xref: /openbmc/linux/include/linux/netdevice.h (revision 4930ac30)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 struct xdp_buff;
70 
71 void netdev_set_default_ethtool_ops(struct net_device *dev,
72 				    const struct ethtool_ops *ops);
73 
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
76 #define NET_RX_DROP		1	/* packet dropped */
77 
78 #define MAX_NEST_DEV 8
79 
80 /*
81  * Transmit return codes: transmit return codes originate from three different
82  * namespaces:
83  *
84  * - qdisc return codes
85  * - driver transmit return codes
86  * - errno values
87  *
88  * Drivers are allowed to return any one of those in their hard_start_xmit()
89  * function. Real network devices commonly used with qdiscs should only return
90  * the driver transmit return codes though - when qdiscs are used, the actual
91  * transmission happens asynchronously, so the value is not propagated to
92  * higher layers. Virtual network devices transmit synchronously; in this case
93  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
94  * others are propagated to higher layers.
95  */
96 
97 /* qdisc ->enqueue() return codes. */
98 #define NET_XMIT_SUCCESS	0x00
99 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
100 #define NET_XMIT_CN		0x02	/* congestion notification	*/
101 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
102 
103 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
104  * indicates that the device will soon be dropping packets, or already drops
105  * some packets of the same priority; prompting us to send less aggressively. */
106 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
107 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
108 
109 /* Driver transmit return codes */
110 #define NETDEV_TX_MASK		0xf0
111 
112 enum netdev_tx {
113 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
114 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
115 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
116 };
117 typedef enum netdev_tx netdev_tx_t;
118 
119 /*
120  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122  */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 	/*
126 	 * Positive cases with an skb consumed by a driver:
127 	 * - successful transmission (rc == NETDEV_TX_OK)
128 	 * - error while transmitting (rc < 0)
129 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 	 */
131 	if (likely(rc < NET_XMIT_MASK))
132 		return true;
133 
134 	return false;
135 }
136 
137 /*
138  *	Compute the worst-case header length according to the protocols
139  *	used.
140  */
141 
142 #if defined(CONFIG_HYPERV_NET)
143 # define LL_MAX_HEADER 128
144 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
145 # if defined(CONFIG_MAC80211_MESH)
146 #  define LL_MAX_HEADER 128
147 # else
148 #  define LL_MAX_HEADER 96
149 # endif
150 #else
151 # define LL_MAX_HEADER 32
152 #endif
153 
154 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
155     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
156 #define MAX_HEADER LL_MAX_HEADER
157 #else
158 #define MAX_HEADER (LL_MAX_HEADER + 48)
159 #endif
160 
161 /*
162  *	Old network device statistics. Fields are native words
163  *	(unsigned long) so they can be read and written atomically.
164  */
165 
166 struct net_device_stats {
167 	unsigned long	rx_packets;
168 	unsigned long	tx_packets;
169 	unsigned long	rx_bytes;
170 	unsigned long	tx_bytes;
171 	unsigned long	rx_errors;
172 	unsigned long	tx_errors;
173 	unsigned long	rx_dropped;
174 	unsigned long	tx_dropped;
175 	unsigned long	multicast;
176 	unsigned long	collisions;
177 	unsigned long	rx_length_errors;
178 	unsigned long	rx_over_errors;
179 	unsigned long	rx_crc_errors;
180 	unsigned long	rx_frame_errors;
181 	unsigned long	rx_fifo_errors;
182 	unsigned long	rx_missed_errors;
183 	unsigned long	tx_aborted_errors;
184 	unsigned long	tx_carrier_errors;
185 	unsigned long	tx_fifo_errors;
186 	unsigned long	tx_heartbeat_errors;
187 	unsigned long	tx_window_errors;
188 	unsigned long	rx_compressed;
189 	unsigned long	tx_compressed;
190 };
191 
192 
193 #include <linux/cache.h>
194 #include <linux/skbuff.h>
195 
196 #ifdef CONFIG_RPS
197 #include <linux/static_key.h>
198 extern struct static_key_false rps_needed;
199 extern struct static_key_false rfs_needed;
200 #endif
201 
202 struct neighbour;
203 struct neigh_parms;
204 struct sk_buff;
205 
206 struct netdev_hw_addr {
207 	struct list_head	list;
208 	unsigned char		addr[MAX_ADDR_LEN];
209 	unsigned char		type;
210 #define NETDEV_HW_ADDR_T_LAN		1
211 #define NETDEV_HW_ADDR_T_SAN		2
212 #define NETDEV_HW_ADDR_T_SLAVE		3
213 #define NETDEV_HW_ADDR_T_UNICAST	4
214 #define NETDEV_HW_ADDR_T_MULTICAST	5
215 	bool			global_use;
216 	int			sync_cnt;
217 	int			refcount;
218 	int			synced;
219 	struct rcu_head		rcu_head;
220 };
221 
222 struct netdev_hw_addr_list {
223 	struct list_head	list;
224 	int			count;
225 };
226 
227 #define netdev_hw_addr_list_count(l) ((l)->count)
228 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
229 #define netdev_hw_addr_list_for_each(ha, l) \
230 	list_for_each_entry(ha, &(l)->list, list)
231 
232 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
233 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
234 #define netdev_for_each_uc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
236 
237 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
238 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
239 #define netdev_for_each_mc_addr(ha, dev) \
240 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
241 
242 struct hh_cache {
243 	unsigned int	hh_len;
244 	seqlock_t	hh_lock;
245 
246 	/* cached hardware header; allow for machine alignment needs.        */
247 #define HH_DATA_MOD	16
248 #define HH_DATA_OFF(__len) \
249 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
250 #define HH_DATA_ALIGN(__len) \
251 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
252 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
253 };
254 
255 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
256  * Alternative is:
257  *   dev->hard_header_len ? (dev->hard_header_len +
258  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
259  *
260  * We could use other alignment values, but we must maintain the
261  * relationship HH alignment <= LL alignment.
262  */
263 #define LL_RESERVED_SPACE(dev) \
264 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 
268 struct header_ops {
269 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
270 			   unsigned short type, const void *daddr,
271 			   const void *saddr, unsigned int len);
272 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
273 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
274 	void	(*cache_update)(struct hh_cache *hh,
275 				const struct net_device *dev,
276 				const unsigned char *haddr);
277 	bool	(*validate)(const char *ll_header, unsigned int len);
278 	__be16	(*parse_protocol)(const struct sk_buff *skb);
279 };
280 
281 /* These flag bits are private to the generic network queueing
282  * layer; they may not be explicitly referenced by any other
283  * code.
284  */
285 
286 enum netdev_state_t {
287 	__LINK_STATE_START,
288 	__LINK_STATE_PRESENT,
289 	__LINK_STATE_NOCARRIER,
290 	__LINK_STATE_LINKWATCH_PENDING,
291 	__LINK_STATE_DORMANT,
292 	__LINK_STATE_TESTING,
293 };
294 
295 
296 /*
297  * This structure holds boot-time configured netdevice settings. They
298  * are then used in the device probing.
299  */
300 struct netdev_boot_setup {
301 	char name[IFNAMSIZ];
302 	struct ifmap map;
303 };
304 #define NETDEV_BOOT_SETUP_MAX 8
305 
306 int __init netdev_boot_setup(char *str);
307 
308 struct gro_list {
309 	struct list_head	list;
310 	int			count;
311 };
312 
313 /*
314  * size of gro hash buckets, must less than bit number of
315  * napi_struct::gro_bitmask
316  */
317 #define GRO_HASH_BUCKETS	8
318 
319 /*
320  * Structure for NAPI scheduling similar to tasklet but with weighting
321  */
322 struct napi_struct {
323 	/* The poll_list must only be managed by the entity which
324 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
325 	 * whoever atomically sets that bit can add this napi_struct
326 	 * to the per-CPU poll_list, and whoever clears that bit
327 	 * can remove from the list right before clearing the bit.
328 	 */
329 	struct list_head	poll_list;
330 
331 	unsigned long		state;
332 	int			weight;
333 	int			defer_hard_irqs_count;
334 	unsigned long		gro_bitmask;
335 	int			(*poll)(struct napi_struct *, int);
336 #ifdef CONFIG_NETPOLL
337 	int			poll_owner;
338 #endif
339 	struct net_device	*dev;
340 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
341 	struct sk_buff		*skb;
342 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
343 	int			rx_count; /* length of rx_list */
344 	struct hrtimer		timer;
345 	struct list_head	dev_list;
346 	struct hlist_node	napi_hash_node;
347 	unsigned int		napi_id;
348 };
349 
350 enum {
351 	NAPI_STATE_SCHED,	/* Poll is scheduled */
352 	NAPI_STATE_MISSED,	/* reschedule a napi */
353 	NAPI_STATE_DISABLE,	/* Disable pending */
354 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
355 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
356 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
357 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
358 };
359 
360 enum {
361 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
362 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
363 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
364 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
365 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
366 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
367 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
368 };
369 
370 enum gro_result {
371 	GRO_MERGED,
372 	GRO_MERGED_FREE,
373 	GRO_HELD,
374 	GRO_NORMAL,
375 	GRO_DROP,
376 	GRO_CONSUMED,
377 };
378 typedef enum gro_result gro_result_t;
379 
380 /*
381  * enum rx_handler_result - Possible return values for rx_handlers.
382  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
383  * further.
384  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
385  * case skb->dev was changed by rx_handler.
386  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
387  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
388  *
389  * rx_handlers are functions called from inside __netif_receive_skb(), to do
390  * special processing of the skb, prior to delivery to protocol handlers.
391  *
392  * Currently, a net_device can only have a single rx_handler registered. Trying
393  * to register a second rx_handler will return -EBUSY.
394  *
395  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
396  * To unregister a rx_handler on a net_device, use
397  * netdev_rx_handler_unregister().
398  *
399  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
400  * do with the skb.
401  *
402  * If the rx_handler consumed the skb in some way, it should return
403  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
404  * the skb to be delivered in some other way.
405  *
406  * If the rx_handler changed skb->dev, to divert the skb to another
407  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
408  * new device will be called if it exists.
409  *
410  * If the rx_handler decides the skb should be ignored, it should return
411  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
412  * are registered on exact device (ptype->dev == skb->dev).
413  *
414  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
415  * delivered, it should return RX_HANDLER_PASS.
416  *
417  * A device without a registered rx_handler will behave as if rx_handler
418  * returned RX_HANDLER_PASS.
419  */
420 
421 enum rx_handler_result {
422 	RX_HANDLER_CONSUMED,
423 	RX_HANDLER_ANOTHER,
424 	RX_HANDLER_EXACT,
425 	RX_HANDLER_PASS,
426 };
427 typedef enum rx_handler_result rx_handler_result_t;
428 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
429 
430 void __napi_schedule(struct napi_struct *n);
431 void __napi_schedule_irqoff(struct napi_struct *n);
432 
433 static inline bool napi_disable_pending(struct napi_struct *n)
434 {
435 	return test_bit(NAPI_STATE_DISABLE, &n->state);
436 }
437 
438 bool napi_schedule_prep(struct napi_struct *n);
439 
440 /**
441  *	napi_schedule - schedule NAPI poll
442  *	@n: NAPI context
443  *
444  * Schedule NAPI poll routine to be called if it is not already
445  * running.
446  */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 	if (napi_schedule_prep(n))
450 		__napi_schedule(n);
451 }
452 
453 /**
454  *	napi_schedule_irqoff - schedule NAPI poll
455  *	@n: NAPI context
456  *
457  * Variant of napi_schedule(), assuming hard irqs are masked.
458  */
459 static inline void napi_schedule_irqoff(struct napi_struct *n)
460 {
461 	if (napi_schedule_prep(n))
462 		__napi_schedule_irqoff(n);
463 }
464 
465 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
466 static inline bool napi_reschedule(struct napi_struct *napi)
467 {
468 	if (napi_schedule_prep(napi)) {
469 		__napi_schedule(napi);
470 		return true;
471 	}
472 	return false;
473 }
474 
475 bool napi_complete_done(struct napi_struct *n, int work_done);
476 /**
477  *	napi_complete - NAPI processing complete
478  *	@n: NAPI context
479  *
480  * Mark NAPI processing as complete.
481  * Consider using napi_complete_done() instead.
482  * Return false if device should avoid rearming interrupts.
483  */
484 static inline bool napi_complete(struct napi_struct *n)
485 {
486 	return napi_complete_done(n, 0);
487 }
488 
489 /**
490  *	napi_hash_del - remove a NAPI from global table
491  *	@napi: NAPI context
492  *
493  * Warning: caller must observe RCU grace period
494  * before freeing memory containing @napi, if
495  * this function returns true.
496  * Note: core networking stack automatically calls it
497  * from netif_napi_del().
498  * Drivers might want to call this helper to combine all
499  * the needed RCU grace periods into a single one.
500  */
501 bool napi_hash_del(struct napi_struct *napi);
502 
503 /**
504  *	napi_disable - prevent NAPI from scheduling
505  *	@n: NAPI context
506  *
507  * Stop NAPI from being scheduled on this context.
508  * Waits till any outstanding processing completes.
509  */
510 void napi_disable(struct napi_struct *n);
511 
512 /**
513  *	napi_enable - enable NAPI scheduling
514  *	@n: NAPI context
515  *
516  * Resume NAPI from being scheduled on this context.
517  * Must be paired with napi_disable.
518  */
519 static inline void napi_enable(struct napi_struct *n)
520 {
521 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 	smp_mb__before_atomic();
523 	clear_bit(NAPI_STATE_SCHED, &n->state);
524 	clear_bit(NAPI_STATE_NPSVC, &n->state);
525 }
526 
527 /**
528  *	napi_synchronize - wait until NAPI is not running
529  *	@n: NAPI context
530  *
531  * Wait until NAPI is done being scheduled on this context.
532  * Waits till any outstanding processing completes but
533  * does not disable future activations.
534  */
535 static inline void napi_synchronize(const struct napi_struct *n)
536 {
537 	if (IS_ENABLED(CONFIG_SMP))
538 		while (test_bit(NAPI_STATE_SCHED, &n->state))
539 			msleep(1);
540 	else
541 		barrier();
542 }
543 
544 /**
545  *	napi_if_scheduled_mark_missed - if napi is running, set the
546  *	NAPIF_STATE_MISSED
547  *	@n: NAPI context
548  *
549  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
550  * NAPI is scheduled.
551  **/
552 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
553 {
554 	unsigned long val, new;
555 
556 	do {
557 		val = READ_ONCE(n->state);
558 		if (val & NAPIF_STATE_DISABLE)
559 			return true;
560 
561 		if (!(val & NAPIF_STATE_SCHED))
562 			return false;
563 
564 		new = val | NAPIF_STATE_MISSED;
565 	} while (cmpxchg(&n->state, val, new) != val);
566 
567 	return true;
568 }
569 
570 enum netdev_queue_state_t {
571 	__QUEUE_STATE_DRV_XOFF,
572 	__QUEUE_STATE_STACK_XOFF,
573 	__QUEUE_STATE_FROZEN,
574 };
575 
576 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
577 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
579 
580 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
581 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
582 					QUEUE_STATE_FROZEN)
583 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
584 					QUEUE_STATE_FROZEN)
585 
586 /*
587  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
588  * netif_tx_* functions below are used to manipulate this flag.  The
589  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
590  * queue independently.  The netif_xmit_*stopped functions below are called
591  * to check if the queue has been stopped by the driver or stack (either
592  * of the XOFF bits are set in the state).  Drivers should not need to call
593  * netif_xmit*stopped functions, they should only be using netif_tx_*.
594  */
595 
596 struct netdev_queue {
597 /*
598  * read-mostly part
599  */
600 	struct net_device	*dev;
601 	struct Qdisc __rcu	*qdisc;
602 	struct Qdisc		*qdisc_sleeping;
603 #ifdef CONFIG_SYSFS
604 	struct kobject		kobj;
605 #endif
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 	int			numa_node;
608 #endif
609 	unsigned long		tx_maxrate;
610 	/*
611 	 * Number of TX timeouts for this queue
612 	 * (/sys/class/net/DEV/Q/trans_timeout)
613 	 */
614 	unsigned long		trans_timeout;
615 
616 	/* Subordinate device that the queue has been assigned to */
617 	struct net_device	*sb_dev;
618 #ifdef CONFIG_XDP_SOCKETS
619 	struct xdp_umem         *umem;
620 #endif
621 /*
622  * write-mostly part
623  */
624 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
625 	int			xmit_lock_owner;
626 	/*
627 	 * Time (in jiffies) of last Tx
628 	 */
629 	unsigned long		trans_start;
630 
631 	unsigned long		state;
632 
633 #ifdef CONFIG_BQL
634 	struct dql		dql;
635 #endif
636 } ____cacheline_aligned_in_smp;
637 
638 extern int sysctl_fb_tunnels_only_for_init_net;
639 extern int sysctl_devconf_inherit_init_net;
640 
641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 	return net == &init_net ||
644 	       !IS_ENABLED(CONFIG_SYSCTL) ||
645 	       !sysctl_fb_tunnels_only_for_init_net;
646 }
647 
648 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649 {
650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 	return q->numa_node;
652 #else
653 	return NUMA_NO_NODE;
654 #endif
655 }
656 
657 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658 {
659 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 	q->numa_node = node;
661 #endif
662 }
663 
664 #ifdef CONFIG_RPS
665 /*
666  * This structure holds an RPS map which can be of variable length.  The
667  * map is an array of CPUs.
668  */
669 struct rps_map {
670 	unsigned int len;
671 	struct rcu_head rcu;
672 	u16 cpus[];
673 };
674 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675 
676 /*
677  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678  * tail pointer for that CPU's input queue at the time of last enqueue, and
679  * a hardware filter index.
680  */
681 struct rps_dev_flow {
682 	u16 cpu;
683 	u16 filter;
684 	unsigned int last_qtail;
685 };
686 #define RPS_NO_FILTER 0xffff
687 
688 /*
689  * The rps_dev_flow_table structure contains a table of flow mappings.
690  */
691 struct rps_dev_flow_table {
692 	unsigned int mask;
693 	struct rcu_head rcu;
694 	struct rps_dev_flow flows[];
695 };
696 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697     ((_num) * sizeof(struct rps_dev_flow)))
698 
699 /*
700  * The rps_sock_flow_table contains mappings of flows to the last CPU
701  * on which they were processed by the application (set in recvmsg).
702  * Each entry is a 32bit value. Upper part is the high-order bits
703  * of flow hash, lower part is CPU number.
704  * rps_cpu_mask is used to partition the space, depending on number of
705  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707  * meaning we use 32-6=26 bits for the hash.
708  */
709 struct rps_sock_flow_table {
710 	u32	mask;
711 
712 	u32	ents[] ____cacheline_aligned_in_smp;
713 };
714 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715 
716 #define RPS_NO_CPU 0xffff
717 
718 extern u32 rps_cpu_mask;
719 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720 
721 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 					u32 hash)
723 {
724 	if (table && hash) {
725 		unsigned int index = hash & table->mask;
726 		u32 val = hash & ~rps_cpu_mask;
727 
728 		/* We only give a hint, preemption can change CPU under us */
729 		val |= raw_smp_processor_id();
730 
731 		if (table->ents[index] != val)
732 			table->ents[index] = val;
733 	}
734 }
735 
736 #ifdef CONFIG_RFS_ACCEL
737 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 			 u16 filter_id);
739 #endif
740 #endif /* CONFIG_RPS */
741 
742 /* This structure contains an instance of an RX queue. */
743 struct netdev_rx_queue {
744 #ifdef CONFIG_RPS
745 	struct rps_map __rcu		*rps_map;
746 	struct rps_dev_flow_table __rcu	*rps_flow_table;
747 #endif
748 	struct kobject			kobj;
749 	struct net_device		*dev;
750 	struct xdp_rxq_info		xdp_rxq;
751 #ifdef CONFIG_XDP_SOCKETS
752 	struct xdp_umem                 *umem;
753 #endif
754 } ____cacheline_aligned_in_smp;
755 
756 /*
757  * RX queue sysfs structures and functions.
758  */
759 struct rx_queue_attribute {
760 	struct attribute attr;
761 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
762 	ssize_t (*store)(struct netdev_rx_queue *queue,
763 			 const char *buf, size_t len);
764 };
765 
766 #ifdef CONFIG_XPS
767 /*
768  * This structure holds an XPS map which can be of variable length.  The
769  * map is an array of queues.
770  */
771 struct xps_map {
772 	unsigned int len;
773 	unsigned int alloc_len;
774 	struct rcu_head rcu;
775 	u16 queues[];
776 };
777 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779        - sizeof(struct xps_map)) / sizeof(u16))
780 
781 /*
782  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
783  */
784 struct xps_dev_maps {
785 	struct rcu_head rcu;
786 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
787 };
788 
789 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
790 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
791 
792 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
793 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
794 
795 #endif /* CONFIG_XPS */
796 
797 #define TC_MAX_QUEUE	16
798 #define TC_BITMASK	15
799 /* HW offloaded queuing disciplines txq count and offset maps */
800 struct netdev_tc_txq {
801 	u16 count;
802 	u16 offset;
803 };
804 
805 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
806 /*
807  * This structure is to hold information about the device
808  * configured to run FCoE protocol stack.
809  */
810 struct netdev_fcoe_hbainfo {
811 	char	manufacturer[64];
812 	char	serial_number[64];
813 	char	hardware_version[64];
814 	char	driver_version[64];
815 	char	optionrom_version[64];
816 	char	firmware_version[64];
817 	char	model[256];
818 	char	model_description[256];
819 };
820 #endif
821 
822 #define MAX_PHYS_ITEM_ID_LEN 32
823 
824 /* This structure holds a unique identifier to identify some
825  * physical item (port for example) used by a netdevice.
826  */
827 struct netdev_phys_item_id {
828 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
829 	unsigned char id_len;
830 };
831 
832 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
833 					    struct netdev_phys_item_id *b)
834 {
835 	return a->id_len == b->id_len &&
836 	       memcmp(a->id, b->id, a->id_len) == 0;
837 }
838 
839 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
840 				       struct sk_buff *skb,
841 				       struct net_device *sb_dev);
842 
843 enum tc_setup_type {
844 	TC_SETUP_QDISC_MQPRIO,
845 	TC_SETUP_CLSU32,
846 	TC_SETUP_CLSFLOWER,
847 	TC_SETUP_CLSMATCHALL,
848 	TC_SETUP_CLSBPF,
849 	TC_SETUP_BLOCK,
850 	TC_SETUP_QDISC_CBS,
851 	TC_SETUP_QDISC_RED,
852 	TC_SETUP_QDISC_PRIO,
853 	TC_SETUP_QDISC_MQ,
854 	TC_SETUP_QDISC_ETF,
855 	TC_SETUP_ROOT_QDISC,
856 	TC_SETUP_QDISC_GRED,
857 	TC_SETUP_QDISC_TAPRIO,
858 	TC_SETUP_FT,
859 	TC_SETUP_QDISC_ETS,
860 	TC_SETUP_QDISC_TBF,
861 	TC_SETUP_QDISC_FIFO,
862 };
863 
864 /* These structures hold the attributes of bpf state that are being passed
865  * to the netdevice through the bpf op.
866  */
867 enum bpf_netdev_command {
868 	/* Set or clear a bpf program used in the earliest stages of packet
869 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 	 * is responsible for calling bpf_prog_put on any old progs that are
871 	 * stored. In case of error, the callee need not release the new prog
872 	 * reference, but on success it takes ownership and must bpf_prog_put
873 	 * when it is no longer used.
874 	 */
875 	XDP_SETUP_PROG,
876 	XDP_SETUP_PROG_HW,
877 	XDP_QUERY_PROG,
878 	XDP_QUERY_PROG_HW,
879 	/* BPF program for offload callbacks, invoked at program load time. */
880 	BPF_OFFLOAD_MAP_ALLOC,
881 	BPF_OFFLOAD_MAP_FREE,
882 	XDP_SETUP_XSK_UMEM,
883 };
884 
885 struct bpf_prog_offload_ops;
886 struct netlink_ext_ack;
887 struct xdp_umem;
888 struct xdp_dev_bulk_queue;
889 
890 struct netdev_bpf {
891 	enum bpf_netdev_command command;
892 	union {
893 		/* XDP_SETUP_PROG */
894 		struct {
895 			u32 flags;
896 			struct bpf_prog *prog;
897 			struct netlink_ext_ack *extack;
898 		};
899 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
900 		struct {
901 			u32 prog_id;
902 			/* flags with which program was installed */
903 			u32 prog_flags;
904 		};
905 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
906 		struct {
907 			struct bpf_offloaded_map *offmap;
908 		};
909 		/* XDP_SETUP_XSK_UMEM */
910 		struct {
911 			struct xdp_umem *umem;
912 			u16 queue_id;
913 		} xsk;
914 	};
915 };
916 
917 /* Flags for ndo_xsk_wakeup. */
918 #define XDP_WAKEUP_RX (1 << 0)
919 #define XDP_WAKEUP_TX (1 << 1)
920 
921 #ifdef CONFIG_XFRM_OFFLOAD
922 struct xfrmdev_ops {
923 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
924 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
925 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
926 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
927 				       struct xfrm_state *x);
928 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
929 };
930 #endif
931 
932 struct dev_ifalias {
933 	struct rcu_head rcuhead;
934 	char ifalias[];
935 };
936 
937 struct devlink;
938 struct tlsdev_ops;
939 
940 struct netdev_name_node {
941 	struct hlist_node hlist;
942 	struct list_head list;
943 	struct net_device *dev;
944 	const char *name;
945 };
946 
947 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
948 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
949 
950 struct netdev_net_notifier {
951 	struct list_head list;
952 	struct notifier_block *nb;
953 };
954 
955 /*
956  * This structure defines the management hooks for network devices.
957  * The following hooks can be defined; unless noted otherwise, they are
958  * optional and can be filled with a null pointer.
959  *
960  * int (*ndo_init)(struct net_device *dev);
961  *     This function is called once when a network device is registered.
962  *     The network device can use this for any late stage initialization
963  *     or semantic validation. It can fail with an error code which will
964  *     be propagated back to register_netdev.
965  *
966  * void (*ndo_uninit)(struct net_device *dev);
967  *     This function is called when device is unregistered or when registration
968  *     fails. It is not called if init fails.
969  *
970  * int (*ndo_open)(struct net_device *dev);
971  *     This function is called when a network device transitions to the up
972  *     state.
973  *
974  * int (*ndo_stop)(struct net_device *dev);
975  *     This function is called when a network device transitions to the down
976  *     state.
977  *
978  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
979  *                               struct net_device *dev);
980  *	Called when a packet needs to be transmitted.
981  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
982  *	the queue before that can happen; it's for obsolete devices and weird
983  *	corner cases, but the stack really does a non-trivial amount
984  *	of useless work if you return NETDEV_TX_BUSY.
985  *	Required; cannot be NULL.
986  *
987  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
988  *					   struct net_device *dev
989  *					   netdev_features_t features);
990  *	Called by core transmit path to determine if device is capable of
991  *	performing offload operations on a given packet. This is to give
992  *	the device an opportunity to implement any restrictions that cannot
993  *	be otherwise expressed by feature flags. The check is called with
994  *	the set of features that the stack has calculated and it returns
995  *	those the driver believes to be appropriate.
996  *
997  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
998  *                         struct net_device *sb_dev);
999  *	Called to decide which queue to use when device supports multiple
1000  *	transmit queues.
1001  *
1002  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1003  *	This function is called to allow device receiver to make
1004  *	changes to configuration when multicast or promiscuous is enabled.
1005  *
1006  * void (*ndo_set_rx_mode)(struct net_device *dev);
1007  *	This function is called device changes address list filtering.
1008  *	If driver handles unicast address filtering, it should set
1009  *	IFF_UNICAST_FLT in its priv_flags.
1010  *
1011  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1012  *	This function  is called when the Media Access Control address
1013  *	needs to be changed. If this interface is not defined, the
1014  *	MAC address can not be changed.
1015  *
1016  * int (*ndo_validate_addr)(struct net_device *dev);
1017  *	Test if Media Access Control address is valid for the device.
1018  *
1019  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1020  *	Called when a user requests an ioctl which can't be handled by
1021  *	the generic interface code. If not defined ioctls return
1022  *	not supported error code.
1023  *
1024  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1025  *	Used to set network devices bus interface parameters. This interface
1026  *	is retained for legacy reasons; new devices should use the bus
1027  *	interface (PCI) for low level management.
1028  *
1029  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1030  *	Called when a user wants to change the Maximum Transfer Unit
1031  *	of a device.
1032  *
1033  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1034  *	Callback used when the transmitter has not made any progress
1035  *	for dev->watchdog ticks.
1036  *
1037  * void (*ndo_get_stats64)(struct net_device *dev,
1038  *                         struct rtnl_link_stats64 *storage);
1039  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1040  *	Called when a user wants to get the network device usage
1041  *	statistics. Drivers must do one of the following:
1042  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1043  *	   rtnl_link_stats64 structure passed by the caller.
1044  *	2. Define @ndo_get_stats to update a net_device_stats structure
1045  *	   (which should normally be dev->stats) and return a pointer to
1046  *	   it. The structure may be changed asynchronously only if each
1047  *	   field is written atomically.
1048  *	3. Update dev->stats asynchronously and atomically, and define
1049  *	   neither operation.
1050  *
1051  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1052  *	Return true if this device supports offload stats of this attr_id.
1053  *
1054  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1055  *	void *attr_data)
1056  *	Get statistics for offload operations by attr_id. Write it into the
1057  *	attr_data pointer.
1058  *
1059  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1060  *	If device supports VLAN filtering this function is called when a
1061  *	VLAN id is registered.
1062  *
1063  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1064  *	If device supports VLAN filtering this function is called when a
1065  *	VLAN id is unregistered.
1066  *
1067  * void (*ndo_poll_controller)(struct net_device *dev);
1068  *
1069  *	SR-IOV management functions.
1070  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1071  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1072  *			  u8 qos, __be16 proto);
1073  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1074  *			  int max_tx_rate);
1075  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1077  * int (*ndo_get_vf_config)(struct net_device *dev,
1078  *			    int vf, struct ifla_vf_info *ivf);
1079  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1080  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1081  *			  struct nlattr *port[]);
1082  *
1083  *      Enable or disable the VF ability to query its RSS Redirection Table and
1084  *      Hash Key. This is needed since on some devices VF share this information
1085  *      with PF and querying it may introduce a theoretical security risk.
1086  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1087  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1088  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1089  *		       void *type_data);
1090  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1091  *	This is always called from the stack with the rtnl lock held and netif
1092  *	tx queues stopped. This allows the netdevice to perform queue
1093  *	management safely.
1094  *
1095  *	Fiber Channel over Ethernet (FCoE) offload functions.
1096  * int (*ndo_fcoe_enable)(struct net_device *dev);
1097  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1098  *	so the underlying device can perform whatever needed configuration or
1099  *	initialization to support acceleration of FCoE traffic.
1100  *
1101  * int (*ndo_fcoe_disable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1103  *	so the underlying device can perform whatever needed clean-ups to
1104  *	stop supporting acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1107  *			     struct scatterlist *sgl, unsigned int sgc);
1108  *	Called when the FCoE Initiator wants to initialize an I/O that
1109  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1110  *	perform necessary setup and returns 1 to indicate the device is set up
1111  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1112  *
1113  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1114  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1115  *	indicated by the FC exchange id 'xid', so the underlying device can
1116  *	clean up and reuse resources for later DDP requests.
1117  *
1118  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1119  *			      struct scatterlist *sgl, unsigned int sgc);
1120  *	Called when the FCoE Target wants to initialize an I/O that
1121  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1122  *	perform necessary setup and returns 1 to indicate the device is set up
1123  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1124  *
1125  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126  *			       struct netdev_fcoe_hbainfo *hbainfo);
1127  *	Called when the FCoE Protocol stack wants information on the underlying
1128  *	device. This information is utilized by the FCoE protocol stack to
1129  *	register attributes with Fiber Channel management service as per the
1130  *	FC-GS Fabric Device Management Information(FDMI) specification.
1131  *
1132  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1133  *	Called when the underlying device wants to override default World Wide
1134  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1135  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1136  *	protocol stack to use.
1137  *
1138  *	RFS acceleration.
1139  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1140  *			    u16 rxq_index, u32 flow_id);
1141  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1142  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1143  *	Return the filter ID on success, or a negative error code.
1144  *
1145  *	Slave management functions (for bridge, bonding, etc).
1146  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1147  *	Called to make another netdev an underling.
1148  *
1149  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1150  *	Called to release previously enslaved netdev.
1151  *
1152  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1153  *					    struct sk_buff *skb,
1154  *					    bool all_slaves);
1155  *	Get the xmit slave of master device. If all_slaves is true, function
1156  *	assume all the slaves can transmit.
1157  *
1158  *      Feature/offload setting functions.
1159  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1160  *		netdev_features_t features);
1161  *	Adjusts the requested feature flags according to device-specific
1162  *	constraints, and returns the resulting flags. Must not modify
1163  *	the device state.
1164  *
1165  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1166  *	Called to update device configuration to new features. Passed
1167  *	feature set might be less than what was returned by ndo_fix_features()).
1168  *	Must return >0 or -errno if it changed dev->features itself.
1169  *
1170  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1171  *		      struct net_device *dev,
1172  *		      const unsigned char *addr, u16 vid, u16 flags,
1173  *		      struct netlink_ext_ack *extack);
1174  *	Adds an FDB entry to dev for addr.
1175  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1176  *		      struct net_device *dev,
1177  *		      const unsigned char *addr, u16 vid)
1178  *	Deletes the FDB entry from dev coresponding to addr.
1179  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1180  *		       struct net_device *dev, struct net_device *filter_dev,
1181  *		       int *idx)
1182  *	Used to add FDB entries to dump requests. Implementers should add
1183  *	entries to skb and update idx with the number of entries.
1184  *
1185  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1186  *			     u16 flags, struct netlink_ext_ack *extack)
1187  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1188  *			     struct net_device *dev, u32 filter_mask,
1189  *			     int nlflags)
1190  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1191  *			     u16 flags);
1192  *
1193  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1194  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1195  *	which do not represent real hardware may define this to allow their
1196  *	userspace components to manage their virtual carrier state. Devices
1197  *	that determine carrier state from physical hardware properties (eg
1198  *	network cables) or protocol-dependent mechanisms (eg
1199  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1200  *
1201  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1202  *			       struct netdev_phys_item_id *ppid);
1203  *	Called to get ID of physical port of this device. If driver does
1204  *	not implement this, it is assumed that the hw is not able to have
1205  *	multiple net devices on single physical port.
1206  *
1207  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1208  *				 struct netdev_phys_item_id *ppid)
1209  *	Called to get the parent ID of the physical port of this device.
1210  *
1211  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1212  *			      struct udp_tunnel_info *ti);
1213  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1214  *	address family that a UDP tunnel is listnening to. It is called only
1215  *	when a new port starts listening. The operation is protected by the
1216  *	RTNL.
1217  *
1218  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1219  *			      struct udp_tunnel_info *ti);
1220  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1221  *	address family that the UDP tunnel is not listening to anymore. The
1222  *	operation is protected by the RTNL.
1223  *
1224  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1225  *				 struct net_device *dev)
1226  *	Called by upper layer devices to accelerate switching or other
1227  *	station functionality into hardware. 'pdev is the lowerdev
1228  *	to use for the offload and 'dev' is the net device that will
1229  *	back the offload. Returns a pointer to the private structure
1230  *	the upper layer will maintain.
1231  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1232  *	Called by upper layer device to delete the station created
1233  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1234  *	the station and priv is the structure returned by the add
1235  *	operation.
1236  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1237  *			     int queue_index, u32 maxrate);
1238  *	Called when a user wants to set a max-rate limitation of specific
1239  *	TX queue.
1240  * int (*ndo_get_iflink)(const struct net_device *dev);
1241  *	Called to get the iflink value of this device.
1242  * void (*ndo_change_proto_down)(struct net_device *dev,
1243  *				 bool proto_down);
1244  *	This function is used to pass protocol port error state information
1245  *	to the switch driver. The switch driver can react to the proto_down
1246  *      by doing a phys down on the associated switch port.
1247  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1248  *	This function is used to get egress tunnel information for given skb.
1249  *	This is useful for retrieving outer tunnel header parameters while
1250  *	sampling packet.
1251  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1252  *	This function is used to specify the headroom that the skb must
1253  *	consider when allocation skb during packet reception. Setting
1254  *	appropriate rx headroom value allows avoiding skb head copy on
1255  *	forward. Setting a negative value resets the rx headroom to the
1256  *	default value.
1257  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1258  *	This function is used to set or query state related to XDP on the
1259  *	netdevice and manage BPF offload. See definition of
1260  *	enum bpf_netdev_command for details.
1261  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1262  *			u32 flags);
1263  *	This function is used to submit @n XDP packets for transmit on a
1264  *	netdevice. Returns number of frames successfully transmitted, frames
1265  *	that got dropped are freed/returned via xdp_return_frame().
1266  *	Returns negative number, means general error invoking ndo, meaning
1267  *	no frames were xmit'ed and core-caller will free all frames.
1268  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1269  *      This function is used to wake up the softirq, ksoftirqd or kthread
1270  *	responsible for sending and/or receiving packets on a specific
1271  *	queue id bound to an AF_XDP socket. The flags field specifies if
1272  *	only RX, only Tx, or both should be woken up using the flags
1273  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1274  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1275  *	Get devlink port instance associated with a given netdev.
1276  *	Called with a reference on the netdevice and devlink locks only,
1277  *	rtnl_lock is not held.
1278  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1279  *			 int cmd);
1280  *	Add, change, delete or get information on an IPv4 tunnel.
1281  */
1282 struct net_device_ops {
1283 	int			(*ndo_init)(struct net_device *dev);
1284 	void			(*ndo_uninit)(struct net_device *dev);
1285 	int			(*ndo_open)(struct net_device *dev);
1286 	int			(*ndo_stop)(struct net_device *dev);
1287 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1288 						  struct net_device *dev);
1289 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1290 						      struct net_device *dev,
1291 						      netdev_features_t features);
1292 	u16			(*ndo_select_queue)(struct net_device *dev,
1293 						    struct sk_buff *skb,
1294 						    struct net_device *sb_dev);
1295 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1296 						       int flags);
1297 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1298 	int			(*ndo_set_mac_address)(struct net_device *dev,
1299 						       void *addr);
1300 	int			(*ndo_validate_addr)(struct net_device *dev);
1301 	int			(*ndo_do_ioctl)(struct net_device *dev,
1302 					        struct ifreq *ifr, int cmd);
1303 	int			(*ndo_set_config)(struct net_device *dev,
1304 					          struct ifmap *map);
1305 	int			(*ndo_change_mtu)(struct net_device *dev,
1306 						  int new_mtu);
1307 	int			(*ndo_neigh_setup)(struct net_device *dev,
1308 						   struct neigh_parms *);
1309 	void			(*ndo_tx_timeout) (struct net_device *dev,
1310 						   unsigned int txqueue);
1311 
1312 	void			(*ndo_get_stats64)(struct net_device *dev,
1313 						   struct rtnl_link_stats64 *storage);
1314 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1315 	int			(*ndo_get_offload_stats)(int attr_id,
1316 							 const struct net_device *dev,
1317 							 void *attr_data);
1318 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1319 
1320 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1321 						       __be16 proto, u16 vid);
1322 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1323 						        __be16 proto, u16 vid);
1324 #ifdef CONFIG_NET_POLL_CONTROLLER
1325 	void                    (*ndo_poll_controller)(struct net_device *dev);
1326 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1327 						     struct netpoll_info *info);
1328 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1329 #endif
1330 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1331 						  int queue, u8 *mac);
1332 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1333 						   int queue, u16 vlan,
1334 						   u8 qos, __be16 proto);
1335 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1336 						   int vf, int min_tx_rate,
1337 						   int max_tx_rate);
1338 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1339 						       int vf, bool setting);
1340 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1341 						    int vf, bool setting);
1342 	int			(*ndo_get_vf_config)(struct net_device *dev,
1343 						     int vf,
1344 						     struct ifla_vf_info *ivf);
1345 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1346 							 int vf, int link_state);
1347 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1348 						    int vf,
1349 						    struct ifla_vf_stats
1350 						    *vf_stats);
1351 	int			(*ndo_set_vf_port)(struct net_device *dev,
1352 						   int vf,
1353 						   struct nlattr *port[]);
1354 	int			(*ndo_get_vf_port)(struct net_device *dev,
1355 						   int vf, struct sk_buff *skb);
1356 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1357 						   int vf,
1358 						   struct ifla_vf_guid *node_guid,
1359 						   struct ifla_vf_guid *port_guid);
1360 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1361 						   int vf, u64 guid,
1362 						   int guid_type);
1363 	int			(*ndo_set_vf_rss_query_en)(
1364 						   struct net_device *dev,
1365 						   int vf, bool setting);
1366 	int			(*ndo_setup_tc)(struct net_device *dev,
1367 						enum tc_setup_type type,
1368 						void *type_data);
1369 #if IS_ENABLED(CONFIG_FCOE)
1370 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1371 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1372 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1373 						      u16 xid,
1374 						      struct scatterlist *sgl,
1375 						      unsigned int sgc);
1376 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1377 						     u16 xid);
1378 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1379 						       u16 xid,
1380 						       struct scatterlist *sgl,
1381 						       unsigned int sgc);
1382 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1383 							struct netdev_fcoe_hbainfo *hbainfo);
1384 #endif
1385 
1386 #if IS_ENABLED(CONFIG_LIBFCOE)
1387 #define NETDEV_FCOE_WWNN 0
1388 #define NETDEV_FCOE_WWPN 1
1389 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1390 						    u64 *wwn, int type);
1391 #endif
1392 
1393 #ifdef CONFIG_RFS_ACCEL
1394 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1395 						     const struct sk_buff *skb,
1396 						     u16 rxq_index,
1397 						     u32 flow_id);
1398 #endif
1399 	int			(*ndo_add_slave)(struct net_device *dev,
1400 						 struct net_device *slave_dev,
1401 						 struct netlink_ext_ack *extack);
1402 	int			(*ndo_del_slave)(struct net_device *dev,
1403 						 struct net_device *slave_dev);
1404 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1405 						      struct sk_buff *skb,
1406 						      bool all_slaves);
1407 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1408 						    netdev_features_t features);
1409 	int			(*ndo_set_features)(struct net_device *dev,
1410 						    netdev_features_t features);
1411 	int			(*ndo_neigh_construct)(struct net_device *dev,
1412 						       struct neighbour *n);
1413 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1414 						     struct neighbour *n);
1415 
1416 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1417 					       struct nlattr *tb[],
1418 					       struct net_device *dev,
1419 					       const unsigned char *addr,
1420 					       u16 vid,
1421 					       u16 flags,
1422 					       struct netlink_ext_ack *extack);
1423 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1424 					       struct nlattr *tb[],
1425 					       struct net_device *dev,
1426 					       const unsigned char *addr,
1427 					       u16 vid);
1428 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1429 						struct netlink_callback *cb,
1430 						struct net_device *dev,
1431 						struct net_device *filter_dev,
1432 						int *idx);
1433 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1434 					       struct nlattr *tb[],
1435 					       struct net_device *dev,
1436 					       const unsigned char *addr,
1437 					       u16 vid, u32 portid, u32 seq,
1438 					       struct netlink_ext_ack *extack);
1439 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1440 						      struct nlmsghdr *nlh,
1441 						      u16 flags,
1442 						      struct netlink_ext_ack *extack);
1443 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1444 						      u32 pid, u32 seq,
1445 						      struct net_device *dev,
1446 						      u32 filter_mask,
1447 						      int nlflags);
1448 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1449 						      struct nlmsghdr *nlh,
1450 						      u16 flags);
1451 	int			(*ndo_change_carrier)(struct net_device *dev,
1452 						      bool new_carrier);
1453 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1454 							struct netdev_phys_item_id *ppid);
1455 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1456 							  struct netdev_phys_item_id *ppid);
1457 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1458 							  char *name, size_t len);
1459 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1460 						      struct udp_tunnel_info *ti);
1461 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1462 						      struct udp_tunnel_info *ti);
1463 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1464 							struct net_device *dev);
1465 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1466 							void *priv);
1467 
1468 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1469 						      int queue_index,
1470 						      u32 maxrate);
1471 	int			(*ndo_get_iflink)(const struct net_device *dev);
1472 	int			(*ndo_change_proto_down)(struct net_device *dev,
1473 							 bool proto_down);
1474 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1475 						       struct sk_buff *skb);
1476 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1477 						       int needed_headroom);
1478 	int			(*ndo_bpf)(struct net_device *dev,
1479 					   struct netdev_bpf *bpf);
1480 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1481 						struct xdp_frame **xdp,
1482 						u32 flags);
1483 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1484 						  u32 queue_id, u32 flags);
1485 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1486 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1487 						  struct ip_tunnel_parm *p, int cmd);
1488 };
1489 
1490 /**
1491  * enum net_device_priv_flags - &struct net_device priv_flags
1492  *
1493  * These are the &struct net_device, they are only set internally
1494  * by drivers and used in the kernel. These flags are invisible to
1495  * userspace; this means that the order of these flags can change
1496  * during any kernel release.
1497  *
1498  * You should have a pretty good reason to be extending these flags.
1499  *
1500  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1501  * @IFF_EBRIDGE: Ethernet bridging device
1502  * @IFF_BONDING: bonding master or slave
1503  * @IFF_ISATAP: ISATAP interface (RFC4214)
1504  * @IFF_WAN_HDLC: WAN HDLC device
1505  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1506  *	release skb->dst
1507  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1508  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1509  * @IFF_MACVLAN_PORT: device used as macvlan port
1510  * @IFF_BRIDGE_PORT: device used as bridge port
1511  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1512  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1513  * @IFF_UNICAST_FLT: Supports unicast filtering
1514  * @IFF_TEAM_PORT: device used as team port
1515  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1516  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1517  *	change when it's running
1518  * @IFF_MACVLAN: Macvlan device
1519  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1520  *	underlying stacked devices
1521  * @IFF_L3MDEV_MASTER: device is an L3 master device
1522  * @IFF_NO_QUEUE: device can run without qdisc attached
1523  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1524  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1525  * @IFF_TEAM: device is a team device
1526  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1527  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1528  *	entity (i.e. the master device for bridged veth)
1529  * @IFF_MACSEC: device is a MACsec device
1530  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1531  * @IFF_FAILOVER: device is a failover master device
1532  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1533  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1534  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1535  */
1536 enum netdev_priv_flags {
1537 	IFF_802_1Q_VLAN			= 1<<0,
1538 	IFF_EBRIDGE			= 1<<1,
1539 	IFF_BONDING			= 1<<2,
1540 	IFF_ISATAP			= 1<<3,
1541 	IFF_WAN_HDLC			= 1<<4,
1542 	IFF_XMIT_DST_RELEASE		= 1<<5,
1543 	IFF_DONT_BRIDGE			= 1<<6,
1544 	IFF_DISABLE_NETPOLL		= 1<<7,
1545 	IFF_MACVLAN_PORT		= 1<<8,
1546 	IFF_BRIDGE_PORT			= 1<<9,
1547 	IFF_OVS_DATAPATH		= 1<<10,
1548 	IFF_TX_SKB_SHARING		= 1<<11,
1549 	IFF_UNICAST_FLT			= 1<<12,
1550 	IFF_TEAM_PORT			= 1<<13,
1551 	IFF_SUPP_NOFCS			= 1<<14,
1552 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1553 	IFF_MACVLAN			= 1<<16,
1554 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1555 	IFF_L3MDEV_MASTER		= 1<<18,
1556 	IFF_NO_QUEUE			= 1<<19,
1557 	IFF_OPENVSWITCH			= 1<<20,
1558 	IFF_L3MDEV_SLAVE		= 1<<21,
1559 	IFF_TEAM			= 1<<22,
1560 	IFF_RXFH_CONFIGURED		= 1<<23,
1561 	IFF_PHONY_HEADROOM		= 1<<24,
1562 	IFF_MACSEC			= 1<<25,
1563 	IFF_NO_RX_HANDLER		= 1<<26,
1564 	IFF_FAILOVER			= 1<<27,
1565 	IFF_FAILOVER_SLAVE		= 1<<28,
1566 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1567 	IFF_LIVE_RENAME_OK		= 1<<30,
1568 };
1569 
1570 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1571 #define IFF_EBRIDGE			IFF_EBRIDGE
1572 #define IFF_BONDING			IFF_BONDING
1573 #define IFF_ISATAP			IFF_ISATAP
1574 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1575 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1576 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1577 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1578 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1579 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1580 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1581 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1582 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1583 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1584 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1585 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1586 #define IFF_MACVLAN			IFF_MACVLAN
1587 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1588 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1589 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1590 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1591 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1592 #define IFF_TEAM			IFF_TEAM
1593 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1594 #define IFF_MACSEC			IFF_MACSEC
1595 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1596 #define IFF_FAILOVER			IFF_FAILOVER
1597 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1598 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1599 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1600 
1601 /**
1602  *	struct net_device - The DEVICE structure.
1603  *
1604  *	Actually, this whole structure is a big mistake.  It mixes I/O
1605  *	data with strictly "high-level" data, and it has to know about
1606  *	almost every data structure used in the INET module.
1607  *
1608  *	@name:	This is the first field of the "visible" part of this structure
1609  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1610  *		of the interface.
1611  *
1612  *	@name_node:	Name hashlist node
1613  *	@ifalias:	SNMP alias
1614  *	@mem_end:	Shared memory end
1615  *	@mem_start:	Shared memory start
1616  *	@base_addr:	Device I/O address
1617  *	@irq:		Device IRQ number
1618  *
1619  *	@state:		Generic network queuing layer state, see netdev_state_t
1620  *	@dev_list:	The global list of network devices
1621  *	@napi_list:	List entry used for polling NAPI devices
1622  *	@unreg_list:	List entry  when we are unregistering the
1623  *			device; see the function unregister_netdev
1624  *	@close_list:	List entry used when we are closing the device
1625  *	@ptype_all:     Device-specific packet handlers for all protocols
1626  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1627  *
1628  *	@adj_list:	Directly linked devices, like slaves for bonding
1629  *	@features:	Currently active device features
1630  *	@hw_features:	User-changeable features
1631  *
1632  *	@wanted_features:	User-requested features
1633  *	@vlan_features:		Mask of features inheritable by VLAN devices
1634  *
1635  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1636  *				This field indicates what encapsulation
1637  *				offloads the hardware is capable of doing,
1638  *				and drivers will need to set them appropriately.
1639  *
1640  *	@mpls_features:	Mask of features inheritable by MPLS
1641  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1642  *
1643  *	@ifindex:	interface index
1644  *	@group:		The group the device belongs to
1645  *
1646  *	@stats:		Statistics struct, which was left as a legacy, use
1647  *			rtnl_link_stats64 instead
1648  *
1649  *	@rx_dropped:	Dropped packets by core network,
1650  *			do not use this in drivers
1651  *	@tx_dropped:	Dropped packets by core network,
1652  *			do not use this in drivers
1653  *	@rx_nohandler:	nohandler dropped packets by core network on
1654  *			inactive devices, do not use this in drivers
1655  *	@carrier_up_count:	Number of times the carrier has been up
1656  *	@carrier_down_count:	Number of times the carrier has been down
1657  *
1658  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1659  *				instead of ioctl,
1660  *				see <net/iw_handler.h> for details.
1661  *	@wireless_data:	Instance data managed by the core of wireless extensions
1662  *
1663  *	@netdev_ops:	Includes several pointers to callbacks,
1664  *			if one wants to override the ndo_*() functions
1665  *	@ethtool_ops:	Management operations
1666  *	@l3mdev_ops:	Layer 3 master device operations
1667  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1668  *			discovery handling. Necessary for e.g. 6LoWPAN.
1669  *	@xfrmdev_ops:	Transformation offload operations
1670  *	@tlsdev_ops:	Transport Layer Security offload operations
1671  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1672  *			of Layer 2 headers.
1673  *
1674  *	@flags:		Interface flags (a la BSD)
1675  *	@priv_flags:	Like 'flags' but invisible to userspace,
1676  *			see if.h for the definitions
1677  *	@gflags:	Global flags ( kept as legacy )
1678  *	@padded:	How much padding added by alloc_netdev()
1679  *	@operstate:	RFC2863 operstate
1680  *	@link_mode:	Mapping policy to operstate
1681  *	@if_port:	Selectable AUI, TP, ...
1682  *	@dma:		DMA channel
1683  *	@mtu:		Interface MTU value
1684  *	@min_mtu:	Interface Minimum MTU value
1685  *	@max_mtu:	Interface Maximum MTU value
1686  *	@type:		Interface hardware type
1687  *	@hard_header_len: Maximum hardware header length.
1688  *	@min_header_len:  Minimum hardware header length
1689  *
1690  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1691  *			  cases can this be guaranteed
1692  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1693  *			  cases can this be guaranteed. Some cases also use
1694  *			  LL_MAX_HEADER instead to allocate the skb
1695  *
1696  *	interface address info:
1697  *
1698  * 	@perm_addr:		Permanent hw address
1699  * 	@addr_assign_type:	Hw address assignment type
1700  * 	@addr_len:		Hardware address length
1701  *	@upper_level:		Maximum depth level of upper devices.
1702  *	@lower_level:		Maximum depth level of lower devices.
1703  *	@neigh_priv_len:	Used in neigh_alloc()
1704  * 	@dev_id:		Used to differentiate devices that share
1705  * 				the same link layer address
1706  * 	@dev_port:		Used to differentiate devices that share
1707  * 				the same function
1708  *	@addr_list_lock:	XXX: need comments on this one
1709  *	@name_assign_type:	network interface name assignment type
1710  *	@uc_promisc:		Counter that indicates promiscuous mode
1711  *				has been enabled due to the need to listen to
1712  *				additional unicast addresses in a device that
1713  *				does not implement ndo_set_rx_mode()
1714  *	@uc:			unicast mac addresses
1715  *	@mc:			multicast mac addresses
1716  *	@dev_addrs:		list of device hw addresses
1717  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1718  *	@promiscuity:		Number of times the NIC is told to work in
1719  *				promiscuous mode; if it becomes 0 the NIC will
1720  *				exit promiscuous mode
1721  *	@allmulti:		Counter, enables or disables allmulticast mode
1722  *
1723  *	@vlan_info:	VLAN info
1724  *	@dsa_ptr:	dsa specific data
1725  *	@tipc_ptr:	TIPC specific data
1726  *	@atalk_ptr:	AppleTalk link
1727  *	@ip_ptr:	IPv4 specific data
1728  *	@dn_ptr:	DECnet specific data
1729  *	@ip6_ptr:	IPv6 specific data
1730  *	@ax25_ptr:	AX.25 specific data
1731  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1732  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1733  *			 device struct
1734  *	@mpls_ptr:	mpls_dev struct pointer
1735  *
1736  *	@dev_addr:	Hw address (before bcast,
1737  *			because most packets are unicast)
1738  *
1739  *	@_rx:			Array of RX queues
1740  *	@num_rx_queues:		Number of RX queues
1741  *				allocated at register_netdev() time
1742  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1743  *	@xdp_prog:		XDP sockets filter program pointer
1744  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1745  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1746  *				allow to avoid NIC hard IRQ, on busy queues.
1747  *
1748  *	@rx_handler:		handler for received packets
1749  *	@rx_handler_data: 	XXX: need comments on this one
1750  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1751  *				ingress processing
1752  *	@ingress_queue:		XXX: need comments on this one
1753  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1754  *	@broadcast:		hw bcast address
1755  *
1756  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1757  *			indexed by RX queue number. Assigned by driver.
1758  *			This must only be set if the ndo_rx_flow_steer
1759  *			operation is defined
1760  *	@index_hlist:		Device index hash chain
1761  *
1762  *	@_tx:			Array of TX queues
1763  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1764  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1765  *	@qdisc:			Root qdisc from userspace point of view
1766  *	@tx_queue_len:		Max frames per queue allowed
1767  *	@tx_global_lock: 	XXX: need comments on this one
1768  *	@xdp_bulkq:		XDP device bulk queue
1769  *	@xps_cpus_map:		all CPUs map for XPS device
1770  *	@xps_rxqs_map:		all RXQs map for XPS device
1771  *
1772  *	@xps_maps:	XXX: need comments on this one
1773  *	@miniq_egress:		clsact qdisc specific data for
1774  *				egress processing
1775  *	@qdisc_hash:		qdisc hash table
1776  *	@watchdog_timeo:	Represents the timeout that is used by
1777  *				the watchdog (see dev_watchdog())
1778  *	@watchdog_timer:	List of timers
1779  *
1780  *	@pcpu_refcnt:		Number of references to this device
1781  *	@todo_list:		Delayed register/unregister
1782  *	@link_watch_list:	XXX: need comments on this one
1783  *
1784  *	@reg_state:		Register/unregister state machine
1785  *	@dismantle:		Device is going to be freed
1786  *	@rtnl_link_state:	This enum represents the phases of creating
1787  *				a new link
1788  *
1789  *	@needs_free_netdev:	Should unregister perform free_netdev?
1790  *	@priv_destructor:	Called from unregister
1791  *	@npinfo:		XXX: need comments on this one
1792  * 	@nd_net:		Network namespace this network device is inside
1793  *
1794  * 	@ml_priv:	Mid-layer private
1795  * 	@lstats:	Loopback statistics
1796  * 	@tstats:	Tunnel statistics
1797  * 	@dstats:	Dummy statistics
1798  * 	@vstats:	Virtual ethernet statistics
1799  *
1800  *	@garp_port:	GARP
1801  *	@mrp_port:	MRP
1802  *
1803  *	@dev:		Class/net/name entry
1804  *	@sysfs_groups:	Space for optional device, statistics and wireless
1805  *			sysfs groups
1806  *
1807  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1808  *	@rtnl_link_ops:	Rtnl_link_ops
1809  *
1810  *	@gso_max_size:	Maximum size of generic segmentation offload
1811  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1812  *			NIC for GSO
1813  *
1814  *	@dcbnl_ops:	Data Center Bridging netlink ops
1815  *	@num_tc:	Number of traffic classes in the net device
1816  *	@tc_to_txq:	XXX: need comments on this one
1817  *	@prio_tc_map:	XXX: need comments on this one
1818  *
1819  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1820  *
1821  *	@priomap:	XXX: need comments on this one
1822  *	@phydev:	Physical device may attach itself
1823  *			for hardware timestamping
1824  *	@sfp_bus:	attached &struct sfp_bus structure.
1825  *
1826  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1827  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1828  *
1829  *	@proto_down:	protocol port state information can be sent to the
1830  *			switch driver and used to set the phys state of the
1831  *			switch port.
1832  *
1833  *	@wol_enabled:	Wake-on-LAN is enabled
1834  *
1835  *	@net_notifier_list:	List of per-net netdev notifier block
1836  *				that follow this device when it is moved
1837  *				to another network namespace.
1838  *
1839  *	@macsec_ops:    MACsec offloading ops
1840  *
1841  *	FIXME: cleanup struct net_device such that network protocol info
1842  *	moves out.
1843  */
1844 
1845 struct net_device {
1846 	char			name[IFNAMSIZ];
1847 	struct netdev_name_node	*name_node;
1848 	struct dev_ifalias	__rcu *ifalias;
1849 	/*
1850 	 *	I/O specific fields
1851 	 *	FIXME: Merge these and struct ifmap into one
1852 	 */
1853 	unsigned long		mem_end;
1854 	unsigned long		mem_start;
1855 	unsigned long		base_addr;
1856 	int			irq;
1857 
1858 	/*
1859 	 *	Some hardware also needs these fields (state,dev_list,
1860 	 *	napi_list,unreg_list,close_list) but they are not
1861 	 *	part of the usual set specified in Space.c.
1862 	 */
1863 
1864 	unsigned long		state;
1865 
1866 	struct list_head	dev_list;
1867 	struct list_head	napi_list;
1868 	struct list_head	unreg_list;
1869 	struct list_head	close_list;
1870 	struct list_head	ptype_all;
1871 	struct list_head	ptype_specific;
1872 
1873 	struct {
1874 		struct list_head upper;
1875 		struct list_head lower;
1876 	} adj_list;
1877 
1878 	netdev_features_t	features;
1879 	netdev_features_t	hw_features;
1880 	netdev_features_t	wanted_features;
1881 	netdev_features_t	vlan_features;
1882 	netdev_features_t	hw_enc_features;
1883 	netdev_features_t	mpls_features;
1884 	netdev_features_t	gso_partial_features;
1885 
1886 	int			ifindex;
1887 	int			group;
1888 
1889 	struct net_device_stats	stats;
1890 
1891 	atomic_long_t		rx_dropped;
1892 	atomic_long_t		tx_dropped;
1893 	atomic_long_t		rx_nohandler;
1894 
1895 	/* Stats to monitor link on/off, flapping */
1896 	atomic_t		carrier_up_count;
1897 	atomic_t		carrier_down_count;
1898 
1899 #ifdef CONFIG_WIRELESS_EXT
1900 	const struct iw_handler_def *wireless_handlers;
1901 	struct iw_public_data	*wireless_data;
1902 #endif
1903 	const struct net_device_ops *netdev_ops;
1904 	const struct ethtool_ops *ethtool_ops;
1905 #ifdef CONFIG_NET_L3_MASTER_DEV
1906 	const struct l3mdev_ops	*l3mdev_ops;
1907 #endif
1908 #if IS_ENABLED(CONFIG_IPV6)
1909 	const struct ndisc_ops *ndisc_ops;
1910 #endif
1911 
1912 #ifdef CONFIG_XFRM_OFFLOAD
1913 	const struct xfrmdev_ops *xfrmdev_ops;
1914 #endif
1915 
1916 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1917 	const struct tlsdev_ops *tlsdev_ops;
1918 #endif
1919 
1920 	const struct header_ops *header_ops;
1921 
1922 	unsigned int		flags;
1923 	unsigned int		priv_flags;
1924 
1925 	unsigned short		gflags;
1926 	unsigned short		padded;
1927 
1928 	unsigned char		operstate;
1929 	unsigned char		link_mode;
1930 
1931 	unsigned char		if_port;
1932 	unsigned char		dma;
1933 
1934 	/* Note : dev->mtu is often read without holding a lock.
1935 	 * Writers usually hold RTNL.
1936 	 * It is recommended to use READ_ONCE() to annotate the reads,
1937 	 * and to use WRITE_ONCE() to annotate the writes.
1938 	 */
1939 	unsigned int		mtu;
1940 	unsigned int		min_mtu;
1941 	unsigned int		max_mtu;
1942 	unsigned short		type;
1943 	unsigned short		hard_header_len;
1944 	unsigned char		min_header_len;
1945 
1946 	unsigned short		needed_headroom;
1947 	unsigned short		needed_tailroom;
1948 
1949 	/* Interface address info. */
1950 	unsigned char		perm_addr[MAX_ADDR_LEN];
1951 	unsigned char		addr_assign_type;
1952 	unsigned char		addr_len;
1953 	unsigned char		upper_level;
1954 	unsigned char		lower_level;
1955 	unsigned short		neigh_priv_len;
1956 	unsigned short          dev_id;
1957 	unsigned short          dev_port;
1958 	spinlock_t		addr_list_lock;
1959 	unsigned char		name_assign_type;
1960 	bool			uc_promisc;
1961 	struct netdev_hw_addr_list	uc;
1962 	struct netdev_hw_addr_list	mc;
1963 	struct netdev_hw_addr_list	dev_addrs;
1964 
1965 #ifdef CONFIG_SYSFS
1966 	struct kset		*queues_kset;
1967 #endif
1968 	unsigned int		promiscuity;
1969 	unsigned int		allmulti;
1970 
1971 
1972 	/* Protocol-specific pointers */
1973 
1974 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1975 	struct vlan_info __rcu	*vlan_info;
1976 #endif
1977 #if IS_ENABLED(CONFIG_NET_DSA)
1978 	struct dsa_port		*dsa_ptr;
1979 #endif
1980 #if IS_ENABLED(CONFIG_TIPC)
1981 	struct tipc_bearer __rcu *tipc_ptr;
1982 #endif
1983 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1984 	void 			*atalk_ptr;
1985 #endif
1986 	struct in_device __rcu	*ip_ptr;
1987 #if IS_ENABLED(CONFIG_DECNET)
1988 	struct dn_dev __rcu     *dn_ptr;
1989 #endif
1990 	struct inet6_dev __rcu	*ip6_ptr;
1991 #if IS_ENABLED(CONFIG_AX25)
1992 	void			*ax25_ptr;
1993 #endif
1994 	struct wireless_dev	*ieee80211_ptr;
1995 	struct wpan_dev		*ieee802154_ptr;
1996 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1997 	struct mpls_dev __rcu	*mpls_ptr;
1998 #endif
1999 
2000 /*
2001  * Cache lines mostly used on receive path (including eth_type_trans())
2002  */
2003 	/* Interface address info used in eth_type_trans() */
2004 	unsigned char		*dev_addr;
2005 
2006 	struct netdev_rx_queue	*_rx;
2007 	unsigned int		num_rx_queues;
2008 	unsigned int		real_num_rx_queues;
2009 
2010 	struct bpf_prog __rcu	*xdp_prog;
2011 	unsigned long		gro_flush_timeout;
2012 	int			napi_defer_hard_irqs;
2013 	rx_handler_func_t __rcu	*rx_handler;
2014 	void __rcu		*rx_handler_data;
2015 
2016 #ifdef CONFIG_NET_CLS_ACT
2017 	struct mini_Qdisc __rcu	*miniq_ingress;
2018 #endif
2019 	struct netdev_queue __rcu *ingress_queue;
2020 #ifdef CONFIG_NETFILTER_INGRESS
2021 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2022 #endif
2023 
2024 	unsigned char		broadcast[MAX_ADDR_LEN];
2025 #ifdef CONFIG_RFS_ACCEL
2026 	struct cpu_rmap		*rx_cpu_rmap;
2027 #endif
2028 	struct hlist_node	index_hlist;
2029 
2030 /*
2031  * Cache lines mostly used on transmit path
2032  */
2033 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2034 	unsigned int		num_tx_queues;
2035 	unsigned int		real_num_tx_queues;
2036 	struct Qdisc		*qdisc;
2037 	unsigned int		tx_queue_len;
2038 	spinlock_t		tx_global_lock;
2039 
2040 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2041 
2042 #ifdef CONFIG_XPS
2043 	struct xps_dev_maps __rcu *xps_cpus_map;
2044 	struct xps_dev_maps __rcu *xps_rxqs_map;
2045 #endif
2046 #ifdef CONFIG_NET_CLS_ACT
2047 	struct mini_Qdisc __rcu	*miniq_egress;
2048 #endif
2049 
2050 #ifdef CONFIG_NET_SCHED
2051 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2052 #endif
2053 	/* These may be needed for future network-power-down code. */
2054 	struct timer_list	watchdog_timer;
2055 	int			watchdog_timeo;
2056 
2057 	struct list_head	todo_list;
2058 	int __percpu		*pcpu_refcnt;
2059 
2060 	struct list_head	link_watch_list;
2061 
2062 	enum { NETREG_UNINITIALIZED=0,
2063 	       NETREG_REGISTERED,	/* completed register_netdevice */
2064 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2065 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2066 	       NETREG_RELEASED,		/* called free_netdev */
2067 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2068 	} reg_state:8;
2069 
2070 	bool dismantle;
2071 
2072 	enum {
2073 		RTNL_LINK_INITIALIZED,
2074 		RTNL_LINK_INITIALIZING,
2075 	} rtnl_link_state:16;
2076 
2077 	bool needs_free_netdev;
2078 	void (*priv_destructor)(struct net_device *dev);
2079 
2080 #ifdef CONFIG_NETPOLL
2081 	struct netpoll_info __rcu	*npinfo;
2082 #endif
2083 
2084 	possible_net_t			nd_net;
2085 
2086 	/* mid-layer private */
2087 	union {
2088 		void					*ml_priv;
2089 		struct pcpu_lstats __percpu		*lstats;
2090 		struct pcpu_sw_netstats __percpu	*tstats;
2091 		struct pcpu_dstats __percpu		*dstats;
2092 	};
2093 
2094 #if IS_ENABLED(CONFIG_GARP)
2095 	struct garp_port __rcu	*garp_port;
2096 #endif
2097 #if IS_ENABLED(CONFIG_MRP)
2098 	struct mrp_port __rcu	*mrp_port;
2099 #endif
2100 
2101 	struct device		dev;
2102 	const struct attribute_group *sysfs_groups[4];
2103 	const struct attribute_group *sysfs_rx_queue_group;
2104 
2105 	const struct rtnl_link_ops *rtnl_link_ops;
2106 
2107 	/* for setting kernel sock attribute on TCP connection setup */
2108 #define GSO_MAX_SIZE		65536
2109 	unsigned int		gso_max_size;
2110 #define GSO_MAX_SEGS		65535
2111 	u16			gso_max_segs;
2112 
2113 #ifdef CONFIG_DCB
2114 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2115 #endif
2116 	s16			num_tc;
2117 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2118 	u8			prio_tc_map[TC_BITMASK + 1];
2119 
2120 #if IS_ENABLED(CONFIG_FCOE)
2121 	unsigned int		fcoe_ddp_xid;
2122 #endif
2123 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2124 	struct netprio_map __rcu *priomap;
2125 #endif
2126 	struct phy_device	*phydev;
2127 	struct sfp_bus		*sfp_bus;
2128 	struct lock_class_key	*qdisc_tx_busylock;
2129 	struct lock_class_key	*qdisc_running_key;
2130 	bool			proto_down;
2131 	unsigned		wol_enabled:1;
2132 
2133 	struct list_head	net_notifier_list;
2134 
2135 #if IS_ENABLED(CONFIG_MACSEC)
2136 	/* MACsec management functions */
2137 	const struct macsec_ops *macsec_ops;
2138 #endif
2139 };
2140 #define to_net_dev(d) container_of(d, struct net_device, dev)
2141 
2142 static inline bool netif_elide_gro(const struct net_device *dev)
2143 {
2144 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2145 		return true;
2146 	return false;
2147 }
2148 
2149 #define	NETDEV_ALIGN		32
2150 
2151 static inline
2152 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2153 {
2154 	return dev->prio_tc_map[prio & TC_BITMASK];
2155 }
2156 
2157 static inline
2158 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2159 {
2160 	if (tc >= dev->num_tc)
2161 		return -EINVAL;
2162 
2163 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2164 	return 0;
2165 }
2166 
2167 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2168 void netdev_reset_tc(struct net_device *dev);
2169 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2170 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2171 
2172 static inline
2173 int netdev_get_num_tc(struct net_device *dev)
2174 {
2175 	return dev->num_tc;
2176 }
2177 
2178 void netdev_unbind_sb_channel(struct net_device *dev,
2179 			      struct net_device *sb_dev);
2180 int netdev_bind_sb_channel_queue(struct net_device *dev,
2181 				 struct net_device *sb_dev,
2182 				 u8 tc, u16 count, u16 offset);
2183 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2184 static inline int netdev_get_sb_channel(struct net_device *dev)
2185 {
2186 	return max_t(int, -dev->num_tc, 0);
2187 }
2188 
2189 static inline
2190 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2191 					 unsigned int index)
2192 {
2193 	return &dev->_tx[index];
2194 }
2195 
2196 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2197 						    const struct sk_buff *skb)
2198 {
2199 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2200 }
2201 
2202 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2203 					    void (*f)(struct net_device *,
2204 						      struct netdev_queue *,
2205 						      void *),
2206 					    void *arg)
2207 {
2208 	unsigned int i;
2209 
2210 	for (i = 0; i < dev->num_tx_queues; i++)
2211 		f(dev, &dev->_tx[i], arg);
2212 }
2213 
2214 #define netdev_lockdep_set_classes(dev)				\
2215 {								\
2216 	static struct lock_class_key qdisc_tx_busylock_key;	\
2217 	static struct lock_class_key qdisc_running_key;		\
2218 	static struct lock_class_key qdisc_xmit_lock_key;	\
2219 	static struct lock_class_key dev_addr_list_lock_key;	\
2220 	unsigned int i;						\
2221 								\
2222 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2223 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2224 	lockdep_set_class(&(dev)->addr_list_lock,		\
2225 			  &dev_addr_list_lock_key);		\
2226 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2227 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2228 				  &qdisc_xmit_lock_key);	\
2229 }
2230 
2231 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2232 		     struct net_device *sb_dev);
2233 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2234 					 struct sk_buff *skb,
2235 					 struct net_device *sb_dev);
2236 
2237 /* returns the headroom that the master device needs to take in account
2238  * when forwarding to this dev
2239  */
2240 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2241 {
2242 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2243 }
2244 
2245 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2246 {
2247 	if (dev->netdev_ops->ndo_set_rx_headroom)
2248 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2249 }
2250 
2251 /* set the device rx headroom to the dev's default */
2252 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2253 {
2254 	netdev_set_rx_headroom(dev, -1);
2255 }
2256 
2257 /*
2258  * Net namespace inlines
2259  */
2260 static inline
2261 struct net *dev_net(const struct net_device *dev)
2262 {
2263 	return read_pnet(&dev->nd_net);
2264 }
2265 
2266 static inline
2267 void dev_net_set(struct net_device *dev, struct net *net)
2268 {
2269 	write_pnet(&dev->nd_net, net);
2270 }
2271 
2272 /**
2273  *	netdev_priv - access network device private data
2274  *	@dev: network device
2275  *
2276  * Get network device private data
2277  */
2278 static inline void *netdev_priv(const struct net_device *dev)
2279 {
2280 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2281 }
2282 
2283 /* Set the sysfs physical device reference for the network logical device
2284  * if set prior to registration will cause a symlink during initialization.
2285  */
2286 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2287 
2288 /* Set the sysfs device type for the network logical device to allow
2289  * fine-grained identification of different network device types. For
2290  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2291  */
2292 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2293 
2294 /* Default NAPI poll() weight
2295  * Device drivers are strongly advised to not use bigger value
2296  */
2297 #define NAPI_POLL_WEIGHT 64
2298 
2299 /**
2300  *	netif_napi_add - initialize a NAPI context
2301  *	@dev:  network device
2302  *	@napi: NAPI context
2303  *	@poll: polling function
2304  *	@weight: default weight
2305  *
2306  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2307  * *any* of the other NAPI-related functions.
2308  */
2309 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2310 		    int (*poll)(struct napi_struct *, int), int weight);
2311 
2312 /**
2313  *	netif_tx_napi_add - initialize a NAPI context
2314  *	@dev:  network device
2315  *	@napi: NAPI context
2316  *	@poll: polling function
2317  *	@weight: default weight
2318  *
2319  * This variant of netif_napi_add() should be used from drivers using NAPI
2320  * to exclusively poll a TX queue.
2321  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2322  */
2323 static inline void netif_tx_napi_add(struct net_device *dev,
2324 				     struct napi_struct *napi,
2325 				     int (*poll)(struct napi_struct *, int),
2326 				     int weight)
2327 {
2328 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2329 	netif_napi_add(dev, napi, poll, weight);
2330 }
2331 
2332 /**
2333  *  netif_napi_del - remove a NAPI context
2334  *  @napi: NAPI context
2335  *
2336  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2337  */
2338 void netif_napi_del(struct napi_struct *napi);
2339 
2340 struct napi_gro_cb {
2341 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2342 	void	*frag0;
2343 
2344 	/* Length of frag0. */
2345 	unsigned int frag0_len;
2346 
2347 	/* This indicates where we are processing relative to skb->data. */
2348 	int	data_offset;
2349 
2350 	/* This is non-zero if the packet cannot be merged with the new skb. */
2351 	u16	flush;
2352 
2353 	/* Save the IP ID here and check when we get to the transport layer */
2354 	u16	flush_id;
2355 
2356 	/* Number of segments aggregated. */
2357 	u16	count;
2358 
2359 	/* Start offset for remote checksum offload */
2360 	u16	gro_remcsum_start;
2361 
2362 	/* jiffies when first packet was created/queued */
2363 	unsigned long age;
2364 
2365 	/* Used in ipv6_gro_receive() and foo-over-udp */
2366 	u16	proto;
2367 
2368 	/* This is non-zero if the packet may be of the same flow. */
2369 	u8	same_flow:1;
2370 
2371 	/* Used in tunnel GRO receive */
2372 	u8	encap_mark:1;
2373 
2374 	/* GRO checksum is valid */
2375 	u8	csum_valid:1;
2376 
2377 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2378 	u8	csum_cnt:3;
2379 
2380 	/* Free the skb? */
2381 	u8	free:2;
2382 #define NAPI_GRO_FREE		  1
2383 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2384 
2385 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2386 	u8	is_ipv6:1;
2387 
2388 	/* Used in GRE, set in fou/gue_gro_receive */
2389 	u8	is_fou:1;
2390 
2391 	/* Used to determine if flush_id can be ignored */
2392 	u8	is_atomic:1;
2393 
2394 	/* Number of gro_receive callbacks this packet already went through */
2395 	u8 recursion_counter:4;
2396 
2397 	/* GRO is done by frag_list pointer chaining. */
2398 	u8	is_flist:1;
2399 
2400 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2401 	__wsum	csum;
2402 
2403 	/* used in skb_gro_receive() slow path */
2404 	struct sk_buff *last;
2405 };
2406 
2407 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2408 
2409 #define GRO_RECURSION_LIMIT 15
2410 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2411 {
2412 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2413 }
2414 
2415 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2416 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2417 					       struct list_head *head,
2418 					       struct sk_buff *skb)
2419 {
2420 	if (unlikely(gro_recursion_inc_test(skb))) {
2421 		NAPI_GRO_CB(skb)->flush |= 1;
2422 		return NULL;
2423 	}
2424 
2425 	return cb(head, skb);
2426 }
2427 
2428 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2429 					    struct sk_buff *);
2430 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2431 						  struct sock *sk,
2432 						  struct list_head *head,
2433 						  struct sk_buff *skb)
2434 {
2435 	if (unlikely(gro_recursion_inc_test(skb))) {
2436 		NAPI_GRO_CB(skb)->flush |= 1;
2437 		return NULL;
2438 	}
2439 
2440 	return cb(sk, head, skb);
2441 }
2442 
2443 struct packet_type {
2444 	__be16			type;	/* This is really htons(ether_type). */
2445 	bool			ignore_outgoing;
2446 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2447 	int			(*func) (struct sk_buff *,
2448 					 struct net_device *,
2449 					 struct packet_type *,
2450 					 struct net_device *);
2451 	void			(*list_func) (struct list_head *,
2452 					      struct packet_type *,
2453 					      struct net_device *);
2454 	bool			(*id_match)(struct packet_type *ptype,
2455 					    struct sock *sk);
2456 	void			*af_packet_priv;
2457 	struct list_head	list;
2458 };
2459 
2460 struct offload_callbacks {
2461 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2462 						netdev_features_t features);
2463 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2464 						struct sk_buff *skb);
2465 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2466 };
2467 
2468 struct packet_offload {
2469 	__be16			 type;	/* This is really htons(ether_type). */
2470 	u16			 priority;
2471 	struct offload_callbacks callbacks;
2472 	struct list_head	 list;
2473 };
2474 
2475 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2476 struct pcpu_sw_netstats {
2477 	u64     rx_packets;
2478 	u64     rx_bytes;
2479 	u64     tx_packets;
2480 	u64     tx_bytes;
2481 	struct u64_stats_sync   syncp;
2482 } __aligned(4 * sizeof(u64));
2483 
2484 struct pcpu_lstats {
2485 	u64_stats_t packets;
2486 	u64_stats_t bytes;
2487 	struct u64_stats_sync syncp;
2488 } __aligned(2 * sizeof(u64));
2489 
2490 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2491 
2492 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2493 {
2494 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2495 
2496 	u64_stats_update_begin(&lstats->syncp);
2497 	u64_stats_add(&lstats->bytes, len);
2498 	u64_stats_inc(&lstats->packets);
2499 	u64_stats_update_end(&lstats->syncp);
2500 }
2501 
2502 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2503 ({									\
2504 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2505 	if (pcpu_stats)	{						\
2506 		int __cpu;						\
2507 		for_each_possible_cpu(__cpu) {				\
2508 			typeof(type) *stat;				\
2509 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2510 			u64_stats_init(&stat->syncp);			\
2511 		}							\
2512 	}								\
2513 	pcpu_stats;							\
2514 })
2515 
2516 #define netdev_alloc_pcpu_stats(type)					\
2517 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2518 
2519 enum netdev_lag_tx_type {
2520 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2521 	NETDEV_LAG_TX_TYPE_RANDOM,
2522 	NETDEV_LAG_TX_TYPE_BROADCAST,
2523 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2524 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2525 	NETDEV_LAG_TX_TYPE_HASH,
2526 };
2527 
2528 enum netdev_lag_hash {
2529 	NETDEV_LAG_HASH_NONE,
2530 	NETDEV_LAG_HASH_L2,
2531 	NETDEV_LAG_HASH_L34,
2532 	NETDEV_LAG_HASH_L23,
2533 	NETDEV_LAG_HASH_E23,
2534 	NETDEV_LAG_HASH_E34,
2535 	NETDEV_LAG_HASH_UNKNOWN,
2536 };
2537 
2538 struct netdev_lag_upper_info {
2539 	enum netdev_lag_tx_type tx_type;
2540 	enum netdev_lag_hash hash_type;
2541 };
2542 
2543 struct netdev_lag_lower_state_info {
2544 	u8 link_up : 1,
2545 	   tx_enabled : 1;
2546 };
2547 
2548 #include <linux/notifier.h>
2549 
2550 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2551  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2552  * adding new types.
2553  */
2554 enum netdev_cmd {
2555 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2556 	NETDEV_DOWN,
2557 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2558 				   detected a hardware crash and restarted
2559 				   - we can use this eg to kick tcp sessions
2560 				   once done */
2561 	NETDEV_CHANGE,		/* Notify device state change */
2562 	NETDEV_REGISTER,
2563 	NETDEV_UNREGISTER,
2564 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2565 	NETDEV_CHANGEADDR,	/* notify after the address change */
2566 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2567 	NETDEV_GOING_DOWN,
2568 	NETDEV_CHANGENAME,
2569 	NETDEV_FEAT_CHANGE,
2570 	NETDEV_BONDING_FAILOVER,
2571 	NETDEV_PRE_UP,
2572 	NETDEV_PRE_TYPE_CHANGE,
2573 	NETDEV_POST_TYPE_CHANGE,
2574 	NETDEV_POST_INIT,
2575 	NETDEV_RELEASE,
2576 	NETDEV_NOTIFY_PEERS,
2577 	NETDEV_JOIN,
2578 	NETDEV_CHANGEUPPER,
2579 	NETDEV_RESEND_IGMP,
2580 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2581 	NETDEV_CHANGEINFODATA,
2582 	NETDEV_BONDING_INFO,
2583 	NETDEV_PRECHANGEUPPER,
2584 	NETDEV_CHANGELOWERSTATE,
2585 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2586 	NETDEV_UDP_TUNNEL_DROP_INFO,
2587 	NETDEV_CHANGE_TX_QUEUE_LEN,
2588 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2589 	NETDEV_CVLAN_FILTER_DROP_INFO,
2590 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2591 	NETDEV_SVLAN_FILTER_DROP_INFO,
2592 };
2593 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2594 
2595 int register_netdevice_notifier(struct notifier_block *nb);
2596 int unregister_netdevice_notifier(struct notifier_block *nb);
2597 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2598 int unregister_netdevice_notifier_net(struct net *net,
2599 				      struct notifier_block *nb);
2600 int register_netdevice_notifier_dev_net(struct net_device *dev,
2601 					struct notifier_block *nb,
2602 					struct netdev_net_notifier *nn);
2603 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2604 					  struct notifier_block *nb,
2605 					  struct netdev_net_notifier *nn);
2606 
2607 struct netdev_notifier_info {
2608 	struct net_device	*dev;
2609 	struct netlink_ext_ack	*extack;
2610 };
2611 
2612 struct netdev_notifier_info_ext {
2613 	struct netdev_notifier_info info; /* must be first */
2614 	union {
2615 		u32 mtu;
2616 	} ext;
2617 };
2618 
2619 struct netdev_notifier_change_info {
2620 	struct netdev_notifier_info info; /* must be first */
2621 	unsigned int flags_changed;
2622 };
2623 
2624 struct netdev_notifier_changeupper_info {
2625 	struct netdev_notifier_info info; /* must be first */
2626 	struct net_device *upper_dev; /* new upper dev */
2627 	bool master; /* is upper dev master */
2628 	bool linking; /* is the notification for link or unlink */
2629 	void *upper_info; /* upper dev info */
2630 };
2631 
2632 struct netdev_notifier_changelowerstate_info {
2633 	struct netdev_notifier_info info; /* must be first */
2634 	void *lower_state_info; /* is lower dev state */
2635 };
2636 
2637 struct netdev_notifier_pre_changeaddr_info {
2638 	struct netdev_notifier_info info; /* must be first */
2639 	const unsigned char *dev_addr;
2640 };
2641 
2642 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2643 					     struct net_device *dev)
2644 {
2645 	info->dev = dev;
2646 	info->extack = NULL;
2647 }
2648 
2649 static inline struct net_device *
2650 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2651 {
2652 	return info->dev;
2653 }
2654 
2655 static inline struct netlink_ext_ack *
2656 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2657 {
2658 	return info->extack;
2659 }
2660 
2661 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2662 
2663 
2664 extern rwlock_t				dev_base_lock;		/* Device list lock */
2665 
2666 #define for_each_netdev(net, d)		\
2667 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2668 #define for_each_netdev_reverse(net, d)	\
2669 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2670 #define for_each_netdev_rcu(net, d)		\
2671 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2672 #define for_each_netdev_safe(net, d, n)	\
2673 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2674 #define for_each_netdev_continue(net, d)		\
2675 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2676 #define for_each_netdev_continue_reverse(net, d)		\
2677 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2678 						     dev_list)
2679 #define for_each_netdev_continue_rcu(net, d)		\
2680 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2681 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2682 		for_each_netdev_rcu(&init_net, slave)	\
2683 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2684 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2685 
2686 static inline struct net_device *next_net_device(struct net_device *dev)
2687 {
2688 	struct list_head *lh;
2689 	struct net *net;
2690 
2691 	net = dev_net(dev);
2692 	lh = dev->dev_list.next;
2693 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2694 }
2695 
2696 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2697 {
2698 	struct list_head *lh;
2699 	struct net *net;
2700 
2701 	net = dev_net(dev);
2702 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2703 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2704 }
2705 
2706 static inline struct net_device *first_net_device(struct net *net)
2707 {
2708 	return list_empty(&net->dev_base_head) ? NULL :
2709 		net_device_entry(net->dev_base_head.next);
2710 }
2711 
2712 static inline struct net_device *first_net_device_rcu(struct net *net)
2713 {
2714 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2715 
2716 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2717 }
2718 
2719 int netdev_boot_setup_check(struct net_device *dev);
2720 unsigned long netdev_boot_base(const char *prefix, int unit);
2721 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2722 				       const char *hwaddr);
2723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2724 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2725 void dev_add_pack(struct packet_type *pt);
2726 void dev_remove_pack(struct packet_type *pt);
2727 void __dev_remove_pack(struct packet_type *pt);
2728 void dev_add_offload(struct packet_offload *po);
2729 void dev_remove_offload(struct packet_offload *po);
2730 
2731 int dev_get_iflink(const struct net_device *dev);
2732 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2733 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2734 				      unsigned short mask);
2735 struct net_device *dev_get_by_name(struct net *net, const char *name);
2736 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2737 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2738 int dev_alloc_name(struct net_device *dev, const char *name);
2739 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2740 void dev_close(struct net_device *dev);
2741 void dev_close_many(struct list_head *head, bool unlink);
2742 void dev_disable_lro(struct net_device *dev);
2743 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2744 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2745 		     struct net_device *sb_dev);
2746 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2747 		       struct net_device *sb_dev);
2748 int dev_queue_xmit(struct sk_buff *skb);
2749 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2750 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2751 int register_netdevice(struct net_device *dev);
2752 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2753 void unregister_netdevice_many(struct list_head *head);
2754 static inline void unregister_netdevice(struct net_device *dev)
2755 {
2756 	unregister_netdevice_queue(dev, NULL);
2757 }
2758 
2759 int netdev_refcnt_read(const struct net_device *dev);
2760 void free_netdev(struct net_device *dev);
2761 void netdev_freemem(struct net_device *dev);
2762 void synchronize_net(void);
2763 int init_dummy_netdev(struct net_device *dev);
2764 
2765 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2766 					 struct sk_buff *skb,
2767 					 bool all_slaves);
2768 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2769 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2771 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2772 int netdev_get_name(struct net *net, char *name, int ifindex);
2773 int dev_restart(struct net_device *dev);
2774 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2775 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2776 
2777 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2778 {
2779 	return NAPI_GRO_CB(skb)->data_offset;
2780 }
2781 
2782 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2783 {
2784 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2785 }
2786 
2787 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2788 {
2789 	NAPI_GRO_CB(skb)->data_offset += len;
2790 }
2791 
2792 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2793 					unsigned int offset)
2794 {
2795 	return NAPI_GRO_CB(skb)->frag0 + offset;
2796 }
2797 
2798 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2799 {
2800 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2801 }
2802 
2803 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2804 {
2805 	NAPI_GRO_CB(skb)->frag0 = NULL;
2806 	NAPI_GRO_CB(skb)->frag0_len = 0;
2807 }
2808 
2809 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2810 					unsigned int offset)
2811 {
2812 	if (!pskb_may_pull(skb, hlen))
2813 		return NULL;
2814 
2815 	skb_gro_frag0_invalidate(skb);
2816 	return skb->data + offset;
2817 }
2818 
2819 static inline void *skb_gro_network_header(struct sk_buff *skb)
2820 {
2821 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2822 	       skb_network_offset(skb);
2823 }
2824 
2825 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2826 					const void *start, unsigned int len)
2827 {
2828 	if (NAPI_GRO_CB(skb)->csum_valid)
2829 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2830 						  csum_partial(start, len, 0));
2831 }
2832 
2833 /* GRO checksum functions. These are logical equivalents of the normal
2834  * checksum functions (in skbuff.h) except that they operate on the GRO
2835  * offsets and fields in sk_buff.
2836  */
2837 
2838 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2839 
2840 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2841 {
2842 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2843 }
2844 
2845 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2846 						      bool zero_okay,
2847 						      __sum16 check)
2848 {
2849 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2850 		skb_checksum_start_offset(skb) <
2851 		 skb_gro_offset(skb)) &&
2852 		!skb_at_gro_remcsum_start(skb) &&
2853 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2854 		(!zero_okay || check));
2855 }
2856 
2857 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2858 							   __wsum psum)
2859 {
2860 	if (NAPI_GRO_CB(skb)->csum_valid &&
2861 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2862 		return 0;
2863 
2864 	NAPI_GRO_CB(skb)->csum = psum;
2865 
2866 	return __skb_gro_checksum_complete(skb);
2867 }
2868 
2869 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2870 {
2871 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2872 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2873 		NAPI_GRO_CB(skb)->csum_cnt--;
2874 	} else {
2875 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2876 		 * verified a new top level checksum or an encapsulated one
2877 		 * during GRO. This saves work if we fallback to normal path.
2878 		 */
2879 		__skb_incr_checksum_unnecessary(skb);
2880 	}
2881 }
2882 
2883 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2884 				    compute_pseudo)			\
2885 ({									\
2886 	__sum16 __ret = 0;						\
2887 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2888 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2889 				compute_pseudo(skb, proto));		\
2890 	if (!__ret)							\
2891 		skb_gro_incr_csum_unnecessary(skb);			\
2892 	__ret;								\
2893 })
2894 
2895 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2896 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2897 
2898 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2899 					     compute_pseudo)		\
2900 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2901 
2902 #define skb_gro_checksum_simple_validate(skb)				\
2903 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2904 
2905 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2906 {
2907 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2908 		!NAPI_GRO_CB(skb)->csum_valid);
2909 }
2910 
2911 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2912 					      __wsum pseudo)
2913 {
2914 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2915 	NAPI_GRO_CB(skb)->csum_valid = 1;
2916 }
2917 
2918 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2919 do {									\
2920 	if (__skb_gro_checksum_convert_check(skb))			\
2921 		__skb_gro_checksum_convert(skb, 			\
2922 					   compute_pseudo(skb, proto));	\
2923 } while (0)
2924 
2925 struct gro_remcsum {
2926 	int offset;
2927 	__wsum delta;
2928 };
2929 
2930 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2931 {
2932 	grc->offset = 0;
2933 	grc->delta = 0;
2934 }
2935 
2936 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2937 					    unsigned int off, size_t hdrlen,
2938 					    int start, int offset,
2939 					    struct gro_remcsum *grc,
2940 					    bool nopartial)
2941 {
2942 	__wsum delta;
2943 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2944 
2945 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2946 
2947 	if (!nopartial) {
2948 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2949 		return ptr;
2950 	}
2951 
2952 	ptr = skb_gro_header_fast(skb, off);
2953 	if (skb_gro_header_hard(skb, off + plen)) {
2954 		ptr = skb_gro_header_slow(skb, off + plen, off);
2955 		if (!ptr)
2956 			return NULL;
2957 	}
2958 
2959 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2960 			       start, offset);
2961 
2962 	/* Adjust skb->csum since we changed the packet */
2963 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2964 
2965 	grc->offset = off + hdrlen + offset;
2966 	grc->delta = delta;
2967 
2968 	return ptr;
2969 }
2970 
2971 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2972 					   struct gro_remcsum *grc)
2973 {
2974 	void *ptr;
2975 	size_t plen = grc->offset + sizeof(u16);
2976 
2977 	if (!grc->delta)
2978 		return;
2979 
2980 	ptr = skb_gro_header_fast(skb, grc->offset);
2981 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2982 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2983 		if (!ptr)
2984 			return;
2985 	}
2986 
2987 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2988 }
2989 
2990 #ifdef CONFIG_XFRM_OFFLOAD
2991 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2992 {
2993 	if (PTR_ERR(pp) != -EINPROGRESS)
2994 		NAPI_GRO_CB(skb)->flush |= flush;
2995 }
2996 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2997 					       struct sk_buff *pp,
2998 					       int flush,
2999 					       struct gro_remcsum *grc)
3000 {
3001 	if (PTR_ERR(pp) != -EINPROGRESS) {
3002 		NAPI_GRO_CB(skb)->flush |= flush;
3003 		skb_gro_remcsum_cleanup(skb, grc);
3004 		skb->remcsum_offload = 0;
3005 	}
3006 }
3007 #else
3008 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3009 {
3010 	NAPI_GRO_CB(skb)->flush |= flush;
3011 }
3012 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3013 					       struct sk_buff *pp,
3014 					       int flush,
3015 					       struct gro_remcsum *grc)
3016 {
3017 	NAPI_GRO_CB(skb)->flush |= flush;
3018 	skb_gro_remcsum_cleanup(skb, grc);
3019 	skb->remcsum_offload = 0;
3020 }
3021 #endif
3022 
3023 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3024 				  unsigned short type,
3025 				  const void *daddr, const void *saddr,
3026 				  unsigned int len)
3027 {
3028 	if (!dev->header_ops || !dev->header_ops->create)
3029 		return 0;
3030 
3031 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3032 }
3033 
3034 static inline int dev_parse_header(const struct sk_buff *skb,
3035 				   unsigned char *haddr)
3036 {
3037 	const struct net_device *dev = skb->dev;
3038 
3039 	if (!dev->header_ops || !dev->header_ops->parse)
3040 		return 0;
3041 	return dev->header_ops->parse(skb, haddr);
3042 }
3043 
3044 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3045 {
3046 	const struct net_device *dev = skb->dev;
3047 
3048 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3049 		return 0;
3050 	return dev->header_ops->parse_protocol(skb);
3051 }
3052 
3053 /* ll_header must have at least hard_header_len allocated */
3054 static inline bool dev_validate_header(const struct net_device *dev,
3055 				       char *ll_header, int len)
3056 {
3057 	if (likely(len >= dev->hard_header_len))
3058 		return true;
3059 	if (len < dev->min_header_len)
3060 		return false;
3061 
3062 	if (capable(CAP_SYS_RAWIO)) {
3063 		memset(ll_header + len, 0, dev->hard_header_len - len);
3064 		return true;
3065 	}
3066 
3067 	if (dev->header_ops && dev->header_ops->validate)
3068 		return dev->header_ops->validate(ll_header, len);
3069 
3070 	return false;
3071 }
3072 
3073 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3074 			   int len, int size);
3075 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3076 static inline int unregister_gifconf(unsigned int family)
3077 {
3078 	return register_gifconf(family, NULL);
3079 }
3080 
3081 #ifdef CONFIG_NET_FLOW_LIMIT
3082 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3083 struct sd_flow_limit {
3084 	u64			count;
3085 	unsigned int		num_buckets;
3086 	unsigned int		history_head;
3087 	u16			history[FLOW_LIMIT_HISTORY];
3088 	u8			buckets[];
3089 };
3090 
3091 extern int netdev_flow_limit_table_len;
3092 #endif /* CONFIG_NET_FLOW_LIMIT */
3093 
3094 /*
3095  * Incoming packets are placed on per-CPU queues
3096  */
3097 struct softnet_data {
3098 	struct list_head	poll_list;
3099 	struct sk_buff_head	process_queue;
3100 
3101 	/* stats */
3102 	unsigned int		processed;
3103 	unsigned int		time_squeeze;
3104 	unsigned int		received_rps;
3105 #ifdef CONFIG_RPS
3106 	struct softnet_data	*rps_ipi_list;
3107 #endif
3108 #ifdef CONFIG_NET_FLOW_LIMIT
3109 	struct sd_flow_limit __rcu *flow_limit;
3110 #endif
3111 	struct Qdisc		*output_queue;
3112 	struct Qdisc		**output_queue_tailp;
3113 	struct sk_buff		*completion_queue;
3114 #ifdef CONFIG_XFRM_OFFLOAD
3115 	struct sk_buff_head	xfrm_backlog;
3116 #endif
3117 	/* written and read only by owning cpu: */
3118 	struct {
3119 		u16 recursion;
3120 		u8  more;
3121 	} xmit;
3122 #ifdef CONFIG_RPS
3123 	/* input_queue_head should be written by cpu owning this struct,
3124 	 * and only read by other cpus. Worth using a cache line.
3125 	 */
3126 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3127 
3128 	/* Elements below can be accessed between CPUs for RPS/RFS */
3129 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3130 	struct softnet_data	*rps_ipi_next;
3131 	unsigned int		cpu;
3132 	unsigned int		input_queue_tail;
3133 #endif
3134 	unsigned int		dropped;
3135 	struct sk_buff_head	input_pkt_queue;
3136 	struct napi_struct	backlog;
3137 
3138 };
3139 
3140 static inline void input_queue_head_incr(struct softnet_data *sd)
3141 {
3142 #ifdef CONFIG_RPS
3143 	sd->input_queue_head++;
3144 #endif
3145 }
3146 
3147 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3148 					      unsigned int *qtail)
3149 {
3150 #ifdef CONFIG_RPS
3151 	*qtail = ++sd->input_queue_tail;
3152 #endif
3153 }
3154 
3155 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3156 
3157 static inline int dev_recursion_level(void)
3158 {
3159 	return this_cpu_read(softnet_data.xmit.recursion);
3160 }
3161 
3162 #define XMIT_RECURSION_LIMIT	10
3163 static inline bool dev_xmit_recursion(void)
3164 {
3165 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3166 			XMIT_RECURSION_LIMIT);
3167 }
3168 
3169 static inline void dev_xmit_recursion_inc(void)
3170 {
3171 	__this_cpu_inc(softnet_data.xmit.recursion);
3172 }
3173 
3174 static inline void dev_xmit_recursion_dec(void)
3175 {
3176 	__this_cpu_dec(softnet_data.xmit.recursion);
3177 }
3178 
3179 void __netif_schedule(struct Qdisc *q);
3180 void netif_schedule_queue(struct netdev_queue *txq);
3181 
3182 static inline void netif_tx_schedule_all(struct net_device *dev)
3183 {
3184 	unsigned int i;
3185 
3186 	for (i = 0; i < dev->num_tx_queues; i++)
3187 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3188 }
3189 
3190 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3191 {
3192 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3193 }
3194 
3195 /**
3196  *	netif_start_queue - allow transmit
3197  *	@dev: network device
3198  *
3199  *	Allow upper layers to call the device hard_start_xmit routine.
3200  */
3201 static inline void netif_start_queue(struct net_device *dev)
3202 {
3203 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3204 }
3205 
3206 static inline void netif_tx_start_all_queues(struct net_device *dev)
3207 {
3208 	unsigned int i;
3209 
3210 	for (i = 0; i < dev->num_tx_queues; i++) {
3211 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3212 		netif_tx_start_queue(txq);
3213 	}
3214 }
3215 
3216 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3217 
3218 /**
3219  *	netif_wake_queue - restart transmit
3220  *	@dev: network device
3221  *
3222  *	Allow upper layers to call the device hard_start_xmit routine.
3223  *	Used for flow control when transmit resources are available.
3224  */
3225 static inline void netif_wake_queue(struct net_device *dev)
3226 {
3227 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3228 }
3229 
3230 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3231 {
3232 	unsigned int i;
3233 
3234 	for (i = 0; i < dev->num_tx_queues; i++) {
3235 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3236 		netif_tx_wake_queue(txq);
3237 	}
3238 }
3239 
3240 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3241 {
3242 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3243 }
3244 
3245 /**
3246  *	netif_stop_queue - stop transmitted packets
3247  *	@dev: network device
3248  *
3249  *	Stop upper layers calling the device hard_start_xmit routine.
3250  *	Used for flow control when transmit resources are unavailable.
3251  */
3252 static inline void netif_stop_queue(struct net_device *dev)
3253 {
3254 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3255 }
3256 
3257 void netif_tx_stop_all_queues(struct net_device *dev);
3258 
3259 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3260 {
3261 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3262 }
3263 
3264 /**
3265  *	netif_queue_stopped - test if transmit queue is flowblocked
3266  *	@dev: network device
3267  *
3268  *	Test if transmit queue on device is currently unable to send.
3269  */
3270 static inline bool netif_queue_stopped(const struct net_device *dev)
3271 {
3272 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3273 }
3274 
3275 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3276 {
3277 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3278 }
3279 
3280 static inline bool
3281 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3282 {
3283 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3284 }
3285 
3286 static inline bool
3287 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3288 {
3289 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3290 }
3291 
3292 /**
3293  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3294  *	@dev_queue: pointer to transmit queue
3295  *
3296  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3297  * to give appropriate hint to the CPU.
3298  */
3299 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3300 {
3301 #ifdef CONFIG_BQL
3302 	prefetchw(&dev_queue->dql.num_queued);
3303 #endif
3304 }
3305 
3306 /**
3307  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3308  *	@dev_queue: pointer to transmit queue
3309  *
3310  * BQL enabled drivers might use this helper in their TX completion path,
3311  * to give appropriate hint to the CPU.
3312  */
3313 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3314 {
3315 #ifdef CONFIG_BQL
3316 	prefetchw(&dev_queue->dql.limit);
3317 #endif
3318 }
3319 
3320 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3321 					unsigned int bytes)
3322 {
3323 #ifdef CONFIG_BQL
3324 	dql_queued(&dev_queue->dql, bytes);
3325 
3326 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3327 		return;
3328 
3329 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3330 
3331 	/*
3332 	 * The XOFF flag must be set before checking the dql_avail below,
3333 	 * because in netdev_tx_completed_queue we update the dql_completed
3334 	 * before checking the XOFF flag.
3335 	 */
3336 	smp_mb();
3337 
3338 	/* check again in case another CPU has just made room avail */
3339 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3340 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3341 #endif
3342 }
3343 
3344 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3345  * that they should not test BQL status themselves.
3346  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3347  * skb of a batch.
3348  * Returns true if the doorbell must be used to kick the NIC.
3349  */
3350 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3351 					  unsigned int bytes,
3352 					  bool xmit_more)
3353 {
3354 	if (xmit_more) {
3355 #ifdef CONFIG_BQL
3356 		dql_queued(&dev_queue->dql, bytes);
3357 #endif
3358 		return netif_tx_queue_stopped(dev_queue);
3359 	}
3360 	netdev_tx_sent_queue(dev_queue, bytes);
3361 	return true;
3362 }
3363 
3364 /**
3365  * 	netdev_sent_queue - report the number of bytes queued to hardware
3366  * 	@dev: network device
3367  * 	@bytes: number of bytes queued to the hardware device queue
3368  *
3369  * 	Report the number of bytes queued for sending/completion to the network
3370  * 	device hardware queue. @bytes should be a good approximation and should
3371  * 	exactly match netdev_completed_queue() @bytes
3372  */
3373 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3374 {
3375 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3376 }
3377 
3378 static inline bool __netdev_sent_queue(struct net_device *dev,
3379 				       unsigned int bytes,
3380 				       bool xmit_more)
3381 {
3382 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3383 				      xmit_more);
3384 }
3385 
3386 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3387 					     unsigned int pkts, unsigned int bytes)
3388 {
3389 #ifdef CONFIG_BQL
3390 	if (unlikely(!bytes))
3391 		return;
3392 
3393 	dql_completed(&dev_queue->dql, bytes);
3394 
3395 	/*
3396 	 * Without the memory barrier there is a small possiblity that
3397 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3398 	 * be stopped forever
3399 	 */
3400 	smp_mb();
3401 
3402 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3403 		return;
3404 
3405 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3406 		netif_schedule_queue(dev_queue);
3407 #endif
3408 }
3409 
3410 /**
3411  * 	netdev_completed_queue - report bytes and packets completed by device
3412  * 	@dev: network device
3413  * 	@pkts: actual number of packets sent over the medium
3414  * 	@bytes: actual number of bytes sent over the medium
3415  *
3416  * 	Report the number of bytes and packets transmitted by the network device
3417  * 	hardware queue over the physical medium, @bytes must exactly match the
3418  * 	@bytes amount passed to netdev_sent_queue()
3419  */
3420 static inline void netdev_completed_queue(struct net_device *dev,
3421 					  unsigned int pkts, unsigned int bytes)
3422 {
3423 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3424 }
3425 
3426 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3427 {
3428 #ifdef CONFIG_BQL
3429 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3430 	dql_reset(&q->dql);
3431 #endif
3432 }
3433 
3434 /**
3435  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3436  * 	@dev_queue: network device
3437  *
3438  * 	Reset the bytes and packet count of a network device and clear the
3439  * 	software flow control OFF bit for this network device
3440  */
3441 static inline void netdev_reset_queue(struct net_device *dev_queue)
3442 {
3443 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3444 }
3445 
3446 /**
3447  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3448  * 	@dev: network device
3449  * 	@queue_index: given tx queue index
3450  *
3451  * 	Returns 0 if given tx queue index >= number of device tx queues,
3452  * 	otherwise returns the originally passed tx queue index.
3453  */
3454 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3455 {
3456 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3457 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3458 				     dev->name, queue_index,
3459 				     dev->real_num_tx_queues);
3460 		return 0;
3461 	}
3462 
3463 	return queue_index;
3464 }
3465 
3466 /**
3467  *	netif_running - test if up
3468  *	@dev: network device
3469  *
3470  *	Test if the device has been brought up.
3471  */
3472 static inline bool netif_running(const struct net_device *dev)
3473 {
3474 	return test_bit(__LINK_STATE_START, &dev->state);
3475 }
3476 
3477 /*
3478  * Routines to manage the subqueues on a device.  We only need start,
3479  * stop, and a check if it's stopped.  All other device management is
3480  * done at the overall netdevice level.
3481  * Also test the device if we're multiqueue.
3482  */
3483 
3484 /**
3485  *	netif_start_subqueue - allow sending packets on subqueue
3486  *	@dev: network device
3487  *	@queue_index: sub queue index
3488  *
3489  * Start individual transmit queue of a device with multiple transmit queues.
3490  */
3491 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3492 {
3493 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3494 
3495 	netif_tx_start_queue(txq);
3496 }
3497 
3498 /**
3499  *	netif_stop_subqueue - stop sending packets on subqueue
3500  *	@dev: network device
3501  *	@queue_index: sub queue index
3502  *
3503  * Stop individual transmit queue of a device with multiple transmit queues.
3504  */
3505 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3506 {
3507 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3508 	netif_tx_stop_queue(txq);
3509 }
3510 
3511 /**
3512  *	netif_subqueue_stopped - test status of subqueue
3513  *	@dev: network device
3514  *	@queue_index: sub queue index
3515  *
3516  * Check individual transmit queue of a device with multiple transmit queues.
3517  */
3518 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3519 					    u16 queue_index)
3520 {
3521 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3522 
3523 	return netif_tx_queue_stopped(txq);
3524 }
3525 
3526 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3527 					  struct sk_buff *skb)
3528 {
3529 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3530 }
3531 
3532 /**
3533  *	netif_wake_subqueue - allow sending packets on subqueue
3534  *	@dev: network device
3535  *	@queue_index: sub queue index
3536  *
3537  * Resume individual transmit queue of a device with multiple transmit queues.
3538  */
3539 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3540 {
3541 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3542 
3543 	netif_tx_wake_queue(txq);
3544 }
3545 
3546 #ifdef CONFIG_XPS
3547 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3548 			u16 index);
3549 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3550 			  u16 index, bool is_rxqs_map);
3551 
3552 /**
3553  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3554  *	@j: CPU/Rx queue index
3555  *	@mask: bitmask of all cpus/rx queues
3556  *	@nr_bits: number of bits in the bitmask
3557  *
3558  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3559  */
3560 static inline bool netif_attr_test_mask(unsigned long j,
3561 					const unsigned long *mask,
3562 					unsigned int nr_bits)
3563 {
3564 	cpu_max_bits_warn(j, nr_bits);
3565 	return test_bit(j, mask);
3566 }
3567 
3568 /**
3569  *	netif_attr_test_online - Test for online CPU/Rx queue
3570  *	@j: CPU/Rx queue index
3571  *	@online_mask: bitmask for CPUs/Rx queues that are online
3572  *	@nr_bits: number of bits in the bitmask
3573  *
3574  * Returns true if a CPU/Rx queue is online.
3575  */
3576 static inline bool netif_attr_test_online(unsigned long j,
3577 					  const unsigned long *online_mask,
3578 					  unsigned int nr_bits)
3579 {
3580 	cpu_max_bits_warn(j, nr_bits);
3581 
3582 	if (online_mask)
3583 		return test_bit(j, online_mask);
3584 
3585 	return (j < nr_bits);
3586 }
3587 
3588 /**
3589  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3590  *	@n: CPU/Rx queue index
3591  *	@srcp: the cpumask/Rx queue mask pointer
3592  *	@nr_bits: number of bits in the bitmask
3593  *
3594  * Returns >= nr_bits if no further CPUs/Rx queues set.
3595  */
3596 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3597 					       unsigned int nr_bits)
3598 {
3599 	/* -1 is a legal arg here. */
3600 	if (n != -1)
3601 		cpu_max_bits_warn(n, nr_bits);
3602 
3603 	if (srcp)
3604 		return find_next_bit(srcp, nr_bits, n + 1);
3605 
3606 	return n + 1;
3607 }
3608 
3609 /**
3610  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3611  *	@n: CPU/Rx queue index
3612  *	@src1p: the first CPUs/Rx queues mask pointer
3613  *	@src2p: the second CPUs/Rx queues mask pointer
3614  *	@nr_bits: number of bits in the bitmask
3615  *
3616  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3617  */
3618 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3619 					  const unsigned long *src2p,
3620 					  unsigned int nr_bits)
3621 {
3622 	/* -1 is a legal arg here. */
3623 	if (n != -1)
3624 		cpu_max_bits_warn(n, nr_bits);
3625 
3626 	if (src1p && src2p)
3627 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3628 	else if (src1p)
3629 		return find_next_bit(src1p, nr_bits, n + 1);
3630 	else if (src2p)
3631 		return find_next_bit(src2p, nr_bits, n + 1);
3632 
3633 	return n + 1;
3634 }
3635 #else
3636 static inline int netif_set_xps_queue(struct net_device *dev,
3637 				      const struct cpumask *mask,
3638 				      u16 index)
3639 {
3640 	return 0;
3641 }
3642 
3643 static inline int __netif_set_xps_queue(struct net_device *dev,
3644 					const unsigned long *mask,
3645 					u16 index, bool is_rxqs_map)
3646 {
3647 	return 0;
3648 }
3649 #endif
3650 
3651 /**
3652  *	netif_is_multiqueue - test if device has multiple transmit queues
3653  *	@dev: network device
3654  *
3655  * Check if device has multiple transmit queues
3656  */
3657 static inline bool netif_is_multiqueue(const struct net_device *dev)
3658 {
3659 	return dev->num_tx_queues > 1;
3660 }
3661 
3662 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3663 
3664 #ifdef CONFIG_SYSFS
3665 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3666 #else
3667 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3668 						unsigned int rxqs)
3669 {
3670 	dev->real_num_rx_queues = rxqs;
3671 	return 0;
3672 }
3673 #endif
3674 
3675 static inline struct netdev_rx_queue *
3676 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3677 {
3678 	return dev->_rx + rxq;
3679 }
3680 
3681 #ifdef CONFIG_SYSFS
3682 static inline unsigned int get_netdev_rx_queue_index(
3683 		struct netdev_rx_queue *queue)
3684 {
3685 	struct net_device *dev = queue->dev;
3686 	int index = queue - dev->_rx;
3687 
3688 	BUG_ON(index >= dev->num_rx_queues);
3689 	return index;
3690 }
3691 #endif
3692 
3693 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3694 int netif_get_num_default_rss_queues(void);
3695 
3696 enum skb_free_reason {
3697 	SKB_REASON_CONSUMED,
3698 	SKB_REASON_DROPPED,
3699 };
3700 
3701 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3702 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3703 
3704 /*
3705  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3706  * interrupt context or with hardware interrupts being disabled.
3707  * (in_irq() || irqs_disabled())
3708  *
3709  * We provide four helpers that can be used in following contexts :
3710  *
3711  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3712  *  replacing kfree_skb(skb)
3713  *
3714  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3715  *  Typically used in place of consume_skb(skb) in TX completion path
3716  *
3717  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3718  *  replacing kfree_skb(skb)
3719  *
3720  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3721  *  and consumed a packet. Used in place of consume_skb(skb)
3722  */
3723 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3724 {
3725 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3726 }
3727 
3728 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3729 {
3730 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3731 }
3732 
3733 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3734 {
3735 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3736 }
3737 
3738 static inline void dev_consume_skb_any(struct sk_buff *skb)
3739 {
3740 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3741 }
3742 
3743 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3744 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3745 int netif_rx(struct sk_buff *skb);
3746 int netif_rx_ni(struct sk_buff *skb);
3747 int netif_receive_skb(struct sk_buff *skb);
3748 int netif_receive_skb_core(struct sk_buff *skb);
3749 void netif_receive_skb_list(struct list_head *head);
3750 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3751 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3752 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3753 gro_result_t napi_gro_frags(struct napi_struct *napi);
3754 struct packet_offload *gro_find_receive_by_type(__be16 type);
3755 struct packet_offload *gro_find_complete_by_type(__be16 type);
3756 
3757 static inline void napi_free_frags(struct napi_struct *napi)
3758 {
3759 	kfree_skb(napi->skb);
3760 	napi->skb = NULL;
3761 }
3762 
3763 bool netdev_is_rx_handler_busy(struct net_device *dev);
3764 int netdev_rx_handler_register(struct net_device *dev,
3765 			       rx_handler_func_t *rx_handler,
3766 			       void *rx_handler_data);
3767 void netdev_rx_handler_unregister(struct net_device *dev);
3768 
3769 bool dev_valid_name(const char *name);
3770 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3771 		bool *need_copyout);
3772 int dev_ifconf(struct net *net, struct ifconf *, int);
3773 int dev_ethtool(struct net *net, struct ifreq *);
3774 unsigned int dev_get_flags(const struct net_device *);
3775 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3776 		       struct netlink_ext_ack *extack);
3777 int dev_change_flags(struct net_device *dev, unsigned int flags,
3778 		     struct netlink_ext_ack *extack);
3779 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3780 			unsigned int gchanges);
3781 int dev_change_name(struct net_device *, const char *);
3782 int dev_set_alias(struct net_device *, const char *, size_t);
3783 int dev_get_alias(const struct net_device *, char *, size_t);
3784 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3785 int __dev_set_mtu(struct net_device *, int);
3786 int dev_validate_mtu(struct net_device *dev, int mtu,
3787 		     struct netlink_ext_ack *extack);
3788 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3789 		    struct netlink_ext_ack *extack);
3790 int dev_set_mtu(struct net_device *, int);
3791 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3792 void dev_set_group(struct net_device *, int);
3793 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3794 			      struct netlink_ext_ack *extack);
3795 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3796 			struct netlink_ext_ack *extack);
3797 int dev_change_carrier(struct net_device *, bool new_carrier);
3798 int dev_get_phys_port_id(struct net_device *dev,
3799 			 struct netdev_phys_item_id *ppid);
3800 int dev_get_phys_port_name(struct net_device *dev,
3801 			   char *name, size_t len);
3802 int dev_get_port_parent_id(struct net_device *dev,
3803 			   struct netdev_phys_item_id *ppid, bool recurse);
3804 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3805 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3806 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3807 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3808 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3809 				    struct netdev_queue *txq, int *ret);
3810 
3811 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3812 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3813 		      int fd, int expected_fd, u32 flags);
3814 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3815 		    enum bpf_netdev_command cmd);
3816 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3817 
3818 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3819 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3820 bool is_skb_forwardable(const struct net_device *dev,
3821 			const struct sk_buff *skb);
3822 
3823 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3824 					       struct sk_buff *skb)
3825 {
3826 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3827 	    unlikely(!is_skb_forwardable(dev, skb))) {
3828 		atomic_long_inc(&dev->rx_dropped);
3829 		kfree_skb(skb);
3830 		return NET_RX_DROP;
3831 	}
3832 
3833 	skb_scrub_packet(skb, true);
3834 	skb->priority = 0;
3835 	return 0;
3836 }
3837 
3838 bool dev_nit_active(struct net_device *dev);
3839 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3840 
3841 extern int		netdev_budget;
3842 extern unsigned int	netdev_budget_usecs;
3843 
3844 /* Called by rtnetlink.c:rtnl_unlock() */
3845 void netdev_run_todo(void);
3846 
3847 /**
3848  *	dev_put - release reference to device
3849  *	@dev: network device
3850  *
3851  * Release reference to device to allow it to be freed.
3852  */
3853 static inline void dev_put(struct net_device *dev)
3854 {
3855 	this_cpu_dec(*dev->pcpu_refcnt);
3856 }
3857 
3858 /**
3859  *	dev_hold - get reference to device
3860  *	@dev: network device
3861  *
3862  * Hold reference to device to keep it from being freed.
3863  */
3864 static inline void dev_hold(struct net_device *dev)
3865 {
3866 	this_cpu_inc(*dev->pcpu_refcnt);
3867 }
3868 
3869 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3870  * and _off may be called from IRQ context, but it is caller
3871  * who is responsible for serialization of these calls.
3872  *
3873  * The name carrier is inappropriate, these functions should really be
3874  * called netif_lowerlayer_*() because they represent the state of any
3875  * kind of lower layer not just hardware media.
3876  */
3877 
3878 void linkwatch_init_dev(struct net_device *dev);
3879 void linkwatch_fire_event(struct net_device *dev);
3880 void linkwatch_forget_dev(struct net_device *dev);
3881 
3882 /**
3883  *	netif_carrier_ok - test if carrier present
3884  *	@dev: network device
3885  *
3886  * Check if carrier is present on device
3887  */
3888 static inline bool netif_carrier_ok(const struct net_device *dev)
3889 {
3890 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3891 }
3892 
3893 unsigned long dev_trans_start(struct net_device *dev);
3894 
3895 void __netdev_watchdog_up(struct net_device *dev);
3896 
3897 void netif_carrier_on(struct net_device *dev);
3898 
3899 void netif_carrier_off(struct net_device *dev);
3900 
3901 /**
3902  *	netif_dormant_on - mark device as dormant.
3903  *	@dev: network device
3904  *
3905  * Mark device as dormant (as per RFC2863).
3906  *
3907  * The dormant state indicates that the relevant interface is not
3908  * actually in a condition to pass packets (i.e., it is not 'up') but is
3909  * in a "pending" state, waiting for some external event.  For "on-
3910  * demand" interfaces, this new state identifies the situation where the
3911  * interface is waiting for events to place it in the up state.
3912  */
3913 static inline void netif_dormant_on(struct net_device *dev)
3914 {
3915 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3916 		linkwatch_fire_event(dev);
3917 }
3918 
3919 /**
3920  *	netif_dormant_off - set device as not dormant.
3921  *	@dev: network device
3922  *
3923  * Device is not in dormant state.
3924  */
3925 static inline void netif_dormant_off(struct net_device *dev)
3926 {
3927 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3928 		linkwatch_fire_event(dev);
3929 }
3930 
3931 /**
3932  *	netif_dormant - test if device is dormant
3933  *	@dev: network device
3934  *
3935  * Check if device is dormant.
3936  */
3937 static inline bool netif_dormant(const struct net_device *dev)
3938 {
3939 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3940 }
3941 
3942 
3943 /**
3944  *	netif_testing_on - mark device as under test.
3945  *	@dev: network device
3946  *
3947  * Mark device as under test (as per RFC2863).
3948  *
3949  * The testing state indicates that some test(s) must be performed on
3950  * the interface. After completion, of the test, the interface state
3951  * will change to up, dormant, or down, as appropriate.
3952  */
3953 static inline void netif_testing_on(struct net_device *dev)
3954 {
3955 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3956 		linkwatch_fire_event(dev);
3957 }
3958 
3959 /**
3960  *	netif_testing_off - set device as not under test.
3961  *	@dev: network device
3962  *
3963  * Device is not in testing state.
3964  */
3965 static inline void netif_testing_off(struct net_device *dev)
3966 {
3967 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3968 		linkwatch_fire_event(dev);
3969 }
3970 
3971 /**
3972  *	netif_testing - test if device is under test
3973  *	@dev: network device
3974  *
3975  * Check if device is under test
3976  */
3977 static inline bool netif_testing(const struct net_device *dev)
3978 {
3979 	return test_bit(__LINK_STATE_TESTING, &dev->state);
3980 }
3981 
3982 
3983 /**
3984  *	netif_oper_up - test if device is operational
3985  *	@dev: network device
3986  *
3987  * Check if carrier is operational
3988  */
3989 static inline bool netif_oper_up(const struct net_device *dev)
3990 {
3991 	return (dev->operstate == IF_OPER_UP ||
3992 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3993 }
3994 
3995 /**
3996  *	netif_device_present - is device available or removed
3997  *	@dev: network device
3998  *
3999  * Check if device has not been removed from system.
4000  */
4001 static inline bool netif_device_present(struct net_device *dev)
4002 {
4003 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4004 }
4005 
4006 void netif_device_detach(struct net_device *dev);
4007 
4008 void netif_device_attach(struct net_device *dev);
4009 
4010 /*
4011  * Network interface message level settings
4012  */
4013 
4014 enum {
4015 	NETIF_MSG_DRV_BIT,
4016 	NETIF_MSG_PROBE_BIT,
4017 	NETIF_MSG_LINK_BIT,
4018 	NETIF_MSG_TIMER_BIT,
4019 	NETIF_MSG_IFDOWN_BIT,
4020 	NETIF_MSG_IFUP_BIT,
4021 	NETIF_MSG_RX_ERR_BIT,
4022 	NETIF_MSG_TX_ERR_BIT,
4023 	NETIF_MSG_TX_QUEUED_BIT,
4024 	NETIF_MSG_INTR_BIT,
4025 	NETIF_MSG_TX_DONE_BIT,
4026 	NETIF_MSG_RX_STATUS_BIT,
4027 	NETIF_MSG_PKTDATA_BIT,
4028 	NETIF_MSG_HW_BIT,
4029 	NETIF_MSG_WOL_BIT,
4030 
4031 	/* When you add a new bit above, update netif_msg_class_names array
4032 	 * in net/ethtool/common.c
4033 	 */
4034 	NETIF_MSG_CLASS_COUNT,
4035 };
4036 /* Both ethtool_ops interface and internal driver implementation use u32 */
4037 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4038 
4039 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4040 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4041 
4042 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4043 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4044 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4045 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4046 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4047 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4048 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4049 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4050 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4051 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4052 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4053 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4054 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4055 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4056 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4057 
4058 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4059 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4060 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4061 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4062 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4063 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4064 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4065 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4066 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4067 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4068 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4069 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4070 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4071 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4072 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4073 
4074 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4075 {
4076 	/* use default */
4077 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4078 		return default_msg_enable_bits;
4079 	if (debug_value == 0)	/* no output */
4080 		return 0;
4081 	/* set low N bits */
4082 	return (1U << debug_value) - 1;
4083 }
4084 
4085 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4086 {
4087 	spin_lock(&txq->_xmit_lock);
4088 	txq->xmit_lock_owner = cpu;
4089 }
4090 
4091 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4092 {
4093 	__acquire(&txq->_xmit_lock);
4094 	return true;
4095 }
4096 
4097 static inline void __netif_tx_release(struct netdev_queue *txq)
4098 {
4099 	__release(&txq->_xmit_lock);
4100 }
4101 
4102 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4103 {
4104 	spin_lock_bh(&txq->_xmit_lock);
4105 	txq->xmit_lock_owner = smp_processor_id();
4106 }
4107 
4108 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4109 {
4110 	bool ok = spin_trylock(&txq->_xmit_lock);
4111 	if (likely(ok))
4112 		txq->xmit_lock_owner = smp_processor_id();
4113 	return ok;
4114 }
4115 
4116 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4117 {
4118 	txq->xmit_lock_owner = -1;
4119 	spin_unlock(&txq->_xmit_lock);
4120 }
4121 
4122 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4123 {
4124 	txq->xmit_lock_owner = -1;
4125 	spin_unlock_bh(&txq->_xmit_lock);
4126 }
4127 
4128 static inline void txq_trans_update(struct netdev_queue *txq)
4129 {
4130 	if (txq->xmit_lock_owner != -1)
4131 		txq->trans_start = jiffies;
4132 }
4133 
4134 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4135 static inline void netif_trans_update(struct net_device *dev)
4136 {
4137 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4138 
4139 	if (txq->trans_start != jiffies)
4140 		txq->trans_start = jiffies;
4141 }
4142 
4143 /**
4144  *	netif_tx_lock - grab network device transmit lock
4145  *	@dev: network device
4146  *
4147  * Get network device transmit lock
4148  */
4149 static inline void netif_tx_lock(struct net_device *dev)
4150 {
4151 	unsigned int i;
4152 	int cpu;
4153 
4154 	spin_lock(&dev->tx_global_lock);
4155 	cpu = smp_processor_id();
4156 	for (i = 0; i < dev->num_tx_queues; i++) {
4157 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4158 
4159 		/* We are the only thread of execution doing a
4160 		 * freeze, but we have to grab the _xmit_lock in
4161 		 * order to synchronize with threads which are in
4162 		 * the ->hard_start_xmit() handler and already
4163 		 * checked the frozen bit.
4164 		 */
4165 		__netif_tx_lock(txq, cpu);
4166 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4167 		__netif_tx_unlock(txq);
4168 	}
4169 }
4170 
4171 static inline void netif_tx_lock_bh(struct net_device *dev)
4172 {
4173 	local_bh_disable();
4174 	netif_tx_lock(dev);
4175 }
4176 
4177 static inline void netif_tx_unlock(struct net_device *dev)
4178 {
4179 	unsigned int i;
4180 
4181 	for (i = 0; i < dev->num_tx_queues; i++) {
4182 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4183 
4184 		/* No need to grab the _xmit_lock here.  If the
4185 		 * queue is not stopped for another reason, we
4186 		 * force a schedule.
4187 		 */
4188 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4189 		netif_schedule_queue(txq);
4190 	}
4191 	spin_unlock(&dev->tx_global_lock);
4192 }
4193 
4194 static inline void netif_tx_unlock_bh(struct net_device *dev)
4195 {
4196 	netif_tx_unlock(dev);
4197 	local_bh_enable();
4198 }
4199 
4200 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4201 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4202 		__netif_tx_lock(txq, cpu);		\
4203 	} else {					\
4204 		__netif_tx_acquire(txq);		\
4205 	}						\
4206 }
4207 
4208 #define HARD_TX_TRYLOCK(dev, txq)			\
4209 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4210 		__netif_tx_trylock(txq) :		\
4211 		__netif_tx_acquire(txq))
4212 
4213 #define HARD_TX_UNLOCK(dev, txq) {			\
4214 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4215 		__netif_tx_unlock(txq);			\
4216 	} else {					\
4217 		__netif_tx_release(txq);		\
4218 	}						\
4219 }
4220 
4221 static inline void netif_tx_disable(struct net_device *dev)
4222 {
4223 	unsigned int i;
4224 	int cpu;
4225 
4226 	local_bh_disable();
4227 	cpu = smp_processor_id();
4228 	for (i = 0; i < dev->num_tx_queues; i++) {
4229 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4230 
4231 		__netif_tx_lock(txq, cpu);
4232 		netif_tx_stop_queue(txq);
4233 		__netif_tx_unlock(txq);
4234 	}
4235 	local_bh_enable();
4236 }
4237 
4238 static inline void netif_addr_lock(struct net_device *dev)
4239 {
4240 	spin_lock(&dev->addr_list_lock);
4241 }
4242 
4243 static inline void netif_addr_lock_nested(struct net_device *dev)
4244 {
4245 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4246 }
4247 
4248 static inline void netif_addr_lock_bh(struct net_device *dev)
4249 {
4250 	spin_lock_bh(&dev->addr_list_lock);
4251 }
4252 
4253 static inline void netif_addr_unlock(struct net_device *dev)
4254 {
4255 	spin_unlock(&dev->addr_list_lock);
4256 }
4257 
4258 static inline void netif_addr_unlock_bh(struct net_device *dev)
4259 {
4260 	spin_unlock_bh(&dev->addr_list_lock);
4261 }
4262 
4263 /*
4264  * dev_addrs walker. Should be used only for read access. Call with
4265  * rcu_read_lock held.
4266  */
4267 #define for_each_dev_addr(dev, ha) \
4268 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4269 
4270 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4271 
4272 void ether_setup(struct net_device *dev);
4273 
4274 /* Support for loadable net-drivers */
4275 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4276 				    unsigned char name_assign_type,
4277 				    void (*setup)(struct net_device *),
4278 				    unsigned int txqs, unsigned int rxqs);
4279 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4280 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4281 
4282 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4283 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4284 			 count)
4285 
4286 int register_netdev(struct net_device *dev);
4287 void unregister_netdev(struct net_device *dev);
4288 
4289 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4290 
4291 /* General hardware address lists handling functions */
4292 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4293 		   struct netdev_hw_addr_list *from_list, int addr_len);
4294 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4295 		      struct netdev_hw_addr_list *from_list, int addr_len);
4296 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4297 		       struct net_device *dev,
4298 		       int (*sync)(struct net_device *, const unsigned char *),
4299 		       int (*unsync)(struct net_device *,
4300 				     const unsigned char *));
4301 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4302 			   struct net_device *dev,
4303 			   int (*sync)(struct net_device *,
4304 				       const unsigned char *, int),
4305 			   int (*unsync)(struct net_device *,
4306 					 const unsigned char *, int));
4307 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4308 			      struct net_device *dev,
4309 			      int (*unsync)(struct net_device *,
4310 					    const unsigned char *, int));
4311 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4312 			  struct net_device *dev,
4313 			  int (*unsync)(struct net_device *,
4314 					const unsigned char *));
4315 void __hw_addr_init(struct netdev_hw_addr_list *list);
4316 
4317 /* Functions used for device addresses handling */
4318 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4319 		 unsigned char addr_type);
4320 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4321 		 unsigned char addr_type);
4322 void dev_addr_flush(struct net_device *dev);
4323 int dev_addr_init(struct net_device *dev);
4324 
4325 /* Functions used for unicast addresses handling */
4326 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4327 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4328 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4329 int dev_uc_sync(struct net_device *to, struct net_device *from);
4330 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4331 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4332 void dev_uc_flush(struct net_device *dev);
4333 void dev_uc_init(struct net_device *dev);
4334 
4335 /**
4336  *  __dev_uc_sync - Synchonize device's unicast list
4337  *  @dev:  device to sync
4338  *  @sync: function to call if address should be added
4339  *  @unsync: function to call if address should be removed
4340  *
4341  *  Add newly added addresses to the interface, and release
4342  *  addresses that have been deleted.
4343  */
4344 static inline int __dev_uc_sync(struct net_device *dev,
4345 				int (*sync)(struct net_device *,
4346 					    const unsigned char *),
4347 				int (*unsync)(struct net_device *,
4348 					      const unsigned char *))
4349 {
4350 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4351 }
4352 
4353 /**
4354  *  __dev_uc_unsync - Remove synchronized addresses from device
4355  *  @dev:  device to sync
4356  *  @unsync: function to call if address should be removed
4357  *
4358  *  Remove all addresses that were added to the device by dev_uc_sync().
4359  */
4360 static inline void __dev_uc_unsync(struct net_device *dev,
4361 				   int (*unsync)(struct net_device *,
4362 						 const unsigned char *))
4363 {
4364 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4365 }
4366 
4367 /* Functions used for multicast addresses handling */
4368 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4369 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4370 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4371 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4372 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4373 int dev_mc_sync(struct net_device *to, struct net_device *from);
4374 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4375 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4376 void dev_mc_flush(struct net_device *dev);
4377 void dev_mc_init(struct net_device *dev);
4378 
4379 /**
4380  *  __dev_mc_sync - Synchonize device's multicast list
4381  *  @dev:  device to sync
4382  *  @sync: function to call if address should be added
4383  *  @unsync: function to call if address should be removed
4384  *
4385  *  Add newly added addresses to the interface, and release
4386  *  addresses that have been deleted.
4387  */
4388 static inline int __dev_mc_sync(struct net_device *dev,
4389 				int (*sync)(struct net_device *,
4390 					    const unsigned char *),
4391 				int (*unsync)(struct net_device *,
4392 					      const unsigned char *))
4393 {
4394 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4395 }
4396 
4397 /**
4398  *  __dev_mc_unsync - Remove synchronized addresses from device
4399  *  @dev:  device to sync
4400  *  @unsync: function to call if address should be removed
4401  *
4402  *  Remove all addresses that were added to the device by dev_mc_sync().
4403  */
4404 static inline void __dev_mc_unsync(struct net_device *dev,
4405 				   int (*unsync)(struct net_device *,
4406 						 const unsigned char *))
4407 {
4408 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4409 }
4410 
4411 /* Functions used for secondary unicast and multicast support */
4412 void dev_set_rx_mode(struct net_device *dev);
4413 void __dev_set_rx_mode(struct net_device *dev);
4414 int dev_set_promiscuity(struct net_device *dev, int inc);
4415 int dev_set_allmulti(struct net_device *dev, int inc);
4416 void netdev_state_change(struct net_device *dev);
4417 void netdev_notify_peers(struct net_device *dev);
4418 void netdev_features_change(struct net_device *dev);
4419 /* Load a device via the kmod */
4420 void dev_load(struct net *net, const char *name);
4421 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4422 					struct rtnl_link_stats64 *storage);
4423 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4424 			     const struct net_device_stats *netdev_stats);
4425 
4426 extern int		netdev_max_backlog;
4427 extern int		netdev_tstamp_prequeue;
4428 extern int		weight_p;
4429 extern int		dev_weight_rx_bias;
4430 extern int		dev_weight_tx_bias;
4431 extern int		dev_rx_weight;
4432 extern int		dev_tx_weight;
4433 extern int		gro_normal_batch;
4434 
4435 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4436 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4437 						     struct list_head **iter);
4438 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4439 						     struct list_head **iter);
4440 
4441 /* iterate through upper list, must be called under RCU read lock */
4442 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4443 	for (iter = &(dev)->adj_list.upper, \
4444 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4445 	     updev; \
4446 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4447 
4448 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4449 				  int (*fn)(struct net_device *upper_dev,
4450 					    void *data),
4451 				  void *data);
4452 
4453 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4454 				  struct net_device *upper_dev);
4455 
4456 bool netdev_has_any_upper_dev(struct net_device *dev);
4457 
4458 void *netdev_lower_get_next_private(struct net_device *dev,
4459 				    struct list_head **iter);
4460 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4461 					struct list_head **iter);
4462 
4463 #define netdev_for_each_lower_private(dev, priv, iter) \
4464 	for (iter = (dev)->adj_list.lower.next, \
4465 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4466 	     priv; \
4467 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4468 
4469 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4470 	for (iter = &(dev)->adj_list.lower, \
4471 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4472 	     priv; \
4473 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4474 
4475 void *netdev_lower_get_next(struct net_device *dev,
4476 				struct list_head **iter);
4477 
4478 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4479 	for (iter = (dev)->adj_list.lower.next, \
4480 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4481 	     ldev; \
4482 	     ldev = netdev_lower_get_next(dev, &(iter)))
4483 
4484 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4485 					     struct list_head **iter);
4486 int netdev_walk_all_lower_dev(struct net_device *dev,
4487 			      int (*fn)(struct net_device *lower_dev,
4488 					void *data),
4489 			      void *data);
4490 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4491 				  int (*fn)(struct net_device *lower_dev,
4492 					    void *data),
4493 				  void *data);
4494 
4495 void *netdev_adjacent_get_private(struct list_head *adj_list);
4496 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4497 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4498 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4499 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4500 			  struct netlink_ext_ack *extack);
4501 int netdev_master_upper_dev_link(struct net_device *dev,
4502 				 struct net_device *upper_dev,
4503 				 void *upper_priv, void *upper_info,
4504 				 struct netlink_ext_ack *extack);
4505 void netdev_upper_dev_unlink(struct net_device *dev,
4506 			     struct net_device *upper_dev);
4507 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4508 				   struct net_device *new_dev,
4509 				   struct net_device *dev,
4510 				   struct netlink_ext_ack *extack);
4511 void netdev_adjacent_change_commit(struct net_device *old_dev,
4512 				   struct net_device *new_dev,
4513 				   struct net_device *dev);
4514 void netdev_adjacent_change_abort(struct net_device *old_dev,
4515 				  struct net_device *new_dev,
4516 				  struct net_device *dev);
4517 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4518 void *netdev_lower_dev_get_private(struct net_device *dev,
4519 				   struct net_device *lower_dev);
4520 void netdev_lower_state_changed(struct net_device *lower_dev,
4521 				void *lower_state_info);
4522 
4523 /* RSS keys are 40 or 52 bytes long */
4524 #define NETDEV_RSS_KEY_LEN 52
4525 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4526 void netdev_rss_key_fill(void *buffer, size_t len);
4527 
4528 int skb_checksum_help(struct sk_buff *skb);
4529 int skb_crc32c_csum_help(struct sk_buff *skb);
4530 int skb_csum_hwoffload_help(struct sk_buff *skb,
4531 			    const netdev_features_t features);
4532 
4533 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4534 				  netdev_features_t features, bool tx_path);
4535 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4536 				    netdev_features_t features);
4537 
4538 struct netdev_bonding_info {
4539 	ifslave	slave;
4540 	ifbond	master;
4541 };
4542 
4543 struct netdev_notifier_bonding_info {
4544 	struct netdev_notifier_info info; /* must be first */
4545 	struct netdev_bonding_info  bonding_info;
4546 };
4547 
4548 void netdev_bonding_info_change(struct net_device *dev,
4549 				struct netdev_bonding_info *bonding_info);
4550 
4551 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4552 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4553 #else
4554 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4555 				  const void *data)
4556 {
4557 }
4558 #endif
4559 
4560 static inline
4561 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4562 {
4563 	return __skb_gso_segment(skb, features, true);
4564 }
4565 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4566 
4567 static inline bool can_checksum_protocol(netdev_features_t features,
4568 					 __be16 protocol)
4569 {
4570 	if (protocol == htons(ETH_P_FCOE))
4571 		return !!(features & NETIF_F_FCOE_CRC);
4572 
4573 	/* Assume this is an IP checksum (not SCTP CRC) */
4574 
4575 	if (features & NETIF_F_HW_CSUM) {
4576 		/* Can checksum everything */
4577 		return true;
4578 	}
4579 
4580 	switch (protocol) {
4581 	case htons(ETH_P_IP):
4582 		return !!(features & NETIF_F_IP_CSUM);
4583 	case htons(ETH_P_IPV6):
4584 		return !!(features & NETIF_F_IPV6_CSUM);
4585 	default:
4586 		return false;
4587 	}
4588 }
4589 
4590 #ifdef CONFIG_BUG
4591 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4592 #else
4593 static inline void netdev_rx_csum_fault(struct net_device *dev,
4594 					struct sk_buff *skb)
4595 {
4596 }
4597 #endif
4598 /* rx skb timestamps */
4599 void net_enable_timestamp(void);
4600 void net_disable_timestamp(void);
4601 
4602 #ifdef CONFIG_PROC_FS
4603 int __init dev_proc_init(void);
4604 #else
4605 #define dev_proc_init() 0
4606 #endif
4607 
4608 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4609 					      struct sk_buff *skb, struct net_device *dev,
4610 					      bool more)
4611 {
4612 	__this_cpu_write(softnet_data.xmit.more, more);
4613 	return ops->ndo_start_xmit(skb, dev);
4614 }
4615 
4616 static inline bool netdev_xmit_more(void)
4617 {
4618 	return __this_cpu_read(softnet_data.xmit.more);
4619 }
4620 
4621 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4622 					    struct netdev_queue *txq, bool more)
4623 {
4624 	const struct net_device_ops *ops = dev->netdev_ops;
4625 	netdev_tx_t rc;
4626 
4627 	rc = __netdev_start_xmit(ops, skb, dev, more);
4628 	if (rc == NETDEV_TX_OK)
4629 		txq_trans_update(txq);
4630 
4631 	return rc;
4632 }
4633 
4634 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4635 				const void *ns);
4636 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4637 				 const void *ns);
4638 
4639 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4640 {
4641 	return netdev_class_create_file_ns(class_attr, NULL);
4642 }
4643 
4644 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4645 {
4646 	netdev_class_remove_file_ns(class_attr, NULL);
4647 }
4648 
4649 extern const struct kobj_ns_type_operations net_ns_type_operations;
4650 
4651 const char *netdev_drivername(const struct net_device *dev);
4652 
4653 void linkwatch_run_queue(void);
4654 
4655 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4656 							  netdev_features_t f2)
4657 {
4658 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4659 		if (f1 & NETIF_F_HW_CSUM)
4660 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4661 		else
4662 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4663 	}
4664 
4665 	return f1 & f2;
4666 }
4667 
4668 static inline netdev_features_t netdev_get_wanted_features(
4669 	struct net_device *dev)
4670 {
4671 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4672 }
4673 netdev_features_t netdev_increment_features(netdev_features_t all,
4674 	netdev_features_t one, netdev_features_t mask);
4675 
4676 /* Allow TSO being used on stacked device :
4677  * Performing the GSO segmentation before last device
4678  * is a performance improvement.
4679  */
4680 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4681 							netdev_features_t mask)
4682 {
4683 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4684 }
4685 
4686 int __netdev_update_features(struct net_device *dev);
4687 void netdev_update_features(struct net_device *dev);
4688 void netdev_change_features(struct net_device *dev);
4689 
4690 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4691 					struct net_device *dev);
4692 
4693 netdev_features_t passthru_features_check(struct sk_buff *skb,
4694 					  struct net_device *dev,
4695 					  netdev_features_t features);
4696 netdev_features_t netif_skb_features(struct sk_buff *skb);
4697 
4698 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4699 {
4700 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4701 
4702 	/* check flags correspondence */
4703 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4704 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4705 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4706 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4707 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4708 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4709 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4710 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4711 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4712 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4713 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4714 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4715 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4716 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4717 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4718 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4719 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4720 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4721 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4722 
4723 	return (features & feature) == feature;
4724 }
4725 
4726 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4727 {
4728 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4729 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4730 }
4731 
4732 static inline bool netif_needs_gso(struct sk_buff *skb,
4733 				   netdev_features_t features)
4734 {
4735 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4736 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4737 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4738 }
4739 
4740 static inline void netif_set_gso_max_size(struct net_device *dev,
4741 					  unsigned int size)
4742 {
4743 	dev->gso_max_size = size;
4744 }
4745 
4746 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4747 					int pulled_hlen, u16 mac_offset,
4748 					int mac_len)
4749 {
4750 	skb->protocol = protocol;
4751 	skb->encapsulation = 1;
4752 	skb_push(skb, pulled_hlen);
4753 	skb_reset_transport_header(skb);
4754 	skb->mac_header = mac_offset;
4755 	skb->network_header = skb->mac_header + mac_len;
4756 	skb->mac_len = mac_len;
4757 }
4758 
4759 static inline bool netif_is_macsec(const struct net_device *dev)
4760 {
4761 	return dev->priv_flags & IFF_MACSEC;
4762 }
4763 
4764 static inline bool netif_is_macvlan(const struct net_device *dev)
4765 {
4766 	return dev->priv_flags & IFF_MACVLAN;
4767 }
4768 
4769 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4770 {
4771 	return dev->priv_flags & IFF_MACVLAN_PORT;
4772 }
4773 
4774 static inline bool netif_is_bond_master(const struct net_device *dev)
4775 {
4776 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4777 }
4778 
4779 static inline bool netif_is_bond_slave(const struct net_device *dev)
4780 {
4781 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4782 }
4783 
4784 static inline bool netif_supports_nofcs(struct net_device *dev)
4785 {
4786 	return dev->priv_flags & IFF_SUPP_NOFCS;
4787 }
4788 
4789 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4790 {
4791 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4792 }
4793 
4794 static inline bool netif_is_l3_master(const struct net_device *dev)
4795 {
4796 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4797 }
4798 
4799 static inline bool netif_is_l3_slave(const struct net_device *dev)
4800 {
4801 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4802 }
4803 
4804 static inline bool netif_is_bridge_master(const struct net_device *dev)
4805 {
4806 	return dev->priv_flags & IFF_EBRIDGE;
4807 }
4808 
4809 static inline bool netif_is_bridge_port(const struct net_device *dev)
4810 {
4811 	return dev->priv_flags & IFF_BRIDGE_PORT;
4812 }
4813 
4814 static inline bool netif_is_ovs_master(const struct net_device *dev)
4815 {
4816 	return dev->priv_flags & IFF_OPENVSWITCH;
4817 }
4818 
4819 static inline bool netif_is_ovs_port(const struct net_device *dev)
4820 {
4821 	return dev->priv_flags & IFF_OVS_DATAPATH;
4822 }
4823 
4824 static inline bool netif_is_team_master(const struct net_device *dev)
4825 {
4826 	return dev->priv_flags & IFF_TEAM;
4827 }
4828 
4829 static inline bool netif_is_team_port(const struct net_device *dev)
4830 {
4831 	return dev->priv_flags & IFF_TEAM_PORT;
4832 }
4833 
4834 static inline bool netif_is_lag_master(const struct net_device *dev)
4835 {
4836 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4837 }
4838 
4839 static inline bool netif_is_lag_port(const struct net_device *dev)
4840 {
4841 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4842 }
4843 
4844 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4845 {
4846 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4847 }
4848 
4849 static inline bool netif_is_failover(const struct net_device *dev)
4850 {
4851 	return dev->priv_flags & IFF_FAILOVER;
4852 }
4853 
4854 static inline bool netif_is_failover_slave(const struct net_device *dev)
4855 {
4856 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4857 }
4858 
4859 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4860 static inline void netif_keep_dst(struct net_device *dev)
4861 {
4862 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4863 }
4864 
4865 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4866 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4867 {
4868 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4869 	return dev->priv_flags & IFF_MACSEC;
4870 }
4871 
4872 extern struct pernet_operations __net_initdata loopback_net_ops;
4873 
4874 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4875 
4876 /* netdev_printk helpers, similar to dev_printk */
4877 
4878 static inline const char *netdev_name(const struct net_device *dev)
4879 {
4880 	if (!dev->name[0] || strchr(dev->name, '%'))
4881 		return "(unnamed net_device)";
4882 	return dev->name;
4883 }
4884 
4885 static inline bool netdev_unregistering(const struct net_device *dev)
4886 {
4887 	return dev->reg_state == NETREG_UNREGISTERING;
4888 }
4889 
4890 static inline const char *netdev_reg_state(const struct net_device *dev)
4891 {
4892 	switch (dev->reg_state) {
4893 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4894 	case NETREG_REGISTERED: return "";
4895 	case NETREG_UNREGISTERING: return " (unregistering)";
4896 	case NETREG_UNREGISTERED: return " (unregistered)";
4897 	case NETREG_RELEASED: return " (released)";
4898 	case NETREG_DUMMY: return " (dummy)";
4899 	}
4900 
4901 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4902 	return " (unknown)";
4903 }
4904 
4905 __printf(3, 4) __cold
4906 void netdev_printk(const char *level, const struct net_device *dev,
4907 		   const char *format, ...);
4908 __printf(2, 3) __cold
4909 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4910 __printf(2, 3) __cold
4911 void netdev_alert(const struct net_device *dev, const char *format, ...);
4912 __printf(2, 3) __cold
4913 void netdev_crit(const struct net_device *dev, const char *format, ...);
4914 __printf(2, 3) __cold
4915 void netdev_err(const struct net_device *dev, const char *format, ...);
4916 __printf(2, 3) __cold
4917 void netdev_warn(const struct net_device *dev, const char *format, ...);
4918 __printf(2, 3) __cold
4919 void netdev_notice(const struct net_device *dev, const char *format, ...);
4920 __printf(2, 3) __cold
4921 void netdev_info(const struct net_device *dev, const char *format, ...);
4922 
4923 #define netdev_level_once(level, dev, fmt, ...)			\
4924 do {								\
4925 	static bool __print_once __read_mostly;			\
4926 								\
4927 	if (!__print_once) {					\
4928 		__print_once = true;				\
4929 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4930 	}							\
4931 } while (0)
4932 
4933 #define netdev_emerg_once(dev, fmt, ...) \
4934 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4935 #define netdev_alert_once(dev, fmt, ...) \
4936 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4937 #define netdev_crit_once(dev, fmt, ...) \
4938 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4939 #define netdev_err_once(dev, fmt, ...) \
4940 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4941 #define netdev_warn_once(dev, fmt, ...) \
4942 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4943 #define netdev_notice_once(dev, fmt, ...) \
4944 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4945 #define netdev_info_once(dev, fmt, ...) \
4946 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4947 
4948 #define MODULE_ALIAS_NETDEV(device) \
4949 	MODULE_ALIAS("netdev-" device)
4950 
4951 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4952 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4953 #define netdev_dbg(__dev, format, args...)			\
4954 do {								\
4955 	dynamic_netdev_dbg(__dev, format, ##args);		\
4956 } while (0)
4957 #elif defined(DEBUG)
4958 #define netdev_dbg(__dev, format, args...)			\
4959 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4960 #else
4961 #define netdev_dbg(__dev, format, args...)			\
4962 ({								\
4963 	if (0)							\
4964 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4965 })
4966 #endif
4967 
4968 #if defined(VERBOSE_DEBUG)
4969 #define netdev_vdbg	netdev_dbg
4970 #else
4971 
4972 #define netdev_vdbg(dev, format, args...)			\
4973 ({								\
4974 	if (0)							\
4975 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4976 	0;							\
4977 })
4978 #endif
4979 
4980 /*
4981  * netdev_WARN() acts like dev_printk(), but with the key difference
4982  * of using a WARN/WARN_ON to get the message out, including the
4983  * file/line information and a backtrace.
4984  */
4985 #define netdev_WARN(dev, format, args...)			\
4986 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4987 	     netdev_reg_state(dev), ##args)
4988 
4989 #define netdev_WARN_ONCE(dev, format, args...)				\
4990 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4991 		  netdev_reg_state(dev), ##args)
4992 
4993 /* netif printk helpers, similar to netdev_printk */
4994 
4995 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4996 do {					  			\
4997 	if (netif_msg_##type(priv))				\
4998 		netdev_printk(level, (dev), fmt, ##args);	\
4999 } while (0)
5000 
5001 #define netif_level(level, priv, type, dev, fmt, args...)	\
5002 do {								\
5003 	if (netif_msg_##type(priv))				\
5004 		netdev_##level(dev, fmt, ##args);		\
5005 } while (0)
5006 
5007 #define netif_emerg(priv, type, dev, fmt, args...)		\
5008 	netif_level(emerg, priv, type, dev, fmt, ##args)
5009 #define netif_alert(priv, type, dev, fmt, args...)		\
5010 	netif_level(alert, priv, type, dev, fmt, ##args)
5011 #define netif_crit(priv, type, dev, fmt, args...)		\
5012 	netif_level(crit, priv, type, dev, fmt, ##args)
5013 #define netif_err(priv, type, dev, fmt, args...)		\
5014 	netif_level(err, priv, type, dev, fmt, ##args)
5015 #define netif_warn(priv, type, dev, fmt, args...)		\
5016 	netif_level(warn, priv, type, dev, fmt, ##args)
5017 #define netif_notice(priv, type, dev, fmt, args...)		\
5018 	netif_level(notice, priv, type, dev, fmt, ##args)
5019 #define netif_info(priv, type, dev, fmt, args...)		\
5020 	netif_level(info, priv, type, dev, fmt, ##args)
5021 
5022 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5023 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5024 #define netif_dbg(priv, type, netdev, format, args...)		\
5025 do {								\
5026 	if (netif_msg_##type(priv))				\
5027 		dynamic_netdev_dbg(netdev, format, ##args);	\
5028 } while (0)
5029 #elif defined(DEBUG)
5030 #define netif_dbg(priv, type, dev, format, args...)		\
5031 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5032 #else
5033 #define netif_dbg(priv, type, dev, format, args...)			\
5034 ({									\
5035 	if (0)								\
5036 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5037 	0;								\
5038 })
5039 #endif
5040 
5041 /* if @cond then downgrade to debug, else print at @level */
5042 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5043 	do {                                                              \
5044 		if (cond)                                                 \
5045 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5046 		else                                                      \
5047 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5048 	} while (0)
5049 
5050 #if defined(VERBOSE_DEBUG)
5051 #define netif_vdbg	netif_dbg
5052 #else
5053 #define netif_vdbg(priv, type, dev, format, args...)		\
5054 ({								\
5055 	if (0)							\
5056 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5057 	0;							\
5058 })
5059 #endif
5060 
5061 /*
5062  *	The list of packet types we will receive (as opposed to discard)
5063  *	and the routines to invoke.
5064  *
5065  *	Why 16. Because with 16 the only overlap we get on a hash of the
5066  *	low nibble of the protocol value is RARP/SNAP/X.25.
5067  *
5068  *		0800	IP
5069  *		0001	802.3
5070  *		0002	AX.25
5071  *		0004	802.2
5072  *		8035	RARP
5073  *		0005	SNAP
5074  *		0805	X.25
5075  *		0806	ARP
5076  *		8137	IPX
5077  *		0009	Localtalk
5078  *		86DD	IPv6
5079  */
5080 #define PTYPE_HASH_SIZE	(16)
5081 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5082 
5083 extern struct net_device *blackhole_netdev;
5084 
5085 #endif	/* _LINUX_NETDEVICE_H */
5086