1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <linux/prefetch.h> 34 #include <asm/cache.h> 35 #include <asm/byteorder.h> 36 37 #include <linux/percpu.h> 38 #include <linux/rculist.h> 39 #include <linux/dmaengine.h> 40 #include <linux/workqueue.h> 41 #include <linux/dynamic_queue_limits.h> 42 43 #include <linux/ethtool.h> 44 #include <net/net_namespace.h> 45 #include <net/dsa.h> 46 #ifdef CONFIG_DCB 47 #include <net/dcbnl.h> 48 #endif 49 #include <net/netprio_cgroup.h> 50 51 #include <linux/netdev_features.h> 52 #include <linux/neighbour.h> 53 #include <uapi/linux/netdevice.h> 54 #include <uapi/linux/if_bonding.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 /* 802.11 specific */ 60 struct wireless_dev; 61 /* 802.15.4 specific */ 62 struct wpan_dev; 63 64 void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67 /* Backlog congestion levels */ 68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69 #define NET_RX_DROP 1 /* packet dropped */ 70 71 /* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88 /* qdisc ->enqueue() return codes. */ 89 #define NET_XMIT_SUCCESS 0x00 90 #define NET_XMIT_DROP 0x01 /* skb dropped */ 91 #define NET_XMIT_CN 0x02 /* congestion notification */ 92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101 /* Driver transmit return codes */ 102 #define NETDEV_TX_MASK 0xf0 103 104 enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109 }; 110 typedef enum netdev_tx netdev_tx_t; 111 112 /* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116 static inline bool dev_xmit_complete(int rc) 117 { 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128 } 129 130 /* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136 # if defined(CONFIG_MAC80211_MESH) 137 # define LL_MAX_HEADER 128 138 # else 139 # define LL_MAX_HEADER 96 140 # endif 141 #else 142 # define LL_MAX_HEADER 32 143 #endif 144 145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147 #define MAX_HEADER LL_MAX_HEADER 148 #else 149 #define MAX_HEADER (LL_MAX_HEADER + 48) 150 #endif 151 152 /* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157 struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181 }; 182 183 184 #include <linux/cache.h> 185 #include <linux/skbuff.h> 186 187 #ifdef CONFIG_RPS 188 #include <linux/static_key.h> 189 extern struct static_key rps_needed; 190 #endif 191 192 struct neighbour; 193 struct neigh_parms; 194 struct sk_buff; 195 196 struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200 #define NETDEV_HW_ADDR_T_LAN 1 201 #define NETDEV_HW_ADDR_T_SAN 2 202 #define NETDEV_HW_ADDR_T_SLAVE 3 203 #define NETDEV_HW_ADDR_T_UNICAST 4 204 #define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210 }; 211 212 struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215 }; 216 217 #define netdev_hw_addr_list_count(l) ((l)->count) 218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219 #define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224 #define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229 #define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232 struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238 #define HH_DATA_MOD 16 239 #define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241 #define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244 }; 245 246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254 #define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259 struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268 }; 269 270 /* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275 enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281 }; 282 283 284 /* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288 struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291 }; 292 #define NETDEV_BOOT_SETUP_MAX 8 293 294 int __init netdev_boot_setup(char *str); 295 296 /* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299 struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312 #ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315 #endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct hrtimer timer; 320 struct list_head dev_list; 321 struct hlist_node napi_hash_node; 322 unsigned int napi_id; 323 }; 324 325 enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329 NAPI_STATE_HASHED, /* In NAPI hash */ 330 }; 331 332 enum gro_result { 333 GRO_MERGED, 334 GRO_MERGED_FREE, 335 GRO_HELD, 336 GRO_NORMAL, 337 GRO_DROP, 338 }; 339 typedef enum gro_result gro_result_t; 340 341 /* 342 * enum rx_handler_result - Possible return values for rx_handlers. 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 344 * further. 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 346 * case skb->dev was changed by rx_handler. 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 349 * 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do 351 * special processing of the skb, prior to delivery to protocol handlers. 352 * 353 * Currently, a net_device can only have a single rx_handler registered. Trying 354 * to register a second rx_handler will return -EBUSY. 355 * 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 357 * To unregister a rx_handler on a net_device, use 358 * netdev_rx_handler_unregister(). 359 * 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 361 * do with the skb. 362 * 363 * If the rx_handler consumed to skb in some way, it should return 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 365 * the skb to be delivered in some other ways. 366 * 367 * If the rx_handler changed skb->dev, to divert the skb to another 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 369 * new device will be called if it exists. 370 * 371 * If the rx_handler consider the skb should be ignored, it should return 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 373 * are registered on exact device (ptype->dev == skb->dev). 374 * 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 376 * delivered, it should return RX_HANDLER_PASS. 377 * 378 * A device without a registered rx_handler will behave as if rx_handler 379 * returned RX_HANDLER_PASS. 380 */ 381 382 enum rx_handler_result { 383 RX_HANDLER_CONSUMED, 384 RX_HANDLER_ANOTHER, 385 RX_HANDLER_EXACT, 386 RX_HANDLER_PASS, 387 }; 388 typedef enum rx_handler_result rx_handler_result_t; 389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 390 391 void __napi_schedule(struct napi_struct *n); 392 void __napi_schedule_irqoff(struct napi_struct *n); 393 394 static inline bool napi_disable_pending(struct napi_struct *n) 395 { 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397 } 398 399 /** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408 static inline bool napi_schedule_prep(struct napi_struct *n) 409 { 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412 } 413 414 /** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421 static inline void napi_schedule(struct napi_struct *n) 422 { 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425 } 426 427 /** 428 * napi_schedule_irqoff - schedule NAPI poll 429 * @n: napi context 430 * 431 * Variant of napi_schedule(), assuming hard irqs are masked. 432 */ 433 static inline void napi_schedule_irqoff(struct napi_struct *n) 434 { 435 if (napi_schedule_prep(n)) 436 __napi_schedule_irqoff(n); 437 } 438 439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 440 static inline bool napi_reschedule(struct napi_struct *napi) 441 { 442 if (napi_schedule_prep(napi)) { 443 __napi_schedule(napi); 444 return true; 445 } 446 return false; 447 } 448 449 void __napi_complete(struct napi_struct *n); 450 void napi_complete_done(struct napi_struct *n, int work_done); 451 /** 452 * napi_complete - NAPI processing complete 453 * @n: napi context 454 * 455 * Mark NAPI processing as complete. 456 * Consider using napi_complete_done() instead. 457 */ 458 static inline void napi_complete(struct napi_struct *n) 459 { 460 return napi_complete_done(n, 0); 461 } 462 463 /** 464 * napi_by_id - lookup a NAPI by napi_id 465 * @napi_id: hashed napi_id 466 * 467 * lookup @napi_id in napi_hash table 468 * must be called under rcu_read_lock() 469 */ 470 struct napi_struct *napi_by_id(unsigned int napi_id); 471 472 /** 473 * napi_hash_add - add a NAPI to global hashtable 474 * @napi: napi context 475 * 476 * generate a new napi_id and store a @napi under it in napi_hash 477 */ 478 void napi_hash_add(struct napi_struct *napi); 479 480 /** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: napi context 483 * 484 * Warning: caller must observe rcu grace period 485 * before freeing memory containing @napi 486 */ 487 void napi_hash_del(struct napi_struct *napi); 488 489 /** 490 * napi_disable - prevent NAPI from scheduling 491 * @n: napi context 492 * 493 * Stop NAPI from being scheduled on this context. 494 * Waits till any outstanding processing completes. 495 */ 496 void napi_disable(struct napi_struct *n); 497 498 /** 499 * napi_enable - enable NAPI scheduling 500 * @n: napi context 501 * 502 * Resume NAPI from being scheduled on this context. 503 * Must be paired with napi_disable. 504 */ 505 static inline void napi_enable(struct napi_struct *n) 506 { 507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 508 smp_mb__before_atomic(); 509 clear_bit(NAPI_STATE_SCHED, &n->state); 510 } 511 512 #ifdef CONFIG_SMP 513 /** 514 * napi_synchronize - wait until NAPI is not running 515 * @n: napi context 516 * 517 * Wait until NAPI is done being scheduled on this context. 518 * Waits till any outstanding processing completes but 519 * does not disable future activations. 520 */ 521 static inline void napi_synchronize(const struct napi_struct *n) 522 { 523 while (test_bit(NAPI_STATE_SCHED, &n->state)) 524 msleep(1); 525 } 526 #else 527 # define napi_synchronize(n) barrier() 528 #endif 529 530 enum netdev_queue_state_t { 531 __QUEUE_STATE_DRV_XOFF, 532 __QUEUE_STATE_STACK_XOFF, 533 __QUEUE_STATE_FROZEN, 534 }; 535 536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 539 540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 542 QUEUE_STATE_FROZEN) 543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 544 QUEUE_STATE_FROZEN) 545 546 /* 547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 548 * netif_tx_* functions below are used to manipulate this flag. The 549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 550 * queue independently. The netif_xmit_*stopped functions below are called 551 * to check if the queue has been stopped by the driver or stack (either 552 * of the XOFF bits are set in the state). Drivers should not need to call 553 * netif_xmit*stopped functions, they should only be using netif_tx_*. 554 */ 555 556 struct netdev_queue { 557 /* 558 * read mostly part 559 */ 560 struct net_device *dev; 561 struct Qdisc __rcu *qdisc; 562 struct Qdisc *qdisc_sleeping; 563 #ifdef CONFIG_SYSFS 564 struct kobject kobj; 565 #endif 566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 567 int numa_node; 568 #endif 569 /* 570 * write mostly part 571 */ 572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 573 int xmit_lock_owner; 574 /* 575 * please use this field instead of dev->trans_start 576 */ 577 unsigned long trans_start; 578 579 /* 580 * Number of TX timeouts for this queue 581 * (/sys/class/net/DEV/Q/trans_timeout) 582 */ 583 unsigned long trans_timeout; 584 585 unsigned long state; 586 587 #ifdef CONFIG_BQL 588 struct dql dql; 589 #endif 590 unsigned long tx_maxrate; 591 } ____cacheline_aligned_in_smp; 592 593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 594 { 595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 596 return q->numa_node; 597 #else 598 return NUMA_NO_NODE; 599 #endif 600 } 601 602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 603 { 604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 605 q->numa_node = node; 606 #endif 607 } 608 609 #ifdef CONFIG_RPS 610 /* 611 * This structure holds an RPS map which can be of variable length. The 612 * map is an array of CPUs. 613 */ 614 struct rps_map { 615 unsigned int len; 616 struct rcu_head rcu; 617 u16 cpus[0]; 618 }; 619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 620 621 /* 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 623 * tail pointer for that CPU's input queue at the time of last enqueue, and 624 * a hardware filter index. 625 */ 626 struct rps_dev_flow { 627 u16 cpu; 628 u16 filter; 629 unsigned int last_qtail; 630 }; 631 #define RPS_NO_FILTER 0xffff 632 633 /* 634 * The rps_dev_flow_table structure contains a table of flow mappings. 635 */ 636 struct rps_dev_flow_table { 637 unsigned int mask; 638 struct rcu_head rcu; 639 struct rps_dev_flow flows[0]; 640 }; 641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 642 ((_num) * sizeof(struct rps_dev_flow))) 643 644 /* 645 * The rps_sock_flow_table contains mappings of flows to the last CPU 646 * on which they were processed by the application (set in recvmsg). 647 * Each entry is a 32bit value. Upper part is the high order bits 648 * of flow hash, lower part is cpu number. 649 * rps_cpu_mask is used to partition the space, depending on number of 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 652 * meaning we use 32-6=26 bits for the hash. 653 */ 654 struct rps_sock_flow_table { 655 u32 mask; 656 657 u32 ents[0] ____cacheline_aligned_in_smp; 658 }; 659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 660 661 #define RPS_NO_CPU 0xffff 662 663 extern u32 rps_cpu_mask; 664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 665 666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 667 u32 hash) 668 { 669 if (table && hash) { 670 unsigned int index = hash & table->mask; 671 u32 val = hash & ~rps_cpu_mask; 672 673 /* We only give a hint, preemption can change cpu under us */ 674 val |= raw_smp_processor_id(); 675 676 if (table->ents[index] != val) 677 table->ents[index] = val; 678 } 679 } 680 681 #ifdef CONFIG_RFS_ACCEL 682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 683 u16 filter_id); 684 #endif 685 #endif /* CONFIG_RPS */ 686 687 /* This structure contains an instance of an RX queue. */ 688 struct netdev_rx_queue { 689 #ifdef CONFIG_RPS 690 struct rps_map __rcu *rps_map; 691 struct rps_dev_flow_table __rcu *rps_flow_table; 692 #endif 693 struct kobject kobj; 694 struct net_device *dev; 695 } ____cacheline_aligned_in_smp; 696 697 /* 698 * RX queue sysfs structures and functions. 699 */ 700 struct rx_queue_attribute { 701 struct attribute attr; 702 ssize_t (*show)(struct netdev_rx_queue *queue, 703 struct rx_queue_attribute *attr, char *buf); 704 ssize_t (*store)(struct netdev_rx_queue *queue, 705 struct rx_queue_attribute *attr, const char *buf, size_t len); 706 }; 707 708 #ifdef CONFIG_XPS 709 /* 710 * This structure holds an XPS map which can be of variable length. The 711 * map is an array of queues. 712 */ 713 struct xps_map { 714 unsigned int len; 715 unsigned int alloc_len; 716 struct rcu_head rcu; 717 u16 queues[0]; 718 }; 719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 721 / sizeof(u16)) 722 723 /* 724 * This structure holds all XPS maps for device. Maps are indexed by CPU. 725 */ 726 struct xps_dev_maps { 727 struct rcu_head rcu; 728 struct xps_map __rcu *cpu_map[0]; 729 }; 730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 731 (nr_cpu_ids * sizeof(struct xps_map *))) 732 #endif /* CONFIG_XPS */ 733 734 #define TC_MAX_QUEUE 16 735 #define TC_BITMASK 15 736 /* HW offloaded queuing disciplines txq count and offset maps */ 737 struct netdev_tc_txq { 738 u16 count; 739 u16 offset; 740 }; 741 742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 743 /* 744 * This structure is to hold information about the device 745 * configured to run FCoE protocol stack. 746 */ 747 struct netdev_fcoe_hbainfo { 748 char manufacturer[64]; 749 char serial_number[64]; 750 char hardware_version[64]; 751 char driver_version[64]; 752 char optionrom_version[64]; 753 char firmware_version[64]; 754 char model[256]; 755 char model_description[256]; 756 }; 757 #endif 758 759 #define MAX_PHYS_ITEM_ID_LEN 32 760 761 /* This structure holds a unique identifier to identify some 762 * physical item (port for example) used by a netdevice. 763 */ 764 struct netdev_phys_item_id { 765 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 766 unsigned char id_len; 767 }; 768 769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772 /* 773 * This structure defines the management hooks for network devices. 774 * The following hooks can be defined; unless noted otherwise, they are 775 * optional and can be filled with a null pointer. 776 * 777 * int (*ndo_init)(struct net_device *dev); 778 * This function is called once when network device is registered. 779 * The network device can use this to any late stage initializaton 780 * or semantic validattion. It can fail with an error code which will 781 * be propogated back to register_netdev 782 * 783 * void (*ndo_uninit)(struct net_device *dev); 784 * This function is called when device is unregistered or when registration 785 * fails. It is not called if init fails. 786 * 787 * int (*ndo_open)(struct net_device *dev); 788 * This function is called when network device transistions to the up 789 * state. 790 * 791 * int (*ndo_stop)(struct net_device *dev); 792 * This function is called when network device transistions to the down 793 * state. 794 * 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 796 * struct net_device *dev); 797 * Called when a packet needs to be transmitted. 798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 799 * the queue before that can happen; it's for obsolete devices and weird 800 * corner cases, but the stack really does a non-trivial amount 801 * of useless work if you return NETDEV_TX_BUSY. 802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 803 * Required can not be NULL. 804 * 805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 806 * void *accel_priv, select_queue_fallback_t fallback); 807 * Called to decide which queue to when device supports multiple 808 * transmit queues. 809 * 810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 811 * This function is called to allow device receiver to make 812 * changes to configuration when multicast or promiscious is enabled. 813 * 814 * void (*ndo_set_rx_mode)(struct net_device *dev); 815 * This function is called device changes address list filtering. 816 * If driver handles unicast address filtering, it should set 817 * IFF_UNICAST_FLT to its priv_flags. 818 * 819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 820 * This function is called when the Media Access Control address 821 * needs to be changed. If this interface is not defined, the 822 * mac address can not be changed. 823 * 824 * int (*ndo_validate_addr)(struct net_device *dev); 825 * Test if Media Access Control address is valid for the device. 826 * 827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 828 * Called when a user request an ioctl which can't be handled by 829 * the generic interface code. If not defined ioctl's return 830 * not supported error code. 831 * 832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 833 * Used to set network devices bus interface parameters. This interface 834 * is retained for legacy reason, new devices should use the bus 835 * interface (PCI) for low level management. 836 * 837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 838 * Called when a user wants to change the Maximum Transfer Unit 839 * of a device. If not defined, any request to change MTU will 840 * will return an error. 841 * 842 * void (*ndo_tx_timeout)(struct net_device *dev); 843 * Callback uses when the transmitter has not made any progress 844 * for dev->watchdog ticks. 845 * 846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 847 * struct rtnl_link_stats64 *storage); 848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 849 * Called when a user wants to get the network device usage 850 * statistics. Drivers must do one of the following: 851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 852 * rtnl_link_stats64 structure passed by the caller. 853 * 2. Define @ndo_get_stats to update a net_device_stats structure 854 * (which should normally be dev->stats) and return a pointer to 855 * it. The structure may be changed asynchronously only if each 856 * field is written atomically. 857 * 3. Update dev->stats asynchronously and atomically, and define 858 * neither operation. 859 * 860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 861 * If device support VLAN filtering this function is called when a 862 * VLAN id is registered. 863 * 864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 865 * If device support VLAN filtering this function is called when a 866 * VLAN id is unregistered. 867 * 868 * void (*ndo_poll_controller)(struct net_device *dev); 869 * 870 * SR-IOV management functions. 871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 874 * int max_tx_rate); 875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 876 * int (*ndo_get_vf_config)(struct net_device *dev, 877 * int vf, struct ifla_vf_info *ivf); 878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 880 * struct nlattr *port[]); 881 * 882 * Enable or disable the VF ability to query its RSS Redirection Table and 883 * Hash Key. This is needed since on some devices VF share this information 884 * with PF and querying it may adduce a theoretical security risk. 885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 888 * Called to setup 'tc' number of traffic classes in the net device. This 889 * is always called from the stack with the rtnl lock held and netif tx 890 * queues stopped. This allows the netdevice to perform queue management 891 * safely. 892 * 893 * Fiber Channel over Ethernet (FCoE) offload functions. 894 * int (*ndo_fcoe_enable)(struct net_device *dev); 895 * Called when the FCoE protocol stack wants to start using LLD for FCoE 896 * so the underlying device can perform whatever needed configuration or 897 * initialization to support acceleration of FCoE traffic. 898 * 899 * int (*ndo_fcoe_disable)(struct net_device *dev); 900 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 901 * so the underlying device can perform whatever needed clean-ups to 902 * stop supporting acceleration of FCoE traffic. 903 * 904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 905 * struct scatterlist *sgl, unsigned int sgc); 906 * Called when the FCoE Initiator wants to initialize an I/O that 907 * is a possible candidate for Direct Data Placement (DDP). The LLD can 908 * perform necessary setup and returns 1 to indicate the device is set up 909 * successfully to perform DDP on this I/O, otherwise this returns 0. 910 * 911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 912 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 913 * indicated by the FC exchange id 'xid', so the underlying device can 914 * clean up and reuse resources for later DDP requests. 915 * 916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 917 * struct scatterlist *sgl, unsigned int sgc); 918 * Called when the FCoE Target wants to initialize an I/O that 919 * is a possible candidate for Direct Data Placement (DDP). The LLD can 920 * perform necessary setup and returns 1 to indicate the device is set up 921 * successfully to perform DDP on this I/O, otherwise this returns 0. 922 * 923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 924 * struct netdev_fcoe_hbainfo *hbainfo); 925 * Called when the FCoE Protocol stack wants information on the underlying 926 * device. This information is utilized by the FCoE protocol stack to 927 * register attributes with Fiber Channel management service as per the 928 * FC-GS Fabric Device Management Information(FDMI) specification. 929 * 930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 931 * Called when the underlying device wants to override default World Wide 932 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 933 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 934 * protocol stack to use. 935 * 936 * RFS acceleration. 937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 938 * u16 rxq_index, u32 flow_id); 939 * Set hardware filter for RFS. rxq_index is the target queue index; 940 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 941 * Return the filter ID on success, or a negative error code. 942 * 943 * Slave management functions (for bridge, bonding, etc). 944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 945 * Called to make another netdev an underling. 946 * 947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 948 * Called to release previously enslaved netdev. 949 * 950 * Feature/offload setting functions. 951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 952 * netdev_features_t features); 953 * Adjusts the requested feature flags according to device-specific 954 * constraints, and returns the resulting flags. Must not modify 955 * the device state. 956 * 957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 958 * Called to update device configuration to new features. Passed 959 * feature set might be less than what was returned by ndo_fix_features()). 960 * Must return >0 or -errno if it changed dev->features itself. 961 * 962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 963 * struct net_device *dev, 964 * const unsigned char *addr, u16 vid, u16 flags) 965 * Adds an FDB entry to dev for addr. 966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 967 * struct net_device *dev, 968 * const unsigned char *addr, u16 vid) 969 * Deletes the FDB entry from dev coresponding to addr. 970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 971 * struct net_device *dev, struct net_device *filter_dev, 972 * int idx) 973 * Used to add FDB entries to dump requests. Implementers should add 974 * entries to skb and update idx with the number of entries. 975 * 976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 977 * u16 flags) 978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 979 * struct net_device *dev, u32 filter_mask) 980 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 981 * u16 flags); 982 * 983 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 984 * Called to change device carrier. Soft-devices (like dummy, team, etc) 985 * which do not represent real hardware may define this to allow their 986 * userspace components to manage their virtual carrier state. Devices 987 * that determine carrier state from physical hardware properties (eg 988 * network cables) or protocol-dependent mechanisms (eg 989 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 990 * 991 * int (*ndo_get_phys_port_id)(struct net_device *dev, 992 * struct netdev_phys_item_id *ppid); 993 * Called to get ID of physical port of this device. If driver does 994 * not implement this, it is assumed that the hw is not able to have 995 * multiple net devices on single physical port. 996 * 997 * void (*ndo_add_vxlan_port)(struct net_device *dev, 998 * sa_family_t sa_family, __be16 port); 999 * Called by vxlan to notiy a driver about the UDP port and socket 1000 * address family that vxlan is listnening to. It is called only when 1001 * a new port starts listening. The operation is protected by the 1002 * vxlan_net->sock_lock. 1003 * 1004 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1005 * sa_family_t sa_family, __be16 port); 1006 * Called by vxlan to notify the driver about a UDP port and socket 1007 * address family that vxlan is not listening to anymore. The operation 1008 * is protected by the vxlan_net->sock_lock. 1009 * 1010 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1011 * struct net_device *dev) 1012 * Called by upper layer devices to accelerate switching or other 1013 * station functionality into hardware. 'pdev is the lowerdev 1014 * to use for the offload and 'dev' is the net device that will 1015 * back the offload. Returns a pointer to the private structure 1016 * the upper layer will maintain. 1017 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1018 * Called by upper layer device to delete the station created 1019 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1020 * the station and priv is the structure returned by the add 1021 * operation. 1022 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1023 * struct net_device *dev, 1024 * void *priv); 1025 * Callback to use for xmit over the accelerated station. This 1026 * is used in place of ndo_start_xmit on accelerated net 1027 * devices. 1028 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1029 * struct net_device *dev 1030 * netdev_features_t features); 1031 * Called by core transmit path to determine if device is capable of 1032 * performing offload operations on a given packet. This is to give 1033 * the device an opportunity to implement any restrictions that cannot 1034 * be otherwise expressed by feature flags. The check is called with 1035 * the set of features that the stack has calculated and it returns 1036 * those the driver believes to be appropriate. 1037 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1038 * int queue_index, u32 maxrate); 1039 * Called when a user wants to set a max-rate limitation of specific 1040 * TX queue. 1041 * int (*ndo_get_iflink)(const struct net_device *dev); 1042 * Called to get the iflink value of this device. 1043 */ 1044 struct net_device_ops { 1045 int (*ndo_init)(struct net_device *dev); 1046 void (*ndo_uninit)(struct net_device *dev); 1047 int (*ndo_open)(struct net_device *dev); 1048 int (*ndo_stop)(struct net_device *dev); 1049 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1050 struct net_device *dev); 1051 u16 (*ndo_select_queue)(struct net_device *dev, 1052 struct sk_buff *skb, 1053 void *accel_priv, 1054 select_queue_fallback_t fallback); 1055 void (*ndo_change_rx_flags)(struct net_device *dev, 1056 int flags); 1057 void (*ndo_set_rx_mode)(struct net_device *dev); 1058 int (*ndo_set_mac_address)(struct net_device *dev, 1059 void *addr); 1060 int (*ndo_validate_addr)(struct net_device *dev); 1061 int (*ndo_do_ioctl)(struct net_device *dev, 1062 struct ifreq *ifr, int cmd); 1063 int (*ndo_set_config)(struct net_device *dev, 1064 struct ifmap *map); 1065 int (*ndo_change_mtu)(struct net_device *dev, 1066 int new_mtu); 1067 int (*ndo_neigh_setup)(struct net_device *dev, 1068 struct neigh_parms *); 1069 void (*ndo_tx_timeout) (struct net_device *dev); 1070 1071 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1072 struct rtnl_link_stats64 *storage); 1073 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1074 1075 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1076 __be16 proto, u16 vid); 1077 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1078 __be16 proto, u16 vid); 1079 #ifdef CONFIG_NET_POLL_CONTROLLER 1080 void (*ndo_poll_controller)(struct net_device *dev); 1081 int (*ndo_netpoll_setup)(struct net_device *dev, 1082 struct netpoll_info *info); 1083 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1084 #endif 1085 #ifdef CONFIG_NET_RX_BUSY_POLL 1086 int (*ndo_busy_poll)(struct napi_struct *dev); 1087 #endif 1088 int (*ndo_set_vf_mac)(struct net_device *dev, 1089 int queue, u8 *mac); 1090 int (*ndo_set_vf_vlan)(struct net_device *dev, 1091 int queue, u16 vlan, u8 qos); 1092 int (*ndo_set_vf_rate)(struct net_device *dev, 1093 int vf, int min_tx_rate, 1094 int max_tx_rate); 1095 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1096 int vf, bool setting); 1097 int (*ndo_get_vf_config)(struct net_device *dev, 1098 int vf, 1099 struct ifla_vf_info *ivf); 1100 int (*ndo_set_vf_link_state)(struct net_device *dev, 1101 int vf, int link_state); 1102 int (*ndo_set_vf_port)(struct net_device *dev, 1103 int vf, 1104 struct nlattr *port[]); 1105 int (*ndo_get_vf_port)(struct net_device *dev, 1106 int vf, struct sk_buff *skb); 1107 int (*ndo_set_vf_rss_query_en)( 1108 struct net_device *dev, 1109 int vf, bool setting); 1110 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1111 #if IS_ENABLED(CONFIG_FCOE) 1112 int (*ndo_fcoe_enable)(struct net_device *dev); 1113 int (*ndo_fcoe_disable)(struct net_device *dev); 1114 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1115 u16 xid, 1116 struct scatterlist *sgl, 1117 unsigned int sgc); 1118 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1119 u16 xid); 1120 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1121 u16 xid, 1122 struct scatterlist *sgl, 1123 unsigned int sgc); 1124 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1125 struct netdev_fcoe_hbainfo *hbainfo); 1126 #endif 1127 1128 #if IS_ENABLED(CONFIG_LIBFCOE) 1129 #define NETDEV_FCOE_WWNN 0 1130 #define NETDEV_FCOE_WWPN 1 1131 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1132 u64 *wwn, int type); 1133 #endif 1134 1135 #ifdef CONFIG_RFS_ACCEL 1136 int (*ndo_rx_flow_steer)(struct net_device *dev, 1137 const struct sk_buff *skb, 1138 u16 rxq_index, 1139 u32 flow_id); 1140 #endif 1141 int (*ndo_add_slave)(struct net_device *dev, 1142 struct net_device *slave_dev); 1143 int (*ndo_del_slave)(struct net_device *dev, 1144 struct net_device *slave_dev); 1145 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1146 netdev_features_t features); 1147 int (*ndo_set_features)(struct net_device *dev, 1148 netdev_features_t features); 1149 int (*ndo_neigh_construct)(struct neighbour *n); 1150 void (*ndo_neigh_destroy)(struct neighbour *n); 1151 1152 int (*ndo_fdb_add)(struct ndmsg *ndm, 1153 struct nlattr *tb[], 1154 struct net_device *dev, 1155 const unsigned char *addr, 1156 u16 vid, 1157 u16 flags); 1158 int (*ndo_fdb_del)(struct ndmsg *ndm, 1159 struct nlattr *tb[], 1160 struct net_device *dev, 1161 const unsigned char *addr, 1162 u16 vid); 1163 int (*ndo_fdb_dump)(struct sk_buff *skb, 1164 struct netlink_callback *cb, 1165 struct net_device *dev, 1166 struct net_device *filter_dev, 1167 int idx); 1168 1169 int (*ndo_bridge_setlink)(struct net_device *dev, 1170 struct nlmsghdr *nlh, 1171 u16 flags); 1172 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1173 u32 pid, u32 seq, 1174 struct net_device *dev, 1175 u32 filter_mask); 1176 int (*ndo_bridge_dellink)(struct net_device *dev, 1177 struct nlmsghdr *nlh, 1178 u16 flags); 1179 int (*ndo_change_carrier)(struct net_device *dev, 1180 bool new_carrier); 1181 int (*ndo_get_phys_port_id)(struct net_device *dev, 1182 struct netdev_phys_item_id *ppid); 1183 int (*ndo_get_phys_port_name)(struct net_device *dev, 1184 char *name, size_t len); 1185 void (*ndo_add_vxlan_port)(struct net_device *dev, 1186 sa_family_t sa_family, 1187 __be16 port); 1188 void (*ndo_del_vxlan_port)(struct net_device *dev, 1189 sa_family_t sa_family, 1190 __be16 port); 1191 1192 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1193 struct net_device *dev); 1194 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1195 void *priv); 1196 1197 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1198 struct net_device *dev, 1199 void *priv); 1200 int (*ndo_get_lock_subclass)(struct net_device *dev); 1201 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1202 struct net_device *dev, 1203 netdev_features_t features); 1204 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1205 int queue_index, 1206 u32 maxrate); 1207 int (*ndo_get_iflink)(const struct net_device *dev); 1208 }; 1209 1210 /** 1211 * enum net_device_priv_flags - &struct net_device priv_flags 1212 * 1213 * These are the &struct net_device, they are only set internally 1214 * by drivers and used in the kernel. These flags are invisible to 1215 * userspace, this means that the order of these flags can change 1216 * during any kernel release. 1217 * 1218 * You should have a pretty good reason to be extending these flags. 1219 * 1220 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1221 * @IFF_EBRIDGE: Ethernet bridging device 1222 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1223 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1224 * @IFF_MASTER_ALB: bonding master, balance-alb 1225 * @IFF_BONDING: bonding master or slave 1226 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1227 * @IFF_ISATAP: ISATAP interface (RFC4214) 1228 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1229 * @IFF_WAN_HDLC: WAN HDLC device 1230 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1231 * release skb->dst 1232 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1233 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1234 * @IFF_MACVLAN_PORT: device used as macvlan port 1235 * @IFF_BRIDGE_PORT: device used as bridge port 1236 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1237 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1238 * @IFF_UNICAST_FLT: Supports unicast filtering 1239 * @IFF_TEAM_PORT: device used as team port 1240 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1241 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1242 * change when it's running 1243 * @IFF_MACVLAN: Macvlan device 1244 */ 1245 enum netdev_priv_flags { 1246 IFF_802_1Q_VLAN = 1<<0, 1247 IFF_EBRIDGE = 1<<1, 1248 IFF_SLAVE_INACTIVE = 1<<2, 1249 IFF_MASTER_8023AD = 1<<3, 1250 IFF_MASTER_ALB = 1<<4, 1251 IFF_BONDING = 1<<5, 1252 IFF_SLAVE_NEEDARP = 1<<6, 1253 IFF_ISATAP = 1<<7, 1254 IFF_MASTER_ARPMON = 1<<8, 1255 IFF_WAN_HDLC = 1<<9, 1256 IFF_XMIT_DST_RELEASE = 1<<10, 1257 IFF_DONT_BRIDGE = 1<<11, 1258 IFF_DISABLE_NETPOLL = 1<<12, 1259 IFF_MACVLAN_PORT = 1<<13, 1260 IFF_BRIDGE_PORT = 1<<14, 1261 IFF_OVS_DATAPATH = 1<<15, 1262 IFF_TX_SKB_SHARING = 1<<16, 1263 IFF_UNICAST_FLT = 1<<17, 1264 IFF_TEAM_PORT = 1<<18, 1265 IFF_SUPP_NOFCS = 1<<19, 1266 IFF_LIVE_ADDR_CHANGE = 1<<20, 1267 IFF_MACVLAN = 1<<21, 1268 IFF_XMIT_DST_RELEASE_PERM = 1<<22, 1269 IFF_IPVLAN_MASTER = 1<<23, 1270 IFF_IPVLAN_SLAVE = 1<<24, 1271 }; 1272 1273 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1274 #define IFF_EBRIDGE IFF_EBRIDGE 1275 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1276 #define IFF_MASTER_8023AD IFF_MASTER_8023AD 1277 #define IFF_MASTER_ALB IFF_MASTER_ALB 1278 #define IFF_BONDING IFF_BONDING 1279 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1280 #define IFF_ISATAP IFF_ISATAP 1281 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1282 #define IFF_WAN_HDLC IFF_WAN_HDLC 1283 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1284 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1285 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1286 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1287 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1288 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1289 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1290 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1291 #define IFF_TEAM_PORT IFF_TEAM_PORT 1292 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1293 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1294 #define IFF_MACVLAN IFF_MACVLAN 1295 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1296 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1297 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1298 1299 /** 1300 * struct net_device - The DEVICE structure. 1301 * Actually, this whole structure is a big mistake. It mixes I/O 1302 * data with strictly "high-level" data, and it has to know about 1303 * almost every data structure used in the INET module. 1304 * 1305 * @name: This is the first field of the "visible" part of this structure 1306 * (i.e. as seen by users in the "Space.c" file). It is the name 1307 * of the interface. 1308 * 1309 * @name_hlist: Device name hash chain, please keep it close to name[] 1310 * @ifalias: SNMP alias 1311 * @mem_end: Shared memory end 1312 * @mem_start: Shared memory start 1313 * @base_addr: Device I/O address 1314 * @irq: Device IRQ number 1315 * 1316 * @carrier_changes: Stats to monitor carrier on<->off transitions 1317 * 1318 * @state: Generic network queuing layer state, see netdev_state_t 1319 * @dev_list: The global list of network devices 1320 * @napi_list: List entry, that is used for polling napi devices 1321 * @unreg_list: List entry, that is used, when we are unregistering the 1322 * device, see the function unregister_netdev 1323 * @close_list: List entry, that is used, when we are closing the device 1324 * 1325 * @adj_list: Directly linked devices, like slaves for bonding 1326 * @all_adj_list: All linked devices, *including* neighbours 1327 * @features: Currently active device features 1328 * @hw_features: User-changeable features 1329 * 1330 * @wanted_features: User-requested features 1331 * @vlan_features: Mask of features inheritable by VLAN devices 1332 * 1333 * @hw_enc_features: Mask of features inherited by encapsulating devices 1334 * This field indicates what encapsulation 1335 * offloads the hardware is capable of doing, 1336 * and drivers will need to set them appropriately. 1337 * 1338 * @mpls_features: Mask of features inheritable by MPLS 1339 * 1340 * @ifindex: interface index 1341 * @group: The group, that the device belongs to 1342 * 1343 * @stats: Statistics struct, which was left as a legacy, use 1344 * rtnl_link_stats64 instead 1345 * 1346 * @rx_dropped: Dropped packets by core network, 1347 * do not use this in drivers 1348 * @tx_dropped: Dropped packets by core network, 1349 * do not use this in drivers 1350 * 1351 * @wireless_handlers: List of functions to handle Wireless Extensions, 1352 * instead of ioctl, 1353 * see <net/iw_handler.h> for details. 1354 * @wireless_data: Instance data managed by the core of wireless extensions 1355 * 1356 * @netdev_ops: Includes several pointers to callbacks, 1357 * if one wants to override the ndo_*() functions 1358 * @ethtool_ops: Management operations 1359 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1360 * of Layer 2 headers. 1361 * 1362 * @flags: Interface flags (a la BSD) 1363 * @priv_flags: Like 'flags' but invisible to userspace, 1364 * see if.h for the definitions 1365 * @gflags: Global flags ( kept as legacy ) 1366 * @padded: How much padding added by alloc_netdev() 1367 * @operstate: RFC2863 operstate 1368 * @link_mode: Mapping policy to operstate 1369 * @if_port: Selectable AUI, TP, ... 1370 * @dma: DMA channel 1371 * @mtu: Interface MTU value 1372 * @type: Interface hardware type 1373 * @hard_header_len: Hardware header length 1374 * 1375 * @needed_headroom: Extra headroom the hardware may need, but not in all 1376 * cases can this be guaranteed 1377 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1378 * cases can this be guaranteed. Some cases also use 1379 * LL_MAX_HEADER instead to allocate the skb 1380 * 1381 * interface address info: 1382 * 1383 * @perm_addr: Permanent hw address 1384 * @addr_assign_type: Hw address assignment type 1385 * @addr_len: Hardware address length 1386 * @neigh_priv_len; Used in neigh_alloc(), 1387 * initialized only in atm/clip.c 1388 * @dev_id: Used to differentiate devices that share 1389 * the same link layer address 1390 * @dev_port: Used to differentiate devices that share 1391 * the same function 1392 * @addr_list_lock: XXX: need comments on this one 1393 * @uc_promisc: Counter, that indicates, that promiscuous mode 1394 * has been enabled due to the need to listen to 1395 * additional unicast addresses in a device that 1396 * does not implement ndo_set_rx_mode() 1397 * @uc: unicast mac addresses 1398 * @mc: multicast mac addresses 1399 * @dev_addrs: list of device hw addresses 1400 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1401 * @promiscuity: Number of times, the NIC is told to work in 1402 * Promiscuous mode, if it becomes 0 the NIC will 1403 * exit from working in Promiscuous mode 1404 * @allmulti: Counter, enables or disables allmulticast mode 1405 * 1406 * @vlan_info: VLAN info 1407 * @dsa_ptr: dsa specific data 1408 * @tipc_ptr: TIPC specific data 1409 * @atalk_ptr: AppleTalk link 1410 * @ip_ptr: IPv4 specific data 1411 * @dn_ptr: DECnet specific data 1412 * @ip6_ptr: IPv6 specific data 1413 * @ax25_ptr: AX.25 specific data 1414 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1415 * 1416 * @last_rx: Time of last Rx 1417 * @dev_addr: Hw address (before bcast, 1418 * because most packets are unicast) 1419 * 1420 * @_rx: Array of RX queues 1421 * @num_rx_queues: Number of RX queues 1422 * allocated at register_netdev() time 1423 * @real_num_rx_queues: Number of RX queues currently active in device 1424 * 1425 * @rx_handler: handler for received packets 1426 * @rx_handler_data: XXX: need comments on this one 1427 * @ingress_queue: XXX: need comments on this one 1428 * @broadcast: hw bcast address 1429 * 1430 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1431 * indexed by RX queue number. Assigned by driver. 1432 * This must only be set if the ndo_rx_flow_steer 1433 * operation is defined 1434 * @index_hlist: Device index hash chain 1435 * 1436 * @_tx: Array of TX queues 1437 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1438 * @real_num_tx_queues: Number of TX queues currently active in device 1439 * @qdisc: Root qdisc from userspace point of view 1440 * @tx_queue_len: Max frames per queue allowed 1441 * @tx_global_lock: XXX: need comments on this one 1442 * 1443 * @xps_maps: XXX: need comments on this one 1444 * 1445 * @trans_start: Time (in jiffies) of last Tx 1446 * @watchdog_timeo: Represents the timeout that is used by 1447 * the watchdog ( see dev_watchdog() ) 1448 * @watchdog_timer: List of timers 1449 * 1450 * @pcpu_refcnt: Number of references to this device 1451 * @todo_list: Delayed register/unregister 1452 * @link_watch_list: XXX: need comments on this one 1453 * 1454 * @reg_state: Register/unregister state machine 1455 * @dismantle: Device is going to be freed 1456 * @rtnl_link_state: This enum represents the phases of creating 1457 * a new link 1458 * 1459 * @destructor: Called from unregister, 1460 * can be used to call free_netdev 1461 * @npinfo: XXX: need comments on this one 1462 * @nd_net: Network namespace this network device is inside 1463 * 1464 * @ml_priv: Mid-layer private 1465 * @lstats: Loopback statistics 1466 * @tstats: Tunnel statistics 1467 * @dstats: Dummy statistics 1468 * @vstats: Virtual ethernet statistics 1469 * 1470 * @garp_port: GARP 1471 * @mrp_port: MRP 1472 * 1473 * @dev: Class/net/name entry 1474 * @sysfs_groups: Space for optional device, statistics and wireless 1475 * sysfs groups 1476 * 1477 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1478 * @rtnl_link_ops: Rtnl_link_ops 1479 * 1480 * @gso_max_size: Maximum size of generic segmentation offload 1481 * @gso_max_segs: Maximum number of segments that can be passed to the 1482 * NIC for GSO 1483 * @gso_min_segs: Minimum number of segments that can be passed to the 1484 * NIC for GSO 1485 * 1486 * @dcbnl_ops: Data Center Bridging netlink ops 1487 * @num_tc: Number of traffic classes in the net device 1488 * @tc_to_txq: XXX: need comments on this one 1489 * @prio_tc_map XXX: need comments on this one 1490 * 1491 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1492 * 1493 * @priomap: XXX: need comments on this one 1494 * @phydev: Physical device may attach itself 1495 * for hardware timestamping 1496 * 1497 * @qdisc_tx_busylock: XXX: need comments on this one 1498 * 1499 * @pm_qos_req: Power Management QoS object 1500 * 1501 * FIXME: cleanup struct net_device such that network protocol info 1502 * moves out. 1503 */ 1504 1505 struct net_device { 1506 char name[IFNAMSIZ]; 1507 struct hlist_node name_hlist; 1508 char *ifalias; 1509 /* 1510 * I/O specific fields 1511 * FIXME: Merge these and struct ifmap into one 1512 */ 1513 unsigned long mem_end; 1514 unsigned long mem_start; 1515 unsigned long base_addr; 1516 int irq; 1517 1518 atomic_t carrier_changes; 1519 1520 /* 1521 * Some hardware also needs these fields (state,dev_list, 1522 * napi_list,unreg_list,close_list) but they are not 1523 * part of the usual set specified in Space.c. 1524 */ 1525 1526 unsigned long state; 1527 1528 struct list_head dev_list; 1529 struct list_head napi_list; 1530 struct list_head unreg_list; 1531 struct list_head close_list; 1532 struct list_head ptype_all; 1533 struct list_head ptype_specific; 1534 1535 struct { 1536 struct list_head upper; 1537 struct list_head lower; 1538 } adj_list; 1539 1540 struct { 1541 struct list_head upper; 1542 struct list_head lower; 1543 } all_adj_list; 1544 1545 netdev_features_t features; 1546 netdev_features_t hw_features; 1547 netdev_features_t wanted_features; 1548 netdev_features_t vlan_features; 1549 netdev_features_t hw_enc_features; 1550 netdev_features_t mpls_features; 1551 1552 int ifindex; 1553 int group; 1554 1555 struct net_device_stats stats; 1556 1557 atomic_long_t rx_dropped; 1558 atomic_long_t tx_dropped; 1559 1560 #ifdef CONFIG_WIRELESS_EXT 1561 const struct iw_handler_def * wireless_handlers; 1562 struct iw_public_data * wireless_data; 1563 #endif 1564 const struct net_device_ops *netdev_ops; 1565 const struct ethtool_ops *ethtool_ops; 1566 #ifdef CONFIG_NET_SWITCHDEV 1567 const struct swdev_ops *swdev_ops; 1568 #endif 1569 1570 const struct header_ops *header_ops; 1571 1572 unsigned int flags; 1573 unsigned int priv_flags; 1574 1575 unsigned short gflags; 1576 unsigned short padded; 1577 1578 unsigned char operstate; 1579 unsigned char link_mode; 1580 1581 unsigned char if_port; 1582 unsigned char dma; 1583 1584 unsigned int mtu; 1585 unsigned short type; 1586 unsigned short hard_header_len; 1587 1588 unsigned short needed_headroom; 1589 unsigned short needed_tailroom; 1590 1591 /* Interface address info. */ 1592 unsigned char perm_addr[MAX_ADDR_LEN]; 1593 unsigned char addr_assign_type; 1594 unsigned char addr_len; 1595 unsigned short neigh_priv_len; 1596 unsigned short dev_id; 1597 unsigned short dev_port; 1598 spinlock_t addr_list_lock; 1599 unsigned char name_assign_type; 1600 bool uc_promisc; 1601 struct netdev_hw_addr_list uc; 1602 struct netdev_hw_addr_list mc; 1603 struct netdev_hw_addr_list dev_addrs; 1604 1605 #ifdef CONFIG_SYSFS 1606 struct kset *queues_kset; 1607 #endif 1608 unsigned int promiscuity; 1609 unsigned int allmulti; 1610 1611 1612 /* Protocol specific pointers */ 1613 1614 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1615 struct vlan_info __rcu *vlan_info; 1616 #endif 1617 #if IS_ENABLED(CONFIG_NET_DSA) 1618 struct dsa_switch_tree *dsa_ptr; 1619 #endif 1620 #if IS_ENABLED(CONFIG_TIPC) 1621 struct tipc_bearer __rcu *tipc_ptr; 1622 #endif 1623 void *atalk_ptr; 1624 struct in_device __rcu *ip_ptr; 1625 struct dn_dev __rcu *dn_ptr; 1626 struct inet6_dev __rcu *ip6_ptr; 1627 void *ax25_ptr; 1628 struct wireless_dev *ieee80211_ptr; 1629 struct wpan_dev *ieee802154_ptr; 1630 1631 /* 1632 * Cache lines mostly used on receive path (including eth_type_trans()) 1633 */ 1634 unsigned long last_rx; 1635 1636 /* Interface address info used in eth_type_trans() */ 1637 unsigned char *dev_addr; 1638 1639 1640 #ifdef CONFIG_SYSFS 1641 struct netdev_rx_queue *_rx; 1642 1643 unsigned int num_rx_queues; 1644 unsigned int real_num_rx_queues; 1645 1646 #endif 1647 1648 unsigned long gro_flush_timeout; 1649 rx_handler_func_t __rcu *rx_handler; 1650 void __rcu *rx_handler_data; 1651 1652 struct netdev_queue __rcu *ingress_queue; 1653 unsigned char broadcast[MAX_ADDR_LEN]; 1654 #ifdef CONFIG_RFS_ACCEL 1655 struct cpu_rmap *rx_cpu_rmap; 1656 #endif 1657 struct hlist_node index_hlist; 1658 1659 /* 1660 * Cache lines mostly used on transmit path 1661 */ 1662 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1663 unsigned int num_tx_queues; 1664 unsigned int real_num_tx_queues; 1665 struct Qdisc *qdisc; 1666 unsigned long tx_queue_len; 1667 spinlock_t tx_global_lock; 1668 int watchdog_timeo; 1669 1670 #ifdef CONFIG_XPS 1671 struct xps_dev_maps __rcu *xps_maps; 1672 #endif 1673 1674 /* These may be needed for future network-power-down code. */ 1675 1676 /* 1677 * trans_start here is expensive for high speed devices on SMP, 1678 * please use netdev_queue->trans_start instead. 1679 */ 1680 unsigned long trans_start; 1681 1682 struct timer_list watchdog_timer; 1683 1684 int __percpu *pcpu_refcnt; 1685 struct list_head todo_list; 1686 1687 struct list_head link_watch_list; 1688 1689 enum { NETREG_UNINITIALIZED=0, 1690 NETREG_REGISTERED, /* completed register_netdevice */ 1691 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1692 NETREG_UNREGISTERED, /* completed unregister todo */ 1693 NETREG_RELEASED, /* called free_netdev */ 1694 NETREG_DUMMY, /* dummy device for NAPI poll */ 1695 } reg_state:8; 1696 1697 bool dismantle; 1698 1699 enum { 1700 RTNL_LINK_INITIALIZED, 1701 RTNL_LINK_INITIALIZING, 1702 } rtnl_link_state:16; 1703 1704 void (*destructor)(struct net_device *dev); 1705 1706 #ifdef CONFIG_NETPOLL 1707 struct netpoll_info __rcu *npinfo; 1708 #endif 1709 1710 possible_net_t nd_net; 1711 1712 /* mid-layer private */ 1713 union { 1714 void *ml_priv; 1715 struct pcpu_lstats __percpu *lstats; 1716 struct pcpu_sw_netstats __percpu *tstats; 1717 struct pcpu_dstats __percpu *dstats; 1718 struct pcpu_vstats __percpu *vstats; 1719 }; 1720 1721 struct garp_port __rcu *garp_port; 1722 struct mrp_port __rcu *mrp_port; 1723 1724 struct device dev; 1725 const struct attribute_group *sysfs_groups[4]; 1726 const struct attribute_group *sysfs_rx_queue_group; 1727 1728 const struct rtnl_link_ops *rtnl_link_ops; 1729 1730 /* for setting kernel sock attribute on TCP connection setup */ 1731 #define GSO_MAX_SIZE 65536 1732 unsigned int gso_max_size; 1733 #define GSO_MAX_SEGS 65535 1734 u16 gso_max_segs; 1735 u16 gso_min_segs; 1736 #ifdef CONFIG_DCB 1737 const struct dcbnl_rtnl_ops *dcbnl_ops; 1738 #endif 1739 u8 num_tc; 1740 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1741 u8 prio_tc_map[TC_BITMASK + 1]; 1742 1743 #if IS_ENABLED(CONFIG_FCOE) 1744 unsigned int fcoe_ddp_xid; 1745 #endif 1746 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1747 struct netprio_map __rcu *priomap; 1748 #endif 1749 struct phy_device *phydev; 1750 struct lock_class_key *qdisc_tx_busylock; 1751 }; 1752 #define to_net_dev(d) container_of(d, struct net_device, dev) 1753 1754 #define NETDEV_ALIGN 32 1755 1756 static inline 1757 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1758 { 1759 return dev->prio_tc_map[prio & TC_BITMASK]; 1760 } 1761 1762 static inline 1763 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1764 { 1765 if (tc >= dev->num_tc) 1766 return -EINVAL; 1767 1768 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1769 return 0; 1770 } 1771 1772 static inline 1773 void netdev_reset_tc(struct net_device *dev) 1774 { 1775 dev->num_tc = 0; 1776 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1777 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1778 } 1779 1780 static inline 1781 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1782 { 1783 if (tc >= dev->num_tc) 1784 return -EINVAL; 1785 1786 dev->tc_to_txq[tc].count = count; 1787 dev->tc_to_txq[tc].offset = offset; 1788 return 0; 1789 } 1790 1791 static inline 1792 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1793 { 1794 if (num_tc > TC_MAX_QUEUE) 1795 return -EINVAL; 1796 1797 dev->num_tc = num_tc; 1798 return 0; 1799 } 1800 1801 static inline 1802 int netdev_get_num_tc(struct net_device *dev) 1803 { 1804 return dev->num_tc; 1805 } 1806 1807 static inline 1808 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1809 unsigned int index) 1810 { 1811 return &dev->_tx[index]; 1812 } 1813 1814 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1815 const struct sk_buff *skb) 1816 { 1817 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1818 } 1819 1820 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1821 void (*f)(struct net_device *, 1822 struct netdev_queue *, 1823 void *), 1824 void *arg) 1825 { 1826 unsigned int i; 1827 1828 for (i = 0; i < dev->num_tx_queues; i++) 1829 f(dev, &dev->_tx[i], arg); 1830 } 1831 1832 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1833 struct sk_buff *skb, 1834 void *accel_priv); 1835 1836 /* 1837 * Net namespace inlines 1838 */ 1839 static inline 1840 struct net *dev_net(const struct net_device *dev) 1841 { 1842 return read_pnet(&dev->nd_net); 1843 } 1844 1845 static inline 1846 void dev_net_set(struct net_device *dev, struct net *net) 1847 { 1848 write_pnet(&dev->nd_net, net); 1849 } 1850 1851 static inline bool netdev_uses_dsa(struct net_device *dev) 1852 { 1853 #if IS_ENABLED(CONFIG_NET_DSA) 1854 if (dev->dsa_ptr != NULL) 1855 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1856 #endif 1857 return false; 1858 } 1859 1860 /** 1861 * netdev_priv - access network device private data 1862 * @dev: network device 1863 * 1864 * Get network device private data 1865 */ 1866 static inline void *netdev_priv(const struct net_device *dev) 1867 { 1868 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1869 } 1870 1871 /* Set the sysfs physical device reference for the network logical device 1872 * if set prior to registration will cause a symlink during initialization. 1873 */ 1874 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1875 1876 /* Set the sysfs device type for the network logical device to allow 1877 * fine-grained identification of different network device types. For 1878 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1879 */ 1880 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1881 1882 /* Default NAPI poll() weight 1883 * Device drivers are strongly advised to not use bigger value 1884 */ 1885 #define NAPI_POLL_WEIGHT 64 1886 1887 /** 1888 * netif_napi_add - initialize a napi context 1889 * @dev: network device 1890 * @napi: napi context 1891 * @poll: polling function 1892 * @weight: default weight 1893 * 1894 * netif_napi_add() must be used to initialize a napi context prior to calling 1895 * *any* of the other napi related functions. 1896 */ 1897 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1898 int (*poll)(struct napi_struct *, int), int weight); 1899 1900 /** 1901 * netif_napi_del - remove a napi context 1902 * @napi: napi context 1903 * 1904 * netif_napi_del() removes a napi context from the network device napi list 1905 */ 1906 void netif_napi_del(struct napi_struct *napi); 1907 1908 struct napi_gro_cb { 1909 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1910 void *frag0; 1911 1912 /* Length of frag0. */ 1913 unsigned int frag0_len; 1914 1915 /* This indicates where we are processing relative to skb->data. */ 1916 int data_offset; 1917 1918 /* This is non-zero if the packet cannot be merged with the new skb. */ 1919 u16 flush; 1920 1921 /* Save the IP ID here and check when we get to the transport layer */ 1922 u16 flush_id; 1923 1924 /* Number of segments aggregated. */ 1925 u16 count; 1926 1927 /* Start offset for remote checksum offload */ 1928 u16 gro_remcsum_start; 1929 1930 /* jiffies when first packet was created/queued */ 1931 unsigned long age; 1932 1933 /* Used in ipv6_gro_receive() and foo-over-udp */ 1934 u16 proto; 1935 1936 /* This is non-zero if the packet may be of the same flow. */ 1937 u8 same_flow:1; 1938 1939 /* Used in udp_gro_receive */ 1940 u8 udp_mark:1; 1941 1942 /* GRO checksum is valid */ 1943 u8 csum_valid:1; 1944 1945 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1946 u8 csum_cnt:3; 1947 1948 /* Free the skb? */ 1949 u8 free:2; 1950 #define NAPI_GRO_FREE 1 1951 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1952 1953 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 1954 u8 is_ipv6:1; 1955 1956 /* 7 bit hole */ 1957 1958 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1959 __wsum csum; 1960 1961 /* used in skb_gro_receive() slow path */ 1962 struct sk_buff *last; 1963 }; 1964 1965 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1966 1967 struct packet_type { 1968 __be16 type; /* This is really htons(ether_type). */ 1969 struct net_device *dev; /* NULL is wildcarded here */ 1970 int (*func) (struct sk_buff *, 1971 struct net_device *, 1972 struct packet_type *, 1973 struct net_device *); 1974 bool (*id_match)(struct packet_type *ptype, 1975 struct sock *sk); 1976 void *af_packet_priv; 1977 struct list_head list; 1978 }; 1979 1980 struct offload_callbacks { 1981 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1982 netdev_features_t features); 1983 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1984 struct sk_buff *skb); 1985 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1986 }; 1987 1988 struct packet_offload { 1989 __be16 type; /* This is really htons(ether_type). */ 1990 struct offload_callbacks callbacks; 1991 struct list_head list; 1992 }; 1993 1994 struct udp_offload; 1995 1996 struct udp_offload_callbacks { 1997 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1998 struct sk_buff *skb, 1999 struct udp_offload *uoff); 2000 int (*gro_complete)(struct sk_buff *skb, 2001 int nhoff, 2002 struct udp_offload *uoff); 2003 }; 2004 2005 struct udp_offload { 2006 __be16 port; 2007 u8 ipproto; 2008 struct udp_offload_callbacks callbacks; 2009 }; 2010 2011 /* often modified stats are per cpu, other are shared (netdev->stats) */ 2012 struct pcpu_sw_netstats { 2013 u64 rx_packets; 2014 u64 rx_bytes; 2015 u64 tx_packets; 2016 u64 tx_bytes; 2017 struct u64_stats_sync syncp; 2018 }; 2019 2020 #define netdev_alloc_pcpu_stats(type) \ 2021 ({ \ 2022 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 2023 if (pcpu_stats) { \ 2024 int i; \ 2025 for_each_possible_cpu(i) { \ 2026 typeof(type) *stat; \ 2027 stat = per_cpu_ptr(pcpu_stats, i); \ 2028 u64_stats_init(&stat->syncp); \ 2029 } \ 2030 } \ 2031 pcpu_stats; \ 2032 }) 2033 2034 #include <linux/notifier.h> 2035 2036 /* netdevice notifier chain. Please remember to update the rtnetlink 2037 * notification exclusion list in rtnetlink_event() when adding new 2038 * types. 2039 */ 2040 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2041 #define NETDEV_DOWN 0x0002 2042 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2043 detected a hardware crash and restarted 2044 - we can use this eg to kick tcp sessions 2045 once done */ 2046 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2047 #define NETDEV_REGISTER 0x0005 2048 #define NETDEV_UNREGISTER 0x0006 2049 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2050 #define NETDEV_CHANGEADDR 0x0008 2051 #define NETDEV_GOING_DOWN 0x0009 2052 #define NETDEV_CHANGENAME 0x000A 2053 #define NETDEV_FEAT_CHANGE 0x000B 2054 #define NETDEV_BONDING_FAILOVER 0x000C 2055 #define NETDEV_PRE_UP 0x000D 2056 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2057 #define NETDEV_POST_TYPE_CHANGE 0x000F 2058 #define NETDEV_POST_INIT 0x0010 2059 #define NETDEV_UNREGISTER_FINAL 0x0011 2060 #define NETDEV_RELEASE 0x0012 2061 #define NETDEV_NOTIFY_PEERS 0x0013 2062 #define NETDEV_JOIN 0x0014 2063 #define NETDEV_CHANGEUPPER 0x0015 2064 #define NETDEV_RESEND_IGMP 0x0016 2065 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2066 #define NETDEV_CHANGEINFODATA 0x0018 2067 #define NETDEV_BONDING_INFO 0x0019 2068 2069 int register_netdevice_notifier(struct notifier_block *nb); 2070 int unregister_netdevice_notifier(struct notifier_block *nb); 2071 2072 struct netdev_notifier_info { 2073 struct net_device *dev; 2074 }; 2075 2076 struct netdev_notifier_change_info { 2077 struct netdev_notifier_info info; /* must be first */ 2078 unsigned int flags_changed; 2079 }; 2080 2081 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2082 struct net_device *dev) 2083 { 2084 info->dev = dev; 2085 } 2086 2087 static inline struct net_device * 2088 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2089 { 2090 return info->dev; 2091 } 2092 2093 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2094 2095 2096 extern rwlock_t dev_base_lock; /* Device list lock */ 2097 2098 #define for_each_netdev(net, d) \ 2099 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2100 #define for_each_netdev_reverse(net, d) \ 2101 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2102 #define for_each_netdev_rcu(net, d) \ 2103 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2104 #define for_each_netdev_safe(net, d, n) \ 2105 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2106 #define for_each_netdev_continue(net, d) \ 2107 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2108 #define for_each_netdev_continue_rcu(net, d) \ 2109 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2110 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2111 for_each_netdev_rcu(&init_net, slave) \ 2112 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2113 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2114 2115 static inline struct net_device *next_net_device(struct net_device *dev) 2116 { 2117 struct list_head *lh; 2118 struct net *net; 2119 2120 net = dev_net(dev); 2121 lh = dev->dev_list.next; 2122 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2123 } 2124 2125 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2126 { 2127 struct list_head *lh; 2128 struct net *net; 2129 2130 net = dev_net(dev); 2131 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2132 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2133 } 2134 2135 static inline struct net_device *first_net_device(struct net *net) 2136 { 2137 return list_empty(&net->dev_base_head) ? NULL : 2138 net_device_entry(net->dev_base_head.next); 2139 } 2140 2141 static inline struct net_device *first_net_device_rcu(struct net *net) 2142 { 2143 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2144 2145 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2146 } 2147 2148 int netdev_boot_setup_check(struct net_device *dev); 2149 unsigned long netdev_boot_base(const char *prefix, int unit); 2150 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2151 const char *hwaddr); 2152 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2153 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2154 void dev_add_pack(struct packet_type *pt); 2155 void dev_remove_pack(struct packet_type *pt); 2156 void __dev_remove_pack(struct packet_type *pt); 2157 void dev_add_offload(struct packet_offload *po); 2158 void dev_remove_offload(struct packet_offload *po); 2159 2160 int dev_get_iflink(const struct net_device *dev); 2161 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2162 unsigned short mask); 2163 struct net_device *dev_get_by_name(struct net *net, const char *name); 2164 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2165 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2166 int dev_alloc_name(struct net_device *dev, const char *name); 2167 int dev_open(struct net_device *dev); 2168 int dev_close(struct net_device *dev); 2169 int dev_close_many(struct list_head *head, bool unlink); 2170 void dev_disable_lro(struct net_device *dev); 2171 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb); 2172 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb); 2173 static inline int dev_queue_xmit(struct sk_buff *skb) 2174 { 2175 return dev_queue_xmit_sk(skb->sk, skb); 2176 } 2177 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2178 int register_netdevice(struct net_device *dev); 2179 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2180 void unregister_netdevice_many(struct list_head *head); 2181 static inline void unregister_netdevice(struct net_device *dev) 2182 { 2183 unregister_netdevice_queue(dev, NULL); 2184 } 2185 2186 int netdev_refcnt_read(const struct net_device *dev); 2187 void free_netdev(struct net_device *dev); 2188 void netdev_freemem(struct net_device *dev); 2189 void synchronize_net(void); 2190 int init_dummy_netdev(struct net_device *dev); 2191 2192 DECLARE_PER_CPU(int, xmit_recursion); 2193 static inline int dev_recursion_level(void) 2194 { 2195 return this_cpu_read(xmit_recursion); 2196 } 2197 2198 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2199 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2200 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2201 int netdev_get_name(struct net *net, char *name, int ifindex); 2202 int dev_restart(struct net_device *dev); 2203 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2204 2205 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2206 { 2207 return NAPI_GRO_CB(skb)->data_offset; 2208 } 2209 2210 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2211 { 2212 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2213 } 2214 2215 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2216 { 2217 NAPI_GRO_CB(skb)->data_offset += len; 2218 } 2219 2220 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2221 unsigned int offset) 2222 { 2223 return NAPI_GRO_CB(skb)->frag0 + offset; 2224 } 2225 2226 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2227 { 2228 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2229 } 2230 2231 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2232 unsigned int offset) 2233 { 2234 if (!pskb_may_pull(skb, hlen)) 2235 return NULL; 2236 2237 NAPI_GRO_CB(skb)->frag0 = NULL; 2238 NAPI_GRO_CB(skb)->frag0_len = 0; 2239 return skb->data + offset; 2240 } 2241 2242 static inline void *skb_gro_network_header(struct sk_buff *skb) 2243 { 2244 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2245 skb_network_offset(skb); 2246 } 2247 2248 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2249 const void *start, unsigned int len) 2250 { 2251 if (NAPI_GRO_CB(skb)->csum_valid) 2252 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2253 csum_partial(start, len, 0)); 2254 } 2255 2256 /* GRO checksum functions. These are logical equivalents of the normal 2257 * checksum functions (in skbuff.h) except that they operate on the GRO 2258 * offsets and fields in sk_buff. 2259 */ 2260 2261 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2262 2263 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2264 { 2265 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) == 2266 skb_gro_offset(skb)); 2267 } 2268 2269 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2270 bool zero_okay, 2271 __sum16 check) 2272 { 2273 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2274 skb_checksum_start_offset(skb) < 2275 skb_gro_offset(skb)) && 2276 !skb_at_gro_remcsum_start(skb) && 2277 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2278 (!zero_okay || check)); 2279 } 2280 2281 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2282 __wsum psum) 2283 { 2284 if (NAPI_GRO_CB(skb)->csum_valid && 2285 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2286 return 0; 2287 2288 NAPI_GRO_CB(skb)->csum = psum; 2289 2290 return __skb_gro_checksum_complete(skb); 2291 } 2292 2293 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2294 { 2295 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2296 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2297 NAPI_GRO_CB(skb)->csum_cnt--; 2298 } else { 2299 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2300 * verified a new top level checksum or an encapsulated one 2301 * during GRO. This saves work if we fallback to normal path. 2302 */ 2303 __skb_incr_checksum_unnecessary(skb); 2304 } 2305 } 2306 2307 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2308 compute_pseudo) \ 2309 ({ \ 2310 __sum16 __ret = 0; \ 2311 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2312 __ret = __skb_gro_checksum_validate_complete(skb, \ 2313 compute_pseudo(skb, proto)); \ 2314 if (__ret) \ 2315 __skb_mark_checksum_bad(skb); \ 2316 else \ 2317 skb_gro_incr_csum_unnecessary(skb); \ 2318 __ret; \ 2319 }) 2320 2321 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2322 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2323 2324 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2325 compute_pseudo) \ 2326 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2327 2328 #define skb_gro_checksum_simple_validate(skb) \ 2329 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2330 2331 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2332 { 2333 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2334 !NAPI_GRO_CB(skb)->csum_valid); 2335 } 2336 2337 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2338 __sum16 check, __wsum pseudo) 2339 { 2340 NAPI_GRO_CB(skb)->csum = ~pseudo; 2341 NAPI_GRO_CB(skb)->csum_valid = 1; 2342 } 2343 2344 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2345 do { \ 2346 if (__skb_gro_checksum_convert_check(skb)) \ 2347 __skb_gro_checksum_convert(skb, check, \ 2348 compute_pseudo(skb, proto)); \ 2349 } while (0) 2350 2351 struct gro_remcsum { 2352 int offset; 2353 __wsum delta; 2354 }; 2355 2356 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2357 { 2358 grc->offset = 0; 2359 grc->delta = 0; 2360 } 2361 2362 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2363 int start, int offset, 2364 struct gro_remcsum *grc, 2365 bool nopartial) 2366 { 2367 __wsum delta; 2368 2369 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2370 2371 if (!nopartial) { 2372 NAPI_GRO_CB(skb)->gro_remcsum_start = 2373 ((unsigned char *)ptr + start) - skb->head; 2374 return; 2375 } 2376 2377 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset); 2378 2379 /* Adjust skb->csum since we changed the packet */ 2380 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2381 2382 grc->offset = (ptr + offset) - (void *)skb->head; 2383 grc->delta = delta; 2384 } 2385 2386 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2387 struct gro_remcsum *grc) 2388 { 2389 if (!grc->delta) 2390 return; 2391 2392 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta); 2393 } 2394 2395 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2396 unsigned short type, 2397 const void *daddr, const void *saddr, 2398 unsigned int len) 2399 { 2400 if (!dev->header_ops || !dev->header_ops->create) 2401 return 0; 2402 2403 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2404 } 2405 2406 static inline int dev_parse_header(const struct sk_buff *skb, 2407 unsigned char *haddr) 2408 { 2409 const struct net_device *dev = skb->dev; 2410 2411 if (!dev->header_ops || !dev->header_ops->parse) 2412 return 0; 2413 return dev->header_ops->parse(skb, haddr); 2414 } 2415 2416 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2417 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2418 static inline int unregister_gifconf(unsigned int family) 2419 { 2420 return register_gifconf(family, NULL); 2421 } 2422 2423 #ifdef CONFIG_NET_FLOW_LIMIT 2424 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2425 struct sd_flow_limit { 2426 u64 count; 2427 unsigned int num_buckets; 2428 unsigned int history_head; 2429 u16 history[FLOW_LIMIT_HISTORY]; 2430 u8 buckets[]; 2431 }; 2432 2433 extern int netdev_flow_limit_table_len; 2434 #endif /* CONFIG_NET_FLOW_LIMIT */ 2435 2436 /* 2437 * Incoming packets are placed on per-cpu queues 2438 */ 2439 struct softnet_data { 2440 struct list_head poll_list; 2441 struct sk_buff_head process_queue; 2442 2443 /* stats */ 2444 unsigned int processed; 2445 unsigned int time_squeeze; 2446 unsigned int cpu_collision; 2447 unsigned int received_rps; 2448 #ifdef CONFIG_RPS 2449 struct softnet_data *rps_ipi_list; 2450 #endif 2451 #ifdef CONFIG_NET_FLOW_LIMIT 2452 struct sd_flow_limit __rcu *flow_limit; 2453 #endif 2454 struct Qdisc *output_queue; 2455 struct Qdisc **output_queue_tailp; 2456 struct sk_buff *completion_queue; 2457 2458 #ifdef CONFIG_RPS 2459 /* Elements below can be accessed between CPUs for RPS */ 2460 struct call_single_data csd ____cacheline_aligned_in_smp; 2461 struct softnet_data *rps_ipi_next; 2462 unsigned int cpu; 2463 unsigned int input_queue_head; 2464 unsigned int input_queue_tail; 2465 #endif 2466 unsigned int dropped; 2467 struct sk_buff_head input_pkt_queue; 2468 struct napi_struct backlog; 2469 2470 }; 2471 2472 static inline void input_queue_head_incr(struct softnet_data *sd) 2473 { 2474 #ifdef CONFIG_RPS 2475 sd->input_queue_head++; 2476 #endif 2477 } 2478 2479 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2480 unsigned int *qtail) 2481 { 2482 #ifdef CONFIG_RPS 2483 *qtail = ++sd->input_queue_tail; 2484 #endif 2485 } 2486 2487 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2488 2489 void __netif_schedule(struct Qdisc *q); 2490 void netif_schedule_queue(struct netdev_queue *txq); 2491 2492 static inline void netif_tx_schedule_all(struct net_device *dev) 2493 { 2494 unsigned int i; 2495 2496 for (i = 0; i < dev->num_tx_queues; i++) 2497 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2498 } 2499 2500 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2501 { 2502 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2503 } 2504 2505 /** 2506 * netif_start_queue - allow transmit 2507 * @dev: network device 2508 * 2509 * Allow upper layers to call the device hard_start_xmit routine. 2510 */ 2511 static inline void netif_start_queue(struct net_device *dev) 2512 { 2513 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2514 } 2515 2516 static inline void netif_tx_start_all_queues(struct net_device *dev) 2517 { 2518 unsigned int i; 2519 2520 for (i = 0; i < dev->num_tx_queues; i++) { 2521 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2522 netif_tx_start_queue(txq); 2523 } 2524 } 2525 2526 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2527 2528 /** 2529 * netif_wake_queue - restart transmit 2530 * @dev: network device 2531 * 2532 * Allow upper layers to call the device hard_start_xmit routine. 2533 * Used for flow control when transmit resources are available. 2534 */ 2535 static inline void netif_wake_queue(struct net_device *dev) 2536 { 2537 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2538 } 2539 2540 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2541 { 2542 unsigned int i; 2543 2544 for (i = 0; i < dev->num_tx_queues; i++) { 2545 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2546 netif_tx_wake_queue(txq); 2547 } 2548 } 2549 2550 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2551 { 2552 if (WARN_ON(!dev_queue)) { 2553 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2554 return; 2555 } 2556 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2557 } 2558 2559 /** 2560 * netif_stop_queue - stop transmitted packets 2561 * @dev: network device 2562 * 2563 * Stop upper layers calling the device hard_start_xmit routine. 2564 * Used for flow control when transmit resources are unavailable. 2565 */ 2566 static inline void netif_stop_queue(struct net_device *dev) 2567 { 2568 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2569 } 2570 2571 static inline void netif_tx_stop_all_queues(struct net_device *dev) 2572 { 2573 unsigned int i; 2574 2575 for (i = 0; i < dev->num_tx_queues; i++) { 2576 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2577 netif_tx_stop_queue(txq); 2578 } 2579 } 2580 2581 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2582 { 2583 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2584 } 2585 2586 /** 2587 * netif_queue_stopped - test if transmit queue is flowblocked 2588 * @dev: network device 2589 * 2590 * Test if transmit queue on device is currently unable to send. 2591 */ 2592 static inline bool netif_queue_stopped(const struct net_device *dev) 2593 { 2594 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2595 } 2596 2597 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2598 { 2599 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2600 } 2601 2602 static inline bool 2603 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2604 { 2605 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2606 } 2607 2608 static inline bool 2609 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2610 { 2611 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2612 } 2613 2614 /** 2615 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2616 * @dev_queue: pointer to transmit queue 2617 * 2618 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2619 * to give appropriate hint to the cpu. 2620 */ 2621 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2622 { 2623 #ifdef CONFIG_BQL 2624 prefetchw(&dev_queue->dql.num_queued); 2625 #endif 2626 } 2627 2628 /** 2629 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2630 * @dev_queue: pointer to transmit queue 2631 * 2632 * BQL enabled drivers might use this helper in their TX completion path, 2633 * to give appropriate hint to the cpu. 2634 */ 2635 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2636 { 2637 #ifdef CONFIG_BQL 2638 prefetchw(&dev_queue->dql.limit); 2639 #endif 2640 } 2641 2642 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2643 unsigned int bytes) 2644 { 2645 #ifdef CONFIG_BQL 2646 dql_queued(&dev_queue->dql, bytes); 2647 2648 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2649 return; 2650 2651 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2652 2653 /* 2654 * The XOFF flag must be set before checking the dql_avail below, 2655 * because in netdev_tx_completed_queue we update the dql_completed 2656 * before checking the XOFF flag. 2657 */ 2658 smp_mb(); 2659 2660 /* check again in case another CPU has just made room avail */ 2661 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2662 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2663 #endif 2664 } 2665 2666 /** 2667 * netdev_sent_queue - report the number of bytes queued to hardware 2668 * @dev: network device 2669 * @bytes: number of bytes queued to the hardware device queue 2670 * 2671 * Report the number of bytes queued for sending/completion to the network 2672 * device hardware queue. @bytes should be a good approximation and should 2673 * exactly match netdev_completed_queue() @bytes 2674 */ 2675 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2676 { 2677 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2678 } 2679 2680 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2681 unsigned int pkts, unsigned int bytes) 2682 { 2683 #ifdef CONFIG_BQL 2684 if (unlikely(!bytes)) 2685 return; 2686 2687 dql_completed(&dev_queue->dql, bytes); 2688 2689 /* 2690 * Without the memory barrier there is a small possiblity that 2691 * netdev_tx_sent_queue will miss the update and cause the queue to 2692 * be stopped forever 2693 */ 2694 smp_mb(); 2695 2696 if (dql_avail(&dev_queue->dql) < 0) 2697 return; 2698 2699 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2700 netif_schedule_queue(dev_queue); 2701 #endif 2702 } 2703 2704 /** 2705 * netdev_completed_queue - report bytes and packets completed by device 2706 * @dev: network device 2707 * @pkts: actual number of packets sent over the medium 2708 * @bytes: actual number of bytes sent over the medium 2709 * 2710 * Report the number of bytes and packets transmitted by the network device 2711 * hardware queue over the physical medium, @bytes must exactly match the 2712 * @bytes amount passed to netdev_sent_queue() 2713 */ 2714 static inline void netdev_completed_queue(struct net_device *dev, 2715 unsigned int pkts, unsigned int bytes) 2716 { 2717 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2718 } 2719 2720 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2721 { 2722 #ifdef CONFIG_BQL 2723 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2724 dql_reset(&q->dql); 2725 #endif 2726 } 2727 2728 /** 2729 * netdev_reset_queue - reset the packets and bytes count of a network device 2730 * @dev_queue: network device 2731 * 2732 * Reset the bytes and packet count of a network device and clear the 2733 * software flow control OFF bit for this network device 2734 */ 2735 static inline void netdev_reset_queue(struct net_device *dev_queue) 2736 { 2737 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2738 } 2739 2740 /** 2741 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2742 * @dev: network device 2743 * @queue_index: given tx queue index 2744 * 2745 * Returns 0 if given tx queue index >= number of device tx queues, 2746 * otherwise returns the originally passed tx queue index. 2747 */ 2748 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2749 { 2750 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2751 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2752 dev->name, queue_index, 2753 dev->real_num_tx_queues); 2754 return 0; 2755 } 2756 2757 return queue_index; 2758 } 2759 2760 /** 2761 * netif_running - test if up 2762 * @dev: network device 2763 * 2764 * Test if the device has been brought up. 2765 */ 2766 static inline bool netif_running(const struct net_device *dev) 2767 { 2768 return test_bit(__LINK_STATE_START, &dev->state); 2769 } 2770 2771 /* 2772 * Routines to manage the subqueues on a device. We only need start 2773 * stop, and a check if it's stopped. All other device management is 2774 * done at the overall netdevice level. 2775 * Also test the device if we're multiqueue. 2776 */ 2777 2778 /** 2779 * netif_start_subqueue - allow sending packets on subqueue 2780 * @dev: network device 2781 * @queue_index: sub queue index 2782 * 2783 * Start individual transmit queue of a device with multiple transmit queues. 2784 */ 2785 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2786 { 2787 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2788 2789 netif_tx_start_queue(txq); 2790 } 2791 2792 /** 2793 * netif_stop_subqueue - stop sending packets on subqueue 2794 * @dev: network device 2795 * @queue_index: sub queue index 2796 * 2797 * Stop individual transmit queue of a device with multiple transmit queues. 2798 */ 2799 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2800 { 2801 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2802 netif_tx_stop_queue(txq); 2803 } 2804 2805 /** 2806 * netif_subqueue_stopped - test status of subqueue 2807 * @dev: network device 2808 * @queue_index: sub queue index 2809 * 2810 * Check individual transmit queue of a device with multiple transmit queues. 2811 */ 2812 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2813 u16 queue_index) 2814 { 2815 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2816 2817 return netif_tx_queue_stopped(txq); 2818 } 2819 2820 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2821 struct sk_buff *skb) 2822 { 2823 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2824 } 2825 2826 void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2827 2828 #ifdef CONFIG_XPS 2829 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2830 u16 index); 2831 #else 2832 static inline int netif_set_xps_queue(struct net_device *dev, 2833 const struct cpumask *mask, 2834 u16 index) 2835 { 2836 return 0; 2837 } 2838 #endif 2839 2840 /* 2841 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2842 * as a distribution range limit for the returned value. 2843 */ 2844 static inline u16 skb_tx_hash(const struct net_device *dev, 2845 struct sk_buff *skb) 2846 { 2847 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2848 } 2849 2850 /** 2851 * netif_is_multiqueue - test if device has multiple transmit queues 2852 * @dev: network device 2853 * 2854 * Check if device has multiple transmit queues 2855 */ 2856 static inline bool netif_is_multiqueue(const struct net_device *dev) 2857 { 2858 return dev->num_tx_queues > 1; 2859 } 2860 2861 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2862 2863 #ifdef CONFIG_SYSFS 2864 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2865 #else 2866 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2867 unsigned int rxq) 2868 { 2869 return 0; 2870 } 2871 #endif 2872 2873 #ifdef CONFIG_SYSFS 2874 static inline unsigned int get_netdev_rx_queue_index( 2875 struct netdev_rx_queue *queue) 2876 { 2877 struct net_device *dev = queue->dev; 2878 int index = queue - dev->_rx; 2879 2880 BUG_ON(index >= dev->num_rx_queues); 2881 return index; 2882 } 2883 #endif 2884 2885 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2886 int netif_get_num_default_rss_queues(void); 2887 2888 enum skb_free_reason { 2889 SKB_REASON_CONSUMED, 2890 SKB_REASON_DROPPED, 2891 }; 2892 2893 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2894 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2895 2896 /* 2897 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2898 * interrupt context or with hardware interrupts being disabled. 2899 * (in_irq() || irqs_disabled()) 2900 * 2901 * We provide four helpers that can be used in following contexts : 2902 * 2903 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2904 * replacing kfree_skb(skb) 2905 * 2906 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2907 * Typically used in place of consume_skb(skb) in TX completion path 2908 * 2909 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2910 * replacing kfree_skb(skb) 2911 * 2912 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2913 * and consumed a packet. Used in place of consume_skb(skb) 2914 */ 2915 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2916 { 2917 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2918 } 2919 2920 static inline void dev_consume_skb_irq(struct sk_buff *skb) 2921 { 2922 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2923 } 2924 2925 static inline void dev_kfree_skb_any(struct sk_buff *skb) 2926 { 2927 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2928 } 2929 2930 static inline void dev_consume_skb_any(struct sk_buff *skb) 2931 { 2932 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2933 } 2934 2935 int netif_rx(struct sk_buff *skb); 2936 int netif_rx_ni(struct sk_buff *skb); 2937 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb); 2938 static inline int netif_receive_skb(struct sk_buff *skb) 2939 { 2940 return netif_receive_skb_sk(skb->sk, skb); 2941 } 2942 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2943 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2944 struct sk_buff *napi_get_frags(struct napi_struct *napi); 2945 gro_result_t napi_gro_frags(struct napi_struct *napi); 2946 struct packet_offload *gro_find_receive_by_type(__be16 type); 2947 struct packet_offload *gro_find_complete_by_type(__be16 type); 2948 2949 static inline void napi_free_frags(struct napi_struct *napi) 2950 { 2951 kfree_skb(napi->skb); 2952 napi->skb = NULL; 2953 } 2954 2955 int netdev_rx_handler_register(struct net_device *dev, 2956 rx_handler_func_t *rx_handler, 2957 void *rx_handler_data); 2958 void netdev_rx_handler_unregister(struct net_device *dev); 2959 2960 bool dev_valid_name(const char *name); 2961 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2962 int dev_ethtool(struct net *net, struct ifreq *); 2963 unsigned int dev_get_flags(const struct net_device *); 2964 int __dev_change_flags(struct net_device *, unsigned int flags); 2965 int dev_change_flags(struct net_device *, unsigned int); 2966 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2967 unsigned int gchanges); 2968 int dev_change_name(struct net_device *, const char *); 2969 int dev_set_alias(struct net_device *, const char *, size_t); 2970 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2971 int dev_set_mtu(struct net_device *, int); 2972 void dev_set_group(struct net_device *, int); 2973 int dev_set_mac_address(struct net_device *, struct sockaddr *); 2974 int dev_change_carrier(struct net_device *, bool new_carrier); 2975 int dev_get_phys_port_id(struct net_device *dev, 2976 struct netdev_phys_item_id *ppid); 2977 int dev_get_phys_port_name(struct net_device *dev, 2978 char *name, size_t len); 2979 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 2980 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2981 struct netdev_queue *txq, int *ret); 2982 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2983 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2984 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2985 2986 extern int netdev_budget; 2987 2988 /* Called by rtnetlink.c:rtnl_unlock() */ 2989 void netdev_run_todo(void); 2990 2991 /** 2992 * dev_put - release reference to device 2993 * @dev: network device 2994 * 2995 * Release reference to device to allow it to be freed. 2996 */ 2997 static inline void dev_put(struct net_device *dev) 2998 { 2999 this_cpu_dec(*dev->pcpu_refcnt); 3000 } 3001 3002 /** 3003 * dev_hold - get reference to device 3004 * @dev: network device 3005 * 3006 * Hold reference to device to keep it from being freed. 3007 */ 3008 static inline void dev_hold(struct net_device *dev) 3009 { 3010 this_cpu_inc(*dev->pcpu_refcnt); 3011 } 3012 3013 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3014 * and _off may be called from IRQ context, but it is caller 3015 * who is responsible for serialization of these calls. 3016 * 3017 * The name carrier is inappropriate, these functions should really be 3018 * called netif_lowerlayer_*() because they represent the state of any 3019 * kind of lower layer not just hardware media. 3020 */ 3021 3022 void linkwatch_init_dev(struct net_device *dev); 3023 void linkwatch_fire_event(struct net_device *dev); 3024 void linkwatch_forget_dev(struct net_device *dev); 3025 3026 /** 3027 * netif_carrier_ok - test if carrier present 3028 * @dev: network device 3029 * 3030 * Check if carrier is present on device 3031 */ 3032 static inline bool netif_carrier_ok(const struct net_device *dev) 3033 { 3034 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3035 } 3036 3037 unsigned long dev_trans_start(struct net_device *dev); 3038 3039 void __netdev_watchdog_up(struct net_device *dev); 3040 3041 void netif_carrier_on(struct net_device *dev); 3042 3043 void netif_carrier_off(struct net_device *dev); 3044 3045 /** 3046 * netif_dormant_on - mark device as dormant. 3047 * @dev: network device 3048 * 3049 * Mark device as dormant (as per RFC2863). 3050 * 3051 * The dormant state indicates that the relevant interface is not 3052 * actually in a condition to pass packets (i.e., it is not 'up') but is 3053 * in a "pending" state, waiting for some external event. For "on- 3054 * demand" interfaces, this new state identifies the situation where the 3055 * interface is waiting for events to place it in the up state. 3056 * 3057 */ 3058 static inline void netif_dormant_on(struct net_device *dev) 3059 { 3060 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3061 linkwatch_fire_event(dev); 3062 } 3063 3064 /** 3065 * netif_dormant_off - set device as not dormant. 3066 * @dev: network device 3067 * 3068 * Device is not in dormant state. 3069 */ 3070 static inline void netif_dormant_off(struct net_device *dev) 3071 { 3072 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3073 linkwatch_fire_event(dev); 3074 } 3075 3076 /** 3077 * netif_dormant - test if carrier present 3078 * @dev: network device 3079 * 3080 * Check if carrier is present on device 3081 */ 3082 static inline bool netif_dormant(const struct net_device *dev) 3083 { 3084 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3085 } 3086 3087 3088 /** 3089 * netif_oper_up - test if device is operational 3090 * @dev: network device 3091 * 3092 * Check if carrier is operational 3093 */ 3094 static inline bool netif_oper_up(const struct net_device *dev) 3095 { 3096 return (dev->operstate == IF_OPER_UP || 3097 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3098 } 3099 3100 /** 3101 * netif_device_present - is device available or removed 3102 * @dev: network device 3103 * 3104 * Check if device has not been removed from system. 3105 */ 3106 static inline bool netif_device_present(struct net_device *dev) 3107 { 3108 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3109 } 3110 3111 void netif_device_detach(struct net_device *dev); 3112 3113 void netif_device_attach(struct net_device *dev); 3114 3115 /* 3116 * Network interface message level settings 3117 */ 3118 3119 enum { 3120 NETIF_MSG_DRV = 0x0001, 3121 NETIF_MSG_PROBE = 0x0002, 3122 NETIF_MSG_LINK = 0x0004, 3123 NETIF_MSG_TIMER = 0x0008, 3124 NETIF_MSG_IFDOWN = 0x0010, 3125 NETIF_MSG_IFUP = 0x0020, 3126 NETIF_MSG_RX_ERR = 0x0040, 3127 NETIF_MSG_TX_ERR = 0x0080, 3128 NETIF_MSG_TX_QUEUED = 0x0100, 3129 NETIF_MSG_INTR = 0x0200, 3130 NETIF_MSG_TX_DONE = 0x0400, 3131 NETIF_MSG_RX_STATUS = 0x0800, 3132 NETIF_MSG_PKTDATA = 0x1000, 3133 NETIF_MSG_HW = 0x2000, 3134 NETIF_MSG_WOL = 0x4000, 3135 }; 3136 3137 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3138 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3139 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3140 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3141 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3142 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3143 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3144 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3145 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3146 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3147 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3148 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3149 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3150 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3151 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3152 3153 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3154 { 3155 /* use default */ 3156 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3157 return default_msg_enable_bits; 3158 if (debug_value == 0) /* no output */ 3159 return 0; 3160 /* set low N bits */ 3161 return (1 << debug_value) - 1; 3162 } 3163 3164 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3165 { 3166 spin_lock(&txq->_xmit_lock); 3167 txq->xmit_lock_owner = cpu; 3168 } 3169 3170 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3171 { 3172 spin_lock_bh(&txq->_xmit_lock); 3173 txq->xmit_lock_owner = smp_processor_id(); 3174 } 3175 3176 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3177 { 3178 bool ok = spin_trylock(&txq->_xmit_lock); 3179 if (likely(ok)) 3180 txq->xmit_lock_owner = smp_processor_id(); 3181 return ok; 3182 } 3183 3184 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3185 { 3186 txq->xmit_lock_owner = -1; 3187 spin_unlock(&txq->_xmit_lock); 3188 } 3189 3190 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3191 { 3192 txq->xmit_lock_owner = -1; 3193 spin_unlock_bh(&txq->_xmit_lock); 3194 } 3195 3196 static inline void txq_trans_update(struct netdev_queue *txq) 3197 { 3198 if (txq->xmit_lock_owner != -1) 3199 txq->trans_start = jiffies; 3200 } 3201 3202 /** 3203 * netif_tx_lock - grab network device transmit lock 3204 * @dev: network device 3205 * 3206 * Get network device transmit lock 3207 */ 3208 static inline void netif_tx_lock(struct net_device *dev) 3209 { 3210 unsigned int i; 3211 int cpu; 3212 3213 spin_lock(&dev->tx_global_lock); 3214 cpu = smp_processor_id(); 3215 for (i = 0; i < dev->num_tx_queues; i++) { 3216 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3217 3218 /* We are the only thread of execution doing a 3219 * freeze, but we have to grab the _xmit_lock in 3220 * order to synchronize with threads which are in 3221 * the ->hard_start_xmit() handler and already 3222 * checked the frozen bit. 3223 */ 3224 __netif_tx_lock(txq, cpu); 3225 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3226 __netif_tx_unlock(txq); 3227 } 3228 } 3229 3230 static inline void netif_tx_lock_bh(struct net_device *dev) 3231 { 3232 local_bh_disable(); 3233 netif_tx_lock(dev); 3234 } 3235 3236 static inline void netif_tx_unlock(struct net_device *dev) 3237 { 3238 unsigned int i; 3239 3240 for (i = 0; i < dev->num_tx_queues; i++) { 3241 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3242 3243 /* No need to grab the _xmit_lock here. If the 3244 * queue is not stopped for another reason, we 3245 * force a schedule. 3246 */ 3247 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3248 netif_schedule_queue(txq); 3249 } 3250 spin_unlock(&dev->tx_global_lock); 3251 } 3252 3253 static inline void netif_tx_unlock_bh(struct net_device *dev) 3254 { 3255 netif_tx_unlock(dev); 3256 local_bh_enable(); 3257 } 3258 3259 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3260 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3261 __netif_tx_lock(txq, cpu); \ 3262 } \ 3263 } 3264 3265 #define HARD_TX_TRYLOCK(dev, txq) \ 3266 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3267 __netif_tx_trylock(txq) : \ 3268 true ) 3269 3270 #define HARD_TX_UNLOCK(dev, txq) { \ 3271 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3272 __netif_tx_unlock(txq); \ 3273 } \ 3274 } 3275 3276 static inline void netif_tx_disable(struct net_device *dev) 3277 { 3278 unsigned int i; 3279 int cpu; 3280 3281 local_bh_disable(); 3282 cpu = smp_processor_id(); 3283 for (i = 0; i < dev->num_tx_queues; i++) { 3284 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3285 3286 __netif_tx_lock(txq, cpu); 3287 netif_tx_stop_queue(txq); 3288 __netif_tx_unlock(txq); 3289 } 3290 local_bh_enable(); 3291 } 3292 3293 static inline void netif_addr_lock(struct net_device *dev) 3294 { 3295 spin_lock(&dev->addr_list_lock); 3296 } 3297 3298 static inline void netif_addr_lock_nested(struct net_device *dev) 3299 { 3300 int subclass = SINGLE_DEPTH_NESTING; 3301 3302 if (dev->netdev_ops->ndo_get_lock_subclass) 3303 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3304 3305 spin_lock_nested(&dev->addr_list_lock, subclass); 3306 } 3307 3308 static inline void netif_addr_lock_bh(struct net_device *dev) 3309 { 3310 spin_lock_bh(&dev->addr_list_lock); 3311 } 3312 3313 static inline void netif_addr_unlock(struct net_device *dev) 3314 { 3315 spin_unlock(&dev->addr_list_lock); 3316 } 3317 3318 static inline void netif_addr_unlock_bh(struct net_device *dev) 3319 { 3320 spin_unlock_bh(&dev->addr_list_lock); 3321 } 3322 3323 /* 3324 * dev_addrs walker. Should be used only for read access. Call with 3325 * rcu_read_lock held. 3326 */ 3327 #define for_each_dev_addr(dev, ha) \ 3328 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3329 3330 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3331 3332 void ether_setup(struct net_device *dev); 3333 3334 /* Support for loadable net-drivers */ 3335 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3336 unsigned char name_assign_type, 3337 void (*setup)(struct net_device *), 3338 unsigned int txqs, unsigned int rxqs); 3339 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3340 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3341 3342 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3343 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3344 count) 3345 3346 int register_netdev(struct net_device *dev); 3347 void unregister_netdev(struct net_device *dev); 3348 3349 /* General hardware address lists handling functions */ 3350 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3351 struct netdev_hw_addr_list *from_list, int addr_len); 3352 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3353 struct netdev_hw_addr_list *from_list, int addr_len); 3354 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3355 struct net_device *dev, 3356 int (*sync)(struct net_device *, const unsigned char *), 3357 int (*unsync)(struct net_device *, 3358 const unsigned char *)); 3359 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3360 struct net_device *dev, 3361 int (*unsync)(struct net_device *, 3362 const unsigned char *)); 3363 void __hw_addr_init(struct netdev_hw_addr_list *list); 3364 3365 /* Functions used for device addresses handling */ 3366 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3367 unsigned char addr_type); 3368 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3369 unsigned char addr_type); 3370 void dev_addr_flush(struct net_device *dev); 3371 int dev_addr_init(struct net_device *dev); 3372 3373 /* Functions used for unicast addresses handling */ 3374 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3375 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3376 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3377 int dev_uc_sync(struct net_device *to, struct net_device *from); 3378 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3379 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3380 void dev_uc_flush(struct net_device *dev); 3381 void dev_uc_init(struct net_device *dev); 3382 3383 /** 3384 * __dev_uc_sync - Synchonize device's unicast list 3385 * @dev: device to sync 3386 * @sync: function to call if address should be added 3387 * @unsync: function to call if address should be removed 3388 * 3389 * Add newly added addresses to the interface, and release 3390 * addresses that have been deleted. 3391 **/ 3392 static inline int __dev_uc_sync(struct net_device *dev, 3393 int (*sync)(struct net_device *, 3394 const unsigned char *), 3395 int (*unsync)(struct net_device *, 3396 const unsigned char *)) 3397 { 3398 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3399 } 3400 3401 /** 3402 * __dev_uc_unsync - Remove synchronized addresses from device 3403 * @dev: device to sync 3404 * @unsync: function to call if address should be removed 3405 * 3406 * Remove all addresses that were added to the device by dev_uc_sync(). 3407 **/ 3408 static inline void __dev_uc_unsync(struct net_device *dev, 3409 int (*unsync)(struct net_device *, 3410 const unsigned char *)) 3411 { 3412 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3413 } 3414 3415 /* Functions used for multicast addresses handling */ 3416 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3417 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3418 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3419 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3420 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3421 int dev_mc_sync(struct net_device *to, struct net_device *from); 3422 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3423 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3424 void dev_mc_flush(struct net_device *dev); 3425 void dev_mc_init(struct net_device *dev); 3426 3427 /** 3428 * __dev_mc_sync - Synchonize device's multicast list 3429 * @dev: device to sync 3430 * @sync: function to call if address should be added 3431 * @unsync: function to call if address should be removed 3432 * 3433 * Add newly added addresses to the interface, and release 3434 * addresses that have been deleted. 3435 **/ 3436 static inline int __dev_mc_sync(struct net_device *dev, 3437 int (*sync)(struct net_device *, 3438 const unsigned char *), 3439 int (*unsync)(struct net_device *, 3440 const unsigned char *)) 3441 { 3442 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3443 } 3444 3445 /** 3446 * __dev_mc_unsync - Remove synchronized addresses from device 3447 * @dev: device to sync 3448 * @unsync: function to call if address should be removed 3449 * 3450 * Remove all addresses that were added to the device by dev_mc_sync(). 3451 **/ 3452 static inline void __dev_mc_unsync(struct net_device *dev, 3453 int (*unsync)(struct net_device *, 3454 const unsigned char *)) 3455 { 3456 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3457 } 3458 3459 /* Functions used for secondary unicast and multicast support */ 3460 void dev_set_rx_mode(struct net_device *dev); 3461 void __dev_set_rx_mode(struct net_device *dev); 3462 int dev_set_promiscuity(struct net_device *dev, int inc); 3463 int dev_set_allmulti(struct net_device *dev, int inc); 3464 void netdev_state_change(struct net_device *dev); 3465 void netdev_notify_peers(struct net_device *dev); 3466 void netdev_features_change(struct net_device *dev); 3467 /* Load a device via the kmod */ 3468 void dev_load(struct net *net, const char *name); 3469 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3470 struct rtnl_link_stats64 *storage); 3471 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3472 const struct net_device_stats *netdev_stats); 3473 3474 extern int netdev_max_backlog; 3475 extern int netdev_tstamp_prequeue; 3476 extern int weight_p; 3477 extern int bpf_jit_enable; 3478 3479 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3480 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3481 struct list_head **iter); 3482 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3483 struct list_head **iter); 3484 3485 /* iterate through upper list, must be called under RCU read lock */ 3486 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3487 for (iter = &(dev)->adj_list.upper, \ 3488 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3489 updev; \ 3490 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3491 3492 /* iterate through upper list, must be called under RCU read lock */ 3493 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3494 for (iter = &(dev)->all_adj_list.upper, \ 3495 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3496 updev; \ 3497 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3498 3499 void *netdev_lower_get_next_private(struct net_device *dev, 3500 struct list_head **iter); 3501 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3502 struct list_head **iter); 3503 3504 #define netdev_for_each_lower_private(dev, priv, iter) \ 3505 for (iter = (dev)->adj_list.lower.next, \ 3506 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3507 priv; \ 3508 priv = netdev_lower_get_next_private(dev, &(iter))) 3509 3510 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3511 for (iter = &(dev)->adj_list.lower, \ 3512 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3513 priv; \ 3514 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3515 3516 void *netdev_lower_get_next(struct net_device *dev, 3517 struct list_head **iter); 3518 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3519 for (iter = &(dev)->adj_list.lower, \ 3520 ldev = netdev_lower_get_next(dev, &(iter)); \ 3521 ldev; \ 3522 ldev = netdev_lower_get_next(dev, &(iter))) 3523 3524 void *netdev_adjacent_get_private(struct list_head *adj_list); 3525 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3526 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3527 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3528 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3529 int netdev_master_upper_dev_link(struct net_device *dev, 3530 struct net_device *upper_dev); 3531 int netdev_master_upper_dev_link_private(struct net_device *dev, 3532 struct net_device *upper_dev, 3533 void *private); 3534 void netdev_upper_dev_unlink(struct net_device *dev, 3535 struct net_device *upper_dev); 3536 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3537 void *netdev_lower_dev_get_private(struct net_device *dev, 3538 struct net_device *lower_dev); 3539 3540 /* RSS keys are 40 or 52 bytes long */ 3541 #define NETDEV_RSS_KEY_LEN 52 3542 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3543 void netdev_rss_key_fill(void *buffer, size_t len); 3544 3545 int dev_get_nest_level(struct net_device *dev, 3546 bool (*type_check)(struct net_device *dev)); 3547 int skb_checksum_help(struct sk_buff *skb); 3548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3549 netdev_features_t features, bool tx_path); 3550 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3551 netdev_features_t features); 3552 3553 struct netdev_bonding_info { 3554 ifslave slave; 3555 ifbond master; 3556 }; 3557 3558 struct netdev_notifier_bonding_info { 3559 struct netdev_notifier_info info; /* must be first */ 3560 struct netdev_bonding_info bonding_info; 3561 }; 3562 3563 void netdev_bonding_info_change(struct net_device *dev, 3564 struct netdev_bonding_info *bonding_info); 3565 3566 static inline 3567 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3568 { 3569 return __skb_gso_segment(skb, features, true); 3570 } 3571 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3572 3573 static inline bool can_checksum_protocol(netdev_features_t features, 3574 __be16 protocol) 3575 { 3576 return ((features & NETIF_F_GEN_CSUM) || 3577 ((features & NETIF_F_V4_CSUM) && 3578 protocol == htons(ETH_P_IP)) || 3579 ((features & NETIF_F_V6_CSUM) && 3580 protocol == htons(ETH_P_IPV6)) || 3581 ((features & NETIF_F_FCOE_CRC) && 3582 protocol == htons(ETH_P_FCOE))); 3583 } 3584 3585 #ifdef CONFIG_BUG 3586 void netdev_rx_csum_fault(struct net_device *dev); 3587 #else 3588 static inline void netdev_rx_csum_fault(struct net_device *dev) 3589 { 3590 } 3591 #endif 3592 /* rx skb timestamps */ 3593 void net_enable_timestamp(void); 3594 void net_disable_timestamp(void); 3595 3596 #ifdef CONFIG_PROC_FS 3597 int __init dev_proc_init(void); 3598 #else 3599 #define dev_proc_init() 0 3600 #endif 3601 3602 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3603 struct sk_buff *skb, struct net_device *dev, 3604 bool more) 3605 { 3606 skb->xmit_more = more ? 1 : 0; 3607 return ops->ndo_start_xmit(skb, dev); 3608 } 3609 3610 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3611 struct netdev_queue *txq, bool more) 3612 { 3613 const struct net_device_ops *ops = dev->netdev_ops; 3614 int rc; 3615 3616 rc = __netdev_start_xmit(ops, skb, dev, more); 3617 if (rc == NETDEV_TX_OK) 3618 txq_trans_update(txq); 3619 3620 return rc; 3621 } 3622 3623 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3624 const void *ns); 3625 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3626 const void *ns); 3627 3628 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3629 { 3630 return netdev_class_create_file_ns(class_attr, NULL); 3631 } 3632 3633 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3634 { 3635 netdev_class_remove_file_ns(class_attr, NULL); 3636 } 3637 3638 extern struct kobj_ns_type_operations net_ns_type_operations; 3639 3640 const char *netdev_drivername(const struct net_device *dev); 3641 3642 void linkwatch_run_queue(void); 3643 3644 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3645 netdev_features_t f2) 3646 { 3647 if (f1 & NETIF_F_GEN_CSUM) 3648 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3649 if (f2 & NETIF_F_GEN_CSUM) 3650 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3651 f1 &= f2; 3652 if (f1 & NETIF_F_GEN_CSUM) 3653 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3654 3655 return f1; 3656 } 3657 3658 static inline netdev_features_t netdev_get_wanted_features( 3659 struct net_device *dev) 3660 { 3661 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3662 } 3663 netdev_features_t netdev_increment_features(netdev_features_t all, 3664 netdev_features_t one, netdev_features_t mask); 3665 3666 /* Allow TSO being used on stacked device : 3667 * Performing the GSO segmentation before last device 3668 * is a performance improvement. 3669 */ 3670 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3671 netdev_features_t mask) 3672 { 3673 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3674 } 3675 3676 int __netdev_update_features(struct net_device *dev); 3677 void netdev_update_features(struct net_device *dev); 3678 void netdev_change_features(struct net_device *dev); 3679 3680 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3681 struct net_device *dev); 3682 3683 netdev_features_t passthru_features_check(struct sk_buff *skb, 3684 struct net_device *dev, 3685 netdev_features_t features); 3686 netdev_features_t netif_skb_features(struct sk_buff *skb); 3687 3688 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3689 { 3690 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3691 3692 /* check flags correspondence */ 3693 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3694 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3695 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3696 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3697 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3698 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3699 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3700 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3701 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3702 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3703 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3704 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3705 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3706 3707 return (features & feature) == feature; 3708 } 3709 3710 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3711 { 3712 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3713 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3714 } 3715 3716 static inline bool netif_needs_gso(struct sk_buff *skb, 3717 netdev_features_t features) 3718 { 3719 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3720 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3721 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3722 } 3723 3724 static inline void netif_set_gso_max_size(struct net_device *dev, 3725 unsigned int size) 3726 { 3727 dev->gso_max_size = size; 3728 } 3729 3730 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3731 int pulled_hlen, u16 mac_offset, 3732 int mac_len) 3733 { 3734 skb->protocol = protocol; 3735 skb->encapsulation = 1; 3736 skb_push(skb, pulled_hlen); 3737 skb_reset_transport_header(skb); 3738 skb->mac_header = mac_offset; 3739 skb->network_header = skb->mac_header + mac_len; 3740 skb->mac_len = mac_len; 3741 } 3742 3743 static inline bool netif_is_macvlan(struct net_device *dev) 3744 { 3745 return dev->priv_flags & IFF_MACVLAN; 3746 } 3747 3748 static inline bool netif_is_macvlan_port(struct net_device *dev) 3749 { 3750 return dev->priv_flags & IFF_MACVLAN_PORT; 3751 } 3752 3753 static inline bool netif_is_ipvlan(struct net_device *dev) 3754 { 3755 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3756 } 3757 3758 static inline bool netif_is_ipvlan_port(struct net_device *dev) 3759 { 3760 return dev->priv_flags & IFF_IPVLAN_MASTER; 3761 } 3762 3763 static inline bool netif_is_bond_master(struct net_device *dev) 3764 { 3765 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3766 } 3767 3768 static inline bool netif_is_bond_slave(struct net_device *dev) 3769 { 3770 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3771 } 3772 3773 static inline bool netif_supports_nofcs(struct net_device *dev) 3774 { 3775 return dev->priv_flags & IFF_SUPP_NOFCS; 3776 } 3777 3778 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3779 static inline void netif_keep_dst(struct net_device *dev) 3780 { 3781 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3782 } 3783 3784 extern struct pernet_operations __net_initdata loopback_net_ops; 3785 3786 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 3787 3788 /* netdev_printk helpers, similar to dev_printk */ 3789 3790 static inline const char *netdev_name(const struct net_device *dev) 3791 { 3792 if (!dev->name[0] || strchr(dev->name, '%')) 3793 return "(unnamed net_device)"; 3794 return dev->name; 3795 } 3796 3797 static inline const char *netdev_reg_state(const struct net_device *dev) 3798 { 3799 switch (dev->reg_state) { 3800 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3801 case NETREG_REGISTERED: return ""; 3802 case NETREG_UNREGISTERING: return " (unregistering)"; 3803 case NETREG_UNREGISTERED: return " (unregistered)"; 3804 case NETREG_RELEASED: return " (released)"; 3805 case NETREG_DUMMY: return " (dummy)"; 3806 } 3807 3808 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3809 return " (unknown)"; 3810 } 3811 3812 __printf(3, 4) 3813 void netdev_printk(const char *level, const struct net_device *dev, 3814 const char *format, ...); 3815 __printf(2, 3) 3816 void netdev_emerg(const struct net_device *dev, const char *format, ...); 3817 __printf(2, 3) 3818 void netdev_alert(const struct net_device *dev, const char *format, ...); 3819 __printf(2, 3) 3820 void netdev_crit(const struct net_device *dev, const char *format, ...); 3821 __printf(2, 3) 3822 void netdev_err(const struct net_device *dev, const char *format, ...); 3823 __printf(2, 3) 3824 void netdev_warn(const struct net_device *dev, const char *format, ...); 3825 __printf(2, 3) 3826 void netdev_notice(const struct net_device *dev, const char *format, ...); 3827 __printf(2, 3) 3828 void netdev_info(const struct net_device *dev, const char *format, ...); 3829 3830 #define MODULE_ALIAS_NETDEV(device) \ 3831 MODULE_ALIAS("netdev-" device) 3832 3833 #if defined(CONFIG_DYNAMIC_DEBUG) 3834 #define netdev_dbg(__dev, format, args...) \ 3835 do { \ 3836 dynamic_netdev_dbg(__dev, format, ##args); \ 3837 } while (0) 3838 #elif defined(DEBUG) 3839 #define netdev_dbg(__dev, format, args...) \ 3840 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3841 #else 3842 #define netdev_dbg(__dev, format, args...) \ 3843 ({ \ 3844 if (0) \ 3845 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3846 }) 3847 #endif 3848 3849 #if defined(VERBOSE_DEBUG) 3850 #define netdev_vdbg netdev_dbg 3851 #else 3852 3853 #define netdev_vdbg(dev, format, args...) \ 3854 ({ \ 3855 if (0) \ 3856 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3857 0; \ 3858 }) 3859 #endif 3860 3861 /* 3862 * netdev_WARN() acts like dev_printk(), but with the key difference 3863 * of using a WARN/WARN_ON to get the message out, including the 3864 * file/line information and a backtrace. 3865 */ 3866 #define netdev_WARN(dev, format, args...) \ 3867 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3868 netdev_reg_state(dev), ##args) 3869 3870 /* netif printk helpers, similar to netdev_printk */ 3871 3872 #define netif_printk(priv, type, level, dev, fmt, args...) \ 3873 do { \ 3874 if (netif_msg_##type(priv)) \ 3875 netdev_printk(level, (dev), fmt, ##args); \ 3876 } while (0) 3877 3878 #define netif_level(level, priv, type, dev, fmt, args...) \ 3879 do { \ 3880 if (netif_msg_##type(priv)) \ 3881 netdev_##level(dev, fmt, ##args); \ 3882 } while (0) 3883 3884 #define netif_emerg(priv, type, dev, fmt, args...) \ 3885 netif_level(emerg, priv, type, dev, fmt, ##args) 3886 #define netif_alert(priv, type, dev, fmt, args...) \ 3887 netif_level(alert, priv, type, dev, fmt, ##args) 3888 #define netif_crit(priv, type, dev, fmt, args...) \ 3889 netif_level(crit, priv, type, dev, fmt, ##args) 3890 #define netif_err(priv, type, dev, fmt, args...) \ 3891 netif_level(err, priv, type, dev, fmt, ##args) 3892 #define netif_warn(priv, type, dev, fmt, args...) \ 3893 netif_level(warn, priv, type, dev, fmt, ##args) 3894 #define netif_notice(priv, type, dev, fmt, args...) \ 3895 netif_level(notice, priv, type, dev, fmt, ##args) 3896 #define netif_info(priv, type, dev, fmt, args...) \ 3897 netif_level(info, priv, type, dev, fmt, ##args) 3898 3899 #if defined(CONFIG_DYNAMIC_DEBUG) 3900 #define netif_dbg(priv, type, netdev, format, args...) \ 3901 do { \ 3902 if (netif_msg_##type(priv)) \ 3903 dynamic_netdev_dbg(netdev, format, ##args); \ 3904 } while (0) 3905 #elif defined(DEBUG) 3906 #define netif_dbg(priv, type, dev, format, args...) \ 3907 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3908 #else 3909 #define netif_dbg(priv, type, dev, format, args...) \ 3910 ({ \ 3911 if (0) \ 3912 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3913 0; \ 3914 }) 3915 #endif 3916 3917 #if defined(VERBOSE_DEBUG) 3918 #define netif_vdbg netif_dbg 3919 #else 3920 #define netif_vdbg(priv, type, dev, format, args...) \ 3921 ({ \ 3922 if (0) \ 3923 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3924 0; \ 3925 }) 3926 #endif 3927 3928 /* 3929 * The list of packet types we will receive (as opposed to discard) 3930 * and the routines to invoke. 3931 * 3932 * Why 16. Because with 16 the only overlap we get on a hash of the 3933 * low nibble of the protocol value is RARP/SNAP/X.25. 3934 * 3935 * NOTE: That is no longer true with the addition of VLAN tags. Not 3936 * sure which should go first, but I bet it won't make much 3937 * difference if we are running VLANs. The good news is that 3938 * this protocol won't be in the list unless compiled in, so 3939 * the average user (w/out VLANs) will not be adversely affected. 3940 * --BLG 3941 * 3942 * 0800 IP 3943 * 8100 802.1Q VLAN 3944 * 0001 802.3 3945 * 0002 AX.25 3946 * 0004 802.2 3947 * 8035 RARP 3948 * 0005 SNAP 3949 * 0805 X.25 3950 * 0806 ARP 3951 * 8137 IPX 3952 * 0009 Localtalk 3953 * 86DD IPv6 3954 */ 3955 #define PTYPE_HASH_SIZE (16) 3956 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3957 3958 #endif /* _LINUX_NETDEVICE_H */ 3959