1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #ifdef CONFIG_DCB 45 #include <net/dcbnl.h> 46 #endif 47 #include <net/netprio_cgroup.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_switch_tree; 60 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct bpf_prog; 69 70 void netdev_set_default_ethtool_ops(struct net_device *dev, 71 const struct ethtool_ops *ops); 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously; in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 99 100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 101 * indicates that the device will soon be dropping packets, or already drops 102 * some packets of the same priority; prompting us to send less aggressively. */ 103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 105 106 /* Driver transmit return codes */ 107 #define NETDEV_TX_MASK 0xf0 108 109 enum netdev_tx { 110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 111 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 113 }; 114 typedef enum netdev_tx netdev_tx_t; 115 116 /* 117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 119 */ 120 static inline bool dev_xmit_complete(int rc) 121 { 122 /* 123 * Positive cases with an skb consumed by a driver: 124 * - successful transmission (rc == NETDEV_TX_OK) 125 * - error while transmitting (rc < 0) 126 * - error while queueing to a different device (rc & NET_XMIT_MASK) 127 */ 128 if (likely(rc < NET_XMIT_MASK)) 129 return true; 130 131 return false; 132 } 133 134 /* 135 * Compute the worst-case header length according to the protocols 136 * used. 137 */ 138 139 #if defined(CONFIG_HYPERV_NET) 140 # define LL_MAX_HEADER 128 141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 extern struct static_key rfs_needed; 197 #endif 198 199 struct neighbour; 200 struct neigh_parms; 201 struct sk_buff; 202 203 struct netdev_hw_addr { 204 struct list_head list; 205 unsigned char addr[MAX_ADDR_LEN]; 206 unsigned char type; 207 #define NETDEV_HW_ADDR_T_LAN 1 208 #define NETDEV_HW_ADDR_T_SAN 2 209 #define NETDEV_HW_ADDR_T_SLAVE 3 210 #define NETDEV_HW_ADDR_T_UNICAST 4 211 #define NETDEV_HW_ADDR_T_MULTICAST 5 212 bool global_use; 213 int sync_cnt; 214 int refcount; 215 int synced; 216 struct rcu_head rcu_head; 217 }; 218 219 struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222 }; 223 224 #define netdev_hw_addr_list_count(l) ((l)->count) 225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226 #define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231 #define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236 #define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239 struct hh_cache { 240 u16 hh_len; 241 u16 __pad; 242 seqlock_t hh_lock; 243 244 /* cached hardware header; allow for machine alignment needs. */ 245 #define HH_DATA_MOD 16 246 #define HH_DATA_OFF(__len) \ 247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 248 #define HH_DATA_ALIGN(__len) \ 249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 251 }; 252 253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 254 * Alternative is: 255 * dev->hard_header_len ? (dev->hard_header_len + 256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 257 * 258 * We could use other alignment values, but we must maintain the 259 * relationship HH alignment <= LL alignment. 260 */ 261 #define LL_RESERVED_SPACE(dev) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 266 struct header_ops { 267 int (*create) (struct sk_buff *skb, struct net_device *dev, 268 unsigned short type, const void *daddr, 269 const void *saddr, unsigned int len); 270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 bool (*validate)(const char *ll_header, unsigned int len); 276 }; 277 278 /* These flag bits are private to the generic network queueing 279 * layer; they may not be explicitly referenced by any other 280 * code. 281 */ 282 283 enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289 }; 290 291 292 /* 293 * This structure holds boot-time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296 struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299 }; 300 #define NETDEV_BOOT_SETUP_MAX 8 301 302 int __init netdev_boot_setup(char *str); 303 304 /* 305 * Structure for NAPI scheduling similar to tasklet but with weighting 306 */ 307 struct napi_struct { 308 /* The poll_list must only be managed by the entity which 309 * changes the state of the NAPI_STATE_SCHED bit. This means 310 * whoever atomically sets that bit can add this napi_struct 311 * to the per-CPU poll_list, and whoever clears that bit 312 * can remove from the list right before clearing the bit. 313 */ 314 struct list_head poll_list; 315 316 unsigned long state; 317 int weight; 318 unsigned int gro_count; 319 int (*poll)(struct napi_struct *, int); 320 #ifdef CONFIG_NETPOLL 321 int poll_owner; 322 #endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct hrtimer timer; 327 struct list_head dev_list; 328 struct hlist_node napi_hash_node; 329 unsigned int napi_id; 330 }; 331 332 enum { 333 NAPI_STATE_SCHED, /* Poll is scheduled */ 334 NAPI_STATE_MISSED, /* reschedule a napi */ 335 NAPI_STATE_DISABLE, /* Disable pending */ 336 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 337 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 338 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 339 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 340 }; 341 342 enum { 343 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 344 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 345 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 346 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 347 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 348 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 349 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 350 }; 351 352 enum gro_result { 353 GRO_MERGED, 354 GRO_MERGED_FREE, 355 GRO_HELD, 356 GRO_NORMAL, 357 GRO_DROP, 358 GRO_CONSUMED, 359 }; 360 typedef enum gro_result gro_result_t; 361 362 /* 363 * enum rx_handler_result - Possible return values for rx_handlers. 364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 365 * further. 366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 367 * case skb->dev was changed by rx_handler. 368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 370 * 371 * rx_handlers are functions called from inside __netif_receive_skb(), to do 372 * special processing of the skb, prior to delivery to protocol handlers. 373 * 374 * Currently, a net_device can only have a single rx_handler registered. Trying 375 * to register a second rx_handler will return -EBUSY. 376 * 377 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 378 * To unregister a rx_handler on a net_device, use 379 * netdev_rx_handler_unregister(). 380 * 381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 382 * do with the skb. 383 * 384 * If the rx_handler consumed the skb in some way, it should return 385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 386 * the skb to be delivered in some other way. 387 * 388 * If the rx_handler changed skb->dev, to divert the skb to another 389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 390 * new device will be called if it exists. 391 * 392 * If the rx_handler decides the skb should be ignored, it should return 393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 394 * are registered on exact device (ptype->dev == skb->dev). 395 * 396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 397 * delivered, it should return RX_HANDLER_PASS. 398 * 399 * A device without a registered rx_handler will behave as if rx_handler 400 * returned RX_HANDLER_PASS. 401 */ 402 403 enum rx_handler_result { 404 RX_HANDLER_CONSUMED, 405 RX_HANDLER_ANOTHER, 406 RX_HANDLER_EXACT, 407 RX_HANDLER_PASS, 408 }; 409 typedef enum rx_handler_result rx_handler_result_t; 410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 411 412 void __napi_schedule(struct napi_struct *n); 413 void __napi_schedule_irqoff(struct napi_struct *n); 414 415 static inline bool napi_disable_pending(struct napi_struct *n) 416 { 417 return test_bit(NAPI_STATE_DISABLE, &n->state); 418 } 419 420 bool napi_schedule_prep(struct napi_struct *n); 421 422 /** 423 * napi_schedule - schedule NAPI poll 424 * @n: NAPI context 425 * 426 * Schedule NAPI poll routine to be called if it is not already 427 * running. 428 */ 429 static inline void napi_schedule(struct napi_struct *n) 430 { 431 if (napi_schedule_prep(n)) 432 __napi_schedule(n); 433 } 434 435 /** 436 * napi_schedule_irqoff - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Variant of napi_schedule(), assuming hard irqs are masked. 440 */ 441 static inline void napi_schedule_irqoff(struct napi_struct *n) 442 { 443 if (napi_schedule_prep(n)) 444 __napi_schedule_irqoff(n); 445 } 446 447 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 448 static inline bool napi_reschedule(struct napi_struct *napi) 449 { 450 if (napi_schedule_prep(napi)) { 451 __napi_schedule(napi); 452 return true; 453 } 454 return false; 455 } 456 457 bool napi_complete_done(struct napi_struct *n, int work_done); 458 /** 459 * napi_complete - NAPI processing complete 460 * @n: NAPI context 461 * 462 * Mark NAPI processing as complete. 463 * Consider using napi_complete_done() instead. 464 * Return false if device should avoid rearming interrupts. 465 */ 466 static inline bool napi_complete(struct napi_struct *n) 467 { 468 return napi_complete_done(n, 0); 469 } 470 471 /** 472 * napi_hash_del - remove a NAPI from global table 473 * @napi: NAPI context 474 * 475 * Warning: caller must observe RCU grace period 476 * before freeing memory containing @napi, if 477 * this function returns true. 478 * Note: core networking stack automatically calls it 479 * from netif_napi_del(). 480 * Drivers might want to call this helper to combine all 481 * the needed RCU grace periods into a single one. 482 */ 483 bool napi_hash_del(struct napi_struct *napi); 484 485 /** 486 * napi_disable - prevent NAPI from scheduling 487 * @n: NAPI context 488 * 489 * Stop NAPI from being scheduled on this context. 490 * Waits till any outstanding processing completes. 491 */ 492 void napi_disable(struct napi_struct *n); 493 494 /** 495 * napi_enable - enable NAPI scheduling 496 * @n: NAPI context 497 * 498 * Resume NAPI from being scheduled on this context. 499 * Must be paired with napi_disable. 500 */ 501 static inline void napi_enable(struct napi_struct *n) 502 { 503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 504 smp_mb__before_atomic(); 505 clear_bit(NAPI_STATE_SCHED, &n->state); 506 clear_bit(NAPI_STATE_NPSVC, &n->state); 507 } 508 509 /** 510 * napi_synchronize - wait until NAPI is not running 511 * @n: NAPI context 512 * 513 * Wait until NAPI is done being scheduled on this context. 514 * Waits till any outstanding processing completes but 515 * does not disable future activations. 516 */ 517 static inline void napi_synchronize(const struct napi_struct *n) 518 { 519 if (IS_ENABLED(CONFIG_SMP)) 520 while (test_bit(NAPI_STATE_SCHED, &n->state)) 521 msleep(1); 522 else 523 barrier(); 524 } 525 526 enum netdev_queue_state_t { 527 __QUEUE_STATE_DRV_XOFF, 528 __QUEUE_STATE_STACK_XOFF, 529 __QUEUE_STATE_FROZEN, 530 }; 531 532 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 533 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 534 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 535 536 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 538 QUEUE_STATE_FROZEN) 539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 540 QUEUE_STATE_FROZEN) 541 542 /* 543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 544 * netif_tx_* functions below are used to manipulate this flag. The 545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 546 * queue independently. The netif_xmit_*stopped functions below are called 547 * to check if the queue has been stopped by the driver or stack (either 548 * of the XOFF bits are set in the state). Drivers should not need to call 549 * netif_xmit*stopped functions, they should only be using netif_tx_*. 550 */ 551 552 struct netdev_queue { 553 /* 554 * read-mostly part 555 */ 556 struct net_device *dev; 557 struct Qdisc __rcu *qdisc; 558 struct Qdisc *qdisc_sleeping; 559 #ifdef CONFIG_SYSFS 560 struct kobject kobj; 561 #endif 562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564 #endif 565 unsigned long tx_maxrate; 566 /* 567 * Number of TX timeouts for this queue 568 * (/sys/class/net/DEV/Q/trans_timeout) 569 */ 570 unsigned long trans_timeout; 571 /* 572 * write-mostly part 573 */ 574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 575 int xmit_lock_owner; 576 /* 577 * Time (in jiffies) of last Tx 578 */ 579 unsigned long trans_start; 580 581 unsigned long state; 582 583 #ifdef CONFIG_BQL 584 struct dql dql; 585 #endif 586 } ____cacheline_aligned_in_smp; 587 588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 589 { 590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 591 return q->numa_node; 592 #else 593 return NUMA_NO_NODE; 594 #endif 595 } 596 597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 598 { 599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 q->numa_node = node; 601 #endif 602 } 603 604 #ifdef CONFIG_RPS 605 /* 606 * This structure holds an RPS map which can be of variable length. The 607 * map is an array of CPUs. 608 */ 609 struct rps_map { 610 unsigned int len; 611 struct rcu_head rcu; 612 u16 cpus[0]; 613 }; 614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 615 616 /* 617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 618 * tail pointer for that CPU's input queue at the time of last enqueue, and 619 * a hardware filter index. 620 */ 621 struct rps_dev_flow { 622 u16 cpu; 623 u16 filter; 624 unsigned int last_qtail; 625 }; 626 #define RPS_NO_FILTER 0xffff 627 628 /* 629 * The rps_dev_flow_table structure contains a table of flow mappings. 630 */ 631 struct rps_dev_flow_table { 632 unsigned int mask; 633 struct rcu_head rcu; 634 struct rps_dev_flow flows[0]; 635 }; 636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 637 ((_num) * sizeof(struct rps_dev_flow))) 638 639 /* 640 * The rps_sock_flow_table contains mappings of flows to the last CPU 641 * on which they were processed by the application (set in recvmsg). 642 * Each entry is a 32bit value. Upper part is the high-order bits 643 * of flow hash, lower part is CPU number. 644 * rps_cpu_mask is used to partition the space, depending on number of 645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 647 * meaning we use 32-6=26 bits for the hash. 648 */ 649 struct rps_sock_flow_table { 650 u32 mask; 651 652 u32 ents[0] ____cacheline_aligned_in_smp; 653 }; 654 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 655 656 #define RPS_NO_CPU 0xffff 657 658 extern u32 rps_cpu_mask; 659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 660 661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 662 u32 hash) 663 { 664 if (table && hash) { 665 unsigned int index = hash & table->mask; 666 u32 val = hash & ~rps_cpu_mask; 667 668 /* We only give a hint, preemption can change CPU under us */ 669 val |= raw_smp_processor_id(); 670 671 if (table->ents[index] != val) 672 table->ents[index] = val; 673 } 674 } 675 676 #ifdef CONFIG_RFS_ACCEL 677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 678 u16 filter_id); 679 #endif 680 #endif /* CONFIG_RPS */ 681 682 /* This structure contains an instance of an RX queue. */ 683 struct netdev_rx_queue { 684 #ifdef CONFIG_RPS 685 struct rps_map __rcu *rps_map; 686 struct rps_dev_flow_table __rcu *rps_flow_table; 687 #endif 688 struct kobject kobj; 689 struct net_device *dev; 690 } ____cacheline_aligned_in_smp; 691 692 /* 693 * RX queue sysfs structures and functions. 694 */ 695 struct rx_queue_attribute { 696 struct attribute attr; 697 ssize_t (*show)(struct netdev_rx_queue *queue, 698 struct rx_queue_attribute *attr, char *buf); 699 ssize_t (*store)(struct netdev_rx_queue *queue, 700 struct rx_queue_attribute *attr, const char *buf, size_t len); 701 }; 702 703 #ifdef CONFIG_XPS 704 /* 705 * This structure holds an XPS map which can be of variable length. The 706 * map is an array of queues. 707 */ 708 struct xps_map { 709 unsigned int len; 710 unsigned int alloc_len; 711 struct rcu_head rcu; 712 u16 queues[0]; 713 }; 714 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 715 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 716 - sizeof(struct xps_map)) / sizeof(u16)) 717 718 /* 719 * This structure holds all XPS maps for device. Maps are indexed by CPU. 720 */ 721 struct xps_dev_maps { 722 struct rcu_head rcu; 723 struct xps_map __rcu *cpu_map[0]; 724 }; 725 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 726 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 727 #endif /* CONFIG_XPS */ 728 729 #define TC_MAX_QUEUE 16 730 #define TC_BITMASK 15 731 /* HW offloaded queuing disciplines txq count and offset maps */ 732 struct netdev_tc_txq { 733 u16 count; 734 u16 offset; 735 }; 736 737 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 738 /* 739 * This structure is to hold information about the device 740 * configured to run FCoE protocol stack. 741 */ 742 struct netdev_fcoe_hbainfo { 743 char manufacturer[64]; 744 char serial_number[64]; 745 char hardware_version[64]; 746 char driver_version[64]; 747 char optionrom_version[64]; 748 char firmware_version[64]; 749 char model[256]; 750 char model_description[256]; 751 }; 752 #endif 753 754 #define MAX_PHYS_ITEM_ID_LEN 32 755 756 /* This structure holds a unique identifier to identify some 757 * physical item (port for example) used by a netdevice. 758 */ 759 struct netdev_phys_item_id { 760 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 761 unsigned char id_len; 762 }; 763 764 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 765 struct netdev_phys_item_id *b) 766 { 767 return a->id_len == b->id_len && 768 memcmp(a->id, b->id, a->id_len) == 0; 769 } 770 771 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 772 struct sk_buff *skb); 773 774 /* These structures hold the attributes of qdisc and classifiers 775 * that are being passed to the netdevice through the setup_tc op. 776 */ 777 enum { 778 TC_SETUP_MQPRIO, 779 TC_SETUP_CLSU32, 780 TC_SETUP_CLSFLOWER, 781 TC_SETUP_MATCHALL, 782 TC_SETUP_CLSBPF, 783 }; 784 785 struct tc_cls_u32_offload; 786 787 struct tc_to_netdev { 788 unsigned int type; 789 union { 790 struct tc_cls_u32_offload *cls_u32; 791 struct tc_cls_flower_offload *cls_flower; 792 struct tc_cls_matchall_offload *cls_mall; 793 struct tc_cls_bpf_offload *cls_bpf; 794 struct tc_mqprio_qopt *mqprio; 795 }; 796 bool egress_dev; 797 }; 798 799 /* These structures hold the attributes of xdp state that are being passed 800 * to the netdevice through the xdp op. 801 */ 802 enum xdp_netdev_command { 803 /* Set or clear a bpf program used in the earliest stages of packet 804 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 805 * is responsible for calling bpf_prog_put on any old progs that are 806 * stored. In case of error, the callee need not release the new prog 807 * reference, but on success it takes ownership and must bpf_prog_put 808 * when it is no longer used. 809 */ 810 XDP_SETUP_PROG, 811 /* Check if a bpf program is set on the device. The callee should 812 * return true if a program is currently attached and running. 813 */ 814 XDP_QUERY_PROG, 815 }; 816 817 struct netdev_xdp { 818 enum xdp_netdev_command command; 819 union { 820 /* XDP_SETUP_PROG */ 821 struct bpf_prog *prog; 822 /* XDP_QUERY_PROG */ 823 bool prog_attached; 824 }; 825 }; 826 827 /* 828 * This structure defines the management hooks for network devices. 829 * The following hooks can be defined; unless noted otherwise, they are 830 * optional and can be filled with a null pointer. 831 * 832 * int (*ndo_init)(struct net_device *dev); 833 * This function is called once when a network device is registered. 834 * The network device can use this for any late stage initialization 835 * or semantic validation. It can fail with an error code which will 836 * be propagated back to register_netdev. 837 * 838 * void (*ndo_uninit)(struct net_device *dev); 839 * This function is called when device is unregistered or when registration 840 * fails. It is not called if init fails. 841 * 842 * int (*ndo_open)(struct net_device *dev); 843 * This function is called when a network device transitions to the up 844 * state. 845 * 846 * int (*ndo_stop)(struct net_device *dev); 847 * This function is called when a network device transitions to the down 848 * state. 849 * 850 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 851 * struct net_device *dev); 852 * Called when a packet needs to be transmitted. 853 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 854 * the queue before that can happen; it's for obsolete devices and weird 855 * corner cases, but the stack really does a non-trivial amount 856 * of useless work if you return NETDEV_TX_BUSY. 857 * Required; cannot be NULL. 858 * 859 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 860 * struct net_device *dev 861 * netdev_features_t features); 862 * Called by core transmit path to determine if device is capable of 863 * performing offload operations on a given packet. This is to give 864 * the device an opportunity to implement any restrictions that cannot 865 * be otherwise expressed by feature flags. The check is called with 866 * the set of features that the stack has calculated and it returns 867 * those the driver believes to be appropriate. 868 * 869 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 870 * void *accel_priv, select_queue_fallback_t fallback); 871 * Called to decide which queue to use when device supports multiple 872 * transmit queues. 873 * 874 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 875 * This function is called to allow device receiver to make 876 * changes to configuration when multicast or promiscuous is enabled. 877 * 878 * void (*ndo_set_rx_mode)(struct net_device *dev); 879 * This function is called device changes address list filtering. 880 * If driver handles unicast address filtering, it should set 881 * IFF_UNICAST_FLT in its priv_flags. 882 * 883 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 884 * This function is called when the Media Access Control address 885 * needs to be changed. If this interface is not defined, the 886 * MAC address can not be changed. 887 * 888 * int (*ndo_validate_addr)(struct net_device *dev); 889 * Test if Media Access Control address is valid for the device. 890 * 891 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 892 * Called when a user requests an ioctl which can't be handled by 893 * the generic interface code. If not defined ioctls return 894 * not supported error code. 895 * 896 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 897 * Used to set network devices bus interface parameters. This interface 898 * is retained for legacy reasons; new devices should use the bus 899 * interface (PCI) for low level management. 900 * 901 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 902 * Called when a user wants to change the Maximum Transfer Unit 903 * of a device. If not defined, any request to change MTU will 904 * will return an error. 905 * 906 * void (*ndo_tx_timeout)(struct net_device *dev); 907 * Callback used when the transmitter has not made any progress 908 * for dev->watchdog ticks. 909 * 910 * void (*ndo_get_stats64)(struct net_device *dev, 911 * struct rtnl_link_stats64 *storage); 912 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 913 * Called when a user wants to get the network device usage 914 * statistics. Drivers must do one of the following: 915 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 916 * rtnl_link_stats64 structure passed by the caller. 917 * 2. Define @ndo_get_stats to update a net_device_stats structure 918 * (which should normally be dev->stats) and return a pointer to 919 * it. The structure may be changed asynchronously only if each 920 * field is written atomically. 921 * 3. Update dev->stats asynchronously and atomically, and define 922 * neither operation. 923 * 924 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 925 * Return true if this device supports offload stats of this attr_id. 926 * 927 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 928 * void *attr_data) 929 * Get statistics for offload operations by attr_id. Write it into the 930 * attr_data pointer. 931 * 932 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 933 * If device supports VLAN filtering this function is called when a 934 * VLAN id is registered. 935 * 936 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 937 * If device supports VLAN filtering this function is called when a 938 * VLAN id is unregistered. 939 * 940 * void (*ndo_poll_controller)(struct net_device *dev); 941 * 942 * SR-IOV management functions. 943 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 944 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 945 * u8 qos, __be16 proto); 946 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 947 * int max_tx_rate); 948 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 949 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 950 * int (*ndo_get_vf_config)(struct net_device *dev, 951 * int vf, struct ifla_vf_info *ivf); 952 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 953 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 954 * struct nlattr *port[]); 955 * 956 * Enable or disable the VF ability to query its RSS Redirection Table and 957 * Hash Key. This is needed since on some devices VF share this information 958 * with PF and querying it may introduce a theoretical security risk. 959 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 960 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 961 * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, 962 * __be16 protocol, struct tc_to_netdev *tc); 963 * Called to setup any 'tc' scheduler, classifier or action on @dev. 964 * This is always called from the stack with the rtnl lock held and netif 965 * tx queues stopped. This allows the netdevice to perform queue 966 * management safely. 967 * 968 * Fiber Channel over Ethernet (FCoE) offload functions. 969 * int (*ndo_fcoe_enable)(struct net_device *dev); 970 * Called when the FCoE protocol stack wants to start using LLD for FCoE 971 * so the underlying device can perform whatever needed configuration or 972 * initialization to support acceleration of FCoE traffic. 973 * 974 * int (*ndo_fcoe_disable)(struct net_device *dev); 975 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 976 * so the underlying device can perform whatever needed clean-ups to 977 * stop supporting acceleration of FCoE traffic. 978 * 979 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 980 * struct scatterlist *sgl, unsigned int sgc); 981 * Called when the FCoE Initiator wants to initialize an I/O that 982 * is a possible candidate for Direct Data Placement (DDP). The LLD can 983 * perform necessary setup and returns 1 to indicate the device is set up 984 * successfully to perform DDP on this I/O, otherwise this returns 0. 985 * 986 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 987 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 988 * indicated by the FC exchange id 'xid', so the underlying device can 989 * clean up and reuse resources for later DDP requests. 990 * 991 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 992 * struct scatterlist *sgl, unsigned int sgc); 993 * Called when the FCoE Target wants to initialize an I/O that 994 * is a possible candidate for Direct Data Placement (DDP). The LLD can 995 * perform necessary setup and returns 1 to indicate the device is set up 996 * successfully to perform DDP on this I/O, otherwise this returns 0. 997 * 998 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 999 * struct netdev_fcoe_hbainfo *hbainfo); 1000 * Called when the FCoE Protocol stack wants information on the underlying 1001 * device. This information is utilized by the FCoE protocol stack to 1002 * register attributes with Fiber Channel management service as per the 1003 * FC-GS Fabric Device Management Information(FDMI) specification. 1004 * 1005 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1006 * Called when the underlying device wants to override default World Wide 1007 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1008 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1009 * protocol stack to use. 1010 * 1011 * RFS acceleration. 1012 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1013 * u16 rxq_index, u32 flow_id); 1014 * Set hardware filter for RFS. rxq_index is the target queue index; 1015 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1016 * Return the filter ID on success, or a negative error code. 1017 * 1018 * Slave management functions (for bridge, bonding, etc). 1019 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1020 * Called to make another netdev an underling. 1021 * 1022 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1023 * Called to release previously enslaved netdev. 1024 * 1025 * Feature/offload setting functions. 1026 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1027 * netdev_features_t features); 1028 * Adjusts the requested feature flags according to device-specific 1029 * constraints, and returns the resulting flags. Must not modify 1030 * the device state. 1031 * 1032 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1033 * Called to update device configuration to new features. Passed 1034 * feature set might be less than what was returned by ndo_fix_features()). 1035 * Must return >0 or -errno if it changed dev->features itself. 1036 * 1037 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1038 * struct net_device *dev, 1039 * const unsigned char *addr, u16 vid, u16 flags) 1040 * Adds an FDB entry to dev for addr. 1041 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1042 * struct net_device *dev, 1043 * const unsigned char *addr, u16 vid) 1044 * Deletes the FDB entry from dev coresponding to addr. 1045 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1046 * struct net_device *dev, struct net_device *filter_dev, 1047 * int *idx) 1048 * Used to add FDB entries to dump requests. Implementers should add 1049 * entries to skb and update idx with the number of entries. 1050 * 1051 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1052 * u16 flags) 1053 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1054 * struct net_device *dev, u32 filter_mask, 1055 * int nlflags) 1056 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1057 * u16 flags); 1058 * 1059 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1060 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1061 * which do not represent real hardware may define this to allow their 1062 * userspace components to manage their virtual carrier state. Devices 1063 * that determine carrier state from physical hardware properties (eg 1064 * network cables) or protocol-dependent mechanisms (eg 1065 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1066 * 1067 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1068 * struct netdev_phys_item_id *ppid); 1069 * Called to get ID of physical port of this device. If driver does 1070 * not implement this, it is assumed that the hw is not able to have 1071 * multiple net devices on single physical port. 1072 * 1073 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1074 * struct udp_tunnel_info *ti); 1075 * Called by UDP tunnel to notify a driver about the UDP port and socket 1076 * address family that a UDP tunnel is listnening to. It is called only 1077 * when a new port starts listening. The operation is protected by the 1078 * RTNL. 1079 * 1080 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1081 * struct udp_tunnel_info *ti); 1082 * Called by UDP tunnel to notify the driver about a UDP port and socket 1083 * address family that the UDP tunnel is not listening to anymore. The 1084 * operation is protected by the RTNL. 1085 * 1086 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1087 * struct net_device *dev) 1088 * Called by upper layer devices to accelerate switching or other 1089 * station functionality into hardware. 'pdev is the lowerdev 1090 * to use for the offload and 'dev' is the net device that will 1091 * back the offload. Returns a pointer to the private structure 1092 * the upper layer will maintain. 1093 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1094 * Called by upper layer device to delete the station created 1095 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1096 * the station and priv is the structure returned by the add 1097 * operation. 1098 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1099 * struct net_device *dev, 1100 * void *priv); 1101 * Callback to use for xmit over the accelerated station. This 1102 * is used in place of ndo_start_xmit on accelerated net 1103 * devices. 1104 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1105 * int queue_index, u32 maxrate); 1106 * Called when a user wants to set a max-rate limitation of specific 1107 * TX queue. 1108 * int (*ndo_get_iflink)(const struct net_device *dev); 1109 * Called to get the iflink value of this device. 1110 * void (*ndo_change_proto_down)(struct net_device *dev, 1111 * bool proto_down); 1112 * This function is used to pass protocol port error state information 1113 * to the switch driver. The switch driver can react to the proto_down 1114 * by doing a phys down on the associated switch port. 1115 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1116 * This function is used to get egress tunnel information for given skb. 1117 * This is useful for retrieving outer tunnel header parameters while 1118 * sampling packet. 1119 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1120 * This function is used to specify the headroom that the skb must 1121 * consider when allocation skb during packet reception. Setting 1122 * appropriate rx headroom value allows avoiding skb head copy on 1123 * forward. Setting a negative value resets the rx headroom to the 1124 * default value. 1125 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1126 * This function is used to set or query state related to XDP on the 1127 * netdevice. See definition of enum xdp_netdev_command for details. 1128 * 1129 */ 1130 struct net_device_ops { 1131 int (*ndo_init)(struct net_device *dev); 1132 void (*ndo_uninit)(struct net_device *dev); 1133 int (*ndo_open)(struct net_device *dev); 1134 int (*ndo_stop)(struct net_device *dev); 1135 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1136 struct net_device *dev); 1137 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1138 struct net_device *dev, 1139 netdev_features_t features); 1140 u16 (*ndo_select_queue)(struct net_device *dev, 1141 struct sk_buff *skb, 1142 void *accel_priv, 1143 select_queue_fallback_t fallback); 1144 void (*ndo_change_rx_flags)(struct net_device *dev, 1145 int flags); 1146 void (*ndo_set_rx_mode)(struct net_device *dev); 1147 int (*ndo_set_mac_address)(struct net_device *dev, 1148 void *addr); 1149 int (*ndo_validate_addr)(struct net_device *dev); 1150 int (*ndo_do_ioctl)(struct net_device *dev, 1151 struct ifreq *ifr, int cmd); 1152 int (*ndo_set_config)(struct net_device *dev, 1153 struct ifmap *map); 1154 int (*ndo_change_mtu)(struct net_device *dev, 1155 int new_mtu); 1156 int (*ndo_neigh_setup)(struct net_device *dev, 1157 struct neigh_parms *); 1158 void (*ndo_tx_timeout) (struct net_device *dev); 1159 1160 void (*ndo_get_stats64)(struct net_device *dev, 1161 struct rtnl_link_stats64 *storage); 1162 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1163 int (*ndo_get_offload_stats)(int attr_id, 1164 const struct net_device *dev, 1165 void *attr_data); 1166 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1167 1168 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1169 __be16 proto, u16 vid); 1170 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1171 __be16 proto, u16 vid); 1172 #ifdef CONFIG_NET_POLL_CONTROLLER 1173 void (*ndo_poll_controller)(struct net_device *dev); 1174 int (*ndo_netpoll_setup)(struct net_device *dev, 1175 struct netpoll_info *info); 1176 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1177 #endif 1178 int (*ndo_set_vf_mac)(struct net_device *dev, 1179 int queue, u8 *mac); 1180 int (*ndo_set_vf_vlan)(struct net_device *dev, 1181 int queue, u16 vlan, 1182 u8 qos, __be16 proto); 1183 int (*ndo_set_vf_rate)(struct net_device *dev, 1184 int vf, int min_tx_rate, 1185 int max_tx_rate); 1186 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1187 int vf, bool setting); 1188 int (*ndo_set_vf_trust)(struct net_device *dev, 1189 int vf, bool setting); 1190 int (*ndo_get_vf_config)(struct net_device *dev, 1191 int vf, 1192 struct ifla_vf_info *ivf); 1193 int (*ndo_set_vf_link_state)(struct net_device *dev, 1194 int vf, int link_state); 1195 int (*ndo_get_vf_stats)(struct net_device *dev, 1196 int vf, 1197 struct ifla_vf_stats 1198 *vf_stats); 1199 int (*ndo_set_vf_port)(struct net_device *dev, 1200 int vf, 1201 struct nlattr *port[]); 1202 int (*ndo_get_vf_port)(struct net_device *dev, 1203 int vf, struct sk_buff *skb); 1204 int (*ndo_set_vf_guid)(struct net_device *dev, 1205 int vf, u64 guid, 1206 int guid_type); 1207 int (*ndo_set_vf_rss_query_en)( 1208 struct net_device *dev, 1209 int vf, bool setting); 1210 int (*ndo_setup_tc)(struct net_device *dev, 1211 u32 handle, 1212 __be16 protocol, 1213 struct tc_to_netdev *tc); 1214 #if IS_ENABLED(CONFIG_FCOE) 1215 int (*ndo_fcoe_enable)(struct net_device *dev); 1216 int (*ndo_fcoe_disable)(struct net_device *dev); 1217 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1218 u16 xid, 1219 struct scatterlist *sgl, 1220 unsigned int sgc); 1221 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1222 u16 xid); 1223 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1224 u16 xid, 1225 struct scatterlist *sgl, 1226 unsigned int sgc); 1227 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1228 struct netdev_fcoe_hbainfo *hbainfo); 1229 #endif 1230 1231 #if IS_ENABLED(CONFIG_LIBFCOE) 1232 #define NETDEV_FCOE_WWNN 0 1233 #define NETDEV_FCOE_WWPN 1 1234 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1235 u64 *wwn, int type); 1236 #endif 1237 1238 #ifdef CONFIG_RFS_ACCEL 1239 int (*ndo_rx_flow_steer)(struct net_device *dev, 1240 const struct sk_buff *skb, 1241 u16 rxq_index, 1242 u32 flow_id); 1243 #endif 1244 int (*ndo_add_slave)(struct net_device *dev, 1245 struct net_device *slave_dev); 1246 int (*ndo_del_slave)(struct net_device *dev, 1247 struct net_device *slave_dev); 1248 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1249 netdev_features_t features); 1250 int (*ndo_set_features)(struct net_device *dev, 1251 netdev_features_t features); 1252 int (*ndo_neigh_construct)(struct net_device *dev, 1253 struct neighbour *n); 1254 void (*ndo_neigh_destroy)(struct net_device *dev, 1255 struct neighbour *n); 1256 1257 int (*ndo_fdb_add)(struct ndmsg *ndm, 1258 struct nlattr *tb[], 1259 struct net_device *dev, 1260 const unsigned char *addr, 1261 u16 vid, 1262 u16 flags); 1263 int (*ndo_fdb_del)(struct ndmsg *ndm, 1264 struct nlattr *tb[], 1265 struct net_device *dev, 1266 const unsigned char *addr, 1267 u16 vid); 1268 int (*ndo_fdb_dump)(struct sk_buff *skb, 1269 struct netlink_callback *cb, 1270 struct net_device *dev, 1271 struct net_device *filter_dev, 1272 int *idx); 1273 1274 int (*ndo_bridge_setlink)(struct net_device *dev, 1275 struct nlmsghdr *nlh, 1276 u16 flags); 1277 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1278 u32 pid, u32 seq, 1279 struct net_device *dev, 1280 u32 filter_mask, 1281 int nlflags); 1282 int (*ndo_bridge_dellink)(struct net_device *dev, 1283 struct nlmsghdr *nlh, 1284 u16 flags); 1285 int (*ndo_change_carrier)(struct net_device *dev, 1286 bool new_carrier); 1287 int (*ndo_get_phys_port_id)(struct net_device *dev, 1288 struct netdev_phys_item_id *ppid); 1289 int (*ndo_get_phys_port_name)(struct net_device *dev, 1290 char *name, size_t len); 1291 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1292 struct udp_tunnel_info *ti); 1293 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1294 struct udp_tunnel_info *ti); 1295 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1296 struct net_device *dev); 1297 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1298 void *priv); 1299 1300 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1301 struct net_device *dev, 1302 void *priv); 1303 int (*ndo_get_lock_subclass)(struct net_device *dev); 1304 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1305 int queue_index, 1306 u32 maxrate); 1307 int (*ndo_get_iflink)(const struct net_device *dev); 1308 int (*ndo_change_proto_down)(struct net_device *dev, 1309 bool proto_down); 1310 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1311 struct sk_buff *skb); 1312 void (*ndo_set_rx_headroom)(struct net_device *dev, 1313 int needed_headroom); 1314 int (*ndo_xdp)(struct net_device *dev, 1315 struct netdev_xdp *xdp); 1316 }; 1317 1318 /** 1319 * enum net_device_priv_flags - &struct net_device priv_flags 1320 * 1321 * These are the &struct net_device, they are only set internally 1322 * by drivers and used in the kernel. These flags are invisible to 1323 * userspace; this means that the order of these flags can change 1324 * during any kernel release. 1325 * 1326 * You should have a pretty good reason to be extending these flags. 1327 * 1328 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1329 * @IFF_EBRIDGE: Ethernet bridging device 1330 * @IFF_BONDING: bonding master or slave 1331 * @IFF_ISATAP: ISATAP interface (RFC4214) 1332 * @IFF_WAN_HDLC: WAN HDLC device 1333 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1334 * release skb->dst 1335 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1336 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1337 * @IFF_MACVLAN_PORT: device used as macvlan port 1338 * @IFF_BRIDGE_PORT: device used as bridge port 1339 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1340 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1341 * @IFF_UNICAST_FLT: Supports unicast filtering 1342 * @IFF_TEAM_PORT: device used as team port 1343 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1344 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1345 * change when it's running 1346 * @IFF_MACVLAN: Macvlan device 1347 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1348 * underlying stacked devices 1349 * @IFF_IPVLAN_MASTER: IPvlan master device 1350 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1351 * @IFF_L3MDEV_MASTER: device is an L3 master device 1352 * @IFF_NO_QUEUE: device can run without qdisc attached 1353 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1354 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1355 * @IFF_TEAM: device is a team device 1356 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1357 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1358 * entity (i.e. the master device for bridged veth) 1359 * @IFF_MACSEC: device is a MACsec device 1360 */ 1361 enum netdev_priv_flags { 1362 IFF_802_1Q_VLAN = 1<<0, 1363 IFF_EBRIDGE = 1<<1, 1364 IFF_BONDING = 1<<2, 1365 IFF_ISATAP = 1<<3, 1366 IFF_WAN_HDLC = 1<<4, 1367 IFF_XMIT_DST_RELEASE = 1<<5, 1368 IFF_DONT_BRIDGE = 1<<6, 1369 IFF_DISABLE_NETPOLL = 1<<7, 1370 IFF_MACVLAN_PORT = 1<<8, 1371 IFF_BRIDGE_PORT = 1<<9, 1372 IFF_OVS_DATAPATH = 1<<10, 1373 IFF_TX_SKB_SHARING = 1<<11, 1374 IFF_UNICAST_FLT = 1<<12, 1375 IFF_TEAM_PORT = 1<<13, 1376 IFF_SUPP_NOFCS = 1<<14, 1377 IFF_LIVE_ADDR_CHANGE = 1<<15, 1378 IFF_MACVLAN = 1<<16, 1379 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1380 IFF_IPVLAN_MASTER = 1<<18, 1381 IFF_IPVLAN_SLAVE = 1<<19, 1382 IFF_L3MDEV_MASTER = 1<<20, 1383 IFF_NO_QUEUE = 1<<21, 1384 IFF_OPENVSWITCH = 1<<22, 1385 IFF_L3MDEV_SLAVE = 1<<23, 1386 IFF_TEAM = 1<<24, 1387 IFF_RXFH_CONFIGURED = 1<<25, 1388 IFF_PHONY_HEADROOM = 1<<26, 1389 IFF_MACSEC = 1<<27, 1390 }; 1391 1392 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1393 #define IFF_EBRIDGE IFF_EBRIDGE 1394 #define IFF_BONDING IFF_BONDING 1395 #define IFF_ISATAP IFF_ISATAP 1396 #define IFF_WAN_HDLC IFF_WAN_HDLC 1397 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1398 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1399 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1400 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1401 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1402 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1403 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1404 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1405 #define IFF_TEAM_PORT IFF_TEAM_PORT 1406 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1407 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1408 #define IFF_MACVLAN IFF_MACVLAN 1409 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1410 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1411 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1412 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1413 #define IFF_NO_QUEUE IFF_NO_QUEUE 1414 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1415 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1416 #define IFF_TEAM IFF_TEAM 1417 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1418 #define IFF_MACSEC IFF_MACSEC 1419 1420 /** 1421 * struct net_device - The DEVICE structure. 1422 * Actually, this whole structure is a big mistake. It mixes I/O 1423 * data with strictly "high-level" data, and it has to know about 1424 * almost every data structure used in the INET module. 1425 * 1426 * @name: This is the first field of the "visible" part of this structure 1427 * (i.e. as seen by users in the "Space.c" file). It is the name 1428 * of the interface. 1429 * 1430 * @name_hlist: Device name hash chain, please keep it close to name[] 1431 * @ifalias: SNMP alias 1432 * @mem_end: Shared memory end 1433 * @mem_start: Shared memory start 1434 * @base_addr: Device I/O address 1435 * @irq: Device IRQ number 1436 * 1437 * @carrier_changes: Stats to monitor carrier on<->off transitions 1438 * 1439 * @state: Generic network queuing layer state, see netdev_state_t 1440 * @dev_list: The global list of network devices 1441 * @napi_list: List entry used for polling NAPI devices 1442 * @unreg_list: List entry when we are unregistering the 1443 * device; see the function unregister_netdev 1444 * @close_list: List entry used when we are closing the device 1445 * @ptype_all: Device-specific packet handlers for all protocols 1446 * @ptype_specific: Device-specific, protocol-specific packet handlers 1447 * 1448 * @adj_list: Directly linked devices, like slaves for bonding 1449 * @features: Currently active device features 1450 * @hw_features: User-changeable features 1451 * 1452 * @wanted_features: User-requested features 1453 * @vlan_features: Mask of features inheritable by VLAN devices 1454 * 1455 * @hw_enc_features: Mask of features inherited by encapsulating devices 1456 * This field indicates what encapsulation 1457 * offloads the hardware is capable of doing, 1458 * and drivers will need to set them appropriately. 1459 * 1460 * @mpls_features: Mask of features inheritable by MPLS 1461 * 1462 * @ifindex: interface index 1463 * @group: The group the device belongs to 1464 * 1465 * @stats: Statistics struct, which was left as a legacy, use 1466 * rtnl_link_stats64 instead 1467 * 1468 * @rx_dropped: Dropped packets by core network, 1469 * do not use this in drivers 1470 * @tx_dropped: Dropped packets by core network, 1471 * do not use this in drivers 1472 * @rx_nohandler: nohandler dropped packets by core network on 1473 * inactive devices, do not use this in drivers 1474 * 1475 * @wireless_handlers: List of functions to handle Wireless Extensions, 1476 * instead of ioctl, 1477 * see <net/iw_handler.h> for details. 1478 * @wireless_data: Instance data managed by the core of wireless extensions 1479 * 1480 * @netdev_ops: Includes several pointers to callbacks, 1481 * if one wants to override the ndo_*() functions 1482 * @ethtool_ops: Management operations 1483 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1484 * discovery handling. Necessary for e.g. 6LoWPAN. 1485 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1486 * of Layer 2 headers. 1487 * 1488 * @flags: Interface flags (a la BSD) 1489 * @priv_flags: Like 'flags' but invisible to userspace, 1490 * see if.h for the definitions 1491 * @gflags: Global flags ( kept as legacy ) 1492 * @padded: How much padding added by alloc_netdev() 1493 * @operstate: RFC2863 operstate 1494 * @link_mode: Mapping policy to operstate 1495 * @if_port: Selectable AUI, TP, ... 1496 * @dma: DMA channel 1497 * @mtu: Interface MTU value 1498 * @min_mtu: Interface Minimum MTU value 1499 * @max_mtu: Interface Maximum MTU value 1500 * @type: Interface hardware type 1501 * @hard_header_len: Maximum hardware header length. 1502 * @min_header_len: Minimum hardware header length 1503 * 1504 * @needed_headroom: Extra headroom the hardware may need, but not in all 1505 * cases can this be guaranteed 1506 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1507 * cases can this be guaranteed. Some cases also use 1508 * LL_MAX_HEADER instead to allocate the skb 1509 * 1510 * interface address info: 1511 * 1512 * @perm_addr: Permanent hw address 1513 * @addr_assign_type: Hw address assignment type 1514 * @addr_len: Hardware address length 1515 * @neigh_priv_len: Used in neigh_alloc() 1516 * @dev_id: Used to differentiate devices that share 1517 * the same link layer address 1518 * @dev_port: Used to differentiate devices that share 1519 * the same function 1520 * @addr_list_lock: XXX: need comments on this one 1521 * @uc_promisc: Counter that indicates promiscuous mode 1522 * has been enabled due to the need to listen to 1523 * additional unicast addresses in a device that 1524 * does not implement ndo_set_rx_mode() 1525 * @uc: unicast mac addresses 1526 * @mc: multicast mac addresses 1527 * @dev_addrs: list of device hw addresses 1528 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1529 * @promiscuity: Number of times the NIC is told to work in 1530 * promiscuous mode; if it becomes 0 the NIC will 1531 * exit promiscuous mode 1532 * @allmulti: Counter, enables or disables allmulticast mode 1533 * 1534 * @vlan_info: VLAN info 1535 * @dsa_ptr: dsa specific data 1536 * @tipc_ptr: TIPC specific data 1537 * @atalk_ptr: AppleTalk link 1538 * @ip_ptr: IPv4 specific data 1539 * @dn_ptr: DECnet specific data 1540 * @ip6_ptr: IPv6 specific data 1541 * @ax25_ptr: AX.25 specific data 1542 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1543 * 1544 * @dev_addr: Hw address (before bcast, 1545 * because most packets are unicast) 1546 * 1547 * @_rx: Array of RX queues 1548 * @num_rx_queues: Number of RX queues 1549 * allocated at register_netdev() time 1550 * @real_num_rx_queues: Number of RX queues currently active in device 1551 * 1552 * @rx_handler: handler for received packets 1553 * @rx_handler_data: XXX: need comments on this one 1554 * @ingress_queue: XXX: need comments on this one 1555 * @broadcast: hw bcast address 1556 * 1557 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1558 * indexed by RX queue number. Assigned by driver. 1559 * This must only be set if the ndo_rx_flow_steer 1560 * operation is defined 1561 * @index_hlist: Device index hash chain 1562 * 1563 * @_tx: Array of TX queues 1564 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1565 * @real_num_tx_queues: Number of TX queues currently active in device 1566 * @qdisc: Root qdisc from userspace point of view 1567 * @tx_queue_len: Max frames per queue allowed 1568 * @tx_global_lock: XXX: need comments on this one 1569 * 1570 * @xps_maps: XXX: need comments on this one 1571 * 1572 * @watchdog_timeo: Represents the timeout that is used by 1573 * the watchdog (see dev_watchdog()) 1574 * @watchdog_timer: List of timers 1575 * 1576 * @pcpu_refcnt: Number of references to this device 1577 * @todo_list: Delayed register/unregister 1578 * @link_watch_list: XXX: need comments on this one 1579 * 1580 * @reg_state: Register/unregister state machine 1581 * @dismantle: Device is going to be freed 1582 * @rtnl_link_state: This enum represents the phases of creating 1583 * a new link 1584 * 1585 * @destructor: Called from unregister, 1586 * can be used to call free_netdev 1587 * @npinfo: XXX: need comments on this one 1588 * @nd_net: Network namespace this network device is inside 1589 * 1590 * @ml_priv: Mid-layer private 1591 * @lstats: Loopback statistics 1592 * @tstats: Tunnel statistics 1593 * @dstats: Dummy statistics 1594 * @vstats: Virtual ethernet statistics 1595 * 1596 * @garp_port: GARP 1597 * @mrp_port: MRP 1598 * 1599 * @dev: Class/net/name entry 1600 * @sysfs_groups: Space for optional device, statistics and wireless 1601 * sysfs groups 1602 * 1603 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1604 * @rtnl_link_ops: Rtnl_link_ops 1605 * 1606 * @gso_max_size: Maximum size of generic segmentation offload 1607 * @gso_max_segs: Maximum number of segments that can be passed to the 1608 * NIC for GSO 1609 * 1610 * @dcbnl_ops: Data Center Bridging netlink ops 1611 * @num_tc: Number of traffic classes in the net device 1612 * @tc_to_txq: XXX: need comments on this one 1613 * @prio_tc_map: XXX: need comments on this one 1614 * 1615 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1616 * 1617 * @priomap: XXX: need comments on this one 1618 * @phydev: Physical device may attach itself 1619 * for hardware timestamping 1620 * 1621 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1622 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1623 * 1624 * @proto_down: protocol port state information can be sent to the 1625 * switch driver and used to set the phys state of the 1626 * switch port. 1627 * 1628 * FIXME: cleanup struct net_device such that network protocol info 1629 * moves out. 1630 */ 1631 1632 struct net_device { 1633 char name[IFNAMSIZ]; 1634 struct hlist_node name_hlist; 1635 char *ifalias; 1636 /* 1637 * I/O specific fields 1638 * FIXME: Merge these and struct ifmap into one 1639 */ 1640 unsigned long mem_end; 1641 unsigned long mem_start; 1642 unsigned long base_addr; 1643 int irq; 1644 1645 atomic_t carrier_changes; 1646 1647 /* 1648 * Some hardware also needs these fields (state,dev_list, 1649 * napi_list,unreg_list,close_list) but they are not 1650 * part of the usual set specified in Space.c. 1651 */ 1652 1653 unsigned long state; 1654 1655 struct list_head dev_list; 1656 struct list_head napi_list; 1657 struct list_head unreg_list; 1658 struct list_head close_list; 1659 struct list_head ptype_all; 1660 struct list_head ptype_specific; 1661 1662 struct { 1663 struct list_head upper; 1664 struct list_head lower; 1665 } adj_list; 1666 1667 netdev_features_t features; 1668 netdev_features_t hw_features; 1669 netdev_features_t wanted_features; 1670 netdev_features_t vlan_features; 1671 netdev_features_t hw_enc_features; 1672 netdev_features_t mpls_features; 1673 netdev_features_t gso_partial_features; 1674 1675 int ifindex; 1676 int group; 1677 1678 struct net_device_stats stats; 1679 1680 atomic_long_t rx_dropped; 1681 atomic_long_t tx_dropped; 1682 atomic_long_t rx_nohandler; 1683 1684 #ifdef CONFIG_WIRELESS_EXT 1685 const struct iw_handler_def *wireless_handlers; 1686 struct iw_public_data *wireless_data; 1687 #endif 1688 const struct net_device_ops *netdev_ops; 1689 const struct ethtool_ops *ethtool_ops; 1690 #ifdef CONFIG_NET_SWITCHDEV 1691 const struct switchdev_ops *switchdev_ops; 1692 #endif 1693 #ifdef CONFIG_NET_L3_MASTER_DEV 1694 const struct l3mdev_ops *l3mdev_ops; 1695 #endif 1696 #if IS_ENABLED(CONFIG_IPV6) 1697 const struct ndisc_ops *ndisc_ops; 1698 #endif 1699 1700 const struct header_ops *header_ops; 1701 1702 unsigned int flags; 1703 unsigned int priv_flags; 1704 1705 unsigned short gflags; 1706 unsigned short padded; 1707 1708 unsigned char operstate; 1709 unsigned char link_mode; 1710 1711 unsigned char if_port; 1712 unsigned char dma; 1713 1714 unsigned int mtu; 1715 unsigned int min_mtu; 1716 unsigned int max_mtu; 1717 unsigned short type; 1718 unsigned short hard_header_len; 1719 unsigned short min_header_len; 1720 1721 unsigned short needed_headroom; 1722 unsigned short needed_tailroom; 1723 1724 /* Interface address info. */ 1725 unsigned char perm_addr[MAX_ADDR_LEN]; 1726 unsigned char addr_assign_type; 1727 unsigned char addr_len; 1728 unsigned short neigh_priv_len; 1729 unsigned short dev_id; 1730 unsigned short dev_port; 1731 spinlock_t addr_list_lock; 1732 unsigned char name_assign_type; 1733 bool uc_promisc; 1734 struct netdev_hw_addr_list uc; 1735 struct netdev_hw_addr_list mc; 1736 struct netdev_hw_addr_list dev_addrs; 1737 1738 #ifdef CONFIG_SYSFS 1739 struct kset *queues_kset; 1740 #endif 1741 unsigned int promiscuity; 1742 unsigned int allmulti; 1743 1744 1745 /* Protocol-specific pointers */ 1746 1747 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1748 struct vlan_info __rcu *vlan_info; 1749 #endif 1750 #if IS_ENABLED(CONFIG_NET_DSA) 1751 struct dsa_switch_tree *dsa_ptr; 1752 #endif 1753 #if IS_ENABLED(CONFIG_TIPC) 1754 struct tipc_bearer __rcu *tipc_ptr; 1755 #endif 1756 void *atalk_ptr; 1757 struct in_device __rcu *ip_ptr; 1758 struct dn_dev __rcu *dn_ptr; 1759 struct inet6_dev __rcu *ip6_ptr; 1760 void *ax25_ptr; 1761 struct wireless_dev *ieee80211_ptr; 1762 struct wpan_dev *ieee802154_ptr; 1763 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1764 struct mpls_dev __rcu *mpls_ptr; 1765 #endif 1766 1767 /* 1768 * Cache lines mostly used on receive path (including eth_type_trans()) 1769 */ 1770 /* Interface address info used in eth_type_trans() */ 1771 unsigned char *dev_addr; 1772 1773 #ifdef CONFIG_SYSFS 1774 struct netdev_rx_queue *_rx; 1775 1776 unsigned int num_rx_queues; 1777 unsigned int real_num_rx_queues; 1778 #endif 1779 1780 unsigned long gro_flush_timeout; 1781 rx_handler_func_t __rcu *rx_handler; 1782 void __rcu *rx_handler_data; 1783 1784 #ifdef CONFIG_NET_CLS_ACT 1785 struct tcf_proto __rcu *ingress_cl_list; 1786 #endif 1787 struct netdev_queue __rcu *ingress_queue; 1788 #ifdef CONFIG_NETFILTER_INGRESS 1789 struct nf_hook_entry __rcu *nf_hooks_ingress; 1790 #endif 1791 1792 unsigned char broadcast[MAX_ADDR_LEN]; 1793 #ifdef CONFIG_RFS_ACCEL 1794 struct cpu_rmap *rx_cpu_rmap; 1795 #endif 1796 struct hlist_node index_hlist; 1797 1798 /* 1799 * Cache lines mostly used on transmit path 1800 */ 1801 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1802 unsigned int num_tx_queues; 1803 unsigned int real_num_tx_queues; 1804 struct Qdisc *qdisc; 1805 #ifdef CONFIG_NET_SCHED 1806 DECLARE_HASHTABLE (qdisc_hash, 4); 1807 #endif 1808 unsigned long tx_queue_len; 1809 spinlock_t tx_global_lock; 1810 int watchdog_timeo; 1811 1812 #ifdef CONFIG_XPS 1813 struct xps_dev_maps __rcu *xps_maps; 1814 #endif 1815 #ifdef CONFIG_NET_CLS_ACT 1816 struct tcf_proto __rcu *egress_cl_list; 1817 #endif 1818 1819 /* These may be needed for future network-power-down code. */ 1820 struct timer_list watchdog_timer; 1821 1822 int __percpu *pcpu_refcnt; 1823 struct list_head todo_list; 1824 1825 struct list_head link_watch_list; 1826 1827 enum { NETREG_UNINITIALIZED=0, 1828 NETREG_REGISTERED, /* completed register_netdevice */ 1829 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1830 NETREG_UNREGISTERED, /* completed unregister todo */ 1831 NETREG_RELEASED, /* called free_netdev */ 1832 NETREG_DUMMY, /* dummy device for NAPI poll */ 1833 } reg_state:8; 1834 1835 bool dismantle; 1836 1837 enum { 1838 RTNL_LINK_INITIALIZED, 1839 RTNL_LINK_INITIALIZING, 1840 } rtnl_link_state:16; 1841 1842 void (*destructor)(struct net_device *dev); 1843 1844 #ifdef CONFIG_NETPOLL 1845 struct netpoll_info __rcu *npinfo; 1846 #endif 1847 1848 possible_net_t nd_net; 1849 1850 /* mid-layer private */ 1851 union { 1852 void *ml_priv; 1853 struct pcpu_lstats __percpu *lstats; 1854 struct pcpu_sw_netstats __percpu *tstats; 1855 struct pcpu_dstats __percpu *dstats; 1856 struct pcpu_vstats __percpu *vstats; 1857 }; 1858 1859 #if IS_ENABLED(CONFIG_GARP) 1860 struct garp_port __rcu *garp_port; 1861 #endif 1862 #if IS_ENABLED(CONFIG_MRP) 1863 struct mrp_port __rcu *mrp_port; 1864 #endif 1865 1866 struct device dev; 1867 const struct attribute_group *sysfs_groups[4]; 1868 const struct attribute_group *sysfs_rx_queue_group; 1869 1870 const struct rtnl_link_ops *rtnl_link_ops; 1871 1872 /* for setting kernel sock attribute on TCP connection setup */ 1873 #define GSO_MAX_SIZE 65536 1874 unsigned int gso_max_size; 1875 #define GSO_MAX_SEGS 65535 1876 u16 gso_max_segs; 1877 1878 #ifdef CONFIG_DCB 1879 const struct dcbnl_rtnl_ops *dcbnl_ops; 1880 #endif 1881 u8 num_tc; 1882 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1883 u8 prio_tc_map[TC_BITMASK + 1]; 1884 1885 #if IS_ENABLED(CONFIG_FCOE) 1886 unsigned int fcoe_ddp_xid; 1887 #endif 1888 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1889 struct netprio_map __rcu *priomap; 1890 #endif 1891 struct phy_device *phydev; 1892 struct lock_class_key *qdisc_tx_busylock; 1893 struct lock_class_key *qdisc_running_key; 1894 bool proto_down; 1895 }; 1896 #define to_net_dev(d) container_of(d, struct net_device, dev) 1897 1898 #define NETDEV_ALIGN 32 1899 1900 static inline 1901 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1902 { 1903 return dev->prio_tc_map[prio & TC_BITMASK]; 1904 } 1905 1906 static inline 1907 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1908 { 1909 if (tc >= dev->num_tc) 1910 return -EINVAL; 1911 1912 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1913 return 0; 1914 } 1915 1916 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1917 void netdev_reset_tc(struct net_device *dev); 1918 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1919 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1920 1921 static inline 1922 int netdev_get_num_tc(struct net_device *dev) 1923 { 1924 return dev->num_tc; 1925 } 1926 1927 static inline 1928 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1929 unsigned int index) 1930 { 1931 return &dev->_tx[index]; 1932 } 1933 1934 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1935 const struct sk_buff *skb) 1936 { 1937 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1938 } 1939 1940 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1941 void (*f)(struct net_device *, 1942 struct netdev_queue *, 1943 void *), 1944 void *arg) 1945 { 1946 unsigned int i; 1947 1948 for (i = 0; i < dev->num_tx_queues; i++) 1949 f(dev, &dev->_tx[i], arg); 1950 } 1951 1952 #define netdev_lockdep_set_classes(dev) \ 1953 { \ 1954 static struct lock_class_key qdisc_tx_busylock_key; \ 1955 static struct lock_class_key qdisc_running_key; \ 1956 static struct lock_class_key qdisc_xmit_lock_key; \ 1957 static struct lock_class_key dev_addr_list_lock_key; \ 1958 unsigned int i; \ 1959 \ 1960 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1961 (dev)->qdisc_running_key = &qdisc_running_key; \ 1962 lockdep_set_class(&(dev)->addr_list_lock, \ 1963 &dev_addr_list_lock_key); \ 1964 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1965 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1966 &qdisc_xmit_lock_key); \ 1967 } 1968 1969 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1970 struct sk_buff *skb, 1971 void *accel_priv); 1972 1973 /* returns the headroom that the master device needs to take in account 1974 * when forwarding to this dev 1975 */ 1976 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1977 { 1978 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1979 } 1980 1981 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1982 { 1983 if (dev->netdev_ops->ndo_set_rx_headroom) 1984 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1985 } 1986 1987 /* set the device rx headroom to the dev's default */ 1988 static inline void netdev_reset_rx_headroom(struct net_device *dev) 1989 { 1990 netdev_set_rx_headroom(dev, -1); 1991 } 1992 1993 /* 1994 * Net namespace inlines 1995 */ 1996 static inline 1997 struct net *dev_net(const struct net_device *dev) 1998 { 1999 return read_pnet(&dev->nd_net); 2000 } 2001 2002 static inline 2003 void dev_net_set(struct net_device *dev, struct net *net) 2004 { 2005 write_pnet(&dev->nd_net, net); 2006 } 2007 2008 /** 2009 * netdev_priv - access network device private data 2010 * @dev: network device 2011 * 2012 * Get network device private data 2013 */ 2014 static inline void *netdev_priv(const struct net_device *dev) 2015 { 2016 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2017 } 2018 2019 /* Set the sysfs physical device reference for the network logical device 2020 * if set prior to registration will cause a symlink during initialization. 2021 */ 2022 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2023 2024 /* Set the sysfs device type for the network logical device to allow 2025 * fine-grained identification of different network device types. For 2026 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2027 */ 2028 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2029 2030 /* Default NAPI poll() weight 2031 * Device drivers are strongly advised to not use bigger value 2032 */ 2033 #define NAPI_POLL_WEIGHT 64 2034 2035 /** 2036 * netif_napi_add - initialize a NAPI context 2037 * @dev: network device 2038 * @napi: NAPI context 2039 * @poll: polling function 2040 * @weight: default weight 2041 * 2042 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2043 * *any* of the other NAPI-related functions. 2044 */ 2045 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2046 int (*poll)(struct napi_struct *, int), int weight); 2047 2048 /** 2049 * netif_tx_napi_add - initialize a NAPI context 2050 * @dev: network device 2051 * @napi: NAPI context 2052 * @poll: polling function 2053 * @weight: default weight 2054 * 2055 * This variant of netif_napi_add() should be used from drivers using NAPI 2056 * to exclusively poll a TX queue. 2057 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2058 */ 2059 static inline void netif_tx_napi_add(struct net_device *dev, 2060 struct napi_struct *napi, 2061 int (*poll)(struct napi_struct *, int), 2062 int weight) 2063 { 2064 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2065 netif_napi_add(dev, napi, poll, weight); 2066 } 2067 2068 /** 2069 * netif_napi_del - remove a NAPI context 2070 * @napi: NAPI context 2071 * 2072 * netif_napi_del() removes a NAPI context from the network device NAPI list 2073 */ 2074 void netif_napi_del(struct napi_struct *napi); 2075 2076 struct napi_gro_cb { 2077 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2078 void *frag0; 2079 2080 /* Length of frag0. */ 2081 unsigned int frag0_len; 2082 2083 /* This indicates where we are processing relative to skb->data. */ 2084 int data_offset; 2085 2086 /* This is non-zero if the packet cannot be merged with the new skb. */ 2087 u16 flush; 2088 2089 /* Save the IP ID here and check when we get to the transport layer */ 2090 u16 flush_id; 2091 2092 /* Number of segments aggregated. */ 2093 u16 count; 2094 2095 /* Start offset for remote checksum offload */ 2096 u16 gro_remcsum_start; 2097 2098 /* jiffies when first packet was created/queued */ 2099 unsigned long age; 2100 2101 /* Used in ipv6_gro_receive() and foo-over-udp */ 2102 u16 proto; 2103 2104 /* This is non-zero if the packet may be of the same flow. */ 2105 u8 same_flow:1; 2106 2107 /* Used in tunnel GRO receive */ 2108 u8 encap_mark:1; 2109 2110 /* GRO checksum is valid */ 2111 u8 csum_valid:1; 2112 2113 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2114 u8 csum_cnt:3; 2115 2116 /* Free the skb? */ 2117 u8 free:2; 2118 #define NAPI_GRO_FREE 1 2119 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2120 2121 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2122 u8 is_ipv6:1; 2123 2124 /* Used in GRE, set in fou/gue_gro_receive */ 2125 u8 is_fou:1; 2126 2127 /* Used to determine if flush_id can be ignored */ 2128 u8 is_atomic:1; 2129 2130 /* Number of gro_receive callbacks this packet already went through */ 2131 u8 recursion_counter:4; 2132 2133 /* 1 bit hole */ 2134 2135 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2136 __wsum csum; 2137 2138 /* used in skb_gro_receive() slow path */ 2139 struct sk_buff *last; 2140 }; 2141 2142 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2143 2144 #define GRO_RECURSION_LIMIT 15 2145 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2146 { 2147 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2148 } 2149 2150 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2151 static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2152 struct sk_buff **head, 2153 struct sk_buff *skb) 2154 { 2155 if (unlikely(gro_recursion_inc_test(skb))) { 2156 NAPI_GRO_CB(skb)->flush |= 1; 2157 return NULL; 2158 } 2159 2160 return cb(head, skb); 2161 } 2162 2163 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2164 struct sk_buff *); 2165 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2166 struct sock *sk, 2167 struct sk_buff **head, 2168 struct sk_buff *skb) 2169 { 2170 if (unlikely(gro_recursion_inc_test(skb))) { 2171 NAPI_GRO_CB(skb)->flush |= 1; 2172 return NULL; 2173 } 2174 2175 return cb(sk, head, skb); 2176 } 2177 2178 struct packet_type { 2179 __be16 type; /* This is really htons(ether_type). */ 2180 struct net_device *dev; /* NULL is wildcarded here */ 2181 int (*func) (struct sk_buff *, 2182 struct net_device *, 2183 struct packet_type *, 2184 struct net_device *); 2185 bool (*id_match)(struct packet_type *ptype, 2186 struct sock *sk); 2187 void *af_packet_priv; 2188 struct list_head list; 2189 }; 2190 2191 struct offload_callbacks { 2192 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2193 netdev_features_t features); 2194 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2195 struct sk_buff *skb); 2196 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2197 }; 2198 2199 struct packet_offload { 2200 __be16 type; /* This is really htons(ether_type). */ 2201 u16 priority; 2202 struct offload_callbacks callbacks; 2203 struct list_head list; 2204 }; 2205 2206 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2207 struct pcpu_sw_netstats { 2208 u64 rx_packets; 2209 u64 rx_bytes; 2210 u64 tx_packets; 2211 u64 tx_bytes; 2212 struct u64_stats_sync syncp; 2213 }; 2214 2215 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2216 ({ \ 2217 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2218 if (pcpu_stats) { \ 2219 int __cpu; \ 2220 for_each_possible_cpu(__cpu) { \ 2221 typeof(type) *stat; \ 2222 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2223 u64_stats_init(&stat->syncp); \ 2224 } \ 2225 } \ 2226 pcpu_stats; \ 2227 }) 2228 2229 #define netdev_alloc_pcpu_stats(type) \ 2230 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2231 2232 enum netdev_lag_tx_type { 2233 NETDEV_LAG_TX_TYPE_UNKNOWN, 2234 NETDEV_LAG_TX_TYPE_RANDOM, 2235 NETDEV_LAG_TX_TYPE_BROADCAST, 2236 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2237 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2238 NETDEV_LAG_TX_TYPE_HASH, 2239 }; 2240 2241 struct netdev_lag_upper_info { 2242 enum netdev_lag_tx_type tx_type; 2243 }; 2244 2245 struct netdev_lag_lower_state_info { 2246 u8 link_up : 1, 2247 tx_enabled : 1; 2248 }; 2249 2250 #include <linux/notifier.h> 2251 2252 /* netdevice notifier chain. Please remember to update the rtnetlink 2253 * notification exclusion list in rtnetlink_event() when adding new 2254 * types. 2255 */ 2256 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2257 #define NETDEV_DOWN 0x0002 2258 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2259 detected a hardware crash and restarted 2260 - we can use this eg to kick tcp sessions 2261 once done */ 2262 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2263 #define NETDEV_REGISTER 0x0005 2264 #define NETDEV_UNREGISTER 0x0006 2265 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2266 #define NETDEV_CHANGEADDR 0x0008 2267 #define NETDEV_GOING_DOWN 0x0009 2268 #define NETDEV_CHANGENAME 0x000A 2269 #define NETDEV_FEAT_CHANGE 0x000B 2270 #define NETDEV_BONDING_FAILOVER 0x000C 2271 #define NETDEV_PRE_UP 0x000D 2272 #define NETDEV_PRE_TYPE_CHANGE 0x000E 2273 #define NETDEV_POST_TYPE_CHANGE 0x000F 2274 #define NETDEV_POST_INIT 0x0010 2275 #define NETDEV_UNREGISTER_FINAL 0x0011 2276 #define NETDEV_RELEASE 0x0012 2277 #define NETDEV_NOTIFY_PEERS 0x0013 2278 #define NETDEV_JOIN 0x0014 2279 #define NETDEV_CHANGEUPPER 0x0015 2280 #define NETDEV_RESEND_IGMP 0x0016 2281 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2282 #define NETDEV_CHANGEINFODATA 0x0018 2283 #define NETDEV_BONDING_INFO 0x0019 2284 #define NETDEV_PRECHANGEUPPER 0x001A 2285 #define NETDEV_CHANGELOWERSTATE 0x001B 2286 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2287 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2288 2289 int register_netdevice_notifier(struct notifier_block *nb); 2290 int unregister_netdevice_notifier(struct notifier_block *nb); 2291 2292 struct netdev_notifier_info { 2293 struct net_device *dev; 2294 }; 2295 2296 struct netdev_notifier_change_info { 2297 struct netdev_notifier_info info; /* must be first */ 2298 unsigned int flags_changed; 2299 }; 2300 2301 struct netdev_notifier_changeupper_info { 2302 struct netdev_notifier_info info; /* must be first */ 2303 struct net_device *upper_dev; /* new upper dev */ 2304 bool master; /* is upper dev master */ 2305 bool linking; /* is the notification for link or unlink */ 2306 void *upper_info; /* upper dev info */ 2307 }; 2308 2309 struct netdev_notifier_changelowerstate_info { 2310 struct netdev_notifier_info info; /* must be first */ 2311 void *lower_state_info; /* is lower dev state */ 2312 }; 2313 2314 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2315 struct net_device *dev) 2316 { 2317 info->dev = dev; 2318 } 2319 2320 static inline struct net_device * 2321 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2322 { 2323 return info->dev; 2324 } 2325 2326 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2327 2328 2329 extern rwlock_t dev_base_lock; /* Device list lock */ 2330 2331 #define for_each_netdev(net, d) \ 2332 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2333 #define for_each_netdev_reverse(net, d) \ 2334 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2335 #define for_each_netdev_rcu(net, d) \ 2336 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2337 #define for_each_netdev_safe(net, d, n) \ 2338 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2339 #define for_each_netdev_continue(net, d) \ 2340 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2341 #define for_each_netdev_continue_rcu(net, d) \ 2342 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2343 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2344 for_each_netdev_rcu(&init_net, slave) \ 2345 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2346 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2347 2348 static inline struct net_device *next_net_device(struct net_device *dev) 2349 { 2350 struct list_head *lh; 2351 struct net *net; 2352 2353 net = dev_net(dev); 2354 lh = dev->dev_list.next; 2355 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2356 } 2357 2358 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2359 { 2360 struct list_head *lh; 2361 struct net *net; 2362 2363 net = dev_net(dev); 2364 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2365 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2366 } 2367 2368 static inline struct net_device *first_net_device(struct net *net) 2369 { 2370 return list_empty(&net->dev_base_head) ? NULL : 2371 net_device_entry(net->dev_base_head.next); 2372 } 2373 2374 static inline struct net_device *first_net_device_rcu(struct net *net) 2375 { 2376 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2377 2378 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2379 } 2380 2381 int netdev_boot_setup_check(struct net_device *dev); 2382 unsigned long netdev_boot_base(const char *prefix, int unit); 2383 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2384 const char *hwaddr); 2385 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2386 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2387 void dev_add_pack(struct packet_type *pt); 2388 void dev_remove_pack(struct packet_type *pt); 2389 void __dev_remove_pack(struct packet_type *pt); 2390 void dev_add_offload(struct packet_offload *po); 2391 void dev_remove_offload(struct packet_offload *po); 2392 2393 int dev_get_iflink(const struct net_device *dev); 2394 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2395 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2396 unsigned short mask); 2397 struct net_device *dev_get_by_name(struct net *net, const char *name); 2398 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2399 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2400 int dev_alloc_name(struct net_device *dev, const char *name); 2401 int dev_open(struct net_device *dev); 2402 int dev_close(struct net_device *dev); 2403 int dev_close_many(struct list_head *head, bool unlink); 2404 void dev_disable_lro(struct net_device *dev); 2405 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2406 int dev_queue_xmit(struct sk_buff *skb); 2407 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2408 int register_netdevice(struct net_device *dev); 2409 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2410 void unregister_netdevice_many(struct list_head *head); 2411 static inline void unregister_netdevice(struct net_device *dev) 2412 { 2413 unregister_netdevice_queue(dev, NULL); 2414 } 2415 2416 int netdev_refcnt_read(const struct net_device *dev); 2417 void free_netdev(struct net_device *dev); 2418 void netdev_freemem(struct net_device *dev); 2419 void synchronize_net(void); 2420 int init_dummy_netdev(struct net_device *dev); 2421 2422 DECLARE_PER_CPU(int, xmit_recursion); 2423 #define XMIT_RECURSION_LIMIT 10 2424 2425 static inline int dev_recursion_level(void) 2426 { 2427 return this_cpu_read(xmit_recursion); 2428 } 2429 2430 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2431 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2432 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2433 int netdev_get_name(struct net *net, char *name, int ifindex); 2434 int dev_restart(struct net_device *dev); 2435 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2436 2437 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2438 { 2439 return NAPI_GRO_CB(skb)->data_offset; 2440 } 2441 2442 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2443 { 2444 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2445 } 2446 2447 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2448 { 2449 NAPI_GRO_CB(skb)->data_offset += len; 2450 } 2451 2452 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2453 unsigned int offset) 2454 { 2455 return NAPI_GRO_CB(skb)->frag0 + offset; 2456 } 2457 2458 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2459 { 2460 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2461 } 2462 2463 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2464 { 2465 NAPI_GRO_CB(skb)->frag0 = NULL; 2466 NAPI_GRO_CB(skb)->frag0_len = 0; 2467 } 2468 2469 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2470 unsigned int offset) 2471 { 2472 if (!pskb_may_pull(skb, hlen)) 2473 return NULL; 2474 2475 skb_gro_frag0_invalidate(skb); 2476 return skb->data + offset; 2477 } 2478 2479 static inline void *skb_gro_network_header(struct sk_buff *skb) 2480 { 2481 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2482 skb_network_offset(skb); 2483 } 2484 2485 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2486 const void *start, unsigned int len) 2487 { 2488 if (NAPI_GRO_CB(skb)->csum_valid) 2489 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2490 csum_partial(start, len, 0)); 2491 } 2492 2493 /* GRO checksum functions. These are logical equivalents of the normal 2494 * checksum functions (in skbuff.h) except that they operate on the GRO 2495 * offsets and fields in sk_buff. 2496 */ 2497 2498 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2499 2500 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2501 { 2502 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2503 } 2504 2505 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2506 bool zero_okay, 2507 __sum16 check) 2508 { 2509 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2510 skb_checksum_start_offset(skb) < 2511 skb_gro_offset(skb)) && 2512 !skb_at_gro_remcsum_start(skb) && 2513 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2514 (!zero_okay || check)); 2515 } 2516 2517 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2518 __wsum psum) 2519 { 2520 if (NAPI_GRO_CB(skb)->csum_valid && 2521 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2522 return 0; 2523 2524 NAPI_GRO_CB(skb)->csum = psum; 2525 2526 return __skb_gro_checksum_complete(skb); 2527 } 2528 2529 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2530 { 2531 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2532 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2533 NAPI_GRO_CB(skb)->csum_cnt--; 2534 } else { 2535 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2536 * verified a new top level checksum or an encapsulated one 2537 * during GRO. This saves work if we fallback to normal path. 2538 */ 2539 __skb_incr_checksum_unnecessary(skb); 2540 } 2541 } 2542 2543 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2544 compute_pseudo) \ 2545 ({ \ 2546 __sum16 __ret = 0; \ 2547 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2548 __ret = __skb_gro_checksum_validate_complete(skb, \ 2549 compute_pseudo(skb, proto)); \ 2550 if (__ret) \ 2551 __skb_mark_checksum_bad(skb); \ 2552 else \ 2553 skb_gro_incr_csum_unnecessary(skb); \ 2554 __ret; \ 2555 }) 2556 2557 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2558 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2559 2560 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2561 compute_pseudo) \ 2562 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2563 2564 #define skb_gro_checksum_simple_validate(skb) \ 2565 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2566 2567 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2568 { 2569 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2570 !NAPI_GRO_CB(skb)->csum_valid); 2571 } 2572 2573 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2574 __sum16 check, __wsum pseudo) 2575 { 2576 NAPI_GRO_CB(skb)->csum = ~pseudo; 2577 NAPI_GRO_CB(skb)->csum_valid = 1; 2578 } 2579 2580 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2581 do { \ 2582 if (__skb_gro_checksum_convert_check(skb)) \ 2583 __skb_gro_checksum_convert(skb, check, \ 2584 compute_pseudo(skb, proto)); \ 2585 } while (0) 2586 2587 struct gro_remcsum { 2588 int offset; 2589 __wsum delta; 2590 }; 2591 2592 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2593 { 2594 grc->offset = 0; 2595 grc->delta = 0; 2596 } 2597 2598 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2599 unsigned int off, size_t hdrlen, 2600 int start, int offset, 2601 struct gro_remcsum *grc, 2602 bool nopartial) 2603 { 2604 __wsum delta; 2605 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2606 2607 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2608 2609 if (!nopartial) { 2610 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2611 return ptr; 2612 } 2613 2614 ptr = skb_gro_header_fast(skb, off); 2615 if (skb_gro_header_hard(skb, off + plen)) { 2616 ptr = skb_gro_header_slow(skb, off + plen, off); 2617 if (!ptr) 2618 return NULL; 2619 } 2620 2621 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2622 start, offset); 2623 2624 /* Adjust skb->csum since we changed the packet */ 2625 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2626 2627 grc->offset = off + hdrlen + offset; 2628 grc->delta = delta; 2629 2630 return ptr; 2631 } 2632 2633 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2634 struct gro_remcsum *grc) 2635 { 2636 void *ptr; 2637 size_t plen = grc->offset + sizeof(u16); 2638 2639 if (!grc->delta) 2640 return; 2641 2642 ptr = skb_gro_header_fast(skb, grc->offset); 2643 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2644 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2645 if (!ptr) 2646 return; 2647 } 2648 2649 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2650 } 2651 2652 #ifdef CONFIG_XFRM_OFFLOAD 2653 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2654 { 2655 if (PTR_ERR(pp) != -EINPROGRESS) 2656 NAPI_GRO_CB(skb)->flush |= flush; 2657 } 2658 #else 2659 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2660 { 2661 NAPI_GRO_CB(skb)->flush |= flush; 2662 } 2663 #endif 2664 2665 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2666 unsigned short type, 2667 const void *daddr, const void *saddr, 2668 unsigned int len) 2669 { 2670 if (!dev->header_ops || !dev->header_ops->create) 2671 return 0; 2672 2673 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2674 } 2675 2676 static inline int dev_parse_header(const struct sk_buff *skb, 2677 unsigned char *haddr) 2678 { 2679 const struct net_device *dev = skb->dev; 2680 2681 if (!dev->header_ops || !dev->header_ops->parse) 2682 return 0; 2683 return dev->header_ops->parse(skb, haddr); 2684 } 2685 2686 /* ll_header must have at least hard_header_len allocated */ 2687 static inline bool dev_validate_header(const struct net_device *dev, 2688 char *ll_header, int len) 2689 { 2690 if (likely(len >= dev->hard_header_len)) 2691 return true; 2692 if (len < dev->min_header_len) 2693 return false; 2694 2695 if (capable(CAP_SYS_RAWIO)) { 2696 memset(ll_header + len, 0, dev->hard_header_len - len); 2697 return true; 2698 } 2699 2700 if (dev->header_ops && dev->header_ops->validate) 2701 return dev->header_ops->validate(ll_header, len); 2702 2703 return false; 2704 } 2705 2706 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2707 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2708 static inline int unregister_gifconf(unsigned int family) 2709 { 2710 return register_gifconf(family, NULL); 2711 } 2712 2713 #ifdef CONFIG_NET_FLOW_LIMIT 2714 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2715 struct sd_flow_limit { 2716 u64 count; 2717 unsigned int num_buckets; 2718 unsigned int history_head; 2719 u16 history[FLOW_LIMIT_HISTORY]; 2720 u8 buckets[]; 2721 }; 2722 2723 extern int netdev_flow_limit_table_len; 2724 #endif /* CONFIG_NET_FLOW_LIMIT */ 2725 2726 /* 2727 * Incoming packets are placed on per-CPU queues 2728 */ 2729 struct softnet_data { 2730 struct list_head poll_list; 2731 struct sk_buff_head process_queue; 2732 2733 /* stats */ 2734 unsigned int processed; 2735 unsigned int time_squeeze; 2736 unsigned int received_rps; 2737 #ifdef CONFIG_RPS 2738 struct softnet_data *rps_ipi_list; 2739 #endif 2740 #ifdef CONFIG_NET_FLOW_LIMIT 2741 struct sd_flow_limit __rcu *flow_limit; 2742 #endif 2743 struct Qdisc *output_queue; 2744 struct Qdisc **output_queue_tailp; 2745 struct sk_buff *completion_queue; 2746 2747 #ifdef CONFIG_RPS 2748 /* input_queue_head should be written by cpu owning this struct, 2749 * and only read by other cpus. Worth using a cache line. 2750 */ 2751 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2752 2753 /* Elements below can be accessed between CPUs for RPS/RFS */ 2754 struct call_single_data csd ____cacheline_aligned_in_smp; 2755 struct softnet_data *rps_ipi_next; 2756 unsigned int cpu; 2757 unsigned int input_queue_tail; 2758 #endif 2759 unsigned int dropped; 2760 struct sk_buff_head input_pkt_queue; 2761 struct napi_struct backlog; 2762 2763 }; 2764 2765 static inline void input_queue_head_incr(struct softnet_data *sd) 2766 { 2767 #ifdef CONFIG_RPS 2768 sd->input_queue_head++; 2769 #endif 2770 } 2771 2772 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2773 unsigned int *qtail) 2774 { 2775 #ifdef CONFIG_RPS 2776 *qtail = ++sd->input_queue_tail; 2777 #endif 2778 } 2779 2780 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2781 2782 void __netif_schedule(struct Qdisc *q); 2783 void netif_schedule_queue(struct netdev_queue *txq); 2784 2785 static inline void netif_tx_schedule_all(struct net_device *dev) 2786 { 2787 unsigned int i; 2788 2789 for (i = 0; i < dev->num_tx_queues; i++) 2790 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2791 } 2792 2793 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2794 { 2795 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2796 } 2797 2798 /** 2799 * netif_start_queue - allow transmit 2800 * @dev: network device 2801 * 2802 * Allow upper layers to call the device hard_start_xmit routine. 2803 */ 2804 static inline void netif_start_queue(struct net_device *dev) 2805 { 2806 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2807 } 2808 2809 static inline void netif_tx_start_all_queues(struct net_device *dev) 2810 { 2811 unsigned int i; 2812 2813 for (i = 0; i < dev->num_tx_queues; i++) { 2814 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2815 netif_tx_start_queue(txq); 2816 } 2817 } 2818 2819 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2820 2821 /** 2822 * netif_wake_queue - restart transmit 2823 * @dev: network device 2824 * 2825 * Allow upper layers to call the device hard_start_xmit routine. 2826 * Used for flow control when transmit resources are available. 2827 */ 2828 static inline void netif_wake_queue(struct net_device *dev) 2829 { 2830 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2831 } 2832 2833 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2834 { 2835 unsigned int i; 2836 2837 for (i = 0; i < dev->num_tx_queues; i++) { 2838 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2839 netif_tx_wake_queue(txq); 2840 } 2841 } 2842 2843 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2844 { 2845 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2846 } 2847 2848 /** 2849 * netif_stop_queue - stop transmitted packets 2850 * @dev: network device 2851 * 2852 * Stop upper layers calling the device hard_start_xmit routine. 2853 * Used for flow control when transmit resources are unavailable. 2854 */ 2855 static inline void netif_stop_queue(struct net_device *dev) 2856 { 2857 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2858 } 2859 2860 void netif_tx_stop_all_queues(struct net_device *dev); 2861 2862 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2863 { 2864 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2865 } 2866 2867 /** 2868 * netif_queue_stopped - test if transmit queue is flowblocked 2869 * @dev: network device 2870 * 2871 * Test if transmit queue on device is currently unable to send. 2872 */ 2873 static inline bool netif_queue_stopped(const struct net_device *dev) 2874 { 2875 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2876 } 2877 2878 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2879 { 2880 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2881 } 2882 2883 static inline bool 2884 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2885 { 2886 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2887 } 2888 2889 static inline bool 2890 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2891 { 2892 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2893 } 2894 2895 /** 2896 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2897 * @dev_queue: pointer to transmit queue 2898 * 2899 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2900 * to give appropriate hint to the CPU. 2901 */ 2902 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2903 { 2904 #ifdef CONFIG_BQL 2905 prefetchw(&dev_queue->dql.num_queued); 2906 #endif 2907 } 2908 2909 /** 2910 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2911 * @dev_queue: pointer to transmit queue 2912 * 2913 * BQL enabled drivers might use this helper in their TX completion path, 2914 * to give appropriate hint to the CPU. 2915 */ 2916 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2917 { 2918 #ifdef CONFIG_BQL 2919 prefetchw(&dev_queue->dql.limit); 2920 #endif 2921 } 2922 2923 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2924 unsigned int bytes) 2925 { 2926 #ifdef CONFIG_BQL 2927 dql_queued(&dev_queue->dql, bytes); 2928 2929 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2930 return; 2931 2932 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2933 2934 /* 2935 * The XOFF flag must be set before checking the dql_avail below, 2936 * because in netdev_tx_completed_queue we update the dql_completed 2937 * before checking the XOFF flag. 2938 */ 2939 smp_mb(); 2940 2941 /* check again in case another CPU has just made room avail */ 2942 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2943 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2944 #endif 2945 } 2946 2947 /** 2948 * netdev_sent_queue - report the number of bytes queued to hardware 2949 * @dev: network device 2950 * @bytes: number of bytes queued to the hardware device queue 2951 * 2952 * Report the number of bytes queued for sending/completion to the network 2953 * device hardware queue. @bytes should be a good approximation and should 2954 * exactly match netdev_completed_queue() @bytes 2955 */ 2956 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2957 { 2958 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2959 } 2960 2961 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2962 unsigned int pkts, unsigned int bytes) 2963 { 2964 #ifdef CONFIG_BQL 2965 if (unlikely(!bytes)) 2966 return; 2967 2968 dql_completed(&dev_queue->dql, bytes); 2969 2970 /* 2971 * Without the memory barrier there is a small possiblity that 2972 * netdev_tx_sent_queue will miss the update and cause the queue to 2973 * be stopped forever 2974 */ 2975 smp_mb(); 2976 2977 if (dql_avail(&dev_queue->dql) < 0) 2978 return; 2979 2980 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2981 netif_schedule_queue(dev_queue); 2982 #endif 2983 } 2984 2985 /** 2986 * netdev_completed_queue - report bytes and packets completed by device 2987 * @dev: network device 2988 * @pkts: actual number of packets sent over the medium 2989 * @bytes: actual number of bytes sent over the medium 2990 * 2991 * Report the number of bytes and packets transmitted by the network device 2992 * hardware queue over the physical medium, @bytes must exactly match the 2993 * @bytes amount passed to netdev_sent_queue() 2994 */ 2995 static inline void netdev_completed_queue(struct net_device *dev, 2996 unsigned int pkts, unsigned int bytes) 2997 { 2998 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2999 } 3000 3001 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3002 { 3003 #ifdef CONFIG_BQL 3004 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3005 dql_reset(&q->dql); 3006 #endif 3007 } 3008 3009 /** 3010 * netdev_reset_queue - reset the packets and bytes count of a network device 3011 * @dev_queue: network device 3012 * 3013 * Reset the bytes and packet count of a network device and clear the 3014 * software flow control OFF bit for this network device 3015 */ 3016 static inline void netdev_reset_queue(struct net_device *dev_queue) 3017 { 3018 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3019 } 3020 3021 /** 3022 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3023 * @dev: network device 3024 * @queue_index: given tx queue index 3025 * 3026 * Returns 0 if given tx queue index >= number of device tx queues, 3027 * otherwise returns the originally passed tx queue index. 3028 */ 3029 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3030 { 3031 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3032 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3033 dev->name, queue_index, 3034 dev->real_num_tx_queues); 3035 return 0; 3036 } 3037 3038 return queue_index; 3039 } 3040 3041 /** 3042 * netif_running - test if up 3043 * @dev: network device 3044 * 3045 * Test if the device has been brought up. 3046 */ 3047 static inline bool netif_running(const struct net_device *dev) 3048 { 3049 return test_bit(__LINK_STATE_START, &dev->state); 3050 } 3051 3052 /* 3053 * Routines to manage the subqueues on a device. We only need start, 3054 * stop, and a check if it's stopped. All other device management is 3055 * done at the overall netdevice level. 3056 * Also test the device if we're multiqueue. 3057 */ 3058 3059 /** 3060 * netif_start_subqueue - allow sending packets on subqueue 3061 * @dev: network device 3062 * @queue_index: sub queue index 3063 * 3064 * Start individual transmit queue of a device with multiple transmit queues. 3065 */ 3066 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3067 { 3068 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3069 3070 netif_tx_start_queue(txq); 3071 } 3072 3073 /** 3074 * netif_stop_subqueue - stop sending packets on subqueue 3075 * @dev: network device 3076 * @queue_index: sub queue index 3077 * 3078 * Stop individual transmit queue of a device with multiple transmit queues. 3079 */ 3080 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3081 { 3082 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3083 netif_tx_stop_queue(txq); 3084 } 3085 3086 /** 3087 * netif_subqueue_stopped - test status of subqueue 3088 * @dev: network device 3089 * @queue_index: sub queue index 3090 * 3091 * Check individual transmit queue of a device with multiple transmit queues. 3092 */ 3093 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3094 u16 queue_index) 3095 { 3096 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3097 3098 return netif_tx_queue_stopped(txq); 3099 } 3100 3101 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3102 struct sk_buff *skb) 3103 { 3104 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3105 } 3106 3107 /** 3108 * netif_wake_subqueue - allow sending packets on subqueue 3109 * @dev: network device 3110 * @queue_index: sub queue index 3111 * 3112 * Resume individual transmit queue of a device with multiple transmit queues. 3113 */ 3114 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3115 { 3116 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3117 3118 netif_tx_wake_queue(txq); 3119 } 3120 3121 #ifdef CONFIG_XPS 3122 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3123 u16 index); 3124 #else 3125 static inline int netif_set_xps_queue(struct net_device *dev, 3126 const struct cpumask *mask, 3127 u16 index) 3128 { 3129 return 0; 3130 } 3131 #endif 3132 3133 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3134 unsigned int num_tx_queues); 3135 3136 /* 3137 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3138 * as a distribution range limit for the returned value. 3139 */ 3140 static inline u16 skb_tx_hash(const struct net_device *dev, 3141 struct sk_buff *skb) 3142 { 3143 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3144 } 3145 3146 /** 3147 * netif_is_multiqueue - test if device has multiple transmit queues 3148 * @dev: network device 3149 * 3150 * Check if device has multiple transmit queues 3151 */ 3152 static inline bool netif_is_multiqueue(const struct net_device *dev) 3153 { 3154 return dev->num_tx_queues > 1; 3155 } 3156 3157 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3158 3159 #ifdef CONFIG_SYSFS 3160 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3161 #else 3162 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3163 unsigned int rxq) 3164 { 3165 return 0; 3166 } 3167 #endif 3168 3169 #ifdef CONFIG_SYSFS 3170 static inline unsigned int get_netdev_rx_queue_index( 3171 struct netdev_rx_queue *queue) 3172 { 3173 struct net_device *dev = queue->dev; 3174 int index = queue - dev->_rx; 3175 3176 BUG_ON(index >= dev->num_rx_queues); 3177 return index; 3178 } 3179 #endif 3180 3181 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3182 int netif_get_num_default_rss_queues(void); 3183 3184 enum skb_free_reason { 3185 SKB_REASON_CONSUMED, 3186 SKB_REASON_DROPPED, 3187 }; 3188 3189 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3190 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3191 3192 /* 3193 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3194 * interrupt context or with hardware interrupts being disabled. 3195 * (in_irq() || irqs_disabled()) 3196 * 3197 * We provide four helpers that can be used in following contexts : 3198 * 3199 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3200 * replacing kfree_skb(skb) 3201 * 3202 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3203 * Typically used in place of consume_skb(skb) in TX completion path 3204 * 3205 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3206 * replacing kfree_skb(skb) 3207 * 3208 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3209 * and consumed a packet. Used in place of consume_skb(skb) 3210 */ 3211 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3212 { 3213 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3214 } 3215 3216 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3217 { 3218 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3219 } 3220 3221 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3222 { 3223 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3224 } 3225 3226 static inline void dev_consume_skb_any(struct sk_buff *skb) 3227 { 3228 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3229 } 3230 3231 int netif_rx(struct sk_buff *skb); 3232 int netif_rx_ni(struct sk_buff *skb); 3233 int netif_receive_skb(struct sk_buff *skb); 3234 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3235 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3236 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3237 gro_result_t napi_gro_frags(struct napi_struct *napi); 3238 struct packet_offload *gro_find_receive_by_type(__be16 type); 3239 struct packet_offload *gro_find_complete_by_type(__be16 type); 3240 3241 static inline void napi_free_frags(struct napi_struct *napi) 3242 { 3243 kfree_skb(napi->skb); 3244 napi->skb = NULL; 3245 } 3246 3247 bool netdev_is_rx_handler_busy(struct net_device *dev); 3248 int netdev_rx_handler_register(struct net_device *dev, 3249 rx_handler_func_t *rx_handler, 3250 void *rx_handler_data); 3251 void netdev_rx_handler_unregister(struct net_device *dev); 3252 3253 bool dev_valid_name(const char *name); 3254 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3255 int dev_ethtool(struct net *net, struct ifreq *); 3256 unsigned int dev_get_flags(const struct net_device *); 3257 int __dev_change_flags(struct net_device *, unsigned int flags); 3258 int dev_change_flags(struct net_device *, unsigned int); 3259 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3260 unsigned int gchanges); 3261 int dev_change_name(struct net_device *, const char *); 3262 int dev_set_alias(struct net_device *, const char *, size_t); 3263 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3264 int dev_set_mtu(struct net_device *, int); 3265 void dev_set_group(struct net_device *, int); 3266 int dev_set_mac_address(struct net_device *, struct sockaddr *); 3267 int dev_change_carrier(struct net_device *, bool new_carrier); 3268 int dev_get_phys_port_id(struct net_device *dev, 3269 struct netdev_phys_item_id *ppid); 3270 int dev_get_phys_port_name(struct net_device *dev, 3271 char *name, size_t len); 3272 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3273 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags); 3274 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3275 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3276 struct netdev_queue *txq, int *ret); 3277 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3278 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3279 bool is_skb_forwardable(const struct net_device *dev, 3280 const struct sk_buff *skb); 3281 3282 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3283 struct sk_buff *skb) 3284 { 3285 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3286 unlikely(!is_skb_forwardable(dev, skb))) { 3287 atomic_long_inc(&dev->rx_dropped); 3288 kfree_skb(skb); 3289 return NET_RX_DROP; 3290 } 3291 3292 skb_scrub_packet(skb, true); 3293 skb->priority = 0; 3294 return 0; 3295 } 3296 3297 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3298 3299 extern int netdev_budget; 3300 3301 /* Called by rtnetlink.c:rtnl_unlock() */ 3302 void netdev_run_todo(void); 3303 3304 /** 3305 * dev_put - release reference to device 3306 * @dev: network device 3307 * 3308 * Release reference to device to allow it to be freed. 3309 */ 3310 static inline void dev_put(struct net_device *dev) 3311 { 3312 this_cpu_dec(*dev->pcpu_refcnt); 3313 } 3314 3315 /** 3316 * dev_hold - get reference to device 3317 * @dev: network device 3318 * 3319 * Hold reference to device to keep it from being freed. 3320 */ 3321 static inline void dev_hold(struct net_device *dev) 3322 { 3323 this_cpu_inc(*dev->pcpu_refcnt); 3324 } 3325 3326 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3327 * and _off may be called from IRQ context, but it is caller 3328 * who is responsible for serialization of these calls. 3329 * 3330 * The name carrier is inappropriate, these functions should really be 3331 * called netif_lowerlayer_*() because they represent the state of any 3332 * kind of lower layer not just hardware media. 3333 */ 3334 3335 void linkwatch_init_dev(struct net_device *dev); 3336 void linkwatch_fire_event(struct net_device *dev); 3337 void linkwatch_forget_dev(struct net_device *dev); 3338 3339 /** 3340 * netif_carrier_ok - test if carrier present 3341 * @dev: network device 3342 * 3343 * Check if carrier is present on device 3344 */ 3345 static inline bool netif_carrier_ok(const struct net_device *dev) 3346 { 3347 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3348 } 3349 3350 unsigned long dev_trans_start(struct net_device *dev); 3351 3352 void __netdev_watchdog_up(struct net_device *dev); 3353 3354 void netif_carrier_on(struct net_device *dev); 3355 3356 void netif_carrier_off(struct net_device *dev); 3357 3358 /** 3359 * netif_dormant_on - mark device as dormant. 3360 * @dev: network device 3361 * 3362 * Mark device as dormant (as per RFC2863). 3363 * 3364 * The dormant state indicates that the relevant interface is not 3365 * actually in a condition to pass packets (i.e., it is not 'up') but is 3366 * in a "pending" state, waiting for some external event. For "on- 3367 * demand" interfaces, this new state identifies the situation where the 3368 * interface is waiting for events to place it in the up state. 3369 */ 3370 static inline void netif_dormant_on(struct net_device *dev) 3371 { 3372 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3373 linkwatch_fire_event(dev); 3374 } 3375 3376 /** 3377 * netif_dormant_off - set device as not dormant. 3378 * @dev: network device 3379 * 3380 * Device is not in dormant state. 3381 */ 3382 static inline void netif_dormant_off(struct net_device *dev) 3383 { 3384 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3385 linkwatch_fire_event(dev); 3386 } 3387 3388 /** 3389 * netif_dormant - test if carrier present 3390 * @dev: network device 3391 * 3392 * Check if carrier is present on device 3393 */ 3394 static inline bool netif_dormant(const struct net_device *dev) 3395 { 3396 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3397 } 3398 3399 3400 /** 3401 * netif_oper_up - test if device is operational 3402 * @dev: network device 3403 * 3404 * Check if carrier is operational 3405 */ 3406 static inline bool netif_oper_up(const struct net_device *dev) 3407 { 3408 return (dev->operstate == IF_OPER_UP || 3409 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3410 } 3411 3412 /** 3413 * netif_device_present - is device available or removed 3414 * @dev: network device 3415 * 3416 * Check if device has not been removed from system. 3417 */ 3418 static inline bool netif_device_present(struct net_device *dev) 3419 { 3420 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3421 } 3422 3423 void netif_device_detach(struct net_device *dev); 3424 3425 void netif_device_attach(struct net_device *dev); 3426 3427 /* 3428 * Network interface message level settings 3429 */ 3430 3431 enum { 3432 NETIF_MSG_DRV = 0x0001, 3433 NETIF_MSG_PROBE = 0x0002, 3434 NETIF_MSG_LINK = 0x0004, 3435 NETIF_MSG_TIMER = 0x0008, 3436 NETIF_MSG_IFDOWN = 0x0010, 3437 NETIF_MSG_IFUP = 0x0020, 3438 NETIF_MSG_RX_ERR = 0x0040, 3439 NETIF_MSG_TX_ERR = 0x0080, 3440 NETIF_MSG_TX_QUEUED = 0x0100, 3441 NETIF_MSG_INTR = 0x0200, 3442 NETIF_MSG_TX_DONE = 0x0400, 3443 NETIF_MSG_RX_STATUS = 0x0800, 3444 NETIF_MSG_PKTDATA = 0x1000, 3445 NETIF_MSG_HW = 0x2000, 3446 NETIF_MSG_WOL = 0x4000, 3447 }; 3448 3449 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3450 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3451 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3452 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3453 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3454 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3455 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3456 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3457 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3458 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3459 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3460 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3461 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3462 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3463 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3464 3465 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3466 { 3467 /* use default */ 3468 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3469 return default_msg_enable_bits; 3470 if (debug_value == 0) /* no output */ 3471 return 0; 3472 /* set low N bits */ 3473 return (1 << debug_value) - 1; 3474 } 3475 3476 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3477 { 3478 spin_lock(&txq->_xmit_lock); 3479 txq->xmit_lock_owner = cpu; 3480 } 3481 3482 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3483 { 3484 __acquire(&txq->_xmit_lock); 3485 return true; 3486 } 3487 3488 static inline void __netif_tx_release(struct netdev_queue *txq) 3489 { 3490 __release(&txq->_xmit_lock); 3491 } 3492 3493 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3494 { 3495 spin_lock_bh(&txq->_xmit_lock); 3496 txq->xmit_lock_owner = smp_processor_id(); 3497 } 3498 3499 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3500 { 3501 bool ok = spin_trylock(&txq->_xmit_lock); 3502 if (likely(ok)) 3503 txq->xmit_lock_owner = smp_processor_id(); 3504 return ok; 3505 } 3506 3507 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3508 { 3509 txq->xmit_lock_owner = -1; 3510 spin_unlock(&txq->_xmit_lock); 3511 } 3512 3513 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3514 { 3515 txq->xmit_lock_owner = -1; 3516 spin_unlock_bh(&txq->_xmit_lock); 3517 } 3518 3519 static inline void txq_trans_update(struct netdev_queue *txq) 3520 { 3521 if (txq->xmit_lock_owner != -1) 3522 txq->trans_start = jiffies; 3523 } 3524 3525 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3526 static inline void netif_trans_update(struct net_device *dev) 3527 { 3528 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3529 3530 if (txq->trans_start != jiffies) 3531 txq->trans_start = jiffies; 3532 } 3533 3534 /** 3535 * netif_tx_lock - grab network device transmit lock 3536 * @dev: network device 3537 * 3538 * Get network device transmit lock 3539 */ 3540 static inline void netif_tx_lock(struct net_device *dev) 3541 { 3542 unsigned int i; 3543 int cpu; 3544 3545 spin_lock(&dev->tx_global_lock); 3546 cpu = smp_processor_id(); 3547 for (i = 0; i < dev->num_tx_queues; i++) { 3548 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3549 3550 /* We are the only thread of execution doing a 3551 * freeze, but we have to grab the _xmit_lock in 3552 * order to synchronize with threads which are in 3553 * the ->hard_start_xmit() handler and already 3554 * checked the frozen bit. 3555 */ 3556 __netif_tx_lock(txq, cpu); 3557 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3558 __netif_tx_unlock(txq); 3559 } 3560 } 3561 3562 static inline void netif_tx_lock_bh(struct net_device *dev) 3563 { 3564 local_bh_disable(); 3565 netif_tx_lock(dev); 3566 } 3567 3568 static inline void netif_tx_unlock(struct net_device *dev) 3569 { 3570 unsigned int i; 3571 3572 for (i = 0; i < dev->num_tx_queues; i++) { 3573 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3574 3575 /* No need to grab the _xmit_lock here. If the 3576 * queue is not stopped for another reason, we 3577 * force a schedule. 3578 */ 3579 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3580 netif_schedule_queue(txq); 3581 } 3582 spin_unlock(&dev->tx_global_lock); 3583 } 3584 3585 static inline void netif_tx_unlock_bh(struct net_device *dev) 3586 { 3587 netif_tx_unlock(dev); 3588 local_bh_enable(); 3589 } 3590 3591 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3592 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3593 __netif_tx_lock(txq, cpu); \ 3594 } else { \ 3595 __netif_tx_acquire(txq); \ 3596 } \ 3597 } 3598 3599 #define HARD_TX_TRYLOCK(dev, txq) \ 3600 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3601 __netif_tx_trylock(txq) : \ 3602 __netif_tx_acquire(txq)) 3603 3604 #define HARD_TX_UNLOCK(dev, txq) { \ 3605 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3606 __netif_tx_unlock(txq); \ 3607 } else { \ 3608 __netif_tx_release(txq); \ 3609 } \ 3610 } 3611 3612 static inline void netif_tx_disable(struct net_device *dev) 3613 { 3614 unsigned int i; 3615 int cpu; 3616 3617 local_bh_disable(); 3618 cpu = smp_processor_id(); 3619 for (i = 0; i < dev->num_tx_queues; i++) { 3620 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3621 3622 __netif_tx_lock(txq, cpu); 3623 netif_tx_stop_queue(txq); 3624 __netif_tx_unlock(txq); 3625 } 3626 local_bh_enable(); 3627 } 3628 3629 static inline void netif_addr_lock(struct net_device *dev) 3630 { 3631 spin_lock(&dev->addr_list_lock); 3632 } 3633 3634 static inline void netif_addr_lock_nested(struct net_device *dev) 3635 { 3636 int subclass = SINGLE_DEPTH_NESTING; 3637 3638 if (dev->netdev_ops->ndo_get_lock_subclass) 3639 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3640 3641 spin_lock_nested(&dev->addr_list_lock, subclass); 3642 } 3643 3644 static inline void netif_addr_lock_bh(struct net_device *dev) 3645 { 3646 spin_lock_bh(&dev->addr_list_lock); 3647 } 3648 3649 static inline void netif_addr_unlock(struct net_device *dev) 3650 { 3651 spin_unlock(&dev->addr_list_lock); 3652 } 3653 3654 static inline void netif_addr_unlock_bh(struct net_device *dev) 3655 { 3656 spin_unlock_bh(&dev->addr_list_lock); 3657 } 3658 3659 /* 3660 * dev_addrs walker. Should be used only for read access. Call with 3661 * rcu_read_lock held. 3662 */ 3663 #define for_each_dev_addr(dev, ha) \ 3664 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3665 3666 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3667 3668 void ether_setup(struct net_device *dev); 3669 3670 /* Support for loadable net-drivers */ 3671 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3672 unsigned char name_assign_type, 3673 void (*setup)(struct net_device *), 3674 unsigned int txqs, unsigned int rxqs); 3675 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3676 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3677 3678 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3679 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3680 count) 3681 3682 int register_netdev(struct net_device *dev); 3683 void unregister_netdev(struct net_device *dev); 3684 3685 /* General hardware address lists handling functions */ 3686 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3687 struct netdev_hw_addr_list *from_list, int addr_len); 3688 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3689 struct netdev_hw_addr_list *from_list, int addr_len); 3690 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3691 struct net_device *dev, 3692 int (*sync)(struct net_device *, const unsigned char *), 3693 int (*unsync)(struct net_device *, 3694 const unsigned char *)); 3695 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3696 struct net_device *dev, 3697 int (*unsync)(struct net_device *, 3698 const unsigned char *)); 3699 void __hw_addr_init(struct netdev_hw_addr_list *list); 3700 3701 /* Functions used for device addresses handling */ 3702 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3703 unsigned char addr_type); 3704 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3705 unsigned char addr_type); 3706 void dev_addr_flush(struct net_device *dev); 3707 int dev_addr_init(struct net_device *dev); 3708 3709 /* Functions used for unicast addresses handling */ 3710 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3711 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3712 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3713 int dev_uc_sync(struct net_device *to, struct net_device *from); 3714 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3715 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3716 void dev_uc_flush(struct net_device *dev); 3717 void dev_uc_init(struct net_device *dev); 3718 3719 /** 3720 * __dev_uc_sync - Synchonize device's unicast list 3721 * @dev: device to sync 3722 * @sync: function to call if address should be added 3723 * @unsync: function to call if address should be removed 3724 * 3725 * Add newly added addresses to the interface, and release 3726 * addresses that have been deleted. 3727 */ 3728 static inline int __dev_uc_sync(struct net_device *dev, 3729 int (*sync)(struct net_device *, 3730 const unsigned char *), 3731 int (*unsync)(struct net_device *, 3732 const unsigned char *)) 3733 { 3734 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3735 } 3736 3737 /** 3738 * __dev_uc_unsync - Remove synchronized addresses from device 3739 * @dev: device to sync 3740 * @unsync: function to call if address should be removed 3741 * 3742 * Remove all addresses that were added to the device by dev_uc_sync(). 3743 */ 3744 static inline void __dev_uc_unsync(struct net_device *dev, 3745 int (*unsync)(struct net_device *, 3746 const unsigned char *)) 3747 { 3748 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3749 } 3750 3751 /* Functions used for multicast addresses handling */ 3752 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3753 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3754 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3755 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3756 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3757 int dev_mc_sync(struct net_device *to, struct net_device *from); 3758 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3759 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3760 void dev_mc_flush(struct net_device *dev); 3761 void dev_mc_init(struct net_device *dev); 3762 3763 /** 3764 * __dev_mc_sync - Synchonize device's multicast list 3765 * @dev: device to sync 3766 * @sync: function to call if address should be added 3767 * @unsync: function to call if address should be removed 3768 * 3769 * Add newly added addresses to the interface, and release 3770 * addresses that have been deleted. 3771 */ 3772 static inline int __dev_mc_sync(struct net_device *dev, 3773 int (*sync)(struct net_device *, 3774 const unsigned char *), 3775 int (*unsync)(struct net_device *, 3776 const unsigned char *)) 3777 { 3778 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3779 } 3780 3781 /** 3782 * __dev_mc_unsync - Remove synchronized addresses from device 3783 * @dev: device to sync 3784 * @unsync: function to call if address should be removed 3785 * 3786 * Remove all addresses that were added to the device by dev_mc_sync(). 3787 */ 3788 static inline void __dev_mc_unsync(struct net_device *dev, 3789 int (*unsync)(struct net_device *, 3790 const unsigned char *)) 3791 { 3792 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3793 } 3794 3795 /* Functions used for secondary unicast and multicast support */ 3796 void dev_set_rx_mode(struct net_device *dev); 3797 void __dev_set_rx_mode(struct net_device *dev); 3798 int dev_set_promiscuity(struct net_device *dev, int inc); 3799 int dev_set_allmulti(struct net_device *dev, int inc); 3800 void netdev_state_change(struct net_device *dev); 3801 void netdev_notify_peers(struct net_device *dev); 3802 void netdev_features_change(struct net_device *dev); 3803 /* Load a device via the kmod */ 3804 void dev_load(struct net *net, const char *name); 3805 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3806 struct rtnl_link_stats64 *storage); 3807 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3808 const struct net_device_stats *netdev_stats); 3809 3810 extern int netdev_max_backlog; 3811 extern int netdev_tstamp_prequeue; 3812 extern int weight_p; 3813 extern int dev_weight_rx_bias; 3814 extern int dev_weight_tx_bias; 3815 extern int dev_rx_weight; 3816 extern int dev_tx_weight; 3817 3818 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3819 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3820 struct list_head **iter); 3821 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3822 struct list_head **iter); 3823 3824 /* iterate through upper list, must be called under RCU read lock */ 3825 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3826 for (iter = &(dev)->adj_list.upper, \ 3827 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3828 updev; \ 3829 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3830 3831 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3832 int (*fn)(struct net_device *upper_dev, 3833 void *data), 3834 void *data); 3835 3836 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3837 struct net_device *upper_dev); 3838 3839 void *netdev_lower_get_next_private(struct net_device *dev, 3840 struct list_head **iter); 3841 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3842 struct list_head **iter); 3843 3844 #define netdev_for_each_lower_private(dev, priv, iter) \ 3845 for (iter = (dev)->adj_list.lower.next, \ 3846 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3847 priv; \ 3848 priv = netdev_lower_get_next_private(dev, &(iter))) 3849 3850 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3851 for (iter = &(dev)->adj_list.lower, \ 3852 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3853 priv; \ 3854 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3855 3856 void *netdev_lower_get_next(struct net_device *dev, 3857 struct list_head **iter); 3858 3859 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3860 for (iter = (dev)->adj_list.lower.next, \ 3861 ldev = netdev_lower_get_next(dev, &(iter)); \ 3862 ldev; \ 3863 ldev = netdev_lower_get_next(dev, &(iter))) 3864 3865 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3866 struct list_head **iter); 3867 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3868 struct list_head **iter); 3869 3870 int netdev_walk_all_lower_dev(struct net_device *dev, 3871 int (*fn)(struct net_device *lower_dev, 3872 void *data), 3873 void *data); 3874 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3875 int (*fn)(struct net_device *lower_dev, 3876 void *data), 3877 void *data); 3878 3879 void *netdev_adjacent_get_private(struct list_head *adj_list); 3880 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3881 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3882 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3883 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3884 int netdev_master_upper_dev_link(struct net_device *dev, 3885 struct net_device *upper_dev, 3886 void *upper_priv, void *upper_info); 3887 void netdev_upper_dev_unlink(struct net_device *dev, 3888 struct net_device *upper_dev); 3889 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3890 void *netdev_lower_dev_get_private(struct net_device *dev, 3891 struct net_device *lower_dev); 3892 void netdev_lower_state_changed(struct net_device *lower_dev, 3893 void *lower_state_info); 3894 3895 /* RSS keys are 40 or 52 bytes long */ 3896 #define NETDEV_RSS_KEY_LEN 52 3897 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3898 void netdev_rss_key_fill(void *buffer, size_t len); 3899 3900 int dev_get_nest_level(struct net_device *dev); 3901 int skb_checksum_help(struct sk_buff *skb); 3902 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3903 netdev_features_t features, bool tx_path); 3904 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3905 netdev_features_t features); 3906 3907 struct netdev_bonding_info { 3908 ifslave slave; 3909 ifbond master; 3910 }; 3911 3912 struct netdev_notifier_bonding_info { 3913 struct netdev_notifier_info info; /* must be first */ 3914 struct netdev_bonding_info bonding_info; 3915 }; 3916 3917 void netdev_bonding_info_change(struct net_device *dev, 3918 struct netdev_bonding_info *bonding_info); 3919 3920 static inline 3921 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3922 { 3923 return __skb_gso_segment(skb, features, true); 3924 } 3925 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3926 3927 static inline bool can_checksum_protocol(netdev_features_t features, 3928 __be16 protocol) 3929 { 3930 if (protocol == htons(ETH_P_FCOE)) 3931 return !!(features & NETIF_F_FCOE_CRC); 3932 3933 /* Assume this is an IP checksum (not SCTP CRC) */ 3934 3935 if (features & NETIF_F_HW_CSUM) { 3936 /* Can checksum everything */ 3937 return true; 3938 } 3939 3940 switch (protocol) { 3941 case htons(ETH_P_IP): 3942 return !!(features & NETIF_F_IP_CSUM); 3943 case htons(ETH_P_IPV6): 3944 return !!(features & NETIF_F_IPV6_CSUM); 3945 default: 3946 return false; 3947 } 3948 } 3949 3950 #ifdef CONFIG_BUG 3951 void netdev_rx_csum_fault(struct net_device *dev); 3952 #else 3953 static inline void netdev_rx_csum_fault(struct net_device *dev) 3954 { 3955 } 3956 #endif 3957 /* rx skb timestamps */ 3958 void net_enable_timestamp(void); 3959 void net_disable_timestamp(void); 3960 3961 #ifdef CONFIG_PROC_FS 3962 int __init dev_proc_init(void); 3963 #else 3964 #define dev_proc_init() 0 3965 #endif 3966 3967 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3968 struct sk_buff *skb, struct net_device *dev, 3969 bool more) 3970 { 3971 skb->xmit_more = more ? 1 : 0; 3972 return ops->ndo_start_xmit(skb, dev); 3973 } 3974 3975 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3976 struct netdev_queue *txq, bool more) 3977 { 3978 const struct net_device_ops *ops = dev->netdev_ops; 3979 int rc; 3980 3981 rc = __netdev_start_xmit(ops, skb, dev, more); 3982 if (rc == NETDEV_TX_OK) 3983 txq_trans_update(txq); 3984 3985 return rc; 3986 } 3987 3988 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3989 const void *ns); 3990 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3991 const void *ns); 3992 3993 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3994 { 3995 return netdev_class_create_file_ns(class_attr, NULL); 3996 } 3997 3998 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3999 { 4000 netdev_class_remove_file_ns(class_attr, NULL); 4001 } 4002 4003 extern struct kobj_ns_type_operations net_ns_type_operations; 4004 4005 const char *netdev_drivername(const struct net_device *dev); 4006 4007 void linkwatch_run_queue(void); 4008 4009 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4010 netdev_features_t f2) 4011 { 4012 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4013 if (f1 & NETIF_F_HW_CSUM) 4014 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4015 else 4016 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4017 } 4018 4019 return f1 & f2; 4020 } 4021 4022 static inline netdev_features_t netdev_get_wanted_features( 4023 struct net_device *dev) 4024 { 4025 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4026 } 4027 netdev_features_t netdev_increment_features(netdev_features_t all, 4028 netdev_features_t one, netdev_features_t mask); 4029 4030 /* Allow TSO being used on stacked device : 4031 * Performing the GSO segmentation before last device 4032 * is a performance improvement. 4033 */ 4034 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4035 netdev_features_t mask) 4036 { 4037 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4038 } 4039 4040 int __netdev_update_features(struct net_device *dev); 4041 void netdev_update_features(struct net_device *dev); 4042 void netdev_change_features(struct net_device *dev); 4043 4044 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4045 struct net_device *dev); 4046 4047 netdev_features_t passthru_features_check(struct sk_buff *skb, 4048 struct net_device *dev, 4049 netdev_features_t features); 4050 netdev_features_t netif_skb_features(struct sk_buff *skb); 4051 4052 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4053 { 4054 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4055 4056 /* check flags correspondence */ 4057 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4058 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4059 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4060 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4061 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4062 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4063 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4064 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4065 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4066 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4067 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4068 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4069 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4070 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4071 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4072 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4073 4074 return (features & feature) == feature; 4075 } 4076 4077 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4078 { 4079 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4080 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4081 } 4082 4083 static inline bool netif_needs_gso(struct sk_buff *skb, 4084 netdev_features_t features) 4085 { 4086 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4087 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4088 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4089 } 4090 4091 static inline void netif_set_gso_max_size(struct net_device *dev, 4092 unsigned int size) 4093 { 4094 dev->gso_max_size = size; 4095 } 4096 4097 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4098 int pulled_hlen, u16 mac_offset, 4099 int mac_len) 4100 { 4101 skb->protocol = protocol; 4102 skb->encapsulation = 1; 4103 skb_push(skb, pulled_hlen); 4104 skb_reset_transport_header(skb); 4105 skb->mac_header = mac_offset; 4106 skb->network_header = skb->mac_header + mac_len; 4107 skb->mac_len = mac_len; 4108 } 4109 4110 static inline bool netif_is_macsec(const struct net_device *dev) 4111 { 4112 return dev->priv_flags & IFF_MACSEC; 4113 } 4114 4115 static inline bool netif_is_macvlan(const struct net_device *dev) 4116 { 4117 return dev->priv_flags & IFF_MACVLAN; 4118 } 4119 4120 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4121 { 4122 return dev->priv_flags & IFF_MACVLAN_PORT; 4123 } 4124 4125 static inline bool netif_is_ipvlan(const struct net_device *dev) 4126 { 4127 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4128 } 4129 4130 static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4131 { 4132 return dev->priv_flags & IFF_IPVLAN_MASTER; 4133 } 4134 4135 static inline bool netif_is_bond_master(const struct net_device *dev) 4136 { 4137 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4138 } 4139 4140 static inline bool netif_is_bond_slave(const struct net_device *dev) 4141 { 4142 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4143 } 4144 4145 static inline bool netif_supports_nofcs(struct net_device *dev) 4146 { 4147 return dev->priv_flags & IFF_SUPP_NOFCS; 4148 } 4149 4150 static inline bool netif_is_l3_master(const struct net_device *dev) 4151 { 4152 return dev->priv_flags & IFF_L3MDEV_MASTER; 4153 } 4154 4155 static inline bool netif_is_l3_slave(const struct net_device *dev) 4156 { 4157 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4158 } 4159 4160 static inline bool netif_is_bridge_master(const struct net_device *dev) 4161 { 4162 return dev->priv_flags & IFF_EBRIDGE; 4163 } 4164 4165 static inline bool netif_is_bridge_port(const struct net_device *dev) 4166 { 4167 return dev->priv_flags & IFF_BRIDGE_PORT; 4168 } 4169 4170 static inline bool netif_is_ovs_master(const struct net_device *dev) 4171 { 4172 return dev->priv_flags & IFF_OPENVSWITCH; 4173 } 4174 4175 static inline bool netif_is_team_master(const struct net_device *dev) 4176 { 4177 return dev->priv_flags & IFF_TEAM; 4178 } 4179 4180 static inline bool netif_is_team_port(const struct net_device *dev) 4181 { 4182 return dev->priv_flags & IFF_TEAM_PORT; 4183 } 4184 4185 static inline bool netif_is_lag_master(const struct net_device *dev) 4186 { 4187 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4188 } 4189 4190 static inline bool netif_is_lag_port(const struct net_device *dev) 4191 { 4192 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4193 } 4194 4195 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4196 { 4197 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4198 } 4199 4200 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4201 static inline void netif_keep_dst(struct net_device *dev) 4202 { 4203 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4204 } 4205 4206 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4207 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4208 { 4209 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4210 return dev->priv_flags & IFF_MACSEC; 4211 } 4212 4213 extern struct pernet_operations __net_initdata loopback_net_ops; 4214 4215 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4216 4217 /* netdev_printk helpers, similar to dev_printk */ 4218 4219 static inline const char *netdev_name(const struct net_device *dev) 4220 { 4221 if (!dev->name[0] || strchr(dev->name, '%')) 4222 return "(unnamed net_device)"; 4223 return dev->name; 4224 } 4225 4226 static inline const char *netdev_reg_state(const struct net_device *dev) 4227 { 4228 switch (dev->reg_state) { 4229 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4230 case NETREG_REGISTERED: return ""; 4231 case NETREG_UNREGISTERING: return " (unregistering)"; 4232 case NETREG_UNREGISTERED: return " (unregistered)"; 4233 case NETREG_RELEASED: return " (released)"; 4234 case NETREG_DUMMY: return " (dummy)"; 4235 } 4236 4237 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4238 return " (unknown)"; 4239 } 4240 4241 __printf(3, 4) 4242 void netdev_printk(const char *level, const struct net_device *dev, 4243 const char *format, ...); 4244 __printf(2, 3) 4245 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4246 __printf(2, 3) 4247 void netdev_alert(const struct net_device *dev, const char *format, ...); 4248 __printf(2, 3) 4249 void netdev_crit(const struct net_device *dev, const char *format, ...); 4250 __printf(2, 3) 4251 void netdev_err(const struct net_device *dev, const char *format, ...); 4252 __printf(2, 3) 4253 void netdev_warn(const struct net_device *dev, const char *format, ...); 4254 __printf(2, 3) 4255 void netdev_notice(const struct net_device *dev, const char *format, ...); 4256 __printf(2, 3) 4257 void netdev_info(const struct net_device *dev, const char *format, ...); 4258 4259 #define MODULE_ALIAS_NETDEV(device) \ 4260 MODULE_ALIAS("netdev-" device) 4261 4262 #if defined(CONFIG_DYNAMIC_DEBUG) 4263 #define netdev_dbg(__dev, format, args...) \ 4264 do { \ 4265 dynamic_netdev_dbg(__dev, format, ##args); \ 4266 } while (0) 4267 #elif defined(DEBUG) 4268 #define netdev_dbg(__dev, format, args...) \ 4269 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4270 #else 4271 #define netdev_dbg(__dev, format, args...) \ 4272 ({ \ 4273 if (0) \ 4274 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4275 }) 4276 #endif 4277 4278 #if defined(VERBOSE_DEBUG) 4279 #define netdev_vdbg netdev_dbg 4280 #else 4281 4282 #define netdev_vdbg(dev, format, args...) \ 4283 ({ \ 4284 if (0) \ 4285 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4286 0; \ 4287 }) 4288 #endif 4289 4290 /* 4291 * netdev_WARN() acts like dev_printk(), but with the key difference 4292 * of using a WARN/WARN_ON to get the message out, including the 4293 * file/line information and a backtrace. 4294 */ 4295 #define netdev_WARN(dev, format, args...) \ 4296 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4297 netdev_reg_state(dev), ##args) 4298 4299 /* netif printk helpers, similar to netdev_printk */ 4300 4301 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4302 do { \ 4303 if (netif_msg_##type(priv)) \ 4304 netdev_printk(level, (dev), fmt, ##args); \ 4305 } while (0) 4306 4307 #define netif_level(level, priv, type, dev, fmt, args...) \ 4308 do { \ 4309 if (netif_msg_##type(priv)) \ 4310 netdev_##level(dev, fmt, ##args); \ 4311 } while (0) 4312 4313 #define netif_emerg(priv, type, dev, fmt, args...) \ 4314 netif_level(emerg, priv, type, dev, fmt, ##args) 4315 #define netif_alert(priv, type, dev, fmt, args...) \ 4316 netif_level(alert, priv, type, dev, fmt, ##args) 4317 #define netif_crit(priv, type, dev, fmt, args...) \ 4318 netif_level(crit, priv, type, dev, fmt, ##args) 4319 #define netif_err(priv, type, dev, fmt, args...) \ 4320 netif_level(err, priv, type, dev, fmt, ##args) 4321 #define netif_warn(priv, type, dev, fmt, args...) \ 4322 netif_level(warn, priv, type, dev, fmt, ##args) 4323 #define netif_notice(priv, type, dev, fmt, args...) \ 4324 netif_level(notice, priv, type, dev, fmt, ##args) 4325 #define netif_info(priv, type, dev, fmt, args...) \ 4326 netif_level(info, priv, type, dev, fmt, ##args) 4327 4328 #if defined(CONFIG_DYNAMIC_DEBUG) 4329 #define netif_dbg(priv, type, netdev, format, args...) \ 4330 do { \ 4331 if (netif_msg_##type(priv)) \ 4332 dynamic_netdev_dbg(netdev, format, ##args); \ 4333 } while (0) 4334 #elif defined(DEBUG) 4335 #define netif_dbg(priv, type, dev, format, args...) \ 4336 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4337 #else 4338 #define netif_dbg(priv, type, dev, format, args...) \ 4339 ({ \ 4340 if (0) \ 4341 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4342 0; \ 4343 }) 4344 #endif 4345 4346 /* if @cond then downgrade to debug, else print at @level */ 4347 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4348 do { \ 4349 if (cond) \ 4350 netif_dbg(priv, type, netdev, fmt, ##args); \ 4351 else \ 4352 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4353 } while (0) 4354 4355 #if defined(VERBOSE_DEBUG) 4356 #define netif_vdbg netif_dbg 4357 #else 4358 #define netif_vdbg(priv, type, dev, format, args...) \ 4359 ({ \ 4360 if (0) \ 4361 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4362 0; \ 4363 }) 4364 #endif 4365 4366 /* 4367 * The list of packet types we will receive (as opposed to discard) 4368 * and the routines to invoke. 4369 * 4370 * Why 16. Because with 16 the only overlap we get on a hash of the 4371 * low nibble of the protocol value is RARP/SNAP/X.25. 4372 * 4373 * NOTE: That is no longer true with the addition of VLAN tags. Not 4374 * sure which should go first, but I bet it won't make much 4375 * difference if we are running VLANs. The good news is that 4376 * this protocol won't be in the list unless compiled in, so 4377 * the average user (w/out VLANs) will not be adversely affected. 4378 * --BLG 4379 * 4380 * 0800 IP 4381 * 8100 802.1Q VLAN 4382 * 0001 802.3 4383 * 0002 AX.25 4384 * 0004 802.2 4385 * 8035 RARP 4386 * 0005 SNAP 4387 * 0805 X.25 4388 * 0806 ARP 4389 * 8137 IPX 4390 * 0009 Localtalk 4391 * 86DD IPv6 4392 */ 4393 #define PTYPE_HASH_SIZE (16) 4394 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4395 4396 #endif /* _LINUX_NETDEVICE_H */ 4397