xref: /openbmc/linux/include/linux/netdevice.h (revision 5d0e4d78)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
60 
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 				    const struct ethtool_ops *ops);
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 /*
135  *	Compute the worst-case header length according to the protocols
136  *	used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204 	struct list_head	list;
205 	unsigned char		addr[MAX_ADDR_LEN];
206 	unsigned char		type;
207 #define NETDEV_HW_ADDR_T_LAN		1
208 #define NETDEV_HW_ADDR_T_SAN		2
209 #define NETDEV_HW_ADDR_T_SLAVE		3
210 #define NETDEV_HW_ADDR_T_UNICAST	4
211 #define NETDEV_HW_ADDR_T_MULTICAST	5
212 	bool			global_use;
213 	int			sync_cnt;
214 	int			refcount;
215 	int			synced;
216 	struct rcu_head		rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220 	struct list_head	list;
221 	int			count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 	list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240 	unsigned int	hh_len;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 	void	(*cache_update)(struct hh_cache *hh,
272 				const struct net_device *dev,
273 				const unsigned char *haddr);
274 	bool	(*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-CPU poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	int			poll_owner;
321 #endif
322 	struct net_device	*dev;
323 	struct sk_buff		*gro_list;
324 	struct sk_buff		*skb;
325 	struct hrtimer		timer;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_MISSED,	/* reschedule a napi */
334 	NAPI_STATE_DISABLE,	/* Disable pending */
335 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
336 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
337 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340 
341 enum {
342 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
343 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
344 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
345 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
346 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
347 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350 
351 enum gro_result {
352 	GRO_MERGED,
353 	GRO_MERGED_FREE,
354 	GRO_HELD,
355 	GRO_NORMAL,
356 	GRO_DROP,
357 	GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360 
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401 
402 enum rx_handler_result {
403 	RX_HANDLER_CONSUMED,
404 	RX_HANDLER_ANOTHER,
405 	RX_HANDLER_EXACT,
406 	RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410 
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413 
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 	return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418 
419 bool napi_schedule_prep(struct napi_struct *n);
420 
421 /**
422  *	napi_schedule - schedule NAPI poll
423  *	@n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 	if (napi_schedule_prep(n))
431 		__napi_schedule(n);
432 }
433 
434 /**
435  *	napi_schedule_irqoff - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 	if (napi_schedule_prep(napi)) {
450 		__napi_schedule(napi);
451 		return true;
452 	}
453 	return false;
454 }
455 
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *	napi_complete - NAPI processing complete
459  *	@n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 	return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *	napi_hash_del - remove a NAPI from global table
472  *	@napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483 
484 /**
485  *	napi_disable - prevent NAPI from scheduling
486  *	@n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492 
493 /**
494  *	napi_enable - enable NAPI scheduling
495  *	@n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 	smp_mb__before_atomic();
504 	clear_bit(NAPI_STATE_SCHED, &n->state);
505 	clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 enum netdev_queue_state_t {
526 	__QUEUE_STATE_DRV_XOFF,
527 	__QUEUE_STATE_STACK_XOFF,
528 	__QUEUE_STATE_FROZEN,
529 };
530 
531 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
534 
535 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 					QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550 
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555 	struct net_device	*dev;
556 	struct Qdisc __rcu	*qdisc;
557 	struct Qdisc		*qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 	struct kobject		kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 	int			numa_node;
563 #endif
564 	unsigned long		tx_maxrate;
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 /*
571  * write-mostly part
572  */
573 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
574 	int			xmit_lock_owner;
575 	/*
576 	 * Time (in jiffies) of last Tx
577 	 */
578 	unsigned long		trans_start;
579 
580 	unsigned long		state;
581 
582 #ifdef CONFIG_BQL
583 	struct dql		dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586 
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	return q->numa_node;
591 #else
592 	return NUMA_NO_NODE;
593 #endif
594 }
595 
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 	q->numa_node = node;
600 #endif
601 }
602 
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609 	unsigned int len;
610 	struct rcu_head rcu;
611 	u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614 
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621 	u16 cpu;
622 	u16 filter;
623 	unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626 
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631 	unsigned int mask;
632 	struct rcu_head rcu;
633 	struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637 
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649 	u32	mask;
650 
651 	u32	ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654 
655 #define RPS_NO_CPU 0xffff
656 
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659 
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 					u32 hash)
662 {
663 	if (table && hash) {
664 		unsigned int index = hash & table->mask;
665 		u32 val = hash & ~rps_cpu_mask;
666 
667 		/* We only give a hint, preemption can change CPU under us */
668 		val |= raw_smp_processor_id();
669 
670 		if (table->ents[index] != val)
671 			table->ents[index] = val;
672 	}
673 }
674 
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 			 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680 
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 	struct rps_map __rcu		*rps_map;
685 	struct rps_dev_flow_table __rcu	*rps_flow_table;
686 #endif
687 	struct kobject			kobj;
688 	struct net_device		*dev;
689 } ____cacheline_aligned_in_smp;
690 
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695 	struct attribute attr;
696 	ssize_t (*show)(struct netdev_rx_queue *queue,
697 	    struct rx_queue_attribute *attr, char *buf);
698 	ssize_t (*store)(struct netdev_rx_queue *queue,
699 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
700 };
701 
702 #ifdef CONFIG_XPS
703 /*
704  * This structure holds an XPS map which can be of variable length.  The
705  * map is an array of queues.
706  */
707 struct xps_map {
708 	unsigned int len;
709 	unsigned int alloc_len;
710 	struct rcu_head rcu;
711 	u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715        - sizeof(struct xps_map)) / sizeof(u16))
716 
717 /*
718  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
719  */
720 struct xps_dev_maps {
721 	struct rcu_head rcu;
722 	struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
725 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727 
728 #define TC_MAX_QUEUE	16
729 #define TC_BITMASK	15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732 	u16 count;
733 	u16 offset;
734 };
735 
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738  * This structure is to hold information about the device
739  * configured to run FCoE protocol stack.
740  */
741 struct netdev_fcoe_hbainfo {
742 	char	manufacturer[64];
743 	char	serial_number[64];
744 	char	hardware_version[64];
745 	char	driver_version[64];
746 	char	optionrom_version[64];
747 	char	firmware_version[64];
748 	char	model[256];
749 	char	model_description[256];
750 };
751 #endif
752 
753 #define MAX_PHYS_ITEM_ID_LEN 32
754 
755 /* This structure holds a unique identifier to identify some
756  * physical item (port for example) used by a netdevice.
757  */
758 struct netdev_phys_item_id {
759 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760 	unsigned char id_len;
761 };
762 
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764 					    struct netdev_phys_item_id *b)
765 {
766 	return a->id_len == b->id_len &&
767 	       memcmp(a->id, b->id, a->id_len) == 0;
768 }
769 
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 				       struct sk_buff *skb);
772 
773 /* These structures hold the attributes of qdisc and classifiers
774  * that are being passed to the netdevice through the setup_tc op.
775  */
776 enum {
777 	TC_SETUP_MQPRIO,
778 	TC_SETUP_CLSU32,
779 	TC_SETUP_CLSFLOWER,
780 	TC_SETUP_MATCHALL,
781 	TC_SETUP_CLSBPF,
782 };
783 
784 struct tc_cls_u32_offload;
785 
786 struct tc_to_netdev {
787 	unsigned int type;
788 	union {
789 		struct tc_cls_u32_offload *cls_u32;
790 		struct tc_cls_flower_offload *cls_flower;
791 		struct tc_cls_matchall_offload *cls_mall;
792 		struct tc_cls_bpf_offload *cls_bpf;
793 		struct tc_mqprio_qopt *mqprio;
794 	};
795 	bool egress_dev;
796 };
797 
798 /* These structures hold the attributes of xdp state that are being passed
799  * to the netdevice through the xdp op.
800  */
801 enum xdp_netdev_command {
802 	/* Set or clear a bpf program used in the earliest stages of packet
803 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804 	 * is responsible for calling bpf_prog_put on any old progs that are
805 	 * stored. In case of error, the callee need not release the new prog
806 	 * reference, but on success it takes ownership and must bpf_prog_put
807 	 * when it is no longer used.
808 	 */
809 	XDP_SETUP_PROG,
810 	XDP_SETUP_PROG_HW,
811 	/* Check if a bpf program is set on the device.  The callee should
812 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
813 	 * is equivalent to XDP_ATTACHED_DRV.
814 	 */
815 	XDP_QUERY_PROG,
816 };
817 
818 struct netlink_ext_ack;
819 
820 struct netdev_xdp {
821 	enum xdp_netdev_command command;
822 	union {
823 		/* XDP_SETUP_PROG */
824 		struct {
825 			u32 flags;
826 			struct bpf_prog *prog;
827 			struct netlink_ext_ack *extack;
828 		};
829 		/* XDP_QUERY_PROG */
830 		struct {
831 			u8 prog_attached;
832 			u32 prog_id;
833 		};
834 	};
835 };
836 
837 #ifdef CONFIG_XFRM_OFFLOAD
838 struct xfrmdev_ops {
839 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
840 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
841 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
842 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
843 				       struct xfrm_state *x);
844 };
845 #endif
846 
847 /*
848  * This structure defines the management hooks for network devices.
849  * The following hooks can be defined; unless noted otherwise, they are
850  * optional and can be filled with a null pointer.
851  *
852  * int (*ndo_init)(struct net_device *dev);
853  *     This function is called once when a network device is registered.
854  *     The network device can use this for any late stage initialization
855  *     or semantic validation. It can fail with an error code which will
856  *     be propagated back to register_netdev.
857  *
858  * void (*ndo_uninit)(struct net_device *dev);
859  *     This function is called when device is unregistered or when registration
860  *     fails. It is not called if init fails.
861  *
862  * int (*ndo_open)(struct net_device *dev);
863  *     This function is called when a network device transitions to the up
864  *     state.
865  *
866  * int (*ndo_stop)(struct net_device *dev);
867  *     This function is called when a network device transitions to the down
868  *     state.
869  *
870  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
871  *                               struct net_device *dev);
872  *	Called when a packet needs to be transmitted.
873  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
874  *	the queue before that can happen; it's for obsolete devices and weird
875  *	corner cases, but the stack really does a non-trivial amount
876  *	of useless work if you return NETDEV_TX_BUSY.
877  *	Required; cannot be NULL.
878  *
879  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
880  *					   struct net_device *dev
881  *					   netdev_features_t features);
882  *	Called by core transmit path to determine if device is capable of
883  *	performing offload operations on a given packet. This is to give
884  *	the device an opportunity to implement any restrictions that cannot
885  *	be otherwise expressed by feature flags. The check is called with
886  *	the set of features that the stack has calculated and it returns
887  *	those the driver believes to be appropriate.
888  *
889  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
890  *                         void *accel_priv, select_queue_fallback_t fallback);
891  *	Called to decide which queue to use when device supports multiple
892  *	transmit queues.
893  *
894  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
895  *	This function is called to allow device receiver to make
896  *	changes to configuration when multicast or promiscuous is enabled.
897  *
898  * void (*ndo_set_rx_mode)(struct net_device *dev);
899  *	This function is called device changes address list filtering.
900  *	If driver handles unicast address filtering, it should set
901  *	IFF_UNICAST_FLT in its priv_flags.
902  *
903  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
904  *	This function  is called when the Media Access Control address
905  *	needs to be changed. If this interface is not defined, the
906  *	MAC address can not be changed.
907  *
908  * int (*ndo_validate_addr)(struct net_device *dev);
909  *	Test if Media Access Control address is valid for the device.
910  *
911  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
912  *	Called when a user requests an ioctl which can't be handled by
913  *	the generic interface code. If not defined ioctls return
914  *	not supported error code.
915  *
916  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
917  *	Used to set network devices bus interface parameters. This interface
918  *	is retained for legacy reasons; new devices should use the bus
919  *	interface (PCI) for low level management.
920  *
921  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
922  *	Called when a user wants to change the Maximum Transfer Unit
923  *	of a device.
924  *
925  * void (*ndo_tx_timeout)(struct net_device *dev);
926  *	Callback used when the transmitter has not made any progress
927  *	for dev->watchdog ticks.
928  *
929  * void (*ndo_get_stats64)(struct net_device *dev,
930  *                         struct rtnl_link_stats64 *storage);
931  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
932  *	Called when a user wants to get the network device usage
933  *	statistics. Drivers must do one of the following:
934  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
935  *	   rtnl_link_stats64 structure passed by the caller.
936  *	2. Define @ndo_get_stats to update a net_device_stats structure
937  *	   (which should normally be dev->stats) and return a pointer to
938  *	   it. The structure may be changed asynchronously only if each
939  *	   field is written atomically.
940  *	3. Update dev->stats asynchronously and atomically, and define
941  *	   neither operation.
942  *
943  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
944  *	Return true if this device supports offload stats of this attr_id.
945  *
946  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
947  *	void *attr_data)
948  *	Get statistics for offload operations by attr_id. Write it into the
949  *	attr_data pointer.
950  *
951  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
952  *	If device supports VLAN filtering this function is called when a
953  *	VLAN id is registered.
954  *
955  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
956  *	If device supports VLAN filtering this function is called when a
957  *	VLAN id is unregistered.
958  *
959  * void (*ndo_poll_controller)(struct net_device *dev);
960  *
961  *	SR-IOV management functions.
962  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
963  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
964  *			  u8 qos, __be16 proto);
965  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
966  *			  int max_tx_rate);
967  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
968  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
969  * int (*ndo_get_vf_config)(struct net_device *dev,
970  *			    int vf, struct ifla_vf_info *ivf);
971  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
972  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
973  *			  struct nlattr *port[]);
974  *
975  *      Enable or disable the VF ability to query its RSS Redirection Table and
976  *      Hash Key. This is needed since on some devices VF share this information
977  *      with PF and querying it may introduce a theoretical security risk.
978  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
979  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
980  * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, u32 chain_index,
981  *		       __be16 protocol, struct tc_to_netdev *tc);
982  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
983  *	This is always called from the stack with the rtnl lock held and netif
984  *	tx queues stopped. This allows the netdevice to perform queue
985  *	management safely.
986  *
987  *	Fiber Channel over Ethernet (FCoE) offload functions.
988  * int (*ndo_fcoe_enable)(struct net_device *dev);
989  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
990  *	so the underlying device can perform whatever needed configuration or
991  *	initialization to support acceleration of FCoE traffic.
992  *
993  * int (*ndo_fcoe_disable)(struct net_device *dev);
994  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
995  *	so the underlying device can perform whatever needed clean-ups to
996  *	stop supporting acceleration of FCoE traffic.
997  *
998  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
999  *			     struct scatterlist *sgl, unsigned int sgc);
1000  *	Called when the FCoE Initiator wants to initialize an I/O that
1001  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1002  *	perform necessary setup and returns 1 to indicate the device is set up
1003  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1004  *
1005  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1006  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1007  *	indicated by the FC exchange id 'xid', so the underlying device can
1008  *	clean up and reuse resources for later DDP requests.
1009  *
1010  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1011  *			      struct scatterlist *sgl, unsigned int sgc);
1012  *	Called when the FCoE Target wants to initialize an I/O that
1013  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1014  *	perform necessary setup and returns 1 to indicate the device is set up
1015  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1016  *
1017  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1018  *			       struct netdev_fcoe_hbainfo *hbainfo);
1019  *	Called when the FCoE Protocol stack wants information on the underlying
1020  *	device. This information is utilized by the FCoE protocol stack to
1021  *	register attributes with Fiber Channel management service as per the
1022  *	FC-GS Fabric Device Management Information(FDMI) specification.
1023  *
1024  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1025  *	Called when the underlying device wants to override default World Wide
1026  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1027  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1028  *	protocol stack to use.
1029  *
1030  *	RFS acceleration.
1031  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1032  *			    u16 rxq_index, u32 flow_id);
1033  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1034  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1035  *	Return the filter ID on success, or a negative error code.
1036  *
1037  *	Slave management functions (for bridge, bonding, etc).
1038  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1039  *	Called to make another netdev an underling.
1040  *
1041  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1042  *	Called to release previously enslaved netdev.
1043  *
1044  *      Feature/offload setting functions.
1045  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1046  *		netdev_features_t features);
1047  *	Adjusts the requested feature flags according to device-specific
1048  *	constraints, and returns the resulting flags. Must not modify
1049  *	the device state.
1050  *
1051  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1052  *	Called to update device configuration to new features. Passed
1053  *	feature set might be less than what was returned by ndo_fix_features()).
1054  *	Must return >0 or -errno if it changed dev->features itself.
1055  *
1056  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1057  *		      struct net_device *dev,
1058  *		      const unsigned char *addr, u16 vid, u16 flags)
1059  *	Adds an FDB entry to dev for addr.
1060  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1061  *		      struct net_device *dev,
1062  *		      const unsigned char *addr, u16 vid)
1063  *	Deletes the FDB entry from dev coresponding to addr.
1064  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1065  *		       struct net_device *dev, struct net_device *filter_dev,
1066  *		       int *idx)
1067  *	Used to add FDB entries to dump requests. Implementers should add
1068  *	entries to skb and update idx with the number of entries.
1069  *
1070  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1071  *			     u16 flags)
1072  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1073  *			     struct net_device *dev, u32 filter_mask,
1074  *			     int nlflags)
1075  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1076  *			     u16 flags);
1077  *
1078  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1079  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1080  *	which do not represent real hardware may define this to allow their
1081  *	userspace components to manage their virtual carrier state. Devices
1082  *	that determine carrier state from physical hardware properties (eg
1083  *	network cables) or protocol-dependent mechanisms (eg
1084  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1085  *
1086  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1087  *			       struct netdev_phys_item_id *ppid);
1088  *	Called to get ID of physical port of this device. If driver does
1089  *	not implement this, it is assumed that the hw is not able to have
1090  *	multiple net devices on single physical port.
1091  *
1092  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1093  *			      struct udp_tunnel_info *ti);
1094  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1095  *	address family that a UDP tunnel is listnening to. It is called only
1096  *	when a new port starts listening. The operation is protected by the
1097  *	RTNL.
1098  *
1099  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1100  *			      struct udp_tunnel_info *ti);
1101  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1102  *	address family that the UDP tunnel is not listening to anymore. The
1103  *	operation is protected by the RTNL.
1104  *
1105  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1106  *				 struct net_device *dev)
1107  *	Called by upper layer devices to accelerate switching or other
1108  *	station functionality into hardware. 'pdev is the lowerdev
1109  *	to use for the offload and 'dev' is the net device that will
1110  *	back the offload. Returns a pointer to the private structure
1111  *	the upper layer will maintain.
1112  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1113  *	Called by upper layer device to delete the station created
1114  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1115  *	the station and priv is the structure returned by the add
1116  *	operation.
1117  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1118  *			     int queue_index, u32 maxrate);
1119  *	Called when a user wants to set a max-rate limitation of specific
1120  *	TX queue.
1121  * int (*ndo_get_iflink)(const struct net_device *dev);
1122  *	Called to get the iflink value of this device.
1123  * void (*ndo_change_proto_down)(struct net_device *dev,
1124  *				 bool proto_down);
1125  *	This function is used to pass protocol port error state information
1126  *	to the switch driver. The switch driver can react to the proto_down
1127  *      by doing a phys down on the associated switch port.
1128  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1129  *	This function is used to get egress tunnel information for given skb.
1130  *	This is useful for retrieving outer tunnel header parameters while
1131  *	sampling packet.
1132  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1133  *	This function is used to specify the headroom that the skb must
1134  *	consider when allocation skb during packet reception. Setting
1135  *	appropriate rx headroom value allows avoiding skb head copy on
1136  *	forward. Setting a negative value resets the rx headroom to the
1137  *	default value.
1138  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1139  *	This function is used to set or query state related to XDP on the
1140  *	netdevice. See definition of enum xdp_netdev_command for details.
1141  *
1142  */
1143 struct net_device_ops {
1144 	int			(*ndo_init)(struct net_device *dev);
1145 	void			(*ndo_uninit)(struct net_device *dev);
1146 	int			(*ndo_open)(struct net_device *dev);
1147 	int			(*ndo_stop)(struct net_device *dev);
1148 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1149 						  struct net_device *dev);
1150 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1151 						      struct net_device *dev,
1152 						      netdev_features_t features);
1153 	u16			(*ndo_select_queue)(struct net_device *dev,
1154 						    struct sk_buff *skb,
1155 						    void *accel_priv,
1156 						    select_queue_fallback_t fallback);
1157 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1158 						       int flags);
1159 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1160 	int			(*ndo_set_mac_address)(struct net_device *dev,
1161 						       void *addr);
1162 	int			(*ndo_validate_addr)(struct net_device *dev);
1163 	int			(*ndo_do_ioctl)(struct net_device *dev,
1164 					        struct ifreq *ifr, int cmd);
1165 	int			(*ndo_set_config)(struct net_device *dev,
1166 					          struct ifmap *map);
1167 	int			(*ndo_change_mtu)(struct net_device *dev,
1168 						  int new_mtu);
1169 	int			(*ndo_neigh_setup)(struct net_device *dev,
1170 						   struct neigh_parms *);
1171 	void			(*ndo_tx_timeout) (struct net_device *dev);
1172 
1173 	void			(*ndo_get_stats64)(struct net_device *dev,
1174 						   struct rtnl_link_stats64 *storage);
1175 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1176 	int			(*ndo_get_offload_stats)(int attr_id,
1177 							 const struct net_device *dev,
1178 							 void *attr_data);
1179 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1180 
1181 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1182 						       __be16 proto, u16 vid);
1183 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1184 						        __be16 proto, u16 vid);
1185 #ifdef CONFIG_NET_POLL_CONTROLLER
1186 	void                    (*ndo_poll_controller)(struct net_device *dev);
1187 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1188 						     struct netpoll_info *info);
1189 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1190 #endif
1191 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1192 						  int queue, u8 *mac);
1193 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1194 						   int queue, u16 vlan,
1195 						   u8 qos, __be16 proto);
1196 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1197 						   int vf, int min_tx_rate,
1198 						   int max_tx_rate);
1199 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1200 						       int vf, bool setting);
1201 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1202 						    int vf, bool setting);
1203 	int			(*ndo_get_vf_config)(struct net_device *dev,
1204 						     int vf,
1205 						     struct ifla_vf_info *ivf);
1206 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1207 							 int vf, int link_state);
1208 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1209 						    int vf,
1210 						    struct ifla_vf_stats
1211 						    *vf_stats);
1212 	int			(*ndo_set_vf_port)(struct net_device *dev,
1213 						   int vf,
1214 						   struct nlattr *port[]);
1215 	int			(*ndo_get_vf_port)(struct net_device *dev,
1216 						   int vf, struct sk_buff *skb);
1217 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1218 						   int vf, u64 guid,
1219 						   int guid_type);
1220 	int			(*ndo_set_vf_rss_query_en)(
1221 						   struct net_device *dev,
1222 						   int vf, bool setting);
1223 	int			(*ndo_setup_tc)(struct net_device *dev,
1224 						u32 handle, u32 chain_index,
1225 						__be16 protocol,
1226 						struct tc_to_netdev *tc);
1227 #if IS_ENABLED(CONFIG_FCOE)
1228 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1229 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1230 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1231 						      u16 xid,
1232 						      struct scatterlist *sgl,
1233 						      unsigned int sgc);
1234 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1235 						     u16 xid);
1236 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1237 						       u16 xid,
1238 						       struct scatterlist *sgl,
1239 						       unsigned int sgc);
1240 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1241 							struct netdev_fcoe_hbainfo *hbainfo);
1242 #endif
1243 
1244 #if IS_ENABLED(CONFIG_LIBFCOE)
1245 #define NETDEV_FCOE_WWNN 0
1246 #define NETDEV_FCOE_WWPN 1
1247 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1248 						    u64 *wwn, int type);
1249 #endif
1250 
1251 #ifdef CONFIG_RFS_ACCEL
1252 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1253 						     const struct sk_buff *skb,
1254 						     u16 rxq_index,
1255 						     u32 flow_id);
1256 #endif
1257 	int			(*ndo_add_slave)(struct net_device *dev,
1258 						 struct net_device *slave_dev);
1259 	int			(*ndo_del_slave)(struct net_device *dev,
1260 						 struct net_device *slave_dev);
1261 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1262 						    netdev_features_t features);
1263 	int			(*ndo_set_features)(struct net_device *dev,
1264 						    netdev_features_t features);
1265 	int			(*ndo_neigh_construct)(struct net_device *dev,
1266 						       struct neighbour *n);
1267 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1268 						     struct neighbour *n);
1269 
1270 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1271 					       struct nlattr *tb[],
1272 					       struct net_device *dev,
1273 					       const unsigned char *addr,
1274 					       u16 vid,
1275 					       u16 flags);
1276 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1277 					       struct nlattr *tb[],
1278 					       struct net_device *dev,
1279 					       const unsigned char *addr,
1280 					       u16 vid);
1281 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1282 						struct netlink_callback *cb,
1283 						struct net_device *dev,
1284 						struct net_device *filter_dev,
1285 						int *idx);
1286 
1287 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1288 						      struct nlmsghdr *nlh,
1289 						      u16 flags);
1290 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1291 						      u32 pid, u32 seq,
1292 						      struct net_device *dev,
1293 						      u32 filter_mask,
1294 						      int nlflags);
1295 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1296 						      struct nlmsghdr *nlh,
1297 						      u16 flags);
1298 	int			(*ndo_change_carrier)(struct net_device *dev,
1299 						      bool new_carrier);
1300 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1301 							struct netdev_phys_item_id *ppid);
1302 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1303 							  char *name, size_t len);
1304 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1305 						      struct udp_tunnel_info *ti);
1306 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1307 						      struct udp_tunnel_info *ti);
1308 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1309 							struct net_device *dev);
1310 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1311 							void *priv);
1312 
1313 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1314 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1315 						      int queue_index,
1316 						      u32 maxrate);
1317 	int			(*ndo_get_iflink)(const struct net_device *dev);
1318 	int			(*ndo_change_proto_down)(struct net_device *dev,
1319 							 bool proto_down);
1320 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1321 						       struct sk_buff *skb);
1322 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1323 						       int needed_headroom);
1324 	int			(*ndo_xdp)(struct net_device *dev,
1325 					   struct netdev_xdp *xdp);
1326 };
1327 
1328 /**
1329  * enum net_device_priv_flags - &struct net_device priv_flags
1330  *
1331  * These are the &struct net_device, they are only set internally
1332  * by drivers and used in the kernel. These flags are invisible to
1333  * userspace; this means that the order of these flags can change
1334  * during any kernel release.
1335  *
1336  * You should have a pretty good reason to be extending these flags.
1337  *
1338  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1339  * @IFF_EBRIDGE: Ethernet bridging device
1340  * @IFF_BONDING: bonding master or slave
1341  * @IFF_ISATAP: ISATAP interface (RFC4214)
1342  * @IFF_WAN_HDLC: WAN HDLC device
1343  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1344  *	release skb->dst
1345  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1346  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1347  * @IFF_MACVLAN_PORT: device used as macvlan port
1348  * @IFF_BRIDGE_PORT: device used as bridge port
1349  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1350  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1351  * @IFF_UNICAST_FLT: Supports unicast filtering
1352  * @IFF_TEAM_PORT: device used as team port
1353  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1354  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1355  *	change when it's running
1356  * @IFF_MACVLAN: Macvlan device
1357  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1358  *	underlying stacked devices
1359  * @IFF_IPVLAN_MASTER: IPvlan master device
1360  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1361  * @IFF_L3MDEV_MASTER: device is an L3 master device
1362  * @IFF_NO_QUEUE: device can run without qdisc attached
1363  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1364  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1365  * @IFF_TEAM: device is a team device
1366  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1367  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1368  *	entity (i.e. the master device for bridged veth)
1369  * @IFF_MACSEC: device is a MACsec device
1370  */
1371 enum netdev_priv_flags {
1372 	IFF_802_1Q_VLAN			= 1<<0,
1373 	IFF_EBRIDGE			= 1<<1,
1374 	IFF_BONDING			= 1<<2,
1375 	IFF_ISATAP			= 1<<3,
1376 	IFF_WAN_HDLC			= 1<<4,
1377 	IFF_XMIT_DST_RELEASE		= 1<<5,
1378 	IFF_DONT_BRIDGE			= 1<<6,
1379 	IFF_DISABLE_NETPOLL		= 1<<7,
1380 	IFF_MACVLAN_PORT		= 1<<8,
1381 	IFF_BRIDGE_PORT			= 1<<9,
1382 	IFF_OVS_DATAPATH		= 1<<10,
1383 	IFF_TX_SKB_SHARING		= 1<<11,
1384 	IFF_UNICAST_FLT			= 1<<12,
1385 	IFF_TEAM_PORT			= 1<<13,
1386 	IFF_SUPP_NOFCS			= 1<<14,
1387 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1388 	IFF_MACVLAN			= 1<<16,
1389 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1390 	IFF_IPVLAN_MASTER		= 1<<18,
1391 	IFF_IPVLAN_SLAVE		= 1<<19,
1392 	IFF_L3MDEV_MASTER		= 1<<20,
1393 	IFF_NO_QUEUE			= 1<<21,
1394 	IFF_OPENVSWITCH			= 1<<22,
1395 	IFF_L3MDEV_SLAVE		= 1<<23,
1396 	IFF_TEAM			= 1<<24,
1397 	IFF_RXFH_CONFIGURED		= 1<<25,
1398 	IFF_PHONY_HEADROOM		= 1<<26,
1399 	IFF_MACSEC			= 1<<27,
1400 };
1401 
1402 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1403 #define IFF_EBRIDGE			IFF_EBRIDGE
1404 #define IFF_BONDING			IFF_BONDING
1405 #define IFF_ISATAP			IFF_ISATAP
1406 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1407 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1408 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1409 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1410 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1411 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1412 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1413 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1414 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1415 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1416 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1417 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1418 #define IFF_MACVLAN			IFF_MACVLAN
1419 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1420 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1421 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1422 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1423 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1424 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1425 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1426 #define IFF_TEAM			IFF_TEAM
1427 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1428 #define IFF_MACSEC			IFF_MACSEC
1429 
1430 /**
1431  *	struct net_device - The DEVICE structure.
1432  *
1433  *	Actually, this whole structure is a big mistake.  It mixes I/O
1434  *	data with strictly "high-level" data, and it has to know about
1435  *	almost every data structure used in the INET module.
1436  *
1437  *	@name:	This is the first field of the "visible" part of this structure
1438  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1439  *		of the interface.
1440  *
1441  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1442  *	@ifalias:	SNMP alias
1443  *	@mem_end:	Shared memory end
1444  *	@mem_start:	Shared memory start
1445  *	@base_addr:	Device I/O address
1446  *	@irq:		Device IRQ number
1447  *
1448  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1449  *
1450  *	@state:		Generic network queuing layer state, see netdev_state_t
1451  *	@dev_list:	The global list of network devices
1452  *	@napi_list:	List entry used for polling NAPI devices
1453  *	@unreg_list:	List entry  when we are unregistering the
1454  *			device; see the function unregister_netdev
1455  *	@close_list:	List entry used when we are closing the device
1456  *	@ptype_all:     Device-specific packet handlers for all protocols
1457  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1458  *
1459  *	@adj_list:	Directly linked devices, like slaves for bonding
1460  *	@features:	Currently active device features
1461  *	@hw_features:	User-changeable features
1462  *
1463  *	@wanted_features:	User-requested features
1464  *	@vlan_features:		Mask of features inheritable by VLAN devices
1465  *
1466  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1467  *				This field indicates what encapsulation
1468  *				offloads the hardware is capable of doing,
1469  *				and drivers will need to set them appropriately.
1470  *
1471  *	@mpls_features:	Mask of features inheritable by MPLS
1472  *
1473  *	@ifindex:	interface index
1474  *	@group:		The group the device belongs to
1475  *
1476  *	@stats:		Statistics struct, which was left as a legacy, use
1477  *			rtnl_link_stats64 instead
1478  *
1479  *	@rx_dropped:	Dropped packets by core network,
1480  *			do not use this in drivers
1481  *	@tx_dropped:	Dropped packets by core network,
1482  *			do not use this in drivers
1483  *	@rx_nohandler:	nohandler dropped packets by core network on
1484  *			inactive devices, do not use this in drivers
1485  *
1486  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1487  *				instead of ioctl,
1488  *				see <net/iw_handler.h> for details.
1489  *	@wireless_data:	Instance data managed by the core of wireless extensions
1490  *
1491  *	@netdev_ops:	Includes several pointers to callbacks,
1492  *			if one wants to override the ndo_*() functions
1493  *	@ethtool_ops:	Management operations
1494  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1495  *			discovery handling. Necessary for e.g. 6LoWPAN.
1496  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1497  *			of Layer 2 headers.
1498  *
1499  *	@flags:		Interface flags (a la BSD)
1500  *	@priv_flags:	Like 'flags' but invisible to userspace,
1501  *			see if.h for the definitions
1502  *	@gflags:	Global flags ( kept as legacy )
1503  *	@padded:	How much padding added by alloc_netdev()
1504  *	@operstate:	RFC2863 operstate
1505  *	@link_mode:	Mapping policy to operstate
1506  *	@if_port:	Selectable AUI, TP, ...
1507  *	@dma:		DMA channel
1508  *	@mtu:		Interface MTU value
1509  *	@min_mtu:	Interface Minimum MTU value
1510  *	@max_mtu:	Interface Maximum MTU value
1511  *	@type:		Interface hardware type
1512  *	@hard_header_len: Maximum hardware header length.
1513  *	@min_header_len:  Minimum hardware header length
1514  *
1515  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1516  *			  cases can this be guaranteed
1517  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1518  *			  cases can this be guaranteed. Some cases also use
1519  *			  LL_MAX_HEADER instead to allocate the skb
1520  *
1521  *	interface address info:
1522  *
1523  * 	@perm_addr:		Permanent hw address
1524  * 	@addr_assign_type:	Hw address assignment type
1525  * 	@addr_len:		Hardware address length
1526  *	@neigh_priv_len:	Used in neigh_alloc()
1527  * 	@dev_id:		Used to differentiate devices that share
1528  * 				the same link layer address
1529  * 	@dev_port:		Used to differentiate devices that share
1530  * 				the same function
1531  *	@addr_list_lock:	XXX: need comments on this one
1532  *	@uc_promisc:		Counter that indicates promiscuous mode
1533  *				has been enabled due to the need to listen to
1534  *				additional unicast addresses in a device that
1535  *				does not implement ndo_set_rx_mode()
1536  *	@uc:			unicast mac addresses
1537  *	@mc:			multicast mac addresses
1538  *	@dev_addrs:		list of device hw addresses
1539  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1540  *	@promiscuity:		Number of times the NIC is told to work in
1541  *				promiscuous mode; if it becomes 0 the NIC will
1542  *				exit promiscuous mode
1543  *	@allmulti:		Counter, enables or disables allmulticast mode
1544  *
1545  *	@vlan_info:	VLAN info
1546  *	@dsa_ptr:	dsa specific data
1547  *	@tipc_ptr:	TIPC specific data
1548  *	@atalk_ptr:	AppleTalk link
1549  *	@ip_ptr:	IPv4 specific data
1550  *	@dn_ptr:	DECnet specific data
1551  *	@ip6_ptr:	IPv6 specific data
1552  *	@ax25_ptr:	AX.25 specific data
1553  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1554  *
1555  *	@dev_addr:	Hw address (before bcast,
1556  *			because most packets are unicast)
1557  *
1558  *	@_rx:			Array of RX queues
1559  *	@num_rx_queues:		Number of RX queues
1560  *				allocated at register_netdev() time
1561  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1562  *
1563  *	@rx_handler:		handler for received packets
1564  *	@rx_handler_data: 	XXX: need comments on this one
1565  *	@ingress_queue:		XXX: need comments on this one
1566  *	@broadcast:		hw bcast address
1567  *
1568  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1569  *			indexed by RX queue number. Assigned by driver.
1570  *			This must only be set if the ndo_rx_flow_steer
1571  *			operation is defined
1572  *	@index_hlist:		Device index hash chain
1573  *
1574  *	@_tx:			Array of TX queues
1575  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1576  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1577  *	@qdisc:			Root qdisc from userspace point of view
1578  *	@tx_queue_len:		Max frames per queue allowed
1579  *	@tx_global_lock: 	XXX: need comments on this one
1580  *
1581  *	@xps_maps:	XXX: need comments on this one
1582  *
1583  *	@watchdog_timeo:	Represents the timeout that is used by
1584  *				the watchdog (see dev_watchdog())
1585  *	@watchdog_timer:	List of timers
1586  *
1587  *	@pcpu_refcnt:		Number of references to this device
1588  *	@todo_list:		Delayed register/unregister
1589  *	@link_watch_list:	XXX: need comments on this one
1590  *
1591  *	@reg_state:		Register/unregister state machine
1592  *	@dismantle:		Device is going to be freed
1593  *	@rtnl_link_state:	This enum represents the phases of creating
1594  *				a new link
1595  *
1596  *	@needs_free_netdev:	Should unregister perform free_netdev?
1597  *	@priv_destructor:	Called from unregister
1598  *	@npinfo:		XXX: need comments on this one
1599  * 	@nd_net:		Network namespace this network device is inside
1600  *
1601  * 	@ml_priv:	Mid-layer private
1602  * 	@lstats:	Loopback statistics
1603  * 	@tstats:	Tunnel statistics
1604  * 	@dstats:	Dummy statistics
1605  * 	@vstats:	Virtual ethernet statistics
1606  *
1607  *	@garp_port:	GARP
1608  *	@mrp_port:	MRP
1609  *
1610  *	@dev:		Class/net/name entry
1611  *	@sysfs_groups:	Space for optional device, statistics and wireless
1612  *			sysfs groups
1613  *
1614  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1615  *	@rtnl_link_ops:	Rtnl_link_ops
1616  *
1617  *	@gso_max_size:	Maximum size of generic segmentation offload
1618  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1619  *			NIC for GSO
1620  *
1621  *	@dcbnl_ops:	Data Center Bridging netlink ops
1622  *	@num_tc:	Number of traffic classes in the net device
1623  *	@tc_to_txq:	XXX: need comments on this one
1624  *	@prio_tc_map:	XXX: need comments on this one
1625  *
1626  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1627  *
1628  *	@priomap:	XXX: need comments on this one
1629  *	@phydev:	Physical device may attach itself
1630  *			for hardware timestamping
1631  *
1632  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1633  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1634  *
1635  *	@proto_down:	protocol port state information can be sent to the
1636  *			switch driver and used to set the phys state of the
1637  *			switch port.
1638  *
1639  *	FIXME: cleanup struct net_device such that network protocol info
1640  *	moves out.
1641  */
1642 
1643 struct net_device {
1644 	char			name[IFNAMSIZ];
1645 	struct hlist_node	name_hlist;
1646 	char 			*ifalias;
1647 	/*
1648 	 *	I/O specific fields
1649 	 *	FIXME: Merge these and struct ifmap into one
1650 	 */
1651 	unsigned long		mem_end;
1652 	unsigned long		mem_start;
1653 	unsigned long		base_addr;
1654 	int			irq;
1655 
1656 	atomic_t		carrier_changes;
1657 
1658 	/*
1659 	 *	Some hardware also needs these fields (state,dev_list,
1660 	 *	napi_list,unreg_list,close_list) but they are not
1661 	 *	part of the usual set specified in Space.c.
1662 	 */
1663 
1664 	unsigned long		state;
1665 
1666 	struct list_head	dev_list;
1667 	struct list_head	napi_list;
1668 	struct list_head	unreg_list;
1669 	struct list_head	close_list;
1670 	struct list_head	ptype_all;
1671 	struct list_head	ptype_specific;
1672 
1673 	struct {
1674 		struct list_head upper;
1675 		struct list_head lower;
1676 	} adj_list;
1677 
1678 	netdev_features_t	features;
1679 	netdev_features_t	hw_features;
1680 	netdev_features_t	wanted_features;
1681 	netdev_features_t	vlan_features;
1682 	netdev_features_t	hw_enc_features;
1683 	netdev_features_t	mpls_features;
1684 	netdev_features_t	gso_partial_features;
1685 
1686 	int			ifindex;
1687 	int			group;
1688 
1689 	struct net_device_stats	stats;
1690 
1691 	atomic_long_t		rx_dropped;
1692 	atomic_long_t		tx_dropped;
1693 	atomic_long_t		rx_nohandler;
1694 
1695 #ifdef CONFIG_WIRELESS_EXT
1696 	const struct iw_handler_def *wireless_handlers;
1697 	struct iw_public_data	*wireless_data;
1698 #endif
1699 	const struct net_device_ops *netdev_ops;
1700 	const struct ethtool_ops *ethtool_ops;
1701 #ifdef CONFIG_NET_SWITCHDEV
1702 	const struct switchdev_ops *switchdev_ops;
1703 #endif
1704 #ifdef CONFIG_NET_L3_MASTER_DEV
1705 	const struct l3mdev_ops	*l3mdev_ops;
1706 #endif
1707 #if IS_ENABLED(CONFIG_IPV6)
1708 	const struct ndisc_ops *ndisc_ops;
1709 #endif
1710 
1711 #ifdef CONFIG_XFRM
1712 	const struct xfrmdev_ops *xfrmdev_ops;
1713 #endif
1714 
1715 	const struct header_ops *header_ops;
1716 
1717 	unsigned int		flags;
1718 	unsigned int		priv_flags;
1719 
1720 	unsigned short		gflags;
1721 	unsigned short		padded;
1722 
1723 	unsigned char		operstate;
1724 	unsigned char		link_mode;
1725 
1726 	unsigned char		if_port;
1727 	unsigned char		dma;
1728 
1729 	unsigned int		mtu;
1730 	unsigned int		min_mtu;
1731 	unsigned int		max_mtu;
1732 	unsigned short		type;
1733 	unsigned short		hard_header_len;
1734 	unsigned char		min_header_len;
1735 
1736 	unsigned short		needed_headroom;
1737 	unsigned short		needed_tailroom;
1738 
1739 	/* Interface address info. */
1740 	unsigned char		perm_addr[MAX_ADDR_LEN];
1741 	unsigned char		addr_assign_type;
1742 	unsigned char		addr_len;
1743 	unsigned short		neigh_priv_len;
1744 	unsigned short          dev_id;
1745 	unsigned short          dev_port;
1746 	spinlock_t		addr_list_lock;
1747 	unsigned char		name_assign_type;
1748 	bool			uc_promisc;
1749 	struct netdev_hw_addr_list	uc;
1750 	struct netdev_hw_addr_list	mc;
1751 	struct netdev_hw_addr_list	dev_addrs;
1752 
1753 #ifdef CONFIG_SYSFS
1754 	struct kset		*queues_kset;
1755 #endif
1756 	unsigned int		promiscuity;
1757 	unsigned int		allmulti;
1758 
1759 
1760 	/* Protocol-specific pointers */
1761 
1762 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1763 	struct vlan_info __rcu	*vlan_info;
1764 #endif
1765 #if IS_ENABLED(CONFIG_NET_DSA)
1766 	struct dsa_switch_tree	*dsa_ptr;
1767 #endif
1768 #if IS_ENABLED(CONFIG_TIPC)
1769 	struct tipc_bearer __rcu *tipc_ptr;
1770 #endif
1771 	void 			*atalk_ptr;
1772 	struct in_device __rcu	*ip_ptr;
1773 	struct dn_dev __rcu     *dn_ptr;
1774 	struct inet6_dev __rcu	*ip6_ptr;
1775 	void			*ax25_ptr;
1776 	struct wireless_dev	*ieee80211_ptr;
1777 	struct wpan_dev		*ieee802154_ptr;
1778 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1779 	struct mpls_dev __rcu	*mpls_ptr;
1780 #endif
1781 
1782 /*
1783  * Cache lines mostly used on receive path (including eth_type_trans())
1784  */
1785 	/* Interface address info used in eth_type_trans() */
1786 	unsigned char		*dev_addr;
1787 
1788 #ifdef CONFIG_SYSFS
1789 	struct netdev_rx_queue	*_rx;
1790 
1791 	unsigned int		num_rx_queues;
1792 	unsigned int		real_num_rx_queues;
1793 #endif
1794 
1795 	struct bpf_prog __rcu	*xdp_prog;
1796 	unsigned long		gro_flush_timeout;
1797 	rx_handler_func_t __rcu	*rx_handler;
1798 	void __rcu		*rx_handler_data;
1799 
1800 #ifdef CONFIG_NET_CLS_ACT
1801 	struct tcf_proto __rcu  *ingress_cl_list;
1802 #endif
1803 	struct netdev_queue __rcu *ingress_queue;
1804 #ifdef CONFIG_NETFILTER_INGRESS
1805 	struct nf_hook_entry __rcu *nf_hooks_ingress;
1806 #endif
1807 
1808 	unsigned char		broadcast[MAX_ADDR_LEN];
1809 #ifdef CONFIG_RFS_ACCEL
1810 	struct cpu_rmap		*rx_cpu_rmap;
1811 #endif
1812 	struct hlist_node	index_hlist;
1813 
1814 /*
1815  * Cache lines mostly used on transmit path
1816  */
1817 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1818 	unsigned int		num_tx_queues;
1819 	unsigned int		real_num_tx_queues;
1820 	struct Qdisc		*qdisc;
1821 #ifdef CONFIG_NET_SCHED
1822 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1823 #endif
1824 	unsigned int		tx_queue_len;
1825 	spinlock_t		tx_global_lock;
1826 	int			watchdog_timeo;
1827 
1828 #ifdef CONFIG_XPS
1829 	struct xps_dev_maps __rcu *xps_maps;
1830 #endif
1831 #ifdef CONFIG_NET_CLS_ACT
1832 	struct tcf_proto __rcu  *egress_cl_list;
1833 #endif
1834 
1835 	/* These may be needed for future network-power-down code. */
1836 	struct timer_list	watchdog_timer;
1837 
1838 	int __percpu		*pcpu_refcnt;
1839 	struct list_head	todo_list;
1840 
1841 	struct list_head	link_watch_list;
1842 
1843 	enum { NETREG_UNINITIALIZED=0,
1844 	       NETREG_REGISTERED,	/* completed register_netdevice */
1845 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1846 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1847 	       NETREG_RELEASED,		/* called free_netdev */
1848 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1849 	} reg_state:8;
1850 
1851 	bool dismantle;
1852 
1853 	enum {
1854 		RTNL_LINK_INITIALIZED,
1855 		RTNL_LINK_INITIALIZING,
1856 	} rtnl_link_state:16;
1857 
1858 	bool needs_free_netdev;
1859 	void (*priv_destructor)(struct net_device *dev);
1860 
1861 #ifdef CONFIG_NETPOLL
1862 	struct netpoll_info __rcu	*npinfo;
1863 #endif
1864 
1865 	possible_net_t			nd_net;
1866 
1867 	/* mid-layer private */
1868 	union {
1869 		void					*ml_priv;
1870 		struct pcpu_lstats __percpu		*lstats;
1871 		struct pcpu_sw_netstats __percpu	*tstats;
1872 		struct pcpu_dstats __percpu		*dstats;
1873 		struct pcpu_vstats __percpu		*vstats;
1874 	};
1875 
1876 #if IS_ENABLED(CONFIG_GARP)
1877 	struct garp_port __rcu	*garp_port;
1878 #endif
1879 #if IS_ENABLED(CONFIG_MRP)
1880 	struct mrp_port __rcu	*mrp_port;
1881 #endif
1882 
1883 	struct device		dev;
1884 	const struct attribute_group *sysfs_groups[4];
1885 	const struct attribute_group *sysfs_rx_queue_group;
1886 
1887 	const struct rtnl_link_ops *rtnl_link_ops;
1888 
1889 	/* for setting kernel sock attribute on TCP connection setup */
1890 #define GSO_MAX_SIZE		65536
1891 	unsigned int		gso_max_size;
1892 #define GSO_MAX_SEGS		65535
1893 	u16			gso_max_segs;
1894 
1895 #ifdef CONFIG_DCB
1896 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1897 #endif
1898 	u8			num_tc;
1899 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1900 	u8			prio_tc_map[TC_BITMASK + 1];
1901 
1902 #if IS_ENABLED(CONFIG_FCOE)
1903 	unsigned int		fcoe_ddp_xid;
1904 #endif
1905 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1906 	struct netprio_map __rcu *priomap;
1907 #endif
1908 	struct phy_device	*phydev;
1909 	struct lock_class_key	*qdisc_tx_busylock;
1910 	struct lock_class_key	*qdisc_running_key;
1911 	bool			proto_down;
1912 };
1913 #define to_net_dev(d) container_of(d, struct net_device, dev)
1914 
1915 static inline bool netif_elide_gro(const struct net_device *dev)
1916 {
1917 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1918 		return true;
1919 	return false;
1920 }
1921 
1922 #define	NETDEV_ALIGN		32
1923 
1924 static inline
1925 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1926 {
1927 	return dev->prio_tc_map[prio & TC_BITMASK];
1928 }
1929 
1930 static inline
1931 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1932 {
1933 	if (tc >= dev->num_tc)
1934 		return -EINVAL;
1935 
1936 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1937 	return 0;
1938 }
1939 
1940 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1941 void netdev_reset_tc(struct net_device *dev);
1942 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1943 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1944 
1945 static inline
1946 int netdev_get_num_tc(struct net_device *dev)
1947 {
1948 	return dev->num_tc;
1949 }
1950 
1951 static inline
1952 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1953 					 unsigned int index)
1954 {
1955 	return &dev->_tx[index];
1956 }
1957 
1958 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1959 						    const struct sk_buff *skb)
1960 {
1961 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1962 }
1963 
1964 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1965 					    void (*f)(struct net_device *,
1966 						      struct netdev_queue *,
1967 						      void *),
1968 					    void *arg)
1969 {
1970 	unsigned int i;
1971 
1972 	for (i = 0; i < dev->num_tx_queues; i++)
1973 		f(dev, &dev->_tx[i], arg);
1974 }
1975 
1976 #define netdev_lockdep_set_classes(dev)				\
1977 {								\
1978 	static struct lock_class_key qdisc_tx_busylock_key;	\
1979 	static struct lock_class_key qdisc_running_key;		\
1980 	static struct lock_class_key qdisc_xmit_lock_key;	\
1981 	static struct lock_class_key dev_addr_list_lock_key;	\
1982 	unsigned int i;						\
1983 								\
1984 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
1985 	(dev)->qdisc_running_key = &qdisc_running_key;		\
1986 	lockdep_set_class(&(dev)->addr_list_lock,		\
1987 			  &dev_addr_list_lock_key); 		\
1988 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
1989 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
1990 				  &qdisc_xmit_lock_key);	\
1991 }
1992 
1993 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1994 				    struct sk_buff *skb,
1995 				    void *accel_priv);
1996 
1997 /* returns the headroom that the master device needs to take in account
1998  * when forwarding to this dev
1999  */
2000 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2001 {
2002 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2003 }
2004 
2005 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2006 {
2007 	if (dev->netdev_ops->ndo_set_rx_headroom)
2008 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2009 }
2010 
2011 /* set the device rx headroom to the dev's default */
2012 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2013 {
2014 	netdev_set_rx_headroom(dev, -1);
2015 }
2016 
2017 /*
2018  * Net namespace inlines
2019  */
2020 static inline
2021 struct net *dev_net(const struct net_device *dev)
2022 {
2023 	return read_pnet(&dev->nd_net);
2024 }
2025 
2026 static inline
2027 void dev_net_set(struct net_device *dev, struct net *net)
2028 {
2029 	write_pnet(&dev->nd_net, net);
2030 }
2031 
2032 /**
2033  *	netdev_priv - access network device private data
2034  *	@dev: network device
2035  *
2036  * Get network device private data
2037  */
2038 static inline void *netdev_priv(const struct net_device *dev)
2039 {
2040 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2041 }
2042 
2043 /* Set the sysfs physical device reference for the network logical device
2044  * if set prior to registration will cause a symlink during initialization.
2045  */
2046 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2047 
2048 /* Set the sysfs device type for the network logical device to allow
2049  * fine-grained identification of different network device types. For
2050  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2051  */
2052 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2053 
2054 /* Default NAPI poll() weight
2055  * Device drivers are strongly advised to not use bigger value
2056  */
2057 #define NAPI_POLL_WEIGHT 64
2058 
2059 /**
2060  *	netif_napi_add - initialize a NAPI context
2061  *	@dev:  network device
2062  *	@napi: NAPI context
2063  *	@poll: polling function
2064  *	@weight: default weight
2065  *
2066  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2067  * *any* of the other NAPI-related functions.
2068  */
2069 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2070 		    int (*poll)(struct napi_struct *, int), int weight);
2071 
2072 /**
2073  *	netif_tx_napi_add - initialize a NAPI context
2074  *	@dev:  network device
2075  *	@napi: NAPI context
2076  *	@poll: polling function
2077  *	@weight: default weight
2078  *
2079  * This variant of netif_napi_add() should be used from drivers using NAPI
2080  * to exclusively poll a TX queue.
2081  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2082  */
2083 static inline void netif_tx_napi_add(struct net_device *dev,
2084 				     struct napi_struct *napi,
2085 				     int (*poll)(struct napi_struct *, int),
2086 				     int weight)
2087 {
2088 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2089 	netif_napi_add(dev, napi, poll, weight);
2090 }
2091 
2092 /**
2093  *  netif_napi_del - remove a NAPI context
2094  *  @napi: NAPI context
2095  *
2096  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2097  */
2098 void netif_napi_del(struct napi_struct *napi);
2099 
2100 struct napi_gro_cb {
2101 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2102 	void	*frag0;
2103 
2104 	/* Length of frag0. */
2105 	unsigned int frag0_len;
2106 
2107 	/* This indicates where we are processing relative to skb->data. */
2108 	int	data_offset;
2109 
2110 	/* This is non-zero if the packet cannot be merged with the new skb. */
2111 	u16	flush;
2112 
2113 	/* Save the IP ID here and check when we get to the transport layer */
2114 	u16	flush_id;
2115 
2116 	/* Number of segments aggregated. */
2117 	u16	count;
2118 
2119 	/* Start offset for remote checksum offload */
2120 	u16	gro_remcsum_start;
2121 
2122 	/* jiffies when first packet was created/queued */
2123 	unsigned long age;
2124 
2125 	/* Used in ipv6_gro_receive() and foo-over-udp */
2126 	u16	proto;
2127 
2128 	/* This is non-zero if the packet may be of the same flow. */
2129 	u8	same_flow:1;
2130 
2131 	/* Used in tunnel GRO receive */
2132 	u8	encap_mark:1;
2133 
2134 	/* GRO checksum is valid */
2135 	u8	csum_valid:1;
2136 
2137 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2138 	u8	csum_cnt:3;
2139 
2140 	/* Free the skb? */
2141 	u8	free:2;
2142 #define NAPI_GRO_FREE		  1
2143 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2144 
2145 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2146 	u8	is_ipv6:1;
2147 
2148 	/* Used in GRE, set in fou/gue_gro_receive */
2149 	u8	is_fou:1;
2150 
2151 	/* Used to determine if flush_id can be ignored */
2152 	u8	is_atomic:1;
2153 
2154 	/* Number of gro_receive callbacks this packet already went through */
2155 	u8 recursion_counter:4;
2156 
2157 	/* 1 bit hole */
2158 
2159 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2160 	__wsum	csum;
2161 
2162 	/* used in skb_gro_receive() slow path */
2163 	struct sk_buff *last;
2164 };
2165 
2166 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2167 
2168 #define GRO_RECURSION_LIMIT 15
2169 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2170 {
2171 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2172 }
2173 
2174 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2175 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2176 						struct sk_buff **head,
2177 						struct sk_buff *skb)
2178 {
2179 	if (unlikely(gro_recursion_inc_test(skb))) {
2180 		NAPI_GRO_CB(skb)->flush |= 1;
2181 		return NULL;
2182 	}
2183 
2184 	return cb(head, skb);
2185 }
2186 
2187 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2188 					     struct sk_buff *);
2189 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2190 						   struct sock *sk,
2191 						   struct sk_buff **head,
2192 						   struct sk_buff *skb)
2193 {
2194 	if (unlikely(gro_recursion_inc_test(skb))) {
2195 		NAPI_GRO_CB(skb)->flush |= 1;
2196 		return NULL;
2197 	}
2198 
2199 	return cb(sk, head, skb);
2200 }
2201 
2202 struct packet_type {
2203 	__be16			type;	/* This is really htons(ether_type). */
2204 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2205 	int			(*func) (struct sk_buff *,
2206 					 struct net_device *,
2207 					 struct packet_type *,
2208 					 struct net_device *);
2209 	bool			(*id_match)(struct packet_type *ptype,
2210 					    struct sock *sk);
2211 	void			*af_packet_priv;
2212 	struct list_head	list;
2213 };
2214 
2215 struct offload_callbacks {
2216 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2217 						netdev_features_t features);
2218 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2219 						 struct sk_buff *skb);
2220 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2221 };
2222 
2223 struct packet_offload {
2224 	__be16			 type;	/* This is really htons(ether_type). */
2225 	u16			 priority;
2226 	struct offload_callbacks callbacks;
2227 	struct list_head	 list;
2228 };
2229 
2230 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2231 struct pcpu_sw_netstats {
2232 	u64     rx_packets;
2233 	u64     rx_bytes;
2234 	u64     tx_packets;
2235 	u64     tx_bytes;
2236 	struct u64_stats_sync   syncp;
2237 };
2238 
2239 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2240 ({									\
2241 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2242 	if (pcpu_stats)	{						\
2243 		int __cpu;						\
2244 		for_each_possible_cpu(__cpu) {				\
2245 			typeof(type) *stat;				\
2246 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2247 			u64_stats_init(&stat->syncp);			\
2248 		}							\
2249 	}								\
2250 	pcpu_stats;							\
2251 })
2252 
2253 #define netdev_alloc_pcpu_stats(type)					\
2254 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2255 
2256 enum netdev_lag_tx_type {
2257 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2258 	NETDEV_LAG_TX_TYPE_RANDOM,
2259 	NETDEV_LAG_TX_TYPE_BROADCAST,
2260 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2261 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2262 	NETDEV_LAG_TX_TYPE_HASH,
2263 };
2264 
2265 struct netdev_lag_upper_info {
2266 	enum netdev_lag_tx_type tx_type;
2267 };
2268 
2269 struct netdev_lag_lower_state_info {
2270 	u8 link_up : 1,
2271 	   tx_enabled : 1;
2272 };
2273 
2274 #include <linux/notifier.h>
2275 
2276 /* netdevice notifier chain. Please remember to update the rtnetlink
2277  * notification exclusion list in rtnetlink_event() when adding new
2278  * types.
2279  */
2280 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2281 #define NETDEV_DOWN	0x0002
2282 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2283 				   detected a hardware crash and restarted
2284 				   - we can use this eg to kick tcp sessions
2285 				   once done */
2286 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2287 #define NETDEV_REGISTER 0x0005
2288 #define NETDEV_UNREGISTER	0x0006
2289 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2290 #define NETDEV_CHANGEADDR	0x0008
2291 #define NETDEV_GOING_DOWN	0x0009
2292 #define NETDEV_CHANGENAME	0x000A
2293 #define NETDEV_FEAT_CHANGE	0x000B
2294 #define NETDEV_BONDING_FAILOVER 0x000C
2295 #define NETDEV_PRE_UP		0x000D
2296 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2297 #define NETDEV_POST_TYPE_CHANGE	0x000F
2298 #define NETDEV_POST_INIT	0x0010
2299 #define NETDEV_UNREGISTER_FINAL 0x0011
2300 #define NETDEV_RELEASE		0x0012
2301 #define NETDEV_NOTIFY_PEERS	0x0013
2302 #define NETDEV_JOIN		0x0014
2303 #define NETDEV_CHANGEUPPER	0x0015
2304 #define NETDEV_RESEND_IGMP	0x0016
2305 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2306 #define NETDEV_CHANGEINFODATA	0x0018
2307 #define NETDEV_BONDING_INFO	0x0019
2308 #define NETDEV_PRECHANGEUPPER	0x001A
2309 #define NETDEV_CHANGELOWERSTATE	0x001B
2310 #define NETDEV_UDP_TUNNEL_PUSH_INFO	0x001C
2311 #define NETDEV_CHANGE_TX_QUEUE_LEN	0x001E
2312 
2313 int register_netdevice_notifier(struct notifier_block *nb);
2314 int unregister_netdevice_notifier(struct notifier_block *nb);
2315 
2316 struct netdev_notifier_info {
2317 	struct net_device *dev;
2318 };
2319 
2320 struct netdev_notifier_change_info {
2321 	struct netdev_notifier_info info; /* must be first */
2322 	unsigned int flags_changed;
2323 };
2324 
2325 struct netdev_notifier_changeupper_info {
2326 	struct netdev_notifier_info info; /* must be first */
2327 	struct net_device *upper_dev; /* new upper dev */
2328 	bool master; /* is upper dev master */
2329 	bool linking; /* is the notification for link or unlink */
2330 	void *upper_info; /* upper dev info */
2331 };
2332 
2333 struct netdev_notifier_changelowerstate_info {
2334 	struct netdev_notifier_info info; /* must be first */
2335 	void *lower_state_info; /* is lower dev state */
2336 };
2337 
2338 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2339 					     struct net_device *dev)
2340 {
2341 	info->dev = dev;
2342 }
2343 
2344 static inline struct net_device *
2345 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2346 {
2347 	return info->dev;
2348 }
2349 
2350 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2351 
2352 
2353 extern rwlock_t				dev_base_lock;		/* Device list lock */
2354 
2355 #define for_each_netdev(net, d)		\
2356 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_reverse(net, d)	\
2358 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_rcu(net, d)		\
2360 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2361 #define for_each_netdev_safe(net, d, n)	\
2362 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2363 #define for_each_netdev_continue(net, d)		\
2364 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2365 #define for_each_netdev_continue_rcu(net, d)		\
2366 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2367 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2368 		for_each_netdev_rcu(&init_net, slave)	\
2369 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2370 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2371 
2372 static inline struct net_device *next_net_device(struct net_device *dev)
2373 {
2374 	struct list_head *lh;
2375 	struct net *net;
2376 
2377 	net = dev_net(dev);
2378 	lh = dev->dev_list.next;
2379 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2380 }
2381 
2382 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2383 {
2384 	struct list_head *lh;
2385 	struct net *net;
2386 
2387 	net = dev_net(dev);
2388 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2389 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2390 }
2391 
2392 static inline struct net_device *first_net_device(struct net *net)
2393 {
2394 	return list_empty(&net->dev_base_head) ? NULL :
2395 		net_device_entry(net->dev_base_head.next);
2396 }
2397 
2398 static inline struct net_device *first_net_device_rcu(struct net *net)
2399 {
2400 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2401 
2402 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2403 }
2404 
2405 int netdev_boot_setup_check(struct net_device *dev);
2406 unsigned long netdev_boot_base(const char *prefix, int unit);
2407 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2408 				       const char *hwaddr);
2409 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2410 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2411 void dev_add_pack(struct packet_type *pt);
2412 void dev_remove_pack(struct packet_type *pt);
2413 void __dev_remove_pack(struct packet_type *pt);
2414 void dev_add_offload(struct packet_offload *po);
2415 void dev_remove_offload(struct packet_offload *po);
2416 
2417 int dev_get_iflink(const struct net_device *dev);
2418 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2419 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2420 				      unsigned short mask);
2421 struct net_device *dev_get_by_name(struct net *net, const char *name);
2422 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2423 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2424 int dev_alloc_name(struct net_device *dev, const char *name);
2425 int dev_open(struct net_device *dev);
2426 int dev_close(struct net_device *dev);
2427 int dev_close_many(struct list_head *head, bool unlink);
2428 void dev_disable_lro(struct net_device *dev);
2429 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2430 int dev_queue_xmit(struct sk_buff *skb);
2431 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2432 int register_netdevice(struct net_device *dev);
2433 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2434 void unregister_netdevice_many(struct list_head *head);
2435 static inline void unregister_netdevice(struct net_device *dev)
2436 {
2437 	unregister_netdevice_queue(dev, NULL);
2438 }
2439 
2440 int netdev_refcnt_read(const struct net_device *dev);
2441 void free_netdev(struct net_device *dev);
2442 void netdev_freemem(struct net_device *dev);
2443 void synchronize_net(void);
2444 int init_dummy_netdev(struct net_device *dev);
2445 
2446 DECLARE_PER_CPU(int, xmit_recursion);
2447 #define XMIT_RECURSION_LIMIT	10
2448 
2449 static inline int dev_recursion_level(void)
2450 {
2451 	return this_cpu_read(xmit_recursion);
2452 }
2453 
2454 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2455 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2456 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2457 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2458 int netdev_get_name(struct net *net, char *name, int ifindex);
2459 int dev_restart(struct net_device *dev);
2460 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2461 
2462 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2463 {
2464 	return NAPI_GRO_CB(skb)->data_offset;
2465 }
2466 
2467 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2468 {
2469 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2470 }
2471 
2472 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2473 {
2474 	NAPI_GRO_CB(skb)->data_offset += len;
2475 }
2476 
2477 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2478 					unsigned int offset)
2479 {
2480 	return NAPI_GRO_CB(skb)->frag0 + offset;
2481 }
2482 
2483 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2484 {
2485 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2486 }
2487 
2488 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2489 {
2490 	NAPI_GRO_CB(skb)->frag0 = NULL;
2491 	NAPI_GRO_CB(skb)->frag0_len = 0;
2492 }
2493 
2494 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2495 					unsigned int offset)
2496 {
2497 	if (!pskb_may_pull(skb, hlen))
2498 		return NULL;
2499 
2500 	skb_gro_frag0_invalidate(skb);
2501 	return skb->data + offset;
2502 }
2503 
2504 static inline void *skb_gro_network_header(struct sk_buff *skb)
2505 {
2506 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2507 	       skb_network_offset(skb);
2508 }
2509 
2510 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2511 					const void *start, unsigned int len)
2512 {
2513 	if (NAPI_GRO_CB(skb)->csum_valid)
2514 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2515 						  csum_partial(start, len, 0));
2516 }
2517 
2518 /* GRO checksum functions. These are logical equivalents of the normal
2519  * checksum functions (in skbuff.h) except that they operate on the GRO
2520  * offsets and fields in sk_buff.
2521  */
2522 
2523 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2524 
2525 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2526 {
2527 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2528 }
2529 
2530 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2531 						      bool zero_okay,
2532 						      __sum16 check)
2533 {
2534 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2535 		skb_checksum_start_offset(skb) <
2536 		 skb_gro_offset(skb)) &&
2537 		!skb_at_gro_remcsum_start(skb) &&
2538 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2539 		(!zero_okay || check));
2540 }
2541 
2542 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2543 							   __wsum psum)
2544 {
2545 	if (NAPI_GRO_CB(skb)->csum_valid &&
2546 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2547 		return 0;
2548 
2549 	NAPI_GRO_CB(skb)->csum = psum;
2550 
2551 	return __skb_gro_checksum_complete(skb);
2552 }
2553 
2554 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2555 {
2556 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2557 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2558 		NAPI_GRO_CB(skb)->csum_cnt--;
2559 	} else {
2560 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2561 		 * verified a new top level checksum or an encapsulated one
2562 		 * during GRO. This saves work if we fallback to normal path.
2563 		 */
2564 		__skb_incr_checksum_unnecessary(skb);
2565 	}
2566 }
2567 
2568 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2569 				    compute_pseudo)			\
2570 ({									\
2571 	__sum16 __ret = 0;						\
2572 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2573 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2574 				compute_pseudo(skb, proto));		\
2575 	if (!__ret)							\
2576 		skb_gro_incr_csum_unnecessary(skb);			\
2577 	__ret;								\
2578 })
2579 
2580 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2581 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2582 
2583 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2584 					     compute_pseudo)		\
2585 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2586 
2587 #define skb_gro_checksum_simple_validate(skb)				\
2588 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2589 
2590 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2591 {
2592 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2593 		!NAPI_GRO_CB(skb)->csum_valid);
2594 }
2595 
2596 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2597 					      __sum16 check, __wsum pseudo)
2598 {
2599 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2600 	NAPI_GRO_CB(skb)->csum_valid = 1;
2601 }
2602 
2603 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2604 do {									\
2605 	if (__skb_gro_checksum_convert_check(skb))			\
2606 		__skb_gro_checksum_convert(skb, check,			\
2607 					   compute_pseudo(skb, proto));	\
2608 } while (0)
2609 
2610 struct gro_remcsum {
2611 	int offset;
2612 	__wsum delta;
2613 };
2614 
2615 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2616 {
2617 	grc->offset = 0;
2618 	grc->delta = 0;
2619 }
2620 
2621 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2622 					    unsigned int off, size_t hdrlen,
2623 					    int start, int offset,
2624 					    struct gro_remcsum *grc,
2625 					    bool nopartial)
2626 {
2627 	__wsum delta;
2628 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2629 
2630 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2631 
2632 	if (!nopartial) {
2633 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2634 		return ptr;
2635 	}
2636 
2637 	ptr = skb_gro_header_fast(skb, off);
2638 	if (skb_gro_header_hard(skb, off + plen)) {
2639 		ptr = skb_gro_header_slow(skb, off + plen, off);
2640 		if (!ptr)
2641 			return NULL;
2642 	}
2643 
2644 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2645 			       start, offset);
2646 
2647 	/* Adjust skb->csum since we changed the packet */
2648 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2649 
2650 	grc->offset = off + hdrlen + offset;
2651 	grc->delta = delta;
2652 
2653 	return ptr;
2654 }
2655 
2656 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2657 					   struct gro_remcsum *grc)
2658 {
2659 	void *ptr;
2660 	size_t plen = grc->offset + sizeof(u16);
2661 
2662 	if (!grc->delta)
2663 		return;
2664 
2665 	ptr = skb_gro_header_fast(skb, grc->offset);
2666 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2667 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2668 		if (!ptr)
2669 			return;
2670 	}
2671 
2672 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2673 }
2674 
2675 #ifdef CONFIG_XFRM_OFFLOAD
2676 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2677 {
2678 	if (PTR_ERR(pp) != -EINPROGRESS)
2679 		NAPI_GRO_CB(skb)->flush |= flush;
2680 }
2681 #else
2682 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2683 {
2684 	NAPI_GRO_CB(skb)->flush |= flush;
2685 }
2686 #endif
2687 
2688 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2689 				  unsigned short type,
2690 				  const void *daddr, const void *saddr,
2691 				  unsigned int len)
2692 {
2693 	if (!dev->header_ops || !dev->header_ops->create)
2694 		return 0;
2695 
2696 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2697 }
2698 
2699 static inline int dev_parse_header(const struct sk_buff *skb,
2700 				   unsigned char *haddr)
2701 {
2702 	const struct net_device *dev = skb->dev;
2703 
2704 	if (!dev->header_ops || !dev->header_ops->parse)
2705 		return 0;
2706 	return dev->header_ops->parse(skb, haddr);
2707 }
2708 
2709 /* ll_header must have at least hard_header_len allocated */
2710 static inline bool dev_validate_header(const struct net_device *dev,
2711 				       char *ll_header, int len)
2712 {
2713 	if (likely(len >= dev->hard_header_len))
2714 		return true;
2715 	if (len < dev->min_header_len)
2716 		return false;
2717 
2718 	if (capable(CAP_SYS_RAWIO)) {
2719 		memset(ll_header + len, 0, dev->hard_header_len - len);
2720 		return true;
2721 	}
2722 
2723 	if (dev->header_ops && dev->header_ops->validate)
2724 		return dev->header_ops->validate(ll_header, len);
2725 
2726 	return false;
2727 }
2728 
2729 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2730 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2731 static inline int unregister_gifconf(unsigned int family)
2732 {
2733 	return register_gifconf(family, NULL);
2734 }
2735 
2736 #ifdef CONFIG_NET_FLOW_LIMIT
2737 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2738 struct sd_flow_limit {
2739 	u64			count;
2740 	unsigned int		num_buckets;
2741 	unsigned int		history_head;
2742 	u16			history[FLOW_LIMIT_HISTORY];
2743 	u8			buckets[];
2744 };
2745 
2746 extern int netdev_flow_limit_table_len;
2747 #endif /* CONFIG_NET_FLOW_LIMIT */
2748 
2749 /*
2750  * Incoming packets are placed on per-CPU queues
2751  */
2752 struct softnet_data {
2753 	struct list_head	poll_list;
2754 	struct sk_buff_head	process_queue;
2755 
2756 	/* stats */
2757 	unsigned int		processed;
2758 	unsigned int		time_squeeze;
2759 	unsigned int		received_rps;
2760 #ifdef CONFIG_RPS
2761 	struct softnet_data	*rps_ipi_list;
2762 #endif
2763 #ifdef CONFIG_NET_FLOW_LIMIT
2764 	struct sd_flow_limit __rcu *flow_limit;
2765 #endif
2766 	struct Qdisc		*output_queue;
2767 	struct Qdisc		**output_queue_tailp;
2768 	struct sk_buff		*completion_queue;
2769 
2770 #ifdef CONFIG_RPS
2771 	/* input_queue_head should be written by cpu owning this struct,
2772 	 * and only read by other cpus. Worth using a cache line.
2773 	 */
2774 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2775 
2776 	/* Elements below can be accessed between CPUs for RPS/RFS */
2777 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2778 	struct softnet_data	*rps_ipi_next;
2779 	unsigned int		cpu;
2780 	unsigned int		input_queue_tail;
2781 #endif
2782 	unsigned int		dropped;
2783 	struct sk_buff_head	input_pkt_queue;
2784 	struct napi_struct	backlog;
2785 
2786 };
2787 
2788 static inline void input_queue_head_incr(struct softnet_data *sd)
2789 {
2790 #ifdef CONFIG_RPS
2791 	sd->input_queue_head++;
2792 #endif
2793 }
2794 
2795 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2796 					      unsigned int *qtail)
2797 {
2798 #ifdef CONFIG_RPS
2799 	*qtail = ++sd->input_queue_tail;
2800 #endif
2801 }
2802 
2803 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2804 
2805 void __netif_schedule(struct Qdisc *q);
2806 void netif_schedule_queue(struct netdev_queue *txq);
2807 
2808 static inline void netif_tx_schedule_all(struct net_device *dev)
2809 {
2810 	unsigned int i;
2811 
2812 	for (i = 0; i < dev->num_tx_queues; i++)
2813 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2814 }
2815 
2816 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2817 {
2818 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2819 }
2820 
2821 /**
2822  *	netif_start_queue - allow transmit
2823  *	@dev: network device
2824  *
2825  *	Allow upper layers to call the device hard_start_xmit routine.
2826  */
2827 static inline void netif_start_queue(struct net_device *dev)
2828 {
2829 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2830 }
2831 
2832 static inline void netif_tx_start_all_queues(struct net_device *dev)
2833 {
2834 	unsigned int i;
2835 
2836 	for (i = 0; i < dev->num_tx_queues; i++) {
2837 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2838 		netif_tx_start_queue(txq);
2839 	}
2840 }
2841 
2842 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2843 
2844 /**
2845  *	netif_wake_queue - restart transmit
2846  *	@dev: network device
2847  *
2848  *	Allow upper layers to call the device hard_start_xmit routine.
2849  *	Used for flow control when transmit resources are available.
2850  */
2851 static inline void netif_wake_queue(struct net_device *dev)
2852 {
2853 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2854 }
2855 
2856 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2857 {
2858 	unsigned int i;
2859 
2860 	for (i = 0; i < dev->num_tx_queues; i++) {
2861 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2862 		netif_tx_wake_queue(txq);
2863 	}
2864 }
2865 
2866 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2867 {
2868 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2869 }
2870 
2871 /**
2872  *	netif_stop_queue - stop transmitted packets
2873  *	@dev: network device
2874  *
2875  *	Stop upper layers calling the device hard_start_xmit routine.
2876  *	Used for flow control when transmit resources are unavailable.
2877  */
2878 static inline void netif_stop_queue(struct net_device *dev)
2879 {
2880 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2881 }
2882 
2883 void netif_tx_stop_all_queues(struct net_device *dev);
2884 
2885 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2886 {
2887 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2888 }
2889 
2890 /**
2891  *	netif_queue_stopped - test if transmit queue is flowblocked
2892  *	@dev: network device
2893  *
2894  *	Test if transmit queue on device is currently unable to send.
2895  */
2896 static inline bool netif_queue_stopped(const struct net_device *dev)
2897 {
2898 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2899 }
2900 
2901 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2902 {
2903 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2904 }
2905 
2906 static inline bool
2907 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2908 {
2909 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2910 }
2911 
2912 static inline bool
2913 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2914 {
2915 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2916 }
2917 
2918 /**
2919  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2920  *	@dev_queue: pointer to transmit queue
2921  *
2922  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2923  * to give appropriate hint to the CPU.
2924  */
2925 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2926 {
2927 #ifdef CONFIG_BQL
2928 	prefetchw(&dev_queue->dql.num_queued);
2929 #endif
2930 }
2931 
2932 /**
2933  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2934  *	@dev_queue: pointer to transmit queue
2935  *
2936  * BQL enabled drivers might use this helper in their TX completion path,
2937  * to give appropriate hint to the CPU.
2938  */
2939 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2940 {
2941 #ifdef CONFIG_BQL
2942 	prefetchw(&dev_queue->dql.limit);
2943 #endif
2944 }
2945 
2946 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2947 					unsigned int bytes)
2948 {
2949 #ifdef CONFIG_BQL
2950 	dql_queued(&dev_queue->dql, bytes);
2951 
2952 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2953 		return;
2954 
2955 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2956 
2957 	/*
2958 	 * The XOFF flag must be set before checking the dql_avail below,
2959 	 * because in netdev_tx_completed_queue we update the dql_completed
2960 	 * before checking the XOFF flag.
2961 	 */
2962 	smp_mb();
2963 
2964 	/* check again in case another CPU has just made room avail */
2965 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2966 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2967 #endif
2968 }
2969 
2970 /**
2971  * 	netdev_sent_queue - report the number of bytes queued to hardware
2972  * 	@dev: network device
2973  * 	@bytes: number of bytes queued to the hardware device queue
2974  *
2975  * 	Report the number of bytes queued for sending/completion to the network
2976  * 	device hardware queue. @bytes should be a good approximation and should
2977  * 	exactly match netdev_completed_queue() @bytes
2978  */
2979 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2980 {
2981 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2982 }
2983 
2984 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2985 					     unsigned int pkts, unsigned int bytes)
2986 {
2987 #ifdef CONFIG_BQL
2988 	if (unlikely(!bytes))
2989 		return;
2990 
2991 	dql_completed(&dev_queue->dql, bytes);
2992 
2993 	/*
2994 	 * Without the memory barrier there is a small possiblity that
2995 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2996 	 * be stopped forever
2997 	 */
2998 	smp_mb();
2999 
3000 	if (dql_avail(&dev_queue->dql) < 0)
3001 		return;
3002 
3003 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3004 		netif_schedule_queue(dev_queue);
3005 #endif
3006 }
3007 
3008 /**
3009  * 	netdev_completed_queue - report bytes and packets completed by device
3010  * 	@dev: network device
3011  * 	@pkts: actual number of packets sent over the medium
3012  * 	@bytes: actual number of bytes sent over the medium
3013  *
3014  * 	Report the number of bytes and packets transmitted by the network device
3015  * 	hardware queue over the physical medium, @bytes must exactly match the
3016  * 	@bytes amount passed to netdev_sent_queue()
3017  */
3018 static inline void netdev_completed_queue(struct net_device *dev,
3019 					  unsigned int pkts, unsigned int bytes)
3020 {
3021 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3022 }
3023 
3024 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3025 {
3026 #ifdef CONFIG_BQL
3027 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3028 	dql_reset(&q->dql);
3029 #endif
3030 }
3031 
3032 /**
3033  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3034  * 	@dev_queue: network device
3035  *
3036  * 	Reset the bytes and packet count of a network device and clear the
3037  * 	software flow control OFF bit for this network device
3038  */
3039 static inline void netdev_reset_queue(struct net_device *dev_queue)
3040 {
3041 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3042 }
3043 
3044 /**
3045  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3046  * 	@dev: network device
3047  * 	@queue_index: given tx queue index
3048  *
3049  * 	Returns 0 if given tx queue index >= number of device tx queues,
3050  * 	otherwise returns the originally passed tx queue index.
3051  */
3052 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3053 {
3054 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3055 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3056 				     dev->name, queue_index,
3057 				     dev->real_num_tx_queues);
3058 		return 0;
3059 	}
3060 
3061 	return queue_index;
3062 }
3063 
3064 /**
3065  *	netif_running - test if up
3066  *	@dev: network device
3067  *
3068  *	Test if the device has been brought up.
3069  */
3070 static inline bool netif_running(const struct net_device *dev)
3071 {
3072 	return test_bit(__LINK_STATE_START, &dev->state);
3073 }
3074 
3075 /*
3076  * Routines to manage the subqueues on a device.  We only need start,
3077  * stop, and a check if it's stopped.  All other device management is
3078  * done at the overall netdevice level.
3079  * Also test the device if we're multiqueue.
3080  */
3081 
3082 /**
3083  *	netif_start_subqueue - allow sending packets on subqueue
3084  *	@dev: network device
3085  *	@queue_index: sub queue index
3086  *
3087  * Start individual transmit queue of a device with multiple transmit queues.
3088  */
3089 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3090 {
3091 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3092 
3093 	netif_tx_start_queue(txq);
3094 }
3095 
3096 /**
3097  *	netif_stop_subqueue - stop sending packets on subqueue
3098  *	@dev: network device
3099  *	@queue_index: sub queue index
3100  *
3101  * Stop individual transmit queue of a device with multiple transmit queues.
3102  */
3103 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3104 {
3105 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3106 	netif_tx_stop_queue(txq);
3107 }
3108 
3109 /**
3110  *	netif_subqueue_stopped - test status of subqueue
3111  *	@dev: network device
3112  *	@queue_index: sub queue index
3113  *
3114  * Check individual transmit queue of a device with multiple transmit queues.
3115  */
3116 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3117 					    u16 queue_index)
3118 {
3119 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3120 
3121 	return netif_tx_queue_stopped(txq);
3122 }
3123 
3124 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3125 					  struct sk_buff *skb)
3126 {
3127 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3128 }
3129 
3130 /**
3131  *	netif_wake_subqueue - allow sending packets on subqueue
3132  *	@dev: network device
3133  *	@queue_index: sub queue index
3134  *
3135  * Resume individual transmit queue of a device with multiple transmit queues.
3136  */
3137 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3138 {
3139 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3140 
3141 	netif_tx_wake_queue(txq);
3142 }
3143 
3144 #ifdef CONFIG_XPS
3145 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3146 			u16 index);
3147 #else
3148 static inline int netif_set_xps_queue(struct net_device *dev,
3149 				      const struct cpumask *mask,
3150 				      u16 index)
3151 {
3152 	return 0;
3153 }
3154 #endif
3155 
3156 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3157 		  unsigned int num_tx_queues);
3158 
3159 /*
3160  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3161  * as a distribution range limit for the returned value.
3162  */
3163 static inline u16 skb_tx_hash(const struct net_device *dev,
3164 			      struct sk_buff *skb)
3165 {
3166 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3167 }
3168 
3169 /**
3170  *	netif_is_multiqueue - test if device has multiple transmit queues
3171  *	@dev: network device
3172  *
3173  * Check if device has multiple transmit queues
3174  */
3175 static inline bool netif_is_multiqueue(const struct net_device *dev)
3176 {
3177 	return dev->num_tx_queues > 1;
3178 }
3179 
3180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3181 
3182 #ifdef CONFIG_SYSFS
3183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3184 #else
3185 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3186 						unsigned int rxq)
3187 {
3188 	return 0;
3189 }
3190 #endif
3191 
3192 #ifdef CONFIG_SYSFS
3193 static inline unsigned int get_netdev_rx_queue_index(
3194 		struct netdev_rx_queue *queue)
3195 {
3196 	struct net_device *dev = queue->dev;
3197 	int index = queue - dev->_rx;
3198 
3199 	BUG_ON(index >= dev->num_rx_queues);
3200 	return index;
3201 }
3202 #endif
3203 
3204 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3205 int netif_get_num_default_rss_queues(void);
3206 
3207 enum skb_free_reason {
3208 	SKB_REASON_CONSUMED,
3209 	SKB_REASON_DROPPED,
3210 };
3211 
3212 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3213 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3214 
3215 /*
3216  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3217  * interrupt context or with hardware interrupts being disabled.
3218  * (in_irq() || irqs_disabled())
3219  *
3220  * We provide four helpers that can be used in following contexts :
3221  *
3222  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3223  *  replacing kfree_skb(skb)
3224  *
3225  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3226  *  Typically used in place of consume_skb(skb) in TX completion path
3227  *
3228  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3229  *  replacing kfree_skb(skb)
3230  *
3231  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3232  *  and consumed a packet. Used in place of consume_skb(skb)
3233  */
3234 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3235 {
3236 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3237 }
3238 
3239 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3240 {
3241 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3242 }
3243 
3244 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3245 {
3246 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3247 }
3248 
3249 static inline void dev_consume_skb_any(struct sk_buff *skb)
3250 {
3251 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3252 }
3253 
3254 int netif_rx(struct sk_buff *skb);
3255 int netif_rx_ni(struct sk_buff *skb);
3256 int netif_receive_skb(struct sk_buff *skb);
3257 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3258 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3259 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3260 gro_result_t napi_gro_frags(struct napi_struct *napi);
3261 struct packet_offload *gro_find_receive_by_type(__be16 type);
3262 struct packet_offload *gro_find_complete_by_type(__be16 type);
3263 
3264 static inline void napi_free_frags(struct napi_struct *napi)
3265 {
3266 	kfree_skb(napi->skb);
3267 	napi->skb = NULL;
3268 }
3269 
3270 bool netdev_is_rx_handler_busy(struct net_device *dev);
3271 int netdev_rx_handler_register(struct net_device *dev,
3272 			       rx_handler_func_t *rx_handler,
3273 			       void *rx_handler_data);
3274 void netdev_rx_handler_unregister(struct net_device *dev);
3275 
3276 bool dev_valid_name(const char *name);
3277 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3278 int dev_ethtool(struct net *net, struct ifreq *);
3279 unsigned int dev_get_flags(const struct net_device *);
3280 int __dev_change_flags(struct net_device *, unsigned int flags);
3281 int dev_change_flags(struct net_device *, unsigned int);
3282 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3283 			unsigned int gchanges);
3284 int dev_change_name(struct net_device *, const char *);
3285 int dev_set_alias(struct net_device *, const char *, size_t);
3286 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3287 int __dev_set_mtu(struct net_device *, int);
3288 int dev_set_mtu(struct net_device *, int);
3289 void dev_set_group(struct net_device *, int);
3290 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3291 int dev_change_carrier(struct net_device *, bool new_carrier);
3292 int dev_get_phys_port_id(struct net_device *dev,
3293 			 struct netdev_phys_item_id *ppid);
3294 int dev_get_phys_port_name(struct net_device *dev,
3295 			   char *name, size_t len);
3296 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3297 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3299 				    struct netdev_queue *txq, int *ret);
3300 
3301 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3302 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3303 		      int fd, u32 flags);
3304 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3305 
3306 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3307 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3308 bool is_skb_forwardable(const struct net_device *dev,
3309 			const struct sk_buff *skb);
3310 
3311 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3312 					       struct sk_buff *skb)
3313 {
3314 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3315 	    unlikely(!is_skb_forwardable(dev, skb))) {
3316 		atomic_long_inc(&dev->rx_dropped);
3317 		kfree_skb(skb);
3318 		return NET_RX_DROP;
3319 	}
3320 
3321 	skb_scrub_packet(skb, true);
3322 	skb->priority = 0;
3323 	return 0;
3324 }
3325 
3326 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3327 
3328 extern int		netdev_budget;
3329 extern unsigned int	netdev_budget_usecs;
3330 
3331 /* Called by rtnetlink.c:rtnl_unlock() */
3332 void netdev_run_todo(void);
3333 
3334 /**
3335  *	dev_put - release reference to device
3336  *	@dev: network device
3337  *
3338  * Release reference to device to allow it to be freed.
3339  */
3340 static inline void dev_put(struct net_device *dev)
3341 {
3342 	this_cpu_dec(*dev->pcpu_refcnt);
3343 }
3344 
3345 /**
3346  *	dev_hold - get reference to device
3347  *	@dev: network device
3348  *
3349  * Hold reference to device to keep it from being freed.
3350  */
3351 static inline void dev_hold(struct net_device *dev)
3352 {
3353 	this_cpu_inc(*dev->pcpu_refcnt);
3354 }
3355 
3356 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3357  * and _off may be called from IRQ context, but it is caller
3358  * who is responsible for serialization of these calls.
3359  *
3360  * The name carrier is inappropriate, these functions should really be
3361  * called netif_lowerlayer_*() because they represent the state of any
3362  * kind of lower layer not just hardware media.
3363  */
3364 
3365 void linkwatch_init_dev(struct net_device *dev);
3366 void linkwatch_fire_event(struct net_device *dev);
3367 void linkwatch_forget_dev(struct net_device *dev);
3368 
3369 /**
3370  *	netif_carrier_ok - test if carrier present
3371  *	@dev: network device
3372  *
3373  * Check if carrier is present on device
3374  */
3375 static inline bool netif_carrier_ok(const struct net_device *dev)
3376 {
3377 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3378 }
3379 
3380 unsigned long dev_trans_start(struct net_device *dev);
3381 
3382 void __netdev_watchdog_up(struct net_device *dev);
3383 
3384 void netif_carrier_on(struct net_device *dev);
3385 
3386 void netif_carrier_off(struct net_device *dev);
3387 
3388 /**
3389  *	netif_dormant_on - mark device as dormant.
3390  *	@dev: network device
3391  *
3392  * Mark device as dormant (as per RFC2863).
3393  *
3394  * The dormant state indicates that the relevant interface is not
3395  * actually in a condition to pass packets (i.e., it is not 'up') but is
3396  * in a "pending" state, waiting for some external event.  For "on-
3397  * demand" interfaces, this new state identifies the situation where the
3398  * interface is waiting for events to place it in the up state.
3399  */
3400 static inline void netif_dormant_on(struct net_device *dev)
3401 {
3402 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3403 		linkwatch_fire_event(dev);
3404 }
3405 
3406 /**
3407  *	netif_dormant_off - set device as not dormant.
3408  *	@dev: network device
3409  *
3410  * Device is not in dormant state.
3411  */
3412 static inline void netif_dormant_off(struct net_device *dev)
3413 {
3414 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3415 		linkwatch_fire_event(dev);
3416 }
3417 
3418 /**
3419  *	netif_dormant - test if device is dormant
3420  *	@dev: network device
3421  *
3422  * Check if device is dormant.
3423  */
3424 static inline bool netif_dormant(const struct net_device *dev)
3425 {
3426 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3427 }
3428 
3429 
3430 /**
3431  *	netif_oper_up - test if device is operational
3432  *	@dev: network device
3433  *
3434  * Check if carrier is operational
3435  */
3436 static inline bool netif_oper_up(const struct net_device *dev)
3437 {
3438 	return (dev->operstate == IF_OPER_UP ||
3439 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3440 }
3441 
3442 /**
3443  *	netif_device_present - is device available or removed
3444  *	@dev: network device
3445  *
3446  * Check if device has not been removed from system.
3447  */
3448 static inline bool netif_device_present(struct net_device *dev)
3449 {
3450 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3451 }
3452 
3453 void netif_device_detach(struct net_device *dev);
3454 
3455 void netif_device_attach(struct net_device *dev);
3456 
3457 /*
3458  * Network interface message level settings
3459  */
3460 
3461 enum {
3462 	NETIF_MSG_DRV		= 0x0001,
3463 	NETIF_MSG_PROBE		= 0x0002,
3464 	NETIF_MSG_LINK		= 0x0004,
3465 	NETIF_MSG_TIMER		= 0x0008,
3466 	NETIF_MSG_IFDOWN	= 0x0010,
3467 	NETIF_MSG_IFUP		= 0x0020,
3468 	NETIF_MSG_RX_ERR	= 0x0040,
3469 	NETIF_MSG_TX_ERR	= 0x0080,
3470 	NETIF_MSG_TX_QUEUED	= 0x0100,
3471 	NETIF_MSG_INTR		= 0x0200,
3472 	NETIF_MSG_TX_DONE	= 0x0400,
3473 	NETIF_MSG_RX_STATUS	= 0x0800,
3474 	NETIF_MSG_PKTDATA	= 0x1000,
3475 	NETIF_MSG_HW		= 0x2000,
3476 	NETIF_MSG_WOL		= 0x4000,
3477 };
3478 
3479 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3480 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3481 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3482 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3483 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3484 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3485 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3486 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3487 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3488 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3489 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3490 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3491 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3492 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3493 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3494 
3495 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3496 {
3497 	/* use default */
3498 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3499 		return default_msg_enable_bits;
3500 	if (debug_value == 0)	/* no output */
3501 		return 0;
3502 	/* set low N bits */
3503 	return (1 << debug_value) - 1;
3504 }
3505 
3506 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3507 {
3508 	spin_lock(&txq->_xmit_lock);
3509 	txq->xmit_lock_owner = cpu;
3510 }
3511 
3512 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3513 {
3514 	__acquire(&txq->_xmit_lock);
3515 	return true;
3516 }
3517 
3518 static inline void __netif_tx_release(struct netdev_queue *txq)
3519 {
3520 	__release(&txq->_xmit_lock);
3521 }
3522 
3523 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3524 {
3525 	spin_lock_bh(&txq->_xmit_lock);
3526 	txq->xmit_lock_owner = smp_processor_id();
3527 }
3528 
3529 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3530 {
3531 	bool ok = spin_trylock(&txq->_xmit_lock);
3532 	if (likely(ok))
3533 		txq->xmit_lock_owner = smp_processor_id();
3534 	return ok;
3535 }
3536 
3537 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3538 {
3539 	txq->xmit_lock_owner = -1;
3540 	spin_unlock(&txq->_xmit_lock);
3541 }
3542 
3543 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3544 {
3545 	txq->xmit_lock_owner = -1;
3546 	spin_unlock_bh(&txq->_xmit_lock);
3547 }
3548 
3549 static inline void txq_trans_update(struct netdev_queue *txq)
3550 {
3551 	if (txq->xmit_lock_owner != -1)
3552 		txq->trans_start = jiffies;
3553 }
3554 
3555 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3556 static inline void netif_trans_update(struct net_device *dev)
3557 {
3558 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3559 
3560 	if (txq->trans_start != jiffies)
3561 		txq->trans_start = jiffies;
3562 }
3563 
3564 /**
3565  *	netif_tx_lock - grab network device transmit lock
3566  *	@dev: network device
3567  *
3568  * Get network device transmit lock
3569  */
3570 static inline void netif_tx_lock(struct net_device *dev)
3571 {
3572 	unsigned int i;
3573 	int cpu;
3574 
3575 	spin_lock(&dev->tx_global_lock);
3576 	cpu = smp_processor_id();
3577 	for (i = 0; i < dev->num_tx_queues; i++) {
3578 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3579 
3580 		/* We are the only thread of execution doing a
3581 		 * freeze, but we have to grab the _xmit_lock in
3582 		 * order to synchronize with threads which are in
3583 		 * the ->hard_start_xmit() handler and already
3584 		 * checked the frozen bit.
3585 		 */
3586 		__netif_tx_lock(txq, cpu);
3587 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3588 		__netif_tx_unlock(txq);
3589 	}
3590 }
3591 
3592 static inline void netif_tx_lock_bh(struct net_device *dev)
3593 {
3594 	local_bh_disable();
3595 	netif_tx_lock(dev);
3596 }
3597 
3598 static inline void netif_tx_unlock(struct net_device *dev)
3599 {
3600 	unsigned int i;
3601 
3602 	for (i = 0; i < dev->num_tx_queues; i++) {
3603 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3604 
3605 		/* No need to grab the _xmit_lock here.  If the
3606 		 * queue is not stopped for another reason, we
3607 		 * force a schedule.
3608 		 */
3609 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3610 		netif_schedule_queue(txq);
3611 	}
3612 	spin_unlock(&dev->tx_global_lock);
3613 }
3614 
3615 static inline void netif_tx_unlock_bh(struct net_device *dev)
3616 {
3617 	netif_tx_unlock(dev);
3618 	local_bh_enable();
3619 }
3620 
3621 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3622 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3623 		__netif_tx_lock(txq, cpu);		\
3624 	} else {					\
3625 		__netif_tx_acquire(txq);		\
3626 	}						\
3627 }
3628 
3629 #define HARD_TX_TRYLOCK(dev, txq)			\
3630 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3631 		__netif_tx_trylock(txq) :		\
3632 		__netif_tx_acquire(txq))
3633 
3634 #define HARD_TX_UNLOCK(dev, txq) {			\
3635 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3636 		__netif_tx_unlock(txq);			\
3637 	} else {					\
3638 		__netif_tx_release(txq);		\
3639 	}						\
3640 }
3641 
3642 static inline void netif_tx_disable(struct net_device *dev)
3643 {
3644 	unsigned int i;
3645 	int cpu;
3646 
3647 	local_bh_disable();
3648 	cpu = smp_processor_id();
3649 	for (i = 0; i < dev->num_tx_queues; i++) {
3650 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3651 
3652 		__netif_tx_lock(txq, cpu);
3653 		netif_tx_stop_queue(txq);
3654 		__netif_tx_unlock(txq);
3655 	}
3656 	local_bh_enable();
3657 }
3658 
3659 static inline void netif_addr_lock(struct net_device *dev)
3660 {
3661 	spin_lock(&dev->addr_list_lock);
3662 }
3663 
3664 static inline void netif_addr_lock_nested(struct net_device *dev)
3665 {
3666 	int subclass = SINGLE_DEPTH_NESTING;
3667 
3668 	if (dev->netdev_ops->ndo_get_lock_subclass)
3669 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3670 
3671 	spin_lock_nested(&dev->addr_list_lock, subclass);
3672 }
3673 
3674 static inline void netif_addr_lock_bh(struct net_device *dev)
3675 {
3676 	spin_lock_bh(&dev->addr_list_lock);
3677 }
3678 
3679 static inline void netif_addr_unlock(struct net_device *dev)
3680 {
3681 	spin_unlock(&dev->addr_list_lock);
3682 }
3683 
3684 static inline void netif_addr_unlock_bh(struct net_device *dev)
3685 {
3686 	spin_unlock_bh(&dev->addr_list_lock);
3687 }
3688 
3689 /*
3690  * dev_addrs walker. Should be used only for read access. Call with
3691  * rcu_read_lock held.
3692  */
3693 #define for_each_dev_addr(dev, ha) \
3694 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3695 
3696 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3697 
3698 void ether_setup(struct net_device *dev);
3699 
3700 /* Support for loadable net-drivers */
3701 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3702 				    unsigned char name_assign_type,
3703 				    void (*setup)(struct net_device *),
3704 				    unsigned int txqs, unsigned int rxqs);
3705 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3706 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3707 
3708 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3709 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3710 			 count)
3711 
3712 int register_netdev(struct net_device *dev);
3713 void unregister_netdev(struct net_device *dev);
3714 
3715 /* General hardware address lists handling functions */
3716 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3717 		   struct netdev_hw_addr_list *from_list, int addr_len);
3718 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3719 		      struct netdev_hw_addr_list *from_list, int addr_len);
3720 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3721 		       struct net_device *dev,
3722 		       int (*sync)(struct net_device *, const unsigned char *),
3723 		       int (*unsync)(struct net_device *,
3724 				     const unsigned char *));
3725 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3726 			  struct net_device *dev,
3727 			  int (*unsync)(struct net_device *,
3728 					const unsigned char *));
3729 void __hw_addr_init(struct netdev_hw_addr_list *list);
3730 
3731 /* Functions used for device addresses handling */
3732 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3733 		 unsigned char addr_type);
3734 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3735 		 unsigned char addr_type);
3736 void dev_addr_flush(struct net_device *dev);
3737 int dev_addr_init(struct net_device *dev);
3738 
3739 /* Functions used for unicast addresses handling */
3740 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3741 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3742 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3743 int dev_uc_sync(struct net_device *to, struct net_device *from);
3744 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3745 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3746 void dev_uc_flush(struct net_device *dev);
3747 void dev_uc_init(struct net_device *dev);
3748 
3749 /**
3750  *  __dev_uc_sync - Synchonize device's unicast list
3751  *  @dev:  device to sync
3752  *  @sync: function to call if address should be added
3753  *  @unsync: function to call if address should be removed
3754  *
3755  *  Add newly added addresses to the interface, and release
3756  *  addresses that have been deleted.
3757  */
3758 static inline int __dev_uc_sync(struct net_device *dev,
3759 				int (*sync)(struct net_device *,
3760 					    const unsigned char *),
3761 				int (*unsync)(struct net_device *,
3762 					      const unsigned char *))
3763 {
3764 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3765 }
3766 
3767 /**
3768  *  __dev_uc_unsync - Remove synchronized addresses from device
3769  *  @dev:  device to sync
3770  *  @unsync: function to call if address should be removed
3771  *
3772  *  Remove all addresses that were added to the device by dev_uc_sync().
3773  */
3774 static inline void __dev_uc_unsync(struct net_device *dev,
3775 				   int (*unsync)(struct net_device *,
3776 						 const unsigned char *))
3777 {
3778 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3779 }
3780 
3781 /* Functions used for multicast addresses handling */
3782 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3783 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3784 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3785 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3786 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3787 int dev_mc_sync(struct net_device *to, struct net_device *from);
3788 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3789 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3790 void dev_mc_flush(struct net_device *dev);
3791 void dev_mc_init(struct net_device *dev);
3792 
3793 /**
3794  *  __dev_mc_sync - Synchonize device's multicast list
3795  *  @dev:  device to sync
3796  *  @sync: function to call if address should be added
3797  *  @unsync: function to call if address should be removed
3798  *
3799  *  Add newly added addresses to the interface, and release
3800  *  addresses that have been deleted.
3801  */
3802 static inline int __dev_mc_sync(struct net_device *dev,
3803 				int (*sync)(struct net_device *,
3804 					    const unsigned char *),
3805 				int (*unsync)(struct net_device *,
3806 					      const unsigned char *))
3807 {
3808 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3809 }
3810 
3811 /**
3812  *  __dev_mc_unsync - Remove synchronized addresses from device
3813  *  @dev:  device to sync
3814  *  @unsync: function to call if address should be removed
3815  *
3816  *  Remove all addresses that were added to the device by dev_mc_sync().
3817  */
3818 static inline void __dev_mc_unsync(struct net_device *dev,
3819 				   int (*unsync)(struct net_device *,
3820 						 const unsigned char *))
3821 {
3822 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3823 }
3824 
3825 /* Functions used for secondary unicast and multicast support */
3826 void dev_set_rx_mode(struct net_device *dev);
3827 void __dev_set_rx_mode(struct net_device *dev);
3828 int dev_set_promiscuity(struct net_device *dev, int inc);
3829 int dev_set_allmulti(struct net_device *dev, int inc);
3830 void netdev_state_change(struct net_device *dev);
3831 void netdev_notify_peers(struct net_device *dev);
3832 void netdev_features_change(struct net_device *dev);
3833 /* Load a device via the kmod */
3834 void dev_load(struct net *net, const char *name);
3835 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3836 					struct rtnl_link_stats64 *storage);
3837 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3838 			     const struct net_device_stats *netdev_stats);
3839 
3840 extern int		netdev_max_backlog;
3841 extern int		netdev_tstamp_prequeue;
3842 extern int		weight_p;
3843 extern int		dev_weight_rx_bias;
3844 extern int		dev_weight_tx_bias;
3845 extern int		dev_rx_weight;
3846 extern int		dev_tx_weight;
3847 
3848 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3849 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3850 						     struct list_head **iter);
3851 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3852 						     struct list_head **iter);
3853 
3854 /* iterate through upper list, must be called under RCU read lock */
3855 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3856 	for (iter = &(dev)->adj_list.upper, \
3857 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3858 	     updev; \
3859 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3860 
3861 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3862 				  int (*fn)(struct net_device *upper_dev,
3863 					    void *data),
3864 				  void *data);
3865 
3866 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3867 				  struct net_device *upper_dev);
3868 
3869 void *netdev_lower_get_next_private(struct net_device *dev,
3870 				    struct list_head **iter);
3871 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3872 					struct list_head **iter);
3873 
3874 #define netdev_for_each_lower_private(dev, priv, iter) \
3875 	for (iter = (dev)->adj_list.lower.next, \
3876 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3877 	     priv; \
3878 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3879 
3880 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3881 	for (iter = &(dev)->adj_list.lower, \
3882 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3883 	     priv; \
3884 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3885 
3886 void *netdev_lower_get_next(struct net_device *dev,
3887 				struct list_head **iter);
3888 
3889 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3890 	for (iter = (dev)->adj_list.lower.next, \
3891 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3892 	     ldev; \
3893 	     ldev = netdev_lower_get_next(dev, &(iter)))
3894 
3895 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3896 					     struct list_head **iter);
3897 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3898 						 struct list_head **iter);
3899 
3900 int netdev_walk_all_lower_dev(struct net_device *dev,
3901 			      int (*fn)(struct net_device *lower_dev,
3902 					void *data),
3903 			      void *data);
3904 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3905 				  int (*fn)(struct net_device *lower_dev,
3906 					    void *data),
3907 				  void *data);
3908 
3909 void *netdev_adjacent_get_private(struct list_head *adj_list);
3910 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3911 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3912 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3913 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3914 int netdev_master_upper_dev_link(struct net_device *dev,
3915 				 struct net_device *upper_dev,
3916 				 void *upper_priv, void *upper_info);
3917 void netdev_upper_dev_unlink(struct net_device *dev,
3918 			     struct net_device *upper_dev);
3919 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3920 void *netdev_lower_dev_get_private(struct net_device *dev,
3921 				   struct net_device *lower_dev);
3922 void netdev_lower_state_changed(struct net_device *lower_dev,
3923 				void *lower_state_info);
3924 
3925 /* RSS keys are 40 or 52 bytes long */
3926 #define NETDEV_RSS_KEY_LEN 52
3927 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3928 void netdev_rss_key_fill(void *buffer, size_t len);
3929 
3930 int dev_get_nest_level(struct net_device *dev);
3931 int skb_checksum_help(struct sk_buff *skb);
3932 int skb_crc32c_csum_help(struct sk_buff *skb);
3933 int skb_csum_hwoffload_help(struct sk_buff *skb,
3934 			    const netdev_features_t features);
3935 
3936 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3937 				  netdev_features_t features, bool tx_path);
3938 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3939 				    netdev_features_t features);
3940 
3941 struct netdev_bonding_info {
3942 	ifslave	slave;
3943 	ifbond	master;
3944 };
3945 
3946 struct netdev_notifier_bonding_info {
3947 	struct netdev_notifier_info info; /* must be first */
3948 	struct netdev_bonding_info  bonding_info;
3949 };
3950 
3951 void netdev_bonding_info_change(struct net_device *dev,
3952 				struct netdev_bonding_info *bonding_info);
3953 
3954 static inline
3955 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3956 {
3957 	return __skb_gso_segment(skb, features, true);
3958 }
3959 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3960 
3961 static inline bool can_checksum_protocol(netdev_features_t features,
3962 					 __be16 protocol)
3963 {
3964 	if (protocol == htons(ETH_P_FCOE))
3965 		return !!(features & NETIF_F_FCOE_CRC);
3966 
3967 	/* Assume this is an IP checksum (not SCTP CRC) */
3968 
3969 	if (features & NETIF_F_HW_CSUM) {
3970 		/* Can checksum everything */
3971 		return true;
3972 	}
3973 
3974 	switch (protocol) {
3975 	case htons(ETH_P_IP):
3976 		return !!(features & NETIF_F_IP_CSUM);
3977 	case htons(ETH_P_IPV6):
3978 		return !!(features & NETIF_F_IPV6_CSUM);
3979 	default:
3980 		return false;
3981 	}
3982 }
3983 
3984 #ifdef CONFIG_BUG
3985 void netdev_rx_csum_fault(struct net_device *dev);
3986 #else
3987 static inline void netdev_rx_csum_fault(struct net_device *dev)
3988 {
3989 }
3990 #endif
3991 /* rx skb timestamps */
3992 void net_enable_timestamp(void);
3993 void net_disable_timestamp(void);
3994 
3995 #ifdef CONFIG_PROC_FS
3996 int __init dev_proc_init(void);
3997 #else
3998 #define dev_proc_init() 0
3999 #endif
4000 
4001 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4002 					      struct sk_buff *skb, struct net_device *dev,
4003 					      bool more)
4004 {
4005 	skb->xmit_more = more ? 1 : 0;
4006 	return ops->ndo_start_xmit(skb, dev);
4007 }
4008 
4009 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4010 					    struct netdev_queue *txq, bool more)
4011 {
4012 	const struct net_device_ops *ops = dev->netdev_ops;
4013 	int rc;
4014 
4015 	rc = __netdev_start_xmit(ops, skb, dev, more);
4016 	if (rc == NETDEV_TX_OK)
4017 		txq_trans_update(txq);
4018 
4019 	return rc;
4020 }
4021 
4022 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4023 				const void *ns);
4024 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4025 				 const void *ns);
4026 
4027 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4028 {
4029 	return netdev_class_create_file_ns(class_attr, NULL);
4030 }
4031 
4032 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4033 {
4034 	netdev_class_remove_file_ns(class_attr, NULL);
4035 }
4036 
4037 extern struct kobj_ns_type_operations net_ns_type_operations;
4038 
4039 const char *netdev_drivername(const struct net_device *dev);
4040 
4041 void linkwatch_run_queue(void);
4042 
4043 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4044 							  netdev_features_t f2)
4045 {
4046 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4047 		if (f1 & NETIF_F_HW_CSUM)
4048 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4049 		else
4050 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4051 	}
4052 
4053 	return f1 & f2;
4054 }
4055 
4056 static inline netdev_features_t netdev_get_wanted_features(
4057 	struct net_device *dev)
4058 {
4059 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4060 }
4061 netdev_features_t netdev_increment_features(netdev_features_t all,
4062 	netdev_features_t one, netdev_features_t mask);
4063 
4064 /* Allow TSO being used on stacked device :
4065  * Performing the GSO segmentation before last device
4066  * is a performance improvement.
4067  */
4068 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4069 							netdev_features_t mask)
4070 {
4071 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4072 }
4073 
4074 int __netdev_update_features(struct net_device *dev);
4075 void netdev_update_features(struct net_device *dev);
4076 void netdev_change_features(struct net_device *dev);
4077 
4078 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4079 					struct net_device *dev);
4080 
4081 netdev_features_t passthru_features_check(struct sk_buff *skb,
4082 					  struct net_device *dev,
4083 					  netdev_features_t features);
4084 netdev_features_t netif_skb_features(struct sk_buff *skb);
4085 
4086 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4087 {
4088 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4089 
4090 	/* check flags correspondence */
4091 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4092 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4093 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4094 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4095 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4096 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4097 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4098 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4099 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4100 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4101 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4102 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4103 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4104 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4105 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4106 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4107 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4108 
4109 	return (features & feature) == feature;
4110 }
4111 
4112 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4113 {
4114 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4115 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4116 }
4117 
4118 static inline bool netif_needs_gso(struct sk_buff *skb,
4119 				   netdev_features_t features)
4120 {
4121 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4122 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4123 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4124 }
4125 
4126 static inline void netif_set_gso_max_size(struct net_device *dev,
4127 					  unsigned int size)
4128 {
4129 	dev->gso_max_size = size;
4130 }
4131 
4132 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4133 					int pulled_hlen, u16 mac_offset,
4134 					int mac_len)
4135 {
4136 	skb->protocol = protocol;
4137 	skb->encapsulation = 1;
4138 	skb_push(skb, pulled_hlen);
4139 	skb_reset_transport_header(skb);
4140 	skb->mac_header = mac_offset;
4141 	skb->network_header = skb->mac_header + mac_len;
4142 	skb->mac_len = mac_len;
4143 }
4144 
4145 static inline bool netif_is_macsec(const struct net_device *dev)
4146 {
4147 	return dev->priv_flags & IFF_MACSEC;
4148 }
4149 
4150 static inline bool netif_is_macvlan(const struct net_device *dev)
4151 {
4152 	return dev->priv_flags & IFF_MACVLAN;
4153 }
4154 
4155 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4156 {
4157 	return dev->priv_flags & IFF_MACVLAN_PORT;
4158 }
4159 
4160 static inline bool netif_is_ipvlan(const struct net_device *dev)
4161 {
4162 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
4163 }
4164 
4165 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4166 {
4167 	return dev->priv_flags & IFF_IPVLAN_MASTER;
4168 }
4169 
4170 static inline bool netif_is_bond_master(const struct net_device *dev)
4171 {
4172 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4173 }
4174 
4175 static inline bool netif_is_bond_slave(const struct net_device *dev)
4176 {
4177 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4178 }
4179 
4180 static inline bool netif_supports_nofcs(struct net_device *dev)
4181 {
4182 	return dev->priv_flags & IFF_SUPP_NOFCS;
4183 }
4184 
4185 static inline bool netif_is_l3_master(const struct net_device *dev)
4186 {
4187 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4188 }
4189 
4190 static inline bool netif_is_l3_slave(const struct net_device *dev)
4191 {
4192 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4193 }
4194 
4195 static inline bool netif_is_bridge_master(const struct net_device *dev)
4196 {
4197 	return dev->priv_flags & IFF_EBRIDGE;
4198 }
4199 
4200 static inline bool netif_is_bridge_port(const struct net_device *dev)
4201 {
4202 	return dev->priv_flags & IFF_BRIDGE_PORT;
4203 }
4204 
4205 static inline bool netif_is_ovs_master(const struct net_device *dev)
4206 {
4207 	return dev->priv_flags & IFF_OPENVSWITCH;
4208 }
4209 
4210 static inline bool netif_is_ovs_port(const struct net_device *dev)
4211 {
4212 	return dev->priv_flags & IFF_OVS_DATAPATH;
4213 }
4214 
4215 static inline bool netif_is_team_master(const struct net_device *dev)
4216 {
4217 	return dev->priv_flags & IFF_TEAM;
4218 }
4219 
4220 static inline bool netif_is_team_port(const struct net_device *dev)
4221 {
4222 	return dev->priv_flags & IFF_TEAM_PORT;
4223 }
4224 
4225 static inline bool netif_is_lag_master(const struct net_device *dev)
4226 {
4227 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4228 }
4229 
4230 static inline bool netif_is_lag_port(const struct net_device *dev)
4231 {
4232 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4233 }
4234 
4235 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4236 {
4237 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4238 }
4239 
4240 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4241 static inline void netif_keep_dst(struct net_device *dev)
4242 {
4243 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4244 }
4245 
4246 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4247 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4248 {
4249 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4250 	return dev->priv_flags & IFF_MACSEC;
4251 }
4252 
4253 extern struct pernet_operations __net_initdata loopback_net_ops;
4254 
4255 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4256 
4257 /* netdev_printk helpers, similar to dev_printk */
4258 
4259 static inline const char *netdev_name(const struct net_device *dev)
4260 {
4261 	if (!dev->name[0] || strchr(dev->name, '%'))
4262 		return "(unnamed net_device)";
4263 	return dev->name;
4264 }
4265 
4266 static inline bool netdev_unregistering(const struct net_device *dev)
4267 {
4268 	return dev->reg_state == NETREG_UNREGISTERING;
4269 }
4270 
4271 static inline const char *netdev_reg_state(const struct net_device *dev)
4272 {
4273 	switch (dev->reg_state) {
4274 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4275 	case NETREG_REGISTERED: return "";
4276 	case NETREG_UNREGISTERING: return " (unregistering)";
4277 	case NETREG_UNREGISTERED: return " (unregistered)";
4278 	case NETREG_RELEASED: return " (released)";
4279 	case NETREG_DUMMY: return " (dummy)";
4280 	}
4281 
4282 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4283 	return " (unknown)";
4284 }
4285 
4286 __printf(3, 4)
4287 void netdev_printk(const char *level, const struct net_device *dev,
4288 		   const char *format, ...);
4289 __printf(2, 3)
4290 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4291 __printf(2, 3)
4292 void netdev_alert(const struct net_device *dev, const char *format, ...);
4293 __printf(2, 3)
4294 void netdev_crit(const struct net_device *dev, const char *format, ...);
4295 __printf(2, 3)
4296 void netdev_err(const struct net_device *dev, const char *format, ...);
4297 __printf(2, 3)
4298 void netdev_warn(const struct net_device *dev, const char *format, ...);
4299 __printf(2, 3)
4300 void netdev_notice(const struct net_device *dev, const char *format, ...);
4301 __printf(2, 3)
4302 void netdev_info(const struct net_device *dev, const char *format, ...);
4303 
4304 #define MODULE_ALIAS_NETDEV(device) \
4305 	MODULE_ALIAS("netdev-" device)
4306 
4307 #if defined(CONFIG_DYNAMIC_DEBUG)
4308 #define netdev_dbg(__dev, format, args...)			\
4309 do {								\
4310 	dynamic_netdev_dbg(__dev, format, ##args);		\
4311 } while (0)
4312 #elif defined(DEBUG)
4313 #define netdev_dbg(__dev, format, args...)			\
4314 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4315 #else
4316 #define netdev_dbg(__dev, format, args...)			\
4317 ({								\
4318 	if (0)							\
4319 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4320 })
4321 #endif
4322 
4323 #if defined(VERBOSE_DEBUG)
4324 #define netdev_vdbg	netdev_dbg
4325 #else
4326 
4327 #define netdev_vdbg(dev, format, args...)			\
4328 ({								\
4329 	if (0)							\
4330 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4331 	0;							\
4332 })
4333 #endif
4334 
4335 /*
4336  * netdev_WARN() acts like dev_printk(), but with the key difference
4337  * of using a WARN/WARN_ON to get the message out, including the
4338  * file/line information and a backtrace.
4339  */
4340 #define netdev_WARN(dev, format, args...)			\
4341 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
4342 	     netdev_reg_state(dev), ##args)
4343 
4344 /* netif printk helpers, similar to netdev_printk */
4345 
4346 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4347 do {					  			\
4348 	if (netif_msg_##type(priv))				\
4349 		netdev_printk(level, (dev), fmt, ##args);	\
4350 } while (0)
4351 
4352 #define netif_level(level, priv, type, dev, fmt, args...)	\
4353 do {								\
4354 	if (netif_msg_##type(priv))				\
4355 		netdev_##level(dev, fmt, ##args);		\
4356 } while (0)
4357 
4358 #define netif_emerg(priv, type, dev, fmt, args...)		\
4359 	netif_level(emerg, priv, type, dev, fmt, ##args)
4360 #define netif_alert(priv, type, dev, fmt, args...)		\
4361 	netif_level(alert, priv, type, dev, fmt, ##args)
4362 #define netif_crit(priv, type, dev, fmt, args...)		\
4363 	netif_level(crit, priv, type, dev, fmt, ##args)
4364 #define netif_err(priv, type, dev, fmt, args...)		\
4365 	netif_level(err, priv, type, dev, fmt, ##args)
4366 #define netif_warn(priv, type, dev, fmt, args...)		\
4367 	netif_level(warn, priv, type, dev, fmt, ##args)
4368 #define netif_notice(priv, type, dev, fmt, args...)		\
4369 	netif_level(notice, priv, type, dev, fmt, ##args)
4370 #define netif_info(priv, type, dev, fmt, args...)		\
4371 	netif_level(info, priv, type, dev, fmt, ##args)
4372 
4373 #if defined(CONFIG_DYNAMIC_DEBUG)
4374 #define netif_dbg(priv, type, netdev, format, args...)		\
4375 do {								\
4376 	if (netif_msg_##type(priv))				\
4377 		dynamic_netdev_dbg(netdev, format, ##args);	\
4378 } while (0)
4379 #elif defined(DEBUG)
4380 #define netif_dbg(priv, type, dev, format, args...)		\
4381 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4382 #else
4383 #define netif_dbg(priv, type, dev, format, args...)			\
4384 ({									\
4385 	if (0)								\
4386 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4387 	0;								\
4388 })
4389 #endif
4390 
4391 /* if @cond then downgrade to debug, else print at @level */
4392 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4393 	do {                                                              \
4394 		if (cond)                                                 \
4395 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4396 		else                                                      \
4397 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4398 	} while (0)
4399 
4400 #if defined(VERBOSE_DEBUG)
4401 #define netif_vdbg	netif_dbg
4402 #else
4403 #define netif_vdbg(priv, type, dev, format, args...)		\
4404 ({								\
4405 	if (0)							\
4406 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4407 	0;							\
4408 })
4409 #endif
4410 
4411 /*
4412  *	The list of packet types we will receive (as opposed to discard)
4413  *	and the routines to invoke.
4414  *
4415  *	Why 16. Because with 16 the only overlap we get on a hash of the
4416  *	low nibble of the protocol value is RARP/SNAP/X.25.
4417  *
4418  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4419  *             sure which should go first, but I bet it won't make much
4420  *             difference if we are running VLANs.  The good news is that
4421  *             this protocol won't be in the list unless compiled in, so
4422  *             the average user (w/out VLANs) will not be adversely affected.
4423  *             --BLG
4424  *
4425  *		0800	IP
4426  *		8100    802.1Q VLAN
4427  *		0001	802.3
4428  *		0002	AX.25
4429  *		0004	802.2
4430  *		8035	RARP
4431  *		0005	SNAP
4432  *		0805	X.25
4433  *		0806	ARP
4434  *		8137	IPX
4435  *		0009	Localtalk
4436  *		86DD	IPv6
4437  */
4438 #define PTYPE_HASH_SIZE	(16)
4439 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4440 
4441 #endif	/* _LINUX_NETDEVICE_H */
4442