xref: /openbmc/linux/include/linux/netdevice.h (revision 5497b23e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 	struct task_struct	*thread;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,		/* Poll is scheduled */
355 	NAPI_STATE_MISSED,		/* reschedule a napi */
356 	NAPI_STATE_DISABLE,		/* Disable pending */
357 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
358 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
359 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
360 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
361 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
362 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
363 };
364 
365 enum {
366 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
367 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
368 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
369 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
370 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
371 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
372 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
373 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
374 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
375 };
376 
377 enum gro_result {
378 	GRO_MERGED,
379 	GRO_MERGED_FREE,
380 	GRO_HELD,
381 	GRO_NORMAL,
382 	GRO_CONSUMED,
383 };
384 typedef enum gro_result gro_result_t;
385 
386 /*
387  * enum rx_handler_result - Possible return values for rx_handlers.
388  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
389  * further.
390  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
391  * case skb->dev was changed by rx_handler.
392  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
393  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
394  *
395  * rx_handlers are functions called from inside __netif_receive_skb(), to do
396  * special processing of the skb, prior to delivery to protocol handlers.
397  *
398  * Currently, a net_device can only have a single rx_handler registered. Trying
399  * to register a second rx_handler will return -EBUSY.
400  *
401  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
402  * To unregister a rx_handler on a net_device, use
403  * netdev_rx_handler_unregister().
404  *
405  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
406  * do with the skb.
407  *
408  * If the rx_handler consumed the skb in some way, it should return
409  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
410  * the skb to be delivered in some other way.
411  *
412  * If the rx_handler changed skb->dev, to divert the skb to another
413  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
414  * new device will be called if it exists.
415  *
416  * If the rx_handler decides the skb should be ignored, it should return
417  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
418  * are registered on exact device (ptype->dev == skb->dev).
419  *
420  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
421  * delivered, it should return RX_HANDLER_PASS.
422  *
423  * A device without a registered rx_handler will behave as if rx_handler
424  * returned RX_HANDLER_PASS.
425  */
426 
427 enum rx_handler_result {
428 	RX_HANDLER_CONSUMED,
429 	RX_HANDLER_ANOTHER,
430 	RX_HANDLER_EXACT,
431 	RX_HANDLER_PASS,
432 };
433 typedef enum rx_handler_result rx_handler_result_t;
434 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
435 
436 void __napi_schedule(struct napi_struct *n);
437 void __napi_schedule_irqoff(struct napi_struct *n);
438 
439 static inline bool napi_disable_pending(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_DISABLE, &n->state);
442 }
443 
444 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
445 {
446 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
447 }
448 
449 bool napi_schedule_prep(struct napi_struct *n);
450 
451 /**
452  *	napi_schedule - schedule NAPI poll
453  *	@n: NAPI context
454  *
455  * Schedule NAPI poll routine to be called if it is not already
456  * running.
457  */
458 static inline void napi_schedule(struct napi_struct *n)
459 {
460 	if (napi_schedule_prep(n))
461 		__napi_schedule(n);
462 }
463 
464 /**
465  *	napi_schedule_irqoff - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Variant of napi_schedule(), assuming hard irqs are masked.
469  */
470 static inline void napi_schedule_irqoff(struct napi_struct *n)
471 {
472 	if (napi_schedule_prep(n))
473 		__napi_schedule_irqoff(n);
474 }
475 
476 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
477 static inline bool napi_reschedule(struct napi_struct *napi)
478 {
479 	if (napi_schedule_prep(napi)) {
480 		__napi_schedule(napi);
481 		return true;
482 	}
483 	return false;
484 }
485 
486 bool napi_complete_done(struct napi_struct *n, int work_done);
487 /**
488  *	napi_complete - NAPI processing complete
489  *	@n: NAPI context
490  *
491  * Mark NAPI processing as complete.
492  * Consider using napi_complete_done() instead.
493  * Return false if device should avoid rearming interrupts.
494  */
495 static inline bool napi_complete(struct napi_struct *n)
496 {
497 	return napi_complete_done(n, 0);
498 }
499 
500 int dev_set_threaded(struct net_device *dev, bool threaded);
501 
502 /**
503  *	napi_disable - prevent NAPI from scheduling
504  *	@n: NAPI context
505  *
506  * Stop NAPI from being scheduled on this context.
507  * Waits till any outstanding processing completes.
508  */
509 void napi_disable(struct napi_struct *n);
510 
511 void napi_enable(struct napi_struct *n);
512 
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: NAPI context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	if (IS_ENABLED(CONFIG_SMP))
524 		while (test_bit(NAPI_STATE_SCHED, &n->state))
525 			msleep(1);
526 	else
527 		barrier();
528 }
529 
530 /**
531  *	napi_if_scheduled_mark_missed - if napi is running, set the
532  *	NAPIF_STATE_MISSED
533  *	@n: NAPI context
534  *
535  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
536  * NAPI is scheduled.
537  **/
538 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
539 {
540 	unsigned long val, new;
541 
542 	do {
543 		val = READ_ONCE(n->state);
544 		if (val & NAPIF_STATE_DISABLE)
545 			return true;
546 
547 		if (!(val & NAPIF_STATE_SCHED))
548 			return false;
549 
550 		new = val | NAPIF_STATE_MISSED;
551 	} while (cmpxchg(&n->state, val, new) != val);
552 
553 	return true;
554 }
555 
556 enum netdev_queue_state_t {
557 	__QUEUE_STATE_DRV_XOFF,
558 	__QUEUE_STATE_STACK_XOFF,
559 	__QUEUE_STATE_FROZEN,
560 };
561 
562 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
563 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
564 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
565 
566 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
567 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
568 					QUEUE_STATE_FROZEN)
569 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 
572 /*
573  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
574  * netif_tx_* functions below are used to manipulate this flag.  The
575  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
576  * queue independently.  The netif_xmit_*stopped functions below are called
577  * to check if the queue has been stopped by the driver or stack (either
578  * of the XOFF bits are set in the state).  Drivers should not need to call
579  * netif_xmit*stopped functions, they should only be using netif_tx_*.
580  */
581 
582 struct netdev_queue {
583 /*
584  * read-mostly part
585  */
586 	struct net_device	*dev;
587 	struct Qdisc __rcu	*qdisc;
588 	struct Qdisc		*qdisc_sleeping;
589 #ifdef CONFIG_SYSFS
590 	struct kobject		kobj;
591 #endif
592 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
593 	int			numa_node;
594 #endif
595 	unsigned long		tx_maxrate;
596 	/*
597 	 * Number of TX timeouts for this queue
598 	 * (/sys/class/net/DEV/Q/trans_timeout)
599 	 */
600 	unsigned long		trans_timeout;
601 
602 	/* Subordinate device that the queue has been assigned to */
603 	struct net_device	*sb_dev;
604 #ifdef CONFIG_XDP_SOCKETS
605 	struct xsk_buff_pool    *pool;
606 #endif
607 /*
608  * write-mostly part
609  */
610 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
611 	int			xmit_lock_owner;
612 	/*
613 	 * Time (in jiffies) of last Tx
614 	 */
615 	unsigned long		trans_start;
616 
617 	unsigned long		state;
618 
619 #ifdef CONFIG_BQL
620 	struct dql		dql;
621 #endif
622 } ____cacheline_aligned_in_smp;
623 
624 extern int sysctl_fb_tunnels_only_for_init_net;
625 extern int sysctl_devconf_inherit_init_net;
626 
627 /*
628  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
629  *                                     == 1 : For initns only
630  *                                     == 2 : For none.
631  */
632 static inline bool net_has_fallback_tunnels(const struct net *net)
633 {
634 	return !IS_ENABLED(CONFIG_SYSCTL) ||
635 	       !sysctl_fb_tunnels_only_for_init_net ||
636 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
637 }
638 
639 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
640 {
641 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
642 	return q->numa_node;
643 #else
644 	return NUMA_NO_NODE;
645 #endif
646 }
647 
648 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	q->numa_node = node;
652 #endif
653 }
654 
655 #ifdef CONFIG_RPS
656 /*
657  * This structure holds an RPS map which can be of variable length.  The
658  * map is an array of CPUs.
659  */
660 struct rps_map {
661 	unsigned int len;
662 	struct rcu_head rcu;
663 	u16 cpus[];
664 };
665 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
666 
667 /*
668  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
669  * tail pointer for that CPU's input queue at the time of last enqueue, and
670  * a hardware filter index.
671  */
672 struct rps_dev_flow {
673 	u16 cpu;
674 	u16 filter;
675 	unsigned int last_qtail;
676 };
677 #define RPS_NO_FILTER 0xffff
678 
679 /*
680  * The rps_dev_flow_table structure contains a table of flow mappings.
681  */
682 struct rps_dev_flow_table {
683 	unsigned int mask;
684 	struct rcu_head rcu;
685 	struct rps_dev_flow flows[];
686 };
687 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
688     ((_num) * sizeof(struct rps_dev_flow)))
689 
690 /*
691  * The rps_sock_flow_table contains mappings of flows to the last CPU
692  * on which they were processed by the application (set in recvmsg).
693  * Each entry is a 32bit value. Upper part is the high-order bits
694  * of flow hash, lower part is CPU number.
695  * rps_cpu_mask is used to partition the space, depending on number of
696  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
697  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
698  * meaning we use 32-6=26 bits for the hash.
699  */
700 struct rps_sock_flow_table {
701 	u32	mask;
702 
703 	u32	ents[] ____cacheline_aligned_in_smp;
704 };
705 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
706 
707 #define RPS_NO_CPU 0xffff
708 
709 extern u32 rps_cpu_mask;
710 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
711 
712 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
713 					u32 hash)
714 {
715 	if (table && hash) {
716 		unsigned int index = hash & table->mask;
717 		u32 val = hash & ~rps_cpu_mask;
718 
719 		/* We only give a hint, preemption can change CPU under us */
720 		val |= raw_smp_processor_id();
721 
722 		if (table->ents[index] != val)
723 			table->ents[index] = val;
724 	}
725 }
726 
727 #ifdef CONFIG_RFS_ACCEL
728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
729 			 u16 filter_id);
730 #endif
731 #endif /* CONFIG_RPS */
732 
733 /* This structure contains an instance of an RX queue. */
734 struct netdev_rx_queue {
735 #ifdef CONFIG_RPS
736 	struct rps_map __rcu		*rps_map;
737 	struct rps_dev_flow_table __rcu	*rps_flow_table;
738 #endif
739 	struct kobject			kobj;
740 	struct net_device		*dev;
741 	struct xdp_rxq_info		xdp_rxq;
742 #ifdef CONFIG_XDP_SOCKETS
743 	struct xsk_buff_pool            *pool;
744 #endif
745 } ____cacheline_aligned_in_smp;
746 
747 /*
748  * RX queue sysfs structures and functions.
749  */
750 struct rx_queue_attribute {
751 	struct attribute attr;
752 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
753 	ssize_t (*store)(struct netdev_rx_queue *queue,
754 			 const char *buf, size_t len);
755 };
756 
757 #ifdef CONFIG_XPS
758 /*
759  * This structure holds an XPS map which can be of variable length.  The
760  * map is an array of queues.
761  */
762 struct xps_map {
763 	unsigned int len;
764 	unsigned int alloc_len;
765 	struct rcu_head rcu;
766 	u16 queues[];
767 };
768 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
769 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
770        - sizeof(struct xps_map)) / sizeof(u16))
771 
772 /*
773  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
774  */
775 struct xps_dev_maps {
776 	struct rcu_head rcu;
777 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
778 };
779 
780 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
781 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
782 
783 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
784 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
785 
786 #endif /* CONFIG_XPS */
787 
788 #define TC_MAX_QUEUE	16
789 #define TC_BITMASK	15
790 /* HW offloaded queuing disciplines txq count and offset maps */
791 struct netdev_tc_txq {
792 	u16 count;
793 	u16 offset;
794 };
795 
796 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
797 /*
798  * This structure is to hold information about the device
799  * configured to run FCoE protocol stack.
800  */
801 struct netdev_fcoe_hbainfo {
802 	char	manufacturer[64];
803 	char	serial_number[64];
804 	char	hardware_version[64];
805 	char	driver_version[64];
806 	char	optionrom_version[64];
807 	char	firmware_version[64];
808 	char	model[256];
809 	char	model_description[256];
810 };
811 #endif
812 
813 #define MAX_PHYS_ITEM_ID_LEN 32
814 
815 /* This structure holds a unique identifier to identify some
816  * physical item (port for example) used by a netdevice.
817  */
818 struct netdev_phys_item_id {
819 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
820 	unsigned char id_len;
821 };
822 
823 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
824 					    struct netdev_phys_item_id *b)
825 {
826 	return a->id_len == b->id_len &&
827 	       memcmp(a->id, b->id, a->id_len) == 0;
828 }
829 
830 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
831 				       struct sk_buff *skb,
832 				       struct net_device *sb_dev);
833 
834 enum tc_setup_type {
835 	TC_SETUP_QDISC_MQPRIO,
836 	TC_SETUP_CLSU32,
837 	TC_SETUP_CLSFLOWER,
838 	TC_SETUP_CLSMATCHALL,
839 	TC_SETUP_CLSBPF,
840 	TC_SETUP_BLOCK,
841 	TC_SETUP_QDISC_CBS,
842 	TC_SETUP_QDISC_RED,
843 	TC_SETUP_QDISC_PRIO,
844 	TC_SETUP_QDISC_MQ,
845 	TC_SETUP_QDISC_ETF,
846 	TC_SETUP_ROOT_QDISC,
847 	TC_SETUP_QDISC_GRED,
848 	TC_SETUP_QDISC_TAPRIO,
849 	TC_SETUP_FT,
850 	TC_SETUP_QDISC_ETS,
851 	TC_SETUP_QDISC_TBF,
852 	TC_SETUP_QDISC_FIFO,
853 	TC_SETUP_QDISC_HTB,
854 };
855 
856 /* These structures hold the attributes of bpf state that are being passed
857  * to the netdevice through the bpf op.
858  */
859 enum bpf_netdev_command {
860 	/* Set or clear a bpf program used in the earliest stages of packet
861 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
862 	 * is responsible for calling bpf_prog_put on any old progs that are
863 	 * stored. In case of error, the callee need not release the new prog
864 	 * reference, but on success it takes ownership and must bpf_prog_put
865 	 * when it is no longer used.
866 	 */
867 	XDP_SETUP_PROG,
868 	XDP_SETUP_PROG_HW,
869 	/* BPF program for offload callbacks, invoked at program load time. */
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_SETUP_XSK_POOL,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 struct xdp_dev_bulk_queue;
879 struct bpf_xdp_link;
880 
881 enum bpf_xdp_mode {
882 	XDP_MODE_SKB = 0,
883 	XDP_MODE_DRV = 1,
884 	XDP_MODE_HW = 2,
885 	__MAX_XDP_MODE
886 };
887 
888 struct bpf_xdp_entity {
889 	struct bpf_prog *prog;
890 	struct bpf_xdp_link *link;
891 };
892 
893 struct netdev_bpf {
894 	enum bpf_netdev_command command;
895 	union {
896 		/* XDP_SETUP_PROG */
897 		struct {
898 			u32 flags;
899 			struct bpf_prog *prog;
900 			struct netlink_ext_ack *extack;
901 		};
902 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
903 		struct {
904 			struct bpf_offloaded_map *offmap;
905 		};
906 		/* XDP_SETUP_XSK_POOL */
907 		struct {
908 			struct xsk_buff_pool *pool;
909 			u16 queue_id;
910 		} xsk;
911 	};
912 };
913 
914 /* Flags for ndo_xsk_wakeup. */
915 #define XDP_WAKEUP_RX (1 << 0)
916 #define XDP_WAKEUP_TX (1 << 1)
917 
918 #ifdef CONFIG_XFRM_OFFLOAD
919 struct xfrmdev_ops {
920 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
921 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
923 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
924 				       struct xfrm_state *x);
925 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
926 };
927 #endif
928 
929 struct dev_ifalias {
930 	struct rcu_head rcuhead;
931 	char ifalias[];
932 };
933 
934 struct devlink;
935 struct tlsdev_ops;
936 
937 struct netdev_name_node {
938 	struct hlist_node hlist;
939 	struct list_head list;
940 	struct net_device *dev;
941 	const char *name;
942 };
943 
944 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
945 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
946 
947 struct netdev_net_notifier {
948 	struct list_head list;
949 	struct notifier_block *nb;
950 };
951 
952 /*
953  * This structure defines the management hooks for network devices.
954  * The following hooks can be defined; unless noted otherwise, they are
955  * optional and can be filled with a null pointer.
956  *
957  * int (*ndo_init)(struct net_device *dev);
958  *     This function is called once when a network device is registered.
959  *     The network device can use this for any late stage initialization
960  *     or semantic validation. It can fail with an error code which will
961  *     be propagated back to register_netdev.
962  *
963  * void (*ndo_uninit)(struct net_device *dev);
964  *     This function is called when device is unregistered or when registration
965  *     fails. It is not called if init fails.
966  *
967  * int (*ndo_open)(struct net_device *dev);
968  *     This function is called when a network device transitions to the up
969  *     state.
970  *
971  * int (*ndo_stop)(struct net_device *dev);
972  *     This function is called when a network device transitions to the down
973  *     state.
974  *
975  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
976  *                               struct net_device *dev);
977  *	Called when a packet needs to be transmitted.
978  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
979  *	the queue before that can happen; it's for obsolete devices and weird
980  *	corner cases, but the stack really does a non-trivial amount
981  *	of useless work if you return NETDEV_TX_BUSY.
982  *	Required; cannot be NULL.
983  *
984  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
985  *					   struct net_device *dev
986  *					   netdev_features_t features);
987  *	Called by core transmit path to determine if device is capable of
988  *	performing offload operations on a given packet. This is to give
989  *	the device an opportunity to implement any restrictions that cannot
990  *	be otherwise expressed by feature flags. The check is called with
991  *	the set of features that the stack has calculated and it returns
992  *	those the driver believes to be appropriate.
993  *
994  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
995  *                         struct net_device *sb_dev);
996  *	Called to decide which queue to use when device supports multiple
997  *	transmit queues.
998  *
999  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1000  *	This function is called to allow device receiver to make
1001  *	changes to configuration when multicast or promiscuous is enabled.
1002  *
1003  * void (*ndo_set_rx_mode)(struct net_device *dev);
1004  *	This function is called device changes address list filtering.
1005  *	If driver handles unicast address filtering, it should set
1006  *	IFF_UNICAST_FLT in its priv_flags.
1007  *
1008  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1009  *	This function  is called when the Media Access Control address
1010  *	needs to be changed. If this interface is not defined, the
1011  *	MAC address can not be changed.
1012  *
1013  * int (*ndo_validate_addr)(struct net_device *dev);
1014  *	Test if Media Access Control address is valid for the device.
1015  *
1016  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1017  *	Called when a user requests an ioctl which can't be handled by
1018  *	the generic interface code. If not defined ioctls return
1019  *	not supported error code.
1020  *
1021  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1022  *	Used to set network devices bus interface parameters. This interface
1023  *	is retained for legacy reasons; new devices should use the bus
1024  *	interface (PCI) for low level management.
1025  *
1026  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1027  *	Called when a user wants to change the Maximum Transfer Unit
1028  *	of a device.
1029  *
1030  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1031  *	Callback used when the transmitter has not made any progress
1032  *	for dev->watchdog ticks.
1033  *
1034  * void (*ndo_get_stats64)(struct net_device *dev,
1035  *                         struct rtnl_link_stats64 *storage);
1036  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1037  *	Called when a user wants to get the network device usage
1038  *	statistics. Drivers must do one of the following:
1039  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1040  *	   rtnl_link_stats64 structure passed by the caller.
1041  *	2. Define @ndo_get_stats to update a net_device_stats structure
1042  *	   (which should normally be dev->stats) and return a pointer to
1043  *	   it. The structure may be changed asynchronously only if each
1044  *	   field is written atomically.
1045  *	3. Update dev->stats asynchronously and atomically, and define
1046  *	   neither operation.
1047  *
1048  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1049  *	Return true if this device supports offload stats of this attr_id.
1050  *
1051  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1052  *	void *attr_data)
1053  *	Get statistics for offload operations by attr_id. Write it into the
1054  *	attr_data pointer.
1055  *
1056  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1057  *	If device supports VLAN filtering this function is called when a
1058  *	VLAN id is registered.
1059  *
1060  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1061  *	If device supports VLAN filtering this function is called when a
1062  *	VLAN id is unregistered.
1063  *
1064  * void (*ndo_poll_controller)(struct net_device *dev);
1065  *
1066  *	SR-IOV management functions.
1067  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1068  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1069  *			  u8 qos, __be16 proto);
1070  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1071  *			  int max_tx_rate);
1072  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1073  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_get_vf_config)(struct net_device *dev,
1075  *			    int vf, struct ifla_vf_info *ivf);
1076  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1077  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1078  *			  struct nlattr *port[]);
1079  *
1080  *      Enable or disable the VF ability to query its RSS Redirection Table and
1081  *      Hash Key. This is needed since on some devices VF share this information
1082  *      with PF and querying it may introduce a theoretical security risk.
1083  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1084  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1085  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1086  *		       void *type_data);
1087  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1088  *	This is always called from the stack with the rtnl lock held and netif
1089  *	tx queues stopped. This allows the netdevice to perform queue
1090  *	management safely.
1091  *
1092  *	Fiber Channel over Ethernet (FCoE) offload functions.
1093  * int (*ndo_fcoe_enable)(struct net_device *dev);
1094  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1095  *	so the underlying device can perform whatever needed configuration or
1096  *	initialization to support acceleration of FCoE traffic.
1097  *
1098  * int (*ndo_fcoe_disable)(struct net_device *dev);
1099  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1100  *	so the underlying device can perform whatever needed clean-ups to
1101  *	stop supporting acceleration of FCoE traffic.
1102  *
1103  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1104  *			     struct scatterlist *sgl, unsigned int sgc);
1105  *	Called when the FCoE Initiator wants to initialize an I/O that
1106  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1107  *	perform necessary setup and returns 1 to indicate the device is set up
1108  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1109  *
1110  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1111  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1112  *	indicated by the FC exchange id 'xid', so the underlying device can
1113  *	clean up and reuse resources for later DDP requests.
1114  *
1115  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1116  *			      struct scatterlist *sgl, unsigned int sgc);
1117  *	Called when the FCoE Target wants to initialize an I/O that
1118  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1119  *	perform necessary setup and returns 1 to indicate the device is set up
1120  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1121  *
1122  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1123  *			       struct netdev_fcoe_hbainfo *hbainfo);
1124  *	Called when the FCoE Protocol stack wants information on the underlying
1125  *	device. This information is utilized by the FCoE protocol stack to
1126  *	register attributes with Fiber Channel management service as per the
1127  *	FC-GS Fabric Device Management Information(FDMI) specification.
1128  *
1129  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1130  *	Called when the underlying device wants to override default World Wide
1131  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1132  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1133  *	protocol stack to use.
1134  *
1135  *	RFS acceleration.
1136  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1137  *			    u16 rxq_index, u32 flow_id);
1138  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1139  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1140  *	Return the filter ID on success, or a negative error code.
1141  *
1142  *	Slave management functions (for bridge, bonding, etc).
1143  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1144  *	Called to make another netdev an underling.
1145  *
1146  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1147  *	Called to release previously enslaved netdev.
1148  *
1149  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1150  *					    struct sk_buff *skb,
1151  *					    bool all_slaves);
1152  *	Get the xmit slave of master device. If all_slaves is true, function
1153  *	assume all the slaves can transmit.
1154  *
1155  *      Feature/offload setting functions.
1156  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1157  *		netdev_features_t features);
1158  *	Adjusts the requested feature flags according to device-specific
1159  *	constraints, and returns the resulting flags. Must not modify
1160  *	the device state.
1161  *
1162  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1163  *	Called to update device configuration to new features. Passed
1164  *	feature set might be less than what was returned by ndo_fix_features()).
1165  *	Must return >0 or -errno if it changed dev->features itself.
1166  *
1167  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1168  *		      struct net_device *dev,
1169  *		      const unsigned char *addr, u16 vid, u16 flags,
1170  *		      struct netlink_ext_ack *extack);
1171  *	Adds an FDB entry to dev for addr.
1172  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1173  *		      struct net_device *dev,
1174  *		      const unsigned char *addr, u16 vid)
1175  *	Deletes the FDB entry from dev coresponding to addr.
1176  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1177  *		       struct net_device *dev, struct net_device *filter_dev,
1178  *		       int *idx)
1179  *	Used to add FDB entries to dump requests. Implementers should add
1180  *	entries to skb and update idx with the number of entries.
1181  *
1182  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1183  *			     u16 flags, struct netlink_ext_ack *extack)
1184  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1185  *			     struct net_device *dev, u32 filter_mask,
1186  *			     int nlflags)
1187  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1188  *			     u16 flags);
1189  *
1190  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1191  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1192  *	which do not represent real hardware may define this to allow their
1193  *	userspace components to manage their virtual carrier state. Devices
1194  *	that determine carrier state from physical hardware properties (eg
1195  *	network cables) or protocol-dependent mechanisms (eg
1196  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1197  *
1198  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1199  *			       struct netdev_phys_item_id *ppid);
1200  *	Called to get ID of physical port of this device. If driver does
1201  *	not implement this, it is assumed that the hw is not able to have
1202  *	multiple net devices on single physical port.
1203  *
1204  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1205  *				 struct netdev_phys_item_id *ppid)
1206  *	Called to get the parent ID of the physical port of this device.
1207  *
1208  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1209  *				 struct net_device *dev)
1210  *	Called by upper layer devices to accelerate switching or other
1211  *	station functionality into hardware. 'pdev is the lowerdev
1212  *	to use for the offload and 'dev' is the net device that will
1213  *	back the offload. Returns a pointer to the private structure
1214  *	the upper layer will maintain.
1215  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1216  *	Called by upper layer device to delete the station created
1217  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1218  *	the station and priv is the structure returned by the add
1219  *	operation.
1220  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1221  *			     int queue_index, u32 maxrate);
1222  *	Called when a user wants to set a max-rate limitation of specific
1223  *	TX queue.
1224  * int (*ndo_get_iflink)(const struct net_device *dev);
1225  *	Called to get the iflink value of this device.
1226  * void (*ndo_change_proto_down)(struct net_device *dev,
1227  *				 bool proto_down);
1228  *	This function is used to pass protocol port error state information
1229  *	to the switch driver. The switch driver can react to the proto_down
1230  *      by doing a phys down on the associated switch port.
1231  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1232  *	This function is used to get egress tunnel information for given skb.
1233  *	This is useful for retrieving outer tunnel header parameters while
1234  *	sampling packet.
1235  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1236  *	This function is used to specify the headroom that the skb must
1237  *	consider when allocation skb during packet reception. Setting
1238  *	appropriate rx headroom value allows avoiding skb head copy on
1239  *	forward. Setting a negative value resets the rx headroom to the
1240  *	default value.
1241  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1242  *	This function is used to set or query state related to XDP on the
1243  *	netdevice and manage BPF offload. See definition of
1244  *	enum bpf_netdev_command for details.
1245  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1246  *			u32 flags);
1247  *	This function is used to submit @n XDP packets for transmit on a
1248  *	netdevice. Returns number of frames successfully transmitted, frames
1249  *	that got dropped are freed/returned via xdp_return_frame().
1250  *	Returns negative number, means general error invoking ndo, meaning
1251  *	no frames were xmit'ed and core-caller will free all frames.
1252  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1253  *      This function is used to wake up the softirq, ksoftirqd or kthread
1254  *	responsible for sending and/or receiving packets on a specific
1255  *	queue id bound to an AF_XDP socket. The flags field specifies if
1256  *	only RX, only Tx, or both should be woken up using the flags
1257  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1258  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1259  *	Get devlink port instance associated with a given netdev.
1260  *	Called with a reference on the netdevice and devlink locks only,
1261  *	rtnl_lock is not held.
1262  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1263  *			 int cmd);
1264  *	Add, change, delete or get information on an IPv4 tunnel.
1265  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1266  *	If a device is paired with a peer device, return the peer instance.
1267  *	The caller must be under RCU read context.
1268  */
1269 struct net_device_ops {
1270 	int			(*ndo_init)(struct net_device *dev);
1271 	void			(*ndo_uninit)(struct net_device *dev);
1272 	int			(*ndo_open)(struct net_device *dev);
1273 	int			(*ndo_stop)(struct net_device *dev);
1274 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1275 						  struct net_device *dev);
1276 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1277 						      struct net_device *dev,
1278 						      netdev_features_t features);
1279 	u16			(*ndo_select_queue)(struct net_device *dev,
1280 						    struct sk_buff *skb,
1281 						    struct net_device *sb_dev);
1282 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1283 						       int flags);
1284 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1285 	int			(*ndo_set_mac_address)(struct net_device *dev,
1286 						       void *addr);
1287 	int			(*ndo_validate_addr)(struct net_device *dev);
1288 	int			(*ndo_do_ioctl)(struct net_device *dev,
1289 					        struct ifreq *ifr, int cmd);
1290 	int			(*ndo_set_config)(struct net_device *dev,
1291 					          struct ifmap *map);
1292 	int			(*ndo_change_mtu)(struct net_device *dev,
1293 						  int new_mtu);
1294 	int			(*ndo_neigh_setup)(struct net_device *dev,
1295 						   struct neigh_parms *);
1296 	void			(*ndo_tx_timeout) (struct net_device *dev,
1297 						   unsigned int txqueue);
1298 
1299 	void			(*ndo_get_stats64)(struct net_device *dev,
1300 						   struct rtnl_link_stats64 *storage);
1301 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1302 	int			(*ndo_get_offload_stats)(int attr_id,
1303 							 const struct net_device *dev,
1304 							 void *attr_data);
1305 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1306 
1307 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1308 						       __be16 proto, u16 vid);
1309 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1310 						        __be16 proto, u16 vid);
1311 #ifdef CONFIG_NET_POLL_CONTROLLER
1312 	void                    (*ndo_poll_controller)(struct net_device *dev);
1313 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1314 						     struct netpoll_info *info);
1315 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1316 #endif
1317 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1318 						  int queue, u8 *mac);
1319 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1320 						   int queue, u16 vlan,
1321 						   u8 qos, __be16 proto);
1322 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1323 						   int vf, int min_tx_rate,
1324 						   int max_tx_rate);
1325 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1326 						       int vf, bool setting);
1327 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1328 						    int vf, bool setting);
1329 	int			(*ndo_get_vf_config)(struct net_device *dev,
1330 						     int vf,
1331 						     struct ifla_vf_info *ivf);
1332 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1333 							 int vf, int link_state);
1334 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1335 						    int vf,
1336 						    struct ifla_vf_stats
1337 						    *vf_stats);
1338 	int			(*ndo_set_vf_port)(struct net_device *dev,
1339 						   int vf,
1340 						   struct nlattr *port[]);
1341 	int			(*ndo_get_vf_port)(struct net_device *dev,
1342 						   int vf, struct sk_buff *skb);
1343 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1344 						   int vf,
1345 						   struct ifla_vf_guid *node_guid,
1346 						   struct ifla_vf_guid *port_guid);
1347 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1348 						   int vf, u64 guid,
1349 						   int guid_type);
1350 	int			(*ndo_set_vf_rss_query_en)(
1351 						   struct net_device *dev,
1352 						   int vf, bool setting);
1353 	int			(*ndo_setup_tc)(struct net_device *dev,
1354 						enum tc_setup_type type,
1355 						void *type_data);
1356 #if IS_ENABLED(CONFIG_FCOE)
1357 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1358 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1359 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1360 						      u16 xid,
1361 						      struct scatterlist *sgl,
1362 						      unsigned int sgc);
1363 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1364 						     u16 xid);
1365 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1366 						       u16 xid,
1367 						       struct scatterlist *sgl,
1368 						       unsigned int sgc);
1369 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1370 							struct netdev_fcoe_hbainfo *hbainfo);
1371 #endif
1372 
1373 #if IS_ENABLED(CONFIG_LIBFCOE)
1374 #define NETDEV_FCOE_WWNN 0
1375 #define NETDEV_FCOE_WWPN 1
1376 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1377 						    u64 *wwn, int type);
1378 #endif
1379 
1380 #ifdef CONFIG_RFS_ACCEL
1381 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1382 						     const struct sk_buff *skb,
1383 						     u16 rxq_index,
1384 						     u32 flow_id);
1385 #endif
1386 	int			(*ndo_add_slave)(struct net_device *dev,
1387 						 struct net_device *slave_dev,
1388 						 struct netlink_ext_ack *extack);
1389 	int			(*ndo_del_slave)(struct net_device *dev,
1390 						 struct net_device *slave_dev);
1391 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1392 						      struct sk_buff *skb,
1393 						      bool all_slaves);
1394 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1395 							struct sock *sk);
1396 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1397 						    netdev_features_t features);
1398 	int			(*ndo_set_features)(struct net_device *dev,
1399 						    netdev_features_t features);
1400 	int			(*ndo_neigh_construct)(struct net_device *dev,
1401 						       struct neighbour *n);
1402 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1403 						     struct neighbour *n);
1404 
1405 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1406 					       struct nlattr *tb[],
1407 					       struct net_device *dev,
1408 					       const unsigned char *addr,
1409 					       u16 vid,
1410 					       u16 flags,
1411 					       struct netlink_ext_ack *extack);
1412 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1413 					       struct nlattr *tb[],
1414 					       struct net_device *dev,
1415 					       const unsigned char *addr,
1416 					       u16 vid);
1417 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1418 						struct netlink_callback *cb,
1419 						struct net_device *dev,
1420 						struct net_device *filter_dev,
1421 						int *idx);
1422 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1423 					       struct nlattr *tb[],
1424 					       struct net_device *dev,
1425 					       const unsigned char *addr,
1426 					       u16 vid, u32 portid, u32 seq,
1427 					       struct netlink_ext_ack *extack);
1428 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1429 						      struct nlmsghdr *nlh,
1430 						      u16 flags,
1431 						      struct netlink_ext_ack *extack);
1432 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1433 						      u32 pid, u32 seq,
1434 						      struct net_device *dev,
1435 						      u32 filter_mask,
1436 						      int nlflags);
1437 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1438 						      struct nlmsghdr *nlh,
1439 						      u16 flags);
1440 	int			(*ndo_change_carrier)(struct net_device *dev,
1441 						      bool new_carrier);
1442 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1443 							struct netdev_phys_item_id *ppid);
1444 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1445 							  struct netdev_phys_item_id *ppid);
1446 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1447 							  char *name, size_t len);
1448 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1449 							struct net_device *dev);
1450 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1451 							void *priv);
1452 
1453 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1454 						      int queue_index,
1455 						      u32 maxrate);
1456 	int			(*ndo_get_iflink)(const struct net_device *dev);
1457 	int			(*ndo_change_proto_down)(struct net_device *dev,
1458 							 bool proto_down);
1459 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1460 						       struct sk_buff *skb);
1461 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1462 						       int needed_headroom);
1463 	int			(*ndo_bpf)(struct net_device *dev,
1464 					   struct netdev_bpf *bpf);
1465 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1466 						struct xdp_frame **xdp,
1467 						u32 flags);
1468 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1469 						  u32 queue_id, u32 flags);
1470 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1471 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1472 						  struct ip_tunnel_parm *p, int cmd);
1473 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1474 };
1475 
1476 /**
1477  * enum netdev_priv_flags - &struct net_device priv_flags
1478  *
1479  * These are the &struct net_device, they are only set internally
1480  * by drivers and used in the kernel. These flags are invisible to
1481  * userspace; this means that the order of these flags can change
1482  * during any kernel release.
1483  *
1484  * You should have a pretty good reason to be extending these flags.
1485  *
1486  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1487  * @IFF_EBRIDGE: Ethernet bridging device
1488  * @IFF_BONDING: bonding master or slave
1489  * @IFF_ISATAP: ISATAP interface (RFC4214)
1490  * @IFF_WAN_HDLC: WAN HDLC device
1491  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1492  *	release skb->dst
1493  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1494  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1495  * @IFF_MACVLAN_PORT: device used as macvlan port
1496  * @IFF_BRIDGE_PORT: device used as bridge port
1497  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1498  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1499  * @IFF_UNICAST_FLT: Supports unicast filtering
1500  * @IFF_TEAM_PORT: device used as team port
1501  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1502  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1503  *	change when it's running
1504  * @IFF_MACVLAN: Macvlan device
1505  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1506  *	underlying stacked devices
1507  * @IFF_L3MDEV_MASTER: device is an L3 master device
1508  * @IFF_NO_QUEUE: device can run without qdisc attached
1509  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1510  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1511  * @IFF_TEAM: device is a team device
1512  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1513  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1514  *	entity (i.e. the master device for bridged veth)
1515  * @IFF_MACSEC: device is a MACsec device
1516  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1517  * @IFF_FAILOVER: device is a failover master device
1518  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1519  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1520  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1521  */
1522 enum netdev_priv_flags {
1523 	IFF_802_1Q_VLAN			= 1<<0,
1524 	IFF_EBRIDGE			= 1<<1,
1525 	IFF_BONDING			= 1<<2,
1526 	IFF_ISATAP			= 1<<3,
1527 	IFF_WAN_HDLC			= 1<<4,
1528 	IFF_XMIT_DST_RELEASE		= 1<<5,
1529 	IFF_DONT_BRIDGE			= 1<<6,
1530 	IFF_DISABLE_NETPOLL		= 1<<7,
1531 	IFF_MACVLAN_PORT		= 1<<8,
1532 	IFF_BRIDGE_PORT			= 1<<9,
1533 	IFF_OVS_DATAPATH		= 1<<10,
1534 	IFF_TX_SKB_SHARING		= 1<<11,
1535 	IFF_UNICAST_FLT			= 1<<12,
1536 	IFF_TEAM_PORT			= 1<<13,
1537 	IFF_SUPP_NOFCS			= 1<<14,
1538 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1539 	IFF_MACVLAN			= 1<<16,
1540 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1541 	IFF_L3MDEV_MASTER		= 1<<18,
1542 	IFF_NO_QUEUE			= 1<<19,
1543 	IFF_OPENVSWITCH			= 1<<20,
1544 	IFF_L3MDEV_SLAVE		= 1<<21,
1545 	IFF_TEAM			= 1<<22,
1546 	IFF_RXFH_CONFIGURED		= 1<<23,
1547 	IFF_PHONY_HEADROOM		= 1<<24,
1548 	IFF_MACSEC			= 1<<25,
1549 	IFF_NO_RX_HANDLER		= 1<<26,
1550 	IFF_FAILOVER			= 1<<27,
1551 	IFF_FAILOVER_SLAVE		= 1<<28,
1552 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1553 	IFF_LIVE_RENAME_OK		= 1<<30,
1554 };
1555 
1556 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1557 #define IFF_EBRIDGE			IFF_EBRIDGE
1558 #define IFF_BONDING			IFF_BONDING
1559 #define IFF_ISATAP			IFF_ISATAP
1560 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1561 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1562 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1563 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1564 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1565 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1566 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1567 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1568 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1569 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1570 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1571 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1572 #define IFF_MACVLAN			IFF_MACVLAN
1573 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1574 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1575 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1576 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1577 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1578 #define IFF_TEAM			IFF_TEAM
1579 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1580 #define IFF_MACSEC			IFF_MACSEC
1581 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1582 #define IFF_FAILOVER			IFF_FAILOVER
1583 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1584 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1585 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1586 
1587 /* Specifies the type of the struct net_device::ml_priv pointer */
1588 enum netdev_ml_priv_type {
1589 	ML_PRIV_NONE,
1590 	ML_PRIV_CAN,
1591 };
1592 
1593 /**
1594  *	struct net_device - The DEVICE structure.
1595  *
1596  *	Actually, this whole structure is a big mistake.  It mixes I/O
1597  *	data with strictly "high-level" data, and it has to know about
1598  *	almost every data structure used in the INET module.
1599  *
1600  *	@name:	This is the first field of the "visible" part of this structure
1601  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1602  *		of the interface.
1603  *
1604  *	@name_node:	Name hashlist node
1605  *	@ifalias:	SNMP alias
1606  *	@mem_end:	Shared memory end
1607  *	@mem_start:	Shared memory start
1608  *	@base_addr:	Device I/O address
1609  *	@irq:		Device IRQ number
1610  *
1611  *	@state:		Generic network queuing layer state, see netdev_state_t
1612  *	@dev_list:	The global list of network devices
1613  *	@napi_list:	List entry used for polling NAPI devices
1614  *	@unreg_list:	List entry  when we are unregistering the
1615  *			device; see the function unregister_netdev
1616  *	@close_list:	List entry used when we are closing the device
1617  *	@ptype_all:     Device-specific packet handlers for all protocols
1618  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1619  *
1620  *	@adj_list:	Directly linked devices, like slaves for bonding
1621  *	@features:	Currently active device features
1622  *	@hw_features:	User-changeable features
1623  *
1624  *	@wanted_features:	User-requested features
1625  *	@vlan_features:		Mask of features inheritable by VLAN devices
1626  *
1627  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1628  *				This field indicates what encapsulation
1629  *				offloads the hardware is capable of doing,
1630  *				and drivers will need to set them appropriately.
1631  *
1632  *	@mpls_features:	Mask of features inheritable by MPLS
1633  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1634  *
1635  *	@ifindex:	interface index
1636  *	@group:		The group the device belongs to
1637  *
1638  *	@stats:		Statistics struct, which was left as a legacy, use
1639  *			rtnl_link_stats64 instead
1640  *
1641  *	@rx_dropped:	Dropped packets by core network,
1642  *			do not use this in drivers
1643  *	@tx_dropped:	Dropped packets by core network,
1644  *			do not use this in drivers
1645  *	@rx_nohandler:	nohandler dropped packets by core network on
1646  *			inactive devices, do not use this in drivers
1647  *	@carrier_up_count:	Number of times the carrier has been up
1648  *	@carrier_down_count:	Number of times the carrier has been down
1649  *
1650  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1651  *				instead of ioctl,
1652  *				see <net/iw_handler.h> for details.
1653  *	@wireless_data:	Instance data managed by the core of wireless extensions
1654  *
1655  *	@netdev_ops:	Includes several pointers to callbacks,
1656  *			if one wants to override the ndo_*() functions
1657  *	@ethtool_ops:	Management operations
1658  *	@l3mdev_ops:	Layer 3 master device operations
1659  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1660  *			discovery handling. Necessary for e.g. 6LoWPAN.
1661  *	@xfrmdev_ops:	Transformation offload operations
1662  *	@tlsdev_ops:	Transport Layer Security offload operations
1663  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1664  *			of Layer 2 headers.
1665  *
1666  *	@flags:		Interface flags (a la BSD)
1667  *	@priv_flags:	Like 'flags' but invisible to userspace,
1668  *			see if.h for the definitions
1669  *	@gflags:	Global flags ( kept as legacy )
1670  *	@padded:	How much padding added by alloc_netdev()
1671  *	@operstate:	RFC2863 operstate
1672  *	@link_mode:	Mapping policy to operstate
1673  *	@if_port:	Selectable AUI, TP, ...
1674  *	@dma:		DMA channel
1675  *	@mtu:		Interface MTU value
1676  *	@min_mtu:	Interface Minimum MTU value
1677  *	@max_mtu:	Interface Maximum MTU value
1678  *	@type:		Interface hardware type
1679  *	@hard_header_len: Maximum hardware header length.
1680  *	@min_header_len:  Minimum hardware header length
1681  *
1682  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1683  *			  cases can this be guaranteed
1684  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1685  *			  cases can this be guaranteed. Some cases also use
1686  *			  LL_MAX_HEADER instead to allocate the skb
1687  *
1688  *	interface address info:
1689  *
1690  * 	@perm_addr:		Permanent hw address
1691  * 	@addr_assign_type:	Hw address assignment type
1692  * 	@addr_len:		Hardware address length
1693  *	@upper_level:		Maximum depth level of upper devices.
1694  *	@lower_level:		Maximum depth level of lower devices.
1695  *	@neigh_priv_len:	Used in neigh_alloc()
1696  * 	@dev_id:		Used to differentiate devices that share
1697  * 				the same link layer address
1698  * 	@dev_port:		Used to differentiate devices that share
1699  * 				the same function
1700  *	@addr_list_lock:	XXX: need comments on this one
1701  *	@name_assign_type:	network interface name assignment type
1702  *	@uc_promisc:		Counter that indicates promiscuous mode
1703  *				has been enabled due to the need to listen to
1704  *				additional unicast addresses in a device that
1705  *				does not implement ndo_set_rx_mode()
1706  *	@uc:			unicast mac addresses
1707  *	@mc:			multicast mac addresses
1708  *	@dev_addrs:		list of device hw addresses
1709  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1710  *	@promiscuity:		Number of times the NIC is told to work in
1711  *				promiscuous mode; if it becomes 0 the NIC will
1712  *				exit promiscuous mode
1713  *	@allmulti:		Counter, enables or disables allmulticast mode
1714  *
1715  *	@vlan_info:	VLAN info
1716  *	@dsa_ptr:	dsa specific data
1717  *	@tipc_ptr:	TIPC specific data
1718  *	@atalk_ptr:	AppleTalk link
1719  *	@ip_ptr:	IPv4 specific data
1720  *	@dn_ptr:	DECnet specific data
1721  *	@ip6_ptr:	IPv6 specific data
1722  *	@ax25_ptr:	AX.25 specific data
1723  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1724  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1725  *			 device struct
1726  *	@mpls_ptr:	mpls_dev struct pointer
1727  *
1728  *	@dev_addr:	Hw address (before bcast,
1729  *			because most packets are unicast)
1730  *
1731  *	@_rx:			Array of RX queues
1732  *	@num_rx_queues:		Number of RX queues
1733  *				allocated at register_netdev() time
1734  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1735  *	@xdp_prog:		XDP sockets filter program pointer
1736  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1737  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1738  *				allow to avoid NIC hard IRQ, on busy queues.
1739  *
1740  *	@rx_handler:		handler for received packets
1741  *	@rx_handler_data: 	XXX: need comments on this one
1742  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1743  *				ingress processing
1744  *	@ingress_queue:		XXX: need comments on this one
1745  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1746  *	@broadcast:		hw bcast address
1747  *
1748  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1749  *			indexed by RX queue number. Assigned by driver.
1750  *			This must only be set if the ndo_rx_flow_steer
1751  *			operation is defined
1752  *	@index_hlist:		Device index hash chain
1753  *
1754  *	@_tx:			Array of TX queues
1755  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1756  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1757  *	@qdisc:			Root qdisc from userspace point of view
1758  *	@tx_queue_len:		Max frames per queue allowed
1759  *	@tx_global_lock: 	XXX: need comments on this one
1760  *	@xdp_bulkq:		XDP device bulk queue
1761  *	@xps_cpus_map:		all CPUs map for XPS device
1762  *	@xps_rxqs_map:		all RXQs map for XPS device
1763  *
1764  *	@xps_maps:	XXX: need comments on this one
1765  *	@miniq_egress:		clsact qdisc specific data for
1766  *				egress processing
1767  *	@qdisc_hash:		qdisc hash table
1768  *	@watchdog_timeo:	Represents the timeout that is used by
1769  *				the watchdog (see dev_watchdog())
1770  *	@watchdog_timer:	List of timers
1771  *
1772  *	@proto_down_reason:	reason a netdev interface is held down
1773  *	@pcpu_refcnt:		Number of references to this device
1774  *	@todo_list:		Delayed register/unregister
1775  *	@link_watch_list:	XXX: need comments on this one
1776  *
1777  *	@reg_state:		Register/unregister state machine
1778  *	@dismantle:		Device is going to be freed
1779  *	@rtnl_link_state:	This enum represents the phases of creating
1780  *				a new link
1781  *
1782  *	@needs_free_netdev:	Should unregister perform free_netdev?
1783  *	@priv_destructor:	Called from unregister
1784  *	@npinfo:		XXX: need comments on this one
1785  * 	@nd_net:		Network namespace this network device is inside
1786  *
1787  * 	@ml_priv:	Mid-layer private
1788  *	@ml_priv_type:  Mid-layer private type
1789  * 	@lstats:	Loopback statistics
1790  * 	@tstats:	Tunnel statistics
1791  * 	@dstats:	Dummy statistics
1792  * 	@vstats:	Virtual ethernet statistics
1793  *
1794  *	@garp_port:	GARP
1795  *	@mrp_port:	MRP
1796  *
1797  *	@dev:		Class/net/name entry
1798  *	@sysfs_groups:	Space for optional device, statistics and wireless
1799  *			sysfs groups
1800  *
1801  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1802  *	@rtnl_link_ops:	Rtnl_link_ops
1803  *
1804  *	@gso_max_size:	Maximum size of generic segmentation offload
1805  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1806  *			NIC for GSO
1807  *
1808  *	@dcbnl_ops:	Data Center Bridging netlink ops
1809  *	@num_tc:	Number of traffic classes in the net device
1810  *	@tc_to_txq:	XXX: need comments on this one
1811  *	@prio_tc_map:	XXX: need comments on this one
1812  *
1813  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1814  *
1815  *	@priomap:	XXX: need comments on this one
1816  *	@phydev:	Physical device may attach itself
1817  *			for hardware timestamping
1818  *	@sfp_bus:	attached &struct sfp_bus structure.
1819  *
1820  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1821  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1822  *
1823  *	@proto_down:	protocol port state information can be sent to the
1824  *			switch driver and used to set the phys state of the
1825  *			switch port.
1826  *
1827  *	@wol_enabled:	Wake-on-LAN is enabled
1828  *
1829  *	@threaded:	napi threaded mode is enabled
1830  *
1831  *	@net_notifier_list:	List of per-net netdev notifier block
1832  *				that follow this device when it is moved
1833  *				to another network namespace.
1834  *
1835  *	@macsec_ops:    MACsec offloading ops
1836  *
1837  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1838  *				offload capabilities of the device
1839  *	@udp_tunnel_nic:	UDP tunnel offload state
1840  *	@xdp_state:		stores info on attached XDP BPF programs
1841  *
1842  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1843  *			dev->addr_list_lock.
1844  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1845  *			keep a list of interfaces to be deleted.
1846  *
1847  *	FIXME: cleanup struct net_device such that network protocol info
1848  *	moves out.
1849  */
1850 
1851 struct net_device {
1852 	char			name[IFNAMSIZ];
1853 	struct netdev_name_node	*name_node;
1854 	struct dev_ifalias	__rcu *ifalias;
1855 	/*
1856 	 *	I/O specific fields
1857 	 *	FIXME: Merge these and struct ifmap into one
1858 	 */
1859 	unsigned long		mem_end;
1860 	unsigned long		mem_start;
1861 	unsigned long		base_addr;
1862 
1863 	/*
1864 	 *	Some hardware also needs these fields (state,dev_list,
1865 	 *	napi_list,unreg_list,close_list) but they are not
1866 	 *	part of the usual set specified in Space.c.
1867 	 */
1868 
1869 	unsigned long		state;
1870 
1871 	struct list_head	dev_list;
1872 	struct list_head	napi_list;
1873 	struct list_head	unreg_list;
1874 	struct list_head	close_list;
1875 	struct list_head	ptype_all;
1876 	struct list_head	ptype_specific;
1877 
1878 	struct {
1879 		struct list_head upper;
1880 		struct list_head lower;
1881 	} adj_list;
1882 
1883 	/* Read-mostly cache-line for fast-path access */
1884 	unsigned int		flags;
1885 	unsigned int		priv_flags;
1886 	const struct net_device_ops *netdev_ops;
1887 	int			ifindex;
1888 	unsigned short		gflags;
1889 	unsigned short		hard_header_len;
1890 
1891 	/* Note : dev->mtu is often read without holding a lock.
1892 	 * Writers usually hold RTNL.
1893 	 * It is recommended to use READ_ONCE() to annotate the reads,
1894 	 * and to use WRITE_ONCE() to annotate the writes.
1895 	 */
1896 	unsigned int		mtu;
1897 	unsigned short		needed_headroom;
1898 	unsigned short		needed_tailroom;
1899 
1900 	netdev_features_t	features;
1901 	netdev_features_t	hw_features;
1902 	netdev_features_t	wanted_features;
1903 	netdev_features_t	vlan_features;
1904 	netdev_features_t	hw_enc_features;
1905 	netdev_features_t	mpls_features;
1906 	netdev_features_t	gso_partial_features;
1907 
1908 	unsigned int		min_mtu;
1909 	unsigned int		max_mtu;
1910 	unsigned short		type;
1911 	unsigned char		min_header_len;
1912 	unsigned char		name_assign_type;
1913 
1914 	int			group;
1915 
1916 	struct net_device_stats	stats; /* not used by modern drivers */
1917 
1918 	atomic_long_t		rx_dropped;
1919 	atomic_long_t		tx_dropped;
1920 	atomic_long_t		rx_nohandler;
1921 
1922 	/* Stats to monitor link on/off, flapping */
1923 	atomic_t		carrier_up_count;
1924 	atomic_t		carrier_down_count;
1925 
1926 #ifdef CONFIG_WIRELESS_EXT
1927 	const struct iw_handler_def *wireless_handlers;
1928 	struct iw_public_data	*wireless_data;
1929 #endif
1930 	const struct ethtool_ops *ethtool_ops;
1931 #ifdef CONFIG_NET_L3_MASTER_DEV
1932 	const struct l3mdev_ops	*l3mdev_ops;
1933 #endif
1934 #if IS_ENABLED(CONFIG_IPV6)
1935 	const struct ndisc_ops *ndisc_ops;
1936 #endif
1937 
1938 #ifdef CONFIG_XFRM_OFFLOAD
1939 	const struct xfrmdev_ops *xfrmdev_ops;
1940 #endif
1941 
1942 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1943 	const struct tlsdev_ops *tlsdev_ops;
1944 #endif
1945 
1946 	const struct header_ops *header_ops;
1947 
1948 	unsigned char		operstate;
1949 	unsigned char		link_mode;
1950 
1951 	unsigned char		if_port;
1952 	unsigned char		dma;
1953 
1954 	/* Interface address info. */
1955 	unsigned char		perm_addr[MAX_ADDR_LEN];
1956 	unsigned char		addr_assign_type;
1957 	unsigned char		addr_len;
1958 	unsigned char		upper_level;
1959 	unsigned char		lower_level;
1960 
1961 	unsigned short		neigh_priv_len;
1962 	unsigned short          dev_id;
1963 	unsigned short          dev_port;
1964 	unsigned short		padded;
1965 
1966 	spinlock_t		addr_list_lock;
1967 	int			irq;
1968 
1969 	struct netdev_hw_addr_list	uc;
1970 	struct netdev_hw_addr_list	mc;
1971 	struct netdev_hw_addr_list	dev_addrs;
1972 
1973 #ifdef CONFIG_SYSFS
1974 	struct kset		*queues_kset;
1975 #endif
1976 #ifdef CONFIG_LOCKDEP
1977 	struct list_head	unlink_list;
1978 #endif
1979 	unsigned int		promiscuity;
1980 	unsigned int		allmulti;
1981 	bool			uc_promisc;
1982 #ifdef CONFIG_LOCKDEP
1983 	unsigned char		nested_level;
1984 #endif
1985 
1986 
1987 	/* Protocol-specific pointers */
1988 
1989 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1990 	struct vlan_info __rcu	*vlan_info;
1991 #endif
1992 #if IS_ENABLED(CONFIG_NET_DSA)
1993 	struct dsa_port		*dsa_ptr;
1994 #endif
1995 #if IS_ENABLED(CONFIG_TIPC)
1996 	struct tipc_bearer __rcu *tipc_ptr;
1997 #endif
1998 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1999 	void 			*atalk_ptr;
2000 #endif
2001 	struct in_device __rcu	*ip_ptr;
2002 #if IS_ENABLED(CONFIG_DECNET)
2003 	struct dn_dev __rcu     *dn_ptr;
2004 #endif
2005 	struct inet6_dev __rcu	*ip6_ptr;
2006 #if IS_ENABLED(CONFIG_AX25)
2007 	void			*ax25_ptr;
2008 #endif
2009 	struct wireless_dev	*ieee80211_ptr;
2010 	struct wpan_dev		*ieee802154_ptr;
2011 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2012 	struct mpls_dev __rcu	*mpls_ptr;
2013 #endif
2014 
2015 /*
2016  * Cache lines mostly used on receive path (including eth_type_trans())
2017  */
2018 	/* Interface address info used in eth_type_trans() */
2019 	unsigned char		*dev_addr;
2020 
2021 	struct netdev_rx_queue	*_rx;
2022 	unsigned int		num_rx_queues;
2023 	unsigned int		real_num_rx_queues;
2024 
2025 	struct bpf_prog __rcu	*xdp_prog;
2026 	unsigned long		gro_flush_timeout;
2027 	int			napi_defer_hard_irqs;
2028 	rx_handler_func_t __rcu	*rx_handler;
2029 	void __rcu		*rx_handler_data;
2030 
2031 #ifdef CONFIG_NET_CLS_ACT
2032 	struct mini_Qdisc __rcu	*miniq_ingress;
2033 #endif
2034 	struct netdev_queue __rcu *ingress_queue;
2035 #ifdef CONFIG_NETFILTER_INGRESS
2036 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2037 #endif
2038 
2039 	unsigned char		broadcast[MAX_ADDR_LEN];
2040 #ifdef CONFIG_RFS_ACCEL
2041 	struct cpu_rmap		*rx_cpu_rmap;
2042 #endif
2043 	struct hlist_node	index_hlist;
2044 
2045 /*
2046  * Cache lines mostly used on transmit path
2047  */
2048 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2049 	unsigned int		num_tx_queues;
2050 	unsigned int		real_num_tx_queues;
2051 	struct Qdisc		*qdisc;
2052 	unsigned int		tx_queue_len;
2053 	spinlock_t		tx_global_lock;
2054 
2055 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2056 
2057 #ifdef CONFIG_XPS
2058 	struct xps_dev_maps __rcu *xps_cpus_map;
2059 	struct xps_dev_maps __rcu *xps_rxqs_map;
2060 #endif
2061 #ifdef CONFIG_NET_CLS_ACT
2062 	struct mini_Qdisc __rcu	*miniq_egress;
2063 #endif
2064 
2065 #ifdef CONFIG_NET_SCHED
2066 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2067 #endif
2068 	/* These may be needed for future network-power-down code. */
2069 	struct timer_list	watchdog_timer;
2070 	int			watchdog_timeo;
2071 
2072 	u32                     proto_down_reason;
2073 
2074 	struct list_head	todo_list;
2075 	int __percpu		*pcpu_refcnt;
2076 
2077 	struct list_head	link_watch_list;
2078 
2079 	enum { NETREG_UNINITIALIZED=0,
2080 	       NETREG_REGISTERED,	/* completed register_netdevice */
2081 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2082 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2083 	       NETREG_RELEASED,		/* called free_netdev */
2084 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2085 	} reg_state:8;
2086 
2087 	bool dismantle;
2088 
2089 	enum {
2090 		RTNL_LINK_INITIALIZED,
2091 		RTNL_LINK_INITIALIZING,
2092 	} rtnl_link_state:16;
2093 
2094 	bool needs_free_netdev;
2095 	void (*priv_destructor)(struct net_device *dev);
2096 
2097 #ifdef CONFIG_NETPOLL
2098 	struct netpoll_info __rcu	*npinfo;
2099 #endif
2100 
2101 	possible_net_t			nd_net;
2102 
2103 	/* mid-layer private */
2104 	void				*ml_priv;
2105 	enum netdev_ml_priv_type	ml_priv_type;
2106 
2107 	union {
2108 		struct pcpu_lstats __percpu		*lstats;
2109 		struct pcpu_sw_netstats __percpu	*tstats;
2110 		struct pcpu_dstats __percpu		*dstats;
2111 	};
2112 
2113 #if IS_ENABLED(CONFIG_GARP)
2114 	struct garp_port __rcu	*garp_port;
2115 #endif
2116 #if IS_ENABLED(CONFIG_MRP)
2117 	struct mrp_port __rcu	*mrp_port;
2118 #endif
2119 
2120 	struct device		dev;
2121 	const struct attribute_group *sysfs_groups[4];
2122 	const struct attribute_group *sysfs_rx_queue_group;
2123 
2124 	const struct rtnl_link_ops *rtnl_link_ops;
2125 
2126 	/* for setting kernel sock attribute on TCP connection setup */
2127 #define GSO_MAX_SIZE		65536
2128 	unsigned int		gso_max_size;
2129 #define GSO_MAX_SEGS		65535
2130 	u16			gso_max_segs;
2131 
2132 #ifdef CONFIG_DCB
2133 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2134 #endif
2135 	s16			num_tc;
2136 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2137 	u8			prio_tc_map[TC_BITMASK + 1];
2138 
2139 #if IS_ENABLED(CONFIG_FCOE)
2140 	unsigned int		fcoe_ddp_xid;
2141 #endif
2142 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2143 	struct netprio_map __rcu *priomap;
2144 #endif
2145 	struct phy_device	*phydev;
2146 	struct sfp_bus		*sfp_bus;
2147 	struct lock_class_key	*qdisc_tx_busylock;
2148 	struct lock_class_key	*qdisc_running_key;
2149 	bool			proto_down;
2150 	unsigned		wol_enabled:1;
2151 	unsigned		threaded:1;
2152 
2153 	struct list_head	net_notifier_list;
2154 
2155 #if IS_ENABLED(CONFIG_MACSEC)
2156 	/* MACsec management functions */
2157 	const struct macsec_ops *macsec_ops;
2158 #endif
2159 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2160 	struct udp_tunnel_nic	*udp_tunnel_nic;
2161 
2162 	/* protected by rtnl_lock */
2163 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2164 };
2165 #define to_net_dev(d) container_of(d, struct net_device, dev)
2166 
2167 static inline bool netif_elide_gro(const struct net_device *dev)
2168 {
2169 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2170 		return true;
2171 	return false;
2172 }
2173 
2174 #define	NETDEV_ALIGN		32
2175 
2176 static inline
2177 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2178 {
2179 	return dev->prio_tc_map[prio & TC_BITMASK];
2180 }
2181 
2182 static inline
2183 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2184 {
2185 	if (tc >= dev->num_tc)
2186 		return -EINVAL;
2187 
2188 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2189 	return 0;
2190 }
2191 
2192 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2193 void netdev_reset_tc(struct net_device *dev);
2194 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2195 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2196 
2197 static inline
2198 int netdev_get_num_tc(struct net_device *dev)
2199 {
2200 	return dev->num_tc;
2201 }
2202 
2203 static inline void net_prefetch(void *p)
2204 {
2205 	prefetch(p);
2206 #if L1_CACHE_BYTES < 128
2207 	prefetch((u8 *)p + L1_CACHE_BYTES);
2208 #endif
2209 }
2210 
2211 static inline void net_prefetchw(void *p)
2212 {
2213 	prefetchw(p);
2214 #if L1_CACHE_BYTES < 128
2215 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2216 #endif
2217 }
2218 
2219 void netdev_unbind_sb_channel(struct net_device *dev,
2220 			      struct net_device *sb_dev);
2221 int netdev_bind_sb_channel_queue(struct net_device *dev,
2222 				 struct net_device *sb_dev,
2223 				 u8 tc, u16 count, u16 offset);
2224 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2225 static inline int netdev_get_sb_channel(struct net_device *dev)
2226 {
2227 	return max_t(int, -dev->num_tc, 0);
2228 }
2229 
2230 static inline
2231 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2232 					 unsigned int index)
2233 {
2234 	return &dev->_tx[index];
2235 }
2236 
2237 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2238 						    const struct sk_buff *skb)
2239 {
2240 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2241 }
2242 
2243 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2244 					    void (*f)(struct net_device *,
2245 						      struct netdev_queue *,
2246 						      void *),
2247 					    void *arg)
2248 {
2249 	unsigned int i;
2250 
2251 	for (i = 0; i < dev->num_tx_queues; i++)
2252 		f(dev, &dev->_tx[i], arg);
2253 }
2254 
2255 #define netdev_lockdep_set_classes(dev)				\
2256 {								\
2257 	static struct lock_class_key qdisc_tx_busylock_key;	\
2258 	static struct lock_class_key qdisc_running_key;		\
2259 	static struct lock_class_key qdisc_xmit_lock_key;	\
2260 	static struct lock_class_key dev_addr_list_lock_key;	\
2261 	unsigned int i;						\
2262 								\
2263 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2264 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2265 	lockdep_set_class(&(dev)->addr_list_lock,		\
2266 			  &dev_addr_list_lock_key);		\
2267 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2268 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2269 				  &qdisc_xmit_lock_key);	\
2270 }
2271 
2272 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2273 		     struct net_device *sb_dev);
2274 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2275 					 struct sk_buff *skb,
2276 					 struct net_device *sb_dev);
2277 
2278 /* returns the headroom that the master device needs to take in account
2279  * when forwarding to this dev
2280  */
2281 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2282 {
2283 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2284 }
2285 
2286 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2287 {
2288 	if (dev->netdev_ops->ndo_set_rx_headroom)
2289 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2290 }
2291 
2292 /* set the device rx headroom to the dev's default */
2293 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2294 {
2295 	netdev_set_rx_headroom(dev, -1);
2296 }
2297 
2298 static inline void *netdev_get_ml_priv(struct net_device *dev,
2299 				       enum netdev_ml_priv_type type)
2300 {
2301 	if (dev->ml_priv_type != type)
2302 		return NULL;
2303 
2304 	return dev->ml_priv;
2305 }
2306 
2307 static inline void netdev_set_ml_priv(struct net_device *dev,
2308 				      void *ml_priv,
2309 				      enum netdev_ml_priv_type type)
2310 {
2311 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2312 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2313 	     dev->ml_priv_type, type);
2314 	WARN(!dev->ml_priv_type && dev->ml_priv,
2315 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2316 
2317 	dev->ml_priv = ml_priv;
2318 	dev->ml_priv_type = type;
2319 }
2320 
2321 /*
2322  * Net namespace inlines
2323  */
2324 static inline
2325 struct net *dev_net(const struct net_device *dev)
2326 {
2327 	return read_pnet(&dev->nd_net);
2328 }
2329 
2330 static inline
2331 void dev_net_set(struct net_device *dev, struct net *net)
2332 {
2333 	write_pnet(&dev->nd_net, net);
2334 }
2335 
2336 /**
2337  *	netdev_priv - access network device private data
2338  *	@dev: network device
2339  *
2340  * Get network device private data
2341  */
2342 static inline void *netdev_priv(const struct net_device *dev)
2343 {
2344 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2345 }
2346 
2347 /* Set the sysfs physical device reference for the network logical device
2348  * if set prior to registration will cause a symlink during initialization.
2349  */
2350 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2351 
2352 /* Set the sysfs device type for the network logical device to allow
2353  * fine-grained identification of different network device types. For
2354  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2355  */
2356 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2357 
2358 /* Default NAPI poll() weight
2359  * Device drivers are strongly advised to not use bigger value
2360  */
2361 #define NAPI_POLL_WEIGHT 64
2362 
2363 /**
2364  *	netif_napi_add - initialize a NAPI context
2365  *	@dev:  network device
2366  *	@napi: NAPI context
2367  *	@poll: polling function
2368  *	@weight: default weight
2369  *
2370  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2371  * *any* of the other NAPI-related functions.
2372  */
2373 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2374 		    int (*poll)(struct napi_struct *, int), int weight);
2375 
2376 /**
2377  *	netif_tx_napi_add - initialize a NAPI context
2378  *	@dev:  network device
2379  *	@napi: NAPI context
2380  *	@poll: polling function
2381  *	@weight: default weight
2382  *
2383  * This variant of netif_napi_add() should be used from drivers using NAPI
2384  * to exclusively poll a TX queue.
2385  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2386  */
2387 static inline void netif_tx_napi_add(struct net_device *dev,
2388 				     struct napi_struct *napi,
2389 				     int (*poll)(struct napi_struct *, int),
2390 				     int weight)
2391 {
2392 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2393 	netif_napi_add(dev, napi, poll, weight);
2394 }
2395 
2396 /**
2397  *  __netif_napi_del - remove a NAPI context
2398  *  @napi: NAPI context
2399  *
2400  * Warning: caller must observe RCU grace period before freeing memory
2401  * containing @napi. Drivers might want to call this helper to combine
2402  * all the needed RCU grace periods into a single one.
2403  */
2404 void __netif_napi_del(struct napi_struct *napi);
2405 
2406 /**
2407  *  netif_napi_del - remove a NAPI context
2408  *  @napi: NAPI context
2409  *
2410  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2411  */
2412 static inline void netif_napi_del(struct napi_struct *napi)
2413 {
2414 	__netif_napi_del(napi);
2415 	synchronize_net();
2416 }
2417 
2418 struct napi_gro_cb {
2419 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2420 	void	*frag0;
2421 
2422 	/* Length of frag0. */
2423 	unsigned int frag0_len;
2424 
2425 	/* This indicates where we are processing relative to skb->data. */
2426 	int	data_offset;
2427 
2428 	/* This is non-zero if the packet cannot be merged with the new skb. */
2429 	u16	flush;
2430 
2431 	/* Save the IP ID here and check when we get to the transport layer */
2432 	u16	flush_id;
2433 
2434 	/* Number of segments aggregated. */
2435 	u16	count;
2436 
2437 	/* Start offset for remote checksum offload */
2438 	u16	gro_remcsum_start;
2439 
2440 	/* jiffies when first packet was created/queued */
2441 	unsigned long age;
2442 
2443 	/* Used in ipv6_gro_receive() and foo-over-udp */
2444 	u16	proto;
2445 
2446 	/* This is non-zero if the packet may be of the same flow. */
2447 	u8	same_flow:1;
2448 
2449 	/* Used in tunnel GRO receive */
2450 	u8	encap_mark:1;
2451 
2452 	/* GRO checksum is valid */
2453 	u8	csum_valid:1;
2454 
2455 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2456 	u8	csum_cnt:3;
2457 
2458 	/* Free the skb? */
2459 	u8	free:2;
2460 #define NAPI_GRO_FREE		  1
2461 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2462 
2463 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2464 	u8	is_ipv6:1;
2465 
2466 	/* Used in GRE, set in fou/gue_gro_receive */
2467 	u8	is_fou:1;
2468 
2469 	/* Used to determine if flush_id can be ignored */
2470 	u8	is_atomic:1;
2471 
2472 	/* Number of gro_receive callbacks this packet already went through */
2473 	u8 recursion_counter:4;
2474 
2475 	/* GRO is done by frag_list pointer chaining. */
2476 	u8	is_flist:1;
2477 
2478 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2479 	__wsum	csum;
2480 
2481 	/* used in skb_gro_receive() slow path */
2482 	struct sk_buff *last;
2483 };
2484 
2485 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2486 
2487 #define GRO_RECURSION_LIMIT 15
2488 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2489 {
2490 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2491 }
2492 
2493 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2494 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2495 					       struct list_head *head,
2496 					       struct sk_buff *skb)
2497 {
2498 	if (unlikely(gro_recursion_inc_test(skb))) {
2499 		NAPI_GRO_CB(skb)->flush |= 1;
2500 		return NULL;
2501 	}
2502 
2503 	return cb(head, skb);
2504 }
2505 
2506 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2507 					    struct sk_buff *);
2508 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2509 						  struct sock *sk,
2510 						  struct list_head *head,
2511 						  struct sk_buff *skb)
2512 {
2513 	if (unlikely(gro_recursion_inc_test(skb))) {
2514 		NAPI_GRO_CB(skb)->flush |= 1;
2515 		return NULL;
2516 	}
2517 
2518 	return cb(sk, head, skb);
2519 }
2520 
2521 struct packet_type {
2522 	__be16			type;	/* This is really htons(ether_type). */
2523 	bool			ignore_outgoing;
2524 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2525 	int			(*func) (struct sk_buff *,
2526 					 struct net_device *,
2527 					 struct packet_type *,
2528 					 struct net_device *);
2529 	void			(*list_func) (struct list_head *,
2530 					      struct packet_type *,
2531 					      struct net_device *);
2532 	bool			(*id_match)(struct packet_type *ptype,
2533 					    struct sock *sk);
2534 	void			*af_packet_priv;
2535 	struct list_head	list;
2536 };
2537 
2538 struct offload_callbacks {
2539 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2540 						netdev_features_t features);
2541 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2542 						struct sk_buff *skb);
2543 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2544 };
2545 
2546 struct packet_offload {
2547 	__be16			 type;	/* This is really htons(ether_type). */
2548 	u16			 priority;
2549 	struct offload_callbacks callbacks;
2550 	struct list_head	 list;
2551 };
2552 
2553 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2554 struct pcpu_sw_netstats {
2555 	u64     rx_packets;
2556 	u64     rx_bytes;
2557 	u64     tx_packets;
2558 	u64     tx_bytes;
2559 	struct u64_stats_sync   syncp;
2560 } __aligned(4 * sizeof(u64));
2561 
2562 struct pcpu_lstats {
2563 	u64_stats_t packets;
2564 	u64_stats_t bytes;
2565 	struct u64_stats_sync syncp;
2566 } __aligned(2 * sizeof(u64));
2567 
2568 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2569 
2570 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2571 {
2572 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2573 
2574 	u64_stats_update_begin(&tstats->syncp);
2575 	tstats->rx_bytes += len;
2576 	tstats->rx_packets++;
2577 	u64_stats_update_end(&tstats->syncp);
2578 }
2579 
2580 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2581 					  unsigned int packets,
2582 					  unsigned int len)
2583 {
2584 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2585 
2586 	u64_stats_update_begin(&tstats->syncp);
2587 	tstats->tx_bytes += len;
2588 	tstats->tx_packets += packets;
2589 	u64_stats_update_end(&tstats->syncp);
2590 }
2591 
2592 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2593 {
2594 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2595 
2596 	u64_stats_update_begin(&lstats->syncp);
2597 	u64_stats_add(&lstats->bytes, len);
2598 	u64_stats_inc(&lstats->packets);
2599 	u64_stats_update_end(&lstats->syncp);
2600 }
2601 
2602 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2603 ({									\
2604 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2605 	if (pcpu_stats)	{						\
2606 		int __cpu;						\
2607 		for_each_possible_cpu(__cpu) {				\
2608 			typeof(type) *stat;				\
2609 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2610 			u64_stats_init(&stat->syncp);			\
2611 		}							\
2612 	}								\
2613 	pcpu_stats;							\
2614 })
2615 
2616 #define netdev_alloc_pcpu_stats(type)					\
2617 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2618 
2619 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2620 ({									\
2621 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2622 	if (pcpu_stats) {						\
2623 		int __cpu;						\
2624 		for_each_possible_cpu(__cpu) {				\
2625 			typeof(type) *stat;				\
2626 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2627 			u64_stats_init(&stat->syncp);			\
2628 		}							\
2629 	}								\
2630 	pcpu_stats;							\
2631 })
2632 
2633 enum netdev_lag_tx_type {
2634 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2635 	NETDEV_LAG_TX_TYPE_RANDOM,
2636 	NETDEV_LAG_TX_TYPE_BROADCAST,
2637 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2638 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2639 	NETDEV_LAG_TX_TYPE_HASH,
2640 };
2641 
2642 enum netdev_lag_hash {
2643 	NETDEV_LAG_HASH_NONE,
2644 	NETDEV_LAG_HASH_L2,
2645 	NETDEV_LAG_HASH_L34,
2646 	NETDEV_LAG_HASH_L23,
2647 	NETDEV_LAG_HASH_E23,
2648 	NETDEV_LAG_HASH_E34,
2649 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2650 	NETDEV_LAG_HASH_UNKNOWN,
2651 };
2652 
2653 struct netdev_lag_upper_info {
2654 	enum netdev_lag_tx_type tx_type;
2655 	enum netdev_lag_hash hash_type;
2656 };
2657 
2658 struct netdev_lag_lower_state_info {
2659 	u8 link_up : 1,
2660 	   tx_enabled : 1;
2661 };
2662 
2663 #include <linux/notifier.h>
2664 
2665 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2666  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2667  * adding new types.
2668  */
2669 enum netdev_cmd {
2670 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2671 	NETDEV_DOWN,
2672 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2673 				   detected a hardware crash and restarted
2674 				   - we can use this eg to kick tcp sessions
2675 				   once done */
2676 	NETDEV_CHANGE,		/* Notify device state change */
2677 	NETDEV_REGISTER,
2678 	NETDEV_UNREGISTER,
2679 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2680 	NETDEV_CHANGEADDR,	/* notify after the address change */
2681 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2682 	NETDEV_GOING_DOWN,
2683 	NETDEV_CHANGENAME,
2684 	NETDEV_FEAT_CHANGE,
2685 	NETDEV_BONDING_FAILOVER,
2686 	NETDEV_PRE_UP,
2687 	NETDEV_PRE_TYPE_CHANGE,
2688 	NETDEV_POST_TYPE_CHANGE,
2689 	NETDEV_POST_INIT,
2690 	NETDEV_RELEASE,
2691 	NETDEV_NOTIFY_PEERS,
2692 	NETDEV_JOIN,
2693 	NETDEV_CHANGEUPPER,
2694 	NETDEV_RESEND_IGMP,
2695 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2696 	NETDEV_CHANGEINFODATA,
2697 	NETDEV_BONDING_INFO,
2698 	NETDEV_PRECHANGEUPPER,
2699 	NETDEV_CHANGELOWERSTATE,
2700 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2701 	NETDEV_UDP_TUNNEL_DROP_INFO,
2702 	NETDEV_CHANGE_TX_QUEUE_LEN,
2703 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2704 	NETDEV_CVLAN_FILTER_DROP_INFO,
2705 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2706 	NETDEV_SVLAN_FILTER_DROP_INFO,
2707 };
2708 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2709 
2710 int register_netdevice_notifier(struct notifier_block *nb);
2711 int unregister_netdevice_notifier(struct notifier_block *nb);
2712 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2713 int unregister_netdevice_notifier_net(struct net *net,
2714 				      struct notifier_block *nb);
2715 int register_netdevice_notifier_dev_net(struct net_device *dev,
2716 					struct notifier_block *nb,
2717 					struct netdev_net_notifier *nn);
2718 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2719 					  struct notifier_block *nb,
2720 					  struct netdev_net_notifier *nn);
2721 
2722 struct netdev_notifier_info {
2723 	struct net_device	*dev;
2724 	struct netlink_ext_ack	*extack;
2725 };
2726 
2727 struct netdev_notifier_info_ext {
2728 	struct netdev_notifier_info info; /* must be first */
2729 	union {
2730 		u32 mtu;
2731 	} ext;
2732 };
2733 
2734 struct netdev_notifier_change_info {
2735 	struct netdev_notifier_info info; /* must be first */
2736 	unsigned int flags_changed;
2737 };
2738 
2739 struct netdev_notifier_changeupper_info {
2740 	struct netdev_notifier_info info; /* must be first */
2741 	struct net_device *upper_dev; /* new upper dev */
2742 	bool master; /* is upper dev master */
2743 	bool linking; /* is the notification for link or unlink */
2744 	void *upper_info; /* upper dev info */
2745 };
2746 
2747 struct netdev_notifier_changelowerstate_info {
2748 	struct netdev_notifier_info info; /* must be first */
2749 	void *lower_state_info; /* is lower dev state */
2750 };
2751 
2752 struct netdev_notifier_pre_changeaddr_info {
2753 	struct netdev_notifier_info info; /* must be first */
2754 	const unsigned char *dev_addr;
2755 };
2756 
2757 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2758 					     struct net_device *dev)
2759 {
2760 	info->dev = dev;
2761 	info->extack = NULL;
2762 }
2763 
2764 static inline struct net_device *
2765 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2766 {
2767 	return info->dev;
2768 }
2769 
2770 static inline struct netlink_ext_ack *
2771 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2772 {
2773 	return info->extack;
2774 }
2775 
2776 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2777 
2778 
2779 extern rwlock_t				dev_base_lock;		/* Device list lock */
2780 
2781 #define for_each_netdev(net, d)		\
2782 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2783 #define for_each_netdev_reverse(net, d)	\
2784 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2785 #define for_each_netdev_rcu(net, d)		\
2786 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2787 #define for_each_netdev_safe(net, d, n)	\
2788 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2789 #define for_each_netdev_continue(net, d)		\
2790 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2791 #define for_each_netdev_continue_reverse(net, d)		\
2792 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2793 						     dev_list)
2794 #define for_each_netdev_continue_rcu(net, d)		\
2795 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2796 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2797 		for_each_netdev_rcu(&init_net, slave)	\
2798 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2799 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2800 
2801 static inline struct net_device *next_net_device(struct net_device *dev)
2802 {
2803 	struct list_head *lh;
2804 	struct net *net;
2805 
2806 	net = dev_net(dev);
2807 	lh = dev->dev_list.next;
2808 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2809 }
2810 
2811 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2812 {
2813 	struct list_head *lh;
2814 	struct net *net;
2815 
2816 	net = dev_net(dev);
2817 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2818 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2819 }
2820 
2821 static inline struct net_device *first_net_device(struct net *net)
2822 {
2823 	return list_empty(&net->dev_base_head) ? NULL :
2824 		net_device_entry(net->dev_base_head.next);
2825 }
2826 
2827 static inline struct net_device *first_net_device_rcu(struct net *net)
2828 {
2829 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2830 
2831 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2832 }
2833 
2834 int netdev_boot_setup_check(struct net_device *dev);
2835 unsigned long netdev_boot_base(const char *prefix, int unit);
2836 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2837 				       const char *hwaddr);
2838 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2839 void dev_add_pack(struct packet_type *pt);
2840 void dev_remove_pack(struct packet_type *pt);
2841 void __dev_remove_pack(struct packet_type *pt);
2842 void dev_add_offload(struct packet_offload *po);
2843 void dev_remove_offload(struct packet_offload *po);
2844 
2845 int dev_get_iflink(const struct net_device *dev);
2846 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2847 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2848 				      unsigned short mask);
2849 struct net_device *dev_get_by_name(struct net *net, const char *name);
2850 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2851 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2852 int dev_alloc_name(struct net_device *dev, const char *name);
2853 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2854 void dev_close(struct net_device *dev);
2855 void dev_close_many(struct list_head *head, bool unlink);
2856 void dev_disable_lro(struct net_device *dev);
2857 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2858 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2859 		     struct net_device *sb_dev);
2860 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2861 		       struct net_device *sb_dev);
2862 
2863 int dev_queue_xmit(struct sk_buff *skb);
2864 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2865 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2866 
2867 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2868 {
2869 	int ret;
2870 
2871 	ret = __dev_direct_xmit(skb, queue_id);
2872 	if (!dev_xmit_complete(ret))
2873 		kfree_skb(skb);
2874 	return ret;
2875 }
2876 
2877 int register_netdevice(struct net_device *dev);
2878 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2879 void unregister_netdevice_many(struct list_head *head);
2880 static inline void unregister_netdevice(struct net_device *dev)
2881 {
2882 	unregister_netdevice_queue(dev, NULL);
2883 }
2884 
2885 int netdev_refcnt_read(const struct net_device *dev);
2886 void free_netdev(struct net_device *dev);
2887 void netdev_freemem(struct net_device *dev);
2888 int init_dummy_netdev(struct net_device *dev);
2889 
2890 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2891 					 struct sk_buff *skb,
2892 					 bool all_slaves);
2893 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2894 					    struct sock *sk);
2895 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2896 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2897 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2898 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2899 int netdev_get_name(struct net *net, char *name, int ifindex);
2900 int dev_restart(struct net_device *dev);
2901 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2902 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2903 
2904 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2905 {
2906 	return NAPI_GRO_CB(skb)->data_offset;
2907 }
2908 
2909 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2910 {
2911 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2912 }
2913 
2914 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2915 {
2916 	NAPI_GRO_CB(skb)->data_offset += len;
2917 }
2918 
2919 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2920 					unsigned int offset)
2921 {
2922 	return NAPI_GRO_CB(skb)->frag0 + offset;
2923 }
2924 
2925 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2926 {
2927 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2928 }
2929 
2930 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2931 {
2932 	NAPI_GRO_CB(skb)->frag0 = NULL;
2933 	NAPI_GRO_CB(skb)->frag0_len = 0;
2934 }
2935 
2936 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2937 					unsigned int offset)
2938 {
2939 	if (!pskb_may_pull(skb, hlen))
2940 		return NULL;
2941 
2942 	skb_gro_frag0_invalidate(skb);
2943 	return skb->data + offset;
2944 }
2945 
2946 static inline void *skb_gro_network_header(struct sk_buff *skb)
2947 {
2948 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2949 	       skb_network_offset(skb);
2950 }
2951 
2952 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2953 					const void *start, unsigned int len)
2954 {
2955 	if (NAPI_GRO_CB(skb)->csum_valid)
2956 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2957 						  csum_partial(start, len, 0));
2958 }
2959 
2960 /* GRO checksum functions. These are logical equivalents of the normal
2961  * checksum functions (in skbuff.h) except that they operate on the GRO
2962  * offsets and fields in sk_buff.
2963  */
2964 
2965 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2966 
2967 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2968 {
2969 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2970 }
2971 
2972 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2973 						      bool zero_okay,
2974 						      __sum16 check)
2975 {
2976 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2977 		skb_checksum_start_offset(skb) <
2978 		 skb_gro_offset(skb)) &&
2979 		!skb_at_gro_remcsum_start(skb) &&
2980 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2981 		(!zero_okay || check));
2982 }
2983 
2984 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2985 							   __wsum psum)
2986 {
2987 	if (NAPI_GRO_CB(skb)->csum_valid &&
2988 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2989 		return 0;
2990 
2991 	NAPI_GRO_CB(skb)->csum = psum;
2992 
2993 	return __skb_gro_checksum_complete(skb);
2994 }
2995 
2996 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2997 {
2998 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2999 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3000 		NAPI_GRO_CB(skb)->csum_cnt--;
3001 	} else {
3002 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3003 		 * verified a new top level checksum or an encapsulated one
3004 		 * during GRO. This saves work if we fallback to normal path.
3005 		 */
3006 		__skb_incr_checksum_unnecessary(skb);
3007 	}
3008 }
3009 
3010 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3011 				    compute_pseudo)			\
3012 ({									\
3013 	__sum16 __ret = 0;						\
3014 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3015 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3016 				compute_pseudo(skb, proto));		\
3017 	if (!__ret)							\
3018 		skb_gro_incr_csum_unnecessary(skb);			\
3019 	__ret;								\
3020 })
3021 
3022 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3023 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3024 
3025 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3026 					     compute_pseudo)		\
3027 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3028 
3029 #define skb_gro_checksum_simple_validate(skb)				\
3030 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3031 
3032 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3033 {
3034 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3035 		!NAPI_GRO_CB(skb)->csum_valid);
3036 }
3037 
3038 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3039 					      __wsum pseudo)
3040 {
3041 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3042 	NAPI_GRO_CB(skb)->csum_valid = 1;
3043 }
3044 
3045 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3046 do {									\
3047 	if (__skb_gro_checksum_convert_check(skb))			\
3048 		__skb_gro_checksum_convert(skb, 			\
3049 					   compute_pseudo(skb, proto));	\
3050 } while (0)
3051 
3052 struct gro_remcsum {
3053 	int offset;
3054 	__wsum delta;
3055 };
3056 
3057 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3058 {
3059 	grc->offset = 0;
3060 	grc->delta = 0;
3061 }
3062 
3063 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3064 					    unsigned int off, size_t hdrlen,
3065 					    int start, int offset,
3066 					    struct gro_remcsum *grc,
3067 					    bool nopartial)
3068 {
3069 	__wsum delta;
3070 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3071 
3072 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3073 
3074 	if (!nopartial) {
3075 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3076 		return ptr;
3077 	}
3078 
3079 	ptr = skb_gro_header_fast(skb, off);
3080 	if (skb_gro_header_hard(skb, off + plen)) {
3081 		ptr = skb_gro_header_slow(skb, off + plen, off);
3082 		if (!ptr)
3083 			return NULL;
3084 	}
3085 
3086 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3087 			       start, offset);
3088 
3089 	/* Adjust skb->csum since we changed the packet */
3090 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3091 
3092 	grc->offset = off + hdrlen + offset;
3093 	grc->delta = delta;
3094 
3095 	return ptr;
3096 }
3097 
3098 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3099 					   struct gro_remcsum *grc)
3100 {
3101 	void *ptr;
3102 	size_t plen = grc->offset + sizeof(u16);
3103 
3104 	if (!grc->delta)
3105 		return;
3106 
3107 	ptr = skb_gro_header_fast(skb, grc->offset);
3108 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3109 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3110 		if (!ptr)
3111 			return;
3112 	}
3113 
3114 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3115 }
3116 
3117 #ifdef CONFIG_XFRM_OFFLOAD
3118 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3119 {
3120 	if (PTR_ERR(pp) != -EINPROGRESS)
3121 		NAPI_GRO_CB(skb)->flush |= flush;
3122 }
3123 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3124 					       struct sk_buff *pp,
3125 					       int flush,
3126 					       struct gro_remcsum *grc)
3127 {
3128 	if (PTR_ERR(pp) != -EINPROGRESS) {
3129 		NAPI_GRO_CB(skb)->flush |= flush;
3130 		skb_gro_remcsum_cleanup(skb, grc);
3131 		skb->remcsum_offload = 0;
3132 	}
3133 }
3134 #else
3135 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3136 {
3137 	NAPI_GRO_CB(skb)->flush |= flush;
3138 }
3139 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3140 					       struct sk_buff *pp,
3141 					       int flush,
3142 					       struct gro_remcsum *grc)
3143 {
3144 	NAPI_GRO_CB(skb)->flush |= flush;
3145 	skb_gro_remcsum_cleanup(skb, grc);
3146 	skb->remcsum_offload = 0;
3147 }
3148 #endif
3149 
3150 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3151 				  unsigned short type,
3152 				  const void *daddr, const void *saddr,
3153 				  unsigned int len)
3154 {
3155 	if (!dev->header_ops || !dev->header_ops->create)
3156 		return 0;
3157 
3158 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3159 }
3160 
3161 static inline int dev_parse_header(const struct sk_buff *skb,
3162 				   unsigned char *haddr)
3163 {
3164 	const struct net_device *dev = skb->dev;
3165 
3166 	if (!dev->header_ops || !dev->header_ops->parse)
3167 		return 0;
3168 	return dev->header_ops->parse(skb, haddr);
3169 }
3170 
3171 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3172 {
3173 	const struct net_device *dev = skb->dev;
3174 
3175 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3176 		return 0;
3177 	return dev->header_ops->parse_protocol(skb);
3178 }
3179 
3180 /* ll_header must have at least hard_header_len allocated */
3181 static inline bool dev_validate_header(const struct net_device *dev,
3182 				       char *ll_header, int len)
3183 {
3184 	if (likely(len >= dev->hard_header_len))
3185 		return true;
3186 	if (len < dev->min_header_len)
3187 		return false;
3188 
3189 	if (capable(CAP_SYS_RAWIO)) {
3190 		memset(ll_header + len, 0, dev->hard_header_len - len);
3191 		return true;
3192 	}
3193 
3194 	if (dev->header_ops && dev->header_ops->validate)
3195 		return dev->header_ops->validate(ll_header, len);
3196 
3197 	return false;
3198 }
3199 
3200 static inline bool dev_has_header(const struct net_device *dev)
3201 {
3202 	return dev->header_ops && dev->header_ops->create;
3203 }
3204 
3205 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3206 			   int len, int size);
3207 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3208 static inline int unregister_gifconf(unsigned int family)
3209 {
3210 	return register_gifconf(family, NULL);
3211 }
3212 
3213 #ifdef CONFIG_NET_FLOW_LIMIT
3214 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3215 struct sd_flow_limit {
3216 	u64			count;
3217 	unsigned int		num_buckets;
3218 	unsigned int		history_head;
3219 	u16			history[FLOW_LIMIT_HISTORY];
3220 	u8			buckets[];
3221 };
3222 
3223 extern int netdev_flow_limit_table_len;
3224 #endif /* CONFIG_NET_FLOW_LIMIT */
3225 
3226 /*
3227  * Incoming packets are placed on per-CPU queues
3228  */
3229 struct softnet_data {
3230 	struct list_head	poll_list;
3231 	struct sk_buff_head	process_queue;
3232 
3233 	/* stats */
3234 	unsigned int		processed;
3235 	unsigned int		time_squeeze;
3236 	unsigned int		received_rps;
3237 #ifdef CONFIG_RPS
3238 	struct softnet_data	*rps_ipi_list;
3239 #endif
3240 #ifdef CONFIG_NET_FLOW_LIMIT
3241 	struct sd_flow_limit __rcu *flow_limit;
3242 #endif
3243 	struct Qdisc		*output_queue;
3244 	struct Qdisc		**output_queue_tailp;
3245 	struct sk_buff		*completion_queue;
3246 #ifdef CONFIG_XFRM_OFFLOAD
3247 	struct sk_buff_head	xfrm_backlog;
3248 #endif
3249 	/* written and read only by owning cpu: */
3250 	struct {
3251 		u16 recursion;
3252 		u8  more;
3253 	} xmit;
3254 #ifdef CONFIG_RPS
3255 	/* input_queue_head should be written by cpu owning this struct,
3256 	 * and only read by other cpus. Worth using a cache line.
3257 	 */
3258 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3259 
3260 	/* Elements below can be accessed between CPUs for RPS/RFS */
3261 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3262 	struct softnet_data	*rps_ipi_next;
3263 	unsigned int		cpu;
3264 	unsigned int		input_queue_tail;
3265 #endif
3266 	unsigned int		dropped;
3267 	struct sk_buff_head	input_pkt_queue;
3268 	struct napi_struct	backlog;
3269 
3270 };
3271 
3272 static inline void input_queue_head_incr(struct softnet_data *sd)
3273 {
3274 #ifdef CONFIG_RPS
3275 	sd->input_queue_head++;
3276 #endif
3277 }
3278 
3279 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3280 					      unsigned int *qtail)
3281 {
3282 #ifdef CONFIG_RPS
3283 	*qtail = ++sd->input_queue_tail;
3284 #endif
3285 }
3286 
3287 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3288 
3289 static inline int dev_recursion_level(void)
3290 {
3291 	return this_cpu_read(softnet_data.xmit.recursion);
3292 }
3293 
3294 #define XMIT_RECURSION_LIMIT	8
3295 static inline bool dev_xmit_recursion(void)
3296 {
3297 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3298 			XMIT_RECURSION_LIMIT);
3299 }
3300 
3301 static inline void dev_xmit_recursion_inc(void)
3302 {
3303 	__this_cpu_inc(softnet_data.xmit.recursion);
3304 }
3305 
3306 static inline void dev_xmit_recursion_dec(void)
3307 {
3308 	__this_cpu_dec(softnet_data.xmit.recursion);
3309 }
3310 
3311 void __netif_schedule(struct Qdisc *q);
3312 void netif_schedule_queue(struct netdev_queue *txq);
3313 
3314 static inline void netif_tx_schedule_all(struct net_device *dev)
3315 {
3316 	unsigned int i;
3317 
3318 	for (i = 0; i < dev->num_tx_queues; i++)
3319 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3320 }
3321 
3322 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3323 {
3324 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3325 }
3326 
3327 /**
3328  *	netif_start_queue - allow transmit
3329  *	@dev: network device
3330  *
3331  *	Allow upper layers to call the device hard_start_xmit routine.
3332  */
3333 static inline void netif_start_queue(struct net_device *dev)
3334 {
3335 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3336 }
3337 
3338 static inline void netif_tx_start_all_queues(struct net_device *dev)
3339 {
3340 	unsigned int i;
3341 
3342 	for (i = 0; i < dev->num_tx_queues; i++) {
3343 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3344 		netif_tx_start_queue(txq);
3345 	}
3346 }
3347 
3348 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3349 
3350 /**
3351  *	netif_wake_queue - restart transmit
3352  *	@dev: network device
3353  *
3354  *	Allow upper layers to call the device hard_start_xmit routine.
3355  *	Used for flow control when transmit resources are available.
3356  */
3357 static inline void netif_wake_queue(struct net_device *dev)
3358 {
3359 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3360 }
3361 
3362 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3363 {
3364 	unsigned int i;
3365 
3366 	for (i = 0; i < dev->num_tx_queues; i++) {
3367 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3368 		netif_tx_wake_queue(txq);
3369 	}
3370 }
3371 
3372 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3373 {
3374 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3375 }
3376 
3377 /**
3378  *	netif_stop_queue - stop transmitted packets
3379  *	@dev: network device
3380  *
3381  *	Stop upper layers calling the device hard_start_xmit routine.
3382  *	Used for flow control when transmit resources are unavailable.
3383  */
3384 static inline void netif_stop_queue(struct net_device *dev)
3385 {
3386 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3387 }
3388 
3389 void netif_tx_stop_all_queues(struct net_device *dev);
3390 
3391 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3392 {
3393 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3394 }
3395 
3396 /**
3397  *	netif_queue_stopped - test if transmit queue is flowblocked
3398  *	@dev: network device
3399  *
3400  *	Test if transmit queue on device is currently unable to send.
3401  */
3402 static inline bool netif_queue_stopped(const struct net_device *dev)
3403 {
3404 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3405 }
3406 
3407 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3408 {
3409 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3410 }
3411 
3412 static inline bool
3413 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3414 {
3415 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3416 }
3417 
3418 static inline bool
3419 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3420 {
3421 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3422 }
3423 
3424 /**
3425  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3426  *	@dev_queue: pointer to transmit queue
3427  *
3428  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3429  * to give appropriate hint to the CPU.
3430  */
3431 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3432 {
3433 #ifdef CONFIG_BQL
3434 	prefetchw(&dev_queue->dql.num_queued);
3435 #endif
3436 }
3437 
3438 /**
3439  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3440  *	@dev_queue: pointer to transmit queue
3441  *
3442  * BQL enabled drivers might use this helper in their TX completion path,
3443  * to give appropriate hint to the CPU.
3444  */
3445 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3446 {
3447 #ifdef CONFIG_BQL
3448 	prefetchw(&dev_queue->dql.limit);
3449 #endif
3450 }
3451 
3452 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3453 					unsigned int bytes)
3454 {
3455 #ifdef CONFIG_BQL
3456 	dql_queued(&dev_queue->dql, bytes);
3457 
3458 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3459 		return;
3460 
3461 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3462 
3463 	/*
3464 	 * The XOFF flag must be set before checking the dql_avail below,
3465 	 * because in netdev_tx_completed_queue we update the dql_completed
3466 	 * before checking the XOFF flag.
3467 	 */
3468 	smp_mb();
3469 
3470 	/* check again in case another CPU has just made room avail */
3471 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3472 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3473 #endif
3474 }
3475 
3476 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3477  * that they should not test BQL status themselves.
3478  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3479  * skb of a batch.
3480  * Returns true if the doorbell must be used to kick the NIC.
3481  */
3482 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3483 					  unsigned int bytes,
3484 					  bool xmit_more)
3485 {
3486 	if (xmit_more) {
3487 #ifdef CONFIG_BQL
3488 		dql_queued(&dev_queue->dql, bytes);
3489 #endif
3490 		return netif_tx_queue_stopped(dev_queue);
3491 	}
3492 	netdev_tx_sent_queue(dev_queue, bytes);
3493 	return true;
3494 }
3495 
3496 /**
3497  * 	netdev_sent_queue - report the number of bytes queued to hardware
3498  * 	@dev: network device
3499  * 	@bytes: number of bytes queued to the hardware device queue
3500  *
3501  * 	Report the number of bytes queued for sending/completion to the network
3502  * 	device hardware queue. @bytes should be a good approximation and should
3503  * 	exactly match netdev_completed_queue() @bytes
3504  */
3505 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3506 {
3507 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3508 }
3509 
3510 static inline bool __netdev_sent_queue(struct net_device *dev,
3511 				       unsigned int bytes,
3512 				       bool xmit_more)
3513 {
3514 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3515 				      xmit_more);
3516 }
3517 
3518 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3519 					     unsigned int pkts, unsigned int bytes)
3520 {
3521 #ifdef CONFIG_BQL
3522 	if (unlikely(!bytes))
3523 		return;
3524 
3525 	dql_completed(&dev_queue->dql, bytes);
3526 
3527 	/*
3528 	 * Without the memory barrier there is a small possiblity that
3529 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3530 	 * be stopped forever
3531 	 */
3532 	smp_mb();
3533 
3534 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3535 		return;
3536 
3537 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3538 		netif_schedule_queue(dev_queue);
3539 #endif
3540 }
3541 
3542 /**
3543  * 	netdev_completed_queue - report bytes and packets completed by device
3544  * 	@dev: network device
3545  * 	@pkts: actual number of packets sent over the medium
3546  * 	@bytes: actual number of bytes sent over the medium
3547  *
3548  * 	Report the number of bytes and packets transmitted by the network device
3549  * 	hardware queue over the physical medium, @bytes must exactly match the
3550  * 	@bytes amount passed to netdev_sent_queue()
3551  */
3552 static inline void netdev_completed_queue(struct net_device *dev,
3553 					  unsigned int pkts, unsigned int bytes)
3554 {
3555 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3556 }
3557 
3558 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3559 {
3560 #ifdef CONFIG_BQL
3561 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3562 	dql_reset(&q->dql);
3563 #endif
3564 }
3565 
3566 /**
3567  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3568  * 	@dev_queue: network device
3569  *
3570  * 	Reset the bytes and packet count of a network device and clear the
3571  * 	software flow control OFF bit for this network device
3572  */
3573 static inline void netdev_reset_queue(struct net_device *dev_queue)
3574 {
3575 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3576 }
3577 
3578 /**
3579  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3580  * 	@dev: network device
3581  * 	@queue_index: given tx queue index
3582  *
3583  * 	Returns 0 if given tx queue index >= number of device tx queues,
3584  * 	otherwise returns the originally passed tx queue index.
3585  */
3586 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3587 {
3588 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3589 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3590 				     dev->name, queue_index,
3591 				     dev->real_num_tx_queues);
3592 		return 0;
3593 	}
3594 
3595 	return queue_index;
3596 }
3597 
3598 /**
3599  *	netif_running - test if up
3600  *	@dev: network device
3601  *
3602  *	Test if the device has been brought up.
3603  */
3604 static inline bool netif_running(const struct net_device *dev)
3605 {
3606 	return test_bit(__LINK_STATE_START, &dev->state);
3607 }
3608 
3609 /*
3610  * Routines to manage the subqueues on a device.  We only need start,
3611  * stop, and a check if it's stopped.  All other device management is
3612  * done at the overall netdevice level.
3613  * Also test the device if we're multiqueue.
3614  */
3615 
3616 /**
3617  *	netif_start_subqueue - allow sending packets on subqueue
3618  *	@dev: network device
3619  *	@queue_index: sub queue index
3620  *
3621  * Start individual transmit queue of a device with multiple transmit queues.
3622  */
3623 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3624 {
3625 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3626 
3627 	netif_tx_start_queue(txq);
3628 }
3629 
3630 /**
3631  *	netif_stop_subqueue - stop sending packets on subqueue
3632  *	@dev: network device
3633  *	@queue_index: sub queue index
3634  *
3635  * Stop individual transmit queue of a device with multiple transmit queues.
3636  */
3637 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3638 {
3639 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3640 	netif_tx_stop_queue(txq);
3641 }
3642 
3643 /**
3644  *	__netif_subqueue_stopped - test status of subqueue
3645  *	@dev: network device
3646  *	@queue_index: sub queue index
3647  *
3648  * Check individual transmit queue of a device with multiple transmit queues.
3649  */
3650 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3651 					    u16 queue_index)
3652 {
3653 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3654 
3655 	return netif_tx_queue_stopped(txq);
3656 }
3657 
3658 /**
3659  *	netif_subqueue_stopped - test status of subqueue
3660  *	@dev: network device
3661  *	@skb: sub queue buffer pointer
3662  *
3663  * Check individual transmit queue of a device with multiple transmit queues.
3664  */
3665 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3666 					  struct sk_buff *skb)
3667 {
3668 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3669 }
3670 
3671 /**
3672  *	netif_wake_subqueue - allow sending packets on subqueue
3673  *	@dev: network device
3674  *	@queue_index: sub queue index
3675  *
3676  * Resume individual transmit queue of a device with multiple transmit queues.
3677  */
3678 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3679 {
3680 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3681 
3682 	netif_tx_wake_queue(txq);
3683 }
3684 
3685 #ifdef CONFIG_XPS
3686 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3687 			u16 index);
3688 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3689 			  u16 index, bool is_rxqs_map);
3690 
3691 /**
3692  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3693  *	@j: CPU/Rx queue index
3694  *	@mask: bitmask of all cpus/rx queues
3695  *	@nr_bits: number of bits in the bitmask
3696  *
3697  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3698  */
3699 static inline bool netif_attr_test_mask(unsigned long j,
3700 					const unsigned long *mask,
3701 					unsigned int nr_bits)
3702 {
3703 	cpu_max_bits_warn(j, nr_bits);
3704 	return test_bit(j, mask);
3705 }
3706 
3707 /**
3708  *	netif_attr_test_online - Test for online CPU/Rx queue
3709  *	@j: CPU/Rx queue index
3710  *	@online_mask: bitmask for CPUs/Rx queues that are online
3711  *	@nr_bits: number of bits in the bitmask
3712  *
3713  * Returns true if a CPU/Rx queue is online.
3714  */
3715 static inline bool netif_attr_test_online(unsigned long j,
3716 					  const unsigned long *online_mask,
3717 					  unsigned int nr_bits)
3718 {
3719 	cpu_max_bits_warn(j, nr_bits);
3720 
3721 	if (online_mask)
3722 		return test_bit(j, online_mask);
3723 
3724 	return (j < nr_bits);
3725 }
3726 
3727 /**
3728  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3729  *	@n: CPU/Rx queue index
3730  *	@srcp: the cpumask/Rx queue mask pointer
3731  *	@nr_bits: number of bits in the bitmask
3732  *
3733  * Returns >= nr_bits if no further CPUs/Rx queues set.
3734  */
3735 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3736 					       unsigned int nr_bits)
3737 {
3738 	/* -1 is a legal arg here. */
3739 	if (n != -1)
3740 		cpu_max_bits_warn(n, nr_bits);
3741 
3742 	if (srcp)
3743 		return find_next_bit(srcp, nr_bits, n + 1);
3744 
3745 	return n + 1;
3746 }
3747 
3748 /**
3749  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3750  *	@n: CPU/Rx queue index
3751  *	@src1p: the first CPUs/Rx queues mask pointer
3752  *	@src2p: the second CPUs/Rx queues mask pointer
3753  *	@nr_bits: number of bits in the bitmask
3754  *
3755  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3756  */
3757 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3758 					  const unsigned long *src2p,
3759 					  unsigned int nr_bits)
3760 {
3761 	/* -1 is a legal arg here. */
3762 	if (n != -1)
3763 		cpu_max_bits_warn(n, nr_bits);
3764 
3765 	if (src1p && src2p)
3766 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3767 	else if (src1p)
3768 		return find_next_bit(src1p, nr_bits, n + 1);
3769 	else if (src2p)
3770 		return find_next_bit(src2p, nr_bits, n + 1);
3771 
3772 	return n + 1;
3773 }
3774 #else
3775 static inline int netif_set_xps_queue(struct net_device *dev,
3776 				      const struct cpumask *mask,
3777 				      u16 index)
3778 {
3779 	return 0;
3780 }
3781 
3782 static inline int __netif_set_xps_queue(struct net_device *dev,
3783 					const unsigned long *mask,
3784 					u16 index, bool is_rxqs_map)
3785 {
3786 	return 0;
3787 }
3788 #endif
3789 
3790 /**
3791  *	netif_is_multiqueue - test if device has multiple transmit queues
3792  *	@dev: network device
3793  *
3794  * Check if device has multiple transmit queues
3795  */
3796 static inline bool netif_is_multiqueue(const struct net_device *dev)
3797 {
3798 	return dev->num_tx_queues > 1;
3799 }
3800 
3801 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3802 
3803 #ifdef CONFIG_SYSFS
3804 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3805 #else
3806 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3807 						unsigned int rxqs)
3808 {
3809 	dev->real_num_rx_queues = rxqs;
3810 	return 0;
3811 }
3812 #endif
3813 
3814 static inline struct netdev_rx_queue *
3815 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3816 {
3817 	return dev->_rx + rxq;
3818 }
3819 
3820 #ifdef CONFIG_SYSFS
3821 static inline unsigned int get_netdev_rx_queue_index(
3822 		struct netdev_rx_queue *queue)
3823 {
3824 	struct net_device *dev = queue->dev;
3825 	int index = queue - dev->_rx;
3826 
3827 	BUG_ON(index >= dev->num_rx_queues);
3828 	return index;
3829 }
3830 #endif
3831 
3832 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3833 int netif_get_num_default_rss_queues(void);
3834 
3835 enum skb_free_reason {
3836 	SKB_REASON_CONSUMED,
3837 	SKB_REASON_DROPPED,
3838 };
3839 
3840 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3841 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3842 
3843 /*
3844  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3845  * interrupt context or with hardware interrupts being disabled.
3846  * (in_irq() || irqs_disabled())
3847  *
3848  * We provide four helpers that can be used in following contexts :
3849  *
3850  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3851  *  replacing kfree_skb(skb)
3852  *
3853  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3854  *  Typically used in place of consume_skb(skb) in TX completion path
3855  *
3856  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3857  *  replacing kfree_skb(skb)
3858  *
3859  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3860  *  and consumed a packet. Used in place of consume_skb(skb)
3861  */
3862 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3863 {
3864 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3865 }
3866 
3867 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3868 {
3869 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3870 }
3871 
3872 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3873 {
3874 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3875 }
3876 
3877 static inline void dev_consume_skb_any(struct sk_buff *skb)
3878 {
3879 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3880 }
3881 
3882 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3883 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3884 int netif_rx(struct sk_buff *skb);
3885 int netif_rx_ni(struct sk_buff *skb);
3886 int netif_rx_any_context(struct sk_buff *skb);
3887 int netif_receive_skb(struct sk_buff *skb);
3888 int netif_receive_skb_core(struct sk_buff *skb);
3889 void netif_receive_skb_list(struct list_head *head);
3890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3891 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3892 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3893 gro_result_t napi_gro_frags(struct napi_struct *napi);
3894 struct packet_offload *gro_find_receive_by_type(__be16 type);
3895 struct packet_offload *gro_find_complete_by_type(__be16 type);
3896 
3897 static inline void napi_free_frags(struct napi_struct *napi)
3898 {
3899 	kfree_skb(napi->skb);
3900 	napi->skb = NULL;
3901 }
3902 
3903 bool netdev_is_rx_handler_busy(struct net_device *dev);
3904 int netdev_rx_handler_register(struct net_device *dev,
3905 			       rx_handler_func_t *rx_handler,
3906 			       void *rx_handler_data);
3907 void netdev_rx_handler_unregister(struct net_device *dev);
3908 
3909 bool dev_valid_name(const char *name);
3910 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3911 		bool *need_copyout);
3912 int dev_ifconf(struct net *net, struct ifconf *, int);
3913 int dev_ethtool(struct net *net, struct ifreq *);
3914 unsigned int dev_get_flags(const struct net_device *);
3915 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3916 		       struct netlink_ext_ack *extack);
3917 int dev_change_flags(struct net_device *dev, unsigned int flags,
3918 		     struct netlink_ext_ack *extack);
3919 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3920 			unsigned int gchanges);
3921 int dev_change_name(struct net_device *, const char *);
3922 int dev_set_alias(struct net_device *, const char *, size_t);
3923 int dev_get_alias(const struct net_device *, char *, size_t);
3924 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3925 int __dev_set_mtu(struct net_device *, int);
3926 int dev_validate_mtu(struct net_device *dev, int mtu,
3927 		     struct netlink_ext_ack *extack);
3928 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3929 		    struct netlink_ext_ack *extack);
3930 int dev_set_mtu(struct net_device *, int);
3931 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3932 void dev_set_group(struct net_device *, int);
3933 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3934 			      struct netlink_ext_ack *extack);
3935 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3936 			struct netlink_ext_ack *extack);
3937 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3938 			     struct netlink_ext_ack *extack);
3939 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3940 int dev_change_carrier(struct net_device *, bool new_carrier);
3941 int dev_get_phys_port_id(struct net_device *dev,
3942 			 struct netdev_phys_item_id *ppid);
3943 int dev_get_phys_port_name(struct net_device *dev,
3944 			   char *name, size_t len);
3945 int dev_get_port_parent_id(struct net_device *dev,
3946 			   struct netdev_phys_item_id *ppid, bool recurse);
3947 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3948 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3949 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3950 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3951 				  u32 value);
3952 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3953 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3954 				    struct netdev_queue *txq, int *ret);
3955 
3956 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3957 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3958 		      int fd, int expected_fd, u32 flags);
3959 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3960 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3961 
3962 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3963 
3964 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3965 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3966 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3967 bool is_skb_forwardable(const struct net_device *dev,
3968 			const struct sk_buff *skb);
3969 
3970 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3971 						 const struct sk_buff *skb,
3972 						 const bool check_mtu)
3973 {
3974 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3975 	unsigned int len;
3976 
3977 	if (!(dev->flags & IFF_UP))
3978 		return false;
3979 
3980 	if (!check_mtu)
3981 		return true;
3982 
3983 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3984 	if (skb->len <= len)
3985 		return true;
3986 
3987 	/* if TSO is enabled, we don't care about the length as the packet
3988 	 * could be forwarded without being segmented before
3989 	 */
3990 	if (skb_is_gso(skb))
3991 		return true;
3992 
3993 	return false;
3994 }
3995 
3996 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3997 					       struct sk_buff *skb,
3998 					       const bool check_mtu)
3999 {
4000 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4001 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4002 		atomic_long_inc(&dev->rx_dropped);
4003 		kfree_skb(skb);
4004 		return NET_RX_DROP;
4005 	}
4006 
4007 	skb_scrub_packet(skb, true);
4008 	skb->priority = 0;
4009 	return 0;
4010 }
4011 
4012 bool dev_nit_active(struct net_device *dev);
4013 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4014 
4015 extern int		netdev_budget;
4016 extern unsigned int	netdev_budget_usecs;
4017 
4018 /* Called by rtnetlink.c:rtnl_unlock() */
4019 void netdev_run_todo(void);
4020 
4021 /**
4022  *	dev_put - release reference to device
4023  *	@dev: network device
4024  *
4025  * Release reference to device to allow it to be freed.
4026  */
4027 static inline void dev_put(struct net_device *dev)
4028 {
4029 	this_cpu_dec(*dev->pcpu_refcnt);
4030 }
4031 
4032 /**
4033  *	dev_hold - get reference to device
4034  *	@dev: network device
4035  *
4036  * Hold reference to device to keep it from being freed.
4037  */
4038 static inline void dev_hold(struct net_device *dev)
4039 {
4040 	this_cpu_inc(*dev->pcpu_refcnt);
4041 }
4042 
4043 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4044  * and _off may be called from IRQ context, but it is caller
4045  * who is responsible for serialization of these calls.
4046  *
4047  * The name carrier is inappropriate, these functions should really be
4048  * called netif_lowerlayer_*() because they represent the state of any
4049  * kind of lower layer not just hardware media.
4050  */
4051 
4052 void linkwatch_init_dev(struct net_device *dev);
4053 void linkwatch_fire_event(struct net_device *dev);
4054 void linkwatch_forget_dev(struct net_device *dev);
4055 
4056 /**
4057  *	netif_carrier_ok - test if carrier present
4058  *	@dev: network device
4059  *
4060  * Check if carrier is present on device
4061  */
4062 static inline bool netif_carrier_ok(const struct net_device *dev)
4063 {
4064 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4065 }
4066 
4067 unsigned long dev_trans_start(struct net_device *dev);
4068 
4069 void __netdev_watchdog_up(struct net_device *dev);
4070 
4071 void netif_carrier_on(struct net_device *dev);
4072 
4073 void netif_carrier_off(struct net_device *dev);
4074 
4075 /**
4076  *	netif_dormant_on - mark device as dormant.
4077  *	@dev: network device
4078  *
4079  * Mark device as dormant (as per RFC2863).
4080  *
4081  * The dormant state indicates that the relevant interface is not
4082  * actually in a condition to pass packets (i.e., it is not 'up') but is
4083  * in a "pending" state, waiting for some external event.  For "on-
4084  * demand" interfaces, this new state identifies the situation where the
4085  * interface is waiting for events to place it in the up state.
4086  */
4087 static inline void netif_dormant_on(struct net_device *dev)
4088 {
4089 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4090 		linkwatch_fire_event(dev);
4091 }
4092 
4093 /**
4094  *	netif_dormant_off - set device as not dormant.
4095  *	@dev: network device
4096  *
4097  * Device is not in dormant state.
4098  */
4099 static inline void netif_dormant_off(struct net_device *dev)
4100 {
4101 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4102 		linkwatch_fire_event(dev);
4103 }
4104 
4105 /**
4106  *	netif_dormant - test if device is dormant
4107  *	@dev: network device
4108  *
4109  * Check if device is dormant.
4110  */
4111 static inline bool netif_dormant(const struct net_device *dev)
4112 {
4113 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4114 }
4115 
4116 
4117 /**
4118  *	netif_testing_on - mark device as under test.
4119  *	@dev: network device
4120  *
4121  * Mark device as under test (as per RFC2863).
4122  *
4123  * The testing state indicates that some test(s) must be performed on
4124  * the interface. After completion, of the test, the interface state
4125  * will change to up, dormant, or down, as appropriate.
4126  */
4127 static inline void netif_testing_on(struct net_device *dev)
4128 {
4129 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4130 		linkwatch_fire_event(dev);
4131 }
4132 
4133 /**
4134  *	netif_testing_off - set device as not under test.
4135  *	@dev: network device
4136  *
4137  * Device is not in testing state.
4138  */
4139 static inline void netif_testing_off(struct net_device *dev)
4140 {
4141 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4142 		linkwatch_fire_event(dev);
4143 }
4144 
4145 /**
4146  *	netif_testing - test if device is under test
4147  *	@dev: network device
4148  *
4149  * Check if device is under test
4150  */
4151 static inline bool netif_testing(const struct net_device *dev)
4152 {
4153 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4154 }
4155 
4156 
4157 /**
4158  *	netif_oper_up - test if device is operational
4159  *	@dev: network device
4160  *
4161  * Check if carrier is operational
4162  */
4163 static inline bool netif_oper_up(const struct net_device *dev)
4164 {
4165 	return (dev->operstate == IF_OPER_UP ||
4166 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4167 }
4168 
4169 /**
4170  *	netif_device_present - is device available or removed
4171  *	@dev: network device
4172  *
4173  * Check if device has not been removed from system.
4174  */
4175 static inline bool netif_device_present(struct net_device *dev)
4176 {
4177 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4178 }
4179 
4180 void netif_device_detach(struct net_device *dev);
4181 
4182 void netif_device_attach(struct net_device *dev);
4183 
4184 /*
4185  * Network interface message level settings
4186  */
4187 
4188 enum {
4189 	NETIF_MSG_DRV_BIT,
4190 	NETIF_MSG_PROBE_BIT,
4191 	NETIF_MSG_LINK_BIT,
4192 	NETIF_MSG_TIMER_BIT,
4193 	NETIF_MSG_IFDOWN_BIT,
4194 	NETIF_MSG_IFUP_BIT,
4195 	NETIF_MSG_RX_ERR_BIT,
4196 	NETIF_MSG_TX_ERR_BIT,
4197 	NETIF_MSG_TX_QUEUED_BIT,
4198 	NETIF_MSG_INTR_BIT,
4199 	NETIF_MSG_TX_DONE_BIT,
4200 	NETIF_MSG_RX_STATUS_BIT,
4201 	NETIF_MSG_PKTDATA_BIT,
4202 	NETIF_MSG_HW_BIT,
4203 	NETIF_MSG_WOL_BIT,
4204 
4205 	/* When you add a new bit above, update netif_msg_class_names array
4206 	 * in net/ethtool/common.c
4207 	 */
4208 	NETIF_MSG_CLASS_COUNT,
4209 };
4210 /* Both ethtool_ops interface and internal driver implementation use u32 */
4211 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4212 
4213 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4214 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4215 
4216 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4217 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4218 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4219 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4220 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4221 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4222 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4223 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4224 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4225 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4226 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4227 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4228 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4229 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4230 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4231 
4232 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4233 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4234 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4235 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4236 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4237 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4238 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4239 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4240 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4241 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4242 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4243 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4244 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4245 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4246 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4247 
4248 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4249 {
4250 	/* use default */
4251 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4252 		return default_msg_enable_bits;
4253 	if (debug_value == 0)	/* no output */
4254 		return 0;
4255 	/* set low N bits */
4256 	return (1U << debug_value) - 1;
4257 }
4258 
4259 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4260 {
4261 	spin_lock(&txq->_xmit_lock);
4262 	txq->xmit_lock_owner = cpu;
4263 }
4264 
4265 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4266 {
4267 	__acquire(&txq->_xmit_lock);
4268 	return true;
4269 }
4270 
4271 static inline void __netif_tx_release(struct netdev_queue *txq)
4272 {
4273 	__release(&txq->_xmit_lock);
4274 }
4275 
4276 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4277 {
4278 	spin_lock_bh(&txq->_xmit_lock);
4279 	txq->xmit_lock_owner = smp_processor_id();
4280 }
4281 
4282 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4283 {
4284 	bool ok = spin_trylock(&txq->_xmit_lock);
4285 	if (likely(ok))
4286 		txq->xmit_lock_owner = smp_processor_id();
4287 	return ok;
4288 }
4289 
4290 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4291 {
4292 	txq->xmit_lock_owner = -1;
4293 	spin_unlock(&txq->_xmit_lock);
4294 }
4295 
4296 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4297 {
4298 	txq->xmit_lock_owner = -1;
4299 	spin_unlock_bh(&txq->_xmit_lock);
4300 }
4301 
4302 static inline void txq_trans_update(struct netdev_queue *txq)
4303 {
4304 	if (txq->xmit_lock_owner != -1)
4305 		txq->trans_start = jiffies;
4306 }
4307 
4308 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4309 static inline void netif_trans_update(struct net_device *dev)
4310 {
4311 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4312 
4313 	if (txq->trans_start != jiffies)
4314 		txq->trans_start = jiffies;
4315 }
4316 
4317 /**
4318  *	netif_tx_lock - grab network device transmit lock
4319  *	@dev: network device
4320  *
4321  * Get network device transmit lock
4322  */
4323 static inline void netif_tx_lock(struct net_device *dev)
4324 {
4325 	unsigned int i;
4326 	int cpu;
4327 
4328 	spin_lock(&dev->tx_global_lock);
4329 	cpu = smp_processor_id();
4330 	for (i = 0; i < dev->num_tx_queues; i++) {
4331 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4332 
4333 		/* We are the only thread of execution doing a
4334 		 * freeze, but we have to grab the _xmit_lock in
4335 		 * order to synchronize with threads which are in
4336 		 * the ->hard_start_xmit() handler and already
4337 		 * checked the frozen bit.
4338 		 */
4339 		__netif_tx_lock(txq, cpu);
4340 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4341 		__netif_tx_unlock(txq);
4342 	}
4343 }
4344 
4345 static inline void netif_tx_lock_bh(struct net_device *dev)
4346 {
4347 	local_bh_disable();
4348 	netif_tx_lock(dev);
4349 }
4350 
4351 static inline void netif_tx_unlock(struct net_device *dev)
4352 {
4353 	unsigned int i;
4354 
4355 	for (i = 0; i < dev->num_tx_queues; i++) {
4356 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4357 
4358 		/* No need to grab the _xmit_lock here.  If the
4359 		 * queue is not stopped for another reason, we
4360 		 * force a schedule.
4361 		 */
4362 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4363 		netif_schedule_queue(txq);
4364 	}
4365 	spin_unlock(&dev->tx_global_lock);
4366 }
4367 
4368 static inline void netif_tx_unlock_bh(struct net_device *dev)
4369 {
4370 	netif_tx_unlock(dev);
4371 	local_bh_enable();
4372 }
4373 
4374 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4375 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4376 		__netif_tx_lock(txq, cpu);		\
4377 	} else {					\
4378 		__netif_tx_acquire(txq);		\
4379 	}						\
4380 }
4381 
4382 #define HARD_TX_TRYLOCK(dev, txq)			\
4383 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4384 		__netif_tx_trylock(txq) :		\
4385 		__netif_tx_acquire(txq))
4386 
4387 #define HARD_TX_UNLOCK(dev, txq) {			\
4388 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4389 		__netif_tx_unlock(txq);			\
4390 	} else {					\
4391 		__netif_tx_release(txq);		\
4392 	}						\
4393 }
4394 
4395 static inline void netif_tx_disable(struct net_device *dev)
4396 {
4397 	unsigned int i;
4398 	int cpu;
4399 
4400 	local_bh_disable();
4401 	cpu = smp_processor_id();
4402 	spin_lock(&dev->tx_global_lock);
4403 	for (i = 0; i < dev->num_tx_queues; i++) {
4404 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4405 
4406 		__netif_tx_lock(txq, cpu);
4407 		netif_tx_stop_queue(txq);
4408 		__netif_tx_unlock(txq);
4409 	}
4410 	spin_unlock(&dev->tx_global_lock);
4411 	local_bh_enable();
4412 }
4413 
4414 static inline void netif_addr_lock(struct net_device *dev)
4415 {
4416 	unsigned char nest_level = 0;
4417 
4418 #ifdef CONFIG_LOCKDEP
4419 	nest_level = dev->nested_level;
4420 #endif
4421 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4422 }
4423 
4424 static inline void netif_addr_lock_bh(struct net_device *dev)
4425 {
4426 	unsigned char nest_level = 0;
4427 
4428 #ifdef CONFIG_LOCKDEP
4429 	nest_level = dev->nested_level;
4430 #endif
4431 	local_bh_disable();
4432 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4433 }
4434 
4435 static inline void netif_addr_unlock(struct net_device *dev)
4436 {
4437 	spin_unlock(&dev->addr_list_lock);
4438 }
4439 
4440 static inline void netif_addr_unlock_bh(struct net_device *dev)
4441 {
4442 	spin_unlock_bh(&dev->addr_list_lock);
4443 }
4444 
4445 /*
4446  * dev_addrs walker. Should be used only for read access. Call with
4447  * rcu_read_lock held.
4448  */
4449 #define for_each_dev_addr(dev, ha) \
4450 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4451 
4452 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4453 
4454 void ether_setup(struct net_device *dev);
4455 
4456 /* Support for loadable net-drivers */
4457 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4458 				    unsigned char name_assign_type,
4459 				    void (*setup)(struct net_device *),
4460 				    unsigned int txqs, unsigned int rxqs);
4461 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4462 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4463 
4464 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4465 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4466 			 count)
4467 
4468 int register_netdev(struct net_device *dev);
4469 void unregister_netdev(struct net_device *dev);
4470 
4471 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4472 
4473 /* General hardware address lists handling functions */
4474 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4475 		   struct netdev_hw_addr_list *from_list, int addr_len);
4476 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4477 		      struct netdev_hw_addr_list *from_list, int addr_len);
4478 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4479 		       struct net_device *dev,
4480 		       int (*sync)(struct net_device *, const unsigned char *),
4481 		       int (*unsync)(struct net_device *,
4482 				     const unsigned char *));
4483 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4484 			   struct net_device *dev,
4485 			   int (*sync)(struct net_device *,
4486 				       const unsigned char *, int),
4487 			   int (*unsync)(struct net_device *,
4488 					 const unsigned char *, int));
4489 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4490 			      struct net_device *dev,
4491 			      int (*unsync)(struct net_device *,
4492 					    const unsigned char *, int));
4493 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4494 			  struct net_device *dev,
4495 			  int (*unsync)(struct net_device *,
4496 					const unsigned char *));
4497 void __hw_addr_init(struct netdev_hw_addr_list *list);
4498 
4499 /* Functions used for device addresses handling */
4500 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4501 		 unsigned char addr_type);
4502 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4503 		 unsigned char addr_type);
4504 void dev_addr_flush(struct net_device *dev);
4505 int dev_addr_init(struct net_device *dev);
4506 
4507 /* Functions used for unicast addresses handling */
4508 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4509 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4510 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4511 int dev_uc_sync(struct net_device *to, struct net_device *from);
4512 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4513 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4514 void dev_uc_flush(struct net_device *dev);
4515 void dev_uc_init(struct net_device *dev);
4516 
4517 /**
4518  *  __dev_uc_sync - Synchonize device's unicast list
4519  *  @dev:  device to sync
4520  *  @sync: function to call if address should be added
4521  *  @unsync: function to call if address should be removed
4522  *
4523  *  Add newly added addresses to the interface, and release
4524  *  addresses that have been deleted.
4525  */
4526 static inline int __dev_uc_sync(struct net_device *dev,
4527 				int (*sync)(struct net_device *,
4528 					    const unsigned char *),
4529 				int (*unsync)(struct net_device *,
4530 					      const unsigned char *))
4531 {
4532 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4533 }
4534 
4535 /**
4536  *  __dev_uc_unsync - Remove synchronized addresses from device
4537  *  @dev:  device to sync
4538  *  @unsync: function to call if address should be removed
4539  *
4540  *  Remove all addresses that were added to the device by dev_uc_sync().
4541  */
4542 static inline void __dev_uc_unsync(struct net_device *dev,
4543 				   int (*unsync)(struct net_device *,
4544 						 const unsigned char *))
4545 {
4546 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4547 }
4548 
4549 /* Functions used for multicast addresses handling */
4550 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4551 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4552 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4553 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4554 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4555 int dev_mc_sync(struct net_device *to, struct net_device *from);
4556 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4557 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4558 void dev_mc_flush(struct net_device *dev);
4559 void dev_mc_init(struct net_device *dev);
4560 
4561 /**
4562  *  __dev_mc_sync - Synchonize device's multicast list
4563  *  @dev:  device to sync
4564  *  @sync: function to call if address should be added
4565  *  @unsync: function to call if address should be removed
4566  *
4567  *  Add newly added addresses to the interface, and release
4568  *  addresses that have been deleted.
4569  */
4570 static inline int __dev_mc_sync(struct net_device *dev,
4571 				int (*sync)(struct net_device *,
4572 					    const unsigned char *),
4573 				int (*unsync)(struct net_device *,
4574 					      const unsigned char *))
4575 {
4576 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4577 }
4578 
4579 /**
4580  *  __dev_mc_unsync - Remove synchronized addresses from device
4581  *  @dev:  device to sync
4582  *  @unsync: function to call if address should be removed
4583  *
4584  *  Remove all addresses that were added to the device by dev_mc_sync().
4585  */
4586 static inline void __dev_mc_unsync(struct net_device *dev,
4587 				   int (*unsync)(struct net_device *,
4588 						 const unsigned char *))
4589 {
4590 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4591 }
4592 
4593 /* Functions used for secondary unicast and multicast support */
4594 void dev_set_rx_mode(struct net_device *dev);
4595 void __dev_set_rx_mode(struct net_device *dev);
4596 int dev_set_promiscuity(struct net_device *dev, int inc);
4597 int dev_set_allmulti(struct net_device *dev, int inc);
4598 void netdev_state_change(struct net_device *dev);
4599 void __netdev_notify_peers(struct net_device *dev);
4600 void netdev_notify_peers(struct net_device *dev);
4601 void netdev_features_change(struct net_device *dev);
4602 /* Load a device via the kmod */
4603 void dev_load(struct net *net, const char *name);
4604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4605 					struct rtnl_link_stats64 *storage);
4606 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4607 			     const struct net_device_stats *netdev_stats);
4608 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4609 			   const struct pcpu_sw_netstats __percpu *netstats);
4610 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4611 
4612 extern int		netdev_max_backlog;
4613 extern int		netdev_tstamp_prequeue;
4614 extern int		weight_p;
4615 extern int		dev_weight_rx_bias;
4616 extern int		dev_weight_tx_bias;
4617 extern int		dev_rx_weight;
4618 extern int		dev_tx_weight;
4619 extern int		gro_normal_batch;
4620 
4621 enum {
4622 	NESTED_SYNC_IMM_BIT,
4623 	NESTED_SYNC_TODO_BIT,
4624 };
4625 
4626 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4627 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4628 
4629 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4630 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4631 
4632 struct netdev_nested_priv {
4633 	unsigned char flags;
4634 	void *data;
4635 };
4636 
4637 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4638 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4639 						     struct list_head **iter);
4640 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4641 						     struct list_head **iter);
4642 
4643 #ifdef CONFIG_LOCKDEP
4644 static LIST_HEAD(net_unlink_list);
4645 
4646 static inline void net_unlink_todo(struct net_device *dev)
4647 {
4648 	if (list_empty(&dev->unlink_list))
4649 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4650 }
4651 #endif
4652 
4653 /* iterate through upper list, must be called under RCU read lock */
4654 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4655 	for (iter = &(dev)->adj_list.upper, \
4656 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4657 	     updev; \
4658 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4659 
4660 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4661 				  int (*fn)(struct net_device *upper_dev,
4662 					    struct netdev_nested_priv *priv),
4663 				  struct netdev_nested_priv *priv);
4664 
4665 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4666 				  struct net_device *upper_dev);
4667 
4668 bool netdev_has_any_upper_dev(struct net_device *dev);
4669 
4670 void *netdev_lower_get_next_private(struct net_device *dev,
4671 				    struct list_head **iter);
4672 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4673 					struct list_head **iter);
4674 
4675 #define netdev_for_each_lower_private(dev, priv, iter) \
4676 	for (iter = (dev)->adj_list.lower.next, \
4677 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4678 	     priv; \
4679 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4680 
4681 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4682 	for (iter = &(dev)->adj_list.lower, \
4683 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4684 	     priv; \
4685 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4686 
4687 void *netdev_lower_get_next(struct net_device *dev,
4688 				struct list_head **iter);
4689 
4690 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4691 	for (iter = (dev)->adj_list.lower.next, \
4692 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4693 	     ldev; \
4694 	     ldev = netdev_lower_get_next(dev, &(iter)))
4695 
4696 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4697 					     struct list_head **iter);
4698 int netdev_walk_all_lower_dev(struct net_device *dev,
4699 			      int (*fn)(struct net_device *lower_dev,
4700 					struct netdev_nested_priv *priv),
4701 			      struct netdev_nested_priv *priv);
4702 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4703 				  int (*fn)(struct net_device *lower_dev,
4704 					    struct netdev_nested_priv *priv),
4705 				  struct netdev_nested_priv *priv);
4706 
4707 void *netdev_adjacent_get_private(struct list_head *adj_list);
4708 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4709 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4710 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4711 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4712 			  struct netlink_ext_ack *extack);
4713 int netdev_master_upper_dev_link(struct net_device *dev,
4714 				 struct net_device *upper_dev,
4715 				 void *upper_priv, void *upper_info,
4716 				 struct netlink_ext_ack *extack);
4717 void netdev_upper_dev_unlink(struct net_device *dev,
4718 			     struct net_device *upper_dev);
4719 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4720 				   struct net_device *new_dev,
4721 				   struct net_device *dev,
4722 				   struct netlink_ext_ack *extack);
4723 void netdev_adjacent_change_commit(struct net_device *old_dev,
4724 				   struct net_device *new_dev,
4725 				   struct net_device *dev);
4726 void netdev_adjacent_change_abort(struct net_device *old_dev,
4727 				  struct net_device *new_dev,
4728 				  struct net_device *dev);
4729 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4730 void *netdev_lower_dev_get_private(struct net_device *dev,
4731 				   struct net_device *lower_dev);
4732 void netdev_lower_state_changed(struct net_device *lower_dev,
4733 				void *lower_state_info);
4734 
4735 /* RSS keys are 40 or 52 bytes long */
4736 #define NETDEV_RSS_KEY_LEN 52
4737 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4738 void netdev_rss_key_fill(void *buffer, size_t len);
4739 
4740 int skb_checksum_help(struct sk_buff *skb);
4741 int skb_crc32c_csum_help(struct sk_buff *skb);
4742 int skb_csum_hwoffload_help(struct sk_buff *skb,
4743 			    const netdev_features_t features);
4744 
4745 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4746 				  netdev_features_t features, bool tx_path);
4747 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4748 				    netdev_features_t features);
4749 
4750 struct netdev_bonding_info {
4751 	ifslave	slave;
4752 	ifbond	master;
4753 };
4754 
4755 struct netdev_notifier_bonding_info {
4756 	struct netdev_notifier_info info; /* must be first */
4757 	struct netdev_bonding_info  bonding_info;
4758 };
4759 
4760 void netdev_bonding_info_change(struct net_device *dev,
4761 				struct netdev_bonding_info *bonding_info);
4762 
4763 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4764 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4765 #else
4766 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4767 				  const void *data)
4768 {
4769 }
4770 #endif
4771 
4772 static inline
4773 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4774 {
4775 	return __skb_gso_segment(skb, features, true);
4776 }
4777 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4778 
4779 static inline bool can_checksum_protocol(netdev_features_t features,
4780 					 __be16 protocol)
4781 {
4782 	if (protocol == htons(ETH_P_FCOE))
4783 		return !!(features & NETIF_F_FCOE_CRC);
4784 
4785 	/* Assume this is an IP checksum (not SCTP CRC) */
4786 
4787 	if (features & NETIF_F_HW_CSUM) {
4788 		/* Can checksum everything */
4789 		return true;
4790 	}
4791 
4792 	switch (protocol) {
4793 	case htons(ETH_P_IP):
4794 		return !!(features & NETIF_F_IP_CSUM);
4795 	case htons(ETH_P_IPV6):
4796 		return !!(features & NETIF_F_IPV6_CSUM);
4797 	default:
4798 		return false;
4799 	}
4800 }
4801 
4802 #ifdef CONFIG_BUG
4803 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4804 #else
4805 static inline void netdev_rx_csum_fault(struct net_device *dev,
4806 					struct sk_buff *skb)
4807 {
4808 }
4809 #endif
4810 /* rx skb timestamps */
4811 void net_enable_timestamp(void);
4812 void net_disable_timestamp(void);
4813 
4814 #ifdef CONFIG_PROC_FS
4815 int __init dev_proc_init(void);
4816 #else
4817 #define dev_proc_init() 0
4818 #endif
4819 
4820 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4821 					      struct sk_buff *skb, struct net_device *dev,
4822 					      bool more)
4823 {
4824 	__this_cpu_write(softnet_data.xmit.more, more);
4825 	return ops->ndo_start_xmit(skb, dev);
4826 }
4827 
4828 static inline bool netdev_xmit_more(void)
4829 {
4830 	return __this_cpu_read(softnet_data.xmit.more);
4831 }
4832 
4833 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4834 					    struct netdev_queue *txq, bool more)
4835 {
4836 	const struct net_device_ops *ops = dev->netdev_ops;
4837 	netdev_tx_t rc;
4838 
4839 	rc = __netdev_start_xmit(ops, skb, dev, more);
4840 	if (rc == NETDEV_TX_OK)
4841 		txq_trans_update(txq);
4842 
4843 	return rc;
4844 }
4845 
4846 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4847 				const void *ns);
4848 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4849 				 const void *ns);
4850 
4851 extern const struct kobj_ns_type_operations net_ns_type_operations;
4852 
4853 const char *netdev_drivername(const struct net_device *dev);
4854 
4855 void linkwatch_run_queue(void);
4856 
4857 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4858 							  netdev_features_t f2)
4859 {
4860 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4861 		if (f1 & NETIF_F_HW_CSUM)
4862 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4863 		else
4864 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4865 	}
4866 
4867 	return f1 & f2;
4868 }
4869 
4870 static inline netdev_features_t netdev_get_wanted_features(
4871 	struct net_device *dev)
4872 {
4873 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4874 }
4875 netdev_features_t netdev_increment_features(netdev_features_t all,
4876 	netdev_features_t one, netdev_features_t mask);
4877 
4878 /* Allow TSO being used on stacked device :
4879  * Performing the GSO segmentation before last device
4880  * is a performance improvement.
4881  */
4882 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4883 							netdev_features_t mask)
4884 {
4885 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4886 }
4887 
4888 int __netdev_update_features(struct net_device *dev);
4889 void netdev_update_features(struct net_device *dev);
4890 void netdev_change_features(struct net_device *dev);
4891 
4892 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4893 					struct net_device *dev);
4894 
4895 netdev_features_t passthru_features_check(struct sk_buff *skb,
4896 					  struct net_device *dev,
4897 					  netdev_features_t features);
4898 netdev_features_t netif_skb_features(struct sk_buff *skb);
4899 
4900 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4901 {
4902 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4903 
4904 	/* check flags correspondence */
4905 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4906 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4907 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4908 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4909 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4910 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4911 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4912 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4913 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4914 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4915 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4916 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4917 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4918 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4919 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4920 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4921 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4922 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4923 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4924 
4925 	return (features & feature) == feature;
4926 }
4927 
4928 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4929 {
4930 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4931 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4932 }
4933 
4934 static inline bool netif_needs_gso(struct sk_buff *skb,
4935 				   netdev_features_t features)
4936 {
4937 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4938 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4939 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4940 }
4941 
4942 static inline void netif_set_gso_max_size(struct net_device *dev,
4943 					  unsigned int size)
4944 {
4945 	dev->gso_max_size = size;
4946 }
4947 
4948 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4949 					int pulled_hlen, u16 mac_offset,
4950 					int mac_len)
4951 {
4952 	skb->protocol = protocol;
4953 	skb->encapsulation = 1;
4954 	skb_push(skb, pulled_hlen);
4955 	skb_reset_transport_header(skb);
4956 	skb->mac_header = mac_offset;
4957 	skb->network_header = skb->mac_header + mac_len;
4958 	skb->mac_len = mac_len;
4959 }
4960 
4961 static inline bool netif_is_macsec(const struct net_device *dev)
4962 {
4963 	return dev->priv_flags & IFF_MACSEC;
4964 }
4965 
4966 static inline bool netif_is_macvlan(const struct net_device *dev)
4967 {
4968 	return dev->priv_flags & IFF_MACVLAN;
4969 }
4970 
4971 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4972 {
4973 	return dev->priv_flags & IFF_MACVLAN_PORT;
4974 }
4975 
4976 static inline bool netif_is_bond_master(const struct net_device *dev)
4977 {
4978 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4979 }
4980 
4981 static inline bool netif_is_bond_slave(const struct net_device *dev)
4982 {
4983 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4984 }
4985 
4986 static inline bool netif_supports_nofcs(struct net_device *dev)
4987 {
4988 	return dev->priv_flags & IFF_SUPP_NOFCS;
4989 }
4990 
4991 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4992 {
4993 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4994 }
4995 
4996 static inline bool netif_is_l3_master(const struct net_device *dev)
4997 {
4998 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4999 }
5000 
5001 static inline bool netif_is_l3_slave(const struct net_device *dev)
5002 {
5003 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5004 }
5005 
5006 static inline bool netif_is_bridge_master(const struct net_device *dev)
5007 {
5008 	return dev->priv_flags & IFF_EBRIDGE;
5009 }
5010 
5011 static inline bool netif_is_bridge_port(const struct net_device *dev)
5012 {
5013 	return dev->priv_flags & IFF_BRIDGE_PORT;
5014 }
5015 
5016 static inline bool netif_is_ovs_master(const struct net_device *dev)
5017 {
5018 	return dev->priv_flags & IFF_OPENVSWITCH;
5019 }
5020 
5021 static inline bool netif_is_ovs_port(const struct net_device *dev)
5022 {
5023 	return dev->priv_flags & IFF_OVS_DATAPATH;
5024 }
5025 
5026 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5027 {
5028 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5029 }
5030 
5031 static inline bool netif_is_team_master(const struct net_device *dev)
5032 {
5033 	return dev->priv_flags & IFF_TEAM;
5034 }
5035 
5036 static inline bool netif_is_team_port(const struct net_device *dev)
5037 {
5038 	return dev->priv_flags & IFF_TEAM_PORT;
5039 }
5040 
5041 static inline bool netif_is_lag_master(const struct net_device *dev)
5042 {
5043 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5044 }
5045 
5046 static inline bool netif_is_lag_port(const struct net_device *dev)
5047 {
5048 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5049 }
5050 
5051 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5054 }
5055 
5056 static inline bool netif_is_failover(const struct net_device *dev)
5057 {
5058 	return dev->priv_flags & IFF_FAILOVER;
5059 }
5060 
5061 static inline bool netif_is_failover_slave(const struct net_device *dev)
5062 {
5063 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5064 }
5065 
5066 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5067 static inline void netif_keep_dst(struct net_device *dev)
5068 {
5069 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5070 }
5071 
5072 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5073 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5074 {
5075 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5076 	return dev->priv_flags & IFF_MACSEC;
5077 }
5078 
5079 extern struct pernet_operations __net_initdata loopback_net_ops;
5080 
5081 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5082 
5083 /* netdev_printk helpers, similar to dev_printk */
5084 
5085 static inline const char *netdev_name(const struct net_device *dev)
5086 {
5087 	if (!dev->name[0] || strchr(dev->name, '%'))
5088 		return "(unnamed net_device)";
5089 	return dev->name;
5090 }
5091 
5092 static inline bool netdev_unregistering(const struct net_device *dev)
5093 {
5094 	return dev->reg_state == NETREG_UNREGISTERING;
5095 }
5096 
5097 static inline const char *netdev_reg_state(const struct net_device *dev)
5098 {
5099 	switch (dev->reg_state) {
5100 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5101 	case NETREG_REGISTERED: return "";
5102 	case NETREG_UNREGISTERING: return " (unregistering)";
5103 	case NETREG_UNREGISTERED: return " (unregistered)";
5104 	case NETREG_RELEASED: return " (released)";
5105 	case NETREG_DUMMY: return " (dummy)";
5106 	}
5107 
5108 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5109 	return " (unknown)";
5110 }
5111 
5112 __printf(3, 4) __cold
5113 void netdev_printk(const char *level, const struct net_device *dev,
5114 		   const char *format, ...);
5115 __printf(2, 3) __cold
5116 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5117 __printf(2, 3) __cold
5118 void netdev_alert(const struct net_device *dev, const char *format, ...);
5119 __printf(2, 3) __cold
5120 void netdev_crit(const struct net_device *dev, const char *format, ...);
5121 __printf(2, 3) __cold
5122 void netdev_err(const struct net_device *dev, const char *format, ...);
5123 __printf(2, 3) __cold
5124 void netdev_warn(const struct net_device *dev, const char *format, ...);
5125 __printf(2, 3) __cold
5126 void netdev_notice(const struct net_device *dev, const char *format, ...);
5127 __printf(2, 3) __cold
5128 void netdev_info(const struct net_device *dev, const char *format, ...);
5129 
5130 #define netdev_level_once(level, dev, fmt, ...)			\
5131 do {								\
5132 	static bool __print_once __read_mostly;			\
5133 								\
5134 	if (!__print_once) {					\
5135 		__print_once = true;				\
5136 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5137 	}							\
5138 } while (0)
5139 
5140 #define netdev_emerg_once(dev, fmt, ...) \
5141 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5142 #define netdev_alert_once(dev, fmt, ...) \
5143 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5144 #define netdev_crit_once(dev, fmt, ...) \
5145 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5146 #define netdev_err_once(dev, fmt, ...) \
5147 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5148 #define netdev_warn_once(dev, fmt, ...) \
5149 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5150 #define netdev_notice_once(dev, fmt, ...) \
5151 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5152 #define netdev_info_once(dev, fmt, ...) \
5153 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5154 
5155 #define MODULE_ALIAS_NETDEV(device) \
5156 	MODULE_ALIAS("netdev-" device)
5157 
5158 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5159 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5160 #define netdev_dbg(__dev, format, args...)			\
5161 do {								\
5162 	dynamic_netdev_dbg(__dev, format, ##args);		\
5163 } while (0)
5164 #elif defined(DEBUG)
5165 #define netdev_dbg(__dev, format, args...)			\
5166 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5167 #else
5168 #define netdev_dbg(__dev, format, args...)			\
5169 ({								\
5170 	if (0)							\
5171 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5172 })
5173 #endif
5174 
5175 #if defined(VERBOSE_DEBUG)
5176 #define netdev_vdbg	netdev_dbg
5177 #else
5178 
5179 #define netdev_vdbg(dev, format, args...)			\
5180 ({								\
5181 	if (0)							\
5182 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5183 	0;							\
5184 })
5185 #endif
5186 
5187 /*
5188  * netdev_WARN() acts like dev_printk(), but with the key difference
5189  * of using a WARN/WARN_ON to get the message out, including the
5190  * file/line information and a backtrace.
5191  */
5192 #define netdev_WARN(dev, format, args...)			\
5193 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5194 	     netdev_reg_state(dev), ##args)
5195 
5196 #define netdev_WARN_ONCE(dev, format, args...)				\
5197 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5198 		  netdev_reg_state(dev), ##args)
5199 
5200 /* netif printk helpers, similar to netdev_printk */
5201 
5202 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5203 do {					  			\
5204 	if (netif_msg_##type(priv))				\
5205 		netdev_printk(level, (dev), fmt, ##args);	\
5206 } while (0)
5207 
5208 #define netif_level(level, priv, type, dev, fmt, args...)	\
5209 do {								\
5210 	if (netif_msg_##type(priv))				\
5211 		netdev_##level(dev, fmt, ##args);		\
5212 } while (0)
5213 
5214 #define netif_emerg(priv, type, dev, fmt, args...)		\
5215 	netif_level(emerg, priv, type, dev, fmt, ##args)
5216 #define netif_alert(priv, type, dev, fmt, args...)		\
5217 	netif_level(alert, priv, type, dev, fmt, ##args)
5218 #define netif_crit(priv, type, dev, fmt, args...)		\
5219 	netif_level(crit, priv, type, dev, fmt, ##args)
5220 #define netif_err(priv, type, dev, fmt, args...)		\
5221 	netif_level(err, priv, type, dev, fmt, ##args)
5222 #define netif_warn(priv, type, dev, fmt, args...)		\
5223 	netif_level(warn, priv, type, dev, fmt, ##args)
5224 #define netif_notice(priv, type, dev, fmt, args...)		\
5225 	netif_level(notice, priv, type, dev, fmt, ##args)
5226 #define netif_info(priv, type, dev, fmt, args...)		\
5227 	netif_level(info, priv, type, dev, fmt, ##args)
5228 
5229 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5230 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5231 #define netif_dbg(priv, type, netdev, format, args...)		\
5232 do {								\
5233 	if (netif_msg_##type(priv))				\
5234 		dynamic_netdev_dbg(netdev, format, ##args);	\
5235 } while (0)
5236 #elif defined(DEBUG)
5237 #define netif_dbg(priv, type, dev, format, args...)		\
5238 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5239 #else
5240 #define netif_dbg(priv, type, dev, format, args...)			\
5241 ({									\
5242 	if (0)								\
5243 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5244 	0;								\
5245 })
5246 #endif
5247 
5248 /* if @cond then downgrade to debug, else print at @level */
5249 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5250 	do {                                                              \
5251 		if (cond)                                                 \
5252 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5253 		else                                                      \
5254 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5255 	} while (0)
5256 
5257 #if defined(VERBOSE_DEBUG)
5258 #define netif_vdbg	netif_dbg
5259 #else
5260 #define netif_vdbg(priv, type, dev, format, args...)		\
5261 ({								\
5262 	if (0)							\
5263 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5264 	0;							\
5265 })
5266 #endif
5267 
5268 /*
5269  *	The list of packet types we will receive (as opposed to discard)
5270  *	and the routines to invoke.
5271  *
5272  *	Why 16. Because with 16 the only overlap we get on a hash of the
5273  *	low nibble of the protocol value is RARP/SNAP/X.25.
5274  *
5275  *		0800	IP
5276  *		0001	802.3
5277  *		0002	AX.25
5278  *		0004	802.2
5279  *		8035	RARP
5280  *		0005	SNAP
5281  *		0805	X.25
5282  *		0806	ARP
5283  *		8137	IPX
5284  *		0009	Localtalk
5285  *		86DD	IPv6
5286  */
5287 #define PTYPE_HASH_SIZE	(16)
5288 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5289 
5290 extern struct net_device *blackhole_netdev;
5291 
5292 #endif	/* _LINUX_NETDEVICE_H */
5293