xref: /openbmc/linux/include/linux/netdevice.h (revision 55fd7e02)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 struct xdp_buff;
70 
71 void netdev_set_default_ethtool_ops(struct net_device *dev,
72 				    const struct ethtool_ops *ops);
73 
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
76 #define NET_RX_DROP		1	/* packet dropped */
77 
78 #define MAX_NEST_DEV 8
79 
80 /*
81  * Transmit return codes: transmit return codes originate from three different
82  * namespaces:
83  *
84  * - qdisc return codes
85  * - driver transmit return codes
86  * - errno values
87  *
88  * Drivers are allowed to return any one of those in their hard_start_xmit()
89  * function. Real network devices commonly used with qdiscs should only return
90  * the driver transmit return codes though - when qdiscs are used, the actual
91  * transmission happens asynchronously, so the value is not propagated to
92  * higher layers. Virtual network devices transmit synchronously; in this case
93  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
94  * others are propagated to higher layers.
95  */
96 
97 /* qdisc ->enqueue() return codes. */
98 #define NET_XMIT_SUCCESS	0x00
99 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
100 #define NET_XMIT_CN		0x02	/* congestion notification	*/
101 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
102 
103 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
104  * indicates that the device will soon be dropping packets, or already drops
105  * some packets of the same priority; prompting us to send less aggressively. */
106 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
107 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
108 
109 /* Driver transmit return codes */
110 #define NETDEV_TX_MASK		0xf0
111 
112 enum netdev_tx {
113 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
114 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
115 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
116 };
117 typedef enum netdev_tx netdev_tx_t;
118 
119 /*
120  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122  */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 	/*
126 	 * Positive cases with an skb consumed by a driver:
127 	 * - successful transmission (rc == NETDEV_TX_OK)
128 	 * - error while transmitting (rc < 0)
129 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 	 */
131 	if (likely(rc < NET_XMIT_MASK))
132 		return true;
133 
134 	return false;
135 }
136 
137 /*
138  *	Compute the worst-case header length according to the protocols
139  *	used.
140  */
141 
142 #if defined(CONFIG_HYPERV_NET)
143 # define LL_MAX_HEADER 128
144 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
145 # if defined(CONFIG_MAC80211_MESH)
146 #  define LL_MAX_HEADER 128
147 # else
148 #  define LL_MAX_HEADER 96
149 # endif
150 #else
151 # define LL_MAX_HEADER 32
152 #endif
153 
154 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
155     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
156 #define MAX_HEADER LL_MAX_HEADER
157 #else
158 #define MAX_HEADER (LL_MAX_HEADER + 48)
159 #endif
160 
161 /*
162  *	Old network device statistics. Fields are native words
163  *	(unsigned long) so they can be read and written atomically.
164  */
165 
166 struct net_device_stats {
167 	unsigned long	rx_packets;
168 	unsigned long	tx_packets;
169 	unsigned long	rx_bytes;
170 	unsigned long	tx_bytes;
171 	unsigned long	rx_errors;
172 	unsigned long	tx_errors;
173 	unsigned long	rx_dropped;
174 	unsigned long	tx_dropped;
175 	unsigned long	multicast;
176 	unsigned long	collisions;
177 	unsigned long	rx_length_errors;
178 	unsigned long	rx_over_errors;
179 	unsigned long	rx_crc_errors;
180 	unsigned long	rx_frame_errors;
181 	unsigned long	rx_fifo_errors;
182 	unsigned long	rx_missed_errors;
183 	unsigned long	tx_aborted_errors;
184 	unsigned long	tx_carrier_errors;
185 	unsigned long	tx_fifo_errors;
186 	unsigned long	tx_heartbeat_errors;
187 	unsigned long	tx_window_errors;
188 	unsigned long	rx_compressed;
189 	unsigned long	tx_compressed;
190 };
191 
192 
193 #include <linux/cache.h>
194 #include <linux/skbuff.h>
195 
196 #ifdef CONFIG_RPS
197 #include <linux/static_key.h>
198 extern struct static_key_false rps_needed;
199 extern struct static_key_false rfs_needed;
200 #endif
201 
202 struct neighbour;
203 struct neigh_parms;
204 struct sk_buff;
205 
206 struct netdev_hw_addr {
207 	struct list_head	list;
208 	unsigned char		addr[MAX_ADDR_LEN];
209 	unsigned char		type;
210 #define NETDEV_HW_ADDR_T_LAN		1
211 #define NETDEV_HW_ADDR_T_SAN		2
212 #define NETDEV_HW_ADDR_T_SLAVE		3
213 #define NETDEV_HW_ADDR_T_UNICAST	4
214 #define NETDEV_HW_ADDR_T_MULTICAST	5
215 	bool			global_use;
216 	int			sync_cnt;
217 	int			refcount;
218 	int			synced;
219 	struct rcu_head		rcu_head;
220 };
221 
222 struct netdev_hw_addr_list {
223 	struct list_head	list;
224 	int			count;
225 };
226 
227 #define netdev_hw_addr_list_count(l) ((l)->count)
228 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
229 #define netdev_hw_addr_list_for_each(ha, l) \
230 	list_for_each_entry(ha, &(l)->list, list)
231 
232 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
233 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
234 #define netdev_for_each_uc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
236 
237 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
238 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
239 #define netdev_for_each_mc_addr(ha, dev) \
240 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
241 
242 struct hh_cache {
243 	unsigned int	hh_len;
244 	seqlock_t	hh_lock;
245 
246 	/* cached hardware header; allow for machine alignment needs.        */
247 #define HH_DATA_MOD	16
248 #define HH_DATA_OFF(__len) \
249 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
250 #define HH_DATA_ALIGN(__len) \
251 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
252 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
253 };
254 
255 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
256  * Alternative is:
257  *   dev->hard_header_len ? (dev->hard_header_len +
258  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
259  *
260  * We could use other alignment values, but we must maintain the
261  * relationship HH alignment <= LL alignment.
262  */
263 #define LL_RESERVED_SPACE(dev) \
264 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 
268 struct header_ops {
269 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
270 			   unsigned short type, const void *daddr,
271 			   const void *saddr, unsigned int len);
272 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
273 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
274 	void	(*cache_update)(struct hh_cache *hh,
275 				const struct net_device *dev,
276 				const unsigned char *haddr);
277 	bool	(*validate)(const char *ll_header, unsigned int len);
278 	__be16	(*parse_protocol)(const struct sk_buff *skb);
279 };
280 
281 /* These flag bits are private to the generic network queueing
282  * layer; they may not be explicitly referenced by any other
283  * code.
284  */
285 
286 enum netdev_state_t {
287 	__LINK_STATE_START,
288 	__LINK_STATE_PRESENT,
289 	__LINK_STATE_NOCARRIER,
290 	__LINK_STATE_LINKWATCH_PENDING,
291 	__LINK_STATE_DORMANT,
292 	__LINK_STATE_TESTING,
293 };
294 
295 
296 /*
297  * This structure holds boot-time configured netdevice settings. They
298  * are then used in the device probing.
299  */
300 struct netdev_boot_setup {
301 	char name[IFNAMSIZ];
302 	struct ifmap map;
303 };
304 #define NETDEV_BOOT_SETUP_MAX 8
305 
306 int __init netdev_boot_setup(char *str);
307 
308 struct gro_list {
309 	struct list_head	list;
310 	int			count;
311 };
312 
313 /*
314  * size of gro hash buckets, must less than bit number of
315  * napi_struct::gro_bitmask
316  */
317 #define GRO_HASH_BUCKETS	8
318 
319 /*
320  * Structure for NAPI scheduling similar to tasklet but with weighting
321  */
322 struct napi_struct {
323 	/* The poll_list must only be managed by the entity which
324 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
325 	 * whoever atomically sets that bit can add this napi_struct
326 	 * to the per-CPU poll_list, and whoever clears that bit
327 	 * can remove from the list right before clearing the bit.
328 	 */
329 	struct list_head	poll_list;
330 
331 	unsigned long		state;
332 	int			weight;
333 	int			defer_hard_irqs_count;
334 	unsigned long		gro_bitmask;
335 	int			(*poll)(struct napi_struct *, int);
336 #ifdef CONFIG_NETPOLL
337 	int			poll_owner;
338 #endif
339 	struct net_device	*dev;
340 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
341 	struct sk_buff		*skb;
342 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
343 	int			rx_count; /* length of rx_list */
344 	struct hrtimer		timer;
345 	struct list_head	dev_list;
346 	struct hlist_node	napi_hash_node;
347 	unsigned int		napi_id;
348 };
349 
350 enum {
351 	NAPI_STATE_SCHED,	/* Poll is scheduled */
352 	NAPI_STATE_MISSED,	/* reschedule a napi */
353 	NAPI_STATE_DISABLE,	/* Disable pending */
354 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
355 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
356 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
357 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
358 };
359 
360 enum {
361 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
362 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
363 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
364 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
365 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
366 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
367 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
368 };
369 
370 enum gro_result {
371 	GRO_MERGED,
372 	GRO_MERGED_FREE,
373 	GRO_HELD,
374 	GRO_NORMAL,
375 	GRO_DROP,
376 	GRO_CONSUMED,
377 };
378 typedef enum gro_result gro_result_t;
379 
380 /*
381  * enum rx_handler_result - Possible return values for rx_handlers.
382  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
383  * further.
384  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
385  * case skb->dev was changed by rx_handler.
386  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
387  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
388  *
389  * rx_handlers are functions called from inside __netif_receive_skb(), to do
390  * special processing of the skb, prior to delivery to protocol handlers.
391  *
392  * Currently, a net_device can only have a single rx_handler registered. Trying
393  * to register a second rx_handler will return -EBUSY.
394  *
395  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
396  * To unregister a rx_handler on a net_device, use
397  * netdev_rx_handler_unregister().
398  *
399  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
400  * do with the skb.
401  *
402  * If the rx_handler consumed the skb in some way, it should return
403  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
404  * the skb to be delivered in some other way.
405  *
406  * If the rx_handler changed skb->dev, to divert the skb to another
407  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
408  * new device will be called if it exists.
409  *
410  * If the rx_handler decides the skb should be ignored, it should return
411  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
412  * are registered on exact device (ptype->dev == skb->dev).
413  *
414  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
415  * delivered, it should return RX_HANDLER_PASS.
416  *
417  * A device without a registered rx_handler will behave as if rx_handler
418  * returned RX_HANDLER_PASS.
419  */
420 
421 enum rx_handler_result {
422 	RX_HANDLER_CONSUMED,
423 	RX_HANDLER_ANOTHER,
424 	RX_HANDLER_EXACT,
425 	RX_HANDLER_PASS,
426 };
427 typedef enum rx_handler_result rx_handler_result_t;
428 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
429 
430 void __napi_schedule(struct napi_struct *n);
431 void __napi_schedule_irqoff(struct napi_struct *n);
432 
433 static inline bool napi_disable_pending(struct napi_struct *n)
434 {
435 	return test_bit(NAPI_STATE_DISABLE, &n->state);
436 }
437 
438 bool napi_schedule_prep(struct napi_struct *n);
439 
440 /**
441  *	napi_schedule - schedule NAPI poll
442  *	@n: NAPI context
443  *
444  * Schedule NAPI poll routine to be called if it is not already
445  * running.
446  */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 	if (napi_schedule_prep(n))
450 		__napi_schedule(n);
451 }
452 
453 /**
454  *	napi_schedule_irqoff - schedule NAPI poll
455  *	@n: NAPI context
456  *
457  * Variant of napi_schedule(), assuming hard irqs are masked.
458  */
459 static inline void napi_schedule_irqoff(struct napi_struct *n)
460 {
461 	if (napi_schedule_prep(n))
462 		__napi_schedule_irqoff(n);
463 }
464 
465 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
466 static inline bool napi_reschedule(struct napi_struct *napi)
467 {
468 	if (napi_schedule_prep(napi)) {
469 		__napi_schedule(napi);
470 		return true;
471 	}
472 	return false;
473 }
474 
475 bool napi_complete_done(struct napi_struct *n, int work_done);
476 /**
477  *	napi_complete - NAPI processing complete
478  *	@n: NAPI context
479  *
480  * Mark NAPI processing as complete.
481  * Consider using napi_complete_done() instead.
482  * Return false if device should avoid rearming interrupts.
483  */
484 static inline bool napi_complete(struct napi_struct *n)
485 {
486 	return napi_complete_done(n, 0);
487 }
488 
489 /**
490  *	napi_hash_del - remove a NAPI from global table
491  *	@napi: NAPI context
492  *
493  * Warning: caller must observe RCU grace period
494  * before freeing memory containing @napi, if
495  * this function returns true.
496  * Note: core networking stack automatically calls it
497  * from netif_napi_del().
498  * Drivers might want to call this helper to combine all
499  * the needed RCU grace periods into a single one.
500  */
501 bool napi_hash_del(struct napi_struct *napi);
502 
503 /**
504  *	napi_disable - prevent NAPI from scheduling
505  *	@n: NAPI context
506  *
507  * Stop NAPI from being scheduled on this context.
508  * Waits till any outstanding processing completes.
509  */
510 void napi_disable(struct napi_struct *n);
511 
512 /**
513  *	napi_enable - enable NAPI scheduling
514  *	@n: NAPI context
515  *
516  * Resume NAPI from being scheduled on this context.
517  * Must be paired with napi_disable.
518  */
519 static inline void napi_enable(struct napi_struct *n)
520 {
521 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 	smp_mb__before_atomic();
523 	clear_bit(NAPI_STATE_SCHED, &n->state);
524 	clear_bit(NAPI_STATE_NPSVC, &n->state);
525 }
526 
527 /**
528  *	napi_synchronize - wait until NAPI is not running
529  *	@n: NAPI context
530  *
531  * Wait until NAPI is done being scheduled on this context.
532  * Waits till any outstanding processing completes but
533  * does not disable future activations.
534  */
535 static inline void napi_synchronize(const struct napi_struct *n)
536 {
537 	if (IS_ENABLED(CONFIG_SMP))
538 		while (test_bit(NAPI_STATE_SCHED, &n->state))
539 			msleep(1);
540 	else
541 		barrier();
542 }
543 
544 /**
545  *	napi_if_scheduled_mark_missed - if napi is running, set the
546  *	NAPIF_STATE_MISSED
547  *	@n: NAPI context
548  *
549  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
550  * NAPI is scheduled.
551  **/
552 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
553 {
554 	unsigned long val, new;
555 
556 	do {
557 		val = READ_ONCE(n->state);
558 		if (val & NAPIF_STATE_DISABLE)
559 			return true;
560 
561 		if (!(val & NAPIF_STATE_SCHED))
562 			return false;
563 
564 		new = val | NAPIF_STATE_MISSED;
565 	} while (cmpxchg(&n->state, val, new) != val);
566 
567 	return true;
568 }
569 
570 enum netdev_queue_state_t {
571 	__QUEUE_STATE_DRV_XOFF,
572 	__QUEUE_STATE_STACK_XOFF,
573 	__QUEUE_STATE_FROZEN,
574 };
575 
576 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
577 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
579 
580 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
581 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
582 					QUEUE_STATE_FROZEN)
583 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
584 					QUEUE_STATE_FROZEN)
585 
586 /*
587  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
588  * netif_tx_* functions below are used to manipulate this flag.  The
589  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
590  * queue independently.  The netif_xmit_*stopped functions below are called
591  * to check if the queue has been stopped by the driver or stack (either
592  * of the XOFF bits are set in the state).  Drivers should not need to call
593  * netif_xmit*stopped functions, they should only be using netif_tx_*.
594  */
595 
596 struct netdev_queue {
597 /*
598  * read-mostly part
599  */
600 	struct net_device	*dev;
601 	struct Qdisc __rcu	*qdisc;
602 	struct Qdisc		*qdisc_sleeping;
603 #ifdef CONFIG_SYSFS
604 	struct kobject		kobj;
605 #endif
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 	int			numa_node;
608 #endif
609 	unsigned long		tx_maxrate;
610 	/*
611 	 * Number of TX timeouts for this queue
612 	 * (/sys/class/net/DEV/Q/trans_timeout)
613 	 */
614 	unsigned long		trans_timeout;
615 
616 	/* Subordinate device that the queue has been assigned to */
617 	struct net_device	*sb_dev;
618 #ifdef CONFIG_XDP_SOCKETS
619 	struct xdp_umem         *umem;
620 #endif
621 /*
622  * write-mostly part
623  */
624 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
625 	int			xmit_lock_owner;
626 	/*
627 	 * Time (in jiffies) of last Tx
628 	 */
629 	unsigned long		trans_start;
630 
631 	unsigned long		state;
632 
633 #ifdef CONFIG_BQL
634 	struct dql		dql;
635 #endif
636 } ____cacheline_aligned_in_smp;
637 
638 extern int sysctl_fb_tunnels_only_for_init_net;
639 extern int sysctl_devconf_inherit_init_net;
640 
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return net == &init_net ||
644 	       !IS_ENABLED(CONFIG_SYSCTL) ||
645 	       !sysctl_fb_tunnels_only_for_init_net;
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 #ifdef CONFIG_RPS
745 	struct rps_map __rcu		*rps_map;
746 	struct rps_dev_flow_table __rcu	*rps_flow_table;
747 #endif
748 	struct kobject			kobj;
749 	struct net_device		*dev;
750 	struct xdp_rxq_info		xdp_rxq;
751 #ifdef CONFIG_XDP_SOCKETS
752 	struct xdp_umem                 *umem;
753 #endif
754 } ____cacheline_aligned_in_smp;
755 
756 /*
757  * RX queue sysfs structures and functions.
758  */
759 struct rx_queue_attribute {
760 	struct attribute attr;
761 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
762 	ssize_t (*store)(struct netdev_rx_queue *queue,
763 			 const char *buf, size_t len);
764 };
765 
766 #ifdef CONFIG_XPS
767 /*
768  * This structure holds an XPS map which can be of variable length.  The
769  * map is an array of queues.
770  */
771 struct xps_map {
772 	unsigned int len;
773 	unsigned int alloc_len;
774 	struct rcu_head rcu;
775 	u16 queues[];
776 };
777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779        - sizeof(struct xps_map)) / sizeof(u16))
780 
781 /*
782  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
783  */
784 struct xps_dev_maps {
785 	struct rcu_head rcu;
786 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
787 };
788 
789 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
790 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
791 
792 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
793 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
794 
795 #endif /* CONFIG_XPS */
796 
797 #define TC_MAX_QUEUE	16
798 #define TC_BITMASK	15
799 /* HW offloaded queuing disciplines txq count and offset maps */
800 struct netdev_tc_txq {
801 	u16 count;
802 	u16 offset;
803 };
804 
805 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
806 /*
807  * This structure is to hold information about the device
808  * configured to run FCoE protocol stack.
809  */
810 struct netdev_fcoe_hbainfo {
811 	char	manufacturer[64];
812 	char	serial_number[64];
813 	char	hardware_version[64];
814 	char	driver_version[64];
815 	char	optionrom_version[64];
816 	char	firmware_version[64];
817 	char	model[256];
818 	char	model_description[256];
819 };
820 #endif
821 
822 #define MAX_PHYS_ITEM_ID_LEN 32
823 
824 /* This structure holds a unique identifier to identify some
825  * physical item (port for example) used by a netdevice.
826  */
827 struct netdev_phys_item_id {
828 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
829 	unsigned char id_len;
830 };
831 
832 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
833 					    struct netdev_phys_item_id *b)
834 {
835 	return a->id_len == b->id_len &&
836 	       memcmp(a->id, b->id, a->id_len) == 0;
837 }
838 
839 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
840 				       struct sk_buff *skb,
841 				       struct net_device *sb_dev);
842 
843 enum tc_setup_type {
844 	TC_SETUP_QDISC_MQPRIO,
845 	TC_SETUP_CLSU32,
846 	TC_SETUP_CLSFLOWER,
847 	TC_SETUP_CLSMATCHALL,
848 	TC_SETUP_CLSBPF,
849 	TC_SETUP_BLOCK,
850 	TC_SETUP_QDISC_CBS,
851 	TC_SETUP_QDISC_RED,
852 	TC_SETUP_QDISC_PRIO,
853 	TC_SETUP_QDISC_MQ,
854 	TC_SETUP_QDISC_ETF,
855 	TC_SETUP_ROOT_QDISC,
856 	TC_SETUP_QDISC_GRED,
857 	TC_SETUP_QDISC_TAPRIO,
858 	TC_SETUP_FT,
859 	TC_SETUP_QDISC_ETS,
860 	TC_SETUP_QDISC_TBF,
861 	TC_SETUP_QDISC_FIFO,
862 };
863 
864 /* These structures hold the attributes of bpf state that are being passed
865  * to the netdevice through the bpf op.
866  */
867 enum bpf_netdev_command {
868 	/* Set or clear a bpf program used in the earliest stages of packet
869 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 	 * is responsible for calling bpf_prog_put on any old progs that are
871 	 * stored. In case of error, the callee need not release the new prog
872 	 * reference, but on success it takes ownership and must bpf_prog_put
873 	 * when it is no longer used.
874 	 */
875 	XDP_SETUP_PROG,
876 	XDP_SETUP_PROG_HW,
877 	XDP_QUERY_PROG,
878 	XDP_QUERY_PROG_HW,
879 	/* BPF program for offload callbacks, invoked at program load time. */
880 	BPF_OFFLOAD_MAP_ALLOC,
881 	BPF_OFFLOAD_MAP_FREE,
882 	XDP_SETUP_XSK_UMEM,
883 };
884 
885 struct bpf_prog_offload_ops;
886 struct netlink_ext_ack;
887 struct xdp_umem;
888 struct xdp_dev_bulk_queue;
889 
890 struct netdev_bpf {
891 	enum bpf_netdev_command command;
892 	union {
893 		/* XDP_SETUP_PROG */
894 		struct {
895 			u32 flags;
896 			struct bpf_prog *prog;
897 			struct netlink_ext_ack *extack;
898 		};
899 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
900 		struct {
901 			u32 prog_id;
902 			/* flags with which program was installed */
903 			u32 prog_flags;
904 		};
905 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
906 		struct {
907 			struct bpf_offloaded_map *offmap;
908 		};
909 		/* XDP_SETUP_XSK_UMEM */
910 		struct {
911 			struct xdp_umem *umem;
912 			u16 queue_id;
913 		} xsk;
914 	};
915 };
916 
917 /* Flags for ndo_xsk_wakeup. */
918 #define XDP_WAKEUP_RX (1 << 0)
919 #define XDP_WAKEUP_TX (1 << 1)
920 
921 #ifdef CONFIG_XFRM_OFFLOAD
922 struct xfrmdev_ops {
923 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
924 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
925 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
926 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
927 				       struct xfrm_state *x);
928 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
929 };
930 #endif
931 
932 struct dev_ifalias {
933 	struct rcu_head rcuhead;
934 	char ifalias[];
935 };
936 
937 struct devlink;
938 struct tlsdev_ops;
939 
940 struct netdev_name_node {
941 	struct hlist_node hlist;
942 	struct list_head list;
943 	struct net_device *dev;
944 	const char *name;
945 };
946 
947 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
948 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
949 
950 struct netdev_net_notifier {
951 	struct list_head list;
952 	struct notifier_block *nb;
953 };
954 
955 /*
956  * This structure defines the management hooks for network devices.
957  * The following hooks can be defined; unless noted otherwise, they are
958  * optional and can be filled with a null pointer.
959  *
960  * int (*ndo_init)(struct net_device *dev);
961  *     This function is called once when a network device is registered.
962  *     The network device can use this for any late stage initialization
963  *     or semantic validation. It can fail with an error code which will
964  *     be propagated back to register_netdev.
965  *
966  * void (*ndo_uninit)(struct net_device *dev);
967  *     This function is called when device is unregistered or when registration
968  *     fails. It is not called if init fails.
969  *
970  * int (*ndo_open)(struct net_device *dev);
971  *     This function is called when a network device transitions to the up
972  *     state.
973  *
974  * int (*ndo_stop)(struct net_device *dev);
975  *     This function is called when a network device transitions to the down
976  *     state.
977  *
978  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
979  *                               struct net_device *dev);
980  *	Called when a packet needs to be transmitted.
981  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
982  *	the queue before that can happen; it's for obsolete devices and weird
983  *	corner cases, but the stack really does a non-trivial amount
984  *	of useless work if you return NETDEV_TX_BUSY.
985  *	Required; cannot be NULL.
986  *
987  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
988  *					   struct net_device *dev
989  *					   netdev_features_t features);
990  *	Called by core transmit path to determine if device is capable of
991  *	performing offload operations on a given packet. This is to give
992  *	the device an opportunity to implement any restrictions that cannot
993  *	be otherwise expressed by feature flags. The check is called with
994  *	the set of features that the stack has calculated and it returns
995  *	those the driver believes to be appropriate.
996  *
997  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
998  *                         struct net_device *sb_dev);
999  *	Called to decide which queue to use when device supports multiple
1000  *	transmit queues.
1001  *
1002  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1003  *	This function is called to allow device receiver to make
1004  *	changes to configuration when multicast or promiscuous is enabled.
1005  *
1006  * void (*ndo_set_rx_mode)(struct net_device *dev);
1007  *	This function is called device changes address list filtering.
1008  *	If driver handles unicast address filtering, it should set
1009  *	IFF_UNICAST_FLT in its priv_flags.
1010  *
1011  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1012  *	This function  is called when the Media Access Control address
1013  *	needs to be changed. If this interface is not defined, the
1014  *	MAC address can not be changed.
1015  *
1016  * int (*ndo_validate_addr)(struct net_device *dev);
1017  *	Test if Media Access Control address is valid for the device.
1018  *
1019  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1020  *	Called when a user requests an ioctl which can't be handled by
1021  *	the generic interface code. If not defined ioctls return
1022  *	not supported error code.
1023  *
1024  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1025  *	Used to set network devices bus interface parameters. This interface
1026  *	is retained for legacy reasons; new devices should use the bus
1027  *	interface (PCI) for low level management.
1028  *
1029  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1030  *	Called when a user wants to change the Maximum Transfer Unit
1031  *	of a device.
1032  *
1033  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1034  *	Callback used when the transmitter has not made any progress
1035  *	for dev->watchdog ticks.
1036  *
1037  * void (*ndo_get_stats64)(struct net_device *dev,
1038  *                         struct rtnl_link_stats64 *storage);
1039  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1040  *	Called when a user wants to get the network device usage
1041  *	statistics. Drivers must do one of the following:
1042  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1043  *	   rtnl_link_stats64 structure passed by the caller.
1044  *	2. Define @ndo_get_stats to update a net_device_stats structure
1045  *	   (which should normally be dev->stats) and return a pointer to
1046  *	   it. The structure may be changed asynchronously only if each
1047  *	   field is written atomically.
1048  *	3. Update dev->stats asynchronously and atomically, and define
1049  *	   neither operation.
1050  *
1051  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1052  *	Return true if this device supports offload stats of this attr_id.
1053  *
1054  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1055  *	void *attr_data)
1056  *	Get statistics for offload operations by attr_id. Write it into the
1057  *	attr_data pointer.
1058  *
1059  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1060  *	If device supports VLAN filtering this function is called when a
1061  *	VLAN id is registered.
1062  *
1063  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1064  *	If device supports VLAN filtering this function is called when a
1065  *	VLAN id is unregistered.
1066  *
1067  * void (*ndo_poll_controller)(struct net_device *dev);
1068  *
1069  *	SR-IOV management functions.
1070  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1071  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1072  *			  u8 qos, __be16 proto);
1073  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1074  *			  int max_tx_rate);
1075  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1077  * int (*ndo_get_vf_config)(struct net_device *dev,
1078  *			    int vf, struct ifla_vf_info *ivf);
1079  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1080  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1081  *			  struct nlattr *port[]);
1082  *
1083  *      Enable or disable the VF ability to query its RSS Redirection Table and
1084  *      Hash Key. This is needed since on some devices VF share this information
1085  *      with PF and querying it may introduce a theoretical security risk.
1086  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1087  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1088  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1089  *		       void *type_data);
1090  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1091  *	This is always called from the stack with the rtnl lock held and netif
1092  *	tx queues stopped. This allows the netdevice to perform queue
1093  *	management safely.
1094  *
1095  *	Fiber Channel over Ethernet (FCoE) offload functions.
1096  * int (*ndo_fcoe_enable)(struct net_device *dev);
1097  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1098  *	so the underlying device can perform whatever needed configuration or
1099  *	initialization to support acceleration of FCoE traffic.
1100  *
1101  * int (*ndo_fcoe_disable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1103  *	so the underlying device can perform whatever needed clean-ups to
1104  *	stop supporting acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1107  *			     struct scatterlist *sgl, unsigned int sgc);
1108  *	Called when the FCoE Initiator wants to initialize an I/O that
1109  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1110  *	perform necessary setup and returns 1 to indicate the device is set up
1111  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1112  *
1113  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1114  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1115  *	indicated by the FC exchange id 'xid', so the underlying device can
1116  *	clean up and reuse resources for later DDP requests.
1117  *
1118  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1119  *			      struct scatterlist *sgl, unsigned int sgc);
1120  *	Called when the FCoE Target wants to initialize an I/O that
1121  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1122  *	perform necessary setup and returns 1 to indicate the device is set up
1123  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1124  *
1125  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126  *			       struct netdev_fcoe_hbainfo *hbainfo);
1127  *	Called when the FCoE Protocol stack wants information on the underlying
1128  *	device. This information is utilized by the FCoE protocol stack to
1129  *	register attributes with Fiber Channel management service as per the
1130  *	FC-GS Fabric Device Management Information(FDMI) specification.
1131  *
1132  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1133  *	Called when the underlying device wants to override default World Wide
1134  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1135  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1136  *	protocol stack to use.
1137  *
1138  *	RFS acceleration.
1139  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1140  *			    u16 rxq_index, u32 flow_id);
1141  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1142  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1143  *	Return the filter ID on success, or a negative error code.
1144  *
1145  *	Slave management functions (for bridge, bonding, etc).
1146  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1147  *	Called to make another netdev an underling.
1148  *
1149  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1150  *	Called to release previously enslaved netdev.
1151  *
1152  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1153  *					    struct sk_buff *skb,
1154  *					    bool all_slaves);
1155  *	Get the xmit slave of master device. If all_slaves is true, function
1156  *	assume all the slaves can transmit.
1157  *
1158  *      Feature/offload setting functions.
1159  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1160  *		netdev_features_t features);
1161  *	Adjusts the requested feature flags according to device-specific
1162  *	constraints, and returns the resulting flags. Must not modify
1163  *	the device state.
1164  *
1165  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1166  *	Called to update device configuration to new features. Passed
1167  *	feature set might be less than what was returned by ndo_fix_features()).
1168  *	Must return >0 or -errno if it changed dev->features itself.
1169  *
1170  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1171  *		      struct net_device *dev,
1172  *		      const unsigned char *addr, u16 vid, u16 flags,
1173  *		      struct netlink_ext_ack *extack);
1174  *	Adds an FDB entry to dev for addr.
1175  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1176  *		      struct net_device *dev,
1177  *		      const unsigned char *addr, u16 vid)
1178  *	Deletes the FDB entry from dev coresponding to addr.
1179  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1180  *		       struct net_device *dev, struct net_device *filter_dev,
1181  *		       int *idx)
1182  *	Used to add FDB entries to dump requests. Implementers should add
1183  *	entries to skb and update idx with the number of entries.
1184  *
1185  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1186  *			     u16 flags, struct netlink_ext_ack *extack)
1187  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1188  *			     struct net_device *dev, u32 filter_mask,
1189  *			     int nlflags)
1190  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1191  *			     u16 flags);
1192  *
1193  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1194  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1195  *	which do not represent real hardware may define this to allow their
1196  *	userspace components to manage their virtual carrier state. Devices
1197  *	that determine carrier state from physical hardware properties (eg
1198  *	network cables) or protocol-dependent mechanisms (eg
1199  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1200  *
1201  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1202  *			       struct netdev_phys_item_id *ppid);
1203  *	Called to get ID of physical port of this device. If driver does
1204  *	not implement this, it is assumed that the hw is not able to have
1205  *	multiple net devices on single physical port.
1206  *
1207  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1208  *				 struct netdev_phys_item_id *ppid)
1209  *	Called to get the parent ID of the physical port of this device.
1210  *
1211  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1212  *			      struct udp_tunnel_info *ti);
1213  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1214  *	address family that a UDP tunnel is listnening to. It is called only
1215  *	when a new port starts listening. The operation is protected by the
1216  *	RTNL.
1217  *
1218  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1219  *			      struct udp_tunnel_info *ti);
1220  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1221  *	address family that the UDP tunnel is not listening to anymore. The
1222  *	operation is protected by the RTNL.
1223  *
1224  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1225  *				 struct net_device *dev)
1226  *	Called by upper layer devices to accelerate switching or other
1227  *	station functionality into hardware. 'pdev is the lowerdev
1228  *	to use for the offload and 'dev' is the net device that will
1229  *	back the offload. Returns a pointer to the private structure
1230  *	the upper layer will maintain.
1231  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1232  *	Called by upper layer device to delete the station created
1233  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1234  *	the station and priv is the structure returned by the add
1235  *	operation.
1236  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1237  *			     int queue_index, u32 maxrate);
1238  *	Called when a user wants to set a max-rate limitation of specific
1239  *	TX queue.
1240  * int (*ndo_get_iflink)(const struct net_device *dev);
1241  *	Called to get the iflink value of this device.
1242  * void (*ndo_change_proto_down)(struct net_device *dev,
1243  *				 bool proto_down);
1244  *	This function is used to pass protocol port error state information
1245  *	to the switch driver. The switch driver can react to the proto_down
1246  *      by doing a phys down on the associated switch port.
1247  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1248  *	This function is used to get egress tunnel information for given skb.
1249  *	This is useful for retrieving outer tunnel header parameters while
1250  *	sampling packet.
1251  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1252  *	This function is used to specify the headroom that the skb must
1253  *	consider when allocation skb during packet reception. Setting
1254  *	appropriate rx headroom value allows avoiding skb head copy on
1255  *	forward. Setting a negative value resets the rx headroom to the
1256  *	default value.
1257  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1258  *	This function is used to set or query state related to XDP on the
1259  *	netdevice and manage BPF offload. See definition of
1260  *	enum bpf_netdev_command for details.
1261  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1262  *			u32 flags);
1263  *	This function is used to submit @n XDP packets for transmit on a
1264  *	netdevice. Returns number of frames successfully transmitted, frames
1265  *	that got dropped are freed/returned via xdp_return_frame().
1266  *	Returns negative number, means general error invoking ndo, meaning
1267  *	no frames were xmit'ed and core-caller will free all frames.
1268  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1269  *      This function is used to wake up the softirq, ksoftirqd or kthread
1270  *	responsible for sending and/or receiving packets on a specific
1271  *	queue id bound to an AF_XDP socket. The flags field specifies if
1272  *	only RX, only Tx, or both should be woken up using the flags
1273  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1274  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1275  *	Get devlink port instance associated with a given netdev.
1276  *	Called with a reference on the netdevice and devlink locks only,
1277  *	rtnl_lock is not held.
1278  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1279  *			 int cmd);
1280  *	Add, change, delete or get information on an IPv4 tunnel.
1281  */
1282 struct net_device_ops {
1283 	int			(*ndo_init)(struct net_device *dev);
1284 	void			(*ndo_uninit)(struct net_device *dev);
1285 	int			(*ndo_open)(struct net_device *dev);
1286 	int			(*ndo_stop)(struct net_device *dev);
1287 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1288 						  struct net_device *dev);
1289 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1290 						      struct net_device *dev,
1291 						      netdev_features_t features);
1292 	u16			(*ndo_select_queue)(struct net_device *dev,
1293 						    struct sk_buff *skb,
1294 						    struct net_device *sb_dev);
1295 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1296 						       int flags);
1297 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1298 	int			(*ndo_set_mac_address)(struct net_device *dev,
1299 						       void *addr);
1300 	int			(*ndo_validate_addr)(struct net_device *dev);
1301 	int			(*ndo_do_ioctl)(struct net_device *dev,
1302 					        struct ifreq *ifr, int cmd);
1303 	int			(*ndo_set_config)(struct net_device *dev,
1304 					          struct ifmap *map);
1305 	int			(*ndo_change_mtu)(struct net_device *dev,
1306 						  int new_mtu);
1307 	int			(*ndo_neigh_setup)(struct net_device *dev,
1308 						   struct neigh_parms *);
1309 	void			(*ndo_tx_timeout) (struct net_device *dev,
1310 						   unsigned int txqueue);
1311 
1312 	void			(*ndo_get_stats64)(struct net_device *dev,
1313 						   struct rtnl_link_stats64 *storage);
1314 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1315 	int			(*ndo_get_offload_stats)(int attr_id,
1316 							 const struct net_device *dev,
1317 							 void *attr_data);
1318 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1319 
1320 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1321 						       __be16 proto, u16 vid);
1322 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1323 						        __be16 proto, u16 vid);
1324 #ifdef CONFIG_NET_POLL_CONTROLLER
1325 	void                    (*ndo_poll_controller)(struct net_device *dev);
1326 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1327 						     struct netpoll_info *info);
1328 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1329 #endif
1330 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1331 						  int queue, u8 *mac);
1332 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1333 						   int queue, u16 vlan,
1334 						   u8 qos, __be16 proto);
1335 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1336 						   int vf, int min_tx_rate,
1337 						   int max_tx_rate);
1338 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1339 						       int vf, bool setting);
1340 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1341 						    int vf, bool setting);
1342 	int			(*ndo_get_vf_config)(struct net_device *dev,
1343 						     int vf,
1344 						     struct ifla_vf_info *ivf);
1345 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1346 							 int vf, int link_state);
1347 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1348 						    int vf,
1349 						    struct ifla_vf_stats
1350 						    *vf_stats);
1351 	int			(*ndo_set_vf_port)(struct net_device *dev,
1352 						   int vf,
1353 						   struct nlattr *port[]);
1354 	int			(*ndo_get_vf_port)(struct net_device *dev,
1355 						   int vf, struct sk_buff *skb);
1356 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1357 						   int vf,
1358 						   struct ifla_vf_guid *node_guid,
1359 						   struct ifla_vf_guid *port_guid);
1360 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1361 						   int vf, u64 guid,
1362 						   int guid_type);
1363 	int			(*ndo_set_vf_rss_query_en)(
1364 						   struct net_device *dev,
1365 						   int vf, bool setting);
1366 	int			(*ndo_setup_tc)(struct net_device *dev,
1367 						enum tc_setup_type type,
1368 						void *type_data);
1369 #if IS_ENABLED(CONFIG_FCOE)
1370 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1371 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1372 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1373 						      u16 xid,
1374 						      struct scatterlist *sgl,
1375 						      unsigned int sgc);
1376 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1377 						     u16 xid);
1378 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1379 						       u16 xid,
1380 						       struct scatterlist *sgl,
1381 						       unsigned int sgc);
1382 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1383 							struct netdev_fcoe_hbainfo *hbainfo);
1384 #endif
1385 
1386 #if IS_ENABLED(CONFIG_LIBFCOE)
1387 #define NETDEV_FCOE_WWNN 0
1388 #define NETDEV_FCOE_WWPN 1
1389 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1390 						    u64 *wwn, int type);
1391 #endif
1392 
1393 #ifdef CONFIG_RFS_ACCEL
1394 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1395 						     const struct sk_buff *skb,
1396 						     u16 rxq_index,
1397 						     u32 flow_id);
1398 #endif
1399 	int			(*ndo_add_slave)(struct net_device *dev,
1400 						 struct net_device *slave_dev,
1401 						 struct netlink_ext_ack *extack);
1402 	int			(*ndo_del_slave)(struct net_device *dev,
1403 						 struct net_device *slave_dev);
1404 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1405 						      struct sk_buff *skb,
1406 						      bool all_slaves);
1407 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1408 						    netdev_features_t features);
1409 	int			(*ndo_set_features)(struct net_device *dev,
1410 						    netdev_features_t features);
1411 	int			(*ndo_neigh_construct)(struct net_device *dev,
1412 						       struct neighbour *n);
1413 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1414 						     struct neighbour *n);
1415 
1416 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1417 					       struct nlattr *tb[],
1418 					       struct net_device *dev,
1419 					       const unsigned char *addr,
1420 					       u16 vid,
1421 					       u16 flags,
1422 					       struct netlink_ext_ack *extack);
1423 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1424 					       struct nlattr *tb[],
1425 					       struct net_device *dev,
1426 					       const unsigned char *addr,
1427 					       u16 vid);
1428 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1429 						struct netlink_callback *cb,
1430 						struct net_device *dev,
1431 						struct net_device *filter_dev,
1432 						int *idx);
1433 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1434 					       struct nlattr *tb[],
1435 					       struct net_device *dev,
1436 					       const unsigned char *addr,
1437 					       u16 vid, u32 portid, u32 seq,
1438 					       struct netlink_ext_ack *extack);
1439 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1440 						      struct nlmsghdr *nlh,
1441 						      u16 flags,
1442 						      struct netlink_ext_ack *extack);
1443 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1444 						      u32 pid, u32 seq,
1445 						      struct net_device *dev,
1446 						      u32 filter_mask,
1447 						      int nlflags);
1448 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1449 						      struct nlmsghdr *nlh,
1450 						      u16 flags);
1451 	int			(*ndo_change_carrier)(struct net_device *dev,
1452 						      bool new_carrier);
1453 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1454 							struct netdev_phys_item_id *ppid);
1455 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1456 							  struct netdev_phys_item_id *ppid);
1457 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1458 							  char *name, size_t len);
1459 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1460 						      struct udp_tunnel_info *ti);
1461 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1462 						      struct udp_tunnel_info *ti);
1463 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1464 							struct net_device *dev);
1465 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1466 							void *priv);
1467 
1468 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1469 						      int queue_index,
1470 						      u32 maxrate);
1471 	int			(*ndo_get_iflink)(const struct net_device *dev);
1472 	int			(*ndo_change_proto_down)(struct net_device *dev,
1473 							 bool proto_down);
1474 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1475 						       struct sk_buff *skb);
1476 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1477 						       int needed_headroom);
1478 	int			(*ndo_bpf)(struct net_device *dev,
1479 					   struct netdev_bpf *bpf);
1480 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1481 						struct xdp_frame **xdp,
1482 						u32 flags);
1483 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1484 						  u32 queue_id, u32 flags);
1485 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1486 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1487 						  struct ip_tunnel_parm *p, int cmd);
1488 };
1489 
1490 /**
1491  * enum net_device_priv_flags - &struct net_device priv_flags
1492  *
1493  * These are the &struct net_device, they are only set internally
1494  * by drivers and used in the kernel. These flags are invisible to
1495  * userspace; this means that the order of these flags can change
1496  * during any kernel release.
1497  *
1498  * You should have a pretty good reason to be extending these flags.
1499  *
1500  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1501  * @IFF_EBRIDGE: Ethernet bridging device
1502  * @IFF_BONDING: bonding master or slave
1503  * @IFF_ISATAP: ISATAP interface (RFC4214)
1504  * @IFF_WAN_HDLC: WAN HDLC device
1505  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1506  *	release skb->dst
1507  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1508  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1509  * @IFF_MACVLAN_PORT: device used as macvlan port
1510  * @IFF_BRIDGE_PORT: device used as bridge port
1511  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1512  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1513  * @IFF_UNICAST_FLT: Supports unicast filtering
1514  * @IFF_TEAM_PORT: device used as team port
1515  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1516  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1517  *	change when it's running
1518  * @IFF_MACVLAN: Macvlan device
1519  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1520  *	underlying stacked devices
1521  * @IFF_L3MDEV_MASTER: device is an L3 master device
1522  * @IFF_NO_QUEUE: device can run without qdisc attached
1523  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1524  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1525  * @IFF_TEAM: device is a team device
1526  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1527  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1528  *	entity (i.e. the master device for bridged veth)
1529  * @IFF_MACSEC: device is a MACsec device
1530  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1531  * @IFF_FAILOVER: device is a failover master device
1532  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1533  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1534  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1535  */
1536 enum netdev_priv_flags {
1537 	IFF_802_1Q_VLAN			= 1<<0,
1538 	IFF_EBRIDGE			= 1<<1,
1539 	IFF_BONDING			= 1<<2,
1540 	IFF_ISATAP			= 1<<3,
1541 	IFF_WAN_HDLC			= 1<<4,
1542 	IFF_XMIT_DST_RELEASE		= 1<<5,
1543 	IFF_DONT_BRIDGE			= 1<<6,
1544 	IFF_DISABLE_NETPOLL		= 1<<7,
1545 	IFF_MACVLAN_PORT		= 1<<8,
1546 	IFF_BRIDGE_PORT			= 1<<9,
1547 	IFF_OVS_DATAPATH		= 1<<10,
1548 	IFF_TX_SKB_SHARING		= 1<<11,
1549 	IFF_UNICAST_FLT			= 1<<12,
1550 	IFF_TEAM_PORT			= 1<<13,
1551 	IFF_SUPP_NOFCS			= 1<<14,
1552 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1553 	IFF_MACVLAN			= 1<<16,
1554 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1555 	IFF_L3MDEV_MASTER		= 1<<18,
1556 	IFF_NO_QUEUE			= 1<<19,
1557 	IFF_OPENVSWITCH			= 1<<20,
1558 	IFF_L3MDEV_SLAVE		= 1<<21,
1559 	IFF_TEAM			= 1<<22,
1560 	IFF_RXFH_CONFIGURED		= 1<<23,
1561 	IFF_PHONY_HEADROOM		= 1<<24,
1562 	IFF_MACSEC			= 1<<25,
1563 	IFF_NO_RX_HANDLER		= 1<<26,
1564 	IFF_FAILOVER			= 1<<27,
1565 	IFF_FAILOVER_SLAVE		= 1<<28,
1566 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1567 	IFF_LIVE_RENAME_OK		= 1<<30,
1568 };
1569 
1570 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1571 #define IFF_EBRIDGE			IFF_EBRIDGE
1572 #define IFF_BONDING			IFF_BONDING
1573 #define IFF_ISATAP			IFF_ISATAP
1574 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1575 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1576 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1577 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1578 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1579 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1580 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1581 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1582 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1583 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1584 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1585 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1586 #define IFF_MACVLAN			IFF_MACVLAN
1587 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1588 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1589 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1590 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1591 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1592 #define IFF_TEAM			IFF_TEAM
1593 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1594 #define IFF_MACSEC			IFF_MACSEC
1595 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1596 #define IFF_FAILOVER			IFF_FAILOVER
1597 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1598 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1599 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1600 
1601 /**
1602  *	struct net_device - The DEVICE structure.
1603  *
1604  *	Actually, this whole structure is a big mistake.  It mixes I/O
1605  *	data with strictly "high-level" data, and it has to know about
1606  *	almost every data structure used in the INET module.
1607  *
1608  *	@name:	This is the first field of the "visible" part of this structure
1609  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1610  *		of the interface.
1611  *
1612  *	@name_node:	Name hashlist node
1613  *	@ifalias:	SNMP alias
1614  *	@mem_end:	Shared memory end
1615  *	@mem_start:	Shared memory start
1616  *	@base_addr:	Device I/O address
1617  *	@irq:		Device IRQ number
1618  *
1619  *	@state:		Generic network queuing layer state, see netdev_state_t
1620  *	@dev_list:	The global list of network devices
1621  *	@napi_list:	List entry used for polling NAPI devices
1622  *	@unreg_list:	List entry  when we are unregistering the
1623  *			device; see the function unregister_netdev
1624  *	@close_list:	List entry used when we are closing the device
1625  *	@ptype_all:     Device-specific packet handlers for all protocols
1626  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1627  *
1628  *	@adj_list:	Directly linked devices, like slaves for bonding
1629  *	@features:	Currently active device features
1630  *	@hw_features:	User-changeable features
1631  *
1632  *	@wanted_features:	User-requested features
1633  *	@vlan_features:		Mask of features inheritable by VLAN devices
1634  *
1635  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1636  *				This field indicates what encapsulation
1637  *				offloads the hardware is capable of doing,
1638  *				and drivers will need to set them appropriately.
1639  *
1640  *	@mpls_features:	Mask of features inheritable by MPLS
1641  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1642  *
1643  *	@ifindex:	interface index
1644  *	@group:		The group the device belongs to
1645  *
1646  *	@stats:		Statistics struct, which was left as a legacy, use
1647  *			rtnl_link_stats64 instead
1648  *
1649  *	@rx_dropped:	Dropped packets by core network,
1650  *			do not use this in drivers
1651  *	@tx_dropped:	Dropped packets by core network,
1652  *			do not use this in drivers
1653  *	@rx_nohandler:	nohandler dropped packets by core network on
1654  *			inactive devices, do not use this in drivers
1655  *	@carrier_up_count:	Number of times the carrier has been up
1656  *	@carrier_down_count:	Number of times the carrier has been down
1657  *
1658  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1659  *				instead of ioctl,
1660  *				see <net/iw_handler.h> for details.
1661  *	@wireless_data:	Instance data managed by the core of wireless extensions
1662  *
1663  *	@netdev_ops:	Includes several pointers to callbacks,
1664  *			if one wants to override the ndo_*() functions
1665  *	@ethtool_ops:	Management operations
1666  *	@l3mdev_ops:	Layer 3 master device operations
1667  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1668  *			discovery handling. Necessary for e.g. 6LoWPAN.
1669  *	@xfrmdev_ops:	Transformation offload operations
1670  *	@tlsdev_ops:	Transport Layer Security offload operations
1671  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1672  *			of Layer 2 headers.
1673  *
1674  *	@flags:		Interface flags (a la BSD)
1675  *	@priv_flags:	Like 'flags' but invisible to userspace,
1676  *			see if.h for the definitions
1677  *	@gflags:	Global flags ( kept as legacy )
1678  *	@padded:	How much padding added by alloc_netdev()
1679  *	@operstate:	RFC2863 operstate
1680  *	@link_mode:	Mapping policy to operstate
1681  *	@if_port:	Selectable AUI, TP, ...
1682  *	@dma:		DMA channel
1683  *	@mtu:		Interface MTU value
1684  *	@min_mtu:	Interface Minimum MTU value
1685  *	@max_mtu:	Interface Maximum MTU value
1686  *	@type:		Interface hardware type
1687  *	@hard_header_len: Maximum hardware header length.
1688  *	@min_header_len:  Minimum hardware header length
1689  *
1690  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1691  *			  cases can this be guaranteed
1692  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1693  *			  cases can this be guaranteed. Some cases also use
1694  *			  LL_MAX_HEADER instead to allocate the skb
1695  *
1696  *	interface address info:
1697  *
1698  * 	@perm_addr:		Permanent hw address
1699  * 	@addr_assign_type:	Hw address assignment type
1700  * 	@addr_len:		Hardware address length
1701  *	@upper_level:		Maximum depth level of upper devices.
1702  *	@lower_level:		Maximum depth level of lower devices.
1703  *	@neigh_priv_len:	Used in neigh_alloc()
1704  * 	@dev_id:		Used to differentiate devices that share
1705  * 				the same link layer address
1706  * 	@dev_port:		Used to differentiate devices that share
1707  * 				the same function
1708  *	@addr_list_lock:	XXX: need comments on this one
1709  *	@name_assign_type:	network interface name assignment type
1710  *	@uc_promisc:		Counter that indicates promiscuous mode
1711  *				has been enabled due to the need to listen to
1712  *				additional unicast addresses in a device that
1713  *				does not implement ndo_set_rx_mode()
1714  *	@uc:			unicast mac addresses
1715  *	@mc:			multicast mac addresses
1716  *	@dev_addrs:		list of device hw addresses
1717  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1718  *	@promiscuity:		Number of times the NIC is told to work in
1719  *				promiscuous mode; if it becomes 0 the NIC will
1720  *				exit promiscuous mode
1721  *	@allmulti:		Counter, enables or disables allmulticast mode
1722  *
1723  *	@vlan_info:	VLAN info
1724  *	@dsa_ptr:	dsa specific data
1725  *	@tipc_ptr:	TIPC specific data
1726  *	@atalk_ptr:	AppleTalk link
1727  *	@ip_ptr:	IPv4 specific data
1728  *	@dn_ptr:	DECnet specific data
1729  *	@ip6_ptr:	IPv6 specific data
1730  *	@ax25_ptr:	AX.25 specific data
1731  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1732  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1733  *			 device struct
1734  *	@mpls_ptr:	mpls_dev struct pointer
1735  *
1736  *	@dev_addr:	Hw address (before bcast,
1737  *			because most packets are unicast)
1738  *
1739  *	@_rx:			Array of RX queues
1740  *	@num_rx_queues:		Number of RX queues
1741  *				allocated at register_netdev() time
1742  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1743  *	@xdp_prog:		XDP sockets filter program pointer
1744  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1745  *
1746  *	@rx_handler:		handler for received packets
1747  *	@rx_handler_data: 	XXX: need comments on this one
1748  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1749  *				ingress processing
1750  *	@ingress_queue:		XXX: need comments on this one
1751  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1752  *	@broadcast:		hw bcast address
1753  *
1754  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1755  *			indexed by RX queue number. Assigned by driver.
1756  *			This must only be set if the ndo_rx_flow_steer
1757  *			operation is defined
1758  *	@index_hlist:		Device index hash chain
1759  *
1760  *	@_tx:			Array of TX queues
1761  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1762  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1763  *	@qdisc:			Root qdisc from userspace point of view
1764  *	@tx_queue_len:		Max frames per queue allowed
1765  *	@tx_global_lock: 	XXX: need comments on this one
1766  *	@xdp_bulkq:		XDP device bulk queue
1767  *	@xps_cpus_map:		all CPUs map for XPS device
1768  *	@xps_rxqs_map:		all RXQs map for XPS device
1769  *
1770  *	@xps_maps:	XXX: need comments on this one
1771  *	@miniq_egress:		clsact qdisc specific data for
1772  *				egress processing
1773  *	@qdisc_hash:		qdisc hash table
1774  *	@watchdog_timeo:	Represents the timeout that is used by
1775  *				the watchdog (see dev_watchdog())
1776  *	@watchdog_timer:	List of timers
1777  *
1778  *	@pcpu_refcnt:		Number of references to this device
1779  *	@todo_list:		Delayed register/unregister
1780  *	@link_watch_list:	XXX: need comments on this one
1781  *
1782  *	@reg_state:		Register/unregister state machine
1783  *	@dismantle:		Device is going to be freed
1784  *	@rtnl_link_state:	This enum represents the phases of creating
1785  *				a new link
1786  *
1787  *	@needs_free_netdev:	Should unregister perform free_netdev?
1788  *	@priv_destructor:	Called from unregister
1789  *	@npinfo:		XXX: need comments on this one
1790  * 	@nd_net:		Network namespace this network device is inside
1791  *
1792  * 	@ml_priv:	Mid-layer private
1793  * 	@lstats:	Loopback statistics
1794  * 	@tstats:	Tunnel statistics
1795  * 	@dstats:	Dummy statistics
1796  * 	@vstats:	Virtual ethernet statistics
1797  *
1798  *	@garp_port:	GARP
1799  *	@mrp_port:	MRP
1800  *
1801  *	@dev:		Class/net/name entry
1802  *	@sysfs_groups:	Space for optional device, statistics and wireless
1803  *			sysfs groups
1804  *
1805  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1806  *	@rtnl_link_ops:	Rtnl_link_ops
1807  *
1808  *	@gso_max_size:	Maximum size of generic segmentation offload
1809  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1810  *			NIC for GSO
1811  *
1812  *	@dcbnl_ops:	Data Center Bridging netlink ops
1813  *	@num_tc:	Number of traffic classes in the net device
1814  *	@tc_to_txq:	XXX: need comments on this one
1815  *	@prio_tc_map:	XXX: need comments on this one
1816  *
1817  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1818  *
1819  *	@priomap:	XXX: need comments on this one
1820  *	@phydev:	Physical device may attach itself
1821  *			for hardware timestamping
1822  *	@sfp_bus:	attached &struct sfp_bus structure.
1823  *
1824  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1825  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1826  *
1827  *	@proto_down:	protocol port state information can be sent to the
1828  *			switch driver and used to set the phys state of the
1829  *			switch port.
1830  *
1831  *	@wol_enabled:	Wake-on-LAN is enabled
1832  *
1833  *	@net_notifier_list:	List of per-net netdev notifier block
1834  *				that follow this device when it is moved
1835  *				to another network namespace.
1836  *
1837  *	@macsec_ops:    MACsec offloading ops
1838  *
1839  *	FIXME: cleanup struct net_device such that network protocol info
1840  *	moves out.
1841  */
1842 
1843 struct net_device {
1844 	char			name[IFNAMSIZ];
1845 	struct netdev_name_node	*name_node;
1846 	struct dev_ifalias	__rcu *ifalias;
1847 	/*
1848 	 *	I/O specific fields
1849 	 *	FIXME: Merge these and struct ifmap into one
1850 	 */
1851 	unsigned long		mem_end;
1852 	unsigned long		mem_start;
1853 	unsigned long		base_addr;
1854 	int			irq;
1855 
1856 	/*
1857 	 *	Some hardware also needs these fields (state,dev_list,
1858 	 *	napi_list,unreg_list,close_list) but they are not
1859 	 *	part of the usual set specified in Space.c.
1860 	 */
1861 
1862 	unsigned long		state;
1863 
1864 	struct list_head	dev_list;
1865 	struct list_head	napi_list;
1866 	struct list_head	unreg_list;
1867 	struct list_head	close_list;
1868 	struct list_head	ptype_all;
1869 	struct list_head	ptype_specific;
1870 
1871 	struct {
1872 		struct list_head upper;
1873 		struct list_head lower;
1874 	} adj_list;
1875 
1876 	netdev_features_t	features;
1877 	netdev_features_t	hw_features;
1878 	netdev_features_t	wanted_features;
1879 	netdev_features_t	vlan_features;
1880 	netdev_features_t	hw_enc_features;
1881 	netdev_features_t	mpls_features;
1882 	netdev_features_t	gso_partial_features;
1883 
1884 	int			ifindex;
1885 	int			group;
1886 
1887 	struct net_device_stats	stats;
1888 
1889 	atomic_long_t		rx_dropped;
1890 	atomic_long_t		tx_dropped;
1891 	atomic_long_t		rx_nohandler;
1892 
1893 	/* Stats to monitor link on/off, flapping */
1894 	atomic_t		carrier_up_count;
1895 	atomic_t		carrier_down_count;
1896 
1897 #ifdef CONFIG_WIRELESS_EXT
1898 	const struct iw_handler_def *wireless_handlers;
1899 	struct iw_public_data	*wireless_data;
1900 #endif
1901 	const struct net_device_ops *netdev_ops;
1902 	const struct ethtool_ops *ethtool_ops;
1903 #ifdef CONFIG_NET_L3_MASTER_DEV
1904 	const struct l3mdev_ops	*l3mdev_ops;
1905 #endif
1906 #if IS_ENABLED(CONFIG_IPV6)
1907 	const struct ndisc_ops *ndisc_ops;
1908 #endif
1909 
1910 #ifdef CONFIG_XFRM_OFFLOAD
1911 	const struct xfrmdev_ops *xfrmdev_ops;
1912 #endif
1913 
1914 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1915 	const struct tlsdev_ops *tlsdev_ops;
1916 #endif
1917 
1918 	const struct header_ops *header_ops;
1919 
1920 	unsigned int		flags;
1921 	unsigned int		priv_flags;
1922 
1923 	unsigned short		gflags;
1924 	unsigned short		padded;
1925 
1926 	unsigned char		operstate;
1927 	unsigned char		link_mode;
1928 
1929 	unsigned char		if_port;
1930 	unsigned char		dma;
1931 
1932 	/* Note : dev->mtu is often read without holding a lock.
1933 	 * Writers usually hold RTNL.
1934 	 * It is recommended to use READ_ONCE() to annotate the reads,
1935 	 * and to use WRITE_ONCE() to annotate the writes.
1936 	 */
1937 	unsigned int		mtu;
1938 	unsigned int		min_mtu;
1939 	unsigned int		max_mtu;
1940 	unsigned short		type;
1941 	unsigned short		hard_header_len;
1942 	unsigned char		min_header_len;
1943 
1944 	unsigned short		needed_headroom;
1945 	unsigned short		needed_tailroom;
1946 
1947 	/* Interface address info. */
1948 	unsigned char		perm_addr[MAX_ADDR_LEN];
1949 	unsigned char		addr_assign_type;
1950 	unsigned char		addr_len;
1951 	unsigned char		upper_level;
1952 	unsigned char		lower_level;
1953 	unsigned short		neigh_priv_len;
1954 	unsigned short          dev_id;
1955 	unsigned short          dev_port;
1956 	spinlock_t		addr_list_lock;
1957 	unsigned char		name_assign_type;
1958 	bool			uc_promisc;
1959 	struct netdev_hw_addr_list	uc;
1960 	struct netdev_hw_addr_list	mc;
1961 	struct netdev_hw_addr_list	dev_addrs;
1962 
1963 #ifdef CONFIG_SYSFS
1964 	struct kset		*queues_kset;
1965 #endif
1966 	unsigned int		promiscuity;
1967 	unsigned int		allmulti;
1968 
1969 
1970 	/* Protocol-specific pointers */
1971 
1972 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1973 	struct vlan_info __rcu	*vlan_info;
1974 #endif
1975 #if IS_ENABLED(CONFIG_NET_DSA)
1976 	struct dsa_port		*dsa_ptr;
1977 #endif
1978 #if IS_ENABLED(CONFIG_TIPC)
1979 	struct tipc_bearer __rcu *tipc_ptr;
1980 #endif
1981 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1982 	void 			*atalk_ptr;
1983 #endif
1984 	struct in_device __rcu	*ip_ptr;
1985 #if IS_ENABLED(CONFIG_DECNET)
1986 	struct dn_dev __rcu     *dn_ptr;
1987 #endif
1988 	struct inet6_dev __rcu	*ip6_ptr;
1989 #if IS_ENABLED(CONFIG_AX25)
1990 	void			*ax25_ptr;
1991 #endif
1992 	struct wireless_dev	*ieee80211_ptr;
1993 	struct wpan_dev		*ieee802154_ptr;
1994 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1995 	struct mpls_dev __rcu	*mpls_ptr;
1996 #endif
1997 
1998 /*
1999  * Cache lines mostly used on receive path (including eth_type_trans())
2000  */
2001 	/* Interface address info used in eth_type_trans() */
2002 	unsigned char		*dev_addr;
2003 
2004 	struct netdev_rx_queue	*_rx;
2005 	unsigned int		num_rx_queues;
2006 	unsigned int		real_num_rx_queues;
2007 
2008 	struct bpf_prog __rcu	*xdp_prog;
2009 	unsigned long		gro_flush_timeout;
2010 	int			napi_defer_hard_irqs;
2011 	rx_handler_func_t __rcu	*rx_handler;
2012 	void __rcu		*rx_handler_data;
2013 
2014 #ifdef CONFIG_NET_CLS_ACT
2015 	struct mini_Qdisc __rcu	*miniq_ingress;
2016 #endif
2017 	struct netdev_queue __rcu *ingress_queue;
2018 #ifdef CONFIG_NETFILTER_INGRESS
2019 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2020 #endif
2021 
2022 	unsigned char		broadcast[MAX_ADDR_LEN];
2023 #ifdef CONFIG_RFS_ACCEL
2024 	struct cpu_rmap		*rx_cpu_rmap;
2025 #endif
2026 	struct hlist_node	index_hlist;
2027 
2028 /*
2029  * Cache lines mostly used on transmit path
2030  */
2031 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2032 	unsigned int		num_tx_queues;
2033 	unsigned int		real_num_tx_queues;
2034 	struct Qdisc		*qdisc;
2035 	unsigned int		tx_queue_len;
2036 	spinlock_t		tx_global_lock;
2037 
2038 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2039 
2040 #ifdef CONFIG_XPS
2041 	struct xps_dev_maps __rcu *xps_cpus_map;
2042 	struct xps_dev_maps __rcu *xps_rxqs_map;
2043 #endif
2044 #ifdef CONFIG_NET_CLS_ACT
2045 	struct mini_Qdisc __rcu	*miniq_egress;
2046 #endif
2047 
2048 #ifdef CONFIG_NET_SCHED
2049 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2050 #endif
2051 	/* These may be needed for future network-power-down code. */
2052 	struct timer_list	watchdog_timer;
2053 	int			watchdog_timeo;
2054 
2055 	struct list_head	todo_list;
2056 	int __percpu		*pcpu_refcnt;
2057 
2058 	struct list_head	link_watch_list;
2059 
2060 	enum { NETREG_UNINITIALIZED=0,
2061 	       NETREG_REGISTERED,	/* completed register_netdevice */
2062 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2063 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2064 	       NETREG_RELEASED,		/* called free_netdev */
2065 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2066 	} reg_state:8;
2067 
2068 	bool dismantle;
2069 
2070 	enum {
2071 		RTNL_LINK_INITIALIZED,
2072 		RTNL_LINK_INITIALIZING,
2073 	} rtnl_link_state:16;
2074 
2075 	bool needs_free_netdev;
2076 	void (*priv_destructor)(struct net_device *dev);
2077 
2078 #ifdef CONFIG_NETPOLL
2079 	struct netpoll_info __rcu	*npinfo;
2080 #endif
2081 
2082 	possible_net_t			nd_net;
2083 
2084 	/* mid-layer private */
2085 	union {
2086 		void					*ml_priv;
2087 		struct pcpu_lstats __percpu		*lstats;
2088 		struct pcpu_sw_netstats __percpu	*tstats;
2089 		struct pcpu_dstats __percpu		*dstats;
2090 	};
2091 
2092 #if IS_ENABLED(CONFIG_GARP)
2093 	struct garp_port __rcu	*garp_port;
2094 #endif
2095 #if IS_ENABLED(CONFIG_MRP)
2096 	struct mrp_port __rcu	*mrp_port;
2097 #endif
2098 
2099 	struct device		dev;
2100 	const struct attribute_group *sysfs_groups[4];
2101 	const struct attribute_group *sysfs_rx_queue_group;
2102 
2103 	const struct rtnl_link_ops *rtnl_link_ops;
2104 
2105 	/* for setting kernel sock attribute on TCP connection setup */
2106 #define GSO_MAX_SIZE		65536
2107 	unsigned int		gso_max_size;
2108 #define GSO_MAX_SEGS		65535
2109 	u16			gso_max_segs;
2110 
2111 #ifdef CONFIG_DCB
2112 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2113 #endif
2114 	s16			num_tc;
2115 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2116 	u8			prio_tc_map[TC_BITMASK + 1];
2117 
2118 #if IS_ENABLED(CONFIG_FCOE)
2119 	unsigned int		fcoe_ddp_xid;
2120 #endif
2121 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2122 	struct netprio_map __rcu *priomap;
2123 #endif
2124 	struct phy_device	*phydev;
2125 	struct sfp_bus		*sfp_bus;
2126 	struct lock_class_key	*qdisc_tx_busylock;
2127 	struct lock_class_key	*qdisc_running_key;
2128 	bool			proto_down;
2129 	unsigned		wol_enabled:1;
2130 
2131 	struct list_head	net_notifier_list;
2132 
2133 #if IS_ENABLED(CONFIG_MACSEC)
2134 	/* MACsec management functions */
2135 	const struct macsec_ops *macsec_ops;
2136 #endif
2137 };
2138 #define to_net_dev(d) container_of(d, struct net_device, dev)
2139 
2140 static inline bool netif_elide_gro(const struct net_device *dev)
2141 {
2142 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2143 		return true;
2144 	return false;
2145 }
2146 
2147 #define	NETDEV_ALIGN		32
2148 
2149 static inline
2150 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2151 {
2152 	return dev->prio_tc_map[prio & TC_BITMASK];
2153 }
2154 
2155 static inline
2156 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2157 {
2158 	if (tc >= dev->num_tc)
2159 		return -EINVAL;
2160 
2161 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2162 	return 0;
2163 }
2164 
2165 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2166 void netdev_reset_tc(struct net_device *dev);
2167 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2168 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2169 
2170 static inline
2171 int netdev_get_num_tc(struct net_device *dev)
2172 {
2173 	return dev->num_tc;
2174 }
2175 
2176 void netdev_unbind_sb_channel(struct net_device *dev,
2177 			      struct net_device *sb_dev);
2178 int netdev_bind_sb_channel_queue(struct net_device *dev,
2179 				 struct net_device *sb_dev,
2180 				 u8 tc, u16 count, u16 offset);
2181 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2182 static inline int netdev_get_sb_channel(struct net_device *dev)
2183 {
2184 	return max_t(int, -dev->num_tc, 0);
2185 }
2186 
2187 static inline
2188 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2189 					 unsigned int index)
2190 {
2191 	return &dev->_tx[index];
2192 }
2193 
2194 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2195 						    const struct sk_buff *skb)
2196 {
2197 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2198 }
2199 
2200 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2201 					    void (*f)(struct net_device *,
2202 						      struct netdev_queue *,
2203 						      void *),
2204 					    void *arg)
2205 {
2206 	unsigned int i;
2207 
2208 	for (i = 0; i < dev->num_tx_queues; i++)
2209 		f(dev, &dev->_tx[i], arg);
2210 }
2211 
2212 #define netdev_lockdep_set_classes(dev)				\
2213 {								\
2214 	static struct lock_class_key qdisc_tx_busylock_key;	\
2215 	static struct lock_class_key qdisc_running_key;		\
2216 	static struct lock_class_key qdisc_xmit_lock_key;	\
2217 	static struct lock_class_key dev_addr_list_lock_key;	\
2218 	unsigned int i;						\
2219 								\
2220 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2221 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2222 	lockdep_set_class(&(dev)->addr_list_lock,		\
2223 			  &dev_addr_list_lock_key);		\
2224 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2225 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2226 				  &qdisc_xmit_lock_key);	\
2227 }
2228 
2229 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2230 		     struct net_device *sb_dev);
2231 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2232 					 struct sk_buff *skb,
2233 					 struct net_device *sb_dev);
2234 
2235 /* returns the headroom that the master device needs to take in account
2236  * when forwarding to this dev
2237  */
2238 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2239 {
2240 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2241 }
2242 
2243 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2244 {
2245 	if (dev->netdev_ops->ndo_set_rx_headroom)
2246 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2247 }
2248 
2249 /* set the device rx headroom to the dev's default */
2250 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2251 {
2252 	netdev_set_rx_headroom(dev, -1);
2253 }
2254 
2255 /*
2256  * Net namespace inlines
2257  */
2258 static inline
2259 struct net *dev_net(const struct net_device *dev)
2260 {
2261 	return read_pnet(&dev->nd_net);
2262 }
2263 
2264 static inline
2265 void dev_net_set(struct net_device *dev, struct net *net)
2266 {
2267 	write_pnet(&dev->nd_net, net);
2268 }
2269 
2270 /**
2271  *	netdev_priv - access network device private data
2272  *	@dev: network device
2273  *
2274  * Get network device private data
2275  */
2276 static inline void *netdev_priv(const struct net_device *dev)
2277 {
2278 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2279 }
2280 
2281 /* Set the sysfs physical device reference for the network logical device
2282  * if set prior to registration will cause a symlink during initialization.
2283  */
2284 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2285 
2286 /* Set the sysfs device type for the network logical device to allow
2287  * fine-grained identification of different network device types. For
2288  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2289  */
2290 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2291 
2292 /* Default NAPI poll() weight
2293  * Device drivers are strongly advised to not use bigger value
2294  */
2295 #define NAPI_POLL_WEIGHT 64
2296 
2297 /**
2298  *	netif_napi_add - initialize a NAPI context
2299  *	@dev:  network device
2300  *	@napi: NAPI context
2301  *	@poll: polling function
2302  *	@weight: default weight
2303  *
2304  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2305  * *any* of the other NAPI-related functions.
2306  */
2307 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2308 		    int (*poll)(struct napi_struct *, int), int weight);
2309 
2310 /**
2311  *	netif_tx_napi_add - initialize a NAPI context
2312  *	@dev:  network device
2313  *	@napi: NAPI context
2314  *	@poll: polling function
2315  *	@weight: default weight
2316  *
2317  * This variant of netif_napi_add() should be used from drivers using NAPI
2318  * to exclusively poll a TX queue.
2319  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2320  */
2321 static inline void netif_tx_napi_add(struct net_device *dev,
2322 				     struct napi_struct *napi,
2323 				     int (*poll)(struct napi_struct *, int),
2324 				     int weight)
2325 {
2326 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2327 	netif_napi_add(dev, napi, poll, weight);
2328 }
2329 
2330 /**
2331  *  netif_napi_del - remove a NAPI context
2332  *  @napi: NAPI context
2333  *
2334  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2335  */
2336 void netif_napi_del(struct napi_struct *napi);
2337 
2338 struct napi_gro_cb {
2339 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2340 	void	*frag0;
2341 
2342 	/* Length of frag0. */
2343 	unsigned int frag0_len;
2344 
2345 	/* This indicates where we are processing relative to skb->data. */
2346 	int	data_offset;
2347 
2348 	/* This is non-zero if the packet cannot be merged with the new skb. */
2349 	u16	flush;
2350 
2351 	/* Save the IP ID here and check when we get to the transport layer */
2352 	u16	flush_id;
2353 
2354 	/* Number of segments aggregated. */
2355 	u16	count;
2356 
2357 	/* Start offset for remote checksum offload */
2358 	u16	gro_remcsum_start;
2359 
2360 	/* jiffies when first packet was created/queued */
2361 	unsigned long age;
2362 
2363 	/* Used in ipv6_gro_receive() and foo-over-udp */
2364 	u16	proto;
2365 
2366 	/* This is non-zero if the packet may be of the same flow. */
2367 	u8	same_flow:1;
2368 
2369 	/* Used in tunnel GRO receive */
2370 	u8	encap_mark:1;
2371 
2372 	/* GRO checksum is valid */
2373 	u8	csum_valid:1;
2374 
2375 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2376 	u8	csum_cnt:3;
2377 
2378 	/* Free the skb? */
2379 	u8	free:2;
2380 #define NAPI_GRO_FREE		  1
2381 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2382 
2383 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2384 	u8	is_ipv6:1;
2385 
2386 	/* Used in GRE, set in fou/gue_gro_receive */
2387 	u8	is_fou:1;
2388 
2389 	/* Used to determine if flush_id can be ignored */
2390 	u8	is_atomic:1;
2391 
2392 	/* Number of gro_receive callbacks this packet already went through */
2393 	u8 recursion_counter:4;
2394 
2395 	/* GRO is done by frag_list pointer chaining. */
2396 	u8	is_flist:1;
2397 
2398 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2399 	__wsum	csum;
2400 
2401 	/* used in skb_gro_receive() slow path */
2402 	struct sk_buff *last;
2403 };
2404 
2405 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2406 
2407 #define GRO_RECURSION_LIMIT 15
2408 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2409 {
2410 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2411 }
2412 
2413 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2414 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2415 					       struct list_head *head,
2416 					       struct sk_buff *skb)
2417 {
2418 	if (unlikely(gro_recursion_inc_test(skb))) {
2419 		NAPI_GRO_CB(skb)->flush |= 1;
2420 		return NULL;
2421 	}
2422 
2423 	return cb(head, skb);
2424 }
2425 
2426 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2427 					    struct sk_buff *);
2428 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2429 						  struct sock *sk,
2430 						  struct list_head *head,
2431 						  struct sk_buff *skb)
2432 {
2433 	if (unlikely(gro_recursion_inc_test(skb))) {
2434 		NAPI_GRO_CB(skb)->flush |= 1;
2435 		return NULL;
2436 	}
2437 
2438 	return cb(sk, head, skb);
2439 }
2440 
2441 struct packet_type {
2442 	__be16			type;	/* This is really htons(ether_type). */
2443 	bool			ignore_outgoing;
2444 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2445 	int			(*func) (struct sk_buff *,
2446 					 struct net_device *,
2447 					 struct packet_type *,
2448 					 struct net_device *);
2449 	void			(*list_func) (struct list_head *,
2450 					      struct packet_type *,
2451 					      struct net_device *);
2452 	bool			(*id_match)(struct packet_type *ptype,
2453 					    struct sock *sk);
2454 	void			*af_packet_priv;
2455 	struct list_head	list;
2456 };
2457 
2458 struct offload_callbacks {
2459 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2460 						netdev_features_t features);
2461 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2462 						struct sk_buff *skb);
2463 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2464 };
2465 
2466 struct packet_offload {
2467 	__be16			 type;	/* This is really htons(ether_type). */
2468 	u16			 priority;
2469 	struct offload_callbacks callbacks;
2470 	struct list_head	 list;
2471 };
2472 
2473 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2474 struct pcpu_sw_netstats {
2475 	u64     rx_packets;
2476 	u64     rx_bytes;
2477 	u64     tx_packets;
2478 	u64     tx_bytes;
2479 	struct u64_stats_sync   syncp;
2480 } __aligned(4 * sizeof(u64));
2481 
2482 struct pcpu_lstats {
2483 	u64_stats_t packets;
2484 	u64_stats_t bytes;
2485 	struct u64_stats_sync syncp;
2486 } __aligned(2 * sizeof(u64));
2487 
2488 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2489 
2490 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2491 {
2492 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2493 
2494 	u64_stats_update_begin(&lstats->syncp);
2495 	u64_stats_add(&lstats->bytes, len);
2496 	u64_stats_inc(&lstats->packets);
2497 	u64_stats_update_end(&lstats->syncp);
2498 }
2499 
2500 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2501 ({									\
2502 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2503 	if (pcpu_stats)	{						\
2504 		int __cpu;						\
2505 		for_each_possible_cpu(__cpu) {				\
2506 			typeof(type) *stat;				\
2507 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2508 			u64_stats_init(&stat->syncp);			\
2509 		}							\
2510 	}								\
2511 	pcpu_stats;							\
2512 })
2513 
2514 #define netdev_alloc_pcpu_stats(type)					\
2515 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2516 
2517 enum netdev_lag_tx_type {
2518 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2519 	NETDEV_LAG_TX_TYPE_RANDOM,
2520 	NETDEV_LAG_TX_TYPE_BROADCAST,
2521 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2522 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2523 	NETDEV_LAG_TX_TYPE_HASH,
2524 };
2525 
2526 enum netdev_lag_hash {
2527 	NETDEV_LAG_HASH_NONE,
2528 	NETDEV_LAG_HASH_L2,
2529 	NETDEV_LAG_HASH_L34,
2530 	NETDEV_LAG_HASH_L23,
2531 	NETDEV_LAG_HASH_E23,
2532 	NETDEV_LAG_HASH_E34,
2533 	NETDEV_LAG_HASH_UNKNOWN,
2534 };
2535 
2536 struct netdev_lag_upper_info {
2537 	enum netdev_lag_tx_type tx_type;
2538 	enum netdev_lag_hash hash_type;
2539 };
2540 
2541 struct netdev_lag_lower_state_info {
2542 	u8 link_up : 1,
2543 	   tx_enabled : 1;
2544 };
2545 
2546 #include <linux/notifier.h>
2547 
2548 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2549  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2550  * adding new types.
2551  */
2552 enum netdev_cmd {
2553 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2554 	NETDEV_DOWN,
2555 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2556 				   detected a hardware crash and restarted
2557 				   - we can use this eg to kick tcp sessions
2558 				   once done */
2559 	NETDEV_CHANGE,		/* Notify device state change */
2560 	NETDEV_REGISTER,
2561 	NETDEV_UNREGISTER,
2562 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2563 	NETDEV_CHANGEADDR,	/* notify after the address change */
2564 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2565 	NETDEV_GOING_DOWN,
2566 	NETDEV_CHANGENAME,
2567 	NETDEV_FEAT_CHANGE,
2568 	NETDEV_BONDING_FAILOVER,
2569 	NETDEV_PRE_UP,
2570 	NETDEV_PRE_TYPE_CHANGE,
2571 	NETDEV_POST_TYPE_CHANGE,
2572 	NETDEV_POST_INIT,
2573 	NETDEV_RELEASE,
2574 	NETDEV_NOTIFY_PEERS,
2575 	NETDEV_JOIN,
2576 	NETDEV_CHANGEUPPER,
2577 	NETDEV_RESEND_IGMP,
2578 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2579 	NETDEV_CHANGEINFODATA,
2580 	NETDEV_BONDING_INFO,
2581 	NETDEV_PRECHANGEUPPER,
2582 	NETDEV_CHANGELOWERSTATE,
2583 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2584 	NETDEV_UDP_TUNNEL_DROP_INFO,
2585 	NETDEV_CHANGE_TX_QUEUE_LEN,
2586 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2587 	NETDEV_CVLAN_FILTER_DROP_INFO,
2588 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2589 	NETDEV_SVLAN_FILTER_DROP_INFO,
2590 };
2591 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2592 
2593 int register_netdevice_notifier(struct notifier_block *nb);
2594 int unregister_netdevice_notifier(struct notifier_block *nb);
2595 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2596 int unregister_netdevice_notifier_net(struct net *net,
2597 				      struct notifier_block *nb);
2598 int register_netdevice_notifier_dev_net(struct net_device *dev,
2599 					struct notifier_block *nb,
2600 					struct netdev_net_notifier *nn);
2601 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2602 					  struct notifier_block *nb,
2603 					  struct netdev_net_notifier *nn);
2604 
2605 struct netdev_notifier_info {
2606 	struct net_device	*dev;
2607 	struct netlink_ext_ack	*extack;
2608 };
2609 
2610 struct netdev_notifier_info_ext {
2611 	struct netdev_notifier_info info; /* must be first */
2612 	union {
2613 		u32 mtu;
2614 	} ext;
2615 };
2616 
2617 struct netdev_notifier_change_info {
2618 	struct netdev_notifier_info info; /* must be first */
2619 	unsigned int flags_changed;
2620 };
2621 
2622 struct netdev_notifier_changeupper_info {
2623 	struct netdev_notifier_info info; /* must be first */
2624 	struct net_device *upper_dev; /* new upper dev */
2625 	bool master; /* is upper dev master */
2626 	bool linking; /* is the notification for link or unlink */
2627 	void *upper_info; /* upper dev info */
2628 };
2629 
2630 struct netdev_notifier_changelowerstate_info {
2631 	struct netdev_notifier_info info; /* must be first */
2632 	void *lower_state_info; /* is lower dev state */
2633 };
2634 
2635 struct netdev_notifier_pre_changeaddr_info {
2636 	struct netdev_notifier_info info; /* must be first */
2637 	const unsigned char *dev_addr;
2638 };
2639 
2640 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2641 					     struct net_device *dev)
2642 {
2643 	info->dev = dev;
2644 	info->extack = NULL;
2645 }
2646 
2647 static inline struct net_device *
2648 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2649 {
2650 	return info->dev;
2651 }
2652 
2653 static inline struct netlink_ext_ack *
2654 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2655 {
2656 	return info->extack;
2657 }
2658 
2659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2660 
2661 
2662 extern rwlock_t				dev_base_lock;		/* Device list lock */
2663 
2664 #define for_each_netdev(net, d)		\
2665 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2666 #define for_each_netdev_reverse(net, d)	\
2667 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2668 #define for_each_netdev_rcu(net, d)		\
2669 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2670 #define for_each_netdev_safe(net, d, n)	\
2671 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2672 #define for_each_netdev_continue(net, d)		\
2673 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2674 #define for_each_netdev_continue_reverse(net, d)		\
2675 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2676 						     dev_list)
2677 #define for_each_netdev_continue_rcu(net, d)		\
2678 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2679 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2680 		for_each_netdev_rcu(&init_net, slave)	\
2681 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2682 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2683 
2684 static inline struct net_device *next_net_device(struct net_device *dev)
2685 {
2686 	struct list_head *lh;
2687 	struct net *net;
2688 
2689 	net = dev_net(dev);
2690 	lh = dev->dev_list.next;
2691 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2692 }
2693 
2694 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2695 {
2696 	struct list_head *lh;
2697 	struct net *net;
2698 
2699 	net = dev_net(dev);
2700 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2701 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2702 }
2703 
2704 static inline struct net_device *first_net_device(struct net *net)
2705 {
2706 	return list_empty(&net->dev_base_head) ? NULL :
2707 		net_device_entry(net->dev_base_head.next);
2708 }
2709 
2710 static inline struct net_device *first_net_device_rcu(struct net *net)
2711 {
2712 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2713 
2714 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2715 }
2716 
2717 int netdev_boot_setup_check(struct net_device *dev);
2718 unsigned long netdev_boot_base(const char *prefix, int unit);
2719 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2720 				       const char *hwaddr);
2721 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2722 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2723 void dev_add_pack(struct packet_type *pt);
2724 void dev_remove_pack(struct packet_type *pt);
2725 void __dev_remove_pack(struct packet_type *pt);
2726 void dev_add_offload(struct packet_offload *po);
2727 void dev_remove_offload(struct packet_offload *po);
2728 
2729 int dev_get_iflink(const struct net_device *dev);
2730 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2731 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2732 				      unsigned short mask);
2733 struct net_device *dev_get_by_name(struct net *net, const char *name);
2734 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2735 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2736 int dev_alloc_name(struct net_device *dev, const char *name);
2737 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2738 void dev_close(struct net_device *dev);
2739 void dev_close_many(struct list_head *head, bool unlink);
2740 void dev_disable_lro(struct net_device *dev);
2741 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2742 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2743 		     struct net_device *sb_dev);
2744 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2745 		       struct net_device *sb_dev);
2746 int dev_queue_xmit(struct sk_buff *skb);
2747 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2748 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2749 int register_netdevice(struct net_device *dev);
2750 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2751 void unregister_netdevice_many(struct list_head *head);
2752 static inline void unregister_netdevice(struct net_device *dev)
2753 {
2754 	unregister_netdevice_queue(dev, NULL);
2755 }
2756 
2757 int netdev_refcnt_read(const struct net_device *dev);
2758 void free_netdev(struct net_device *dev);
2759 void netdev_freemem(struct net_device *dev);
2760 void synchronize_net(void);
2761 int init_dummy_netdev(struct net_device *dev);
2762 
2763 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2764 					 struct sk_buff *skb,
2765 					 bool all_slaves);
2766 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2767 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2768 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2769 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2770 int netdev_get_name(struct net *net, char *name, int ifindex);
2771 int dev_restart(struct net_device *dev);
2772 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2773 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2774 
2775 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2776 {
2777 	return NAPI_GRO_CB(skb)->data_offset;
2778 }
2779 
2780 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2781 {
2782 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2783 }
2784 
2785 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2786 {
2787 	NAPI_GRO_CB(skb)->data_offset += len;
2788 }
2789 
2790 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2791 					unsigned int offset)
2792 {
2793 	return NAPI_GRO_CB(skb)->frag0 + offset;
2794 }
2795 
2796 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2797 {
2798 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2799 }
2800 
2801 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2802 {
2803 	NAPI_GRO_CB(skb)->frag0 = NULL;
2804 	NAPI_GRO_CB(skb)->frag0_len = 0;
2805 }
2806 
2807 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2808 					unsigned int offset)
2809 {
2810 	if (!pskb_may_pull(skb, hlen))
2811 		return NULL;
2812 
2813 	skb_gro_frag0_invalidate(skb);
2814 	return skb->data + offset;
2815 }
2816 
2817 static inline void *skb_gro_network_header(struct sk_buff *skb)
2818 {
2819 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2820 	       skb_network_offset(skb);
2821 }
2822 
2823 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2824 					const void *start, unsigned int len)
2825 {
2826 	if (NAPI_GRO_CB(skb)->csum_valid)
2827 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2828 						  csum_partial(start, len, 0));
2829 }
2830 
2831 /* GRO checksum functions. These are logical equivalents of the normal
2832  * checksum functions (in skbuff.h) except that they operate on the GRO
2833  * offsets and fields in sk_buff.
2834  */
2835 
2836 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2837 
2838 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2839 {
2840 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2841 }
2842 
2843 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2844 						      bool zero_okay,
2845 						      __sum16 check)
2846 {
2847 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2848 		skb_checksum_start_offset(skb) <
2849 		 skb_gro_offset(skb)) &&
2850 		!skb_at_gro_remcsum_start(skb) &&
2851 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2852 		(!zero_okay || check));
2853 }
2854 
2855 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2856 							   __wsum psum)
2857 {
2858 	if (NAPI_GRO_CB(skb)->csum_valid &&
2859 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2860 		return 0;
2861 
2862 	NAPI_GRO_CB(skb)->csum = psum;
2863 
2864 	return __skb_gro_checksum_complete(skb);
2865 }
2866 
2867 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2868 {
2869 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2870 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2871 		NAPI_GRO_CB(skb)->csum_cnt--;
2872 	} else {
2873 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2874 		 * verified a new top level checksum or an encapsulated one
2875 		 * during GRO. This saves work if we fallback to normal path.
2876 		 */
2877 		__skb_incr_checksum_unnecessary(skb);
2878 	}
2879 }
2880 
2881 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2882 				    compute_pseudo)			\
2883 ({									\
2884 	__sum16 __ret = 0;						\
2885 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2886 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2887 				compute_pseudo(skb, proto));		\
2888 	if (!__ret)							\
2889 		skb_gro_incr_csum_unnecessary(skb);			\
2890 	__ret;								\
2891 })
2892 
2893 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2894 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2895 
2896 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2897 					     compute_pseudo)		\
2898 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2899 
2900 #define skb_gro_checksum_simple_validate(skb)				\
2901 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2902 
2903 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2904 {
2905 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2906 		!NAPI_GRO_CB(skb)->csum_valid);
2907 }
2908 
2909 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2910 					      __wsum pseudo)
2911 {
2912 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2913 	NAPI_GRO_CB(skb)->csum_valid = 1;
2914 }
2915 
2916 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2917 do {									\
2918 	if (__skb_gro_checksum_convert_check(skb))			\
2919 		__skb_gro_checksum_convert(skb, 			\
2920 					   compute_pseudo(skb, proto));	\
2921 } while (0)
2922 
2923 struct gro_remcsum {
2924 	int offset;
2925 	__wsum delta;
2926 };
2927 
2928 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2929 {
2930 	grc->offset = 0;
2931 	grc->delta = 0;
2932 }
2933 
2934 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2935 					    unsigned int off, size_t hdrlen,
2936 					    int start, int offset,
2937 					    struct gro_remcsum *grc,
2938 					    bool nopartial)
2939 {
2940 	__wsum delta;
2941 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2942 
2943 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2944 
2945 	if (!nopartial) {
2946 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2947 		return ptr;
2948 	}
2949 
2950 	ptr = skb_gro_header_fast(skb, off);
2951 	if (skb_gro_header_hard(skb, off + plen)) {
2952 		ptr = skb_gro_header_slow(skb, off + plen, off);
2953 		if (!ptr)
2954 			return NULL;
2955 	}
2956 
2957 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2958 			       start, offset);
2959 
2960 	/* Adjust skb->csum since we changed the packet */
2961 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2962 
2963 	grc->offset = off + hdrlen + offset;
2964 	grc->delta = delta;
2965 
2966 	return ptr;
2967 }
2968 
2969 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2970 					   struct gro_remcsum *grc)
2971 {
2972 	void *ptr;
2973 	size_t plen = grc->offset + sizeof(u16);
2974 
2975 	if (!grc->delta)
2976 		return;
2977 
2978 	ptr = skb_gro_header_fast(skb, grc->offset);
2979 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2980 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2981 		if (!ptr)
2982 			return;
2983 	}
2984 
2985 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2986 }
2987 
2988 #ifdef CONFIG_XFRM_OFFLOAD
2989 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2990 {
2991 	if (PTR_ERR(pp) != -EINPROGRESS)
2992 		NAPI_GRO_CB(skb)->flush |= flush;
2993 }
2994 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2995 					       struct sk_buff *pp,
2996 					       int flush,
2997 					       struct gro_remcsum *grc)
2998 {
2999 	if (PTR_ERR(pp) != -EINPROGRESS) {
3000 		NAPI_GRO_CB(skb)->flush |= flush;
3001 		skb_gro_remcsum_cleanup(skb, grc);
3002 		skb->remcsum_offload = 0;
3003 	}
3004 }
3005 #else
3006 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3007 {
3008 	NAPI_GRO_CB(skb)->flush |= flush;
3009 }
3010 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3011 					       struct sk_buff *pp,
3012 					       int flush,
3013 					       struct gro_remcsum *grc)
3014 {
3015 	NAPI_GRO_CB(skb)->flush |= flush;
3016 	skb_gro_remcsum_cleanup(skb, grc);
3017 	skb->remcsum_offload = 0;
3018 }
3019 #endif
3020 
3021 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3022 				  unsigned short type,
3023 				  const void *daddr, const void *saddr,
3024 				  unsigned int len)
3025 {
3026 	if (!dev->header_ops || !dev->header_ops->create)
3027 		return 0;
3028 
3029 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3030 }
3031 
3032 static inline int dev_parse_header(const struct sk_buff *skb,
3033 				   unsigned char *haddr)
3034 {
3035 	const struct net_device *dev = skb->dev;
3036 
3037 	if (!dev->header_ops || !dev->header_ops->parse)
3038 		return 0;
3039 	return dev->header_ops->parse(skb, haddr);
3040 }
3041 
3042 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3043 {
3044 	const struct net_device *dev = skb->dev;
3045 
3046 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3047 		return 0;
3048 	return dev->header_ops->parse_protocol(skb);
3049 }
3050 
3051 /* ll_header must have at least hard_header_len allocated */
3052 static inline bool dev_validate_header(const struct net_device *dev,
3053 				       char *ll_header, int len)
3054 {
3055 	if (likely(len >= dev->hard_header_len))
3056 		return true;
3057 	if (len < dev->min_header_len)
3058 		return false;
3059 
3060 	if (capable(CAP_SYS_RAWIO)) {
3061 		memset(ll_header + len, 0, dev->hard_header_len - len);
3062 		return true;
3063 	}
3064 
3065 	if (dev->header_ops && dev->header_ops->validate)
3066 		return dev->header_ops->validate(ll_header, len);
3067 
3068 	return false;
3069 }
3070 
3071 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3072 			   int len, int size);
3073 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3074 static inline int unregister_gifconf(unsigned int family)
3075 {
3076 	return register_gifconf(family, NULL);
3077 }
3078 
3079 #ifdef CONFIG_NET_FLOW_LIMIT
3080 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3081 struct sd_flow_limit {
3082 	u64			count;
3083 	unsigned int		num_buckets;
3084 	unsigned int		history_head;
3085 	u16			history[FLOW_LIMIT_HISTORY];
3086 	u8			buckets[];
3087 };
3088 
3089 extern int netdev_flow_limit_table_len;
3090 #endif /* CONFIG_NET_FLOW_LIMIT */
3091 
3092 /*
3093  * Incoming packets are placed on per-CPU queues
3094  */
3095 struct softnet_data {
3096 	struct list_head	poll_list;
3097 	struct sk_buff_head	process_queue;
3098 
3099 	/* stats */
3100 	unsigned int		processed;
3101 	unsigned int		time_squeeze;
3102 	unsigned int		received_rps;
3103 #ifdef CONFIG_RPS
3104 	struct softnet_data	*rps_ipi_list;
3105 #endif
3106 #ifdef CONFIG_NET_FLOW_LIMIT
3107 	struct sd_flow_limit __rcu *flow_limit;
3108 #endif
3109 	struct Qdisc		*output_queue;
3110 	struct Qdisc		**output_queue_tailp;
3111 	struct sk_buff		*completion_queue;
3112 #ifdef CONFIG_XFRM_OFFLOAD
3113 	struct sk_buff_head	xfrm_backlog;
3114 #endif
3115 	/* written and read only by owning cpu: */
3116 	struct {
3117 		u16 recursion;
3118 		u8  more;
3119 	} xmit;
3120 #ifdef CONFIG_RPS
3121 	/* input_queue_head should be written by cpu owning this struct,
3122 	 * and only read by other cpus. Worth using a cache line.
3123 	 */
3124 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3125 
3126 	/* Elements below can be accessed between CPUs for RPS/RFS */
3127 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3128 	struct softnet_data	*rps_ipi_next;
3129 	unsigned int		cpu;
3130 	unsigned int		input_queue_tail;
3131 #endif
3132 	unsigned int		dropped;
3133 	struct sk_buff_head	input_pkt_queue;
3134 	struct napi_struct	backlog;
3135 
3136 };
3137 
3138 static inline void input_queue_head_incr(struct softnet_data *sd)
3139 {
3140 #ifdef CONFIG_RPS
3141 	sd->input_queue_head++;
3142 #endif
3143 }
3144 
3145 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3146 					      unsigned int *qtail)
3147 {
3148 #ifdef CONFIG_RPS
3149 	*qtail = ++sd->input_queue_tail;
3150 #endif
3151 }
3152 
3153 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3154 
3155 static inline int dev_recursion_level(void)
3156 {
3157 	return this_cpu_read(softnet_data.xmit.recursion);
3158 }
3159 
3160 #define XMIT_RECURSION_LIMIT	8
3161 static inline bool dev_xmit_recursion(void)
3162 {
3163 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3164 			XMIT_RECURSION_LIMIT);
3165 }
3166 
3167 static inline void dev_xmit_recursion_inc(void)
3168 {
3169 	__this_cpu_inc(softnet_data.xmit.recursion);
3170 }
3171 
3172 static inline void dev_xmit_recursion_dec(void)
3173 {
3174 	__this_cpu_dec(softnet_data.xmit.recursion);
3175 }
3176 
3177 void __netif_schedule(struct Qdisc *q);
3178 void netif_schedule_queue(struct netdev_queue *txq);
3179 
3180 static inline void netif_tx_schedule_all(struct net_device *dev)
3181 {
3182 	unsigned int i;
3183 
3184 	for (i = 0; i < dev->num_tx_queues; i++)
3185 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3186 }
3187 
3188 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3189 {
3190 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3191 }
3192 
3193 /**
3194  *	netif_start_queue - allow transmit
3195  *	@dev: network device
3196  *
3197  *	Allow upper layers to call the device hard_start_xmit routine.
3198  */
3199 static inline void netif_start_queue(struct net_device *dev)
3200 {
3201 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3202 }
3203 
3204 static inline void netif_tx_start_all_queues(struct net_device *dev)
3205 {
3206 	unsigned int i;
3207 
3208 	for (i = 0; i < dev->num_tx_queues; i++) {
3209 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3210 		netif_tx_start_queue(txq);
3211 	}
3212 }
3213 
3214 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3215 
3216 /**
3217  *	netif_wake_queue - restart transmit
3218  *	@dev: network device
3219  *
3220  *	Allow upper layers to call the device hard_start_xmit routine.
3221  *	Used for flow control when transmit resources are available.
3222  */
3223 static inline void netif_wake_queue(struct net_device *dev)
3224 {
3225 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3226 }
3227 
3228 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3229 {
3230 	unsigned int i;
3231 
3232 	for (i = 0; i < dev->num_tx_queues; i++) {
3233 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3234 		netif_tx_wake_queue(txq);
3235 	}
3236 }
3237 
3238 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3239 {
3240 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3241 }
3242 
3243 /**
3244  *	netif_stop_queue - stop transmitted packets
3245  *	@dev: network device
3246  *
3247  *	Stop upper layers calling the device hard_start_xmit routine.
3248  *	Used for flow control when transmit resources are unavailable.
3249  */
3250 static inline void netif_stop_queue(struct net_device *dev)
3251 {
3252 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3253 }
3254 
3255 void netif_tx_stop_all_queues(struct net_device *dev);
3256 
3257 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3258 {
3259 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3260 }
3261 
3262 /**
3263  *	netif_queue_stopped - test if transmit queue is flowblocked
3264  *	@dev: network device
3265  *
3266  *	Test if transmit queue on device is currently unable to send.
3267  */
3268 static inline bool netif_queue_stopped(const struct net_device *dev)
3269 {
3270 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3271 }
3272 
3273 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3274 {
3275 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3276 }
3277 
3278 static inline bool
3279 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3280 {
3281 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3282 }
3283 
3284 static inline bool
3285 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3286 {
3287 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3288 }
3289 
3290 /**
3291  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3292  *	@dev_queue: pointer to transmit queue
3293  *
3294  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3295  * to give appropriate hint to the CPU.
3296  */
3297 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3298 {
3299 #ifdef CONFIG_BQL
3300 	prefetchw(&dev_queue->dql.num_queued);
3301 #endif
3302 }
3303 
3304 /**
3305  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3306  *	@dev_queue: pointer to transmit queue
3307  *
3308  * BQL enabled drivers might use this helper in their TX completion path,
3309  * to give appropriate hint to the CPU.
3310  */
3311 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3312 {
3313 #ifdef CONFIG_BQL
3314 	prefetchw(&dev_queue->dql.limit);
3315 #endif
3316 }
3317 
3318 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3319 					unsigned int bytes)
3320 {
3321 #ifdef CONFIG_BQL
3322 	dql_queued(&dev_queue->dql, bytes);
3323 
3324 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3325 		return;
3326 
3327 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3328 
3329 	/*
3330 	 * The XOFF flag must be set before checking the dql_avail below,
3331 	 * because in netdev_tx_completed_queue we update the dql_completed
3332 	 * before checking the XOFF flag.
3333 	 */
3334 	smp_mb();
3335 
3336 	/* check again in case another CPU has just made room avail */
3337 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3338 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3339 #endif
3340 }
3341 
3342 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3343  * that they should not test BQL status themselves.
3344  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3345  * skb of a batch.
3346  * Returns true if the doorbell must be used to kick the NIC.
3347  */
3348 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3349 					  unsigned int bytes,
3350 					  bool xmit_more)
3351 {
3352 	if (xmit_more) {
3353 #ifdef CONFIG_BQL
3354 		dql_queued(&dev_queue->dql, bytes);
3355 #endif
3356 		return netif_tx_queue_stopped(dev_queue);
3357 	}
3358 	netdev_tx_sent_queue(dev_queue, bytes);
3359 	return true;
3360 }
3361 
3362 /**
3363  * 	netdev_sent_queue - report the number of bytes queued to hardware
3364  * 	@dev: network device
3365  * 	@bytes: number of bytes queued to the hardware device queue
3366  *
3367  * 	Report the number of bytes queued for sending/completion to the network
3368  * 	device hardware queue. @bytes should be a good approximation and should
3369  * 	exactly match netdev_completed_queue() @bytes
3370  */
3371 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3372 {
3373 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3374 }
3375 
3376 static inline bool __netdev_sent_queue(struct net_device *dev,
3377 				       unsigned int bytes,
3378 				       bool xmit_more)
3379 {
3380 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3381 				      xmit_more);
3382 }
3383 
3384 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3385 					     unsigned int pkts, unsigned int bytes)
3386 {
3387 #ifdef CONFIG_BQL
3388 	if (unlikely(!bytes))
3389 		return;
3390 
3391 	dql_completed(&dev_queue->dql, bytes);
3392 
3393 	/*
3394 	 * Without the memory barrier there is a small possiblity that
3395 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3396 	 * be stopped forever
3397 	 */
3398 	smp_mb();
3399 
3400 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3401 		return;
3402 
3403 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3404 		netif_schedule_queue(dev_queue);
3405 #endif
3406 }
3407 
3408 /**
3409  * 	netdev_completed_queue - report bytes and packets completed by device
3410  * 	@dev: network device
3411  * 	@pkts: actual number of packets sent over the medium
3412  * 	@bytes: actual number of bytes sent over the medium
3413  *
3414  * 	Report the number of bytes and packets transmitted by the network device
3415  * 	hardware queue over the physical medium, @bytes must exactly match the
3416  * 	@bytes amount passed to netdev_sent_queue()
3417  */
3418 static inline void netdev_completed_queue(struct net_device *dev,
3419 					  unsigned int pkts, unsigned int bytes)
3420 {
3421 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3422 }
3423 
3424 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3425 {
3426 #ifdef CONFIG_BQL
3427 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3428 	dql_reset(&q->dql);
3429 #endif
3430 }
3431 
3432 /**
3433  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3434  * 	@dev_queue: network device
3435  *
3436  * 	Reset the bytes and packet count of a network device and clear the
3437  * 	software flow control OFF bit for this network device
3438  */
3439 static inline void netdev_reset_queue(struct net_device *dev_queue)
3440 {
3441 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3442 }
3443 
3444 /**
3445  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3446  * 	@dev: network device
3447  * 	@queue_index: given tx queue index
3448  *
3449  * 	Returns 0 if given tx queue index >= number of device tx queues,
3450  * 	otherwise returns the originally passed tx queue index.
3451  */
3452 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3453 {
3454 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3455 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3456 				     dev->name, queue_index,
3457 				     dev->real_num_tx_queues);
3458 		return 0;
3459 	}
3460 
3461 	return queue_index;
3462 }
3463 
3464 /**
3465  *	netif_running - test if up
3466  *	@dev: network device
3467  *
3468  *	Test if the device has been brought up.
3469  */
3470 static inline bool netif_running(const struct net_device *dev)
3471 {
3472 	return test_bit(__LINK_STATE_START, &dev->state);
3473 }
3474 
3475 /*
3476  * Routines to manage the subqueues on a device.  We only need start,
3477  * stop, and a check if it's stopped.  All other device management is
3478  * done at the overall netdevice level.
3479  * Also test the device if we're multiqueue.
3480  */
3481 
3482 /**
3483  *	netif_start_subqueue - allow sending packets on subqueue
3484  *	@dev: network device
3485  *	@queue_index: sub queue index
3486  *
3487  * Start individual transmit queue of a device with multiple transmit queues.
3488  */
3489 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3490 {
3491 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3492 
3493 	netif_tx_start_queue(txq);
3494 }
3495 
3496 /**
3497  *	netif_stop_subqueue - stop sending packets on subqueue
3498  *	@dev: network device
3499  *	@queue_index: sub queue index
3500  *
3501  * Stop individual transmit queue of a device with multiple transmit queues.
3502  */
3503 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3504 {
3505 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3506 	netif_tx_stop_queue(txq);
3507 }
3508 
3509 /**
3510  *	netif_subqueue_stopped - test status of subqueue
3511  *	@dev: network device
3512  *	@queue_index: sub queue index
3513  *
3514  * Check individual transmit queue of a device with multiple transmit queues.
3515  */
3516 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3517 					    u16 queue_index)
3518 {
3519 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3520 
3521 	return netif_tx_queue_stopped(txq);
3522 }
3523 
3524 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3525 					  struct sk_buff *skb)
3526 {
3527 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3528 }
3529 
3530 /**
3531  *	netif_wake_subqueue - allow sending packets on subqueue
3532  *	@dev: network device
3533  *	@queue_index: sub queue index
3534  *
3535  * Resume individual transmit queue of a device with multiple transmit queues.
3536  */
3537 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3538 {
3539 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3540 
3541 	netif_tx_wake_queue(txq);
3542 }
3543 
3544 #ifdef CONFIG_XPS
3545 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3546 			u16 index);
3547 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3548 			  u16 index, bool is_rxqs_map);
3549 
3550 /**
3551  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3552  *	@j: CPU/Rx queue index
3553  *	@mask: bitmask of all cpus/rx queues
3554  *	@nr_bits: number of bits in the bitmask
3555  *
3556  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3557  */
3558 static inline bool netif_attr_test_mask(unsigned long j,
3559 					const unsigned long *mask,
3560 					unsigned int nr_bits)
3561 {
3562 	cpu_max_bits_warn(j, nr_bits);
3563 	return test_bit(j, mask);
3564 }
3565 
3566 /**
3567  *	netif_attr_test_online - Test for online CPU/Rx queue
3568  *	@j: CPU/Rx queue index
3569  *	@online_mask: bitmask for CPUs/Rx queues that are online
3570  *	@nr_bits: number of bits in the bitmask
3571  *
3572  * Returns true if a CPU/Rx queue is online.
3573  */
3574 static inline bool netif_attr_test_online(unsigned long j,
3575 					  const unsigned long *online_mask,
3576 					  unsigned int nr_bits)
3577 {
3578 	cpu_max_bits_warn(j, nr_bits);
3579 
3580 	if (online_mask)
3581 		return test_bit(j, online_mask);
3582 
3583 	return (j < nr_bits);
3584 }
3585 
3586 /**
3587  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3588  *	@n: CPU/Rx queue index
3589  *	@srcp: the cpumask/Rx queue mask pointer
3590  *	@nr_bits: number of bits in the bitmask
3591  *
3592  * Returns >= nr_bits if no further CPUs/Rx queues set.
3593  */
3594 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3595 					       unsigned int nr_bits)
3596 {
3597 	/* -1 is a legal arg here. */
3598 	if (n != -1)
3599 		cpu_max_bits_warn(n, nr_bits);
3600 
3601 	if (srcp)
3602 		return find_next_bit(srcp, nr_bits, n + 1);
3603 
3604 	return n + 1;
3605 }
3606 
3607 /**
3608  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3609  *	@n: CPU/Rx queue index
3610  *	@src1p: the first CPUs/Rx queues mask pointer
3611  *	@src2p: the second CPUs/Rx queues mask pointer
3612  *	@nr_bits: number of bits in the bitmask
3613  *
3614  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3615  */
3616 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3617 					  const unsigned long *src2p,
3618 					  unsigned int nr_bits)
3619 {
3620 	/* -1 is a legal arg here. */
3621 	if (n != -1)
3622 		cpu_max_bits_warn(n, nr_bits);
3623 
3624 	if (src1p && src2p)
3625 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3626 	else if (src1p)
3627 		return find_next_bit(src1p, nr_bits, n + 1);
3628 	else if (src2p)
3629 		return find_next_bit(src2p, nr_bits, n + 1);
3630 
3631 	return n + 1;
3632 }
3633 #else
3634 static inline int netif_set_xps_queue(struct net_device *dev,
3635 				      const struct cpumask *mask,
3636 				      u16 index)
3637 {
3638 	return 0;
3639 }
3640 
3641 static inline int __netif_set_xps_queue(struct net_device *dev,
3642 					const unsigned long *mask,
3643 					u16 index, bool is_rxqs_map)
3644 {
3645 	return 0;
3646 }
3647 #endif
3648 
3649 /**
3650  *	netif_is_multiqueue - test if device has multiple transmit queues
3651  *	@dev: network device
3652  *
3653  * Check if device has multiple transmit queues
3654  */
3655 static inline bool netif_is_multiqueue(const struct net_device *dev)
3656 {
3657 	return dev->num_tx_queues > 1;
3658 }
3659 
3660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3661 
3662 #ifdef CONFIG_SYSFS
3663 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3664 #else
3665 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3666 						unsigned int rxqs)
3667 {
3668 	dev->real_num_rx_queues = rxqs;
3669 	return 0;
3670 }
3671 #endif
3672 
3673 static inline struct netdev_rx_queue *
3674 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3675 {
3676 	return dev->_rx + rxq;
3677 }
3678 
3679 #ifdef CONFIG_SYSFS
3680 static inline unsigned int get_netdev_rx_queue_index(
3681 		struct netdev_rx_queue *queue)
3682 {
3683 	struct net_device *dev = queue->dev;
3684 	int index = queue - dev->_rx;
3685 
3686 	BUG_ON(index >= dev->num_rx_queues);
3687 	return index;
3688 }
3689 #endif
3690 
3691 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3692 int netif_get_num_default_rss_queues(void);
3693 
3694 enum skb_free_reason {
3695 	SKB_REASON_CONSUMED,
3696 	SKB_REASON_DROPPED,
3697 };
3698 
3699 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3700 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3701 
3702 /*
3703  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3704  * interrupt context or with hardware interrupts being disabled.
3705  * (in_irq() || irqs_disabled())
3706  *
3707  * We provide four helpers that can be used in following contexts :
3708  *
3709  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3710  *  replacing kfree_skb(skb)
3711  *
3712  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3713  *  Typically used in place of consume_skb(skb) in TX completion path
3714  *
3715  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3716  *  replacing kfree_skb(skb)
3717  *
3718  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3719  *  and consumed a packet. Used in place of consume_skb(skb)
3720  */
3721 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3722 {
3723 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3724 }
3725 
3726 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3727 {
3728 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3729 }
3730 
3731 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3732 {
3733 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3734 }
3735 
3736 static inline void dev_consume_skb_any(struct sk_buff *skb)
3737 {
3738 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3739 }
3740 
3741 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3742 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3743 int netif_rx(struct sk_buff *skb);
3744 int netif_rx_ni(struct sk_buff *skb);
3745 int netif_receive_skb(struct sk_buff *skb);
3746 int netif_receive_skb_core(struct sk_buff *skb);
3747 void netif_receive_skb_list(struct list_head *head);
3748 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3749 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3750 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3751 gro_result_t napi_gro_frags(struct napi_struct *napi);
3752 struct packet_offload *gro_find_receive_by_type(__be16 type);
3753 struct packet_offload *gro_find_complete_by_type(__be16 type);
3754 
3755 static inline void napi_free_frags(struct napi_struct *napi)
3756 {
3757 	kfree_skb(napi->skb);
3758 	napi->skb = NULL;
3759 }
3760 
3761 bool netdev_is_rx_handler_busy(struct net_device *dev);
3762 int netdev_rx_handler_register(struct net_device *dev,
3763 			       rx_handler_func_t *rx_handler,
3764 			       void *rx_handler_data);
3765 void netdev_rx_handler_unregister(struct net_device *dev);
3766 
3767 bool dev_valid_name(const char *name);
3768 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3769 		bool *need_copyout);
3770 int dev_ifconf(struct net *net, struct ifconf *, int);
3771 int dev_ethtool(struct net *net, struct ifreq *);
3772 unsigned int dev_get_flags(const struct net_device *);
3773 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3774 		       struct netlink_ext_ack *extack);
3775 int dev_change_flags(struct net_device *dev, unsigned int flags,
3776 		     struct netlink_ext_ack *extack);
3777 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3778 			unsigned int gchanges);
3779 int dev_change_name(struct net_device *, const char *);
3780 int dev_set_alias(struct net_device *, const char *, size_t);
3781 int dev_get_alias(const struct net_device *, char *, size_t);
3782 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3783 int __dev_set_mtu(struct net_device *, int);
3784 int dev_validate_mtu(struct net_device *dev, int mtu,
3785 		     struct netlink_ext_ack *extack);
3786 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3787 		    struct netlink_ext_ack *extack);
3788 int dev_set_mtu(struct net_device *, int);
3789 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3790 void dev_set_group(struct net_device *, int);
3791 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3792 			      struct netlink_ext_ack *extack);
3793 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3794 			struct netlink_ext_ack *extack);
3795 int dev_change_carrier(struct net_device *, bool new_carrier);
3796 int dev_get_phys_port_id(struct net_device *dev,
3797 			 struct netdev_phys_item_id *ppid);
3798 int dev_get_phys_port_name(struct net_device *dev,
3799 			   char *name, size_t len);
3800 int dev_get_port_parent_id(struct net_device *dev,
3801 			   struct netdev_phys_item_id *ppid, bool recurse);
3802 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3803 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3804 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3806 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3807 				    struct netdev_queue *txq, int *ret);
3808 
3809 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3810 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3811 		      int fd, int expected_fd, u32 flags);
3812 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3813 		    enum bpf_netdev_command cmd);
3814 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3815 
3816 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3817 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3818 bool is_skb_forwardable(const struct net_device *dev,
3819 			const struct sk_buff *skb);
3820 
3821 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3822 					       struct sk_buff *skb)
3823 {
3824 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3825 	    unlikely(!is_skb_forwardable(dev, skb))) {
3826 		atomic_long_inc(&dev->rx_dropped);
3827 		kfree_skb(skb);
3828 		return NET_RX_DROP;
3829 	}
3830 
3831 	skb_scrub_packet(skb, true);
3832 	skb->priority = 0;
3833 	return 0;
3834 }
3835 
3836 bool dev_nit_active(struct net_device *dev);
3837 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3838 
3839 extern int		netdev_budget;
3840 extern unsigned int	netdev_budget_usecs;
3841 
3842 /* Called by rtnetlink.c:rtnl_unlock() */
3843 void netdev_run_todo(void);
3844 
3845 /**
3846  *	dev_put - release reference to device
3847  *	@dev: network device
3848  *
3849  * Release reference to device to allow it to be freed.
3850  */
3851 static inline void dev_put(struct net_device *dev)
3852 {
3853 	this_cpu_dec(*dev->pcpu_refcnt);
3854 }
3855 
3856 /**
3857  *	dev_hold - get reference to device
3858  *	@dev: network device
3859  *
3860  * Hold reference to device to keep it from being freed.
3861  */
3862 static inline void dev_hold(struct net_device *dev)
3863 {
3864 	this_cpu_inc(*dev->pcpu_refcnt);
3865 }
3866 
3867 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3868  * and _off may be called from IRQ context, but it is caller
3869  * who is responsible for serialization of these calls.
3870  *
3871  * The name carrier is inappropriate, these functions should really be
3872  * called netif_lowerlayer_*() because they represent the state of any
3873  * kind of lower layer not just hardware media.
3874  */
3875 
3876 void linkwatch_init_dev(struct net_device *dev);
3877 void linkwatch_fire_event(struct net_device *dev);
3878 void linkwatch_forget_dev(struct net_device *dev);
3879 
3880 /**
3881  *	netif_carrier_ok - test if carrier present
3882  *	@dev: network device
3883  *
3884  * Check if carrier is present on device
3885  */
3886 static inline bool netif_carrier_ok(const struct net_device *dev)
3887 {
3888 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3889 }
3890 
3891 unsigned long dev_trans_start(struct net_device *dev);
3892 
3893 void __netdev_watchdog_up(struct net_device *dev);
3894 
3895 void netif_carrier_on(struct net_device *dev);
3896 
3897 void netif_carrier_off(struct net_device *dev);
3898 
3899 /**
3900  *	netif_dormant_on - mark device as dormant.
3901  *	@dev: network device
3902  *
3903  * Mark device as dormant (as per RFC2863).
3904  *
3905  * The dormant state indicates that the relevant interface is not
3906  * actually in a condition to pass packets (i.e., it is not 'up') but is
3907  * in a "pending" state, waiting for some external event.  For "on-
3908  * demand" interfaces, this new state identifies the situation where the
3909  * interface is waiting for events to place it in the up state.
3910  */
3911 static inline void netif_dormant_on(struct net_device *dev)
3912 {
3913 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3914 		linkwatch_fire_event(dev);
3915 }
3916 
3917 /**
3918  *	netif_dormant_off - set device as not dormant.
3919  *	@dev: network device
3920  *
3921  * Device is not in dormant state.
3922  */
3923 static inline void netif_dormant_off(struct net_device *dev)
3924 {
3925 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3926 		linkwatch_fire_event(dev);
3927 }
3928 
3929 /**
3930  *	netif_dormant - test if device is dormant
3931  *	@dev: network device
3932  *
3933  * Check if device is dormant.
3934  */
3935 static inline bool netif_dormant(const struct net_device *dev)
3936 {
3937 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3938 }
3939 
3940 
3941 /**
3942  *	netif_testing_on - mark device as under test.
3943  *	@dev: network device
3944  *
3945  * Mark device as under test (as per RFC2863).
3946  *
3947  * The testing state indicates that some test(s) must be performed on
3948  * the interface. After completion, of the test, the interface state
3949  * will change to up, dormant, or down, as appropriate.
3950  */
3951 static inline void netif_testing_on(struct net_device *dev)
3952 {
3953 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3954 		linkwatch_fire_event(dev);
3955 }
3956 
3957 /**
3958  *	netif_testing_off - set device as not under test.
3959  *	@dev: network device
3960  *
3961  * Device is not in testing state.
3962  */
3963 static inline void netif_testing_off(struct net_device *dev)
3964 {
3965 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3966 		linkwatch_fire_event(dev);
3967 }
3968 
3969 /**
3970  *	netif_testing - test if device is under test
3971  *	@dev: network device
3972  *
3973  * Check if device is under test
3974  */
3975 static inline bool netif_testing(const struct net_device *dev)
3976 {
3977 	return test_bit(__LINK_STATE_TESTING, &dev->state);
3978 }
3979 
3980 
3981 /**
3982  *	netif_oper_up - test if device is operational
3983  *	@dev: network device
3984  *
3985  * Check if carrier is operational
3986  */
3987 static inline bool netif_oper_up(const struct net_device *dev)
3988 {
3989 	return (dev->operstate == IF_OPER_UP ||
3990 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3991 }
3992 
3993 /**
3994  *	netif_device_present - is device available or removed
3995  *	@dev: network device
3996  *
3997  * Check if device has not been removed from system.
3998  */
3999 static inline bool netif_device_present(struct net_device *dev)
4000 {
4001 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4002 }
4003 
4004 void netif_device_detach(struct net_device *dev);
4005 
4006 void netif_device_attach(struct net_device *dev);
4007 
4008 /*
4009  * Network interface message level settings
4010  */
4011 
4012 enum {
4013 	NETIF_MSG_DRV_BIT,
4014 	NETIF_MSG_PROBE_BIT,
4015 	NETIF_MSG_LINK_BIT,
4016 	NETIF_MSG_TIMER_BIT,
4017 	NETIF_MSG_IFDOWN_BIT,
4018 	NETIF_MSG_IFUP_BIT,
4019 	NETIF_MSG_RX_ERR_BIT,
4020 	NETIF_MSG_TX_ERR_BIT,
4021 	NETIF_MSG_TX_QUEUED_BIT,
4022 	NETIF_MSG_INTR_BIT,
4023 	NETIF_MSG_TX_DONE_BIT,
4024 	NETIF_MSG_RX_STATUS_BIT,
4025 	NETIF_MSG_PKTDATA_BIT,
4026 	NETIF_MSG_HW_BIT,
4027 	NETIF_MSG_WOL_BIT,
4028 
4029 	/* When you add a new bit above, update netif_msg_class_names array
4030 	 * in net/ethtool/common.c
4031 	 */
4032 	NETIF_MSG_CLASS_COUNT,
4033 };
4034 /* Both ethtool_ops interface and internal driver implementation use u32 */
4035 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4036 
4037 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4038 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4039 
4040 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4041 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4042 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4043 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4044 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4045 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4046 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4047 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4048 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4049 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4050 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4051 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4052 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4053 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4054 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4055 
4056 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4057 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4058 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4059 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4060 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4061 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4062 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4063 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4064 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4065 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4066 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4067 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4068 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4069 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4070 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4071 
4072 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4073 {
4074 	/* use default */
4075 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4076 		return default_msg_enable_bits;
4077 	if (debug_value == 0)	/* no output */
4078 		return 0;
4079 	/* set low N bits */
4080 	return (1U << debug_value) - 1;
4081 }
4082 
4083 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4084 {
4085 	spin_lock(&txq->_xmit_lock);
4086 	txq->xmit_lock_owner = cpu;
4087 }
4088 
4089 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4090 {
4091 	__acquire(&txq->_xmit_lock);
4092 	return true;
4093 }
4094 
4095 static inline void __netif_tx_release(struct netdev_queue *txq)
4096 {
4097 	__release(&txq->_xmit_lock);
4098 }
4099 
4100 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4101 {
4102 	spin_lock_bh(&txq->_xmit_lock);
4103 	txq->xmit_lock_owner = smp_processor_id();
4104 }
4105 
4106 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4107 {
4108 	bool ok = spin_trylock(&txq->_xmit_lock);
4109 	if (likely(ok))
4110 		txq->xmit_lock_owner = smp_processor_id();
4111 	return ok;
4112 }
4113 
4114 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4115 {
4116 	txq->xmit_lock_owner = -1;
4117 	spin_unlock(&txq->_xmit_lock);
4118 }
4119 
4120 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4121 {
4122 	txq->xmit_lock_owner = -1;
4123 	spin_unlock_bh(&txq->_xmit_lock);
4124 }
4125 
4126 static inline void txq_trans_update(struct netdev_queue *txq)
4127 {
4128 	if (txq->xmit_lock_owner != -1)
4129 		txq->trans_start = jiffies;
4130 }
4131 
4132 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4133 static inline void netif_trans_update(struct net_device *dev)
4134 {
4135 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4136 
4137 	if (txq->trans_start != jiffies)
4138 		txq->trans_start = jiffies;
4139 }
4140 
4141 /**
4142  *	netif_tx_lock - grab network device transmit lock
4143  *	@dev: network device
4144  *
4145  * Get network device transmit lock
4146  */
4147 static inline void netif_tx_lock(struct net_device *dev)
4148 {
4149 	unsigned int i;
4150 	int cpu;
4151 
4152 	spin_lock(&dev->tx_global_lock);
4153 	cpu = smp_processor_id();
4154 	for (i = 0; i < dev->num_tx_queues; i++) {
4155 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4156 
4157 		/* We are the only thread of execution doing a
4158 		 * freeze, but we have to grab the _xmit_lock in
4159 		 * order to synchronize with threads which are in
4160 		 * the ->hard_start_xmit() handler and already
4161 		 * checked the frozen bit.
4162 		 */
4163 		__netif_tx_lock(txq, cpu);
4164 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4165 		__netif_tx_unlock(txq);
4166 	}
4167 }
4168 
4169 static inline void netif_tx_lock_bh(struct net_device *dev)
4170 {
4171 	local_bh_disable();
4172 	netif_tx_lock(dev);
4173 }
4174 
4175 static inline void netif_tx_unlock(struct net_device *dev)
4176 {
4177 	unsigned int i;
4178 
4179 	for (i = 0; i < dev->num_tx_queues; i++) {
4180 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4181 
4182 		/* No need to grab the _xmit_lock here.  If the
4183 		 * queue is not stopped for another reason, we
4184 		 * force a schedule.
4185 		 */
4186 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4187 		netif_schedule_queue(txq);
4188 	}
4189 	spin_unlock(&dev->tx_global_lock);
4190 }
4191 
4192 static inline void netif_tx_unlock_bh(struct net_device *dev)
4193 {
4194 	netif_tx_unlock(dev);
4195 	local_bh_enable();
4196 }
4197 
4198 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4199 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4200 		__netif_tx_lock(txq, cpu);		\
4201 	} else {					\
4202 		__netif_tx_acquire(txq);		\
4203 	}						\
4204 }
4205 
4206 #define HARD_TX_TRYLOCK(dev, txq)			\
4207 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4208 		__netif_tx_trylock(txq) :		\
4209 		__netif_tx_acquire(txq))
4210 
4211 #define HARD_TX_UNLOCK(dev, txq) {			\
4212 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4213 		__netif_tx_unlock(txq);			\
4214 	} else {					\
4215 		__netif_tx_release(txq);		\
4216 	}						\
4217 }
4218 
4219 static inline void netif_tx_disable(struct net_device *dev)
4220 {
4221 	unsigned int i;
4222 	int cpu;
4223 
4224 	local_bh_disable();
4225 	cpu = smp_processor_id();
4226 	for (i = 0; i < dev->num_tx_queues; i++) {
4227 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4228 
4229 		__netif_tx_lock(txq, cpu);
4230 		netif_tx_stop_queue(txq);
4231 		__netif_tx_unlock(txq);
4232 	}
4233 	local_bh_enable();
4234 }
4235 
4236 static inline void netif_addr_lock(struct net_device *dev)
4237 {
4238 	spin_lock(&dev->addr_list_lock);
4239 }
4240 
4241 static inline void netif_addr_lock_nested(struct net_device *dev)
4242 {
4243 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4244 }
4245 
4246 static inline void netif_addr_lock_bh(struct net_device *dev)
4247 {
4248 	spin_lock_bh(&dev->addr_list_lock);
4249 }
4250 
4251 static inline void netif_addr_unlock(struct net_device *dev)
4252 {
4253 	spin_unlock(&dev->addr_list_lock);
4254 }
4255 
4256 static inline void netif_addr_unlock_bh(struct net_device *dev)
4257 {
4258 	spin_unlock_bh(&dev->addr_list_lock);
4259 }
4260 
4261 /*
4262  * dev_addrs walker. Should be used only for read access. Call with
4263  * rcu_read_lock held.
4264  */
4265 #define for_each_dev_addr(dev, ha) \
4266 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4267 
4268 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4269 
4270 void ether_setup(struct net_device *dev);
4271 
4272 /* Support for loadable net-drivers */
4273 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4274 				    unsigned char name_assign_type,
4275 				    void (*setup)(struct net_device *),
4276 				    unsigned int txqs, unsigned int rxqs);
4277 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4278 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4279 
4280 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4281 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4282 			 count)
4283 
4284 int register_netdev(struct net_device *dev);
4285 void unregister_netdev(struct net_device *dev);
4286 
4287 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4288 
4289 /* General hardware address lists handling functions */
4290 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4291 		   struct netdev_hw_addr_list *from_list, int addr_len);
4292 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4293 		      struct netdev_hw_addr_list *from_list, int addr_len);
4294 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4295 		       struct net_device *dev,
4296 		       int (*sync)(struct net_device *, const unsigned char *),
4297 		       int (*unsync)(struct net_device *,
4298 				     const unsigned char *));
4299 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4300 			   struct net_device *dev,
4301 			   int (*sync)(struct net_device *,
4302 				       const unsigned char *, int),
4303 			   int (*unsync)(struct net_device *,
4304 					 const unsigned char *, int));
4305 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4306 			      struct net_device *dev,
4307 			      int (*unsync)(struct net_device *,
4308 					    const unsigned char *, int));
4309 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4310 			  struct net_device *dev,
4311 			  int (*unsync)(struct net_device *,
4312 					const unsigned char *));
4313 void __hw_addr_init(struct netdev_hw_addr_list *list);
4314 
4315 /* Functions used for device addresses handling */
4316 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4317 		 unsigned char addr_type);
4318 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4319 		 unsigned char addr_type);
4320 void dev_addr_flush(struct net_device *dev);
4321 int dev_addr_init(struct net_device *dev);
4322 
4323 /* Functions used for unicast addresses handling */
4324 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4325 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4326 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4327 int dev_uc_sync(struct net_device *to, struct net_device *from);
4328 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4329 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4330 void dev_uc_flush(struct net_device *dev);
4331 void dev_uc_init(struct net_device *dev);
4332 
4333 /**
4334  *  __dev_uc_sync - Synchonize device's unicast list
4335  *  @dev:  device to sync
4336  *  @sync: function to call if address should be added
4337  *  @unsync: function to call if address should be removed
4338  *
4339  *  Add newly added addresses to the interface, and release
4340  *  addresses that have been deleted.
4341  */
4342 static inline int __dev_uc_sync(struct net_device *dev,
4343 				int (*sync)(struct net_device *,
4344 					    const unsigned char *),
4345 				int (*unsync)(struct net_device *,
4346 					      const unsigned char *))
4347 {
4348 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4349 }
4350 
4351 /**
4352  *  __dev_uc_unsync - Remove synchronized addresses from device
4353  *  @dev:  device to sync
4354  *  @unsync: function to call if address should be removed
4355  *
4356  *  Remove all addresses that were added to the device by dev_uc_sync().
4357  */
4358 static inline void __dev_uc_unsync(struct net_device *dev,
4359 				   int (*unsync)(struct net_device *,
4360 						 const unsigned char *))
4361 {
4362 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4363 }
4364 
4365 /* Functions used for multicast addresses handling */
4366 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4367 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4368 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4369 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4370 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4371 int dev_mc_sync(struct net_device *to, struct net_device *from);
4372 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4373 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4374 void dev_mc_flush(struct net_device *dev);
4375 void dev_mc_init(struct net_device *dev);
4376 
4377 /**
4378  *  __dev_mc_sync - Synchonize device's multicast list
4379  *  @dev:  device to sync
4380  *  @sync: function to call if address should be added
4381  *  @unsync: function to call if address should be removed
4382  *
4383  *  Add newly added addresses to the interface, and release
4384  *  addresses that have been deleted.
4385  */
4386 static inline int __dev_mc_sync(struct net_device *dev,
4387 				int (*sync)(struct net_device *,
4388 					    const unsigned char *),
4389 				int (*unsync)(struct net_device *,
4390 					      const unsigned char *))
4391 {
4392 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4393 }
4394 
4395 /**
4396  *  __dev_mc_unsync - Remove synchronized addresses from device
4397  *  @dev:  device to sync
4398  *  @unsync: function to call if address should be removed
4399  *
4400  *  Remove all addresses that were added to the device by dev_mc_sync().
4401  */
4402 static inline void __dev_mc_unsync(struct net_device *dev,
4403 				   int (*unsync)(struct net_device *,
4404 						 const unsigned char *))
4405 {
4406 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4407 }
4408 
4409 /* Functions used for secondary unicast and multicast support */
4410 void dev_set_rx_mode(struct net_device *dev);
4411 void __dev_set_rx_mode(struct net_device *dev);
4412 int dev_set_promiscuity(struct net_device *dev, int inc);
4413 int dev_set_allmulti(struct net_device *dev, int inc);
4414 void netdev_state_change(struct net_device *dev);
4415 void netdev_notify_peers(struct net_device *dev);
4416 void netdev_features_change(struct net_device *dev);
4417 /* Load a device via the kmod */
4418 void dev_load(struct net *net, const char *name);
4419 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4420 					struct rtnl_link_stats64 *storage);
4421 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4422 			     const struct net_device_stats *netdev_stats);
4423 
4424 extern int		netdev_max_backlog;
4425 extern int		netdev_tstamp_prequeue;
4426 extern int		weight_p;
4427 extern int		dev_weight_rx_bias;
4428 extern int		dev_weight_tx_bias;
4429 extern int		dev_rx_weight;
4430 extern int		dev_tx_weight;
4431 extern int		gro_normal_batch;
4432 
4433 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4434 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4435 						     struct list_head **iter);
4436 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4437 						     struct list_head **iter);
4438 
4439 /* iterate through upper list, must be called under RCU read lock */
4440 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4441 	for (iter = &(dev)->adj_list.upper, \
4442 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4443 	     updev; \
4444 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4445 
4446 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4447 				  int (*fn)(struct net_device *upper_dev,
4448 					    void *data),
4449 				  void *data);
4450 
4451 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4452 				  struct net_device *upper_dev);
4453 
4454 bool netdev_has_any_upper_dev(struct net_device *dev);
4455 
4456 void *netdev_lower_get_next_private(struct net_device *dev,
4457 				    struct list_head **iter);
4458 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4459 					struct list_head **iter);
4460 
4461 #define netdev_for_each_lower_private(dev, priv, iter) \
4462 	for (iter = (dev)->adj_list.lower.next, \
4463 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4464 	     priv; \
4465 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4466 
4467 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4468 	for (iter = &(dev)->adj_list.lower, \
4469 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4470 	     priv; \
4471 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4472 
4473 void *netdev_lower_get_next(struct net_device *dev,
4474 				struct list_head **iter);
4475 
4476 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4477 	for (iter = (dev)->adj_list.lower.next, \
4478 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4479 	     ldev; \
4480 	     ldev = netdev_lower_get_next(dev, &(iter)))
4481 
4482 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4483 					     struct list_head **iter);
4484 int netdev_walk_all_lower_dev(struct net_device *dev,
4485 			      int (*fn)(struct net_device *lower_dev,
4486 					void *data),
4487 			      void *data);
4488 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4489 				  int (*fn)(struct net_device *lower_dev,
4490 					    void *data),
4491 				  void *data);
4492 
4493 void *netdev_adjacent_get_private(struct list_head *adj_list);
4494 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4495 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4496 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4497 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4498 			  struct netlink_ext_ack *extack);
4499 int netdev_master_upper_dev_link(struct net_device *dev,
4500 				 struct net_device *upper_dev,
4501 				 void *upper_priv, void *upper_info,
4502 				 struct netlink_ext_ack *extack);
4503 void netdev_upper_dev_unlink(struct net_device *dev,
4504 			     struct net_device *upper_dev);
4505 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4506 				   struct net_device *new_dev,
4507 				   struct net_device *dev,
4508 				   struct netlink_ext_ack *extack);
4509 void netdev_adjacent_change_commit(struct net_device *old_dev,
4510 				   struct net_device *new_dev,
4511 				   struct net_device *dev);
4512 void netdev_adjacent_change_abort(struct net_device *old_dev,
4513 				  struct net_device *new_dev,
4514 				  struct net_device *dev);
4515 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4516 void *netdev_lower_dev_get_private(struct net_device *dev,
4517 				   struct net_device *lower_dev);
4518 void netdev_lower_state_changed(struct net_device *lower_dev,
4519 				void *lower_state_info);
4520 
4521 /* RSS keys are 40 or 52 bytes long */
4522 #define NETDEV_RSS_KEY_LEN 52
4523 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4524 void netdev_rss_key_fill(void *buffer, size_t len);
4525 
4526 int skb_checksum_help(struct sk_buff *skb);
4527 int skb_crc32c_csum_help(struct sk_buff *skb);
4528 int skb_csum_hwoffload_help(struct sk_buff *skb,
4529 			    const netdev_features_t features);
4530 
4531 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4532 				  netdev_features_t features, bool tx_path);
4533 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4534 				    netdev_features_t features);
4535 
4536 struct netdev_bonding_info {
4537 	ifslave	slave;
4538 	ifbond	master;
4539 };
4540 
4541 struct netdev_notifier_bonding_info {
4542 	struct netdev_notifier_info info; /* must be first */
4543 	struct netdev_bonding_info  bonding_info;
4544 };
4545 
4546 void netdev_bonding_info_change(struct net_device *dev,
4547 				struct netdev_bonding_info *bonding_info);
4548 
4549 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4550 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4551 #else
4552 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4553 				  const void *data)
4554 {
4555 }
4556 #endif
4557 
4558 static inline
4559 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4560 {
4561 	return __skb_gso_segment(skb, features, true);
4562 }
4563 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4564 
4565 static inline bool can_checksum_protocol(netdev_features_t features,
4566 					 __be16 protocol)
4567 {
4568 	if (protocol == htons(ETH_P_FCOE))
4569 		return !!(features & NETIF_F_FCOE_CRC);
4570 
4571 	/* Assume this is an IP checksum (not SCTP CRC) */
4572 
4573 	if (features & NETIF_F_HW_CSUM) {
4574 		/* Can checksum everything */
4575 		return true;
4576 	}
4577 
4578 	switch (protocol) {
4579 	case htons(ETH_P_IP):
4580 		return !!(features & NETIF_F_IP_CSUM);
4581 	case htons(ETH_P_IPV6):
4582 		return !!(features & NETIF_F_IPV6_CSUM);
4583 	default:
4584 		return false;
4585 	}
4586 }
4587 
4588 #ifdef CONFIG_BUG
4589 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4590 #else
4591 static inline void netdev_rx_csum_fault(struct net_device *dev,
4592 					struct sk_buff *skb)
4593 {
4594 }
4595 #endif
4596 /* rx skb timestamps */
4597 void net_enable_timestamp(void);
4598 void net_disable_timestamp(void);
4599 
4600 #ifdef CONFIG_PROC_FS
4601 int __init dev_proc_init(void);
4602 #else
4603 #define dev_proc_init() 0
4604 #endif
4605 
4606 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4607 					      struct sk_buff *skb, struct net_device *dev,
4608 					      bool more)
4609 {
4610 	__this_cpu_write(softnet_data.xmit.more, more);
4611 	return ops->ndo_start_xmit(skb, dev);
4612 }
4613 
4614 static inline bool netdev_xmit_more(void)
4615 {
4616 	return __this_cpu_read(softnet_data.xmit.more);
4617 }
4618 
4619 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4620 					    struct netdev_queue *txq, bool more)
4621 {
4622 	const struct net_device_ops *ops = dev->netdev_ops;
4623 	netdev_tx_t rc;
4624 
4625 	rc = __netdev_start_xmit(ops, skb, dev, more);
4626 	if (rc == NETDEV_TX_OK)
4627 		txq_trans_update(txq);
4628 
4629 	return rc;
4630 }
4631 
4632 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4633 				const void *ns);
4634 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4635 				 const void *ns);
4636 
4637 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4638 {
4639 	return netdev_class_create_file_ns(class_attr, NULL);
4640 }
4641 
4642 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4643 {
4644 	netdev_class_remove_file_ns(class_attr, NULL);
4645 }
4646 
4647 extern const struct kobj_ns_type_operations net_ns_type_operations;
4648 
4649 const char *netdev_drivername(const struct net_device *dev);
4650 
4651 void linkwatch_run_queue(void);
4652 
4653 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4654 							  netdev_features_t f2)
4655 {
4656 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4657 		if (f1 & NETIF_F_HW_CSUM)
4658 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4659 		else
4660 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4661 	}
4662 
4663 	return f1 & f2;
4664 }
4665 
4666 static inline netdev_features_t netdev_get_wanted_features(
4667 	struct net_device *dev)
4668 {
4669 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4670 }
4671 netdev_features_t netdev_increment_features(netdev_features_t all,
4672 	netdev_features_t one, netdev_features_t mask);
4673 
4674 /* Allow TSO being used on stacked device :
4675  * Performing the GSO segmentation before last device
4676  * is a performance improvement.
4677  */
4678 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4679 							netdev_features_t mask)
4680 {
4681 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4682 }
4683 
4684 int __netdev_update_features(struct net_device *dev);
4685 void netdev_update_features(struct net_device *dev);
4686 void netdev_change_features(struct net_device *dev);
4687 
4688 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4689 					struct net_device *dev);
4690 
4691 netdev_features_t passthru_features_check(struct sk_buff *skb,
4692 					  struct net_device *dev,
4693 					  netdev_features_t features);
4694 netdev_features_t netif_skb_features(struct sk_buff *skb);
4695 
4696 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4697 {
4698 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4699 
4700 	/* check flags correspondence */
4701 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4702 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4703 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4704 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4705 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4706 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4707 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4708 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4709 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4710 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4711 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4712 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4713 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4714 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4715 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4716 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4717 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4718 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4719 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4720 
4721 	return (features & feature) == feature;
4722 }
4723 
4724 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4725 {
4726 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4727 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4728 }
4729 
4730 static inline bool netif_needs_gso(struct sk_buff *skb,
4731 				   netdev_features_t features)
4732 {
4733 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4734 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4735 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4736 }
4737 
4738 static inline void netif_set_gso_max_size(struct net_device *dev,
4739 					  unsigned int size)
4740 {
4741 	dev->gso_max_size = size;
4742 }
4743 
4744 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4745 					int pulled_hlen, u16 mac_offset,
4746 					int mac_len)
4747 {
4748 	skb->protocol = protocol;
4749 	skb->encapsulation = 1;
4750 	skb_push(skb, pulled_hlen);
4751 	skb_reset_transport_header(skb);
4752 	skb->mac_header = mac_offset;
4753 	skb->network_header = skb->mac_header + mac_len;
4754 	skb->mac_len = mac_len;
4755 }
4756 
4757 static inline bool netif_is_macsec(const struct net_device *dev)
4758 {
4759 	return dev->priv_flags & IFF_MACSEC;
4760 }
4761 
4762 static inline bool netif_is_macvlan(const struct net_device *dev)
4763 {
4764 	return dev->priv_flags & IFF_MACVLAN;
4765 }
4766 
4767 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4768 {
4769 	return dev->priv_flags & IFF_MACVLAN_PORT;
4770 }
4771 
4772 static inline bool netif_is_bond_master(const struct net_device *dev)
4773 {
4774 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4775 }
4776 
4777 static inline bool netif_is_bond_slave(const struct net_device *dev)
4778 {
4779 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4780 }
4781 
4782 static inline bool netif_supports_nofcs(struct net_device *dev)
4783 {
4784 	return dev->priv_flags & IFF_SUPP_NOFCS;
4785 }
4786 
4787 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4788 {
4789 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4790 }
4791 
4792 static inline bool netif_is_l3_master(const struct net_device *dev)
4793 {
4794 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4795 }
4796 
4797 static inline bool netif_is_l3_slave(const struct net_device *dev)
4798 {
4799 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4800 }
4801 
4802 static inline bool netif_is_bridge_master(const struct net_device *dev)
4803 {
4804 	return dev->priv_flags & IFF_EBRIDGE;
4805 }
4806 
4807 static inline bool netif_is_bridge_port(const struct net_device *dev)
4808 {
4809 	return dev->priv_flags & IFF_BRIDGE_PORT;
4810 }
4811 
4812 static inline bool netif_is_ovs_master(const struct net_device *dev)
4813 {
4814 	return dev->priv_flags & IFF_OPENVSWITCH;
4815 }
4816 
4817 static inline bool netif_is_ovs_port(const struct net_device *dev)
4818 {
4819 	return dev->priv_flags & IFF_OVS_DATAPATH;
4820 }
4821 
4822 static inline bool netif_is_team_master(const struct net_device *dev)
4823 {
4824 	return dev->priv_flags & IFF_TEAM;
4825 }
4826 
4827 static inline bool netif_is_team_port(const struct net_device *dev)
4828 {
4829 	return dev->priv_flags & IFF_TEAM_PORT;
4830 }
4831 
4832 static inline bool netif_is_lag_master(const struct net_device *dev)
4833 {
4834 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4835 }
4836 
4837 static inline bool netif_is_lag_port(const struct net_device *dev)
4838 {
4839 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4840 }
4841 
4842 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4843 {
4844 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4845 }
4846 
4847 static inline bool netif_is_failover(const struct net_device *dev)
4848 {
4849 	return dev->priv_flags & IFF_FAILOVER;
4850 }
4851 
4852 static inline bool netif_is_failover_slave(const struct net_device *dev)
4853 {
4854 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4855 }
4856 
4857 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4858 static inline void netif_keep_dst(struct net_device *dev)
4859 {
4860 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4861 }
4862 
4863 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4864 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4865 {
4866 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4867 	return dev->priv_flags & IFF_MACSEC;
4868 }
4869 
4870 extern struct pernet_operations __net_initdata loopback_net_ops;
4871 
4872 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4873 
4874 /* netdev_printk helpers, similar to dev_printk */
4875 
4876 static inline const char *netdev_name(const struct net_device *dev)
4877 {
4878 	if (!dev->name[0] || strchr(dev->name, '%'))
4879 		return "(unnamed net_device)";
4880 	return dev->name;
4881 }
4882 
4883 static inline bool netdev_unregistering(const struct net_device *dev)
4884 {
4885 	return dev->reg_state == NETREG_UNREGISTERING;
4886 }
4887 
4888 static inline const char *netdev_reg_state(const struct net_device *dev)
4889 {
4890 	switch (dev->reg_state) {
4891 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4892 	case NETREG_REGISTERED: return "";
4893 	case NETREG_UNREGISTERING: return " (unregistering)";
4894 	case NETREG_UNREGISTERED: return " (unregistered)";
4895 	case NETREG_RELEASED: return " (released)";
4896 	case NETREG_DUMMY: return " (dummy)";
4897 	}
4898 
4899 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4900 	return " (unknown)";
4901 }
4902 
4903 __printf(3, 4) __cold
4904 void netdev_printk(const char *level, const struct net_device *dev,
4905 		   const char *format, ...);
4906 __printf(2, 3) __cold
4907 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4908 __printf(2, 3) __cold
4909 void netdev_alert(const struct net_device *dev, const char *format, ...);
4910 __printf(2, 3) __cold
4911 void netdev_crit(const struct net_device *dev, const char *format, ...);
4912 __printf(2, 3) __cold
4913 void netdev_err(const struct net_device *dev, const char *format, ...);
4914 __printf(2, 3) __cold
4915 void netdev_warn(const struct net_device *dev, const char *format, ...);
4916 __printf(2, 3) __cold
4917 void netdev_notice(const struct net_device *dev, const char *format, ...);
4918 __printf(2, 3) __cold
4919 void netdev_info(const struct net_device *dev, const char *format, ...);
4920 
4921 #define netdev_level_once(level, dev, fmt, ...)			\
4922 do {								\
4923 	static bool __print_once __read_mostly;			\
4924 								\
4925 	if (!__print_once) {					\
4926 		__print_once = true;				\
4927 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4928 	}							\
4929 } while (0)
4930 
4931 #define netdev_emerg_once(dev, fmt, ...) \
4932 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4933 #define netdev_alert_once(dev, fmt, ...) \
4934 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4935 #define netdev_crit_once(dev, fmt, ...) \
4936 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4937 #define netdev_err_once(dev, fmt, ...) \
4938 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4939 #define netdev_warn_once(dev, fmt, ...) \
4940 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4941 #define netdev_notice_once(dev, fmt, ...) \
4942 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4943 #define netdev_info_once(dev, fmt, ...) \
4944 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4945 
4946 #define MODULE_ALIAS_NETDEV(device) \
4947 	MODULE_ALIAS("netdev-" device)
4948 
4949 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4950 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4951 #define netdev_dbg(__dev, format, args...)			\
4952 do {								\
4953 	dynamic_netdev_dbg(__dev, format, ##args);		\
4954 } while (0)
4955 #elif defined(DEBUG)
4956 #define netdev_dbg(__dev, format, args...)			\
4957 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4958 #else
4959 #define netdev_dbg(__dev, format, args...)			\
4960 ({								\
4961 	if (0)							\
4962 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4963 })
4964 #endif
4965 
4966 #if defined(VERBOSE_DEBUG)
4967 #define netdev_vdbg	netdev_dbg
4968 #else
4969 
4970 #define netdev_vdbg(dev, format, args...)			\
4971 ({								\
4972 	if (0)							\
4973 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4974 	0;							\
4975 })
4976 #endif
4977 
4978 /*
4979  * netdev_WARN() acts like dev_printk(), but with the key difference
4980  * of using a WARN/WARN_ON to get the message out, including the
4981  * file/line information and a backtrace.
4982  */
4983 #define netdev_WARN(dev, format, args...)			\
4984 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4985 	     netdev_reg_state(dev), ##args)
4986 
4987 #define netdev_WARN_ONCE(dev, format, args...)				\
4988 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4989 		  netdev_reg_state(dev), ##args)
4990 
4991 /* netif printk helpers, similar to netdev_printk */
4992 
4993 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4994 do {					  			\
4995 	if (netif_msg_##type(priv))				\
4996 		netdev_printk(level, (dev), fmt, ##args);	\
4997 } while (0)
4998 
4999 #define netif_level(level, priv, type, dev, fmt, args...)	\
5000 do {								\
5001 	if (netif_msg_##type(priv))				\
5002 		netdev_##level(dev, fmt, ##args);		\
5003 } while (0)
5004 
5005 #define netif_emerg(priv, type, dev, fmt, args...)		\
5006 	netif_level(emerg, priv, type, dev, fmt, ##args)
5007 #define netif_alert(priv, type, dev, fmt, args...)		\
5008 	netif_level(alert, priv, type, dev, fmt, ##args)
5009 #define netif_crit(priv, type, dev, fmt, args...)		\
5010 	netif_level(crit, priv, type, dev, fmt, ##args)
5011 #define netif_err(priv, type, dev, fmt, args...)		\
5012 	netif_level(err, priv, type, dev, fmt, ##args)
5013 #define netif_warn(priv, type, dev, fmt, args...)		\
5014 	netif_level(warn, priv, type, dev, fmt, ##args)
5015 #define netif_notice(priv, type, dev, fmt, args...)		\
5016 	netif_level(notice, priv, type, dev, fmt, ##args)
5017 #define netif_info(priv, type, dev, fmt, args...)		\
5018 	netif_level(info, priv, type, dev, fmt, ##args)
5019 
5020 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5021 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5022 #define netif_dbg(priv, type, netdev, format, args...)		\
5023 do {								\
5024 	if (netif_msg_##type(priv))				\
5025 		dynamic_netdev_dbg(netdev, format, ##args);	\
5026 } while (0)
5027 #elif defined(DEBUG)
5028 #define netif_dbg(priv, type, dev, format, args...)		\
5029 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5030 #else
5031 #define netif_dbg(priv, type, dev, format, args...)			\
5032 ({									\
5033 	if (0)								\
5034 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5035 	0;								\
5036 })
5037 #endif
5038 
5039 /* if @cond then downgrade to debug, else print at @level */
5040 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5041 	do {                                                              \
5042 		if (cond)                                                 \
5043 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5044 		else                                                      \
5045 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5046 	} while (0)
5047 
5048 #if defined(VERBOSE_DEBUG)
5049 #define netif_vdbg	netif_dbg
5050 #else
5051 #define netif_vdbg(priv, type, dev, format, args...)		\
5052 ({								\
5053 	if (0)							\
5054 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5055 	0;							\
5056 })
5057 #endif
5058 
5059 /*
5060  *	The list of packet types we will receive (as opposed to discard)
5061  *	and the routines to invoke.
5062  *
5063  *	Why 16. Because with 16 the only overlap we get on a hash of the
5064  *	low nibble of the protocol value is RARP/SNAP/X.25.
5065  *
5066  *		0800	IP
5067  *		0001	802.3
5068  *		0002	AX.25
5069  *		0004	802.2
5070  *		8035	RARP
5071  *		0005	SNAP
5072  *		0805	X.25
5073  *		0806	ARP
5074  *		8137	IPX
5075  *		0009	Localtalk
5076  *		86DD	IPv6
5077  */
5078 #define PTYPE_HASH_SIZE	(16)
5079 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5080 
5081 extern struct net_device *blackhole_netdev;
5082 
5083 #endif	/* _LINUX_NETDEVICE_H */
5084