xref: /openbmc/linux/include/linux/netdevice.h (revision 50dc9a85)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct ethtool_ops;
55 struct phy_device;
56 struct dsa_port;
57 struct ip_tunnel_parm;
58 struct macsec_context;
59 struct macsec_ops;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct udp_tunnel_nic_info;
70 struct udp_tunnel_nic;
71 struct bpf_prog;
72 struct xdp_buff;
73 
74 void synchronize_net(void);
75 void netdev_set_default_ethtool_ops(struct net_device *dev,
76 				    const struct ethtool_ops *ops);
77 
78 /* Backlog congestion levels */
79 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
80 #define NET_RX_DROP		1	/* packet dropped */
81 
82 #define MAX_NEST_DEV 8
83 
84 /*
85  * Transmit return codes: transmit return codes originate from three different
86  * namespaces:
87  *
88  * - qdisc return codes
89  * - driver transmit return codes
90  * - errno values
91  *
92  * Drivers are allowed to return any one of those in their hard_start_xmit()
93  * function. Real network devices commonly used with qdiscs should only return
94  * the driver transmit return codes though - when qdiscs are used, the actual
95  * transmission happens asynchronously, so the value is not propagated to
96  * higher layers. Virtual network devices transmit synchronously; in this case
97  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
98  * others are propagated to higher layers.
99  */
100 
101 /* qdisc ->enqueue() return codes. */
102 #define NET_XMIT_SUCCESS	0x00
103 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
104 #define NET_XMIT_CN		0x02	/* congestion notification	*/
105 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
106 
107 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
108  * indicates that the device will soon be dropping packets, or already drops
109  * some packets of the same priority; prompting us to send less aggressively. */
110 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
111 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
112 
113 /* Driver transmit return codes */
114 #define NETDEV_TX_MASK		0xf0
115 
116 enum netdev_tx {
117 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
118 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
119 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
120 };
121 typedef enum netdev_tx netdev_tx_t;
122 
123 /*
124  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
125  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
126  */
127 static inline bool dev_xmit_complete(int rc)
128 {
129 	/*
130 	 * Positive cases with an skb consumed by a driver:
131 	 * - successful transmission (rc == NETDEV_TX_OK)
132 	 * - error while transmitting (rc < 0)
133 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
134 	 */
135 	if (likely(rc < NET_XMIT_MASK))
136 		return true;
137 
138 	return false;
139 }
140 
141 /*
142  *	Compute the worst-case header length according to the protocols
143  *	used.
144  */
145 
146 #if defined(CONFIG_HYPERV_NET)
147 # define LL_MAX_HEADER 128
148 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149 # if defined(CONFIG_MAC80211_MESH)
150 #  define LL_MAX_HEADER 128
151 # else
152 #  define LL_MAX_HEADER 96
153 # endif
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157 
158 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
159     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164 
165 /*
166  *	Old network device statistics. Fields are native words
167  *	(unsigned long) so they can be read and written atomically.
168  */
169 
170 struct net_device_stats {
171 	unsigned long	rx_packets;
172 	unsigned long	tx_packets;
173 	unsigned long	rx_bytes;
174 	unsigned long	tx_bytes;
175 	unsigned long	rx_errors;
176 	unsigned long	tx_errors;
177 	unsigned long	rx_dropped;
178 	unsigned long	tx_dropped;
179 	unsigned long	multicast;
180 	unsigned long	collisions;
181 	unsigned long	rx_length_errors;
182 	unsigned long	rx_over_errors;
183 	unsigned long	rx_crc_errors;
184 	unsigned long	rx_frame_errors;
185 	unsigned long	rx_fifo_errors;
186 	unsigned long	rx_missed_errors;
187 	unsigned long	tx_aborted_errors;
188 	unsigned long	tx_carrier_errors;
189 	unsigned long	tx_fifo_errors;
190 	unsigned long	tx_heartbeat_errors;
191 	unsigned long	tx_window_errors;
192 	unsigned long	rx_compressed;
193 	unsigned long	tx_compressed;
194 };
195 
196 
197 #include <linux/cache.h>
198 #include <linux/skbuff.h>
199 
200 #ifdef CONFIG_RPS
201 #include <linux/static_key.h>
202 extern struct static_key_false rps_needed;
203 extern struct static_key_false rfs_needed;
204 #endif
205 
206 struct neighbour;
207 struct neigh_parms;
208 struct sk_buff;
209 
210 struct netdev_hw_addr {
211 	struct list_head	list;
212 	struct rb_node		node;
213 	unsigned char		addr[MAX_ADDR_LEN];
214 	unsigned char		type;
215 #define NETDEV_HW_ADDR_T_LAN		1
216 #define NETDEV_HW_ADDR_T_SAN		2
217 #define NETDEV_HW_ADDR_T_UNICAST	3
218 #define NETDEV_HW_ADDR_T_MULTICAST	4
219 	bool			global_use;
220 	int			sync_cnt;
221 	int			refcount;
222 	int			synced;
223 	struct rcu_head		rcu_head;
224 };
225 
226 struct netdev_hw_addr_list {
227 	struct list_head	list;
228 	int			count;
229 
230 	/* Auxiliary tree for faster lookup on addition and deletion */
231 	struct rb_root		tree;
232 };
233 
234 #define netdev_hw_addr_list_count(l) ((l)->count)
235 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
236 #define netdev_hw_addr_list_for_each(ha, l) \
237 	list_for_each_entry(ha, &(l)->list, list)
238 
239 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
240 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
241 #define netdev_for_each_uc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
243 
244 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
245 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
246 #define netdev_for_each_mc_addr(ha, dev) \
247 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
248 
249 struct hh_cache {
250 	unsigned int	hh_len;
251 	seqlock_t	hh_lock;
252 
253 	/* cached hardware header; allow for machine alignment needs.        */
254 #define HH_DATA_MOD	16
255 #define HH_DATA_OFF(__len) \
256 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
257 #define HH_DATA_ALIGN(__len) \
258 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
259 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
260 };
261 
262 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
263  * Alternative is:
264  *   dev->hard_header_len ? (dev->hard_header_len +
265  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
266  *
267  * We could use other alignment values, but we must maintain the
268  * relationship HH alignment <= LL alignment.
269  */
270 #define LL_RESERVED_SPACE(dev) \
271 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
272 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
273 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
274 
275 struct header_ops {
276 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
277 			   unsigned short type, const void *daddr,
278 			   const void *saddr, unsigned int len);
279 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
280 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
281 	void	(*cache_update)(struct hh_cache *hh,
282 				const struct net_device *dev,
283 				const unsigned char *haddr);
284 	bool	(*validate)(const char *ll_header, unsigned int len);
285 	__be16	(*parse_protocol)(const struct sk_buff *skb);
286 };
287 
288 /* These flag bits are private to the generic network queueing
289  * layer; they may not be explicitly referenced by any other
290  * code.
291  */
292 
293 enum netdev_state_t {
294 	__LINK_STATE_START,
295 	__LINK_STATE_PRESENT,
296 	__LINK_STATE_NOCARRIER,
297 	__LINK_STATE_LINKWATCH_PENDING,
298 	__LINK_STATE_DORMANT,
299 	__LINK_STATE_TESTING,
300 };
301 
302 
303 struct gro_list {
304 	struct list_head	list;
305 	int			count;
306 };
307 
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS	8
313 
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318 	/* The poll_list must only be managed by the entity which
319 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
320 	 * whoever atomically sets that bit can add this napi_struct
321 	 * to the per-CPU poll_list, and whoever clears that bit
322 	 * can remove from the list right before clearing the bit.
323 	 */
324 	struct list_head	poll_list;
325 
326 	unsigned long		state;
327 	int			weight;
328 	int			defer_hard_irqs_count;
329 	unsigned long		gro_bitmask;
330 	int			(*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332 	int			poll_owner;
333 #endif
334 	struct net_device	*dev;
335 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
336 	struct sk_buff		*skb;
337 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
338 	int			rx_count; /* length of rx_list */
339 	struct hrtimer		timer;
340 	struct list_head	dev_list;
341 	struct hlist_node	napi_hash_node;
342 	unsigned int		napi_id;
343 	struct task_struct	*thread;
344 };
345 
346 enum {
347 	NAPI_STATE_SCHED,		/* Poll is scheduled */
348 	NAPI_STATE_MISSED,		/* reschedule a napi */
349 	NAPI_STATE_DISABLE,		/* Disable pending */
350 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
351 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
352 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
353 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
354 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
355 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
356 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
357 };
358 
359 enum {
360 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
361 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
362 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
363 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
364 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
365 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
366 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
367 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
368 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
369 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380 
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421 
422 enum rx_handler_result {
423 	RX_HANDLER_CONSUMED,
424 	RX_HANDLER_ANOTHER,
425 	RX_HANDLER_EXACT,
426 	RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430 
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433 
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438 
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 void napi_enable(struct napi_struct *n);
507 
508 /**
509  *	napi_synchronize - wait until NAPI is not running
510  *	@n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 	if (IS_ENABLED(CONFIG_SMP))
519 		while (test_bit(NAPI_STATE_SCHED, &n->state))
520 			msleep(1);
521 	else
522 		barrier();
523 }
524 
525 /**
526  *	napi_if_scheduled_mark_missed - if napi is running, set the
527  *	NAPIF_STATE_MISSED
528  *	@n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535 	unsigned long val, new;
536 
537 	do {
538 		val = READ_ONCE(n->state);
539 		if (val & NAPIF_STATE_DISABLE)
540 			return true;
541 
542 		if (!(val & NAPIF_STATE_SCHED))
543 			return false;
544 
545 		new = val | NAPIF_STATE_MISSED;
546 	} while (cmpxchg(&n->state, val, new) != val);
547 
548 	return true;
549 }
550 
551 enum netdev_queue_state_t {
552 	__QUEUE_STATE_DRV_XOFF,
553 	__QUEUE_STATE_STACK_XOFF,
554 	__QUEUE_STATE_FROZEN,
555 };
556 
557 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
560 
561 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563 					QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565 					QUEUE_STATE_FROZEN)
566 
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576 
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581 	struct net_device	*dev;
582 	struct Qdisc __rcu	*qdisc;
583 	struct Qdisc		*qdisc_sleeping;
584 #ifdef CONFIG_SYSFS
585 	struct kobject		kobj;
586 #endif
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 	int			numa_node;
589 #endif
590 	unsigned long		tx_maxrate;
591 	/*
592 	 * Number of TX timeouts for this queue
593 	 * (/sys/class/net/DEV/Q/trans_timeout)
594 	 */
595 	unsigned long		trans_timeout;
596 
597 	/* Subordinate device that the queue has been assigned to */
598 	struct net_device	*sb_dev;
599 #ifdef CONFIG_XDP_SOCKETS
600 	struct xsk_buff_pool    *pool;
601 #endif
602 /*
603  * write-mostly part
604  */
605 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
606 	int			xmit_lock_owner;
607 	/*
608 	 * Time (in jiffies) of last Tx
609 	 */
610 	unsigned long		trans_start;
611 
612 	unsigned long		state;
613 
614 #ifdef CONFIG_BQL
615 	struct dql		dql;
616 #endif
617 } ____cacheline_aligned_in_smp;
618 
619 extern int sysctl_fb_tunnels_only_for_init_net;
620 extern int sysctl_devconf_inherit_init_net;
621 
622 /*
623  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
624  *                                     == 1 : For initns only
625  *                                     == 2 : For none.
626  */
627 static inline bool net_has_fallback_tunnels(const struct net *net)
628 {
629 	return !IS_ENABLED(CONFIG_SYSCTL) ||
630 	       !sysctl_fb_tunnels_only_for_init_net ||
631 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
632 }
633 
634 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
635 {
636 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
637 	return q->numa_node;
638 #else
639 	return NUMA_NO_NODE;
640 #endif
641 }
642 
643 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646 	q->numa_node = node;
647 #endif
648 }
649 
650 #ifdef CONFIG_RPS
651 /*
652  * This structure holds an RPS map which can be of variable length.  The
653  * map is an array of CPUs.
654  */
655 struct rps_map {
656 	unsigned int len;
657 	struct rcu_head rcu;
658 	u16 cpus[];
659 };
660 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
661 
662 /*
663  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
664  * tail pointer for that CPU's input queue at the time of last enqueue, and
665  * a hardware filter index.
666  */
667 struct rps_dev_flow {
668 	u16 cpu;
669 	u16 filter;
670 	unsigned int last_qtail;
671 };
672 #define RPS_NO_FILTER 0xffff
673 
674 /*
675  * The rps_dev_flow_table structure contains a table of flow mappings.
676  */
677 struct rps_dev_flow_table {
678 	unsigned int mask;
679 	struct rcu_head rcu;
680 	struct rps_dev_flow flows[];
681 };
682 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
683     ((_num) * sizeof(struct rps_dev_flow)))
684 
685 /*
686  * The rps_sock_flow_table contains mappings of flows to the last CPU
687  * on which they were processed by the application (set in recvmsg).
688  * Each entry is a 32bit value. Upper part is the high-order bits
689  * of flow hash, lower part is CPU number.
690  * rps_cpu_mask is used to partition the space, depending on number of
691  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
692  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
693  * meaning we use 32-6=26 bits for the hash.
694  */
695 struct rps_sock_flow_table {
696 	u32	mask;
697 
698 	u32	ents[] ____cacheline_aligned_in_smp;
699 };
700 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
701 
702 #define RPS_NO_CPU 0xffff
703 
704 extern u32 rps_cpu_mask;
705 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
706 
707 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
708 					u32 hash)
709 {
710 	if (table && hash) {
711 		unsigned int index = hash & table->mask;
712 		u32 val = hash & ~rps_cpu_mask;
713 
714 		/* We only give a hint, preemption can change CPU under us */
715 		val |= raw_smp_processor_id();
716 
717 		if (table->ents[index] != val)
718 			table->ents[index] = val;
719 	}
720 }
721 
722 #ifdef CONFIG_RFS_ACCEL
723 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
724 			 u16 filter_id);
725 #endif
726 #endif /* CONFIG_RPS */
727 
728 /* This structure contains an instance of an RX queue. */
729 struct netdev_rx_queue {
730 	struct xdp_rxq_info		xdp_rxq;
731 #ifdef CONFIG_RPS
732 	struct rps_map __rcu		*rps_map;
733 	struct rps_dev_flow_table __rcu	*rps_flow_table;
734 #endif
735 	struct kobject			kobj;
736 	struct net_device		*dev;
737 #ifdef CONFIG_XDP_SOCKETS
738 	struct xsk_buff_pool            *pool;
739 #endif
740 } ____cacheline_aligned_in_smp;
741 
742 /*
743  * RX queue sysfs structures and functions.
744  */
745 struct rx_queue_attribute {
746 	struct attribute attr;
747 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
748 	ssize_t (*store)(struct netdev_rx_queue *queue,
749 			 const char *buf, size_t len);
750 };
751 
752 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
753 enum xps_map_type {
754 	XPS_CPUS = 0,
755 	XPS_RXQS,
756 	XPS_MAPS_MAX,
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  *
777  * We keep track of the number of cpus/rxqs used when the struct is allocated,
778  * in nr_ids. This will help not accessing out-of-bound memory.
779  *
780  * We keep track of the number of traffic classes used when the struct is
781  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
782  * not crossing its upper bound, as the original dev->num_tc can be updated in
783  * the meantime.
784  */
785 struct xps_dev_maps {
786 	struct rcu_head rcu;
787 	unsigned int nr_ids;
788 	s16 num_tc;
789 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
790 };
791 
792 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
793 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
794 
795 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
796 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
797 
798 #endif /* CONFIG_XPS */
799 
800 #define TC_MAX_QUEUE	16
801 #define TC_BITMASK	15
802 /* HW offloaded queuing disciplines txq count and offset maps */
803 struct netdev_tc_txq {
804 	u16 count;
805 	u16 offset;
806 };
807 
808 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
809 /*
810  * This structure is to hold information about the device
811  * configured to run FCoE protocol stack.
812  */
813 struct netdev_fcoe_hbainfo {
814 	char	manufacturer[64];
815 	char	serial_number[64];
816 	char	hardware_version[64];
817 	char	driver_version[64];
818 	char	optionrom_version[64];
819 	char	firmware_version[64];
820 	char	model[256];
821 	char	model_description[256];
822 };
823 #endif
824 
825 #define MAX_PHYS_ITEM_ID_LEN 32
826 
827 /* This structure holds a unique identifier to identify some
828  * physical item (port for example) used by a netdevice.
829  */
830 struct netdev_phys_item_id {
831 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
832 	unsigned char id_len;
833 };
834 
835 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
836 					    struct netdev_phys_item_id *b)
837 {
838 	return a->id_len == b->id_len &&
839 	       memcmp(a->id, b->id, a->id_len) == 0;
840 }
841 
842 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
843 				       struct sk_buff *skb,
844 				       struct net_device *sb_dev);
845 
846 enum net_device_path_type {
847 	DEV_PATH_ETHERNET = 0,
848 	DEV_PATH_VLAN,
849 	DEV_PATH_BRIDGE,
850 	DEV_PATH_PPPOE,
851 	DEV_PATH_DSA,
852 };
853 
854 struct net_device_path {
855 	enum net_device_path_type	type;
856 	const struct net_device		*dev;
857 	union {
858 		struct {
859 			u16		id;
860 			__be16		proto;
861 			u8		h_dest[ETH_ALEN];
862 		} encap;
863 		struct {
864 			enum {
865 				DEV_PATH_BR_VLAN_KEEP,
866 				DEV_PATH_BR_VLAN_TAG,
867 				DEV_PATH_BR_VLAN_UNTAG,
868 				DEV_PATH_BR_VLAN_UNTAG_HW,
869 			}		vlan_mode;
870 			u16		vlan_id;
871 			__be16		vlan_proto;
872 		} bridge;
873 		struct {
874 			int port;
875 			u16 proto;
876 		} dsa;
877 	};
878 };
879 
880 #define NET_DEVICE_PATH_STACK_MAX	5
881 #define NET_DEVICE_PATH_VLAN_MAX	2
882 
883 struct net_device_path_stack {
884 	int			num_paths;
885 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
886 };
887 
888 struct net_device_path_ctx {
889 	const struct net_device *dev;
890 	const u8		*daddr;
891 
892 	int			num_vlans;
893 	struct {
894 		u16		id;
895 		__be16		proto;
896 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
897 };
898 
899 enum tc_setup_type {
900 	TC_SETUP_QDISC_MQPRIO,
901 	TC_SETUP_CLSU32,
902 	TC_SETUP_CLSFLOWER,
903 	TC_SETUP_CLSMATCHALL,
904 	TC_SETUP_CLSBPF,
905 	TC_SETUP_BLOCK,
906 	TC_SETUP_QDISC_CBS,
907 	TC_SETUP_QDISC_RED,
908 	TC_SETUP_QDISC_PRIO,
909 	TC_SETUP_QDISC_MQ,
910 	TC_SETUP_QDISC_ETF,
911 	TC_SETUP_ROOT_QDISC,
912 	TC_SETUP_QDISC_GRED,
913 	TC_SETUP_QDISC_TAPRIO,
914 	TC_SETUP_FT,
915 	TC_SETUP_QDISC_ETS,
916 	TC_SETUP_QDISC_TBF,
917 	TC_SETUP_QDISC_FIFO,
918 	TC_SETUP_QDISC_HTB,
919 };
920 
921 /* These structures hold the attributes of bpf state that are being passed
922  * to the netdevice through the bpf op.
923  */
924 enum bpf_netdev_command {
925 	/* Set or clear a bpf program used in the earliest stages of packet
926 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
927 	 * is responsible for calling bpf_prog_put on any old progs that are
928 	 * stored. In case of error, the callee need not release the new prog
929 	 * reference, but on success it takes ownership and must bpf_prog_put
930 	 * when it is no longer used.
931 	 */
932 	XDP_SETUP_PROG,
933 	XDP_SETUP_PROG_HW,
934 	/* BPF program for offload callbacks, invoked at program load time. */
935 	BPF_OFFLOAD_MAP_ALLOC,
936 	BPF_OFFLOAD_MAP_FREE,
937 	XDP_SETUP_XSK_POOL,
938 };
939 
940 struct bpf_prog_offload_ops;
941 struct netlink_ext_ack;
942 struct xdp_umem;
943 struct xdp_dev_bulk_queue;
944 struct bpf_xdp_link;
945 
946 enum bpf_xdp_mode {
947 	XDP_MODE_SKB = 0,
948 	XDP_MODE_DRV = 1,
949 	XDP_MODE_HW = 2,
950 	__MAX_XDP_MODE
951 };
952 
953 struct bpf_xdp_entity {
954 	struct bpf_prog *prog;
955 	struct bpf_xdp_link *link;
956 };
957 
958 struct netdev_bpf {
959 	enum bpf_netdev_command command;
960 	union {
961 		/* XDP_SETUP_PROG */
962 		struct {
963 			u32 flags;
964 			struct bpf_prog *prog;
965 			struct netlink_ext_ack *extack;
966 		};
967 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
968 		struct {
969 			struct bpf_offloaded_map *offmap;
970 		};
971 		/* XDP_SETUP_XSK_POOL */
972 		struct {
973 			struct xsk_buff_pool *pool;
974 			u16 queue_id;
975 		} xsk;
976 	};
977 };
978 
979 /* Flags for ndo_xsk_wakeup. */
980 #define XDP_WAKEUP_RX (1 << 0)
981 #define XDP_WAKEUP_TX (1 << 1)
982 
983 #ifdef CONFIG_XFRM_OFFLOAD
984 struct xfrmdev_ops {
985 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
986 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
987 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
988 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
989 				       struct xfrm_state *x);
990 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
991 };
992 #endif
993 
994 struct dev_ifalias {
995 	struct rcu_head rcuhead;
996 	char ifalias[];
997 };
998 
999 struct devlink;
1000 struct tlsdev_ops;
1001 
1002 struct netdev_name_node {
1003 	struct hlist_node hlist;
1004 	struct list_head list;
1005 	struct net_device *dev;
1006 	const char *name;
1007 };
1008 
1009 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1010 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1011 
1012 struct netdev_net_notifier {
1013 	struct list_head list;
1014 	struct notifier_block *nb;
1015 };
1016 
1017 /*
1018  * This structure defines the management hooks for network devices.
1019  * The following hooks can be defined; unless noted otherwise, they are
1020  * optional and can be filled with a null pointer.
1021  *
1022  * int (*ndo_init)(struct net_device *dev);
1023  *     This function is called once when a network device is registered.
1024  *     The network device can use this for any late stage initialization
1025  *     or semantic validation. It can fail with an error code which will
1026  *     be propagated back to register_netdev.
1027  *
1028  * void (*ndo_uninit)(struct net_device *dev);
1029  *     This function is called when device is unregistered or when registration
1030  *     fails. It is not called if init fails.
1031  *
1032  * int (*ndo_open)(struct net_device *dev);
1033  *     This function is called when a network device transitions to the up
1034  *     state.
1035  *
1036  * int (*ndo_stop)(struct net_device *dev);
1037  *     This function is called when a network device transitions to the down
1038  *     state.
1039  *
1040  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1041  *                               struct net_device *dev);
1042  *	Called when a packet needs to be transmitted.
1043  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1044  *	the queue before that can happen; it's for obsolete devices and weird
1045  *	corner cases, but the stack really does a non-trivial amount
1046  *	of useless work if you return NETDEV_TX_BUSY.
1047  *	Required; cannot be NULL.
1048  *
1049  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1050  *					   struct net_device *dev
1051  *					   netdev_features_t features);
1052  *	Called by core transmit path to determine if device is capable of
1053  *	performing offload operations on a given packet. This is to give
1054  *	the device an opportunity to implement any restrictions that cannot
1055  *	be otherwise expressed by feature flags. The check is called with
1056  *	the set of features that the stack has calculated and it returns
1057  *	those the driver believes to be appropriate.
1058  *
1059  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1060  *                         struct net_device *sb_dev);
1061  *	Called to decide which queue to use when device supports multiple
1062  *	transmit queues.
1063  *
1064  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1065  *	This function is called to allow device receiver to make
1066  *	changes to configuration when multicast or promiscuous is enabled.
1067  *
1068  * void (*ndo_set_rx_mode)(struct net_device *dev);
1069  *	This function is called device changes address list filtering.
1070  *	If driver handles unicast address filtering, it should set
1071  *	IFF_UNICAST_FLT in its priv_flags.
1072  *
1073  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1074  *	This function  is called when the Media Access Control address
1075  *	needs to be changed. If this interface is not defined, the
1076  *	MAC address can not be changed.
1077  *
1078  * int (*ndo_validate_addr)(struct net_device *dev);
1079  *	Test if Media Access Control address is valid for the device.
1080  *
1081  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1082  *	Old-style ioctl entry point. This is used internally by the
1083  *	appletalk and ieee802154 subsystems but is no longer called by
1084  *	the device ioctl handler.
1085  *
1086  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Used by the bonding driver for its device specific ioctls:
1088  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1089  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1090  *
1091  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1093  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1094  *
1095  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1096  *	Used to set network devices bus interface parameters. This interface
1097  *	is retained for legacy reasons; new devices should use the bus
1098  *	interface (PCI) for low level management.
1099  *
1100  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1101  *	Called when a user wants to change the Maximum Transfer Unit
1102  *	of a device.
1103  *
1104  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1105  *	Callback used when the transmitter has not made any progress
1106  *	for dev->watchdog ticks.
1107  *
1108  * void (*ndo_get_stats64)(struct net_device *dev,
1109  *                         struct rtnl_link_stats64 *storage);
1110  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111  *	Called when a user wants to get the network device usage
1112  *	statistics. Drivers must do one of the following:
1113  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1114  *	   rtnl_link_stats64 structure passed by the caller.
1115  *	2. Define @ndo_get_stats to update a net_device_stats structure
1116  *	   (which should normally be dev->stats) and return a pointer to
1117  *	   it. The structure may be changed asynchronously only if each
1118  *	   field is written atomically.
1119  *	3. Update dev->stats asynchronously and atomically, and define
1120  *	   neither operation.
1121  *
1122  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1123  *	Return true if this device supports offload stats of this attr_id.
1124  *
1125  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1126  *	void *attr_data)
1127  *	Get statistics for offload operations by attr_id. Write it into the
1128  *	attr_data pointer.
1129  *
1130  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1131  *	If device supports VLAN filtering this function is called when a
1132  *	VLAN id is registered.
1133  *
1134  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135  *	If device supports VLAN filtering this function is called when a
1136  *	VLAN id is unregistered.
1137  *
1138  * void (*ndo_poll_controller)(struct net_device *dev);
1139  *
1140  *	SR-IOV management functions.
1141  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1142  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1143  *			  u8 qos, __be16 proto);
1144  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1145  *			  int max_tx_rate);
1146  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1147  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1148  * int (*ndo_get_vf_config)(struct net_device *dev,
1149  *			    int vf, struct ifla_vf_info *ivf);
1150  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1151  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1152  *			  struct nlattr *port[]);
1153  *
1154  *      Enable or disable the VF ability to query its RSS Redirection Table and
1155  *      Hash Key. This is needed since on some devices VF share this information
1156  *      with PF and querying it may introduce a theoretical security risk.
1157  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1158  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1159  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1160  *		       void *type_data);
1161  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1162  *	This is always called from the stack with the rtnl lock held and netif
1163  *	tx queues stopped. This allows the netdevice to perform queue
1164  *	management safely.
1165  *
1166  *	Fiber Channel over Ethernet (FCoE) offload functions.
1167  * int (*ndo_fcoe_enable)(struct net_device *dev);
1168  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1169  *	so the underlying device can perform whatever needed configuration or
1170  *	initialization to support acceleration of FCoE traffic.
1171  *
1172  * int (*ndo_fcoe_disable)(struct net_device *dev);
1173  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1174  *	so the underlying device can perform whatever needed clean-ups to
1175  *	stop supporting acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1178  *			     struct scatterlist *sgl, unsigned int sgc);
1179  *	Called when the FCoE Initiator wants to initialize an I/O that
1180  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1181  *	perform necessary setup and returns 1 to indicate the device is set up
1182  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1183  *
1184  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1185  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1186  *	indicated by the FC exchange id 'xid', so the underlying device can
1187  *	clean up and reuse resources for later DDP requests.
1188  *
1189  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1190  *			      struct scatterlist *sgl, unsigned int sgc);
1191  *	Called when the FCoE Target wants to initialize an I/O that
1192  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1193  *	perform necessary setup and returns 1 to indicate the device is set up
1194  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1195  *
1196  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1197  *			       struct netdev_fcoe_hbainfo *hbainfo);
1198  *	Called when the FCoE Protocol stack wants information on the underlying
1199  *	device. This information is utilized by the FCoE protocol stack to
1200  *	register attributes with Fiber Channel management service as per the
1201  *	FC-GS Fabric Device Management Information(FDMI) specification.
1202  *
1203  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1204  *	Called when the underlying device wants to override default World Wide
1205  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1206  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1207  *	protocol stack to use.
1208  *
1209  *	RFS acceleration.
1210  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1211  *			    u16 rxq_index, u32 flow_id);
1212  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1213  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1214  *	Return the filter ID on success, or a negative error code.
1215  *
1216  *	Slave management functions (for bridge, bonding, etc).
1217  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1218  *	Called to make another netdev an underling.
1219  *
1220  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1221  *	Called to release previously enslaved netdev.
1222  *
1223  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1224  *					    struct sk_buff *skb,
1225  *					    bool all_slaves);
1226  *	Get the xmit slave of master device. If all_slaves is true, function
1227  *	assume all the slaves can transmit.
1228  *
1229  *      Feature/offload setting functions.
1230  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1231  *		netdev_features_t features);
1232  *	Adjusts the requested feature flags according to device-specific
1233  *	constraints, and returns the resulting flags. Must not modify
1234  *	the device state.
1235  *
1236  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1237  *	Called to update device configuration to new features. Passed
1238  *	feature set might be less than what was returned by ndo_fix_features()).
1239  *	Must return >0 or -errno if it changed dev->features itself.
1240  *
1241  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1242  *		      struct net_device *dev,
1243  *		      const unsigned char *addr, u16 vid, u16 flags,
1244  *		      struct netlink_ext_ack *extack);
1245  *	Adds an FDB entry to dev for addr.
1246  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *		      struct net_device *dev,
1248  *		      const unsigned char *addr, u16 vid)
1249  *	Deletes the FDB entry from dev coresponding to addr.
1250  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1251  *		       struct net_device *dev, struct net_device *filter_dev,
1252  *		       int *idx)
1253  *	Used to add FDB entries to dump requests. Implementers should add
1254  *	entries to skb and update idx with the number of entries.
1255  *
1256  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1257  *			     u16 flags, struct netlink_ext_ack *extack)
1258  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1259  *			     struct net_device *dev, u32 filter_mask,
1260  *			     int nlflags)
1261  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1262  *			     u16 flags);
1263  *
1264  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1265  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1266  *	which do not represent real hardware may define this to allow their
1267  *	userspace components to manage their virtual carrier state. Devices
1268  *	that determine carrier state from physical hardware properties (eg
1269  *	network cables) or protocol-dependent mechanisms (eg
1270  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1271  *
1272  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1273  *			       struct netdev_phys_item_id *ppid);
1274  *	Called to get ID of physical port of this device. If driver does
1275  *	not implement this, it is assumed that the hw is not able to have
1276  *	multiple net devices on single physical port.
1277  *
1278  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1279  *				 struct netdev_phys_item_id *ppid)
1280  *	Called to get the parent ID of the physical port of this device.
1281  *
1282  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1283  *				 struct net_device *dev)
1284  *	Called by upper layer devices to accelerate switching or other
1285  *	station functionality into hardware. 'pdev is the lowerdev
1286  *	to use for the offload and 'dev' is the net device that will
1287  *	back the offload. Returns a pointer to the private structure
1288  *	the upper layer will maintain.
1289  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1290  *	Called by upper layer device to delete the station created
1291  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1292  *	the station and priv is the structure returned by the add
1293  *	operation.
1294  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1295  *			     int queue_index, u32 maxrate);
1296  *	Called when a user wants to set a max-rate limitation of specific
1297  *	TX queue.
1298  * int (*ndo_get_iflink)(const struct net_device *dev);
1299  *	Called to get the iflink value of this device.
1300  * void (*ndo_change_proto_down)(struct net_device *dev,
1301  *				 bool proto_down);
1302  *	This function is used to pass protocol port error state information
1303  *	to the switch driver. The switch driver can react to the proto_down
1304  *      by doing a phys down on the associated switch port.
1305  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306  *	This function is used to get egress tunnel information for given skb.
1307  *	This is useful for retrieving outer tunnel header parameters while
1308  *	sampling packet.
1309  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310  *	This function is used to specify the headroom that the skb must
1311  *	consider when allocation skb during packet reception. Setting
1312  *	appropriate rx headroom value allows avoiding skb head copy on
1313  *	forward. Setting a negative value resets the rx headroom to the
1314  *	default value.
1315  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316  *	This function is used to set or query state related to XDP on the
1317  *	netdevice and manage BPF offload. See definition of
1318  *	enum bpf_netdev_command for details.
1319  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320  *			u32 flags);
1321  *	This function is used to submit @n XDP packets for transmit on a
1322  *	netdevice. Returns number of frames successfully transmitted, frames
1323  *	that got dropped are freed/returned via xdp_return_frame().
1324  *	Returns negative number, means general error invoking ndo, meaning
1325  *	no frames were xmit'ed and core-caller will free all frames.
1326  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327  *					        struct xdp_buff *xdp);
1328  *      Get the xmit slave of master device based on the xdp_buff.
1329  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330  *      This function is used to wake up the softirq, ksoftirqd or kthread
1331  *	responsible for sending and/or receiving packets on a specific
1332  *	queue id bound to an AF_XDP socket. The flags field specifies if
1333  *	only RX, only Tx, or both should be woken up using the flags
1334  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336  *	Get devlink port instance associated with a given netdev.
1337  *	Called with a reference on the netdevice and devlink locks only,
1338  *	rtnl_lock is not held.
1339  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340  *			 int cmd);
1341  *	Add, change, delete or get information on an IPv4 tunnel.
1342  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343  *	If a device is paired with a peer device, return the peer instance.
1344  *	The caller must be under RCU read context.
1345  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346  *     Get the forwarding path to reach the real device from the HW destination address
1347  */
1348 struct net_device_ops {
1349 	int			(*ndo_init)(struct net_device *dev);
1350 	void			(*ndo_uninit)(struct net_device *dev);
1351 	int			(*ndo_open)(struct net_device *dev);
1352 	int			(*ndo_stop)(struct net_device *dev);
1353 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1354 						  struct net_device *dev);
1355 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1356 						      struct net_device *dev,
1357 						      netdev_features_t features);
1358 	u16			(*ndo_select_queue)(struct net_device *dev,
1359 						    struct sk_buff *skb,
1360 						    struct net_device *sb_dev);
1361 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1362 						       int flags);
1363 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1364 	int			(*ndo_set_mac_address)(struct net_device *dev,
1365 						       void *addr);
1366 	int			(*ndo_validate_addr)(struct net_device *dev);
1367 	int			(*ndo_do_ioctl)(struct net_device *dev,
1368 					        struct ifreq *ifr, int cmd);
1369 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1370 						 struct ifreq *ifr, int cmd);
1371 	int			(*ndo_siocbond)(struct net_device *dev,
1372 						struct ifreq *ifr, int cmd);
1373 	int			(*ndo_siocwandev)(struct net_device *dev,
1374 						  struct if_settings *ifs);
1375 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1376 						      struct ifreq *ifr,
1377 						      void __user *data, int cmd);
1378 	int			(*ndo_set_config)(struct net_device *dev,
1379 					          struct ifmap *map);
1380 	int			(*ndo_change_mtu)(struct net_device *dev,
1381 						  int new_mtu);
1382 	int			(*ndo_neigh_setup)(struct net_device *dev,
1383 						   struct neigh_parms *);
1384 	void			(*ndo_tx_timeout) (struct net_device *dev,
1385 						   unsigned int txqueue);
1386 
1387 	void			(*ndo_get_stats64)(struct net_device *dev,
1388 						   struct rtnl_link_stats64 *storage);
1389 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390 	int			(*ndo_get_offload_stats)(int attr_id,
1391 							 const struct net_device *dev,
1392 							 void *attr_data);
1393 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394 
1395 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396 						       __be16 proto, u16 vid);
1397 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398 						        __be16 proto, u16 vid);
1399 #ifdef CONFIG_NET_POLL_CONTROLLER
1400 	void                    (*ndo_poll_controller)(struct net_device *dev);
1401 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1402 						     struct netpoll_info *info);
1403 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1404 #endif
1405 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1406 						  int queue, u8 *mac);
1407 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1408 						   int queue, u16 vlan,
1409 						   u8 qos, __be16 proto);
1410 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1411 						   int vf, int min_tx_rate,
1412 						   int max_tx_rate);
1413 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1414 						       int vf, bool setting);
1415 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1416 						    int vf, bool setting);
1417 	int			(*ndo_get_vf_config)(struct net_device *dev,
1418 						     int vf,
1419 						     struct ifla_vf_info *ivf);
1420 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1421 							 int vf, int link_state);
1422 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1423 						    int vf,
1424 						    struct ifla_vf_stats
1425 						    *vf_stats);
1426 	int			(*ndo_set_vf_port)(struct net_device *dev,
1427 						   int vf,
1428 						   struct nlattr *port[]);
1429 	int			(*ndo_get_vf_port)(struct net_device *dev,
1430 						   int vf, struct sk_buff *skb);
1431 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1432 						   int vf,
1433 						   struct ifla_vf_guid *node_guid,
1434 						   struct ifla_vf_guid *port_guid);
1435 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1436 						   int vf, u64 guid,
1437 						   int guid_type);
1438 	int			(*ndo_set_vf_rss_query_en)(
1439 						   struct net_device *dev,
1440 						   int vf, bool setting);
1441 	int			(*ndo_setup_tc)(struct net_device *dev,
1442 						enum tc_setup_type type,
1443 						void *type_data);
1444 #if IS_ENABLED(CONFIG_FCOE)
1445 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1446 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1447 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448 						      u16 xid,
1449 						      struct scatterlist *sgl,
1450 						      unsigned int sgc);
1451 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1452 						     u16 xid);
1453 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1454 						       u16 xid,
1455 						       struct scatterlist *sgl,
1456 						       unsigned int sgc);
1457 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458 							struct netdev_fcoe_hbainfo *hbainfo);
1459 #endif
1460 
1461 #if IS_ENABLED(CONFIG_LIBFCOE)
1462 #define NETDEV_FCOE_WWNN 0
1463 #define NETDEV_FCOE_WWPN 1
1464 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1465 						    u64 *wwn, int type);
1466 #endif
1467 
1468 #ifdef CONFIG_RFS_ACCEL
1469 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1470 						     const struct sk_buff *skb,
1471 						     u16 rxq_index,
1472 						     u32 flow_id);
1473 #endif
1474 	int			(*ndo_add_slave)(struct net_device *dev,
1475 						 struct net_device *slave_dev,
1476 						 struct netlink_ext_ack *extack);
1477 	int			(*ndo_del_slave)(struct net_device *dev,
1478 						 struct net_device *slave_dev);
1479 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1480 						      struct sk_buff *skb,
1481 						      bool all_slaves);
1482 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1483 							struct sock *sk);
1484 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1485 						    netdev_features_t features);
1486 	int			(*ndo_set_features)(struct net_device *dev,
1487 						    netdev_features_t features);
1488 	int			(*ndo_neigh_construct)(struct net_device *dev,
1489 						       struct neighbour *n);
1490 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1491 						     struct neighbour *n);
1492 
1493 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1494 					       struct nlattr *tb[],
1495 					       struct net_device *dev,
1496 					       const unsigned char *addr,
1497 					       u16 vid,
1498 					       u16 flags,
1499 					       struct netlink_ext_ack *extack);
1500 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1501 					       struct nlattr *tb[],
1502 					       struct net_device *dev,
1503 					       const unsigned char *addr,
1504 					       u16 vid);
1505 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1506 						struct netlink_callback *cb,
1507 						struct net_device *dev,
1508 						struct net_device *filter_dev,
1509 						int *idx);
1510 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1511 					       struct nlattr *tb[],
1512 					       struct net_device *dev,
1513 					       const unsigned char *addr,
1514 					       u16 vid, u32 portid, u32 seq,
1515 					       struct netlink_ext_ack *extack);
1516 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1517 						      struct nlmsghdr *nlh,
1518 						      u16 flags,
1519 						      struct netlink_ext_ack *extack);
1520 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1521 						      u32 pid, u32 seq,
1522 						      struct net_device *dev,
1523 						      u32 filter_mask,
1524 						      int nlflags);
1525 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1526 						      struct nlmsghdr *nlh,
1527 						      u16 flags);
1528 	int			(*ndo_change_carrier)(struct net_device *dev,
1529 						      bool new_carrier);
1530 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1531 							struct netdev_phys_item_id *ppid);
1532 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1533 							  struct netdev_phys_item_id *ppid);
1534 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1535 							  char *name, size_t len);
1536 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1537 							struct net_device *dev);
1538 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1539 							void *priv);
1540 
1541 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1542 						      int queue_index,
1543 						      u32 maxrate);
1544 	int			(*ndo_get_iflink)(const struct net_device *dev);
1545 	int			(*ndo_change_proto_down)(struct net_device *dev,
1546 							 bool proto_down);
1547 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1548 						       struct sk_buff *skb);
1549 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1550 						       int needed_headroom);
1551 	int			(*ndo_bpf)(struct net_device *dev,
1552 					   struct netdev_bpf *bpf);
1553 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1554 						struct xdp_frame **xdp,
1555 						u32 flags);
1556 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1557 							  struct xdp_buff *xdp);
1558 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1559 						  u32 queue_id, u32 flags);
1560 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1561 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1562 						  struct ip_tunnel_parm *p, int cmd);
1563 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1564 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1565                                                          struct net_device_path *path);
1566 };
1567 
1568 /**
1569  * enum netdev_priv_flags - &struct net_device priv_flags
1570  *
1571  * These are the &struct net_device, they are only set internally
1572  * by drivers and used in the kernel. These flags are invisible to
1573  * userspace; this means that the order of these flags can change
1574  * during any kernel release.
1575  *
1576  * You should have a pretty good reason to be extending these flags.
1577  *
1578  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1579  * @IFF_EBRIDGE: Ethernet bridging device
1580  * @IFF_BONDING: bonding master or slave
1581  * @IFF_ISATAP: ISATAP interface (RFC4214)
1582  * @IFF_WAN_HDLC: WAN HDLC device
1583  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1584  *	release skb->dst
1585  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1586  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1587  * @IFF_MACVLAN_PORT: device used as macvlan port
1588  * @IFF_BRIDGE_PORT: device used as bridge port
1589  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1590  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1591  * @IFF_UNICAST_FLT: Supports unicast filtering
1592  * @IFF_TEAM_PORT: device used as team port
1593  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1594  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1595  *	change when it's running
1596  * @IFF_MACVLAN: Macvlan device
1597  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1598  *	underlying stacked devices
1599  * @IFF_L3MDEV_MASTER: device is an L3 master device
1600  * @IFF_NO_QUEUE: device can run without qdisc attached
1601  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1602  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1603  * @IFF_TEAM: device is a team device
1604  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1605  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1606  *	entity (i.e. the master device for bridged veth)
1607  * @IFF_MACSEC: device is a MACsec device
1608  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1609  * @IFF_FAILOVER: device is a failover master device
1610  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1611  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1612  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1613  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1614  *	skb_headlen(skb) == 0 (data starts from frag0)
1615  */
1616 enum netdev_priv_flags {
1617 	IFF_802_1Q_VLAN			= 1<<0,
1618 	IFF_EBRIDGE			= 1<<1,
1619 	IFF_BONDING			= 1<<2,
1620 	IFF_ISATAP			= 1<<3,
1621 	IFF_WAN_HDLC			= 1<<4,
1622 	IFF_XMIT_DST_RELEASE		= 1<<5,
1623 	IFF_DONT_BRIDGE			= 1<<6,
1624 	IFF_DISABLE_NETPOLL		= 1<<7,
1625 	IFF_MACVLAN_PORT		= 1<<8,
1626 	IFF_BRIDGE_PORT			= 1<<9,
1627 	IFF_OVS_DATAPATH		= 1<<10,
1628 	IFF_TX_SKB_SHARING		= 1<<11,
1629 	IFF_UNICAST_FLT			= 1<<12,
1630 	IFF_TEAM_PORT			= 1<<13,
1631 	IFF_SUPP_NOFCS			= 1<<14,
1632 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1633 	IFF_MACVLAN			= 1<<16,
1634 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1635 	IFF_L3MDEV_MASTER		= 1<<18,
1636 	IFF_NO_QUEUE			= 1<<19,
1637 	IFF_OPENVSWITCH			= 1<<20,
1638 	IFF_L3MDEV_SLAVE		= 1<<21,
1639 	IFF_TEAM			= 1<<22,
1640 	IFF_RXFH_CONFIGURED		= 1<<23,
1641 	IFF_PHONY_HEADROOM		= 1<<24,
1642 	IFF_MACSEC			= 1<<25,
1643 	IFF_NO_RX_HANDLER		= 1<<26,
1644 	IFF_FAILOVER			= 1<<27,
1645 	IFF_FAILOVER_SLAVE		= 1<<28,
1646 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1647 	IFF_LIVE_RENAME_OK		= 1<<30,
1648 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1649 };
1650 
1651 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1652 #define IFF_EBRIDGE			IFF_EBRIDGE
1653 #define IFF_BONDING			IFF_BONDING
1654 #define IFF_ISATAP			IFF_ISATAP
1655 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1656 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1657 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1658 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1659 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1660 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1661 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1662 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1663 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1664 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1665 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1666 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1667 #define IFF_MACVLAN			IFF_MACVLAN
1668 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1669 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1670 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1671 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1672 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1673 #define IFF_TEAM			IFF_TEAM
1674 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1675 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1676 #define IFF_MACSEC			IFF_MACSEC
1677 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1678 #define IFF_FAILOVER			IFF_FAILOVER
1679 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1680 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1681 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1682 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1683 
1684 /* Specifies the type of the struct net_device::ml_priv pointer */
1685 enum netdev_ml_priv_type {
1686 	ML_PRIV_NONE,
1687 	ML_PRIV_CAN,
1688 };
1689 
1690 /**
1691  *	struct net_device - The DEVICE structure.
1692  *
1693  *	Actually, this whole structure is a big mistake.  It mixes I/O
1694  *	data with strictly "high-level" data, and it has to know about
1695  *	almost every data structure used in the INET module.
1696  *
1697  *	@name:	This is the first field of the "visible" part of this structure
1698  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1699  *		of the interface.
1700  *
1701  *	@name_node:	Name hashlist node
1702  *	@ifalias:	SNMP alias
1703  *	@mem_end:	Shared memory end
1704  *	@mem_start:	Shared memory start
1705  *	@base_addr:	Device I/O address
1706  *	@irq:		Device IRQ number
1707  *
1708  *	@state:		Generic network queuing layer state, see netdev_state_t
1709  *	@dev_list:	The global list of network devices
1710  *	@napi_list:	List entry used for polling NAPI devices
1711  *	@unreg_list:	List entry  when we are unregistering the
1712  *			device; see the function unregister_netdev
1713  *	@close_list:	List entry used when we are closing the device
1714  *	@ptype_all:     Device-specific packet handlers for all protocols
1715  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1716  *
1717  *	@adj_list:	Directly linked devices, like slaves for bonding
1718  *	@features:	Currently active device features
1719  *	@hw_features:	User-changeable features
1720  *
1721  *	@wanted_features:	User-requested features
1722  *	@vlan_features:		Mask of features inheritable by VLAN devices
1723  *
1724  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1725  *				This field indicates what encapsulation
1726  *				offloads the hardware is capable of doing,
1727  *				and drivers will need to set them appropriately.
1728  *
1729  *	@mpls_features:	Mask of features inheritable by MPLS
1730  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1731  *
1732  *	@ifindex:	interface index
1733  *	@group:		The group the device belongs to
1734  *
1735  *	@stats:		Statistics struct, which was left as a legacy, use
1736  *			rtnl_link_stats64 instead
1737  *
1738  *	@rx_dropped:	Dropped packets by core network,
1739  *			do not use this in drivers
1740  *	@tx_dropped:	Dropped packets by core network,
1741  *			do not use this in drivers
1742  *	@rx_nohandler:	nohandler dropped packets by core network on
1743  *			inactive devices, do not use this in drivers
1744  *	@carrier_up_count:	Number of times the carrier has been up
1745  *	@carrier_down_count:	Number of times the carrier has been down
1746  *
1747  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1748  *				instead of ioctl,
1749  *				see <net/iw_handler.h> for details.
1750  *	@wireless_data:	Instance data managed by the core of wireless extensions
1751  *
1752  *	@netdev_ops:	Includes several pointers to callbacks,
1753  *			if one wants to override the ndo_*() functions
1754  *	@ethtool_ops:	Management operations
1755  *	@l3mdev_ops:	Layer 3 master device operations
1756  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1757  *			discovery handling. Necessary for e.g. 6LoWPAN.
1758  *	@xfrmdev_ops:	Transformation offload operations
1759  *	@tlsdev_ops:	Transport Layer Security offload operations
1760  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1761  *			of Layer 2 headers.
1762  *
1763  *	@flags:		Interface flags (a la BSD)
1764  *	@priv_flags:	Like 'flags' but invisible to userspace,
1765  *			see if.h for the definitions
1766  *	@gflags:	Global flags ( kept as legacy )
1767  *	@padded:	How much padding added by alloc_netdev()
1768  *	@operstate:	RFC2863 operstate
1769  *	@link_mode:	Mapping policy to operstate
1770  *	@if_port:	Selectable AUI, TP, ...
1771  *	@dma:		DMA channel
1772  *	@mtu:		Interface MTU value
1773  *	@min_mtu:	Interface Minimum MTU value
1774  *	@max_mtu:	Interface Maximum MTU value
1775  *	@type:		Interface hardware type
1776  *	@hard_header_len: Maximum hardware header length.
1777  *	@min_header_len:  Minimum hardware header length
1778  *
1779  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1780  *			  cases can this be guaranteed
1781  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1782  *			  cases can this be guaranteed. Some cases also use
1783  *			  LL_MAX_HEADER instead to allocate the skb
1784  *
1785  *	interface address info:
1786  *
1787  * 	@perm_addr:		Permanent hw address
1788  * 	@addr_assign_type:	Hw address assignment type
1789  * 	@addr_len:		Hardware address length
1790  *	@upper_level:		Maximum depth level of upper devices.
1791  *	@lower_level:		Maximum depth level of lower devices.
1792  *	@neigh_priv_len:	Used in neigh_alloc()
1793  * 	@dev_id:		Used to differentiate devices that share
1794  * 				the same link layer address
1795  * 	@dev_port:		Used to differentiate devices that share
1796  * 				the same function
1797  *	@addr_list_lock:	XXX: need comments on this one
1798  *	@name_assign_type:	network interface name assignment type
1799  *	@uc_promisc:		Counter that indicates promiscuous mode
1800  *				has been enabled due to the need to listen to
1801  *				additional unicast addresses in a device that
1802  *				does not implement ndo_set_rx_mode()
1803  *	@uc:			unicast mac addresses
1804  *	@mc:			multicast mac addresses
1805  *	@dev_addrs:		list of device hw addresses
1806  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1807  *	@promiscuity:		Number of times the NIC is told to work in
1808  *				promiscuous mode; if it becomes 0 the NIC will
1809  *				exit promiscuous mode
1810  *	@allmulti:		Counter, enables or disables allmulticast mode
1811  *
1812  *	@vlan_info:	VLAN info
1813  *	@dsa_ptr:	dsa specific data
1814  *	@tipc_ptr:	TIPC specific data
1815  *	@atalk_ptr:	AppleTalk link
1816  *	@ip_ptr:	IPv4 specific data
1817  *	@dn_ptr:	DECnet specific data
1818  *	@ip6_ptr:	IPv6 specific data
1819  *	@ax25_ptr:	AX.25 specific data
1820  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1821  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822  *			 device struct
1823  *	@mpls_ptr:	mpls_dev struct pointer
1824  *	@mctp_ptr:	MCTP specific data
1825  *
1826  *	@dev_addr:	Hw address (before bcast,
1827  *			because most packets are unicast)
1828  *
1829  *	@_rx:			Array of RX queues
1830  *	@num_rx_queues:		Number of RX queues
1831  *				allocated at register_netdev() time
1832  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1833  *	@xdp_prog:		XDP sockets filter program pointer
1834  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1835  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1836  *				allow to avoid NIC hard IRQ, on busy queues.
1837  *
1838  *	@rx_handler:		handler for received packets
1839  *	@rx_handler_data: 	XXX: need comments on this one
1840  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1841  *				ingress processing
1842  *	@ingress_queue:		XXX: need comments on this one
1843  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1844  *	@broadcast:		hw bcast address
1845  *
1846  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1847  *			indexed by RX queue number. Assigned by driver.
1848  *			This must only be set if the ndo_rx_flow_steer
1849  *			operation is defined
1850  *	@index_hlist:		Device index hash chain
1851  *
1852  *	@_tx:			Array of TX queues
1853  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1854  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1855  *	@qdisc:			Root qdisc from userspace point of view
1856  *	@tx_queue_len:		Max frames per queue allowed
1857  *	@tx_global_lock: 	XXX: need comments on this one
1858  *	@xdp_bulkq:		XDP device bulk queue
1859  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1860  *
1861  *	@xps_maps:	XXX: need comments on this one
1862  *	@miniq_egress:		clsact qdisc specific data for
1863  *				egress processing
1864  *	@qdisc_hash:		qdisc hash table
1865  *	@watchdog_timeo:	Represents the timeout that is used by
1866  *				the watchdog (see dev_watchdog())
1867  *	@watchdog_timer:	List of timers
1868  *
1869  *	@proto_down_reason:	reason a netdev interface is held down
1870  *	@pcpu_refcnt:		Number of references to this device
1871  *	@dev_refcnt:		Number of references to this device
1872  *	@todo_list:		Delayed register/unregister
1873  *	@link_watch_list:	XXX: need comments on this one
1874  *
1875  *	@reg_state:		Register/unregister state machine
1876  *	@dismantle:		Device is going to be freed
1877  *	@rtnl_link_state:	This enum represents the phases of creating
1878  *				a new link
1879  *
1880  *	@needs_free_netdev:	Should unregister perform free_netdev?
1881  *	@priv_destructor:	Called from unregister
1882  *	@npinfo:		XXX: need comments on this one
1883  * 	@nd_net:		Network namespace this network device is inside
1884  *
1885  * 	@ml_priv:	Mid-layer private
1886  *	@ml_priv_type:  Mid-layer private type
1887  * 	@lstats:	Loopback statistics
1888  * 	@tstats:	Tunnel statistics
1889  * 	@dstats:	Dummy statistics
1890  * 	@vstats:	Virtual ethernet statistics
1891  *
1892  *	@garp_port:	GARP
1893  *	@mrp_port:	MRP
1894  *
1895  *	@dev:		Class/net/name entry
1896  *	@sysfs_groups:	Space for optional device, statistics and wireless
1897  *			sysfs groups
1898  *
1899  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1900  *	@rtnl_link_ops:	Rtnl_link_ops
1901  *
1902  *	@gso_max_size:	Maximum size of generic segmentation offload
1903  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1904  *			NIC for GSO
1905  *
1906  *	@dcbnl_ops:	Data Center Bridging netlink ops
1907  *	@num_tc:	Number of traffic classes in the net device
1908  *	@tc_to_txq:	XXX: need comments on this one
1909  *	@prio_tc_map:	XXX: need comments on this one
1910  *
1911  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1912  *
1913  *	@priomap:	XXX: need comments on this one
1914  *	@phydev:	Physical device may attach itself
1915  *			for hardware timestamping
1916  *	@sfp_bus:	attached &struct sfp_bus structure.
1917  *
1918  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1919  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1920  *
1921  *	@proto_down:	protocol port state information can be sent to the
1922  *			switch driver and used to set the phys state of the
1923  *			switch port.
1924  *
1925  *	@wol_enabled:	Wake-on-LAN is enabled
1926  *
1927  *	@threaded:	napi threaded mode is enabled
1928  *
1929  *	@net_notifier_list:	List of per-net netdev notifier block
1930  *				that follow this device when it is moved
1931  *				to another network namespace.
1932  *
1933  *	@macsec_ops:    MACsec offloading ops
1934  *
1935  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1936  *				offload capabilities of the device
1937  *	@udp_tunnel_nic:	UDP tunnel offload state
1938  *	@xdp_state:		stores info on attached XDP BPF programs
1939  *
1940  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1941  *			dev->addr_list_lock.
1942  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1943  *			keep a list of interfaces to be deleted.
1944  *
1945  *	FIXME: cleanup struct net_device such that network protocol info
1946  *	moves out.
1947  */
1948 
1949 struct net_device {
1950 	char			name[IFNAMSIZ];
1951 	struct netdev_name_node	*name_node;
1952 	struct dev_ifalias	__rcu *ifalias;
1953 	/*
1954 	 *	I/O specific fields
1955 	 *	FIXME: Merge these and struct ifmap into one
1956 	 */
1957 	unsigned long		mem_end;
1958 	unsigned long		mem_start;
1959 	unsigned long		base_addr;
1960 
1961 	/*
1962 	 *	Some hardware also needs these fields (state,dev_list,
1963 	 *	napi_list,unreg_list,close_list) but they are not
1964 	 *	part of the usual set specified in Space.c.
1965 	 */
1966 
1967 	unsigned long		state;
1968 
1969 	struct list_head	dev_list;
1970 	struct list_head	napi_list;
1971 	struct list_head	unreg_list;
1972 	struct list_head	close_list;
1973 	struct list_head	ptype_all;
1974 	struct list_head	ptype_specific;
1975 
1976 	struct {
1977 		struct list_head upper;
1978 		struct list_head lower;
1979 	} adj_list;
1980 
1981 	/* Read-mostly cache-line for fast-path access */
1982 	unsigned int		flags;
1983 	unsigned int		priv_flags;
1984 	const struct net_device_ops *netdev_ops;
1985 	int			ifindex;
1986 	unsigned short		gflags;
1987 	unsigned short		hard_header_len;
1988 
1989 	/* Note : dev->mtu is often read without holding a lock.
1990 	 * Writers usually hold RTNL.
1991 	 * It is recommended to use READ_ONCE() to annotate the reads,
1992 	 * and to use WRITE_ONCE() to annotate the writes.
1993 	 */
1994 	unsigned int		mtu;
1995 	unsigned short		needed_headroom;
1996 	unsigned short		needed_tailroom;
1997 
1998 	netdev_features_t	features;
1999 	netdev_features_t	hw_features;
2000 	netdev_features_t	wanted_features;
2001 	netdev_features_t	vlan_features;
2002 	netdev_features_t	hw_enc_features;
2003 	netdev_features_t	mpls_features;
2004 	netdev_features_t	gso_partial_features;
2005 
2006 	unsigned int		min_mtu;
2007 	unsigned int		max_mtu;
2008 	unsigned short		type;
2009 	unsigned char		min_header_len;
2010 	unsigned char		name_assign_type;
2011 
2012 	int			group;
2013 
2014 	struct net_device_stats	stats; /* not used by modern drivers */
2015 
2016 	atomic_long_t		rx_dropped;
2017 	atomic_long_t		tx_dropped;
2018 	atomic_long_t		rx_nohandler;
2019 
2020 	/* Stats to monitor link on/off, flapping */
2021 	atomic_t		carrier_up_count;
2022 	atomic_t		carrier_down_count;
2023 
2024 #ifdef CONFIG_WIRELESS_EXT
2025 	const struct iw_handler_def *wireless_handlers;
2026 	struct iw_public_data	*wireless_data;
2027 #endif
2028 	const struct ethtool_ops *ethtool_ops;
2029 #ifdef CONFIG_NET_L3_MASTER_DEV
2030 	const struct l3mdev_ops	*l3mdev_ops;
2031 #endif
2032 #if IS_ENABLED(CONFIG_IPV6)
2033 	const struct ndisc_ops *ndisc_ops;
2034 #endif
2035 
2036 #ifdef CONFIG_XFRM_OFFLOAD
2037 	const struct xfrmdev_ops *xfrmdev_ops;
2038 #endif
2039 
2040 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2041 	const struct tlsdev_ops *tlsdev_ops;
2042 #endif
2043 
2044 	const struct header_ops *header_ops;
2045 
2046 	unsigned char		operstate;
2047 	unsigned char		link_mode;
2048 
2049 	unsigned char		if_port;
2050 	unsigned char		dma;
2051 
2052 	/* Interface address info. */
2053 	unsigned char		perm_addr[MAX_ADDR_LEN];
2054 	unsigned char		addr_assign_type;
2055 	unsigned char		addr_len;
2056 	unsigned char		upper_level;
2057 	unsigned char		lower_level;
2058 
2059 	unsigned short		neigh_priv_len;
2060 	unsigned short          dev_id;
2061 	unsigned short          dev_port;
2062 	unsigned short		padded;
2063 
2064 	spinlock_t		addr_list_lock;
2065 	int			irq;
2066 
2067 	struct netdev_hw_addr_list	uc;
2068 	struct netdev_hw_addr_list	mc;
2069 	struct netdev_hw_addr_list	dev_addrs;
2070 
2071 #ifdef CONFIG_SYSFS
2072 	struct kset		*queues_kset;
2073 #endif
2074 #ifdef CONFIG_LOCKDEP
2075 	struct list_head	unlink_list;
2076 #endif
2077 	unsigned int		promiscuity;
2078 	unsigned int		allmulti;
2079 	bool			uc_promisc;
2080 #ifdef CONFIG_LOCKDEP
2081 	unsigned char		nested_level;
2082 #endif
2083 
2084 
2085 	/* Protocol-specific pointers */
2086 
2087 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2088 	struct vlan_info __rcu	*vlan_info;
2089 #endif
2090 #if IS_ENABLED(CONFIG_NET_DSA)
2091 	struct dsa_port		*dsa_ptr;
2092 #endif
2093 #if IS_ENABLED(CONFIG_TIPC)
2094 	struct tipc_bearer __rcu *tipc_ptr;
2095 #endif
2096 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2097 	void 			*atalk_ptr;
2098 #endif
2099 	struct in_device __rcu	*ip_ptr;
2100 #if IS_ENABLED(CONFIG_DECNET)
2101 	struct dn_dev __rcu     *dn_ptr;
2102 #endif
2103 	struct inet6_dev __rcu	*ip6_ptr;
2104 #if IS_ENABLED(CONFIG_AX25)
2105 	void			*ax25_ptr;
2106 #endif
2107 	struct wireless_dev	*ieee80211_ptr;
2108 	struct wpan_dev		*ieee802154_ptr;
2109 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2110 	struct mpls_dev __rcu	*mpls_ptr;
2111 #endif
2112 #if IS_ENABLED(CONFIG_MCTP)
2113 	struct mctp_dev __rcu	*mctp_ptr;
2114 #endif
2115 
2116 /*
2117  * Cache lines mostly used on receive path (including eth_type_trans())
2118  */
2119 	/* Interface address info used in eth_type_trans() */
2120 	unsigned char		*dev_addr;
2121 
2122 	struct netdev_rx_queue	*_rx;
2123 	unsigned int		num_rx_queues;
2124 	unsigned int		real_num_rx_queues;
2125 
2126 	struct bpf_prog __rcu	*xdp_prog;
2127 	unsigned long		gro_flush_timeout;
2128 	int			napi_defer_hard_irqs;
2129 	rx_handler_func_t __rcu	*rx_handler;
2130 	void __rcu		*rx_handler_data;
2131 
2132 #ifdef CONFIG_NET_CLS_ACT
2133 	struct mini_Qdisc __rcu	*miniq_ingress;
2134 #endif
2135 	struct netdev_queue __rcu *ingress_queue;
2136 #ifdef CONFIG_NETFILTER_INGRESS
2137 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2138 #endif
2139 
2140 	unsigned char		broadcast[MAX_ADDR_LEN];
2141 #ifdef CONFIG_RFS_ACCEL
2142 	struct cpu_rmap		*rx_cpu_rmap;
2143 #endif
2144 	struct hlist_node	index_hlist;
2145 
2146 /*
2147  * Cache lines mostly used on transmit path
2148  */
2149 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2150 	unsigned int		num_tx_queues;
2151 	unsigned int		real_num_tx_queues;
2152 	struct Qdisc		*qdisc;
2153 	unsigned int		tx_queue_len;
2154 	spinlock_t		tx_global_lock;
2155 
2156 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2157 
2158 #ifdef CONFIG_XPS
2159 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2160 #endif
2161 #ifdef CONFIG_NET_CLS_ACT
2162 	struct mini_Qdisc __rcu	*miniq_egress;
2163 #endif
2164 
2165 #ifdef CONFIG_NET_SCHED
2166 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2167 #endif
2168 	/* These may be needed for future network-power-down code. */
2169 	struct timer_list	watchdog_timer;
2170 	int			watchdog_timeo;
2171 
2172 	u32                     proto_down_reason;
2173 
2174 	struct list_head	todo_list;
2175 
2176 #ifdef CONFIG_PCPU_DEV_REFCNT
2177 	int __percpu		*pcpu_refcnt;
2178 #else
2179 	refcount_t		dev_refcnt;
2180 #endif
2181 
2182 	struct list_head	link_watch_list;
2183 
2184 	enum { NETREG_UNINITIALIZED=0,
2185 	       NETREG_REGISTERED,	/* completed register_netdevice */
2186 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2187 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2188 	       NETREG_RELEASED,		/* called free_netdev */
2189 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2190 	} reg_state:8;
2191 
2192 	bool dismantle;
2193 
2194 	enum {
2195 		RTNL_LINK_INITIALIZED,
2196 		RTNL_LINK_INITIALIZING,
2197 	} rtnl_link_state:16;
2198 
2199 	bool needs_free_netdev;
2200 	void (*priv_destructor)(struct net_device *dev);
2201 
2202 #ifdef CONFIG_NETPOLL
2203 	struct netpoll_info __rcu	*npinfo;
2204 #endif
2205 
2206 	possible_net_t			nd_net;
2207 
2208 	/* mid-layer private */
2209 	void				*ml_priv;
2210 	enum netdev_ml_priv_type	ml_priv_type;
2211 
2212 	union {
2213 		struct pcpu_lstats __percpu		*lstats;
2214 		struct pcpu_sw_netstats __percpu	*tstats;
2215 		struct pcpu_dstats __percpu		*dstats;
2216 	};
2217 
2218 #if IS_ENABLED(CONFIG_GARP)
2219 	struct garp_port __rcu	*garp_port;
2220 #endif
2221 #if IS_ENABLED(CONFIG_MRP)
2222 	struct mrp_port __rcu	*mrp_port;
2223 #endif
2224 
2225 	struct device		dev;
2226 	const struct attribute_group *sysfs_groups[4];
2227 	const struct attribute_group *sysfs_rx_queue_group;
2228 
2229 	const struct rtnl_link_ops *rtnl_link_ops;
2230 
2231 	/* for setting kernel sock attribute on TCP connection setup */
2232 #define GSO_MAX_SIZE		65536
2233 	unsigned int		gso_max_size;
2234 #define GSO_MAX_SEGS		65535
2235 	u16			gso_max_segs;
2236 
2237 #ifdef CONFIG_DCB
2238 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2239 #endif
2240 	s16			num_tc;
2241 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2242 	u8			prio_tc_map[TC_BITMASK + 1];
2243 
2244 #if IS_ENABLED(CONFIG_FCOE)
2245 	unsigned int		fcoe_ddp_xid;
2246 #endif
2247 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2248 	struct netprio_map __rcu *priomap;
2249 #endif
2250 	struct phy_device	*phydev;
2251 	struct sfp_bus		*sfp_bus;
2252 	struct lock_class_key	*qdisc_tx_busylock;
2253 	struct lock_class_key	*qdisc_running_key;
2254 	bool			proto_down;
2255 	unsigned		wol_enabled:1;
2256 	unsigned		threaded:1;
2257 
2258 	struct list_head	net_notifier_list;
2259 
2260 #if IS_ENABLED(CONFIG_MACSEC)
2261 	/* MACsec management functions */
2262 	const struct macsec_ops *macsec_ops;
2263 #endif
2264 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2265 	struct udp_tunnel_nic	*udp_tunnel_nic;
2266 
2267 	/* protected by rtnl_lock */
2268 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2269 };
2270 #define to_net_dev(d) container_of(d, struct net_device, dev)
2271 
2272 static inline bool netif_elide_gro(const struct net_device *dev)
2273 {
2274 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2275 		return true;
2276 	return false;
2277 }
2278 
2279 #define	NETDEV_ALIGN		32
2280 
2281 static inline
2282 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2283 {
2284 	return dev->prio_tc_map[prio & TC_BITMASK];
2285 }
2286 
2287 static inline
2288 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2289 {
2290 	if (tc >= dev->num_tc)
2291 		return -EINVAL;
2292 
2293 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2294 	return 0;
2295 }
2296 
2297 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2298 void netdev_reset_tc(struct net_device *dev);
2299 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2300 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2301 
2302 static inline
2303 int netdev_get_num_tc(struct net_device *dev)
2304 {
2305 	return dev->num_tc;
2306 }
2307 
2308 static inline void net_prefetch(void *p)
2309 {
2310 	prefetch(p);
2311 #if L1_CACHE_BYTES < 128
2312 	prefetch((u8 *)p + L1_CACHE_BYTES);
2313 #endif
2314 }
2315 
2316 static inline void net_prefetchw(void *p)
2317 {
2318 	prefetchw(p);
2319 #if L1_CACHE_BYTES < 128
2320 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2321 #endif
2322 }
2323 
2324 void netdev_unbind_sb_channel(struct net_device *dev,
2325 			      struct net_device *sb_dev);
2326 int netdev_bind_sb_channel_queue(struct net_device *dev,
2327 				 struct net_device *sb_dev,
2328 				 u8 tc, u16 count, u16 offset);
2329 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2330 static inline int netdev_get_sb_channel(struct net_device *dev)
2331 {
2332 	return max_t(int, -dev->num_tc, 0);
2333 }
2334 
2335 static inline
2336 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2337 					 unsigned int index)
2338 {
2339 	return &dev->_tx[index];
2340 }
2341 
2342 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2343 						    const struct sk_buff *skb)
2344 {
2345 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2346 }
2347 
2348 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2349 					    void (*f)(struct net_device *,
2350 						      struct netdev_queue *,
2351 						      void *),
2352 					    void *arg)
2353 {
2354 	unsigned int i;
2355 
2356 	for (i = 0; i < dev->num_tx_queues; i++)
2357 		f(dev, &dev->_tx[i], arg);
2358 }
2359 
2360 #define netdev_lockdep_set_classes(dev)				\
2361 {								\
2362 	static struct lock_class_key qdisc_tx_busylock_key;	\
2363 	static struct lock_class_key qdisc_running_key;		\
2364 	static struct lock_class_key qdisc_xmit_lock_key;	\
2365 	static struct lock_class_key dev_addr_list_lock_key;	\
2366 	unsigned int i;						\
2367 								\
2368 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2369 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2370 	lockdep_set_class(&(dev)->addr_list_lock,		\
2371 			  &dev_addr_list_lock_key);		\
2372 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2373 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2374 				  &qdisc_xmit_lock_key);	\
2375 }
2376 
2377 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2378 		     struct net_device *sb_dev);
2379 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2380 					 struct sk_buff *skb,
2381 					 struct net_device *sb_dev);
2382 
2383 /* returns the headroom that the master device needs to take in account
2384  * when forwarding to this dev
2385  */
2386 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2387 {
2388 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2389 }
2390 
2391 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2392 {
2393 	if (dev->netdev_ops->ndo_set_rx_headroom)
2394 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2395 }
2396 
2397 /* set the device rx headroom to the dev's default */
2398 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2399 {
2400 	netdev_set_rx_headroom(dev, -1);
2401 }
2402 
2403 static inline void *netdev_get_ml_priv(struct net_device *dev,
2404 				       enum netdev_ml_priv_type type)
2405 {
2406 	if (dev->ml_priv_type != type)
2407 		return NULL;
2408 
2409 	return dev->ml_priv;
2410 }
2411 
2412 static inline void netdev_set_ml_priv(struct net_device *dev,
2413 				      void *ml_priv,
2414 				      enum netdev_ml_priv_type type)
2415 {
2416 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2417 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2418 	     dev->ml_priv_type, type);
2419 	WARN(!dev->ml_priv_type && dev->ml_priv,
2420 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2421 
2422 	dev->ml_priv = ml_priv;
2423 	dev->ml_priv_type = type;
2424 }
2425 
2426 /*
2427  * Net namespace inlines
2428  */
2429 static inline
2430 struct net *dev_net(const struct net_device *dev)
2431 {
2432 	return read_pnet(&dev->nd_net);
2433 }
2434 
2435 static inline
2436 void dev_net_set(struct net_device *dev, struct net *net)
2437 {
2438 	write_pnet(&dev->nd_net, net);
2439 }
2440 
2441 /**
2442  *	netdev_priv - access network device private data
2443  *	@dev: network device
2444  *
2445  * Get network device private data
2446  */
2447 static inline void *netdev_priv(const struct net_device *dev)
2448 {
2449 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2450 }
2451 
2452 /* Set the sysfs physical device reference for the network logical device
2453  * if set prior to registration will cause a symlink during initialization.
2454  */
2455 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2456 
2457 /* Set the sysfs device type for the network logical device to allow
2458  * fine-grained identification of different network device types. For
2459  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2460  */
2461 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2462 
2463 /* Default NAPI poll() weight
2464  * Device drivers are strongly advised to not use bigger value
2465  */
2466 #define NAPI_POLL_WEIGHT 64
2467 
2468 /**
2469  *	netif_napi_add - initialize a NAPI context
2470  *	@dev:  network device
2471  *	@napi: NAPI context
2472  *	@poll: polling function
2473  *	@weight: default weight
2474  *
2475  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2476  * *any* of the other NAPI-related functions.
2477  */
2478 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2479 		    int (*poll)(struct napi_struct *, int), int weight);
2480 
2481 /**
2482  *	netif_tx_napi_add - initialize a NAPI context
2483  *	@dev:  network device
2484  *	@napi: NAPI context
2485  *	@poll: polling function
2486  *	@weight: default weight
2487  *
2488  * This variant of netif_napi_add() should be used from drivers using NAPI
2489  * to exclusively poll a TX queue.
2490  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2491  */
2492 static inline void netif_tx_napi_add(struct net_device *dev,
2493 				     struct napi_struct *napi,
2494 				     int (*poll)(struct napi_struct *, int),
2495 				     int weight)
2496 {
2497 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2498 	netif_napi_add(dev, napi, poll, weight);
2499 }
2500 
2501 /**
2502  *  __netif_napi_del - remove a NAPI context
2503  *  @napi: NAPI context
2504  *
2505  * Warning: caller must observe RCU grace period before freeing memory
2506  * containing @napi. Drivers might want to call this helper to combine
2507  * all the needed RCU grace periods into a single one.
2508  */
2509 void __netif_napi_del(struct napi_struct *napi);
2510 
2511 /**
2512  *  netif_napi_del - remove a NAPI context
2513  *  @napi: NAPI context
2514  *
2515  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2516  */
2517 static inline void netif_napi_del(struct napi_struct *napi)
2518 {
2519 	__netif_napi_del(napi);
2520 	synchronize_net();
2521 }
2522 
2523 struct napi_gro_cb {
2524 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2525 	void	*frag0;
2526 
2527 	/* Length of frag0. */
2528 	unsigned int frag0_len;
2529 
2530 	/* This indicates where we are processing relative to skb->data. */
2531 	int	data_offset;
2532 
2533 	/* This is non-zero if the packet cannot be merged with the new skb. */
2534 	u16	flush;
2535 
2536 	/* Save the IP ID here and check when we get to the transport layer */
2537 	u16	flush_id;
2538 
2539 	/* Number of segments aggregated. */
2540 	u16	count;
2541 
2542 	/* Start offset for remote checksum offload */
2543 	u16	gro_remcsum_start;
2544 
2545 	/* jiffies when first packet was created/queued */
2546 	unsigned long age;
2547 
2548 	/* Used in ipv6_gro_receive() and foo-over-udp */
2549 	u16	proto;
2550 
2551 	/* This is non-zero if the packet may be of the same flow. */
2552 	u8	same_flow:1;
2553 
2554 	/* Used in tunnel GRO receive */
2555 	u8	encap_mark:1;
2556 
2557 	/* GRO checksum is valid */
2558 	u8	csum_valid:1;
2559 
2560 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2561 	u8	csum_cnt:3;
2562 
2563 	/* Free the skb? */
2564 	u8	free:2;
2565 #define NAPI_GRO_FREE		  1
2566 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2567 
2568 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2569 	u8	is_ipv6:1;
2570 
2571 	/* Used in GRE, set in fou/gue_gro_receive */
2572 	u8	is_fou:1;
2573 
2574 	/* Used to determine if flush_id can be ignored */
2575 	u8	is_atomic:1;
2576 
2577 	/* Number of gro_receive callbacks this packet already went through */
2578 	u8 recursion_counter:4;
2579 
2580 	/* GRO is done by frag_list pointer chaining. */
2581 	u8	is_flist:1;
2582 
2583 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2584 	__wsum	csum;
2585 
2586 	/* used in skb_gro_receive() slow path */
2587 	struct sk_buff *last;
2588 };
2589 
2590 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2591 
2592 #define GRO_RECURSION_LIMIT 15
2593 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2594 {
2595 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2596 }
2597 
2598 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2599 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2600 					       struct list_head *head,
2601 					       struct sk_buff *skb)
2602 {
2603 	if (unlikely(gro_recursion_inc_test(skb))) {
2604 		NAPI_GRO_CB(skb)->flush |= 1;
2605 		return NULL;
2606 	}
2607 
2608 	return cb(head, skb);
2609 }
2610 
2611 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2612 					    struct sk_buff *);
2613 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2614 						  struct sock *sk,
2615 						  struct list_head *head,
2616 						  struct sk_buff *skb)
2617 {
2618 	if (unlikely(gro_recursion_inc_test(skb))) {
2619 		NAPI_GRO_CB(skb)->flush |= 1;
2620 		return NULL;
2621 	}
2622 
2623 	return cb(sk, head, skb);
2624 }
2625 
2626 struct packet_type {
2627 	__be16			type;	/* This is really htons(ether_type). */
2628 	bool			ignore_outgoing;
2629 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2630 	int			(*func) (struct sk_buff *,
2631 					 struct net_device *,
2632 					 struct packet_type *,
2633 					 struct net_device *);
2634 	void			(*list_func) (struct list_head *,
2635 					      struct packet_type *,
2636 					      struct net_device *);
2637 	bool			(*id_match)(struct packet_type *ptype,
2638 					    struct sock *sk);
2639 	void			*af_packet_priv;
2640 	struct list_head	list;
2641 };
2642 
2643 struct offload_callbacks {
2644 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2645 						netdev_features_t features);
2646 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2647 						struct sk_buff *skb);
2648 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2649 };
2650 
2651 struct packet_offload {
2652 	__be16			 type;	/* This is really htons(ether_type). */
2653 	u16			 priority;
2654 	struct offload_callbacks callbacks;
2655 	struct list_head	 list;
2656 };
2657 
2658 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2659 struct pcpu_sw_netstats {
2660 	u64     rx_packets;
2661 	u64     rx_bytes;
2662 	u64     tx_packets;
2663 	u64     tx_bytes;
2664 	struct u64_stats_sync   syncp;
2665 } __aligned(4 * sizeof(u64));
2666 
2667 struct pcpu_lstats {
2668 	u64_stats_t packets;
2669 	u64_stats_t bytes;
2670 	struct u64_stats_sync syncp;
2671 } __aligned(2 * sizeof(u64));
2672 
2673 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2674 
2675 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2676 {
2677 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2678 
2679 	u64_stats_update_begin(&tstats->syncp);
2680 	tstats->rx_bytes += len;
2681 	tstats->rx_packets++;
2682 	u64_stats_update_end(&tstats->syncp);
2683 }
2684 
2685 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2686 					  unsigned int packets,
2687 					  unsigned int len)
2688 {
2689 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2690 
2691 	u64_stats_update_begin(&tstats->syncp);
2692 	tstats->tx_bytes += len;
2693 	tstats->tx_packets += packets;
2694 	u64_stats_update_end(&tstats->syncp);
2695 }
2696 
2697 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2698 {
2699 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2700 
2701 	u64_stats_update_begin(&lstats->syncp);
2702 	u64_stats_add(&lstats->bytes, len);
2703 	u64_stats_inc(&lstats->packets);
2704 	u64_stats_update_end(&lstats->syncp);
2705 }
2706 
2707 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2708 ({									\
2709 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2710 	if (pcpu_stats)	{						\
2711 		int __cpu;						\
2712 		for_each_possible_cpu(__cpu) {				\
2713 			typeof(type) *stat;				\
2714 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2715 			u64_stats_init(&stat->syncp);			\
2716 		}							\
2717 	}								\
2718 	pcpu_stats;							\
2719 })
2720 
2721 #define netdev_alloc_pcpu_stats(type)					\
2722 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2723 
2724 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2725 ({									\
2726 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2727 	if (pcpu_stats) {						\
2728 		int __cpu;						\
2729 		for_each_possible_cpu(__cpu) {				\
2730 			typeof(type) *stat;				\
2731 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2732 			u64_stats_init(&stat->syncp);			\
2733 		}							\
2734 	}								\
2735 	pcpu_stats;							\
2736 })
2737 
2738 enum netdev_lag_tx_type {
2739 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2740 	NETDEV_LAG_TX_TYPE_RANDOM,
2741 	NETDEV_LAG_TX_TYPE_BROADCAST,
2742 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2743 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2744 	NETDEV_LAG_TX_TYPE_HASH,
2745 };
2746 
2747 enum netdev_lag_hash {
2748 	NETDEV_LAG_HASH_NONE,
2749 	NETDEV_LAG_HASH_L2,
2750 	NETDEV_LAG_HASH_L34,
2751 	NETDEV_LAG_HASH_L23,
2752 	NETDEV_LAG_HASH_E23,
2753 	NETDEV_LAG_HASH_E34,
2754 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2755 	NETDEV_LAG_HASH_UNKNOWN,
2756 };
2757 
2758 struct netdev_lag_upper_info {
2759 	enum netdev_lag_tx_type tx_type;
2760 	enum netdev_lag_hash hash_type;
2761 };
2762 
2763 struct netdev_lag_lower_state_info {
2764 	u8 link_up : 1,
2765 	   tx_enabled : 1;
2766 };
2767 
2768 #include <linux/notifier.h>
2769 
2770 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2771  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2772  * adding new types.
2773  */
2774 enum netdev_cmd {
2775 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2776 	NETDEV_DOWN,
2777 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2778 				   detected a hardware crash and restarted
2779 				   - we can use this eg to kick tcp sessions
2780 				   once done */
2781 	NETDEV_CHANGE,		/* Notify device state change */
2782 	NETDEV_REGISTER,
2783 	NETDEV_UNREGISTER,
2784 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2785 	NETDEV_CHANGEADDR,	/* notify after the address change */
2786 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2787 	NETDEV_GOING_DOWN,
2788 	NETDEV_CHANGENAME,
2789 	NETDEV_FEAT_CHANGE,
2790 	NETDEV_BONDING_FAILOVER,
2791 	NETDEV_PRE_UP,
2792 	NETDEV_PRE_TYPE_CHANGE,
2793 	NETDEV_POST_TYPE_CHANGE,
2794 	NETDEV_POST_INIT,
2795 	NETDEV_RELEASE,
2796 	NETDEV_NOTIFY_PEERS,
2797 	NETDEV_JOIN,
2798 	NETDEV_CHANGEUPPER,
2799 	NETDEV_RESEND_IGMP,
2800 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2801 	NETDEV_CHANGEINFODATA,
2802 	NETDEV_BONDING_INFO,
2803 	NETDEV_PRECHANGEUPPER,
2804 	NETDEV_CHANGELOWERSTATE,
2805 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2806 	NETDEV_UDP_TUNNEL_DROP_INFO,
2807 	NETDEV_CHANGE_TX_QUEUE_LEN,
2808 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2809 	NETDEV_CVLAN_FILTER_DROP_INFO,
2810 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2811 	NETDEV_SVLAN_FILTER_DROP_INFO,
2812 };
2813 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2814 
2815 int register_netdevice_notifier(struct notifier_block *nb);
2816 int unregister_netdevice_notifier(struct notifier_block *nb);
2817 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2818 int unregister_netdevice_notifier_net(struct net *net,
2819 				      struct notifier_block *nb);
2820 int register_netdevice_notifier_dev_net(struct net_device *dev,
2821 					struct notifier_block *nb,
2822 					struct netdev_net_notifier *nn);
2823 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2824 					  struct notifier_block *nb,
2825 					  struct netdev_net_notifier *nn);
2826 
2827 struct netdev_notifier_info {
2828 	struct net_device	*dev;
2829 	struct netlink_ext_ack	*extack;
2830 };
2831 
2832 struct netdev_notifier_info_ext {
2833 	struct netdev_notifier_info info; /* must be first */
2834 	union {
2835 		u32 mtu;
2836 	} ext;
2837 };
2838 
2839 struct netdev_notifier_change_info {
2840 	struct netdev_notifier_info info; /* must be first */
2841 	unsigned int flags_changed;
2842 };
2843 
2844 struct netdev_notifier_changeupper_info {
2845 	struct netdev_notifier_info info; /* must be first */
2846 	struct net_device *upper_dev; /* new upper dev */
2847 	bool master; /* is upper dev master */
2848 	bool linking; /* is the notification for link or unlink */
2849 	void *upper_info; /* upper dev info */
2850 };
2851 
2852 struct netdev_notifier_changelowerstate_info {
2853 	struct netdev_notifier_info info; /* must be first */
2854 	void *lower_state_info; /* is lower dev state */
2855 };
2856 
2857 struct netdev_notifier_pre_changeaddr_info {
2858 	struct netdev_notifier_info info; /* must be first */
2859 	const unsigned char *dev_addr;
2860 };
2861 
2862 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2863 					     struct net_device *dev)
2864 {
2865 	info->dev = dev;
2866 	info->extack = NULL;
2867 }
2868 
2869 static inline struct net_device *
2870 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2871 {
2872 	return info->dev;
2873 }
2874 
2875 static inline struct netlink_ext_ack *
2876 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2877 {
2878 	return info->extack;
2879 }
2880 
2881 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2882 
2883 
2884 extern rwlock_t				dev_base_lock;		/* Device list lock */
2885 
2886 #define for_each_netdev(net, d)		\
2887 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2888 #define for_each_netdev_reverse(net, d)	\
2889 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2890 #define for_each_netdev_rcu(net, d)		\
2891 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2892 #define for_each_netdev_safe(net, d, n)	\
2893 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2894 #define for_each_netdev_continue(net, d)		\
2895 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2896 #define for_each_netdev_continue_reverse(net, d)		\
2897 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2898 						     dev_list)
2899 #define for_each_netdev_continue_rcu(net, d)		\
2900 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2901 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2902 		for_each_netdev_rcu(&init_net, slave)	\
2903 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2904 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2905 
2906 static inline struct net_device *next_net_device(struct net_device *dev)
2907 {
2908 	struct list_head *lh;
2909 	struct net *net;
2910 
2911 	net = dev_net(dev);
2912 	lh = dev->dev_list.next;
2913 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2914 }
2915 
2916 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2917 {
2918 	struct list_head *lh;
2919 	struct net *net;
2920 
2921 	net = dev_net(dev);
2922 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2923 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2924 }
2925 
2926 static inline struct net_device *first_net_device(struct net *net)
2927 {
2928 	return list_empty(&net->dev_base_head) ? NULL :
2929 		net_device_entry(net->dev_base_head.next);
2930 }
2931 
2932 static inline struct net_device *first_net_device_rcu(struct net *net)
2933 {
2934 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2935 
2936 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2937 }
2938 
2939 int netdev_boot_setup_check(struct net_device *dev);
2940 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2941 				       const char *hwaddr);
2942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2943 void dev_add_pack(struct packet_type *pt);
2944 void dev_remove_pack(struct packet_type *pt);
2945 void __dev_remove_pack(struct packet_type *pt);
2946 void dev_add_offload(struct packet_offload *po);
2947 void dev_remove_offload(struct packet_offload *po);
2948 
2949 int dev_get_iflink(const struct net_device *dev);
2950 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2951 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2952 			  struct net_device_path_stack *stack);
2953 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2954 				      unsigned short mask);
2955 struct net_device *dev_get_by_name(struct net *net, const char *name);
2956 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2957 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2958 bool netdev_name_in_use(struct net *net, const char *name);
2959 int dev_alloc_name(struct net_device *dev, const char *name);
2960 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2961 void dev_close(struct net_device *dev);
2962 void dev_close_many(struct list_head *head, bool unlink);
2963 void dev_disable_lro(struct net_device *dev);
2964 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2965 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2966 		     struct net_device *sb_dev);
2967 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2968 		       struct net_device *sb_dev);
2969 
2970 int dev_queue_xmit(struct sk_buff *skb);
2971 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2972 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2973 
2974 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2975 {
2976 	int ret;
2977 
2978 	ret = __dev_direct_xmit(skb, queue_id);
2979 	if (!dev_xmit_complete(ret))
2980 		kfree_skb(skb);
2981 	return ret;
2982 }
2983 
2984 int register_netdevice(struct net_device *dev);
2985 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2986 void unregister_netdevice_many(struct list_head *head);
2987 static inline void unregister_netdevice(struct net_device *dev)
2988 {
2989 	unregister_netdevice_queue(dev, NULL);
2990 }
2991 
2992 int netdev_refcnt_read(const struct net_device *dev);
2993 void free_netdev(struct net_device *dev);
2994 void netdev_freemem(struct net_device *dev);
2995 int init_dummy_netdev(struct net_device *dev);
2996 
2997 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2998 					 struct sk_buff *skb,
2999 					 bool all_slaves);
3000 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3001 					    struct sock *sk);
3002 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3003 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3004 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3005 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3006 int netdev_get_name(struct net *net, char *name, int ifindex);
3007 int dev_restart(struct net_device *dev);
3008 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
3009 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
3010 
3011 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
3012 {
3013 	return NAPI_GRO_CB(skb)->data_offset;
3014 }
3015 
3016 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
3017 {
3018 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
3019 }
3020 
3021 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3022 {
3023 	NAPI_GRO_CB(skb)->data_offset += len;
3024 }
3025 
3026 static inline void *skb_gro_header_fast(struct sk_buff *skb,
3027 					unsigned int offset)
3028 {
3029 	return NAPI_GRO_CB(skb)->frag0 + offset;
3030 }
3031 
3032 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3033 {
3034 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
3035 }
3036 
3037 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3038 {
3039 	NAPI_GRO_CB(skb)->frag0 = NULL;
3040 	NAPI_GRO_CB(skb)->frag0_len = 0;
3041 }
3042 
3043 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3044 					unsigned int offset)
3045 {
3046 	if (!pskb_may_pull(skb, hlen))
3047 		return NULL;
3048 
3049 	skb_gro_frag0_invalidate(skb);
3050 	return skb->data + offset;
3051 }
3052 
3053 static inline void *skb_gro_network_header(struct sk_buff *skb)
3054 {
3055 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3056 	       skb_network_offset(skb);
3057 }
3058 
3059 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3060 					const void *start, unsigned int len)
3061 {
3062 	if (NAPI_GRO_CB(skb)->csum_valid)
3063 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3064 						  csum_partial(start, len, 0));
3065 }
3066 
3067 /* GRO checksum functions. These are logical equivalents of the normal
3068  * checksum functions (in skbuff.h) except that they operate on the GRO
3069  * offsets and fields in sk_buff.
3070  */
3071 
3072 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3073 
3074 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3075 {
3076 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3077 }
3078 
3079 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3080 						      bool zero_okay,
3081 						      __sum16 check)
3082 {
3083 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3084 		skb_checksum_start_offset(skb) <
3085 		 skb_gro_offset(skb)) &&
3086 		!skb_at_gro_remcsum_start(skb) &&
3087 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3088 		(!zero_okay || check));
3089 }
3090 
3091 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3092 							   __wsum psum)
3093 {
3094 	if (NAPI_GRO_CB(skb)->csum_valid &&
3095 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3096 		return 0;
3097 
3098 	NAPI_GRO_CB(skb)->csum = psum;
3099 
3100 	return __skb_gro_checksum_complete(skb);
3101 }
3102 
3103 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3104 {
3105 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3106 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3107 		NAPI_GRO_CB(skb)->csum_cnt--;
3108 	} else {
3109 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3110 		 * verified a new top level checksum or an encapsulated one
3111 		 * during GRO. This saves work if we fallback to normal path.
3112 		 */
3113 		__skb_incr_checksum_unnecessary(skb);
3114 	}
3115 }
3116 
3117 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3118 				    compute_pseudo)			\
3119 ({									\
3120 	__sum16 __ret = 0;						\
3121 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3122 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3123 				compute_pseudo(skb, proto));		\
3124 	if (!__ret)							\
3125 		skb_gro_incr_csum_unnecessary(skb);			\
3126 	__ret;								\
3127 })
3128 
3129 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3130 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3131 
3132 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3133 					     compute_pseudo)		\
3134 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3135 
3136 #define skb_gro_checksum_simple_validate(skb)				\
3137 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3138 
3139 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3140 {
3141 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3142 		!NAPI_GRO_CB(skb)->csum_valid);
3143 }
3144 
3145 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3146 					      __wsum pseudo)
3147 {
3148 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3149 	NAPI_GRO_CB(skb)->csum_valid = 1;
3150 }
3151 
3152 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3153 do {									\
3154 	if (__skb_gro_checksum_convert_check(skb))			\
3155 		__skb_gro_checksum_convert(skb, 			\
3156 					   compute_pseudo(skb, proto));	\
3157 } while (0)
3158 
3159 struct gro_remcsum {
3160 	int offset;
3161 	__wsum delta;
3162 };
3163 
3164 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3165 {
3166 	grc->offset = 0;
3167 	grc->delta = 0;
3168 }
3169 
3170 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3171 					    unsigned int off, size_t hdrlen,
3172 					    int start, int offset,
3173 					    struct gro_remcsum *grc,
3174 					    bool nopartial)
3175 {
3176 	__wsum delta;
3177 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3178 
3179 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3180 
3181 	if (!nopartial) {
3182 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3183 		return ptr;
3184 	}
3185 
3186 	ptr = skb_gro_header_fast(skb, off);
3187 	if (skb_gro_header_hard(skb, off + plen)) {
3188 		ptr = skb_gro_header_slow(skb, off + plen, off);
3189 		if (!ptr)
3190 			return NULL;
3191 	}
3192 
3193 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3194 			       start, offset);
3195 
3196 	/* Adjust skb->csum since we changed the packet */
3197 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3198 
3199 	grc->offset = off + hdrlen + offset;
3200 	grc->delta = delta;
3201 
3202 	return ptr;
3203 }
3204 
3205 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3206 					   struct gro_remcsum *grc)
3207 {
3208 	void *ptr;
3209 	size_t plen = grc->offset + sizeof(u16);
3210 
3211 	if (!grc->delta)
3212 		return;
3213 
3214 	ptr = skb_gro_header_fast(skb, grc->offset);
3215 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3216 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3217 		if (!ptr)
3218 			return;
3219 	}
3220 
3221 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3222 }
3223 
3224 #ifdef CONFIG_XFRM_OFFLOAD
3225 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3226 {
3227 	if (PTR_ERR(pp) != -EINPROGRESS)
3228 		NAPI_GRO_CB(skb)->flush |= flush;
3229 }
3230 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3231 					       struct sk_buff *pp,
3232 					       int flush,
3233 					       struct gro_remcsum *grc)
3234 {
3235 	if (PTR_ERR(pp) != -EINPROGRESS) {
3236 		NAPI_GRO_CB(skb)->flush |= flush;
3237 		skb_gro_remcsum_cleanup(skb, grc);
3238 		skb->remcsum_offload = 0;
3239 	}
3240 }
3241 #else
3242 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3243 {
3244 	NAPI_GRO_CB(skb)->flush |= flush;
3245 }
3246 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3247 					       struct sk_buff *pp,
3248 					       int flush,
3249 					       struct gro_remcsum *grc)
3250 {
3251 	NAPI_GRO_CB(skb)->flush |= flush;
3252 	skb_gro_remcsum_cleanup(skb, grc);
3253 	skb->remcsum_offload = 0;
3254 }
3255 #endif
3256 
3257 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3258 				  unsigned short type,
3259 				  const void *daddr, const void *saddr,
3260 				  unsigned int len)
3261 {
3262 	if (!dev->header_ops || !dev->header_ops->create)
3263 		return 0;
3264 
3265 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3266 }
3267 
3268 static inline int dev_parse_header(const struct sk_buff *skb,
3269 				   unsigned char *haddr)
3270 {
3271 	const struct net_device *dev = skb->dev;
3272 
3273 	if (!dev->header_ops || !dev->header_ops->parse)
3274 		return 0;
3275 	return dev->header_ops->parse(skb, haddr);
3276 }
3277 
3278 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3279 {
3280 	const struct net_device *dev = skb->dev;
3281 
3282 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3283 		return 0;
3284 	return dev->header_ops->parse_protocol(skb);
3285 }
3286 
3287 /* ll_header must have at least hard_header_len allocated */
3288 static inline bool dev_validate_header(const struct net_device *dev,
3289 				       char *ll_header, int len)
3290 {
3291 	if (likely(len >= dev->hard_header_len))
3292 		return true;
3293 	if (len < dev->min_header_len)
3294 		return false;
3295 
3296 	if (capable(CAP_SYS_RAWIO)) {
3297 		memset(ll_header + len, 0, dev->hard_header_len - len);
3298 		return true;
3299 	}
3300 
3301 	if (dev->header_ops && dev->header_ops->validate)
3302 		return dev->header_ops->validate(ll_header, len);
3303 
3304 	return false;
3305 }
3306 
3307 static inline bool dev_has_header(const struct net_device *dev)
3308 {
3309 	return dev->header_ops && dev->header_ops->create;
3310 }
3311 
3312 #ifdef CONFIG_NET_FLOW_LIMIT
3313 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3314 struct sd_flow_limit {
3315 	u64			count;
3316 	unsigned int		num_buckets;
3317 	unsigned int		history_head;
3318 	u16			history[FLOW_LIMIT_HISTORY];
3319 	u8			buckets[];
3320 };
3321 
3322 extern int netdev_flow_limit_table_len;
3323 #endif /* CONFIG_NET_FLOW_LIMIT */
3324 
3325 /*
3326  * Incoming packets are placed on per-CPU queues
3327  */
3328 struct softnet_data {
3329 	struct list_head	poll_list;
3330 	struct sk_buff_head	process_queue;
3331 
3332 	/* stats */
3333 	unsigned int		processed;
3334 	unsigned int		time_squeeze;
3335 	unsigned int		received_rps;
3336 #ifdef CONFIG_RPS
3337 	struct softnet_data	*rps_ipi_list;
3338 #endif
3339 #ifdef CONFIG_NET_FLOW_LIMIT
3340 	struct sd_flow_limit __rcu *flow_limit;
3341 #endif
3342 	struct Qdisc		*output_queue;
3343 	struct Qdisc		**output_queue_tailp;
3344 	struct sk_buff		*completion_queue;
3345 #ifdef CONFIG_XFRM_OFFLOAD
3346 	struct sk_buff_head	xfrm_backlog;
3347 #endif
3348 	/* written and read only by owning cpu: */
3349 	struct {
3350 		u16 recursion;
3351 		u8  more;
3352 	} xmit;
3353 #ifdef CONFIG_RPS
3354 	/* input_queue_head should be written by cpu owning this struct,
3355 	 * and only read by other cpus. Worth using a cache line.
3356 	 */
3357 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3358 
3359 	/* Elements below can be accessed between CPUs for RPS/RFS */
3360 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3361 	struct softnet_data	*rps_ipi_next;
3362 	unsigned int		cpu;
3363 	unsigned int		input_queue_tail;
3364 #endif
3365 	unsigned int		dropped;
3366 	struct sk_buff_head	input_pkt_queue;
3367 	struct napi_struct	backlog;
3368 
3369 };
3370 
3371 static inline void input_queue_head_incr(struct softnet_data *sd)
3372 {
3373 #ifdef CONFIG_RPS
3374 	sd->input_queue_head++;
3375 #endif
3376 }
3377 
3378 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3379 					      unsigned int *qtail)
3380 {
3381 #ifdef CONFIG_RPS
3382 	*qtail = ++sd->input_queue_tail;
3383 #endif
3384 }
3385 
3386 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3387 
3388 static inline int dev_recursion_level(void)
3389 {
3390 	return this_cpu_read(softnet_data.xmit.recursion);
3391 }
3392 
3393 #define XMIT_RECURSION_LIMIT	8
3394 static inline bool dev_xmit_recursion(void)
3395 {
3396 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3397 			XMIT_RECURSION_LIMIT);
3398 }
3399 
3400 static inline void dev_xmit_recursion_inc(void)
3401 {
3402 	__this_cpu_inc(softnet_data.xmit.recursion);
3403 }
3404 
3405 static inline void dev_xmit_recursion_dec(void)
3406 {
3407 	__this_cpu_dec(softnet_data.xmit.recursion);
3408 }
3409 
3410 void __netif_schedule(struct Qdisc *q);
3411 void netif_schedule_queue(struct netdev_queue *txq);
3412 
3413 static inline void netif_tx_schedule_all(struct net_device *dev)
3414 {
3415 	unsigned int i;
3416 
3417 	for (i = 0; i < dev->num_tx_queues; i++)
3418 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3419 }
3420 
3421 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3422 {
3423 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3424 }
3425 
3426 /**
3427  *	netif_start_queue - allow transmit
3428  *	@dev: network device
3429  *
3430  *	Allow upper layers to call the device hard_start_xmit routine.
3431  */
3432 static inline void netif_start_queue(struct net_device *dev)
3433 {
3434 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3435 }
3436 
3437 static inline void netif_tx_start_all_queues(struct net_device *dev)
3438 {
3439 	unsigned int i;
3440 
3441 	for (i = 0; i < dev->num_tx_queues; i++) {
3442 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3443 		netif_tx_start_queue(txq);
3444 	}
3445 }
3446 
3447 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3448 
3449 /**
3450  *	netif_wake_queue - restart transmit
3451  *	@dev: network device
3452  *
3453  *	Allow upper layers to call the device hard_start_xmit routine.
3454  *	Used for flow control when transmit resources are available.
3455  */
3456 static inline void netif_wake_queue(struct net_device *dev)
3457 {
3458 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3459 }
3460 
3461 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3462 {
3463 	unsigned int i;
3464 
3465 	for (i = 0; i < dev->num_tx_queues; i++) {
3466 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3467 		netif_tx_wake_queue(txq);
3468 	}
3469 }
3470 
3471 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3472 {
3473 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3474 }
3475 
3476 /**
3477  *	netif_stop_queue - stop transmitted packets
3478  *	@dev: network device
3479  *
3480  *	Stop upper layers calling the device hard_start_xmit routine.
3481  *	Used for flow control when transmit resources are unavailable.
3482  */
3483 static inline void netif_stop_queue(struct net_device *dev)
3484 {
3485 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3486 }
3487 
3488 void netif_tx_stop_all_queues(struct net_device *dev);
3489 
3490 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3491 {
3492 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3493 }
3494 
3495 /**
3496  *	netif_queue_stopped - test if transmit queue is flowblocked
3497  *	@dev: network device
3498  *
3499  *	Test if transmit queue on device is currently unable to send.
3500  */
3501 static inline bool netif_queue_stopped(const struct net_device *dev)
3502 {
3503 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3504 }
3505 
3506 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3507 {
3508 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3509 }
3510 
3511 static inline bool
3512 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3513 {
3514 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3515 }
3516 
3517 static inline bool
3518 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3519 {
3520 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3521 }
3522 
3523 /**
3524  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3525  *	@dev_queue: pointer to transmit queue
3526  *	@min_limit: dql minimum limit
3527  *
3528  * Forces xmit_more() to return true until the minimum threshold
3529  * defined by @min_limit is reached (or until the tx queue is
3530  * empty). Warning: to be use with care, misuse will impact the
3531  * latency.
3532  */
3533 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3534 						  unsigned int min_limit)
3535 {
3536 #ifdef CONFIG_BQL
3537 	dev_queue->dql.min_limit = min_limit;
3538 #endif
3539 }
3540 
3541 /**
3542  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3543  *	@dev_queue: pointer to transmit queue
3544  *
3545  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3546  * to give appropriate hint to the CPU.
3547  */
3548 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3549 {
3550 #ifdef CONFIG_BQL
3551 	prefetchw(&dev_queue->dql.num_queued);
3552 #endif
3553 }
3554 
3555 /**
3556  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3557  *	@dev_queue: pointer to transmit queue
3558  *
3559  * BQL enabled drivers might use this helper in their TX completion path,
3560  * to give appropriate hint to the CPU.
3561  */
3562 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3563 {
3564 #ifdef CONFIG_BQL
3565 	prefetchw(&dev_queue->dql.limit);
3566 #endif
3567 }
3568 
3569 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3570 					unsigned int bytes)
3571 {
3572 #ifdef CONFIG_BQL
3573 	dql_queued(&dev_queue->dql, bytes);
3574 
3575 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3576 		return;
3577 
3578 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3579 
3580 	/*
3581 	 * The XOFF flag must be set before checking the dql_avail below,
3582 	 * because in netdev_tx_completed_queue we update the dql_completed
3583 	 * before checking the XOFF flag.
3584 	 */
3585 	smp_mb();
3586 
3587 	/* check again in case another CPU has just made room avail */
3588 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3589 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3590 #endif
3591 }
3592 
3593 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3594  * that they should not test BQL status themselves.
3595  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3596  * skb of a batch.
3597  * Returns true if the doorbell must be used to kick the NIC.
3598  */
3599 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3600 					  unsigned int bytes,
3601 					  bool xmit_more)
3602 {
3603 	if (xmit_more) {
3604 #ifdef CONFIG_BQL
3605 		dql_queued(&dev_queue->dql, bytes);
3606 #endif
3607 		return netif_tx_queue_stopped(dev_queue);
3608 	}
3609 	netdev_tx_sent_queue(dev_queue, bytes);
3610 	return true;
3611 }
3612 
3613 /**
3614  * 	netdev_sent_queue - report the number of bytes queued to hardware
3615  * 	@dev: network device
3616  * 	@bytes: number of bytes queued to the hardware device queue
3617  *
3618  * 	Report the number of bytes queued for sending/completion to the network
3619  * 	device hardware queue. @bytes should be a good approximation and should
3620  * 	exactly match netdev_completed_queue() @bytes
3621  */
3622 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3623 {
3624 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3625 }
3626 
3627 static inline bool __netdev_sent_queue(struct net_device *dev,
3628 				       unsigned int bytes,
3629 				       bool xmit_more)
3630 {
3631 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3632 				      xmit_more);
3633 }
3634 
3635 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3636 					     unsigned int pkts, unsigned int bytes)
3637 {
3638 #ifdef CONFIG_BQL
3639 	if (unlikely(!bytes))
3640 		return;
3641 
3642 	dql_completed(&dev_queue->dql, bytes);
3643 
3644 	/*
3645 	 * Without the memory barrier there is a small possiblity that
3646 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3647 	 * be stopped forever
3648 	 */
3649 	smp_mb();
3650 
3651 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3652 		return;
3653 
3654 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3655 		netif_schedule_queue(dev_queue);
3656 #endif
3657 }
3658 
3659 /**
3660  * 	netdev_completed_queue - report bytes and packets completed by device
3661  * 	@dev: network device
3662  * 	@pkts: actual number of packets sent over the medium
3663  * 	@bytes: actual number of bytes sent over the medium
3664  *
3665  * 	Report the number of bytes and packets transmitted by the network device
3666  * 	hardware queue over the physical medium, @bytes must exactly match the
3667  * 	@bytes amount passed to netdev_sent_queue()
3668  */
3669 static inline void netdev_completed_queue(struct net_device *dev,
3670 					  unsigned int pkts, unsigned int bytes)
3671 {
3672 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3673 }
3674 
3675 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3676 {
3677 #ifdef CONFIG_BQL
3678 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3679 	dql_reset(&q->dql);
3680 #endif
3681 }
3682 
3683 /**
3684  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3685  * 	@dev_queue: network device
3686  *
3687  * 	Reset the bytes and packet count of a network device and clear the
3688  * 	software flow control OFF bit for this network device
3689  */
3690 static inline void netdev_reset_queue(struct net_device *dev_queue)
3691 {
3692 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3693 }
3694 
3695 /**
3696  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3697  * 	@dev: network device
3698  * 	@queue_index: given tx queue index
3699  *
3700  * 	Returns 0 if given tx queue index >= number of device tx queues,
3701  * 	otherwise returns the originally passed tx queue index.
3702  */
3703 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3704 {
3705 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3706 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3707 				     dev->name, queue_index,
3708 				     dev->real_num_tx_queues);
3709 		return 0;
3710 	}
3711 
3712 	return queue_index;
3713 }
3714 
3715 /**
3716  *	netif_running - test if up
3717  *	@dev: network device
3718  *
3719  *	Test if the device has been brought up.
3720  */
3721 static inline bool netif_running(const struct net_device *dev)
3722 {
3723 	return test_bit(__LINK_STATE_START, &dev->state);
3724 }
3725 
3726 /*
3727  * Routines to manage the subqueues on a device.  We only need start,
3728  * stop, and a check if it's stopped.  All other device management is
3729  * done at the overall netdevice level.
3730  * Also test the device if we're multiqueue.
3731  */
3732 
3733 /**
3734  *	netif_start_subqueue - allow sending packets on subqueue
3735  *	@dev: network device
3736  *	@queue_index: sub queue index
3737  *
3738  * Start individual transmit queue of a device with multiple transmit queues.
3739  */
3740 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3741 {
3742 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3743 
3744 	netif_tx_start_queue(txq);
3745 }
3746 
3747 /**
3748  *	netif_stop_subqueue - stop sending packets on subqueue
3749  *	@dev: network device
3750  *	@queue_index: sub queue index
3751  *
3752  * Stop individual transmit queue of a device with multiple transmit queues.
3753  */
3754 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3755 {
3756 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3757 	netif_tx_stop_queue(txq);
3758 }
3759 
3760 /**
3761  *	__netif_subqueue_stopped - test status of subqueue
3762  *	@dev: network device
3763  *	@queue_index: sub queue index
3764  *
3765  * Check individual transmit queue of a device with multiple transmit queues.
3766  */
3767 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3768 					    u16 queue_index)
3769 {
3770 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3771 
3772 	return netif_tx_queue_stopped(txq);
3773 }
3774 
3775 /**
3776  *	netif_subqueue_stopped - test status of subqueue
3777  *	@dev: network device
3778  *	@skb: sub queue buffer pointer
3779  *
3780  * Check individual transmit queue of a device with multiple transmit queues.
3781  */
3782 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3783 					  struct sk_buff *skb)
3784 {
3785 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3786 }
3787 
3788 /**
3789  *	netif_wake_subqueue - allow sending packets on subqueue
3790  *	@dev: network device
3791  *	@queue_index: sub queue index
3792  *
3793  * Resume individual transmit queue of a device with multiple transmit queues.
3794  */
3795 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3796 {
3797 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3798 
3799 	netif_tx_wake_queue(txq);
3800 }
3801 
3802 #ifdef CONFIG_XPS
3803 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3804 			u16 index);
3805 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3806 			  u16 index, enum xps_map_type type);
3807 
3808 /**
3809  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3810  *	@j: CPU/Rx queue index
3811  *	@mask: bitmask of all cpus/rx queues
3812  *	@nr_bits: number of bits in the bitmask
3813  *
3814  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3815  */
3816 static inline bool netif_attr_test_mask(unsigned long j,
3817 					const unsigned long *mask,
3818 					unsigned int nr_bits)
3819 {
3820 	cpu_max_bits_warn(j, nr_bits);
3821 	return test_bit(j, mask);
3822 }
3823 
3824 /**
3825  *	netif_attr_test_online - Test for online CPU/Rx queue
3826  *	@j: CPU/Rx queue index
3827  *	@online_mask: bitmask for CPUs/Rx queues that are online
3828  *	@nr_bits: number of bits in the bitmask
3829  *
3830  * Returns true if a CPU/Rx queue is online.
3831  */
3832 static inline bool netif_attr_test_online(unsigned long j,
3833 					  const unsigned long *online_mask,
3834 					  unsigned int nr_bits)
3835 {
3836 	cpu_max_bits_warn(j, nr_bits);
3837 
3838 	if (online_mask)
3839 		return test_bit(j, online_mask);
3840 
3841 	return (j < nr_bits);
3842 }
3843 
3844 /**
3845  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3846  *	@n: CPU/Rx queue index
3847  *	@srcp: the cpumask/Rx queue mask pointer
3848  *	@nr_bits: number of bits in the bitmask
3849  *
3850  * Returns >= nr_bits if no further CPUs/Rx queues set.
3851  */
3852 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3853 					       unsigned int nr_bits)
3854 {
3855 	/* -1 is a legal arg here. */
3856 	if (n != -1)
3857 		cpu_max_bits_warn(n, nr_bits);
3858 
3859 	if (srcp)
3860 		return find_next_bit(srcp, nr_bits, n + 1);
3861 
3862 	return n + 1;
3863 }
3864 
3865 /**
3866  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3867  *	@n: CPU/Rx queue index
3868  *	@src1p: the first CPUs/Rx queues mask pointer
3869  *	@src2p: the second CPUs/Rx queues mask pointer
3870  *	@nr_bits: number of bits in the bitmask
3871  *
3872  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3873  */
3874 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3875 					  const unsigned long *src2p,
3876 					  unsigned int nr_bits)
3877 {
3878 	/* -1 is a legal arg here. */
3879 	if (n != -1)
3880 		cpu_max_bits_warn(n, nr_bits);
3881 
3882 	if (src1p && src2p)
3883 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3884 	else if (src1p)
3885 		return find_next_bit(src1p, nr_bits, n + 1);
3886 	else if (src2p)
3887 		return find_next_bit(src2p, nr_bits, n + 1);
3888 
3889 	return n + 1;
3890 }
3891 #else
3892 static inline int netif_set_xps_queue(struct net_device *dev,
3893 				      const struct cpumask *mask,
3894 				      u16 index)
3895 {
3896 	return 0;
3897 }
3898 
3899 static inline int __netif_set_xps_queue(struct net_device *dev,
3900 					const unsigned long *mask,
3901 					u16 index, enum xps_map_type type)
3902 {
3903 	return 0;
3904 }
3905 #endif
3906 
3907 /**
3908  *	netif_is_multiqueue - test if device has multiple transmit queues
3909  *	@dev: network device
3910  *
3911  * Check if device has multiple transmit queues
3912  */
3913 static inline bool netif_is_multiqueue(const struct net_device *dev)
3914 {
3915 	return dev->num_tx_queues > 1;
3916 }
3917 
3918 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3919 
3920 #ifdef CONFIG_SYSFS
3921 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3922 #else
3923 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3924 						unsigned int rxqs)
3925 {
3926 	dev->real_num_rx_queues = rxqs;
3927 	return 0;
3928 }
3929 #endif
3930 int netif_set_real_num_queues(struct net_device *dev,
3931 			      unsigned int txq, unsigned int rxq);
3932 
3933 static inline struct netdev_rx_queue *
3934 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3935 {
3936 	return dev->_rx + rxq;
3937 }
3938 
3939 #ifdef CONFIG_SYSFS
3940 static inline unsigned int get_netdev_rx_queue_index(
3941 		struct netdev_rx_queue *queue)
3942 {
3943 	struct net_device *dev = queue->dev;
3944 	int index = queue - dev->_rx;
3945 
3946 	BUG_ON(index >= dev->num_rx_queues);
3947 	return index;
3948 }
3949 #endif
3950 
3951 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3952 int netif_get_num_default_rss_queues(void);
3953 
3954 enum skb_free_reason {
3955 	SKB_REASON_CONSUMED,
3956 	SKB_REASON_DROPPED,
3957 };
3958 
3959 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3960 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3961 
3962 /*
3963  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3964  * interrupt context or with hardware interrupts being disabled.
3965  * (in_hardirq() || irqs_disabled())
3966  *
3967  * We provide four helpers that can be used in following contexts :
3968  *
3969  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3970  *  replacing kfree_skb(skb)
3971  *
3972  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3973  *  Typically used in place of consume_skb(skb) in TX completion path
3974  *
3975  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3976  *  replacing kfree_skb(skb)
3977  *
3978  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3979  *  and consumed a packet. Used in place of consume_skb(skb)
3980  */
3981 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3982 {
3983 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3984 }
3985 
3986 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3987 {
3988 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3989 }
3990 
3991 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3992 {
3993 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3994 }
3995 
3996 static inline void dev_consume_skb_any(struct sk_buff *skb)
3997 {
3998 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3999 }
4000 
4001 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4002 			     struct bpf_prog *xdp_prog);
4003 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
4004 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
4005 int netif_rx(struct sk_buff *skb);
4006 int netif_rx_ni(struct sk_buff *skb);
4007 int netif_rx_any_context(struct sk_buff *skb);
4008 int netif_receive_skb(struct sk_buff *skb);
4009 int netif_receive_skb_core(struct sk_buff *skb);
4010 void netif_receive_skb_list(struct list_head *head);
4011 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4012 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4013 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4014 gro_result_t napi_gro_frags(struct napi_struct *napi);
4015 struct packet_offload *gro_find_receive_by_type(__be16 type);
4016 struct packet_offload *gro_find_complete_by_type(__be16 type);
4017 
4018 static inline void napi_free_frags(struct napi_struct *napi)
4019 {
4020 	kfree_skb(napi->skb);
4021 	napi->skb = NULL;
4022 }
4023 
4024 bool netdev_is_rx_handler_busy(struct net_device *dev);
4025 int netdev_rx_handler_register(struct net_device *dev,
4026 			       rx_handler_func_t *rx_handler,
4027 			       void *rx_handler_data);
4028 void netdev_rx_handler_unregister(struct net_device *dev);
4029 
4030 bool dev_valid_name(const char *name);
4031 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4032 {
4033 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4034 }
4035 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4036 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4037 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4038 		void __user *data, bool *need_copyout);
4039 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4040 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4041 unsigned int dev_get_flags(const struct net_device *);
4042 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4043 		       struct netlink_ext_ack *extack);
4044 int dev_change_flags(struct net_device *dev, unsigned int flags,
4045 		     struct netlink_ext_ack *extack);
4046 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4047 			unsigned int gchanges);
4048 int dev_change_name(struct net_device *, const char *);
4049 int dev_set_alias(struct net_device *, const char *, size_t);
4050 int dev_get_alias(const struct net_device *, char *, size_t);
4051 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4052 			       const char *pat, int new_ifindex);
4053 static inline
4054 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4055 			     const char *pat)
4056 {
4057 	return __dev_change_net_namespace(dev, net, pat, 0);
4058 }
4059 int __dev_set_mtu(struct net_device *, int);
4060 int dev_validate_mtu(struct net_device *dev, int mtu,
4061 		     struct netlink_ext_ack *extack);
4062 int dev_set_mtu_ext(struct net_device *dev, int mtu,
4063 		    struct netlink_ext_ack *extack);
4064 int dev_set_mtu(struct net_device *, int);
4065 int dev_change_tx_queue_len(struct net_device *, unsigned long);
4066 void dev_set_group(struct net_device *, int);
4067 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4068 			      struct netlink_ext_ack *extack);
4069 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4070 			struct netlink_ext_ack *extack);
4071 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4072 			     struct netlink_ext_ack *extack);
4073 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4074 int dev_change_carrier(struct net_device *, bool new_carrier);
4075 int dev_get_phys_port_id(struct net_device *dev,
4076 			 struct netdev_phys_item_id *ppid);
4077 int dev_get_phys_port_name(struct net_device *dev,
4078 			   char *name, size_t len);
4079 int dev_get_port_parent_id(struct net_device *dev,
4080 			   struct netdev_phys_item_id *ppid, bool recurse);
4081 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4082 int dev_change_proto_down(struct net_device *dev, bool proto_down);
4083 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4084 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4085 				  u32 value);
4086 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4087 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4088 				    struct netdev_queue *txq, int *ret);
4089 
4090 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4091 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4092 		      int fd, int expected_fd, u32 flags);
4093 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4094 u8 dev_xdp_prog_count(struct net_device *dev);
4095 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4096 
4097 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4098 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4099 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4100 bool is_skb_forwardable(const struct net_device *dev,
4101 			const struct sk_buff *skb);
4102 
4103 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4104 						 const struct sk_buff *skb,
4105 						 const bool check_mtu)
4106 {
4107 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4108 	unsigned int len;
4109 
4110 	if (!(dev->flags & IFF_UP))
4111 		return false;
4112 
4113 	if (!check_mtu)
4114 		return true;
4115 
4116 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4117 	if (skb->len <= len)
4118 		return true;
4119 
4120 	/* if TSO is enabled, we don't care about the length as the packet
4121 	 * could be forwarded without being segmented before
4122 	 */
4123 	if (skb_is_gso(skb))
4124 		return true;
4125 
4126 	return false;
4127 }
4128 
4129 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4130 					       struct sk_buff *skb,
4131 					       const bool check_mtu)
4132 {
4133 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4134 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4135 		atomic_long_inc(&dev->rx_dropped);
4136 		kfree_skb(skb);
4137 		return NET_RX_DROP;
4138 	}
4139 
4140 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4141 	skb->priority = 0;
4142 	return 0;
4143 }
4144 
4145 bool dev_nit_active(struct net_device *dev);
4146 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4147 
4148 extern int		netdev_budget;
4149 extern unsigned int	netdev_budget_usecs;
4150 
4151 /* Called by rtnetlink.c:rtnl_unlock() */
4152 void netdev_run_todo(void);
4153 
4154 /**
4155  *	dev_put - release reference to device
4156  *	@dev: network device
4157  *
4158  * Release reference to device to allow it to be freed.
4159  */
4160 static inline void dev_put(struct net_device *dev)
4161 {
4162 	if (dev) {
4163 #ifdef CONFIG_PCPU_DEV_REFCNT
4164 		this_cpu_dec(*dev->pcpu_refcnt);
4165 #else
4166 		refcount_dec(&dev->dev_refcnt);
4167 #endif
4168 	}
4169 }
4170 
4171 /**
4172  *	dev_hold - get reference to device
4173  *	@dev: network device
4174  *
4175  * Hold reference to device to keep it from being freed.
4176  */
4177 static inline void dev_hold(struct net_device *dev)
4178 {
4179 	if (dev) {
4180 #ifdef CONFIG_PCPU_DEV_REFCNT
4181 		this_cpu_inc(*dev->pcpu_refcnt);
4182 #else
4183 		refcount_inc(&dev->dev_refcnt);
4184 #endif
4185 	}
4186 }
4187 
4188 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4189  * and _off may be called from IRQ context, but it is caller
4190  * who is responsible for serialization of these calls.
4191  *
4192  * The name carrier is inappropriate, these functions should really be
4193  * called netif_lowerlayer_*() because they represent the state of any
4194  * kind of lower layer not just hardware media.
4195  */
4196 
4197 void linkwatch_init_dev(struct net_device *dev);
4198 void linkwatch_fire_event(struct net_device *dev);
4199 void linkwatch_forget_dev(struct net_device *dev);
4200 
4201 /**
4202  *	netif_carrier_ok - test if carrier present
4203  *	@dev: network device
4204  *
4205  * Check if carrier is present on device
4206  */
4207 static inline bool netif_carrier_ok(const struct net_device *dev)
4208 {
4209 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4210 }
4211 
4212 unsigned long dev_trans_start(struct net_device *dev);
4213 
4214 void __netdev_watchdog_up(struct net_device *dev);
4215 
4216 void netif_carrier_on(struct net_device *dev);
4217 void netif_carrier_off(struct net_device *dev);
4218 void netif_carrier_event(struct net_device *dev);
4219 
4220 /**
4221  *	netif_dormant_on - mark device as dormant.
4222  *	@dev: network device
4223  *
4224  * Mark device as dormant (as per RFC2863).
4225  *
4226  * The dormant state indicates that the relevant interface is not
4227  * actually in a condition to pass packets (i.e., it is not 'up') but is
4228  * in a "pending" state, waiting for some external event.  For "on-
4229  * demand" interfaces, this new state identifies the situation where the
4230  * interface is waiting for events to place it in the up state.
4231  */
4232 static inline void netif_dormant_on(struct net_device *dev)
4233 {
4234 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4235 		linkwatch_fire_event(dev);
4236 }
4237 
4238 /**
4239  *	netif_dormant_off - set device as not dormant.
4240  *	@dev: network device
4241  *
4242  * Device is not in dormant state.
4243  */
4244 static inline void netif_dormant_off(struct net_device *dev)
4245 {
4246 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4247 		linkwatch_fire_event(dev);
4248 }
4249 
4250 /**
4251  *	netif_dormant - test if device is dormant
4252  *	@dev: network device
4253  *
4254  * Check if device is dormant.
4255  */
4256 static inline bool netif_dormant(const struct net_device *dev)
4257 {
4258 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4259 }
4260 
4261 
4262 /**
4263  *	netif_testing_on - mark device as under test.
4264  *	@dev: network device
4265  *
4266  * Mark device as under test (as per RFC2863).
4267  *
4268  * The testing state indicates that some test(s) must be performed on
4269  * the interface. After completion, of the test, the interface state
4270  * will change to up, dormant, or down, as appropriate.
4271  */
4272 static inline void netif_testing_on(struct net_device *dev)
4273 {
4274 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4275 		linkwatch_fire_event(dev);
4276 }
4277 
4278 /**
4279  *	netif_testing_off - set device as not under test.
4280  *	@dev: network device
4281  *
4282  * Device is not in testing state.
4283  */
4284 static inline void netif_testing_off(struct net_device *dev)
4285 {
4286 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4287 		linkwatch_fire_event(dev);
4288 }
4289 
4290 /**
4291  *	netif_testing - test if device is under test
4292  *	@dev: network device
4293  *
4294  * Check if device is under test
4295  */
4296 static inline bool netif_testing(const struct net_device *dev)
4297 {
4298 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4299 }
4300 
4301 
4302 /**
4303  *	netif_oper_up - test if device is operational
4304  *	@dev: network device
4305  *
4306  * Check if carrier is operational
4307  */
4308 static inline bool netif_oper_up(const struct net_device *dev)
4309 {
4310 	return (dev->operstate == IF_OPER_UP ||
4311 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4312 }
4313 
4314 /**
4315  *	netif_device_present - is device available or removed
4316  *	@dev: network device
4317  *
4318  * Check if device has not been removed from system.
4319  */
4320 static inline bool netif_device_present(const struct net_device *dev)
4321 {
4322 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4323 }
4324 
4325 void netif_device_detach(struct net_device *dev);
4326 
4327 void netif_device_attach(struct net_device *dev);
4328 
4329 /*
4330  * Network interface message level settings
4331  */
4332 
4333 enum {
4334 	NETIF_MSG_DRV_BIT,
4335 	NETIF_MSG_PROBE_BIT,
4336 	NETIF_MSG_LINK_BIT,
4337 	NETIF_MSG_TIMER_BIT,
4338 	NETIF_MSG_IFDOWN_BIT,
4339 	NETIF_MSG_IFUP_BIT,
4340 	NETIF_MSG_RX_ERR_BIT,
4341 	NETIF_MSG_TX_ERR_BIT,
4342 	NETIF_MSG_TX_QUEUED_BIT,
4343 	NETIF_MSG_INTR_BIT,
4344 	NETIF_MSG_TX_DONE_BIT,
4345 	NETIF_MSG_RX_STATUS_BIT,
4346 	NETIF_MSG_PKTDATA_BIT,
4347 	NETIF_MSG_HW_BIT,
4348 	NETIF_MSG_WOL_BIT,
4349 
4350 	/* When you add a new bit above, update netif_msg_class_names array
4351 	 * in net/ethtool/common.c
4352 	 */
4353 	NETIF_MSG_CLASS_COUNT,
4354 };
4355 /* Both ethtool_ops interface and internal driver implementation use u32 */
4356 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4357 
4358 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4359 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4360 
4361 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4362 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4363 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4364 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4365 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4366 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4367 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4368 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4369 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4370 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4371 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4372 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4373 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4374 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4375 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4376 
4377 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4378 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4379 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4380 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4381 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4382 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4383 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4384 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4385 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4386 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4387 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4388 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4389 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4390 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4391 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4392 
4393 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4394 {
4395 	/* use default */
4396 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4397 		return default_msg_enable_bits;
4398 	if (debug_value == 0)	/* no output */
4399 		return 0;
4400 	/* set low N bits */
4401 	return (1U << debug_value) - 1;
4402 }
4403 
4404 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4405 {
4406 	spin_lock(&txq->_xmit_lock);
4407 	txq->xmit_lock_owner = cpu;
4408 }
4409 
4410 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4411 {
4412 	__acquire(&txq->_xmit_lock);
4413 	return true;
4414 }
4415 
4416 static inline void __netif_tx_release(struct netdev_queue *txq)
4417 {
4418 	__release(&txq->_xmit_lock);
4419 }
4420 
4421 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4422 {
4423 	spin_lock_bh(&txq->_xmit_lock);
4424 	txq->xmit_lock_owner = smp_processor_id();
4425 }
4426 
4427 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4428 {
4429 	bool ok = spin_trylock(&txq->_xmit_lock);
4430 	if (likely(ok))
4431 		txq->xmit_lock_owner = smp_processor_id();
4432 	return ok;
4433 }
4434 
4435 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4436 {
4437 	txq->xmit_lock_owner = -1;
4438 	spin_unlock(&txq->_xmit_lock);
4439 }
4440 
4441 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4442 {
4443 	txq->xmit_lock_owner = -1;
4444 	spin_unlock_bh(&txq->_xmit_lock);
4445 }
4446 
4447 static inline void txq_trans_update(struct netdev_queue *txq)
4448 {
4449 	if (txq->xmit_lock_owner != -1)
4450 		txq->trans_start = jiffies;
4451 }
4452 
4453 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4454 static inline void netif_trans_update(struct net_device *dev)
4455 {
4456 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4457 
4458 	if (txq->trans_start != jiffies)
4459 		txq->trans_start = jiffies;
4460 }
4461 
4462 /**
4463  *	netif_tx_lock - grab network device transmit lock
4464  *	@dev: network device
4465  *
4466  * Get network device transmit lock
4467  */
4468 static inline void netif_tx_lock(struct net_device *dev)
4469 {
4470 	unsigned int i;
4471 	int cpu;
4472 
4473 	spin_lock(&dev->tx_global_lock);
4474 	cpu = smp_processor_id();
4475 	for (i = 0; i < dev->num_tx_queues; i++) {
4476 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4477 
4478 		/* We are the only thread of execution doing a
4479 		 * freeze, but we have to grab the _xmit_lock in
4480 		 * order to synchronize with threads which are in
4481 		 * the ->hard_start_xmit() handler and already
4482 		 * checked the frozen bit.
4483 		 */
4484 		__netif_tx_lock(txq, cpu);
4485 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4486 		__netif_tx_unlock(txq);
4487 	}
4488 }
4489 
4490 static inline void netif_tx_lock_bh(struct net_device *dev)
4491 {
4492 	local_bh_disable();
4493 	netif_tx_lock(dev);
4494 }
4495 
4496 static inline void netif_tx_unlock(struct net_device *dev)
4497 {
4498 	unsigned int i;
4499 
4500 	for (i = 0; i < dev->num_tx_queues; i++) {
4501 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4502 
4503 		/* No need to grab the _xmit_lock here.  If the
4504 		 * queue is not stopped for another reason, we
4505 		 * force a schedule.
4506 		 */
4507 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4508 		netif_schedule_queue(txq);
4509 	}
4510 	spin_unlock(&dev->tx_global_lock);
4511 }
4512 
4513 static inline void netif_tx_unlock_bh(struct net_device *dev)
4514 {
4515 	netif_tx_unlock(dev);
4516 	local_bh_enable();
4517 }
4518 
4519 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4520 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4521 		__netif_tx_lock(txq, cpu);		\
4522 	} else {					\
4523 		__netif_tx_acquire(txq);		\
4524 	}						\
4525 }
4526 
4527 #define HARD_TX_TRYLOCK(dev, txq)			\
4528 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4529 		__netif_tx_trylock(txq) :		\
4530 		__netif_tx_acquire(txq))
4531 
4532 #define HARD_TX_UNLOCK(dev, txq) {			\
4533 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4534 		__netif_tx_unlock(txq);			\
4535 	} else {					\
4536 		__netif_tx_release(txq);		\
4537 	}						\
4538 }
4539 
4540 static inline void netif_tx_disable(struct net_device *dev)
4541 {
4542 	unsigned int i;
4543 	int cpu;
4544 
4545 	local_bh_disable();
4546 	cpu = smp_processor_id();
4547 	spin_lock(&dev->tx_global_lock);
4548 	for (i = 0; i < dev->num_tx_queues; i++) {
4549 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4550 
4551 		__netif_tx_lock(txq, cpu);
4552 		netif_tx_stop_queue(txq);
4553 		__netif_tx_unlock(txq);
4554 	}
4555 	spin_unlock(&dev->tx_global_lock);
4556 	local_bh_enable();
4557 }
4558 
4559 static inline void netif_addr_lock(struct net_device *dev)
4560 {
4561 	unsigned char nest_level = 0;
4562 
4563 #ifdef CONFIG_LOCKDEP
4564 	nest_level = dev->nested_level;
4565 #endif
4566 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4567 }
4568 
4569 static inline void netif_addr_lock_bh(struct net_device *dev)
4570 {
4571 	unsigned char nest_level = 0;
4572 
4573 #ifdef CONFIG_LOCKDEP
4574 	nest_level = dev->nested_level;
4575 #endif
4576 	local_bh_disable();
4577 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4578 }
4579 
4580 static inline void netif_addr_unlock(struct net_device *dev)
4581 {
4582 	spin_unlock(&dev->addr_list_lock);
4583 }
4584 
4585 static inline void netif_addr_unlock_bh(struct net_device *dev)
4586 {
4587 	spin_unlock_bh(&dev->addr_list_lock);
4588 }
4589 
4590 /*
4591  * dev_addrs walker. Should be used only for read access. Call with
4592  * rcu_read_lock held.
4593  */
4594 #define for_each_dev_addr(dev, ha) \
4595 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4596 
4597 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4598 
4599 void ether_setup(struct net_device *dev);
4600 
4601 /* Support for loadable net-drivers */
4602 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4603 				    unsigned char name_assign_type,
4604 				    void (*setup)(struct net_device *),
4605 				    unsigned int txqs, unsigned int rxqs);
4606 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4607 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4608 
4609 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4610 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4611 			 count)
4612 
4613 int register_netdev(struct net_device *dev);
4614 void unregister_netdev(struct net_device *dev);
4615 
4616 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4617 
4618 /* General hardware address lists handling functions */
4619 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4620 		   struct netdev_hw_addr_list *from_list, int addr_len);
4621 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4622 		      struct netdev_hw_addr_list *from_list, int addr_len);
4623 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4624 		       struct net_device *dev,
4625 		       int (*sync)(struct net_device *, const unsigned char *),
4626 		       int (*unsync)(struct net_device *,
4627 				     const unsigned char *));
4628 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4629 			   struct net_device *dev,
4630 			   int (*sync)(struct net_device *,
4631 				       const unsigned char *, int),
4632 			   int (*unsync)(struct net_device *,
4633 					 const unsigned char *, int));
4634 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4635 			      struct net_device *dev,
4636 			      int (*unsync)(struct net_device *,
4637 					    const unsigned char *, int));
4638 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4639 			  struct net_device *dev,
4640 			  int (*unsync)(struct net_device *,
4641 					const unsigned char *));
4642 void __hw_addr_init(struct netdev_hw_addr_list *list);
4643 
4644 /* Functions used for device addresses handling */
4645 static inline void
4646 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4647 {
4648 	memcpy(dev->dev_addr, addr, len);
4649 }
4650 
4651 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4652 {
4653 	__dev_addr_set(dev, addr, dev->addr_len);
4654 }
4655 
4656 static inline void
4657 dev_addr_mod(struct net_device *dev, unsigned int offset,
4658 	     const void *addr, size_t len)
4659 {
4660 	memcpy(&dev->dev_addr[offset], addr, len);
4661 }
4662 
4663 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4664 		 unsigned char addr_type);
4665 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4666 		 unsigned char addr_type);
4667 void dev_addr_flush(struct net_device *dev);
4668 int dev_addr_init(struct net_device *dev);
4669 
4670 /* Functions used for unicast addresses handling */
4671 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4672 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4673 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4674 int dev_uc_sync(struct net_device *to, struct net_device *from);
4675 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4676 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4677 void dev_uc_flush(struct net_device *dev);
4678 void dev_uc_init(struct net_device *dev);
4679 
4680 /**
4681  *  __dev_uc_sync - Synchonize device's unicast list
4682  *  @dev:  device to sync
4683  *  @sync: function to call if address should be added
4684  *  @unsync: function to call if address should be removed
4685  *
4686  *  Add newly added addresses to the interface, and release
4687  *  addresses that have been deleted.
4688  */
4689 static inline int __dev_uc_sync(struct net_device *dev,
4690 				int (*sync)(struct net_device *,
4691 					    const unsigned char *),
4692 				int (*unsync)(struct net_device *,
4693 					      const unsigned char *))
4694 {
4695 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4696 }
4697 
4698 /**
4699  *  __dev_uc_unsync - Remove synchronized addresses from device
4700  *  @dev:  device to sync
4701  *  @unsync: function to call if address should be removed
4702  *
4703  *  Remove all addresses that were added to the device by dev_uc_sync().
4704  */
4705 static inline void __dev_uc_unsync(struct net_device *dev,
4706 				   int (*unsync)(struct net_device *,
4707 						 const unsigned char *))
4708 {
4709 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4710 }
4711 
4712 /* Functions used for multicast addresses handling */
4713 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4714 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4715 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4716 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4717 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4718 int dev_mc_sync(struct net_device *to, struct net_device *from);
4719 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4720 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4721 void dev_mc_flush(struct net_device *dev);
4722 void dev_mc_init(struct net_device *dev);
4723 
4724 /**
4725  *  __dev_mc_sync - Synchonize device's multicast list
4726  *  @dev:  device to sync
4727  *  @sync: function to call if address should be added
4728  *  @unsync: function to call if address should be removed
4729  *
4730  *  Add newly added addresses to the interface, and release
4731  *  addresses that have been deleted.
4732  */
4733 static inline int __dev_mc_sync(struct net_device *dev,
4734 				int (*sync)(struct net_device *,
4735 					    const unsigned char *),
4736 				int (*unsync)(struct net_device *,
4737 					      const unsigned char *))
4738 {
4739 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4740 }
4741 
4742 /**
4743  *  __dev_mc_unsync - Remove synchronized addresses from device
4744  *  @dev:  device to sync
4745  *  @unsync: function to call if address should be removed
4746  *
4747  *  Remove all addresses that were added to the device by dev_mc_sync().
4748  */
4749 static inline void __dev_mc_unsync(struct net_device *dev,
4750 				   int (*unsync)(struct net_device *,
4751 						 const unsigned char *))
4752 {
4753 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4754 }
4755 
4756 /* Functions used for secondary unicast and multicast support */
4757 void dev_set_rx_mode(struct net_device *dev);
4758 void __dev_set_rx_mode(struct net_device *dev);
4759 int dev_set_promiscuity(struct net_device *dev, int inc);
4760 int dev_set_allmulti(struct net_device *dev, int inc);
4761 void netdev_state_change(struct net_device *dev);
4762 void __netdev_notify_peers(struct net_device *dev);
4763 void netdev_notify_peers(struct net_device *dev);
4764 void netdev_features_change(struct net_device *dev);
4765 /* Load a device via the kmod */
4766 void dev_load(struct net *net, const char *name);
4767 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4768 					struct rtnl_link_stats64 *storage);
4769 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4770 			     const struct net_device_stats *netdev_stats);
4771 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4772 			   const struct pcpu_sw_netstats __percpu *netstats);
4773 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4774 
4775 extern int		netdev_max_backlog;
4776 extern int		netdev_tstamp_prequeue;
4777 extern int		netdev_unregister_timeout_secs;
4778 extern int		weight_p;
4779 extern int		dev_weight_rx_bias;
4780 extern int		dev_weight_tx_bias;
4781 extern int		dev_rx_weight;
4782 extern int		dev_tx_weight;
4783 extern int		gro_normal_batch;
4784 
4785 enum {
4786 	NESTED_SYNC_IMM_BIT,
4787 	NESTED_SYNC_TODO_BIT,
4788 };
4789 
4790 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4791 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4792 
4793 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4794 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4795 
4796 struct netdev_nested_priv {
4797 	unsigned char flags;
4798 	void *data;
4799 };
4800 
4801 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4802 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4803 						     struct list_head **iter);
4804 
4805 #ifdef CONFIG_LOCKDEP
4806 static LIST_HEAD(net_unlink_list);
4807 
4808 static inline void net_unlink_todo(struct net_device *dev)
4809 {
4810 	if (list_empty(&dev->unlink_list))
4811 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4812 }
4813 #endif
4814 
4815 /* iterate through upper list, must be called under RCU read lock */
4816 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4817 	for (iter = &(dev)->adj_list.upper, \
4818 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4819 	     updev; \
4820 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4821 
4822 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4823 				  int (*fn)(struct net_device *upper_dev,
4824 					    struct netdev_nested_priv *priv),
4825 				  struct netdev_nested_priv *priv);
4826 
4827 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4828 				  struct net_device *upper_dev);
4829 
4830 bool netdev_has_any_upper_dev(struct net_device *dev);
4831 
4832 void *netdev_lower_get_next_private(struct net_device *dev,
4833 				    struct list_head **iter);
4834 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4835 					struct list_head **iter);
4836 
4837 #define netdev_for_each_lower_private(dev, priv, iter) \
4838 	for (iter = (dev)->adj_list.lower.next, \
4839 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4840 	     priv; \
4841 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4842 
4843 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4844 	for (iter = &(dev)->adj_list.lower, \
4845 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4846 	     priv; \
4847 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4848 
4849 void *netdev_lower_get_next(struct net_device *dev,
4850 				struct list_head **iter);
4851 
4852 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4853 	for (iter = (dev)->adj_list.lower.next, \
4854 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4855 	     ldev; \
4856 	     ldev = netdev_lower_get_next(dev, &(iter)))
4857 
4858 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4859 					     struct list_head **iter);
4860 int netdev_walk_all_lower_dev(struct net_device *dev,
4861 			      int (*fn)(struct net_device *lower_dev,
4862 					struct netdev_nested_priv *priv),
4863 			      struct netdev_nested_priv *priv);
4864 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4865 				  int (*fn)(struct net_device *lower_dev,
4866 					    struct netdev_nested_priv *priv),
4867 				  struct netdev_nested_priv *priv);
4868 
4869 void *netdev_adjacent_get_private(struct list_head *adj_list);
4870 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4871 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4872 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4873 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4874 			  struct netlink_ext_ack *extack);
4875 int netdev_master_upper_dev_link(struct net_device *dev,
4876 				 struct net_device *upper_dev,
4877 				 void *upper_priv, void *upper_info,
4878 				 struct netlink_ext_ack *extack);
4879 void netdev_upper_dev_unlink(struct net_device *dev,
4880 			     struct net_device *upper_dev);
4881 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4882 				   struct net_device *new_dev,
4883 				   struct net_device *dev,
4884 				   struct netlink_ext_ack *extack);
4885 void netdev_adjacent_change_commit(struct net_device *old_dev,
4886 				   struct net_device *new_dev,
4887 				   struct net_device *dev);
4888 void netdev_adjacent_change_abort(struct net_device *old_dev,
4889 				  struct net_device *new_dev,
4890 				  struct net_device *dev);
4891 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4892 void *netdev_lower_dev_get_private(struct net_device *dev,
4893 				   struct net_device *lower_dev);
4894 void netdev_lower_state_changed(struct net_device *lower_dev,
4895 				void *lower_state_info);
4896 
4897 /* RSS keys are 40 or 52 bytes long */
4898 #define NETDEV_RSS_KEY_LEN 52
4899 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4900 void netdev_rss_key_fill(void *buffer, size_t len);
4901 
4902 int skb_checksum_help(struct sk_buff *skb);
4903 int skb_crc32c_csum_help(struct sk_buff *skb);
4904 int skb_csum_hwoffload_help(struct sk_buff *skb,
4905 			    const netdev_features_t features);
4906 
4907 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4908 				  netdev_features_t features, bool tx_path);
4909 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4910 				    netdev_features_t features);
4911 
4912 struct netdev_bonding_info {
4913 	ifslave	slave;
4914 	ifbond	master;
4915 };
4916 
4917 struct netdev_notifier_bonding_info {
4918 	struct netdev_notifier_info info; /* must be first */
4919 	struct netdev_bonding_info  bonding_info;
4920 };
4921 
4922 void netdev_bonding_info_change(struct net_device *dev,
4923 				struct netdev_bonding_info *bonding_info);
4924 
4925 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4926 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4927 #else
4928 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4929 				  const void *data)
4930 {
4931 }
4932 #endif
4933 
4934 static inline
4935 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4936 {
4937 	return __skb_gso_segment(skb, features, true);
4938 }
4939 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4940 
4941 static inline bool can_checksum_protocol(netdev_features_t features,
4942 					 __be16 protocol)
4943 {
4944 	if (protocol == htons(ETH_P_FCOE))
4945 		return !!(features & NETIF_F_FCOE_CRC);
4946 
4947 	/* Assume this is an IP checksum (not SCTP CRC) */
4948 
4949 	if (features & NETIF_F_HW_CSUM) {
4950 		/* Can checksum everything */
4951 		return true;
4952 	}
4953 
4954 	switch (protocol) {
4955 	case htons(ETH_P_IP):
4956 		return !!(features & NETIF_F_IP_CSUM);
4957 	case htons(ETH_P_IPV6):
4958 		return !!(features & NETIF_F_IPV6_CSUM);
4959 	default:
4960 		return false;
4961 	}
4962 }
4963 
4964 #ifdef CONFIG_BUG
4965 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4966 #else
4967 static inline void netdev_rx_csum_fault(struct net_device *dev,
4968 					struct sk_buff *skb)
4969 {
4970 }
4971 #endif
4972 /* rx skb timestamps */
4973 void net_enable_timestamp(void);
4974 void net_disable_timestamp(void);
4975 
4976 #ifdef CONFIG_PROC_FS
4977 int __init dev_proc_init(void);
4978 #else
4979 #define dev_proc_init() 0
4980 #endif
4981 
4982 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4983 					      struct sk_buff *skb, struct net_device *dev,
4984 					      bool more)
4985 {
4986 	__this_cpu_write(softnet_data.xmit.more, more);
4987 	return ops->ndo_start_xmit(skb, dev);
4988 }
4989 
4990 static inline bool netdev_xmit_more(void)
4991 {
4992 	return __this_cpu_read(softnet_data.xmit.more);
4993 }
4994 
4995 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4996 					    struct netdev_queue *txq, bool more)
4997 {
4998 	const struct net_device_ops *ops = dev->netdev_ops;
4999 	netdev_tx_t rc;
5000 
5001 	rc = __netdev_start_xmit(ops, skb, dev, more);
5002 	if (rc == NETDEV_TX_OK)
5003 		txq_trans_update(txq);
5004 
5005 	return rc;
5006 }
5007 
5008 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5009 				const void *ns);
5010 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5011 				 const void *ns);
5012 
5013 extern const struct kobj_ns_type_operations net_ns_type_operations;
5014 
5015 const char *netdev_drivername(const struct net_device *dev);
5016 
5017 void linkwatch_run_queue(void);
5018 
5019 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5020 							  netdev_features_t f2)
5021 {
5022 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5023 		if (f1 & NETIF_F_HW_CSUM)
5024 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5025 		else
5026 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5027 	}
5028 
5029 	return f1 & f2;
5030 }
5031 
5032 static inline netdev_features_t netdev_get_wanted_features(
5033 	struct net_device *dev)
5034 {
5035 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5036 }
5037 netdev_features_t netdev_increment_features(netdev_features_t all,
5038 	netdev_features_t one, netdev_features_t mask);
5039 
5040 /* Allow TSO being used on stacked device :
5041  * Performing the GSO segmentation before last device
5042  * is a performance improvement.
5043  */
5044 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5045 							netdev_features_t mask)
5046 {
5047 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5048 }
5049 
5050 int __netdev_update_features(struct net_device *dev);
5051 void netdev_update_features(struct net_device *dev);
5052 void netdev_change_features(struct net_device *dev);
5053 
5054 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5055 					struct net_device *dev);
5056 
5057 netdev_features_t passthru_features_check(struct sk_buff *skb,
5058 					  struct net_device *dev,
5059 					  netdev_features_t features);
5060 netdev_features_t netif_skb_features(struct sk_buff *skb);
5061 
5062 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5063 {
5064 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5065 
5066 	/* check flags correspondence */
5067 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5068 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5069 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5070 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5071 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5072 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5073 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5074 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5075 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5076 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5077 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5078 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5079 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5080 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5081 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5082 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5083 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5084 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5085 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5086 
5087 	return (features & feature) == feature;
5088 }
5089 
5090 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5091 {
5092 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5093 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5094 }
5095 
5096 static inline bool netif_needs_gso(struct sk_buff *skb,
5097 				   netdev_features_t features)
5098 {
5099 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5100 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5101 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5102 }
5103 
5104 static inline void netif_set_gso_max_size(struct net_device *dev,
5105 					  unsigned int size)
5106 {
5107 	dev->gso_max_size = size;
5108 }
5109 
5110 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5111 					int pulled_hlen, u16 mac_offset,
5112 					int mac_len)
5113 {
5114 	skb->protocol = protocol;
5115 	skb->encapsulation = 1;
5116 	skb_push(skb, pulled_hlen);
5117 	skb_reset_transport_header(skb);
5118 	skb->mac_header = mac_offset;
5119 	skb->network_header = skb->mac_header + mac_len;
5120 	skb->mac_len = mac_len;
5121 }
5122 
5123 static inline bool netif_is_macsec(const struct net_device *dev)
5124 {
5125 	return dev->priv_flags & IFF_MACSEC;
5126 }
5127 
5128 static inline bool netif_is_macvlan(const struct net_device *dev)
5129 {
5130 	return dev->priv_flags & IFF_MACVLAN;
5131 }
5132 
5133 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5134 {
5135 	return dev->priv_flags & IFF_MACVLAN_PORT;
5136 }
5137 
5138 static inline bool netif_is_bond_master(const struct net_device *dev)
5139 {
5140 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5141 }
5142 
5143 static inline bool netif_is_bond_slave(const struct net_device *dev)
5144 {
5145 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5146 }
5147 
5148 static inline bool netif_supports_nofcs(struct net_device *dev)
5149 {
5150 	return dev->priv_flags & IFF_SUPP_NOFCS;
5151 }
5152 
5153 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5154 {
5155 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5156 }
5157 
5158 static inline bool netif_is_l3_master(const struct net_device *dev)
5159 {
5160 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5161 }
5162 
5163 static inline bool netif_is_l3_slave(const struct net_device *dev)
5164 {
5165 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5166 }
5167 
5168 static inline bool netif_is_bridge_master(const struct net_device *dev)
5169 {
5170 	return dev->priv_flags & IFF_EBRIDGE;
5171 }
5172 
5173 static inline bool netif_is_bridge_port(const struct net_device *dev)
5174 {
5175 	return dev->priv_flags & IFF_BRIDGE_PORT;
5176 }
5177 
5178 static inline bool netif_is_ovs_master(const struct net_device *dev)
5179 {
5180 	return dev->priv_flags & IFF_OPENVSWITCH;
5181 }
5182 
5183 static inline bool netif_is_ovs_port(const struct net_device *dev)
5184 {
5185 	return dev->priv_flags & IFF_OVS_DATAPATH;
5186 }
5187 
5188 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5189 {
5190 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5191 }
5192 
5193 static inline bool netif_is_team_master(const struct net_device *dev)
5194 {
5195 	return dev->priv_flags & IFF_TEAM;
5196 }
5197 
5198 static inline bool netif_is_team_port(const struct net_device *dev)
5199 {
5200 	return dev->priv_flags & IFF_TEAM_PORT;
5201 }
5202 
5203 static inline bool netif_is_lag_master(const struct net_device *dev)
5204 {
5205 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5206 }
5207 
5208 static inline bool netif_is_lag_port(const struct net_device *dev)
5209 {
5210 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5211 }
5212 
5213 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5214 {
5215 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5216 }
5217 
5218 static inline bool netif_is_failover(const struct net_device *dev)
5219 {
5220 	return dev->priv_flags & IFF_FAILOVER;
5221 }
5222 
5223 static inline bool netif_is_failover_slave(const struct net_device *dev)
5224 {
5225 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5226 }
5227 
5228 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5229 static inline void netif_keep_dst(struct net_device *dev)
5230 {
5231 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5232 }
5233 
5234 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5235 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5236 {
5237 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5238 	return netif_is_macsec(dev);
5239 }
5240 
5241 extern struct pernet_operations __net_initdata loopback_net_ops;
5242 
5243 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5244 
5245 /* netdev_printk helpers, similar to dev_printk */
5246 
5247 static inline const char *netdev_name(const struct net_device *dev)
5248 {
5249 	if (!dev->name[0] || strchr(dev->name, '%'))
5250 		return "(unnamed net_device)";
5251 	return dev->name;
5252 }
5253 
5254 static inline bool netdev_unregistering(const struct net_device *dev)
5255 {
5256 	return dev->reg_state == NETREG_UNREGISTERING;
5257 }
5258 
5259 static inline const char *netdev_reg_state(const struct net_device *dev)
5260 {
5261 	switch (dev->reg_state) {
5262 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5263 	case NETREG_REGISTERED: return "";
5264 	case NETREG_UNREGISTERING: return " (unregistering)";
5265 	case NETREG_UNREGISTERED: return " (unregistered)";
5266 	case NETREG_RELEASED: return " (released)";
5267 	case NETREG_DUMMY: return " (dummy)";
5268 	}
5269 
5270 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5271 	return " (unknown)";
5272 }
5273 
5274 __printf(3, 4) __cold
5275 void netdev_printk(const char *level, const struct net_device *dev,
5276 		   const char *format, ...);
5277 __printf(2, 3) __cold
5278 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5279 __printf(2, 3) __cold
5280 void netdev_alert(const struct net_device *dev, const char *format, ...);
5281 __printf(2, 3) __cold
5282 void netdev_crit(const struct net_device *dev, const char *format, ...);
5283 __printf(2, 3) __cold
5284 void netdev_err(const struct net_device *dev, const char *format, ...);
5285 __printf(2, 3) __cold
5286 void netdev_warn(const struct net_device *dev, const char *format, ...);
5287 __printf(2, 3) __cold
5288 void netdev_notice(const struct net_device *dev, const char *format, ...);
5289 __printf(2, 3) __cold
5290 void netdev_info(const struct net_device *dev, const char *format, ...);
5291 
5292 #define netdev_level_once(level, dev, fmt, ...)			\
5293 do {								\
5294 	static bool __print_once __read_mostly;			\
5295 								\
5296 	if (!__print_once) {					\
5297 		__print_once = true;				\
5298 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5299 	}							\
5300 } while (0)
5301 
5302 #define netdev_emerg_once(dev, fmt, ...) \
5303 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5304 #define netdev_alert_once(dev, fmt, ...) \
5305 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5306 #define netdev_crit_once(dev, fmt, ...) \
5307 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5308 #define netdev_err_once(dev, fmt, ...) \
5309 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5310 #define netdev_warn_once(dev, fmt, ...) \
5311 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5312 #define netdev_notice_once(dev, fmt, ...) \
5313 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5314 #define netdev_info_once(dev, fmt, ...) \
5315 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5316 
5317 #define MODULE_ALIAS_NETDEV(device) \
5318 	MODULE_ALIAS("netdev-" device)
5319 
5320 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5321 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5322 #define netdev_dbg(__dev, format, args...)			\
5323 do {								\
5324 	dynamic_netdev_dbg(__dev, format, ##args);		\
5325 } while (0)
5326 #elif defined(DEBUG)
5327 #define netdev_dbg(__dev, format, args...)			\
5328 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5329 #else
5330 #define netdev_dbg(__dev, format, args...)			\
5331 ({								\
5332 	if (0)							\
5333 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5334 })
5335 #endif
5336 
5337 #if defined(VERBOSE_DEBUG)
5338 #define netdev_vdbg	netdev_dbg
5339 #else
5340 
5341 #define netdev_vdbg(dev, format, args...)			\
5342 ({								\
5343 	if (0)							\
5344 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5345 	0;							\
5346 })
5347 #endif
5348 
5349 /*
5350  * netdev_WARN() acts like dev_printk(), but with the key difference
5351  * of using a WARN/WARN_ON to get the message out, including the
5352  * file/line information and a backtrace.
5353  */
5354 #define netdev_WARN(dev, format, args...)			\
5355 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5356 	     netdev_reg_state(dev), ##args)
5357 
5358 #define netdev_WARN_ONCE(dev, format, args...)				\
5359 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5360 		  netdev_reg_state(dev), ##args)
5361 
5362 /* netif printk helpers, similar to netdev_printk */
5363 
5364 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5365 do {					  			\
5366 	if (netif_msg_##type(priv))				\
5367 		netdev_printk(level, (dev), fmt, ##args);	\
5368 } while (0)
5369 
5370 #define netif_level(level, priv, type, dev, fmt, args...)	\
5371 do {								\
5372 	if (netif_msg_##type(priv))				\
5373 		netdev_##level(dev, fmt, ##args);		\
5374 } while (0)
5375 
5376 #define netif_emerg(priv, type, dev, fmt, args...)		\
5377 	netif_level(emerg, priv, type, dev, fmt, ##args)
5378 #define netif_alert(priv, type, dev, fmt, args...)		\
5379 	netif_level(alert, priv, type, dev, fmt, ##args)
5380 #define netif_crit(priv, type, dev, fmt, args...)		\
5381 	netif_level(crit, priv, type, dev, fmt, ##args)
5382 #define netif_err(priv, type, dev, fmt, args...)		\
5383 	netif_level(err, priv, type, dev, fmt, ##args)
5384 #define netif_warn(priv, type, dev, fmt, args...)		\
5385 	netif_level(warn, priv, type, dev, fmt, ##args)
5386 #define netif_notice(priv, type, dev, fmt, args...)		\
5387 	netif_level(notice, priv, type, dev, fmt, ##args)
5388 #define netif_info(priv, type, dev, fmt, args...)		\
5389 	netif_level(info, priv, type, dev, fmt, ##args)
5390 
5391 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5392 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5393 #define netif_dbg(priv, type, netdev, format, args...)		\
5394 do {								\
5395 	if (netif_msg_##type(priv))				\
5396 		dynamic_netdev_dbg(netdev, format, ##args);	\
5397 } while (0)
5398 #elif defined(DEBUG)
5399 #define netif_dbg(priv, type, dev, format, args...)		\
5400 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5401 #else
5402 #define netif_dbg(priv, type, dev, format, args...)			\
5403 ({									\
5404 	if (0)								\
5405 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5406 	0;								\
5407 })
5408 #endif
5409 
5410 /* if @cond then downgrade to debug, else print at @level */
5411 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5412 	do {                                                              \
5413 		if (cond)                                                 \
5414 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5415 		else                                                      \
5416 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5417 	} while (0)
5418 
5419 #if defined(VERBOSE_DEBUG)
5420 #define netif_vdbg	netif_dbg
5421 #else
5422 #define netif_vdbg(priv, type, dev, format, args...)		\
5423 ({								\
5424 	if (0)							\
5425 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5426 	0;							\
5427 })
5428 #endif
5429 
5430 /*
5431  *	The list of packet types we will receive (as opposed to discard)
5432  *	and the routines to invoke.
5433  *
5434  *	Why 16. Because with 16 the only overlap we get on a hash of the
5435  *	low nibble of the protocol value is RARP/SNAP/X.25.
5436  *
5437  *		0800	IP
5438  *		0001	802.3
5439  *		0002	AX.25
5440  *		0004	802.2
5441  *		8035	RARP
5442  *		0005	SNAP
5443  *		0805	X.25
5444  *		0806	ARP
5445  *		8137	IPX
5446  *		0009	Localtalk
5447  *		86DD	IPv6
5448  */
5449 #define PTYPE_HASH_SIZE	(16)
5450 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5451 
5452 extern struct list_head ptype_all __read_mostly;
5453 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5454 
5455 extern struct net_device *blackhole_netdev;
5456 
5457 #endif	/* _LINUX_NETDEVICE_H */
5458