;
1927 
1928 	const struct rtnl_link_ops *rtnl_link_ops;
1929 
1930 	/* for setting kernel sock attribute on TCP connection setup */
1931 #define GSO_MAX_SIZE		65536
1932 	unsigned int		gso_max_size;
1933 #define GSO_MAX_SEGS		65535
1934 	u16			gso_max_segs;
1935 
1936 #ifdef CONFIG_DCB
1937 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1938 #endif
1939 	u8			num_tc;
1940 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1941 	u8			prio_tc_map[TC_BITMASK + 1];
1942 
1943 #if IS_ENABLED(CONFIG_FCOE)
1944 	unsigned int		fcoe_ddp_xid;
1945 #endif
1946 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1947 	struct netprio_map __rcu *priomap;
1948 #endif
1949 	struct phy_device	*phydev;
1950 	struct sfp_bus		*sfp_bus;
1951 	struct lock_class_key	*qdisc_tx_busylock;
1952 	struct lock_class_key	*qdisc_running_key;
1953 	bool			proto_down;
1954 };
1955 #define to_net_dev(d) container_of(d, struct net_device, dev)
1956 
1957 static inline bool netif_elide_gro(const struct net_device *dev)
1958 {
1959 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1960 		return true;
1961 	return false;
1962 }
1963 
1964 #define	NETDEV_ALIGN		32
1965 
1966 static inline
1967 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1968 {
1969 	return dev->prio_tc_map[prio & TC_BITMASK];
1970 }
1971 
1972 static inline
1973 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1974 {
1975 	if (tc >= dev->num_tc)
1976 		return -EINVAL;
1977 
1978 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1979 	return 0;
1980 }
1981 
1982 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1983 void netdev_reset_tc(struct net_device *dev);
1984 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1985 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1986 
1987 static inline
1988 int netdev_get_num_tc(struct net_device *dev)
1989 {
1990 	return dev->num_tc;
1991 }
1992 
1993 static inline
1994 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1995 					 unsigned int index)
1996 {
1997 	return &dev->_tx[index];
1998 }
1999 
2000 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2001 						    const struct sk_buff *skb)
2002 {
2003 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2004 }
2005 
2006 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2007 					    void (*f)(struct net_device *,
2008 						      struct netdev_queue *,
2009 						      void *),
2010 					    void *arg)
2011 {
2012 	unsigned int i;
2013 
2014 	for (i = 0; i < dev->num_tx_queues; i++)
2015 		f(dev, &dev->_tx[i], arg);
2016 }
2017 
2018 #define netdev_lockdep_set_classes(dev)				\
2019 {								\
2020 	static struct lock_class_key qdisc_tx_busylock_key;	\
2021 	static struct lock_class_key qdisc_running_key;		\
2022 	static struct lock_class_key qdisc_xmit_lock_key;	\
2023 	static struct lock_class_key dev_addr_list_lock_key;	\
2024 	unsigned int i;						\
2025 								\
2026 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2027 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2028 	lockdep_set_class(&(dev)->addr_list_lock,		\
2029 			  &dev_addr_list_lock_key); 		\
2030 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2031 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2032 				  &qdisc_xmit_lock_key);	\
2033 }
2034 
2035 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2036 				    struct sk_buff *skb,
2037 				    void *accel_priv);
2038 
2039 /* returns the headroom that the master device needs to take in account
2040  * when forwarding to this dev
2041  */
2042 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2043 {
2044 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2045 }
2046 
2047 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2048 {
2049 	if (dev->netdev_ops->ndo_set_rx_headroom)
2050 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2051 }
2052 
2053 /* set the device rx headroom to the dev's default */
2054 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2055 {
2056 	netdev_set_rx_headroom(dev, -1);
2057 }
2058 
2059 /*
2060  * Net namespace inlines
2061  */
2062 static inline
2063 struct net *dev_net(const struct net_device *dev)
2064 {
2065 	return read_pnet(&dev->nd_net);
2066 }
2067 
2068 static inline
2069 void dev_net_set(struct net_device *dev, struct net *net)
2070 {
2071 	write_pnet(&dev->nd_net, net);
2072 }
2073 
2074 /**
2075  *	netdev_priv - access network device private data
2076  *	@dev: network device
2077  *
2078  * Get network device private data
2079  */
2080 static inline void *netdev_priv(const struct net_device *dev)
2081 {
2082 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2083 }
2084 
2085 /* Set the sysfs physical device reference for the network logical device
2086  * if set prior to registration will cause a symlink during initialization.
2087  */
2088 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2089 
2090 /* Set the sysfs device type for the network logical device to allow
2091  * fine-grained identification of different network device types. For
2092  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2093  */
2094 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2095 
2096 /* Default NAPI poll() weight
2097  * Device drivers are strongly advised to not use bigger value
2098  */
2099 #define NAPI_POLL_WEIGHT 64
2100 
2101 /**
2102  *	netif_napi_add - initialize a NAPI context
2103  *	@dev:  network device
2104  *	@napi: NAPI context
2105  *	@poll: polling function
2106  *	@weight: default weight
2107  *
2108  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2109  * *any* of the other NAPI-related functions.
2110  */
2111 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2112 		    int (*poll)(struct napi_struct *, int), int weight);
2113 
2114 /**
2115  *	netif_tx_napi_add - initialize a NAPI context
2116  *	@dev:  network device
2117  *	@napi: NAPI context
2118  *	@poll: polling function
2119  *	@weight: default weight
2120  *
2121  * This variant of netif_napi_add() should be used from drivers using NAPI
2122  * to exclusively poll a TX queue.
2123  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2124  */
2125 static inline void netif_tx_napi_add(struct net_device *dev,
2126 				     struct napi_struct *napi,
2127 				     int (*poll)(struct napi_struct *, int),
2128 				     int weight)
2129 {
2130 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2131 	netif_napi_add(dev, napi, poll, weight);
2132 }
2133 
2134 /**
2135  *  netif_napi_del - remove a NAPI context
2136  *  @napi: NAPI context
2137  *
2138  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2139  */
2140 void netif_napi_del(struct napi_struct *napi);
2141 
2142 struct napi_gro_cb {
2143 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2144 	void	*frag0;
2145 
2146 	/* Length of frag0. */
2147 	unsigned int frag0_len;
2148 
2149 	/* This indicates where we are processing relative to skb->data. */
2150 	int	data_offset;
2151 
2152 	/* This is non-zero if the packet cannot be merged with the new skb. */
2153 	u16	flush;
2154 
2155 	/* Save the IP ID here and check when we get to the transport layer */
2156 	u16	flush_id;
2157 
2158 	/* Number of segments aggregated. */
2159 	u16	count;
2160 
2161 	/* Start offset for remote checksum offload */
2162 	u16	gro_remcsum_start;
2163 
2164 	/* jiffies when first packet was created/queued */
2165 	unsigned long age;
2166 
2167 	/* Used in ipv6_gro_receive() and foo-over-udp */
2168 	u16	proto;
2169 
2170 	/* This is non-zero if the packet may be of the same flow. */
2171 	u8	same_flow:1;
2172 
2173 	/* Used in tunnel GRO receive */
2174 	u8	encap_mark:1;
2175 
2176 	/* GRO checksum is valid */
2177 	u8	csum_valid:1;
2178 
2179 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2180 	u8	csum_cnt:3;
2181 
2182 	/* Free the skb? */
2183 	u8	free:2;
2184 #define NAPI_GRO_FREE		  1
2185 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2186 
2187 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2188 	u8	is_ipv6:1;
2189 
2190 	/* Used in GRE, set in fou/gue_gro_receive */
2191 	u8	is_fou:1;
2192 
2193 	/* Used to determine if flush_id can be ignored */
2194 	u8	is_atomic:1;
2195 
2196 	/* Number of gro_receive callbacks this packet already went through */
2197 	u8 recursion_counter:4;
2198 
2199 	/* 1 bit hole */
2200 
2201 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2202 	__wsum	csum;
2203 
2204 	/* used in skb_gro_receive() slow path */
2205 	struct sk_buff *last;
2206 };
2207 
2208 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2209 
2210 #define GRO_RECURSION_LIMIT 15
2211 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2212 {
2213 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2214 }
2215 
2216 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2217 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2218 						struct sk_buff **head,
2219 						struct sk_buff *skb)
2220 {
2221 	if (unlikely(gro_recursion_inc_test(skb))) {
2222 		NAPI_GRO_CB(skb)->flush |= 1;
2223 		return NULL;
2224 	}
2225 
2226 	return cb(head, skb);
2227 }
2228 
2229 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2230 					     struct sk_buff *);
2231 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2232 						   struct sock *sk,
2233 						   struct sk_buff **head,
2234 						   struct sk_buff *skb)
2235 {
2236 	if (unlikely(gro_recursion_inc_test(skb))) {
2237 		NAPI_GRO_CB(skb)->flush |= 1;
2238 		return NULL;
2239 	}
2240 
2241 	return cb(sk, head, skb);
2242 }
2243 
2244 struct packet_type {
2245 	__be16			type;	/* This is really htons(ether_type). */
2246 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2247 	int			(*func) (struct sk_buff *,
2248 					 struct net_device *,
2249 					 struct packet_type *,
2250 					 struct net_device *);
2251 	bool			(*id_match)(struct packet_type *ptype,
2252 					    struct sock *sk);
2253 	void			*af_packet_priv;
2254 	struct list_head	list;
2255 };
2256 
2257 struct offload_callbacks {
2258 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2259 						netdev_features_t features);
2260 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2261 						 struct sk_buff *skb);
2262 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2263 };
2264 
2265 struct packet_offload {
2266 	__be16			 type;	/* This is really htons(ether_type). */
2267 	u16			 priority;
2268 	struct offload_callbacks callbacks;
2269 	struct list_head	 list;
2270 };
2271 
2272 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2273 struct pcpu_sw_netstats {
2274 	u64     rx_packets;
2275 	u64     rx_bytes;
2276 	u64     tx_packets;
2277 	u64     tx_bytes;
2278 	struct u64_stats_sync   syncp;
2279 };
2280 
2281 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2282 ({									\
2283 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2284 	if (pcpu_stats)	{						\
2285 		int __cpu;						\
2286 		for_each_possible_cpu(__cpu) {				\
2287 			typeof(type) *stat;				\
2288 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2289 			u64_stats_init(&stat->syncp);			\
2290 		}							\
2291 	}								\
2292 	pcpu_stats;							\
2293 })
2294 
2295 #define netdev_alloc_pcpu_stats(type)					\
2296 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2297 
2298 enum netdev_lag_tx_type {
2299 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2300 	NETDEV_LAG_TX_TYPE_RANDOM,
2301 	NETDEV_LAG_TX_TYPE_BROADCAST,
2302 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2303 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2304 	NETDEV_LAG_TX_TYPE_HASH,
2305 };
2306 
2307 struct netdev_lag_upper_info {
2308 	enum netdev_lag_tx_type tx_type;
2309 };
2310 
2311 struct netdev_lag_lower_state_info {
2312 	u8 link_up : 1,
2313 	   tx_enabled : 1;
2314 };
2315 
2316 #include <linux/notifier.h>
2317 
2318 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2319  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2320  * adding new types.
2321  */
2322 enum netdev_cmd {
2323 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2324 	NETDEV_DOWN,
2325 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2326 				   detected a hardware crash and restarted
2327 				   - we can use this eg to kick tcp sessions
2328 				   once done */
2329 	NETDEV_CHANGE,		/* Notify device state change */
2330 	NETDEV_REGISTER,
2331 	NETDEV_UNREGISTER,
2332 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2333 	NETDEV_CHANGEADDR,
2334 	NETDEV_GOING_DOWN,
2335 	NETDEV_CHANGENAME,
2336 	NETDEV_FEAT_CHANGE,
2337 	NETDEV_BONDING_FAILOVER,
2338 	NETDEV_PRE_UP,
2339 	NETDEV_PRE_TYPE_CHANGE,
2340 	NETDEV_POST_TYPE_CHANGE,
2341 	NETDEV_POST_INIT,
2342 	NETDEV_RELEASE,
2343 	NETDEV_NOTIFY_PEERS,
2344 	NETDEV_JOIN,
2345 	NETDEV_CHANGEUPPER,
2346 	NETDEV_RESEND_IGMP,
2347 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2348 	NETDEV_CHANGEINFODATA,
2349 	NETDEV_BONDING_INFO,
2350 	NETDEV_PRECHANGEUPPER,
2351 	NETDEV_CHANGELOWERSTATE,
2352 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2353 	NETDEV_UDP_TUNNEL_DROP_INFO,
2354 	NETDEV_CHANGE_TX_QUEUE_LEN,
2355 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2356 	NETDEV_CVLAN_FILTER_DROP_INFO,
2357 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2358 	NETDEV_SVLAN_FILTER_DROP_INFO,
2359 };
2360 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2361 
2362 int register_netdevice_notifier(struct notifier_block *nb);
2363 int unregister_netdevice_notifier(struct notifier_block *nb);
2364 
2365 struct netdev_notifier_info {
2366 	struct net_device	*dev;
2367 	struct netlink_ext_ack	*extack;
2368 };
2369 
2370 struct netdev_notifier_change_info {
2371 	struct netdev_notifier_info info; /* must be first */
2372 	unsigned int flags_changed;
2373 };
2374 
2375 struct netdev_notifier_changeupper_info {
2376 	struct netdev_notifier_info info; /* must be first */
2377 	struct net_device *upper_dev; /* new upper dev */
2378 	bool master; /* is upper dev master */
2379 	bool linking; /* is the notification for link or unlink */
2380 	void *upper_info; /* upper dev info */
2381 };
2382 
2383 struct netdev_notifier_changelowerstate_info {
2384 	struct netdev_notifier_info info; /* must be first */
2385 	void *lower_state_info; /* is lower dev state */
2386 };
2387 
2388 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2389 					     struct net_device *dev)
2390 {
2391 	info->dev = dev;
2392 	info->extack = NULL;
2393 }
2394 
2395 static inline struct net_device *
2396 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2397 {
2398 	return info->dev;
2399 }
2400 
2401 static inline struct netlink_ext_ack *
2402 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2403 {
2404 	return info->extack;
2405 }
2406 
2407 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2408 
2409 
2410 extern rwlock_t				dev_base_lock;		/* Device list lock */
2411 
2412 #define for_each_netdev(net, d)		\
2413 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2414 #define for_each_netdev_reverse(net, d)	\
2415 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2416 #define for_each_netdev_rcu(net, d)		\
2417 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2418 #define for_each_netdev_safe(net, d, n)	\
2419 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2420 #define for_each_netdev_continue(net, d)		\
2421 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2422 #define for_each_netdev_continue_rcu(net, d)		\
2423 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2424 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2425 		for_each_netdev_rcu(&init_net, slave)	\
2426 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2427 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2428 
2429 static inline struct net_device *next_net_device(struct net_device *dev)
2430 {
2431 	struct list_head *lh;
2432 	struct net *net;
2433 
2434 	net = dev_net(dev);
2435 	lh = dev->dev_list.next;
2436 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2437 }
2438 
2439 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2440 {
2441 	struct list_head *lh;
2442 	struct net *net;
2443 
2444 	net = dev_net(dev);
2445 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2446 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2447 }
2448 
2449 static inline struct net_device *first_net_device(struct net *net)
2450 {
2451 	return list_empty(&net->dev_base_head) ? NULL :
2452 		net_device_entry(net->dev_base_head.next);
2453 }
2454 
2455 static inline struct net_device *first_net_device_rcu(struct net *net)
2456 {
2457 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2458 
2459 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2460 }
2461 
2462 int netdev_boot_setup_check(struct net_device *dev);
2463 unsigned long netdev_boot_base(const char *prefix, int unit);
2464 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2465 				       const char *hwaddr);
2466 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2467 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2468 void dev_add_pack(struct packet_type *pt);
2469 void dev_remove_pack(struct packet_type *pt);
2470 void __dev_remove_pack(struct packet_type *pt);
2471 void dev_add_offload(struct packet_offload *po);
2472 void dev_remove_offload(struct packet_offload *po);
2473 
2474 int dev_get_iflink(const struct net_device *dev);
2475 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2476 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2477 				      unsigned short mask);
2478 struct net_device *dev_get_by_name(struct net *net, const char *name);
2479 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2480 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2481 int dev_alloc_name(struct net_device *dev, const char *name);
2482 int dev_open(struct net_device *dev);
2483 void dev_close(struct net_device *dev);
2484 void dev_close_many(struct list_head *head, bool unlink);
2485 void dev_disable_lro(struct net_device *dev);
2486 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2487 int dev_queue_xmit(struct sk_buff *skb);
2488 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2489 int register_netdevice(struct net_device *dev);
2490 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2491 void unregister_netdevice_many(struct list_head *head);
2492 static inline void unregister_netdevice(struct net_device *dev)
2493 {
2494 	unregister_netdevice_queue(dev, NULL);
2495 }
2496 
2497 int netdev_refcnt_read(const struct net_device *dev);
2498 void free_netdev(struct net_device *dev);
2499 void netdev_freemem(struct net_device *dev);
2500 void synchronize_net(void);
2501 int init_dummy_netdev(struct net_device *dev);
2502 
2503 DECLARE_PER_CPU(int, xmit_recursion);
2504 #define XMIT_RECURSION_LIMIT	10
2505 
2506 static inline int dev_recursion_level(void)
2507 {
2508 	return this_cpu_read(xmit_recursion);
2509 }
2510 
2511 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2512 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2513 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2514 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2515 int netdev_get_name(struct net *net, char *name, int ifindex);
2516 int dev_restart(struct net_device *dev);
2517 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2518 
2519 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2520 {
2521 	return NAPI_GRO_CB(skb)->data_offset;
2522 }
2523 
2524 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2525 {
2526 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2527 }
2528 
2529 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2530 {
2531 	NAPI_GRO_CB(skb)->data_offset += len;
2532 }
2533 
2534 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2535 					unsigned int offset)
2536 {
2537 	return NAPI_GRO_CB(skb)->frag0 + offset;
2538 }
2539 
2540 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2541 {
2542 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2543 }
2544 
2545 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2546 {
2547 	NAPI_GRO_CB(skb)->frag0 = NULL;
2548 	NAPI_GRO_CB(skb)->frag0_len = 0;
2549 }
2550 
2551 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2552 					unsigned int offset)
2553 {
2554 	if (!pskb_may_pull(skb, hlen))
2555 		return NULL;
2556 
2557 	skb_gro_frag0_invalidate(skb);
2558 	return skb->data + offset;
2559 }
2560 
2561 static inline void *skb_gro_network_header(struct sk_buff *skb)
2562 {
2563 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2564 	       skb_network_offset(skb);
2565 }
2566 
2567 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2568 					const void *start, unsigned int len)
2569 {
2570 	if (NAPI_GRO_CB(skb)->csum_valid)
2571 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2572 						  csum_partial(start, len, 0));
2573 }
2574 
2575 /* GRO checksum functions. These are logical equivalents of the normal
2576  * checksum functions (in skbuff.h) except that they operate on the GRO
2577  * offsets and fields in sk_buff.
2578  */
2579 
2580 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2581 
2582 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2583 {
2584 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2585 }
2586 
2587 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2588 						      bool zero_okay,
2589 						      __sum16 check)
2590 {
2591 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2592 		skb_checksum_start_offset(skb) <
2593 		 skb_gro_offset(skb)) &&
2594 		!skb_at_gro_remcsum_start(skb) &&
2595 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2596 		(!zero_okay || check));
2597 }
2598 
2599 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2600 							   __wsum psum)
2601 {
2602 	if (NAPI_GRO_CB(skb)->csum_valid &&
2603 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2604 		return 0;
2605 
2606 	NAPI_GRO_CB(skb)->csum = psum;
2607 
2608 	return __skb_gro_checksum_complete(skb);
2609 }
2610 
2611 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2612 {
2613 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2614 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2615 		NAPI_GRO_CB(skb)->csum_cnt--;
2616 	} else {
2617 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2618 		 * verified a new top level checksum or an encapsulated one
2619 		 * during GRO. This saves work if we fallback to normal path.
2620 		 */
2621 		__skb_incr_checksum_unnecessary(skb);
2622 	}
2623 }
2624 
2625 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2626 				    compute_pseudo)			\
2627 ({									\
2628 	__sum16 __ret = 0;						\
2629 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2630 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2631 				compute_pseudo(skb, proto));		\
2632 	if (!__ret)							\
2633 		skb_gro_incr_csum_unnecessary(skb);			\
2634 	__ret;								\
2635 })
2636 
2637 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2638 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2639 
2640 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2641 					     compute_pseudo)		\
2642 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2643 
2644 #define skb_gro_checksum_simple_validate(skb)				\
2645 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2646 
2647 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2648 {
2649 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2650 		!NAPI_GRO_CB(skb)->csum_valid);
2651 }
2652 
2653 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2654 					      __sum16 check, __wsum pseudo)
2655 {
2656 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2657 	NAPI_GRO_CB(skb)->csum_valid = 1;
2658 }
2659 
2660 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2661 do {									\
2662 	if (__skb_gro_checksum_convert_check(skb))			\
2663 		__skb_gro_checksum_convert(skb, check,			\
2664 					   compute_pseudo(skb, proto));	\
2665 } while (0)
2666 
2667 struct gro_remcsum {
2668 	int offset;
2669 	__wsum delta;
2670 };
2671 
2672 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2673 {
2674 	grc->offset = 0;
2675 	grc->delta = 0;
2676 }
2677 
2678 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2679 					    unsigned int off, size_t hdrlen,
2680 					    int start, int offset,
2681 					    struct gro_remcsum *grc,
2682 					    bool nopartial)
2683 {
2684 	__wsum delta;
2685 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2686 
2687 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2688 
2689 	if (!nopartial) {
2690 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2691 		return ptr;
2692 	}
2693 
2694 	ptr = skb_gro_header_fast(skb, off);
2695 	if (skb_gro_header_hard(skb, off + plen)) {
2696 		ptr = skb_gro_header_slow(skb, off + plen, off);
2697 		if (!ptr)
2698 			return NULL;
2699 	}
2700 
2701 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2702 			       start, offset);
2703 
2704 	/* Adjust skb->csum since we changed the packet */
2705 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2706 
2707 	grc->offset = off + hdrlen + offset;
2708 	grc->delta = delta;
2709 
2710 	return ptr;
2711 }
2712 
2713 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2714 					   struct gro_remcsum *grc)
2715 {
2716 	void *ptr;
2717 	size_t plen = grc->offset + sizeof(u16);
2718 
2719 	if (!grc->delta)
2720 		return;
2721 
2722 	ptr = skb_gro_header_fast(skb, grc->offset);
2723 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2724 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2725 		if (!ptr)
2726 			return;
2727 	}
2728 
2729 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2730 }
2731 
2732 #ifdef CONFIG_XFRM_OFFLOAD
2733 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2734 {
2735 	if (PTR_ERR(pp) != -EINPROGRESS)
2736 		NAPI_GRO_CB(skb)->flush |= flush;
2737 }
2738 #else
2739 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2740 {
2741 	NAPI_GRO_CB(skb)->flush |= flush;
2742 }
2743 #endif
2744 
2745 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2746 				  unsigned short type,
2747 				  const void *daddr, const void *saddr,
2748 				  unsigned int len)
2749 {
2750 	if (!dev->header_ops || !dev->header_ops->create)
2751 		return 0;
2752 
2753 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2754 }
2755 
2756 static inline int dev_parse_header(const struct sk_buff *skb,
2757 				   unsigned char *haddr)
2758 {
2759 	const struct net_device *dev = skb->dev;
2760 
2761 	if (!dev->header_ops || !dev->header_ops->parse)
2762 		return 0;
2763 	return dev->header_ops->parse(skb, haddr);
2764 }
2765 
2766 /* ll_header must have at least hard_header_len allocated */
2767 static inline bool dev_validate_header(const struct net_device *dev,
2768 				       char *ll_header, int len)
2769 {
2770 	if (likely(len >= dev->hard_header_len))
2771 		return true;
2772 	if (len < dev->min_header_len)
2773 		return false;
2774 
2775 	if (capable(CAP_SYS_RAWIO)) {
2776 		memset(ll_header + len, 0, dev->hard_header_len - len);
2777 		return true;
2778 	}
2779 
2780 	if (dev->header_ops && dev->header_ops->validate)
2781 		return dev->header_ops->validate(ll_header, len);
2782 
2783 	return false;
2784 }
2785 
2786 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2787 			   int len, int size);
2788 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2789 static inline int unregister_gifconf(unsigned int family)
2790 {
2791 	return register_gifconf(family, NULL);
2792 }
2793 
2794 #ifdef CONFIG_NET_FLOW_LIMIT
2795 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2796 struct sd_flow_limit {
2797 	u64			count;
2798 	unsigned int		num_buckets;
2799 	unsigned int		history_head;
2800 	u16			history[FLOW_LIMIT_HISTORY];
2801 	u8			buckets[];
2802 };
2803 
2804 extern int netdev_flow_limit_table_len;
2805 #endif /* CONFIG_NET_FLOW_LIMIT */
2806 
2807 /*
2808  * Incoming packets are placed on per-CPU queues
2809  */
2810 struct softnet_data {
2811 	struct list_head	poll_list;
2812 	struct sk_buff_head	process_queue;
2813 
2814 	/* stats */
2815 	unsigned int		processed;
2816 	unsigned int		time_squeeze;
2817 	unsigned int		received_rps;
2818 #ifdef CONFIG_RPS
2819 	struct softnet_data	*rps_ipi_list;
2820 #endif
2821 #ifdef CONFIG_NET_FLOW_LIMIT
2822 	struct sd_flow_limit __rcu *flow_limit;
2823 #endif
2824 	struct Qdisc		*output_queue;
2825 	struct Qdisc		**output_queue_tailp;
2826 	struct sk_buff		*completion_queue;
2827 #ifdef CONFIG_XFRM_OFFLOAD
2828 	struct sk_buff_head	xfrm_backlog;
2829 #endif
2830 #ifdef CONFIG_RPS
2831 	/* input_queue_head should be written by cpu owning this struct,
2832 	 * and only read by other cpus. Worth using a cache line.
2833 	 */
2834 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2835 
2836 	/* Elements below can be accessed between CPUs for RPS/RFS */
2837 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2838 	struct softnet_data	*rps_ipi_next;
2839 	unsigned int		cpu;
2840 	unsigned int		input_queue_tail;
2841 #endif
2842 	unsigned int		dropped;
2843 	struct sk_buff_head	input_pkt_queue;
2844 	struct napi_struct	backlog;
2845 
2846 };
2847 
2848 static inline void input_queue_head_incr(struct softnet_data *sd)
2849 {
2850 #ifdef CONFIG_RPS
2851 	sd->input_queue_head++;
2852 #endif
2853 }
2854 
2855 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2856 					      unsigned int *qtail)
2857 {
2858 #ifdef CONFIG_RPS
2859 	*qtail = ++sd->input_queue_tail;
2860 #endif
2861 }
2862 
2863 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2864 
2865 void __netif_schedule(struct Qdisc *q);
2866 void netif_schedule_queue(struct netdev_queue *txq);
2867 
2868 static inline void netif_tx_schedule_all(struct net_device *dev)
2869 {
2870 	unsigned int i;
2871 
2872 	for (i = 0; i < dev->num_tx_queues; i++)
2873 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2874 }
2875 
2876 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2877 {
2878 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2879 }
2880 
2881 /**
2882  *	netif_start_queue - allow transmit
2883  *	@dev: network device
2884  *
2885  *	Allow upper layers to call the device hard_start_xmit routine.
2886  */
2887 static inline void netif_start_queue(struct net_device *dev)
2888 {
2889 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2890 }
2891 
2892 static inline void netif_tx_start_all_queues(struct net_device *dev)
2893 {
2894 	unsigned int i;
2895 
2896 	for (i = 0; i < dev->num_tx_queues; i++) {
2897 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2898 		netif_tx_start_queue(txq);
2899 	}
2900 }
2901 
2902 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2903 
2904 /**
2905  *	netif_wake_queue - restart transmit
2906  *	@dev: network device
2907  *
2908  *	Allow upper layers to call the device hard_start_xmit routine.
2909  *	Used for flow control when transmit resources are available.
2910  */
2911 static inline void netif_wake_queue(struct net_device *dev)
2912 {
2913 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2914 }
2915 
2916 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2917 {
2918 	unsigned int i;
2919 
2920 	for (i = 0; i < dev->num_tx_queues; i++) {
2921 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2922 		netif_tx_wake_queue(txq);
2923 	}
2924 }
2925 
2926 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2927 {
2928 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2929 }
2930 
2931 /**
2932  *	netif_stop_queue - stop transmitted packets
2933  *	@dev: network device
2934  *
2935  *	Stop upper layers calling the device hard_start_xmit routine.
2936  *	Used for flow control when transmit resources are unavailable.
2937  */
2938 static inline void netif_stop_queue(struct net_device *dev)
2939 {
2940 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2941 }
2942 
2943 void netif_tx_stop_all_queues(struct net_device *dev);
2944 
2945 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2946 {
2947 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2948 }
2949 
2950 /**
2951  *	netif_queue_stopped - test if transmit queue is flowblocked
2952  *	@dev: network device
2953  *
2954  *	Test if transmit queue on device is currently unable to send.
2955  */
2956 static inline bool netif_queue_stopped(const struct net_device *dev)
2957 {
2958 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2959 }
2960 
2961 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2962 {
2963 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2964 }
2965 
2966 static inline bool
2967 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2968 {
2969 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2970 }
2971 
2972 static inline bool
2973 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2974 {
2975 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2976 }
2977 
2978 /**
2979  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2980  *	@dev_queue: pointer to transmit queue
2981  *
2982  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2983  * to give appropriate hint to the CPU.
2984  */
2985 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2986 {
2987 #ifdef CONFIG_BQL
2988 	prefetchw(&dev_queue->dql.num_queued);
2989 #endif
2990 }
2991 
2992 /**
2993  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2994  *	@dev_queue: pointer to transmit queue
2995  *
2996  * BQL enabled drivers might use this helper in their TX completion path,
2997  * to give appropriate hint to the CPU.
2998  */
2999 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3000 {
3001 #ifdef CONFIG_BQL
3002 	prefetchw(&dev_queue->dql.limit);
3003 #endif
3004 }
3005 
3006 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3007 					unsigned int bytes)
3008 {
3009 #ifdef CONFIG_BQL
3010 	dql_queued(&dev_queue->dql, bytes);
3011 
3012 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3013 		return;
3014 
3015 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3016 
3017 	/*
3018 	 * The XOFF flag must be set before checking the dql_avail below,
3019 	 * because in netdev_tx_completed_queue we update the dql_completed
3020 	 * before checking the XOFF flag.
3021 	 */
3022 	smp_mb();
3023 
3024 	/* check again in case another CPU has just made room avail */
3025 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3026 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3027 #endif
3028 }
3029 
3030 /**
3031  * 	netdev_sent_queue - report the number of bytes queued to hardware
3032  * 	@dev: network device
3033  * 	@bytes: number of bytes queued to the hardware device queue
3034  *
3035  * 	Report the number of bytes queued for sending/completion to the network
3036  * 	device hardware queue. @bytes should be a good approximation and should
3037  * 	exactly match netdev_completed_queue() @bytes
3038  */
3039 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3040 {
3041 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3042 }
3043 
3044 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3045 					     unsigned int pkts, unsigned int bytes)
3046 {
3047 #ifdef CONFIG_BQL
3048 	if (unlikely(!bytes))
3049 		return;
3050 
3051 	dql_completed(&dev_queue->dql, bytes);
3052 
3053 	/*
3054 	 * Without the memory barrier there is a small possiblity that
3055 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3056 	 * be stopped forever
3057 	 */
3058 	smp_mb();
3059 
3060 	if (dql_avail(&dev_queue->dql) < 0)
3061 		return;
3062 
3063 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3064 		netif_schedule_queue(dev_queue);
3065 #endif
3066 }
3067 
3068 /**
3069  * 	netdev_completed_queue - report bytes and packets completed by device
3070  * 	@dev: network device
3071  * 	@pkts: actual number of packets sent over the medium
3072  * 	@bytes: actual number of bytes sent over the medium
3073  *
3074  * 	Report the number of bytes and packets transmitted by the network device
3075  * 	hardware queue over the physical medium, @bytes must exactly match the
3076  * 	@bytes amount passed to netdev_sent_queue()
3077  */
3078 static inline void netdev_completed_queue(struct net_device *dev,
3079 					  unsigned int pkts, unsigned int bytes)
3080 {
3081 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3082 }
3083 
3084 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3085 {
3086 #ifdef CONFIG_BQL
3087 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3088 	dql_reset(&q->dql);
3089 #endif
3090 }
3091 
3092 /**
3093  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3094  * 	@dev_queue: network device
3095  *
3096  * 	Reset the bytes and packet count of a network device and clear the
3097  * 	software flow control OFF bit for this network device
3098  */
3099 static inline void netdev_reset_queue(struct net_device *dev_queue)
3100 {
3101 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3102 }
3103 
3104 /**
3105  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3106  * 	@dev: network device
3107  * 	@queue_index: given tx queue index
3108  *
3109  * 	Returns 0 if given tx queue index >= number of device tx queues,
3110  * 	otherwise returns the originally passed tx queue index.
3111  */
3112 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3113 {
3114 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3115 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3116 				     dev->name, queue_index,
3117 				     dev->real_num_tx_queues);
3118 		return 0;
3119 	}
3120 
3121 	return queue_index;
3122 }
3123 
3124 /**
3125  *	netif_running - test if up
3126  *	@dev: network device
3127  *
3128  *	Test if the device has been brought up.
3129  */
3130 static inline bool netif_running(const struct net_device *dev)
3131 {
3132 	return test_bit(__LINK_STATE_START, &dev->state);
3133 }
3134 
3135 /*
3136  * Routines to manage the subqueues on a device.  We only need start,
3137  * stop, and a check if it's stopped.  All other device management is
3138  * done at the overall netdevice level.
3139  * Also test the device if we're multiqueue.
3140  */
3141 
3142 /**
3143  *	netif_start_subqueue - allow sending packets on subqueue
3144  *	@dev: network device
3145  *	@queue_index: sub queue index
3146  *
3147  * Start individual transmit queue of a device with multiple transmit queues.
3148  */
3149 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3150 {
3151 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3152 
3153 	netif_tx_start_queue(txq);
3154 }
3155 
3156 /**
3157  *	netif_stop_subqueue - stop sending packets on subqueue
3158  *	@dev: network device
3159  *	@queue_index: sub queue index
3160  *
3161  * Stop individual transmit queue of a device with multiple transmit queues.
3162  */
3163 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3164 {
3165 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3166 	netif_tx_stop_queue(txq);
3167 }
3168 
3169 /**
3170  *	netif_subqueue_stopped - test status of subqueue
3171  *	@dev: network device
3172  *	@queue_index: sub queue index
3173  *
3174  * Check individual transmit queue of a device with multiple transmit queues.
3175  */
3176 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3177 					    u16 queue_index)
3178 {
3179 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3180 
3181 	return netif_tx_queue_stopped(txq);
3182 }
3183 
3184 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3185 					  struct sk_buff *skb)
3186 {
3187 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3188 }
3189 
3190 /**
3191  *	netif_wake_subqueue - allow sending packets on subqueue
3192  *	@dev: network device
3193  *	@queue_index: sub queue index
3194  *
3195  * Resume individual transmit queue of a device with multiple transmit queues.
3196  */
3197 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3198 {
3199 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3200 
3201 	netif_tx_wake_queue(txq);
3202 }
3203 
3204 #ifdef CONFIG_XPS
3205 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3206 			u16 index);
3207 #else
3208 static inline int netif_set_xps_queue(struct net_device *dev,
3209 				      const struct cpumask *mask,
3210 				      u16 index)
3211 {
3212 	return 0;
3213 }
3214 #endif
3215 
3216 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3217 		  unsigned int num_tx_queues);
3218 
3219 /*
3220  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3221  * as a distribution range limit for the returned value.
3222  */
3223 static inline u16 skb_tx_hash(const struct net_device *dev,
3224 			      struct sk_buff *skb)
3225 {
3226 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3227 }
3228 
3229 /**
3230  *	netif_is_multiqueue - test if device has multiple transmit queues
3231  *	@dev: network device
3232  *
3233  * Check if device has multiple transmit queues
3234  */
3235 static inline bool netif_is_multiqueue(const struct net_device *dev)
3236 {
3237 	return dev->num_tx_queues > 1;
3238 }
3239 
3240 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3241 
3242 #ifdef CONFIG_SYSFS
3243 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3244 #else
3245 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3246 						unsigned int rxq)
3247 {
3248 	return 0;
3249 }
3250 #endif
3251 
3252 static inline struct netdev_rx_queue *
3253 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3254 {
3255 	return dev->_rx + rxq;
3256 }
3257 
3258 #ifdef CONFIG_SYSFS
3259 static inline unsigned int get_netdev_rx_queue_index(
3260 		struct netdev_rx_queue *queue)
3261 {
3262 	struct net_device *dev = queue->dev;
3263 	int index = queue - dev->_rx;
3264 
3265 	BUG_ON(index >= dev->num_rx_queues);
3266 	return index;
3267 }
3268 #endif
3269 
3270 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3271 int netif_get_num_default_rss_queues(void);
3272 
3273 enum skb_free_reason {
3274 	SKB_REASON_CONSUMED,
3275 	SKB_REASON_DROPPED,
3276 };
3277 
3278 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3279 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3280 
3281 /*
3282  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3283  * interrupt context or with hardware interrupts being disabled.
3284  * (in_irq() || irqs_disabled())
3285  *
3286  * We provide four helpers that can be used in following contexts :
3287  *
3288  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3289  *  replacing kfree_skb(skb)
3290  *
3291  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3292  *  Typically used in place of consume_skb(skb) in TX completion path
3293  *
3294  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3295  *  replacing kfree_skb(skb)
3296  *
3297  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3298  *  and consumed a packet. Used in place of consume_skb(skb)
3299  */
3300 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3301 {
3302 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3303 }
3304 
3305 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3306 {
3307 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3308 }
3309 
3310 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3311 {
3312 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3313 }
3314 
3315 static inline void dev_consume_skb_any(struct sk_buff *skb)
3316 {
3317 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3318 }
3319 
3320 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3321 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3322 int netif_rx(struct sk_buff *skb);
3323 int netif_rx_ni(struct sk_buff *skb);
3324 int netif_receive_skb(struct sk_buff *skb);
3325 int netif_receive_skb_core(struct sk_buff *skb);
3326 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3327 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3328 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3329 gro_result_t napi_gro_frags(struct napi_struct *napi);
3330 struct packet_offload *gro_find_receive_by_type(__be16 type);
3331 struct packet_offload *gro_find_complete_by_type(__be16 type);
3332 
3333 static inline void napi_free_frags(struct napi_struct *napi)
3334 {
3335 	kfree_skb(napi->skb);
3336 	napi->skb = NULL;
3337 }
3338 
3339 bool netdev_is_rx_handler_busy(struct net_device *dev);
3340 int netdev_rx_handler_register(struct net_device *dev,
3341 			       rx_handler_func_t *rx_handler,
3342 			       void *rx_handler_data);
3343 void netdev_rx_handler_unregister(struct net_device *dev);
3344 
3345 bool dev_valid_name(const char *name);
3346 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3347 		bool *need_copyout);
3348 int dev_ifconf(struct net *net, struct ifconf *, int);
3349 int dev_ethtool(struct net *net, struct ifreq *);
3350 unsigned int dev_get_flags(const struct net_device *);
3351 int __dev_change_flags(struct net_device *, unsigned int flags);
3352 int dev_change_flags(struct net_device *, unsigned int);
3353 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3354 			unsigned int gchanges);
3355 int dev_change_name(struct net_device *, const char *);
3356 int dev_set_alias(struct net_device *, const char *, size_t);
3357 int dev_get_alias(const struct net_device *, char *, size_t);
3358 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3359 int __dev_set_mtu(struct net_device *, int);
3360 int dev_set_mtu(struct net_device *, int);
3361 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3362 void dev_set_group(struct net_device *, int);
3363 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3364 int dev_change_carrier(struct net_device *, bool new_carrier);
3365 int dev_get_phys_port_id(struct net_device *dev,
3366 			 struct netdev_phys_item_id *ppid);
3367 int dev_get_phys_port_name(struct net_device *dev,
3368 			   char *name, size_t len);
3369 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3370 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3371 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3372 				    struct netdev_queue *txq, int *ret);
3373 
3374 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3375 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3376 		      int fd, u32 flags);
3377 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3378 		     struct netdev_bpf *xdp);
3379 
3380 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3381 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3382 bool is_skb_forwardable(const struct net_device *dev,
3383 			const struct sk_buff *skb);
3384 
3385 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3386 					       struct sk_buff *skb)
3387 {
3388 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3389 	    unlikely(!is_skb_forwardable(dev, skb))) {
3390 		atomic_long_inc(&dev->rx_dropped);
3391 		kfree_skb(skb);
3392 		return NET_RX_DROP;
3393 	}
3394 
3395 	skb_scrub_packet(skb, true);
3396 	skb->priority = 0;
3397 	return 0;
3398 }
3399 
3400 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3401 
3402 extern int		netdev_budget;
3403 extern unsigned int	netdev_budget_usecs;
3404 
3405 /* Called by rtnetlink.c:rtnl_unlock() */
3406 void netdev_run_todo(void);
3407 
3408 /**
3409  *	dev_put - release reference to device
3410  *	@dev: network device
3411  *
3412  * Release reference to device to allow it to be freed.
3413  */
3414 static inline void dev_put(struct net_device *dev)
3415 {
3416 	this_cpu_dec(*dev->pcpu_refcnt);
3417 }
3418 
3419 /**
3420  *	dev_hold - get reference to device
3421  *	@dev: network device
3422  *
3423  * Hold reference to device to keep it from being freed.
3424  */
3425 static inline void dev_hold(struct net_device *dev)
3426 {
3427 	this_cpu_inc(*dev->pcpu_refcnt);
3428 }
3429 
3430 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3431  * and _off may be called from IRQ context, but it is caller
3432  * who is responsible for serialization of these calls.
3433  *
3434  * The name carrier is inappropriate, these functions should really be
3435  * called netif_lowerlayer_*() because they represent the state of any
3436  * kind of lower layer not just hardware media.
3437  */
3438 
3439 void linkwatch_init_dev(struct net_device *dev);
3440 void linkwatch_fire_event(struct net_device *dev);
3441 void linkwatch_forget_dev(struct net_device *dev);
3442 
3443 /**
3444  *	netif_carrier_ok - test if carrier present
3445  *	@dev: network device
3446  *
3447  * Check if carrier is present on device
3448  */
3449 static inline bool netif_carrier_ok(const struct net_device *dev)
3450 {
3451 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3452 }
3453 
3454 unsigned long dev_trans_start(struct net_device *dev);
3455 
3456 void __netdev_watchdog_up(struct net_device *dev);
3457 
3458 void netif_carrier_on(struct net_device *dev);
3459 
3460 void netif_carrier_off(struct net_device *dev);
3461 
3462 /**
3463  *	netif_dormant_on - mark device as dormant.
3464  *	@dev: network device
3465  *
3466  * Mark device as dormant (as per RFC2863).
3467  *
3468  * The dormant state indicates that the relevant interface is not
3469  * actually in a condition to pass packets (i.e., it is not 'up') but is
3470  * in a "pending" state, waiting for some external event.  For "on-
3471  * demand" interfaces, this new state identifies the situation where the
3472  * interface is waiting for events to place it in the up state.
3473  */
3474 static inline void netif_dormant_on(struct net_device *dev)
3475 {
3476 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3477 		linkwatch_fire_event(dev);
3478 }
3479 
3480 /**
3481  *	netif_dormant_off - set device as not dormant.
3482  *	@dev: network device
3483  *
3484  * Device is not in dormant state.
3485  */
3486 static inline void netif_dormant_off(struct net_device *dev)
3487 {
3488 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3489 		linkwatch_fire_event(dev);
3490 }
3491 
3492 /**
3493  *	netif_dormant - test if device is dormant
3494  *	@dev: network device
3495  *
3496  * Check if device is dormant.
3497  */
3498 static inline bool netif_dormant(const struct net_device *dev)
3499 {
3500 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3501 }
3502 
3503 
3504 /**
3505  *	netif_oper_up - test if device is operational
3506  *	@dev: network device
3507  *
3508  * Check if carrier is operational
3509  */
3510 static inline bool netif_oper_up(const struct net_device *dev)
3511 {
3512 	return (dev->operstate == IF_OPER_UP ||
3513 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3514 }
3515 
3516 /**
3517  *	netif_device_present - is device available or removed
3518  *	@dev: network device
3519  *
3520  * Check if device has not been removed from system.
3521  */
3522 static inline bool netif_device_present(struct net_device *dev)
3523 {
3524 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3525 }
3526 
3527 void netif_device_detach(struct net_device *dev);
3528 
3529 void netif_device_attach(struct net_device *dev);
3530 
3531 /*
3532  * Network interface message level settings
3533  */
3534 
3535 enum {
3536 	NETIF_MSG_DRV		= 0x0001,
3537 	NETIF_MSG_PROBE		= 0x0002,
3538 	NETIF_MSG_LINK		= 0x0004,
3539 	NETIF_MSG_TIMER		= 0x0008,
3540 	NETIF_MSG_IFDOWN	= 0x0010,
3541 	NETIF_MSG_IFUP		= 0x0020,
3542 	NETIF_MSG_RX_ERR	= 0x0040,
3543 	NETIF_MSG_TX_ERR	= 0x0080,
3544 	NETIF_MSG_TX_QUEUED	= 0x0100,
3545 	NETIF_MSG_INTR		= 0x0200,
3546 	NETIF_MSG_TX_DONE	= 0x0400,
3547 	NETIF_MSG_RX_STATUS	= 0x0800,
3548 	NETIF_MSG_PKTDATA	= 0x1000,
3549 	NETIF_MSG_HW		= 0x2000,
3550 	NETIF_MSG_WOL		= 0x4000,
3551 };
3552 
3553 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3554 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3555 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3556 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3557 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3558 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3559 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3560 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3561 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3562 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3563 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3564 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3565 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3566 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3567 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3568 
3569 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3570 {
3571 	/* use default */
3572 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3573 		return default_msg_enable_bits;
3574 	if (debug_value == 0)	/* no output */
3575 		return 0;
3576 	/* set low N bits */
3577 	return (1 << debug_value) - 1;
3578 }
3579 
3580 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3581 {
3582 	spin_lock(&txq->_xmit_lock);
3583 	txq->xmit_lock_owner = cpu;
3584 }
3585 
3586 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3587 {
3588 	__acquire(&txq->_xmit_lock);
3589 	return true;
3590 }
3591 
3592 static inline void __netif_tx_release(struct netdev_queue *txq)
3593 {
3594 	__release(&txq->_xmit_lock);
3595 }
3596 
3597 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3598 {
3599 	spin_lock_bh(&txq->_xmit_lock);
3600 	txq->xmit_lock_owner = smp_processor_id();
3601 }
3602 
3603 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3604 {
3605 	bool ok = spin_trylock(&txq->_xmit_lock);
3606 	if (likely(ok))
3607 		txq->xmit_lock_owner = smp_processor_id();
3608 	return ok;
3609 }
3610 
3611 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3612 {
3613 	txq->xmit_lock_owner = -1;
3614 	spin_unlock(&txq->_xmit_lock);
3615 }
3616 
3617 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3618 {
3619 	txq->xmit_lock_owner = -1;
3620 	spin_unlock_bh(&txq->_xmit_lock);
3621 }
3622 
3623 static inline void txq_trans_update(struct netdev_queue *txq)
3624 {
3625 	if (txq->xmit_lock_owner != -1)
3626 		txq->trans_start = jiffies;
3627 }
3628 
3629 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3630 static inline void netif_trans_update(struct net_device *dev)
3631 {
3632 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3633 
3634 	if (txq->trans_start != jiffies)
3635 		txq->trans_start = jiffies;
3636 }
3637 
3638 /**
3639  *	netif_tx_lock - grab network device transmit lock
3640  *	@dev: network device
3641  *
3642  * Get network device transmit lock
3643  */
3644 static inline void netif_tx_lock(struct net_device *dev)
3645 {
3646 	unsigned int i;
3647 	int cpu;
3648 
3649 	spin_lock(&dev->tx_global_lock);
3650 	cpu = smp_processor_id();
3651 	for (i = 0; i < dev->num_tx_queues; i++) {
3652 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3653 
3654 		/* We are the only thread of execution doing a
3655 		 * freeze, but we have to grab the _xmit_lock in
3656 		 * order to synchronize with threads which are in
3657 		 * the ->hard_start_xmit() handler and already
3658 		 * checked the frozen bit.
3659 		 */
3660 		__netif_tx_lock(txq, cpu);
3661 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3662 		__netif_tx_unlock(txq);
3663 	}
3664 }
3665 
3666 static inline void netif_tx_lock_bh(struct net_device *dev)
3667 {
3668 	local_bh_disable();
3669 	netif_tx_lock(dev);
3670 }
3671 
3672 static inline void netif_tx_unlock(struct net_device *dev)
3673 {
3674 	unsigned int i;
3675 
3676 	for (i = 0; i < dev->num_tx_queues; i++) {
3677 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3678 
3679 		/* No need to grab the _xmit_lock here.  If the
3680 		 * queue is not stopped for another reason, we
3681 		 * force a schedule.
3682 		 */
3683 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3684 		netif_schedule_queue(txq);
3685 	}
3686 	spin_unlock(&dev->tx_global_lock);
3687 }
3688 
3689 static inline void netif_tx_unlock_bh(struct net_device *dev)
3690 {
3691 	netif_tx_unlock(dev);
3692 	local_bh_enable();
3693 }
3694 
3695 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3696 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3697 		__netif_tx_lock(txq, cpu);		\
3698 	} else {					\
3699 		__netif_tx_acquire(txq);		\
3700 	}						\
3701 }
3702 
3703 #define HARD_TX_TRYLOCK(dev, txq)			\
3704 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3705 		__netif_tx_trylock(txq) :		\
3706 		__netif_tx_acquire(txq))
3707 
3708 #define HARD_TX_UNLOCK(dev, txq) {			\
3709 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3710 		__netif_tx_unlock(txq);			\
3711 	} else {					\
3712 		__netif_tx_release(txq);		\
3713 	}						\
3714 }
3715 
3716 static inline void netif_tx_disable(struct net_device *dev)
3717 {
3718 	unsigned int i;
3719 	int cpu;
3720 
3721 	local_bh_disable();
3722 	cpu = smp_processor_id();
3723 	for (i = 0; i < dev->num_tx_queues; i++) {
3724 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3725 
3726 		__netif_tx_lock(txq, cpu);
3727 		netif_tx_stop_queue(txq);
3728 		__netif_tx_unlock(txq);
3729 	}
3730 	local_bh_enable();
3731 }
3732 
3733 static inline void netif_addr_lock(struct net_device *dev)
3734 {
3735 	spin_lock(&dev->addr_list_lock);
3736 }
3737 
3738 static inline void netif_addr_lock_nested(struct net_device *dev)
3739 {
3740 	int subclass = SINGLE_DEPTH_NESTING;
3741 
3742 	if (dev->netdev_ops->ndo_get_lock_subclass)
3743 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3744 
3745 	spin_lock_nested(&dev->addr_list_lock, subclass);
3746 }
3747 
3748 static inline void netif_addr_lock_bh(struct net_device *dev)
3749 {
3750 	spin_lock_bh(&dev->addr_list_lock);
3751 }
3752 
3753 static inline void netif_addr_unlock(struct net_device *dev)
3754 {
3755 	spin_unlock(&dev->addr_list_lock);
3756 }
3757 
3758 static inline void netif_addr_unlock_bh(struct net_device *dev)
3759 {
3760 	spin_unlock_bh(&dev->addr_list_lock);
3761 }
3762 
3763 /*
3764  * dev_addrs walker. Should be used only for read access. Call with
3765  * rcu_read_lock held.
3766  */
3767 #define for_each_dev_addr(dev, ha) \
3768 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3769 
3770 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3771 
3772 void ether_setup(struct net_device *dev);
3773 
3774 /* Support for loadable net-drivers */
3775 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3776 				    unsigned char name_assign_type,
3777 				    void (*setup)(struct net_device *),
3778 				    unsigned int txqs, unsigned int rxqs);
3779 int dev_get_valid_name(struct net *net, struct net_device *dev,
3780 		       const char *name);
3781 
3782 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3783 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3784 
3785 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3786 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3787 			 count)
3788 
3789 int register_netdev(struct net_device *dev);
3790 void unregister_netdev(struct net_device *dev);
3791 
3792 /* General hardware address lists handling functions */
3793 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3794 		   struct netdev_hw_addr_list *from_list, int addr_len);
3795 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3796 		      struct netdev_hw_addr_list *from_list, int addr_len);
3797 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3798 		       struct net_device *dev,
3799 		       int (*sync)(struct net_device *, const unsigned char *),
3800 		       int (*unsync)(struct net_device *,
3801 				     const unsigned char *));
3802 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3803 			  struct net_device *dev,
3804 			  int (*unsync)(struct net_device *,
3805 					const unsigned char *));
3806 void __hw_addr_init(struct netdev_hw_addr_list *list);
3807 
3808 /* Functions used for device addresses handling */
3809 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3810 		 unsigned char addr_type);
3811 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3812 		 unsigned char addr_type);
3813 void dev_addr_flush(struct net_device *dev);
3814 int dev_addr_init(struct net_device *dev);
3815 
3816 /* Functions used for unicast addresses handling */
3817 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3818 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3819 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3820 int dev_uc_sync(struct net_device *to, struct net_device *from);
3821 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3822 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3823 void dev_uc_flush(struct net_device *dev);
3824 void dev_uc_init(struct net_device *dev);
3825 
3826 /**
3827  *  __dev_uc_sync - Synchonize device's unicast list
3828  *  @dev:  device to sync
3829  *  @sync: function to call if address should be added
3830  *  @unsync: function to call if address should be removed
3831  *
3832  *  Add newly added addresses to the interface, and release
3833  *  addresses that have been deleted.
3834  */
3835 static inline int __dev_uc_sync(struct net_device *dev,
3836 				int (*sync)(struct net_device *,
3837 					    const unsigned char *),
3838 				int (*unsync)(struct net_device *,
3839 					      const unsigned char *))
3840 {
3841 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3842 }
3843 
3844 /**
3845  *  __dev_uc_unsync - Remove synchronized addresses from device
3846  *  @dev:  device to sync
3847  *  @unsync: function to call if address should be removed
3848  *
3849  *  Remove all addresses that were added to the device by dev_uc_sync().
3850  */
3851 static inline void __dev_uc_unsync(struct net_device *dev,
3852 				   int (*unsync)(struct net_device *,
3853 						 const unsigned char *))
3854 {
3855 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3856 }
3857 
3858 /* Functions used for multicast addresses handling */
3859 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3860 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3861 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3862 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3863 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3864 int dev_mc_sync(struct net_device *to, struct net_device *from);
3865 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3866 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3867 void dev_mc_flush(struct net_device *dev);
3868 void dev_mc_init(struct net_device *dev);
3869 
3870 /**
3871  *  __dev_mc_sync - Synchonize device's multicast list
3872  *  @dev:  device to sync
3873  *  @sync: function to call if address should be added
3874  *  @unsync: function to call if address should be removed
3875  *
3876  *  Add newly added addresses to the interface, and release
3877  *  addresses that have been deleted.
3878  */
3879 static inline int __dev_mc_sync(struct net_device *dev,
3880 				int (*sync)(struct net_device *,
3881 					    const unsigned char *),
3882 				int (*unsync)(struct net_device *,
3883 					      const unsigned char *))
3884 {
3885 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3886 }
3887 
3888 /**
3889  *  __dev_mc_unsync - Remove synchronized addresses from device
3890  *  @dev:  device to sync
3891  *  @unsync: function to call if address should be removed
3892  *
3893  *  Remove all addresses that were added to the device by dev_mc_sync().
3894  */
3895 static inline void __dev_mc_unsync(struct net_device *dev,
3896 				   int (*unsync)(struct net_device *,
3897 						 const unsigned char *))
3898 {
3899 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3900 }
3901 
3902 /* Functions used for secondary unicast and multicast support */
3903 void dev_set_rx_mode(struct net_device *dev);
3904 void __dev_set_rx_mode(struct net_device *dev);
3905 int dev_set_promiscuity(struct net_device *dev, int inc);
3906 int dev_set_allmulti(struct net_device *dev, int inc);
3907 void netdev_state_change(struct net_device *dev);
3908 void netdev_notify_peers(struct net_device *dev);
3909 void netdev_features_change(struct net_device *dev);
3910 /* Load a device via the kmod */
3911 void dev_load(struct net *net, const char *name);
3912 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3913 					struct rtnl_link_stats64 *storage);
3914 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3915 			     const struct net_device_stats *netdev_stats);
3916 
3917 extern int		netdev_max_backlog;
3918 extern int		netdev_tstamp_prequeue;
3919 extern int		weight_p;
3920 extern int		dev_weight_rx_bias;
3921 extern int		dev_weight_tx_bias;
3922 extern int		dev_rx_weight;
3923 extern int		dev_tx_weight;
3924 
3925 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3926 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3927 						     struct list_head **iter);
3928 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3929 						     struct list_head **iter);
3930 
3931 /* iterate through upper list, must be called under RCU read lock */
3932 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3933 	for (iter = &(dev)->adj_list.upper, \
3934 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3935 	     updev; \
3936 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3937 
3938 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3939 				  int (*fn)(struct net_device *upper_dev,
3940 					    void *data),
3941 				  void *data);
3942 
3943 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3944 				  struct net_device *upper_dev);
3945 
3946 bool netdev_has_any_upper_dev(struct net_device *dev);
3947 
3948 void *netdev_lower_get_next_private(struct net_device *dev,
3949 				    struct list_head **iter);
3950 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3951 					struct list_head **iter);
3952 
3953 #define netdev_for_each_lower_private(dev, priv, iter) \
3954 	for (iter = (dev)->adj_list.lower.next, \
3955 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3956 	     priv; \
3957 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3958 
3959 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3960 	for (iter = &(dev)->adj_list.lower, \
3961 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3962 	     priv; \
3963 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3964 
3965 void *netdev_lower_get_next(struct net_device *dev,
3966 				struct list_head **iter);
3967 
3968 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3969 	for (iter = (dev)->adj_list.lower.next, \
3970 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3971 	     ldev; \
3972 	     ldev = netdev_lower_get_next(dev, &(iter)))
3973 
3974 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3975 					     struct list_head **iter);
3976 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3977 						 struct list_head **iter);
3978 
3979 int netdev_walk_all_lower_dev(struct net_device *dev,
3980 			      int (*fn)(struct net_device *lower_dev,
3981 					void *data),
3982 			      void *data);
3983 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3984 				  int (*fn)(struct net_device *lower_dev,
3985 					    void *data),
3986 				  void *data);
3987 
3988 void *netdev_adjacent_get_private(struct list_head *adj_list);
3989 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3990 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3991 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3992 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3993 			  struct netlink_ext_ack *extack);
3994 int netdev_master_upper_dev_link(struct net_device *dev,
3995 				 struct net_device *upper_dev,
3996 				 void *upper_priv, void *upper_info,
3997 				 struct netlink_ext_ack *extack);
3998 void netdev_upper_dev_unlink(struct net_device *dev,
3999 			     struct net_device *upper_dev);
4000 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4001 void *netdev_lower_dev_get_private(struct net_device *dev,
4002 				   struct net_device *lower_dev);
4003 void netdev_lower_state_changed(struct net_device *lower_dev,
4004 				void *lower_state_info);
4005 
4006 /* RSS keys are 40 or 52 bytes long */
4007 #define NETDEV_RSS_KEY_LEN 52
4008 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4009 void netdev_rss_key_fill(void *buffer, size_t len);
4010 
4011 int dev_get_nest_level(struct net_device *dev);
4012 int skb_checksum_help(struct sk_buff *skb);
4013 int skb_crc32c_csum_help(struct sk_buff *skb);
4014 int skb_csum_hwoffload_help(struct sk_buff *skb,
4015 			    const netdev_features_t features);
4016 
4017 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4018 				  netdev_features_t features, bool tx_path);
4019 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4020 				    netdev_features_t features);
4021 
4022 struct netdev_bonding_info {
4023 	ifslave	slave;
4024 	ifbond	master;
4025 };
4026 
4027 struct netdev_notifier_bonding_info {
4028 	struct netdev_notifier_info info; /* must be first */
4029 	struct netdev_bonding_info  bonding_info;
4030 };
4031 
4032 void netdev_bonding_info_change(struct net_device *dev,
4033 				struct netdev_bonding_info *bonding_info);
4034 
4035 static inline
4036 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4037 {
4038 	return __skb_gso_segment(skb, features, true);
4039 }
4040 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4041 
4042 static inline bool can_checksum_protocol(netdev_features_t features,
4043 					 __be16 protocol)
4044 {
4045 	if (protocol == htons(ETH_P_FCOE))
4046 		return !!(features & NETIF_F_FCOE_CRC);
4047 
4048 	/* Assume this is an IP checksum (not SCTP CRC) */
4049 
4050 	if (features & NETIF_F_HW_CSUM) {
4051 		/* Can checksum everything */
4052 		return true;
4053 	}
4054 
4055 	switch (protocol) {
4056 	case htons(ETH_P_IP):
4057 		return !!(features & NETIF_F_IP_CSUM);
4058 	case htons(ETH_P_IPV6):
4059 		return !!(features & NETIF_F_IPV6_CSUM);
4060 	default:
4061 		return false;
4062 	}
4063 }
4064 
4065 #ifdef CONFIG_BUG
4066 void netdev_rx_csum_fault(struct net_device *dev);
4067 #else
4068 static inline void netdev_rx_csum_fault(struct net_device *dev)
4069 {
4070 }
4071 #endif
4072 /* rx skb timestamps */
4073 void net_enable_timestamp(void);
4074 void net_disable_timestamp(void);
4075 
4076 #ifdef CONFIG_PROC_FS
4077 int __init dev_proc_init(void);
4078 #else
4079 #define dev_proc_init() 0
4080 #endif
4081 
4082 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4083 					      struct sk_buff *skb, struct net_device *dev,
4084 					      bool more)
4085 {
4086 	skb->xmit_more = more ? 1 : 0;
4087 	return ops->ndo_start_xmit(skb, dev);
4088 }
4089 
4090 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4091 					    struct netdev_queue *txq, bool more)
4092 {
4093 	const struct net_device_ops *ops = dev->netdev_ops;
4094 	int rc;
4095 
4096 	rc = __netdev_start_xmit(ops, skb, dev, more);
4097 	if (rc == NETDEV_TX_OK)
4098 		txq_trans_update(txq);
4099 
4100 	return rc;
4101 }
4102 
4103 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4104 				const void *ns);
4105 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4106 				 const void *ns);
4107 
4108 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4109 {
4110 	return netdev_class_create_file_ns(class_attr, NULL);
4111 }
4112 
4113 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4114 {
4115 	netdev_class_remove_file_ns(class_attr, NULL);
4116 }
4117 
4118 extern const struct kobj_ns_type_operations net_ns_type_operations;
4119 
4120 const char *netdev_drivername(const struct net_device *dev);
4121 
4122 void linkwatch_run_queue(void);
4123 
4124 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4125 							  netdev_features_t f2)
4126 {
4127 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4128 		if (f1 & NETIF_F_HW_CSUM)
4129 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4130 		else
4131 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4132 	}
4133 
4134 	return f1 & f2;
4135 }
4136 
4137 static inline netdev_features_t netdev_get_wanted_features(
4138 	struct net_device *dev)
4139 {
4140 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4141 }
4142 netdev_features_t netdev_increment_features(netdev_features_t all,
4143 	netdev_features_t one, netdev_features_t mask);
4144 
4145 /* Allow TSO being used on stacked device :
4146  * Performing the GSO segmentation before last device
4147  * is a performance improvement.
4148  */
4149 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4150 							netdev_features_t mask)
4151 {
4152 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4153 }
4154 
4155 int __netdev_update_features(struct net_device *dev);
4156 void netdev_update_features(struct net_device *dev);
4157 void netdev_change_features(struct net_device *dev);
4158 
4159 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4160 					struct net_device *dev);
4161 
4162 netdev_features_t passthru_features_check(struct sk_buff *skb,
4163 					  struct net_device *dev,
4164 					  netdev_features_t features);
4165 netdev_features_t netif_skb_features(struct sk_buff *skb);
4166 
4167 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4168 {
4169 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4170 
4171 	/* check flags correspondence */
4172 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4173 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4174 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4175 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4176 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4177 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4178 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4179 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4180 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4181 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4182 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4183 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4184 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4185 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4186 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4187 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4188 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4189 
4190 	return (features & feature) == feature;
4191 }
4192 
4193 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4194 {
4195 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4196 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4197 }
4198 
4199 static inline bool netif_needs_gso(struct sk_buff *skb,
4200 				   netdev_features_t features)
4201 {
4202 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4203 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4204 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4205 }
4206 
4207 static inline void netif_set_gso_max_size(struct net_device *dev,
4208 					  unsigned int size)
4209 {
4210 	dev->gso_max_size = size;
4211 }
4212 
4213 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4214 					int pulled_hlen, u16 mac_offset,
4215 					int mac_len)
4216 {
4217 	skb->protocol = protocol;
4218 	skb->encapsulation = 1;
4219 	skb_push(skb, pulled_hlen);
4220 	skb_reset_transport_header(skb);
4221 	skb->mac_header = mac_offset;
4222 	skb->network_header = skb->mac_header + mac_len;
4223 	skb->mac_len = mac_len;
4224 }
4225 
4226 static inline bool netif_is_macsec(const struct net_device *dev)
4227 {
4228 	return dev->priv_flags & IFF_MACSEC;
4229 }
4230 
4231 static inline bool netif_is_macvlan(const struct net_device *dev)
4232 {
4233 	return dev->priv_flags & IFF_MACVLAN;
4234 }
4235 
4236 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4237 {
4238 	return dev->priv_flags & IFF_MACVLAN_PORT;
4239 }
4240 
4241 static inline bool netif_is_bond_master(const struct net_device *dev)
4242 {
4243 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4244 }
4245 
4246 static inline bool netif_is_bond_slave(const struct net_device *dev)
4247 {
4248 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4249 }
4250 
4251 static inline bool netif_supports_nofcs(struct net_device *dev)
4252 {
4253 	return dev->priv_flags & IFF_SUPP_NOFCS;
4254 }
4255 
4256 static inline bool netif_is_l3_master(const struct net_device *dev)
4257 {
4258 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4259 }
4260 
4261 static inline bool netif_is_l3_slave(const struct net_device *dev)
4262 {
4263 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4264 }
4265 
4266 static inline bool netif_is_bridge_master(const struct net_device *dev)
4267 {
4268 	return dev->priv_flags & IFF_EBRIDGE;
4269 }
4270 
4271 static inline bool netif_is_bridge_port(const struct net_device *dev)
4272 {
4273 	return dev->priv_flags & IFF_BRIDGE_PORT;
4274 }
4275 
4276 static inline bool netif_is_ovs_master(const struct net_device *dev)
4277 {
4278 	return dev->priv_flags & IFF_OPENVSWITCH;
4279 }
4280 
4281 static inline bool netif_is_ovs_port(const struct net_device *dev)
4282 {
4283 	return dev->priv_flags & IFF_OVS_DATAPATH;
4284 }
4285 
4286 static inline bool netif_is_team_master(const struct net_device *dev)
4287 {
4288 	return dev->priv_flags & IFF_TEAM;
4289 }
4290 
4291 static inline bool netif_is_team_port(const struct net_device *dev)
4292 {
4293 	return dev->priv_flags & IFF_TEAM_PORT;
4294 }
4295 
4296 static inline bool netif_is_lag_master(const struct net_device *dev)
4297 {
4298 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4299 }
4300 
4301 static inline bool netif_is_lag_port(const struct net_device *dev)
4302 {
4303 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4304 }
4305 
4306 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4307 {
4308 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4309 }
4310 
4311 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4312 static inline void netif_keep_dst(struct net_device *dev)
4313 {
4314 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4315 }
4316 
4317 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4318 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4319 {
4320 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4321 	return dev->priv_flags & IFF_MACSEC;
4322 }
4323 
4324 extern struct pernet_operations __net_initdata loopback_net_ops;
4325 
4326 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4327 
4328 /* netdev_printk helpers, similar to dev_printk */
4329 
4330 static inline const char *netdev_name(const struct net_device *dev)
4331 {
4332 	if (!dev->name[0] || strchr(dev->name, '%'))
4333 		return "(unnamed net_device)";
4334 	return dev->name;
4335 }
4336 
4337 static inline bool netdev_unregistering(const struct net_device *dev)
4338 {
4339 	return dev->reg_state == NETREG_UNREGISTERING;
4340 }
4341 
4342 static inline const char *netdev_reg_state(const struct net_device *dev)
4343 {
4344 	switch (dev->reg_state) {
4345 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4346 	case NETREG_REGISTERED: return "";
4347 	case NETREG_UNREGISTERING: return " (unregistering)";
4348 	case NETREG_UNREGISTERED: return " (unregistered)";
4349 	case NETREG_RELEASED: return " (released)";
4350 	case NETREG_DUMMY: return " (dummy)";
4351 	}
4352 
4353 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4354 	return " (unknown)";
4355 }
4356 
4357 __printf(3, 4)
4358 void netdev_printk(const char *level, const struct net_device *dev,
4359 		   const char *format, ...);
4360 __printf(2, 3)
4361 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4362 __printf(2, 3)
4363 void netdev_alert(const struct net_device *dev, const char *format, ...);
4364 __printf(2, 3)
4365 void netdev_crit(const struct net_device *dev, const char *format, ...);
4366 __printf(2, 3)
4367 void netdev_err(const struct net_device *dev, const char *format, ...);
4368 __printf(2, 3)
4369 void netdev_warn(const struct net_device *dev, const char *format, ...);
4370 __printf(2, 3)
4371 void netdev_notice(const struct net_device *dev, const char *format, ...);
4372 __printf(2, 3)
4373 void netdev_info(const struct net_device *dev, const char *format, ...);
4374 
4375 #define netdev_level_once(level, dev, fmt, ...)			\
4376 do {								\
4377 	static bool __print_once __read_mostly;			\
4378 								\
4379 	if (!__print_once) {					\
4380 		__print_once = true;				\
4381 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4382 	}							\
4383 } while (0)
4384 
4385 #define netdev_emerg_once(dev, fmt, ...) \
4386 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4387 #define netdev_alert_once(dev, fmt, ...) \
4388 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4389 #define netdev_crit_once(dev, fmt, ...) \
4390 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4391 #define netdev_err_once(dev, fmt, ...) \
4392 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4393 #define netdev_warn_once(dev, fmt, ...) \
4394 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4395 #define netdev_notice_once(dev, fmt, ...) \
4396 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4397 #define netdev_info_once(dev, fmt, ...) \
4398 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4399 
4400 #define MODULE_ALIAS_NETDEV(device) \
4401 	MODULE_ALIAS("netdev-" device)
4402 
4403 #if defined(CONFIG_DYNAMIC_DEBUG)
4404 #define netdev_dbg(__dev, format, args...)			\
4405 do {								\
4406 	dynamic_netdev_dbg(__dev, format, ##args);		\
4407 } while (0)
4408 #elif defined(DEBUG)
4409 #define netdev_dbg(__dev, format, args...)			\
4410 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4411 #else
4412 #define netdev_dbg(__dev, format, args...)			\
4413 ({								\
4414 	if (0)							\
4415 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4416 })
4417 #endif
4418 
4419 #if defined(VERBOSE_DEBUG)
4420 #define netdev_vdbg	netdev_dbg
4421 #else
4422 
4423 #define netdev_vdbg(dev, format, args...)			\
4424 ({								\
4425 	if (0)							\
4426 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4427 	0;							\
4428 })
4429 #endif
4430 
4431 /*
4432  * netdev_WARN() acts like dev_printk(), but with the key difference
4433  * of using a WARN/WARN_ON to get the message out, including the
4434  * file/line information and a backtrace.
4435  */
4436 #define netdev_WARN(dev, format, args...)			\
4437 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4438 	     netdev_reg_state(dev), ##args)
4439 
4440 #define netdev_WARN_ONCE(dev, format, args...)				\
4441 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4442 		  netdev_reg_state(dev), ##args)
4443 
4444 /* netif printk helpers, similar to netdev_printk */
4445 
4446 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4447 do {					  			\
4448 	if (netif_msg_##type(priv))				\
4449 		netdev_printk(level, (dev), fmt, ##args);	\
4450 } while (0)
4451 
4452 #define netif_level(level, priv, type, dev, fmt, args...)	\
4453 do {								\
4454 	if (netif_msg_##type(priv))				\
4455 		netdev_##level(dev, fmt, ##args);		\
4456 } while (0)
4457 
4458 #define netif_emerg(priv, type, dev, fmt, args...)		\
4459 	netif_level(emerg, priv, type, dev, fmt, ##args)
4460 #define netif_alert(priv, type, dev, fmt, args...)		\
4461 	netif_level(alert, priv, type, dev, fmt, ##args)
4462 #define netif_crit(priv, type, dev, fmt, args...)		\
4463 	netif_level(crit, priv, type, dev, fmt, ##args)
4464 #define netif_err(priv, type, dev, fmt, args...)		\
4465 	netif_level(err, priv, type, dev, fmt, ##args)
4466 #define netif_warn(priv, type, dev, fmt, args...)		\
4467 	netif_level(warn, priv, type, dev, fmt, ##args)
4468 #define netif_notice(priv, type, dev, fmt, args...)		\
4469 	netif_level(notice, priv, type, dev, fmt, ##args)
4470 #define netif_info(priv, type, dev, fmt, args...)		\
4471 	netif_level(info, priv, type, dev, fmt, ##args)
4472 
4473 #if defined(CONFIG_DYNAMIC_DEBUG)
4474 #define netif_dbg(priv, type, netdev, format, args...)		\
4475 do {								\
4476 	if (netif_msg_##type(priv))				\
4477 		dynamic_netdev_dbg(netdev, format, ##args);	\
4478 } while (0)
4479 #elif defined(DEBUG)
4480 #define netif_dbg(priv, type, dev, format, args...)		\
4481 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4482 #else
4483 #define netif_dbg(priv, type, dev, format, args...)			\
4484 ({									\
4485 	if (0)								\
4486 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4487 	0;								\
4488 })
4489 #endif
4490 
4491 /* if @cond then downgrade to debug, else print at @level */
4492 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4493 	do {                                                              \
4494 		if (cond)                                                 \
4495 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4496 		else                                                      \
4497 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4498 	} while (0)
4499 
4500 #if defined(VERBOSE_DEBUG)
4501 #define netif_vdbg	netif_dbg
4502 #else
4503 #define netif_vdbg(priv, type, dev, format, args...)		\
4504 ({								\
4505 	if (0)							\
4506 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4507 	0;							\
4508 })
4509 #endif
4510 
4511 /*
4512  *	The list of packet types we will receive (as opposed to discard)
4513  *	and the routines to invoke.
4514  *
4515  *	Why 16. Because with 16 the only overlap we get on a hash of the
4516  *	low nibble of the protocol value is RARP/SNAP/X.25.
4517  *
4518  *		0800	IP
4519  *		0001	802.3
4520  *		0002	AX.25
4521  *		0004	802.2
4522  *		8035	RARP
4523  *		0005	SNAP
4524  *		0805	X.25
4525  *		0806	ARP
4526  *		8137	IPX
4527  *		0009	Localtalk
4528  *		86DD	IPv6
4529  */
4530 #define PTYPE_HASH_SIZE	(16)
4531 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4532 
4533 #endif	/* _LINUX_NETDEVICE_H */
4534