xref: /openbmc/linux/include/linux/netdevice.h (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 };
849 
850 /* These structures hold the attributes of bpf state that are being passed
851  * to the netdevice through the bpf op.
852  */
853 enum bpf_netdev_command {
854 	/* Set or clear a bpf program used in the earliest stages of packet
855 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
856 	 * is responsible for calling bpf_prog_put on any old progs that are
857 	 * stored. In case of error, the callee need not release the new prog
858 	 * reference, but on success it takes ownership and must bpf_prog_put
859 	 * when it is no longer used.
860 	 */
861 	XDP_SETUP_PROG,
862 	XDP_SETUP_PROG_HW,
863 	XDP_QUERY_PROG,
864 	XDP_QUERY_PROG_HW,
865 	/* BPF program for offload callbacks, invoked at program load time. */
866 	BPF_OFFLOAD_VERIFIER_PREP,
867 	BPF_OFFLOAD_TRANSLATE,
868 	BPF_OFFLOAD_DESTROY,
869 	BPF_OFFLOAD_MAP_ALLOC,
870 	BPF_OFFLOAD_MAP_FREE,
871 	XDP_QUERY_XSK_UMEM,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_VERIFIER_PREP */
895 		struct {
896 			struct bpf_prog *prog;
897 			const struct bpf_prog_offload_ops *ops; /* callee set */
898 		} verifier;
899 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
900 		struct {
901 			struct bpf_prog *prog;
902 		} offload;
903 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 		struct {
905 			struct bpf_offloaded_map *offmap;
906 		};
907 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
908 		struct {
909 			struct xdp_umem *umem; /* out for query*/
910 			u16 queue_id; /* in for query */
911 		} xsk;
912 	};
913 };
914 
915 #ifdef CONFIG_XFRM_OFFLOAD
916 struct xfrmdev_ops {
917 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
918 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
919 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
920 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
921 				       struct xfrm_state *x);
922 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
923 };
924 #endif
925 
926 #if IS_ENABLED(CONFIG_TLS_DEVICE)
927 enum tls_offload_ctx_dir {
928 	TLS_OFFLOAD_CTX_DIR_RX,
929 	TLS_OFFLOAD_CTX_DIR_TX,
930 };
931 
932 struct tls_crypto_info;
933 struct tls_context;
934 
935 struct tlsdev_ops {
936 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
937 			   enum tls_offload_ctx_dir direction,
938 			   struct tls_crypto_info *crypto_info,
939 			   u32 start_offload_tcp_sn);
940 	void (*tls_dev_del)(struct net_device *netdev,
941 			    struct tls_context *ctx,
942 			    enum tls_offload_ctx_dir direction);
943 	void (*tls_dev_resync_rx)(struct net_device *netdev,
944 				  struct sock *sk, u32 seq, u64 rcd_sn);
945 };
946 #endif
947 
948 struct dev_ifalias {
949 	struct rcu_head rcuhead;
950 	char ifalias[];
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *	Called when a packet needs to be transmitted.
979  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *	the queue before that can happen; it's for obsolete devices and weird
981  *	corner cases, but the stack really does a non-trivial amount
982  *	of useless work if you return NETDEV_TX_BUSY.
983  *	Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *					   struct net_device *dev
987  *					   netdev_features_t features);
988  *	Called by core transmit path to determine if device is capable of
989  *	performing offload operations on a given packet. This is to give
990  *	the device an opportunity to implement any restrictions that cannot
991  *	be otherwise expressed by feature flags. The check is called with
992  *	the set of features that the stack has calculated and it returns
993  *	those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev,
997  *                         select_queue_fallback_t fallback);
998  *	Called to decide which queue to use when device supports multiple
999  *	transmit queues.
1000  *
1001  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1002  *	This function is called to allow device receiver to make
1003  *	changes to configuration when multicast or promiscuous is enabled.
1004  *
1005  * void (*ndo_set_rx_mode)(struct net_device *dev);
1006  *	This function is called device changes address list filtering.
1007  *	If driver handles unicast address filtering, it should set
1008  *	IFF_UNICAST_FLT in its priv_flags.
1009  *
1010  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1011  *	This function  is called when the Media Access Control address
1012  *	needs to be changed. If this interface is not defined, the
1013  *	MAC address can not be changed.
1014  *
1015  * int (*ndo_validate_addr)(struct net_device *dev);
1016  *	Test if Media Access Control address is valid for the device.
1017  *
1018  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1019  *	Called when a user requests an ioctl which can't be handled by
1020  *	the generic interface code. If not defined ioctls return
1021  *	not supported error code.
1022  *
1023  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1024  *	Used to set network devices bus interface parameters. This interface
1025  *	is retained for legacy reasons; new devices should use the bus
1026  *	interface (PCI) for low level management.
1027  *
1028  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1029  *	Called when a user wants to change the Maximum Transfer Unit
1030  *	of a device.
1031  *
1032  * void (*ndo_tx_timeout)(struct net_device *dev);
1033  *	Callback used when the transmitter has not made any progress
1034  *	for dev->watchdog ticks.
1035  *
1036  * void (*ndo_get_stats64)(struct net_device *dev,
1037  *                         struct rtnl_link_stats64 *storage);
1038  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1039  *	Called when a user wants to get the network device usage
1040  *	statistics. Drivers must do one of the following:
1041  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1042  *	   rtnl_link_stats64 structure passed by the caller.
1043  *	2. Define @ndo_get_stats to update a net_device_stats structure
1044  *	   (which should normally be dev->stats) and return a pointer to
1045  *	   it. The structure may be changed asynchronously only if each
1046  *	   field is written atomically.
1047  *	3. Update dev->stats asynchronously and atomically, and define
1048  *	   neither operation.
1049  *
1050  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1051  *	Return true if this device supports offload stats of this attr_id.
1052  *
1053  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1054  *	void *attr_data)
1055  *	Get statistics for offload operations by attr_id. Write it into the
1056  *	attr_data pointer.
1057  *
1058  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1059  *	If device supports VLAN filtering this function is called when a
1060  *	VLAN id is registered.
1061  *
1062  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1063  *	If device supports VLAN filtering this function is called when a
1064  *	VLAN id is unregistered.
1065  *
1066  * void (*ndo_poll_controller)(struct net_device *dev);
1067  *
1068  *	SR-IOV management functions.
1069  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1070  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1071  *			  u8 qos, __be16 proto);
1072  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1073  *			  int max_tx_rate);
1074  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_config)(struct net_device *dev,
1077  *			    int vf, struct ifla_vf_info *ivf);
1078  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1079  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1080  *			  struct nlattr *port[]);
1081  *
1082  *      Enable or disable the VF ability to query its RSS Redirection Table and
1083  *      Hash Key. This is needed since on some devices VF share this information
1084  *      with PF and querying it may introduce a theoretical security risk.
1085  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1086  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1087  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1088  *		       void *type_data);
1089  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1090  *	This is always called from the stack with the rtnl lock held and netif
1091  *	tx queues stopped. This allows the netdevice to perform queue
1092  *	management safely.
1093  *
1094  *	Fiber Channel over Ethernet (FCoE) offload functions.
1095  * int (*ndo_fcoe_enable)(struct net_device *dev);
1096  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1097  *	so the underlying device can perform whatever needed configuration or
1098  *	initialization to support acceleration of FCoE traffic.
1099  *
1100  * int (*ndo_fcoe_disable)(struct net_device *dev);
1101  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1102  *	so the underlying device can perform whatever needed clean-ups to
1103  *	stop supporting acceleration of FCoE traffic.
1104  *
1105  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1106  *			     struct scatterlist *sgl, unsigned int sgc);
1107  *	Called when the FCoE Initiator wants to initialize an I/O that
1108  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1109  *	perform necessary setup and returns 1 to indicate the device is set up
1110  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1111  *
1112  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1113  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1114  *	indicated by the FC exchange id 'xid', so the underlying device can
1115  *	clean up and reuse resources for later DDP requests.
1116  *
1117  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1118  *			      struct scatterlist *sgl, unsigned int sgc);
1119  *	Called when the FCoE Target wants to initialize an I/O that
1120  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1121  *	perform necessary setup and returns 1 to indicate the device is set up
1122  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1123  *
1124  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1125  *			       struct netdev_fcoe_hbainfo *hbainfo);
1126  *	Called when the FCoE Protocol stack wants information on the underlying
1127  *	device. This information is utilized by the FCoE protocol stack to
1128  *	register attributes with Fiber Channel management service as per the
1129  *	FC-GS Fabric Device Management Information(FDMI) specification.
1130  *
1131  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1132  *	Called when the underlying device wants to override default World Wide
1133  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1134  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1135  *	protocol stack to use.
1136  *
1137  *	RFS acceleration.
1138  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1139  *			    u16 rxq_index, u32 flow_id);
1140  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1141  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1142  *	Return the filter ID on success, or a negative error code.
1143  *
1144  *	Slave management functions (for bridge, bonding, etc).
1145  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1146  *	Called to make another netdev an underling.
1147  *
1148  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1149  *	Called to release previously enslaved netdev.
1150  *
1151  *      Feature/offload setting functions.
1152  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1153  *		netdev_features_t features);
1154  *	Adjusts the requested feature flags according to device-specific
1155  *	constraints, and returns the resulting flags. Must not modify
1156  *	the device state.
1157  *
1158  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1159  *	Called to update device configuration to new features. Passed
1160  *	feature set might be less than what was returned by ndo_fix_features()).
1161  *	Must return >0 or -errno if it changed dev->features itself.
1162  *
1163  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1164  *		      struct net_device *dev,
1165  *		      const unsigned char *addr, u16 vid, u16 flags)
1166  *	Adds an FDB entry to dev for addr.
1167  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1168  *		      struct net_device *dev,
1169  *		      const unsigned char *addr, u16 vid)
1170  *	Deletes the FDB entry from dev coresponding to addr.
1171  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1172  *		       struct net_device *dev, struct net_device *filter_dev,
1173  *		       int *idx)
1174  *	Used to add FDB entries to dump requests. Implementers should add
1175  *	entries to skb and update idx with the number of entries.
1176  *
1177  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1178  *			     u16 flags)
1179  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1180  *			     struct net_device *dev, u32 filter_mask,
1181  *			     int nlflags)
1182  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1183  *			     u16 flags);
1184  *
1185  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1186  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1187  *	which do not represent real hardware may define this to allow their
1188  *	userspace components to manage their virtual carrier state. Devices
1189  *	that determine carrier state from physical hardware properties (eg
1190  *	network cables) or protocol-dependent mechanisms (eg
1191  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1192  *
1193  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1194  *			       struct netdev_phys_item_id *ppid);
1195  *	Called to get ID of physical port of this device. If driver does
1196  *	not implement this, it is assumed that the hw is not able to have
1197  *	multiple net devices on single physical port.
1198  *
1199  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1200  *			      struct udp_tunnel_info *ti);
1201  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1202  *	address family that a UDP tunnel is listnening to. It is called only
1203  *	when a new port starts listening. The operation is protected by the
1204  *	RTNL.
1205  *
1206  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1207  *			      struct udp_tunnel_info *ti);
1208  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1209  *	address family that the UDP tunnel is not listening to anymore. The
1210  *	operation is protected by the RTNL.
1211  *
1212  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1213  *				 struct net_device *dev)
1214  *	Called by upper layer devices to accelerate switching or other
1215  *	station functionality into hardware. 'pdev is the lowerdev
1216  *	to use for the offload and 'dev' is the net device that will
1217  *	back the offload. Returns a pointer to the private structure
1218  *	the upper layer will maintain.
1219  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1220  *	Called by upper layer device to delete the station created
1221  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1222  *	the station and priv is the structure returned by the add
1223  *	operation.
1224  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1225  *			     int queue_index, u32 maxrate);
1226  *	Called when a user wants to set a max-rate limitation of specific
1227  *	TX queue.
1228  * int (*ndo_get_iflink)(const struct net_device *dev);
1229  *	Called to get the iflink value of this device.
1230  * void (*ndo_change_proto_down)(struct net_device *dev,
1231  *				 bool proto_down);
1232  *	This function is used to pass protocol port error state information
1233  *	to the switch driver. The switch driver can react to the proto_down
1234  *      by doing a phys down on the associated switch port.
1235  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1236  *	This function is used to get egress tunnel information for given skb.
1237  *	This is useful for retrieving outer tunnel header parameters while
1238  *	sampling packet.
1239  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1240  *	This function is used to specify the headroom that the skb must
1241  *	consider when allocation skb during packet reception. Setting
1242  *	appropriate rx headroom value allows avoiding skb head copy on
1243  *	forward. Setting a negative value resets the rx headroom to the
1244  *	default value.
1245  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1246  *	This function is used to set or query state related to XDP on the
1247  *	netdevice and manage BPF offload. See definition of
1248  *	enum bpf_netdev_command for details.
1249  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1250  *			u32 flags);
1251  *	This function is used to submit @n XDP packets for transmit on a
1252  *	netdevice. Returns number of frames successfully transmitted, frames
1253  *	that got dropped are freed/returned via xdp_return_frame().
1254  *	Returns negative number, means general error invoking ndo, meaning
1255  *	no frames were xmit'ed and core-caller will free all frames.
1256  */
1257 struct net_device_ops {
1258 	int			(*ndo_init)(struct net_device *dev);
1259 	void			(*ndo_uninit)(struct net_device *dev);
1260 	int			(*ndo_open)(struct net_device *dev);
1261 	int			(*ndo_stop)(struct net_device *dev);
1262 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1263 						  struct net_device *dev);
1264 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1265 						      struct net_device *dev,
1266 						      netdev_features_t features);
1267 	u16			(*ndo_select_queue)(struct net_device *dev,
1268 						    struct sk_buff *skb,
1269 						    struct net_device *sb_dev,
1270 						    select_queue_fallback_t fallback);
1271 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1272 						       int flags);
1273 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1274 	int			(*ndo_set_mac_address)(struct net_device *dev,
1275 						       void *addr);
1276 	int			(*ndo_validate_addr)(struct net_device *dev);
1277 	int			(*ndo_do_ioctl)(struct net_device *dev,
1278 					        struct ifreq *ifr, int cmd);
1279 	int			(*ndo_set_config)(struct net_device *dev,
1280 					          struct ifmap *map);
1281 	int			(*ndo_change_mtu)(struct net_device *dev,
1282 						  int new_mtu);
1283 	int			(*ndo_neigh_setup)(struct net_device *dev,
1284 						   struct neigh_parms *);
1285 	void			(*ndo_tx_timeout) (struct net_device *dev);
1286 
1287 	void			(*ndo_get_stats64)(struct net_device *dev,
1288 						   struct rtnl_link_stats64 *storage);
1289 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1290 	int			(*ndo_get_offload_stats)(int attr_id,
1291 							 const struct net_device *dev,
1292 							 void *attr_data);
1293 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1294 
1295 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1296 						       __be16 proto, u16 vid);
1297 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1298 						        __be16 proto, u16 vid);
1299 #ifdef CONFIG_NET_POLL_CONTROLLER
1300 	void                    (*ndo_poll_controller)(struct net_device *dev);
1301 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1302 						     struct netpoll_info *info);
1303 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1304 #endif
1305 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1306 						  int queue, u8 *mac);
1307 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1308 						   int queue, u16 vlan,
1309 						   u8 qos, __be16 proto);
1310 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1311 						   int vf, int min_tx_rate,
1312 						   int max_tx_rate);
1313 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1314 						       int vf, bool setting);
1315 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1316 						    int vf, bool setting);
1317 	int			(*ndo_get_vf_config)(struct net_device *dev,
1318 						     int vf,
1319 						     struct ifla_vf_info *ivf);
1320 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1321 							 int vf, int link_state);
1322 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1323 						    int vf,
1324 						    struct ifla_vf_stats
1325 						    *vf_stats);
1326 	int			(*ndo_set_vf_port)(struct net_device *dev,
1327 						   int vf,
1328 						   struct nlattr *port[]);
1329 	int			(*ndo_get_vf_port)(struct net_device *dev,
1330 						   int vf, struct sk_buff *skb);
1331 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1332 						   int vf, u64 guid,
1333 						   int guid_type);
1334 	int			(*ndo_set_vf_rss_query_en)(
1335 						   struct net_device *dev,
1336 						   int vf, bool setting);
1337 	int			(*ndo_setup_tc)(struct net_device *dev,
1338 						enum tc_setup_type type,
1339 						void *type_data);
1340 #if IS_ENABLED(CONFIG_FCOE)
1341 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1342 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1343 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1344 						      u16 xid,
1345 						      struct scatterlist *sgl,
1346 						      unsigned int sgc);
1347 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1348 						     u16 xid);
1349 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1350 						       u16 xid,
1351 						       struct scatterlist *sgl,
1352 						       unsigned int sgc);
1353 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1354 							struct netdev_fcoe_hbainfo *hbainfo);
1355 #endif
1356 
1357 #if IS_ENABLED(CONFIG_LIBFCOE)
1358 #define NETDEV_FCOE_WWNN 0
1359 #define NETDEV_FCOE_WWPN 1
1360 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1361 						    u64 *wwn, int type);
1362 #endif
1363 
1364 #ifdef CONFIG_RFS_ACCEL
1365 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1366 						     const struct sk_buff *skb,
1367 						     u16 rxq_index,
1368 						     u32 flow_id);
1369 #endif
1370 	int			(*ndo_add_slave)(struct net_device *dev,
1371 						 struct net_device *slave_dev,
1372 						 struct netlink_ext_ack *extack);
1373 	int			(*ndo_del_slave)(struct net_device *dev,
1374 						 struct net_device *slave_dev);
1375 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1376 						    netdev_features_t features);
1377 	int			(*ndo_set_features)(struct net_device *dev,
1378 						    netdev_features_t features);
1379 	int			(*ndo_neigh_construct)(struct net_device *dev,
1380 						       struct neighbour *n);
1381 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1382 						     struct neighbour *n);
1383 
1384 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1385 					       struct nlattr *tb[],
1386 					       struct net_device *dev,
1387 					       const unsigned char *addr,
1388 					       u16 vid,
1389 					       u16 flags);
1390 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1391 					       struct nlattr *tb[],
1392 					       struct net_device *dev,
1393 					       const unsigned char *addr,
1394 					       u16 vid);
1395 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1396 						struct netlink_callback *cb,
1397 						struct net_device *dev,
1398 						struct net_device *filter_dev,
1399 						int *idx);
1400 
1401 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1402 						      struct nlmsghdr *nlh,
1403 						      u16 flags);
1404 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1405 						      u32 pid, u32 seq,
1406 						      struct net_device *dev,
1407 						      u32 filter_mask,
1408 						      int nlflags);
1409 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1410 						      struct nlmsghdr *nlh,
1411 						      u16 flags);
1412 	int			(*ndo_change_carrier)(struct net_device *dev,
1413 						      bool new_carrier);
1414 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1415 							struct netdev_phys_item_id *ppid);
1416 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1417 							  char *name, size_t len);
1418 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1419 						      struct udp_tunnel_info *ti);
1420 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1421 						      struct udp_tunnel_info *ti);
1422 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1423 							struct net_device *dev);
1424 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1425 							void *priv);
1426 
1427 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1428 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1429 						      int queue_index,
1430 						      u32 maxrate);
1431 	int			(*ndo_get_iflink)(const struct net_device *dev);
1432 	int			(*ndo_change_proto_down)(struct net_device *dev,
1433 							 bool proto_down);
1434 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1435 						       struct sk_buff *skb);
1436 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1437 						       int needed_headroom);
1438 	int			(*ndo_bpf)(struct net_device *dev,
1439 					   struct netdev_bpf *bpf);
1440 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1441 						struct xdp_frame **xdp,
1442 						u32 flags);
1443 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1444 						      u32 queue_id);
1445 };
1446 
1447 /**
1448  * enum net_device_priv_flags - &struct net_device priv_flags
1449  *
1450  * These are the &struct net_device, they are only set internally
1451  * by drivers and used in the kernel. These flags are invisible to
1452  * userspace; this means that the order of these flags can change
1453  * during any kernel release.
1454  *
1455  * You should have a pretty good reason to be extending these flags.
1456  *
1457  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1458  * @IFF_EBRIDGE: Ethernet bridging device
1459  * @IFF_BONDING: bonding master or slave
1460  * @IFF_ISATAP: ISATAP interface (RFC4214)
1461  * @IFF_WAN_HDLC: WAN HDLC device
1462  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1463  *	release skb->dst
1464  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1465  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1466  * @IFF_MACVLAN_PORT: device used as macvlan port
1467  * @IFF_BRIDGE_PORT: device used as bridge port
1468  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1469  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1470  * @IFF_UNICAST_FLT: Supports unicast filtering
1471  * @IFF_TEAM_PORT: device used as team port
1472  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1473  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1474  *	change when it's running
1475  * @IFF_MACVLAN: Macvlan device
1476  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1477  *	underlying stacked devices
1478  * @IFF_L3MDEV_MASTER: device is an L3 master device
1479  * @IFF_NO_QUEUE: device can run without qdisc attached
1480  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1481  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1482  * @IFF_TEAM: device is a team device
1483  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1484  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1485  *	entity (i.e. the master device for bridged veth)
1486  * @IFF_MACSEC: device is a MACsec device
1487  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1488  * @IFF_FAILOVER: device is a failover master device
1489  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1490  */
1491 enum netdev_priv_flags {
1492 	IFF_802_1Q_VLAN			= 1<<0,
1493 	IFF_EBRIDGE			= 1<<1,
1494 	IFF_BONDING			= 1<<2,
1495 	IFF_ISATAP			= 1<<3,
1496 	IFF_WAN_HDLC			= 1<<4,
1497 	IFF_XMIT_DST_RELEASE		= 1<<5,
1498 	IFF_DONT_BRIDGE			= 1<<6,
1499 	IFF_DISABLE_NETPOLL		= 1<<7,
1500 	IFF_MACVLAN_PORT		= 1<<8,
1501 	IFF_BRIDGE_PORT			= 1<<9,
1502 	IFF_OVS_DATAPATH		= 1<<10,
1503 	IFF_TX_SKB_SHARING		= 1<<11,
1504 	IFF_UNICAST_FLT			= 1<<12,
1505 	IFF_TEAM_PORT			= 1<<13,
1506 	IFF_SUPP_NOFCS			= 1<<14,
1507 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1508 	IFF_MACVLAN			= 1<<16,
1509 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1510 	IFF_L3MDEV_MASTER		= 1<<18,
1511 	IFF_NO_QUEUE			= 1<<19,
1512 	IFF_OPENVSWITCH			= 1<<20,
1513 	IFF_L3MDEV_SLAVE		= 1<<21,
1514 	IFF_TEAM			= 1<<22,
1515 	IFF_RXFH_CONFIGURED		= 1<<23,
1516 	IFF_PHONY_HEADROOM		= 1<<24,
1517 	IFF_MACSEC			= 1<<25,
1518 	IFF_NO_RX_HANDLER		= 1<<26,
1519 	IFF_FAILOVER			= 1<<27,
1520 	IFF_FAILOVER_SLAVE		= 1<<28,
1521 };
1522 
1523 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1524 #define IFF_EBRIDGE			IFF_EBRIDGE
1525 #define IFF_BONDING			IFF_BONDING
1526 #define IFF_ISATAP			IFF_ISATAP
1527 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1528 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1529 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1530 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1531 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1532 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1533 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1534 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1535 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1536 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1537 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1538 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1539 #define IFF_MACVLAN			IFF_MACVLAN
1540 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1541 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1542 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1543 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1544 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1545 #define IFF_TEAM			IFF_TEAM
1546 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1547 #define IFF_MACSEC			IFF_MACSEC
1548 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1549 #define IFF_FAILOVER			IFF_FAILOVER
1550 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1551 
1552 /**
1553  *	struct net_device - The DEVICE structure.
1554  *
1555  *	Actually, this whole structure is a big mistake.  It mixes I/O
1556  *	data with strictly "high-level" data, and it has to know about
1557  *	almost every data structure used in the INET module.
1558  *
1559  *	@name:	This is the first field of the "visible" part of this structure
1560  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1561  *		of the interface.
1562  *
1563  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1564  *	@ifalias:	SNMP alias
1565  *	@mem_end:	Shared memory end
1566  *	@mem_start:	Shared memory start
1567  *	@base_addr:	Device I/O address
1568  *	@irq:		Device IRQ number
1569  *
1570  *	@state:		Generic network queuing layer state, see netdev_state_t
1571  *	@dev_list:	The global list of network devices
1572  *	@napi_list:	List entry used for polling NAPI devices
1573  *	@unreg_list:	List entry  when we are unregistering the
1574  *			device; see the function unregister_netdev
1575  *	@close_list:	List entry used when we are closing the device
1576  *	@ptype_all:     Device-specific packet handlers for all protocols
1577  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1578  *
1579  *	@adj_list:	Directly linked devices, like slaves for bonding
1580  *	@features:	Currently active device features
1581  *	@hw_features:	User-changeable features
1582  *
1583  *	@wanted_features:	User-requested features
1584  *	@vlan_features:		Mask of features inheritable by VLAN devices
1585  *
1586  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1587  *				This field indicates what encapsulation
1588  *				offloads the hardware is capable of doing,
1589  *				and drivers will need to set them appropriately.
1590  *
1591  *	@mpls_features:	Mask of features inheritable by MPLS
1592  *
1593  *	@ifindex:	interface index
1594  *	@group:		The group the device belongs to
1595  *
1596  *	@stats:		Statistics struct, which was left as a legacy, use
1597  *			rtnl_link_stats64 instead
1598  *
1599  *	@rx_dropped:	Dropped packets by core network,
1600  *			do not use this in drivers
1601  *	@tx_dropped:	Dropped packets by core network,
1602  *			do not use this in drivers
1603  *	@rx_nohandler:	nohandler dropped packets by core network on
1604  *			inactive devices, do not use this in drivers
1605  *	@carrier_up_count:	Number of times the carrier has been up
1606  *	@carrier_down_count:	Number of times the carrier has been down
1607  *
1608  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1609  *				instead of ioctl,
1610  *				see <net/iw_handler.h> for details.
1611  *	@wireless_data:	Instance data managed by the core of wireless extensions
1612  *
1613  *	@netdev_ops:	Includes several pointers to callbacks,
1614  *			if one wants to override the ndo_*() functions
1615  *	@ethtool_ops:	Management operations
1616  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1617  *			discovery handling. Necessary for e.g. 6LoWPAN.
1618  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1619  *			of Layer 2 headers.
1620  *
1621  *	@flags:		Interface flags (a la BSD)
1622  *	@priv_flags:	Like 'flags' but invisible to userspace,
1623  *			see if.h for the definitions
1624  *	@gflags:	Global flags ( kept as legacy )
1625  *	@padded:	How much padding added by alloc_netdev()
1626  *	@operstate:	RFC2863 operstate
1627  *	@link_mode:	Mapping policy to operstate
1628  *	@if_port:	Selectable AUI, TP, ...
1629  *	@dma:		DMA channel
1630  *	@mtu:		Interface MTU value
1631  *	@min_mtu:	Interface Minimum MTU value
1632  *	@max_mtu:	Interface Maximum MTU value
1633  *	@type:		Interface hardware type
1634  *	@hard_header_len: Maximum hardware header length.
1635  *	@min_header_len:  Minimum hardware header length
1636  *
1637  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1638  *			  cases can this be guaranteed
1639  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1640  *			  cases can this be guaranteed. Some cases also use
1641  *			  LL_MAX_HEADER instead to allocate the skb
1642  *
1643  *	interface address info:
1644  *
1645  * 	@perm_addr:		Permanent hw address
1646  * 	@addr_assign_type:	Hw address assignment type
1647  * 	@addr_len:		Hardware address length
1648  *	@neigh_priv_len:	Used in neigh_alloc()
1649  * 	@dev_id:		Used to differentiate devices that share
1650  * 				the same link layer address
1651  * 	@dev_port:		Used to differentiate devices that share
1652  * 				the same function
1653  *	@addr_list_lock:	XXX: need comments on this one
1654  *	@uc_promisc:		Counter that indicates promiscuous mode
1655  *				has been enabled due to the need to listen to
1656  *				additional unicast addresses in a device that
1657  *				does not implement ndo_set_rx_mode()
1658  *	@uc:			unicast mac addresses
1659  *	@mc:			multicast mac addresses
1660  *	@dev_addrs:		list of device hw addresses
1661  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1662  *	@promiscuity:		Number of times the NIC is told to work in
1663  *				promiscuous mode; if it becomes 0 the NIC will
1664  *				exit promiscuous mode
1665  *	@allmulti:		Counter, enables or disables allmulticast mode
1666  *
1667  *	@vlan_info:	VLAN info
1668  *	@dsa_ptr:	dsa specific data
1669  *	@tipc_ptr:	TIPC specific data
1670  *	@atalk_ptr:	AppleTalk link
1671  *	@ip_ptr:	IPv4 specific data
1672  *	@dn_ptr:	DECnet specific data
1673  *	@ip6_ptr:	IPv6 specific data
1674  *	@ax25_ptr:	AX.25 specific data
1675  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1676  *
1677  *	@dev_addr:	Hw address (before bcast,
1678  *			because most packets are unicast)
1679  *
1680  *	@_rx:			Array of RX queues
1681  *	@num_rx_queues:		Number of RX queues
1682  *				allocated at register_netdev() time
1683  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1684  *
1685  *	@rx_handler:		handler for received packets
1686  *	@rx_handler_data: 	XXX: need comments on this one
1687  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1688  *				ingress processing
1689  *	@ingress_queue:		XXX: need comments on this one
1690  *	@broadcast:		hw bcast address
1691  *
1692  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1693  *			indexed by RX queue number. Assigned by driver.
1694  *			This must only be set if the ndo_rx_flow_steer
1695  *			operation is defined
1696  *	@index_hlist:		Device index hash chain
1697  *
1698  *	@_tx:			Array of TX queues
1699  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1700  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1701  *	@qdisc:			Root qdisc from userspace point of view
1702  *	@tx_queue_len:		Max frames per queue allowed
1703  *	@tx_global_lock: 	XXX: need comments on this one
1704  *
1705  *	@xps_maps:	XXX: need comments on this one
1706  *	@miniq_egress:		clsact qdisc specific data for
1707  *				egress processing
1708  *	@watchdog_timeo:	Represents the timeout that is used by
1709  *				the watchdog (see dev_watchdog())
1710  *	@watchdog_timer:	List of timers
1711  *
1712  *	@pcpu_refcnt:		Number of references to this device
1713  *	@todo_list:		Delayed register/unregister
1714  *	@link_watch_list:	XXX: need comments on this one
1715  *
1716  *	@reg_state:		Register/unregister state machine
1717  *	@dismantle:		Device is going to be freed
1718  *	@rtnl_link_state:	This enum represents the phases of creating
1719  *				a new link
1720  *
1721  *	@needs_free_netdev:	Should unregister perform free_netdev?
1722  *	@priv_destructor:	Called from unregister
1723  *	@npinfo:		XXX: need comments on this one
1724  * 	@nd_net:		Network namespace this network device is inside
1725  *
1726  * 	@ml_priv:	Mid-layer private
1727  * 	@lstats:	Loopback statistics
1728  * 	@tstats:	Tunnel statistics
1729  * 	@dstats:	Dummy statistics
1730  * 	@vstats:	Virtual ethernet statistics
1731  *
1732  *	@garp_port:	GARP
1733  *	@mrp_port:	MRP
1734  *
1735  *	@dev:		Class/net/name entry
1736  *	@sysfs_groups:	Space for optional device, statistics and wireless
1737  *			sysfs groups
1738  *
1739  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1740  *	@rtnl_link_ops:	Rtnl_link_ops
1741  *
1742  *	@gso_max_size:	Maximum size of generic segmentation offload
1743  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1744  *			NIC for GSO
1745  *
1746  *	@dcbnl_ops:	Data Center Bridging netlink ops
1747  *	@num_tc:	Number of traffic classes in the net device
1748  *	@tc_to_txq:	XXX: need comments on this one
1749  *	@prio_tc_map:	XXX: need comments on this one
1750  *
1751  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1752  *
1753  *	@priomap:	XXX: need comments on this one
1754  *	@phydev:	Physical device may attach itself
1755  *			for hardware timestamping
1756  *	@sfp_bus:	attached &struct sfp_bus structure.
1757  *
1758  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1759  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1760  *
1761  *	@proto_down:	protocol port state information can be sent to the
1762  *			switch driver and used to set the phys state of the
1763  *			switch port.
1764  *
1765  *	@wol_enabled:	Wake-on-LAN is enabled
1766  *
1767  *	FIXME: cleanup struct net_device such that network protocol info
1768  *	moves out.
1769  */
1770 
1771 struct net_device {
1772 	char			name[IFNAMSIZ];
1773 	struct hlist_node	name_hlist;
1774 	struct dev_ifalias	__rcu *ifalias;
1775 	/*
1776 	 *	I/O specific fields
1777 	 *	FIXME: Merge these and struct ifmap into one
1778 	 */
1779 	unsigned long		mem_end;
1780 	unsigned long		mem_start;
1781 	unsigned long		base_addr;
1782 	int			irq;
1783 
1784 	/*
1785 	 *	Some hardware also needs these fields (state,dev_list,
1786 	 *	napi_list,unreg_list,close_list) but they are not
1787 	 *	part of the usual set specified in Space.c.
1788 	 */
1789 
1790 	unsigned long		state;
1791 
1792 	struct list_head	dev_list;
1793 	struct list_head	napi_list;
1794 	struct list_head	unreg_list;
1795 	struct list_head	close_list;
1796 	struct list_head	ptype_all;
1797 	struct list_head	ptype_specific;
1798 
1799 	struct {
1800 		struct list_head upper;
1801 		struct list_head lower;
1802 	} adj_list;
1803 
1804 	netdev_features_t	features;
1805 	netdev_features_t	hw_features;
1806 	netdev_features_t	wanted_features;
1807 	netdev_features_t	vlan_features;
1808 	netdev_features_t	hw_enc_features;
1809 	netdev_features_t	mpls_features;
1810 	netdev_features_t	gso_partial_features;
1811 
1812 	int			ifindex;
1813 	int			group;
1814 
1815 	struct net_device_stats	stats;
1816 
1817 	atomic_long_t		rx_dropped;
1818 	atomic_long_t		tx_dropped;
1819 	atomic_long_t		rx_nohandler;
1820 
1821 	/* Stats to monitor link on/off, flapping */
1822 	atomic_t		carrier_up_count;
1823 	atomic_t		carrier_down_count;
1824 
1825 #ifdef CONFIG_WIRELESS_EXT
1826 	const struct iw_handler_def *wireless_handlers;
1827 	struct iw_public_data	*wireless_data;
1828 #endif
1829 	const struct net_device_ops *netdev_ops;
1830 	const struct ethtool_ops *ethtool_ops;
1831 #ifdef CONFIG_NET_SWITCHDEV
1832 	const struct switchdev_ops *switchdev_ops;
1833 #endif
1834 #ifdef CONFIG_NET_L3_MASTER_DEV
1835 	const struct l3mdev_ops	*l3mdev_ops;
1836 #endif
1837 #if IS_ENABLED(CONFIG_IPV6)
1838 	const struct ndisc_ops *ndisc_ops;
1839 #endif
1840 
1841 #ifdef CONFIG_XFRM_OFFLOAD
1842 	const struct xfrmdev_ops *xfrmdev_ops;
1843 #endif
1844 
1845 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1846 	const struct tlsdev_ops *tlsdev_ops;
1847 #endif
1848 
1849 	const struct header_ops *header_ops;
1850 
1851 	unsigned int		flags;
1852 	unsigned int		priv_flags;
1853 
1854 	unsigned short		gflags;
1855 	unsigned short		padded;
1856 
1857 	unsigned char		operstate;
1858 	unsigned char		link_mode;
1859 
1860 	unsigned char		if_port;
1861 	unsigned char		dma;
1862 
1863 	unsigned int		mtu;
1864 	unsigned int		min_mtu;
1865 	unsigned int		max_mtu;
1866 	unsigned short		type;
1867 	unsigned short		hard_header_len;
1868 	unsigned char		min_header_len;
1869 
1870 	unsigned short		needed_headroom;
1871 	unsigned short		needed_tailroom;
1872 
1873 	/* Interface address info. */
1874 	unsigned char		perm_addr[MAX_ADDR_LEN];
1875 	unsigned char		addr_assign_type;
1876 	unsigned char		addr_len;
1877 	unsigned short		neigh_priv_len;
1878 	unsigned short          dev_id;
1879 	unsigned short          dev_port;
1880 	spinlock_t		addr_list_lock;
1881 	unsigned char		name_assign_type;
1882 	bool			uc_promisc;
1883 	struct netdev_hw_addr_list	uc;
1884 	struct netdev_hw_addr_list	mc;
1885 	struct netdev_hw_addr_list	dev_addrs;
1886 
1887 #ifdef CONFIG_SYSFS
1888 	struct kset		*queues_kset;
1889 #endif
1890 	unsigned int		promiscuity;
1891 	unsigned int		allmulti;
1892 
1893 
1894 	/* Protocol-specific pointers */
1895 
1896 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1897 	struct vlan_info __rcu	*vlan_info;
1898 #endif
1899 #if IS_ENABLED(CONFIG_NET_DSA)
1900 	struct dsa_port		*dsa_ptr;
1901 #endif
1902 #if IS_ENABLED(CONFIG_TIPC)
1903 	struct tipc_bearer __rcu *tipc_ptr;
1904 #endif
1905 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1906 	void 			*atalk_ptr;
1907 #endif
1908 	struct in_device __rcu	*ip_ptr;
1909 #if IS_ENABLED(CONFIG_DECNET)
1910 	struct dn_dev __rcu     *dn_ptr;
1911 #endif
1912 	struct inet6_dev __rcu	*ip6_ptr;
1913 #if IS_ENABLED(CONFIG_AX25)
1914 	void			*ax25_ptr;
1915 #endif
1916 	struct wireless_dev	*ieee80211_ptr;
1917 	struct wpan_dev		*ieee802154_ptr;
1918 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1919 	struct mpls_dev __rcu	*mpls_ptr;
1920 #endif
1921 
1922 /*
1923  * Cache lines mostly used on receive path (including eth_type_trans())
1924  */
1925 	/* Interface address info used in eth_type_trans() */
1926 	unsigned char		*dev_addr;
1927 
1928 	struct netdev_rx_queue	*_rx;
1929 	unsigned int		num_rx_queues;
1930 	unsigned int		real_num_rx_queues;
1931 
1932 	struct bpf_prog __rcu	*xdp_prog;
1933 	unsigned long		gro_flush_timeout;
1934 	rx_handler_func_t __rcu	*rx_handler;
1935 	void __rcu		*rx_handler_data;
1936 
1937 #ifdef CONFIG_NET_CLS_ACT
1938 	struct mini_Qdisc __rcu	*miniq_ingress;
1939 #endif
1940 	struct netdev_queue __rcu *ingress_queue;
1941 #ifdef CONFIG_NETFILTER_INGRESS
1942 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1943 #endif
1944 
1945 	unsigned char		broadcast[MAX_ADDR_LEN];
1946 #ifdef CONFIG_RFS_ACCEL
1947 	struct cpu_rmap		*rx_cpu_rmap;
1948 #endif
1949 	struct hlist_node	index_hlist;
1950 
1951 /*
1952  * Cache lines mostly used on transmit path
1953  */
1954 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1955 	unsigned int		num_tx_queues;
1956 	unsigned int		real_num_tx_queues;
1957 	struct Qdisc		*qdisc;
1958 #ifdef CONFIG_NET_SCHED
1959 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1960 #endif
1961 	unsigned int		tx_queue_len;
1962 	spinlock_t		tx_global_lock;
1963 	int			watchdog_timeo;
1964 
1965 #ifdef CONFIG_XPS
1966 	struct xps_dev_maps __rcu *xps_cpus_map;
1967 	struct xps_dev_maps __rcu *xps_rxqs_map;
1968 #endif
1969 #ifdef CONFIG_NET_CLS_ACT
1970 	struct mini_Qdisc __rcu	*miniq_egress;
1971 #endif
1972 
1973 	/* These may be needed for future network-power-down code. */
1974 	struct timer_list	watchdog_timer;
1975 
1976 	int __percpu		*pcpu_refcnt;
1977 	struct list_head	todo_list;
1978 
1979 	struct list_head	link_watch_list;
1980 
1981 	enum { NETREG_UNINITIALIZED=0,
1982 	       NETREG_REGISTERED,	/* completed register_netdevice */
1983 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1984 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1985 	       NETREG_RELEASED,		/* called free_netdev */
1986 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1987 	} reg_state:8;
1988 
1989 	bool dismantle;
1990 
1991 	enum {
1992 		RTNL_LINK_INITIALIZED,
1993 		RTNL_LINK_INITIALIZING,
1994 	} rtnl_link_state:16;
1995 
1996 	bool needs_free_netdev;
1997 	void (*priv_destructor)(struct net_device *dev);
1998 
1999 #ifdef CONFIG_NETPOLL
2000 	struct netpoll_info __rcu	*npinfo;
2001 #endif
2002 
2003 	possible_net_t			nd_net;
2004 
2005 	/* mid-layer private */
2006 	union {
2007 		void					*ml_priv;
2008 		struct pcpu_lstats __percpu		*lstats;
2009 		struct pcpu_sw_netstats __percpu	*tstats;
2010 		struct pcpu_dstats __percpu		*dstats;
2011 	};
2012 
2013 #if IS_ENABLED(CONFIG_GARP)
2014 	struct garp_port __rcu	*garp_port;
2015 #endif
2016 #if IS_ENABLED(CONFIG_MRP)
2017 	struct mrp_port __rcu	*mrp_port;
2018 #endif
2019 
2020 	struct device		dev;
2021 	const struct attribute_group *sysfs_groups[4];
2022 	const struct attribute_group *sysfs_rx_queue_group;
2023 
2024 	const struct rtnl_link_ops *rtnl_link_ops;
2025 
2026 	/* for setting kernel sock attribute on TCP connection setup */
2027 #define GSO_MAX_SIZE		65536
2028 	unsigned int		gso_max_size;
2029 #define GSO_MAX_SEGS		65535
2030 	u16			gso_max_segs;
2031 
2032 #ifdef CONFIG_DCB
2033 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2034 #endif
2035 	s16			num_tc;
2036 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2037 	u8			prio_tc_map[TC_BITMASK + 1];
2038 
2039 #if IS_ENABLED(CONFIG_FCOE)
2040 	unsigned int		fcoe_ddp_xid;
2041 #endif
2042 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2043 	struct netprio_map __rcu *priomap;
2044 #endif
2045 	struct phy_device	*phydev;
2046 	struct sfp_bus		*sfp_bus;
2047 	struct lock_class_key	*qdisc_tx_busylock;
2048 	struct lock_class_key	*qdisc_running_key;
2049 	bool			proto_down;
2050 	unsigned		wol_enabled:1;
2051 };
2052 #define to_net_dev(d) container_of(d, struct net_device, dev)
2053 
2054 static inline bool netif_elide_gro(const struct net_device *dev)
2055 {
2056 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2057 		return true;
2058 	return false;
2059 }
2060 
2061 #define	NETDEV_ALIGN		32
2062 
2063 static inline
2064 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2065 {
2066 	return dev->prio_tc_map[prio & TC_BITMASK];
2067 }
2068 
2069 static inline
2070 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2071 {
2072 	if (tc >= dev->num_tc)
2073 		return -EINVAL;
2074 
2075 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2076 	return 0;
2077 }
2078 
2079 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2080 void netdev_reset_tc(struct net_device *dev);
2081 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2082 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2083 
2084 static inline
2085 int netdev_get_num_tc(struct net_device *dev)
2086 {
2087 	return dev->num_tc;
2088 }
2089 
2090 void netdev_unbind_sb_channel(struct net_device *dev,
2091 			      struct net_device *sb_dev);
2092 int netdev_bind_sb_channel_queue(struct net_device *dev,
2093 				 struct net_device *sb_dev,
2094 				 u8 tc, u16 count, u16 offset);
2095 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2096 static inline int netdev_get_sb_channel(struct net_device *dev)
2097 {
2098 	return max_t(int, -dev->num_tc, 0);
2099 }
2100 
2101 static inline
2102 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2103 					 unsigned int index)
2104 {
2105 	return &dev->_tx[index];
2106 }
2107 
2108 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2109 						    const struct sk_buff *skb)
2110 {
2111 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2112 }
2113 
2114 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2115 					    void (*f)(struct net_device *,
2116 						      struct netdev_queue *,
2117 						      void *),
2118 					    void *arg)
2119 {
2120 	unsigned int i;
2121 
2122 	for (i = 0; i < dev->num_tx_queues; i++)
2123 		f(dev, &dev->_tx[i], arg);
2124 }
2125 
2126 #define netdev_lockdep_set_classes(dev)				\
2127 {								\
2128 	static struct lock_class_key qdisc_tx_busylock_key;	\
2129 	static struct lock_class_key qdisc_running_key;		\
2130 	static struct lock_class_key qdisc_xmit_lock_key;	\
2131 	static struct lock_class_key dev_addr_list_lock_key;	\
2132 	unsigned int i;						\
2133 								\
2134 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2135 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2136 	lockdep_set_class(&(dev)->addr_list_lock,		\
2137 			  &dev_addr_list_lock_key); 		\
2138 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2139 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2140 				  &qdisc_xmit_lock_key);	\
2141 }
2142 
2143 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2144 				    struct sk_buff *skb,
2145 				    struct net_device *sb_dev);
2146 
2147 /* returns the headroom that the master device needs to take in account
2148  * when forwarding to this dev
2149  */
2150 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2151 {
2152 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2153 }
2154 
2155 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2156 {
2157 	if (dev->netdev_ops->ndo_set_rx_headroom)
2158 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2159 }
2160 
2161 /* set the device rx headroom to the dev's default */
2162 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2163 {
2164 	netdev_set_rx_headroom(dev, -1);
2165 }
2166 
2167 /*
2168  * Net namespace inlines
2169  */
2170 static inline
2171 struct net *dev_net(const struct net_device *dev)
2172 {
2173 	return read_pnet(&dev->nd_net);
2174 }
2175 
2176 static inline
2177 void dev_net_set(struct net_device *dev, struct net *net)
2178 {
2179 	write_pnet(&dev->nd_net, net);
2180 }
2181 
2182 /**
2183  *	netdev_priv - access network device private data
2184  *	@dev: network device
2185  *
2186  * Get network device private data
2187  */
2188 static inline void *netdev_priv(const struct net_device *dev)
2189 {
2190 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2191 }
2192 
2193 /* Set the sysfs physical device reference for the network logical device
2194  * if set prior to registration will cause a symlink during initialization.
2195  */
2196 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2197 
2198 /* Set the sysfs device type for the network logical device to allow
2199  * fine-grained identification of different network device types. For
2200  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2201  */
2202 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2203 
2204 /* Default NAPI poll() weight
2205  * Device drivers are strongly advised to not use bigger value
2206  */
2207 #define NAPI_POLL_WEIGHT 64
2208 
2209 /**
2210  *	netif_napi_add - initialize a NAPI context
2211  *	@dev:  network device
2212  *	@napi: NAPI context
2213  *	@poll: polling function
2214  *	@weight: default weight
2215  *
2216  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2217  * *any* of the other NAPI-related functions.
2218  */
2219 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2220 		    int (*poll)(struct napi_struct *, int), int weight);
2221 
2222 /**
2223  *	netif_tx_napi_add - initialize a NAPI context
2224  *	@dev:  network device
2225  *	@napi: NAPI context
2226  *	@poll: polling function
2227  *	@weight: default weight
2228  *
2229  * This variant of netif_napi_add() should be used from drivers using NAPI
2230  * to exclusively poll a TX queue.
2231  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2232  */
2233 static inline void netif_tx_napi_add(struct net_device *dev,
2234 				     struct napi_struct *napi,
2235 				     int (*poll)(struct napi_struct *, int),
2236 				     int weight)
2237 {
2238 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2239 	netif_napi_add(dev, napi, poll, weight);
2240 }
2241 
2242 /**
2243  *  netif_napi_del - remove a NAPI context
2244  *  @napi: NAPI context
2245  *
2246  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2247  */
2248 void netif_napi_del(struct napi_struct *napi);
2249 
2250 struct napi_gro_cb {
2251 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2252 	void	*frag0;
2253 
2254 	/* Length of frag0. */
2255 	unsigned int frag0_len;
2256 
2257 	/* This indicates where we are processing relative to skb->data. */
2258 	int	data_offset;
2259 
2260 	/* This is non-zero if the packet cannot be merged with the new skb. */
2261 	u16	flush;
2262 
2263 	/* Save the IP ID here and check when we get to the transport layer */
2264 	u16	flush_id;
2265 
2266 	/* Number of segments aggregated. */
2267 	u16	count;
2268 
2269 	/* Start offset for remote checksum offload */
2270 	u16	gro_remcsum_start;
2271 
2272 	/* jiffies when first packet was created/queued */
2273 	unsigned long age;
2274 
2275 	/* Used in ipv6_gro_receive() and foo-over-udp */
2276 	u16	proto;
2277 
2278 	/* This is non-zero if the packet may be of the same flow. */
2279 	u8	same_flow:1;
2280 
2281 	/* Used in tunnel GRO receive */
2282 	u8	encap_mark:1;
2283 
2284 	/* GRO checksum is valid */
2285 	u8	csum_valid:1;
2286 
2287 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2288 	u8	csum_cnt:3;
2289 
2290 	/* Free the skb? */
2291 	u8	free:2;
2292 #define NAPI_GRO_FREE		  1
2293 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2294 
2295 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2296 	u8	is_ipv6:1;
2297 
2298 	/* Used in GRE, set in fou/gue_gro_receive */
2299 	u8	is_fou:1;
2300 
2301 	/* Used to determine if flush_id can be ignored */
2302 	u8	is_atomic:1;
2303 
2304 	/* Number of gro_receive callbacks this packet already went through */
2305 	u8 recursion_counter:4;
2306 
2307 	/* 1 bit hole */
2308 
2309 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2310 	__wsum	csum;
2311 
2312 	/* used in skb_gro_receive() slow path */
2313 	struct sk_buff *last;
2314 };
2315 
2316 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2317 
2318 #define GRO_RECURSION_LIMIT 15
2319 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2320 {
2321 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2322 }
2323 
2324 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2325 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2326 					       struct list_head *head,
2327 					       struct sk_buff *skb)
2328 {
2329 	if (unlikely(gro_recursion_inc_test(skb))) {
2330 		NAPI_GRO_CB(skb)->flush |= 1;
2331 		return NULL;
2332 	}
2333 
2334 	return cb(head, skb);
2335 }
2336 
2337 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2338 					    struct sk_buff *);
2339 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2340 						  struct sock *sk,
2341 						  struct list_head *head,
2342 						  struct sk_buff *skb)
2343 {
2344 	if (unlikely(gro_recursion_inc_test(skb))) {
2345 		NAPI_GRO_CB(skb)->flush |= 1;
2346 		return NULL;
2347 	}
2348 
2349 	return cb(sk, head, skb);
2350 }
2351 
2352 struct packet_type {
2353 	__be16			type;	/* This is really htons(ether_type). */
2354 	bool			ignore_outgoing;
2355 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2356 	int			(*func) (struct sk_buff *,
2357 					 struct net_device *,
2358 					 struct packet_type *,
2359 					 struct net_device *);
2360 	void			(*list_func) (struct list_head *,
2361 					      struct packet_type *,
2362 					      struct net_device *);
2363 	bool			(*id_match)(struct packet_type *ptype,
2364 					    struct sock *sk);
2365 	void			*af_packet_priv;
2366 	struct list_head	list;
2367 };
2368 
2369 struct offload_callbacks {
2370 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2371 						netdev_features_t features);
2372 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2373 						struct sk_buff *skb);
2374 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2375 };
2376 
2377 struct packet_offload {
2378 	__be16			 type;	/* This is really htons(ether_type). */
2379 	u16			 priority;
2380 	struct offload_callbacks callbacks;
2381 	struct list_head	 list;
2382 };
2383 
2384 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2385 struct pcpu_sw_netstats {
2386 	u64     rx_packets;
2387 	u64     rx_bytes;
2388 	u64     tx_packets;
2389 	u64     tx_bytes;
2390 	struct u64_stats_sync   syncp;
2391 };
2392 
2393 struct pcpu_lstats {
2394 	u64 packets;
2395 	u64 bytes;
2396 	struct u64_stats_sync syncp;
2397 };
2398 
2399 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2400 ({									\
2401 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2402 	if (pcpu_stats)	{						\
2403 		int __cpu;						\
2404 		for_each_possible_cpu(__cpu) {				\
2405 			typeof(type) *stat;				\
2406 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2407 			u64_stats_init(&stat->syncp);			\
2408 		}							\
2409 	}								\
2410 	pcpu_stats;							\
2411 })
2412 
2413 #define netdev_alloc_pcpu_stats(type)					\
2414 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2415 
2416 enum netdev_lag_tx_type {
2417 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2418 	NETDEV_LAG_TX_TYPE_RANDOM,
2419 	NETDEV_LAG_TX_TYPE_BROADCAST,
2420 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2421 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2422 	NETDEV_LAG_TX_TYPE_HASH,
2423 };
2424 
2425 enum netdev_lag_hash {
2426 	NETDEV_LAG_HASH_NONE,
2427 	NETDEV_LAG_HASH_L2,
2428 	NETDEV_LAG_HASH_L34,
2429 	NETDEV_LAG_HASH_L23,
2430 	NETDEV_LAG_HASH_E23,
2431 	NETDEV_LAG_HASH_E34,
2432 	NETDEV_LAG_HASH_UNKNOWN,
2433 };
2434 
2435 struct netdev_lag_upper_info {
2436 	enum netdev_lag_tx_type tx_type;
2437 	enum netdev_lag_hash hash_type;
2438 };
2439 
2440 struct netdev_lag_lower_state_info {
2441 	u8 link_up : 1,
2442 	   tx_enabled : 1;
2443 };
2444 
2445 #include <linux/notifier.h>
2446 
2447 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2448  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2449  * adding new types.
2450  */
2451 enum netdev_cmd {
2452 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2453 	NETDEV_DOWN,
2454 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2455 				   detected a hardware crash and restarted
2456 				   - we can use this eg to kick tcp sessions
2457 				   once done */
2458 	NETDEV_CHANGE,		/* Notify device state change */
2459 	NETDEV_REGISTER,
2460 	NETDEV_UNREGISTER,
2461 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2462 	NETDEV_CHANGEADDR,
2463 	NETDEV_GOING_DOWN,
2464 	NETDEV_CHANGENAME,
2465 	NETDEV_FEAT_CHANGE,
2466 	NETDEV_BONDING_FAILOVER,
2467 	NETDEV_PRE_UP,
2468 	NETDEV_PRE_TYPE_CHANGE,
2469 	NETDEV_POST_TYPE_CHANGE,
2470 	NETDEV_POST_INIT,
2471 	NETDEV_RELEASE,
2472 	NETDEV_NOTIFY_PEERS,
2473 	NETDEV_JOIN,
2474 	NETDEV_CHANGEUPPER,
2475 	NETDEV_RESEND_IGMP,
2476 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2477 	NETDEV_CHANGEINFODATA,
2478 	NETDEV_BONDING_INFO,
2479 	NETDEV_PRECHANGEUPPER,
2480 	NETDEV_CHANGELOWERSTATE,
2481 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2482 	NETDEV_UDP_TUNNEL_DROP_INFO,
2483 	NETDEV_CHANGE_TX_QUEUE_LEN,
2484 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2485 	NETDEV_CVLAN_FILTER_DROP_INFO,
2486 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2487 	NETDEV_SVLAN_FILTER_DROP_INFO,
2488 };
2489 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2490 
2491 int register_netdevice_notifier(struct notifier_block *nb);
2492 int unregister_netdevice_notifier(struct notifier_block *nb);
2493 
2494 struct netdev_notifier_info {
2495 	struct net_device	*dev;
2496 	struct netlink_ext_ack	*extack;
2497 };
2498 
2499 struct netdev_notifier_info_ext {
2500 	struct netdev_notifier_info info; /* must be first */
2501 	union {
2502 		u32 mtu;
2503 	} ext;
2504 };
2505 
2506 struct netdev_notifier_change_info {
2507 	struct netdev_notifier_info info; /* must be first */
2508 	unsigned int flags_changed;
2509 };
2510 
2511 struct netdev_notifier_changeupper_info {
2512 	struct netdev_notifier_info info; /* must be first */
2513 	struct net_device *upper_dev; /* new upper dev */
2514 	bool master; /* is upper dev master */
2515 	bool linking; /* is the notification for link or unlink */
2516 	void *upper_info; /* upper dev info */
2517 };
2518 
2519 struct netdev_notifier_changelowerstate_info {
2520 	struct netdev_notifier_info info; /* must be first */
2521 	void *lower_state_info; /* is lower dev state */
2522 };
2523 
2524 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2525 					     struct net_device *dev)
2526 {
2527 	info->dev = dev;
2528 	info->extack = NULL;
2529 }
2530 
2531 static inline struct net_device *
2532 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2533 {
2534 	return info->dev;
2535 }
2536 
2537 static inline struct netlink_ext_ack *
2538 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2539 {
2540 	return info->extack;
2541 }
2542 
2543 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2544 
2545 
2546 extern rwlock_t				dev_base_lock;		/* Device list lock */
2547 
2548 #define for_each_netdev(net, d)		\
2549 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2550 #define for_each_netdev_reverse(net, d)	\
2551 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2552 #define for_each_netdev_rcu(net, d)		\
2553 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2554 #define for_each_netdev_safe(net, d, n)	\
2555 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2556 #define for_each_netdev_continue(net, d)		\
2557 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2558 #define for_each_netdev_continue_rcu(net, d)		\
2559 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2560 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2561 		for_each_netdev_rcu(&init_net, slave)	\
2562 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2563 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2564 
2565 static inline struct net_device *next_net_device(struct net_device *dev)
2566 {
2567 	struct list_head *lh;
2568 	struct net *net;
2569 
2570 	net = dev_net(dev);
2571 	lh = dev->dev_list.next;
2572 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2573 }
2574 
2575 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2576 {
2577 	struct list_head *lh;
2578 	struct net *net;
2579 
2580 	net = dev_net(dev);
2581 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2582 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2583 }
2584 
2585 static inline struct net_device *first_net_device(struct net *net)
2586 {
2587 	return list_empty(&net->dev_base_head) ? NULL :
2588 		net_device_entry(net->dev_base_head.next);
2589 }
2590 
2591 static inline struct net_device *first_net_device_rcu(struct net *net)
2592 {
2593 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2594 
2595 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2596 }
2597 
2598 int netdev_boot_setup_check(struct net_device *dev);
2599 unsigned long netdev_boot_base(const char *prefix, int unit);
2600 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2601 				       const char *hwaddr);
2602 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2603 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2604 void dev_add_pack(struct packet_type *pt);
2605 void dev_remove_pack(struct packet_type *pt);
2606 void __dev_remove_pack(struct packet_type *pt);
2607 void dev_add_offload(struct packet_offload *po);
2608 void dev_remove_offload(struct packet_offload *po);
2609 
2610 int dev_get_iflink(const struct net_device *dev);
2611 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2612 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2613 				      unsigned short mask);
2614 struct net_device *dev_get_by_name(struct net *net, const char *name);
2615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2616 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2617 int dev_alloc_name(struct net_device *dev, const char *name);
2618 int dev_open(struct net_device *dev);
2619 void dev_close(struct net_device *dev);
2620 void dev_close_many(struct list_head *head, bool unlink);
2621 void dev_disable_lro(struct net_device *dev);
2622 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2623 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2624 		     struct net_device *sb_dev,
2625 		     select_queue_fallback_t fallback);
2626 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2627 		       struct net_device *sb_dev,
2628 		       select_queue_fallback_t fallback);
2629 int dev_queue_xmit(struct sk_buff *skb);
2630 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2631 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2632 int register_netdevice(struct net_device *dev);
2633 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2634 void unregister_netdevice_many(struct list_head *head);
2635 static inline void unregister_netdevice(struct net_device *dev)
2636 {
2637 	unregister_netdevice_queue(dev, NULL);
2638 }
2639 
2640 int netdev_refcnt_read(const struct net_device *dev);
2641 void free_netdev(struct net_device *dev);
2642 void netdev_freemem(struct net_device *dev);
2643 void synchronize_net(void);
2644 int init_dummy_netdev(struct net_device *dev);
2645 
2646 DECLARE_PER_CPU(int, xmit_recursion);
2647 #define XMIT_RECURSION_LIMIT	10
2648 
2649 static inline int dev_recursion_level(void)
2650 {
2651 	return this_cpu_read(xmit_recursion);
2652 }
2653 
2654 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2655 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2656 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2657 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2658 int netdev_get_name(struct net *net, char *name, int ifindex);
2659 int dev_restart(struct net_device *dev);
2660 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2661 
2662 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2663 {
2664 	return NAPI_GRO_CB(skb)->data_offset;
2665 }
2666 
2667 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2668 {
2669 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2670 }
2671 
2672 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2673 {
2674 	NAPI_GRO_CB(skb)->data_offset += len;
2675 }
2676 
2677 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2678 					unsigned int offset)
2679 {
2680 	return NAPI_GRO_CB(skb)->frag0 + offset;
2681 }
2682 
2683 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2684 {
2685 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2686 }
2687 
2688 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2689 {
2690 	NAPI_GRO_CB(skb)->frag0 = NULL;
2691 	NAPI_GRO_CB(skb)->frag0_len = 0;
2692 }
2693 
2694 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2695 					unsigned int offset)
2696 {
2697 	if (!pskb_may_pull(skb, hlen))
2698 		return NULL;
2699 
2700 	skb_gro_frag0_invalidate(skb);
2701 	return skb->data + offset;
2702 }
2703 
2704 static inline void *skb_gro_network_header(struct sk_buff *skb)
2705 {
2706 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2707 	       skb_network_offset(skb);
2708 }
2709 
2710 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2711 					const void *start, unsigned int len)
2712 {
2713 	if (NAPI_GRO_CB(skb)->csum_valid)
2714 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2715 						  csum_partial(start, len, 0));
2716 }
2717 
2718 /* GRO checksum functions. These are logical equivalents of the normal
2719  * checksum functions (in skbuff.h) except that they operate on the GRO
2720  * offsets and fields in sk_buff.
2721  */
2722 
2723 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2724 
2725 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2726 {
2727 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2728 }
2729 
2730 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2731 						      bool zero_okay,
2732 						      __sum16 check)
2733 {
2734 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2735 		skb_checksum_start_offset(skb) <
2736 		 skb_gro_offset(skb)) &&
2737 		!skb_at_gro_remcsum_start(skb) &&
2738 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2739 		(!zero_okay || check));
2740 }
2741 
2742 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2743 							   __wsum psum)
2744 {
2745 	if (NAPI_GRO_CB(skb)->csum_valid &&
2746 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2747 		return 0;
2748 
2749 	NAPI_GRO_CB(skb)->csum = psum;
2750 
2751 	return __skb_gro_checksum_complete(skb);
2752 }
2753 
2754 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2755 {
2756 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2757 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2758 		NAPI_GRO_CB(skb)->csum_cnt--;
2759 	} else {
2760 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2761 		 * verified a new top level checksum or an encapsulated one
2762 		 * during GRO. This saves work if we fallback to normal path.
2763 		 */
2764 		__skb_incr_checksum_unnecessary(skb);
2765 	}
2766 }
2767 
2768 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2769 				    compute_pseudo)			\
2770 ({									\
2771 	__sum16 __ret = 0;						\
2772 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2773 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2774 				compute_pseudo(skb, proto));		\
2775 	if (!__ret)							\
2776 		skb_gro_incr_csum_unnecessary(skb);			\
2777 	__ret;								\
2778 })
2779 
2780 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2781 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2782 
2783 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2784 					     compute_pseudo)		\
2785 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2786 
2787 #define skb_gro_checksum_simple_validate(skb)				\
2788 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2789 
2790 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2791 {
2792 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2793 		!NAPI_GRO_CB(skb)->csum_valid);
2794 }
2795 
2796 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2797 					      __sum16 check, __wsum pseudo)
2798 {
2799 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2800 	NAPI_GRO_CB(skb)->csum_valid = 1;
2801 }
2802 
2803 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2804 do {									\
2805 	if (__skb_gro_checksum_convert_check(skb))			\
2806 		__skb_gro_checksum_convert(skb, check,			\
2807 					   compute_pseudo(skb, proto));	\
2808 } while (0)
2809 
2810 struct gro_remcsum {
2811 	int offset;
2812 	__wsum delta;
2813 };
2814 
2815 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2816 {
2817 	grc->offset = 0;
2818 	grc->delta = 0;
2819 }
2820 
2821 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2822 					    unsigned int off, size_t hdrlen,
2823 					    int start, int offset,
2824 					    struct gro_remcsum *grc,
2825 					    bool nopartial)
2826 {
2827 	__wsum delta;
2828 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2829 
2830 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2831 
2832 	if (!nopartial) {
2833 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2834 		return ptr;
2835 	}
2836 
2837 	ptr = skb_gro_header_fast(skb, off);
2838 	if (skb_gro_header_hard(skb, off + plen)) {
2839 		ptr = skb_gro_header_slow(skb, off + plen, off);
2840 		if (!ptr)
2841 			return NULL;
2842 	}
2843 
2844 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2845 			       start, offset);
2846 
2847 	/* Adjust skb->csum since we changed the packet */
2848 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2849 
2850 	grc->offset = off + hdrlen + offset;
2851 	grc->delta = delta;
2852 
2853 	return ptr;
2854 }
2855 
2856 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2857 					   struct gro_remcsum *grc)
2858 {
2859 	void *ptr;
2860 	size_t plen = grc->offset + sizeof(u16);
2861 
2862 	if (!grc->delta)
2863 		return;
2864 
2865 	ptr = skb_gro_header_fast(skb, grc->offset);
2866 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2867 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2868 		if (!ptr)
2869 			return;
2870 	}
2871 
2872 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2873 }
2874 
2875 #ifdef CONFIG_XFRM_OFFLOAD
2876 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2877 {
2878 	if (PTR_ERR(pp) != -EINPROGRESS)
2879 		NAPI_GRO_CB(skb)->flush |= flush;
2880 }
2881 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2882 					       struct sk_buff *pp,
2883 					       int flush,
2884 					       struct gro_remcsum *grc)
2885 {
2886 	if (PTR_ERR(pp) != -EINPROGRESS) {
2887 		NAPI_GRO_CB(skb)->flush |= flush;
2888 		skb_gro_remcsum_cleanup(skb, grc);
2889 		skb->remcsum_offload = 0;
2890 	}
2891 }
2892 #else
2893 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2894 {
2895 	NAPI_GRO_CB(skb)->flush |= flush;
2896 }
2897 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2898 					       struct sk_buff *pp,
2899 					       int flush,
2900 					       struct gro_remcsum *grc)
2901 {
2902 	NAPI_GRO_CB(skb)->flush |= flush;
2903 	skb_gro_remcsum_cleanup(skb, grc);
2904 	skb->remcsum_offload = 0;
2905 }
2906 #endif
2907 
2908 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2909 				  unsigned short type,
2910 				  const void *daddr, const void *saddr,
2911 				  unsigned int len)
2912 {
2913 	if (!dev->header_ops || !dev->header_ops->create)
2914 		return 0;
2915 
2916 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2917 }
2918 
2919 static inline int dev_parse_header(const struct sk_buff *skb,
2920 				   unsigned char *haddr)
2921 {
2922 	const struct net_device *dev = skb->dev;
2923 
2924 	if (!dev->header_ops || !dev->header_ops->parse)
2925 		return 0;
2926 	return dev->header_ops->parse(skb, haddr);
2927 }
2928 
2929 /* ll_header must have at least hard_header_len allocated */
2930 static inline bool dev_validate_header(const struct net_device *dev,
2931 				       char *ll_header, int len)
2932 {
2933 	if (likely(len >= dev->hard_header_len))
2934 		return true;
2935 	if (len < dev->min_header_len)
2936 		return false;
2937 
2938 	if (capable(CAP_SYS_RAWIO)) {
2939 		memset(ll_header + len, 0, dev->hard_header_len - len);
2940 		return true;
2941 	}
2942 
2943 	if (dev->header_ops && dev->header_ops->validate)
2944 		return dev->header_ops->validate(ll_header, len);
2945 
2946 	return false;
2947 }
2948 
2949 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2950 			   int len, int size);
2951 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2952 static inline int unregister_gifconf(unsigned int family)
2953 {
2954 	return register_gifconf(family, NULL);
2955 }
2956 
2957 #ifdef CONFIG_NET_FLOW_LIMIT
2958 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2959 struct sd_flow_limit {
2960 	u64			count;
2961 	unsigned int		num_buckets;
2962 	unsigned int		history_head;
2963 	u16			history[FLOW_LIMIT_HISTORY];
2964 	u8			buckets[];
2965 };
2966 
2967 extern int netdev_flow_limit_table_len;
2968 #endif /* CONFIG_NET_FLOW_LIMIT */
2969 
2970 /*
2971  * Incoming packets are placed on per-CPU queues
2972  */
2973 struct softnet_data {
2974 	struct list_head	poll_list;
2975 	struct sk_buff_head	process_queue;
2976 
2977 	/* stats */
2978 	unsigned int		processed;
2979 	unsigned int		time_squeeze;
2980 	unsigned int		received_rps;
2981 #ifdef CONFIG_RPS
2982 	struct softnet_data	*rps_ipi_list;
2983 #endif
2984 #ifdef CONFIG_NET_FLOW_LIMIT
2985 	struct sd_flow_limit __rcu *flow_limit;
2986 #endif
2987 	struct Qdisc		*output_queue;
2988 	struct Qdisc		**output_queue_tailp;
2989 	struct sk_buff		*completion_queue;
2990 #ifdef CONFIG_XFRM_OFFLOAD
2991 	struct sk_buff_head	xfrm_backlog;
2992 #endif
2993 #ifdef CONFIG_RPS
2994 	/* input_queue_head should be written by cpu owning this struct,
2995 	 * and only read by other cpus. Worth using a cache line.
2996 	 */
2997 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2998 
2999 	/* Elements below can be accessed between CPUs for RPS/RFS */
3000 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3001 	struct softnet_data	*rps_ipi_next;
3002 	unsigned int		cpu;
3003 	unsigned int		input_queue_tail;
3004 #endif
3005 	unsigned int		dropped;
3006 	struct sk_buff_head	input_pkt_queue;
3007 	struct napi_struct	backlog;
3008 
3009 };
3010 
3011 static inline void input_queue_head_incr(struct softnet_data *sd)
3012 {
3013 #ifdef CONFIG_RPS
3014 	sd->input_queue_head++;
3015 #endif
3016 }
3017 
3018 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3019 					      unsigned int *qtail)
3020 {
3021 #ifdef CONFIG_RPS
3022 	*qtail = ++sd->input_queue_tail;
3023 #endif
3024 }
3025 
3026 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3027 
3028 void __netif_schedule(struct Qdisc *q);
3029 void netif_schedule_queue(struct netdev_queue *txq);
3030 
3031 static inline void netif_tx_schedule_all(struct net_device *dev)
3032 {
3033 	unsigned int i;
3034 
3035 	for (i = 0; i < dev->num_tx_queues; i++)
3036 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3037 }
3038 
3039 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3040 {
3041 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3042 }
3043 
3044 /**
3045  *	netif_start_queue - allow transmit
3046  *	@dev: network device
3047  *
3048  *	Allow upper layers to call the device hard_start_xmit routine.
3049  */
3050 static inline void netif_start_queue(struct net_device *dev)
3051 {
3052 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3053 }
3054 
3055 static inline void netif_tx_start_all_queues(struct net_device *dev)
3056 {
3057 	unsigned int i;
3058 
3059 	for (i = 0; i < dev->num_tx_queues; i++) {
3060 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3061 		netif_tx_start_queue(txq);
3062 	}
3063 }
3064 
3065 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3066 
3067 /**
3068  *	netif_wake_queue - restart transmit
3069  *	@dev: network device
3070  *
3071  *	Allow upper layers to call the device hard_start_xmit routine.
3072  *	Used for flow control when transmit resources are available.
3073  */
3074 static inline void netif_wake_queue(struct net_device *dev)
3075 {
3076 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3077 }
3078 
3079 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3080 {
3081 	unsigned int i;
3082 
3083 	for (i = 0; i < dev->num_tx_queues; i++) {
3084 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3085 		netif_tx_wake_queue(txq);
3086 	}
3087 }
3088 
3089 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3090 {
3091 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3092 }
3093 
3094 /**
3095  *	netif_stop_queue - stop transmitted packets
3096  *	@dev: network device
3097  *
3098  *	Stop upper layers calling the device hard_start_xmit routine.
3099  *	Used for flow control when transmit resources are unavailable.
3100  */
3101 static inline void netif_stop_queue(struct net_device *dev)
3102 {
3103 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3104 }
3105 
3106 void netif_tx_stop_all_queues(struct net_device *dev);
3107 
3108 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3109 {
3110 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3111 }
3112 
3113 /**
3114  *	netif_queue_stopped - test if transmit queue is flowblocked
3115  *	@dev: network device
3116  *
3117  *	Test if transmit queue on device is currently unable to send.
3118  */
3119 static inline bool netif_queue_stopped(const struct net_device *dev)
3120 {
3121 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3122 }
3123 
3124 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3125 {
3126 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3127 }
3128 
3129 static inline bool
3130 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3131 {
3132 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3133 }
3134 
3135 static inline bool
3136 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3137 {
3138 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3139 }
3140 
3141 /**
3142  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3143  *	@dev_queue: pointer to transmit queue
3144  *
3145  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3146  * to give appropriate hint to the CPU.
3147  */
3148 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3149 {
3150 #ifdef CONFIG_BQL
3151 	prefetchw(&dev_queue->dql.num_queued);
3152 #endif
3153 }
3154 
3155 /**
3156  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3157  *	@dev_queue: pointer to transmit queue
3158  *
3159  * BQL enabled drivers might use this helper in their TX completion path,
3160  * to give appropriate hint to the CPU.
3161  */
3162 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3163 {
3164 #ifdef CONFIG_BQL
3165 	prefetchw(&dev_queue->dql.limit);
3166 #endif
3167 }
3168 
3169 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3170 					unsigned int bytes)
3171 {
3172 #ifdef CONFIG_BQL
3173 	dql_queued(&dev_queue->dql, bytes);
3174 
3175 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3176 		return;
3177 
3178 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3179 
3180 	/*
3181 	 * The XOFF flag must be set before checking the dql_avail below,
3182 	 * because in netdev_tx_completed_queue we update the dql_completed
3183 	 * before checking the XOFF flag.
3184 	 */
3185 	smp_mb();
3186 
3187 	/* check again in case another CPU has just made room avail */
3188 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3189 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3190 #endif
3191 }
3192 
3193 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3194  * that they should not test BQL status themselves.
3195  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3196  * skb of a batch.
3197  * Returns true if the doorbell must be used to kick the NIC.
3198  */
3199 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3200 					  unsigned int bytes,
3201 					  bool xmit_more)
3202 {
3203 	if (xmit_more) {
3204 #ifdef CONFIG_BQL
3205 		dql_queued(&dev_queue->dql, bytes);
3206 #endif
3207 		return netif_tx_queue_stopped(dev_queue);
3208 	}
3209 	netdev_tx_sent_queue(dev_queue, bytes);
3210 	return true;
3211 }
3212 
3213 /**
3214  * 	netdev_sent_queue - report the number of bytes queued to hardware
3215  * 	@dev: network device
3216  * 	@bytes: number of bytes queued to the hardware device queue
3217  *
3218  * 	Report the number of bytes queued for sending/completion to the network
3219  * 	device hardware queue. @bytes should be a good approximation and should
3220  * 	exactly match netdev_completed_queue() @bytes
3221  */
3222 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3223 {
3224 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3225 }
3226 
3227 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3228 					     unsigned int pkts, unsigned int bytes)
3229 {
3230 #ifdef CONFIG_BQL
3231 	if (unlikely(!bytes))
3232 		return;
3233 
3234 	dql_completed(&dev_queue->dql, bytes);
3235 
3236 	/*
3237 	 * Without the memory barrier there is a small possiblity that
3238 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3239 	 * be stopped forever
3240 	 */
3241 	smp_mb();
3242 
3243 	if (dql_avail(&dev_queue->dql) < 0)
3244 		return;
3245 
3246 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3247 		netif_schedule_queue(dev_queue);
3248 #endif
3249 }
3250 
3251 /**
3252  * 	netdev_completed_queue - report bytes and packets completed by device
3253  * 	@dev: network device
3254  * 	@pkts: actual number of packets sent over the medium
3255  * 	@bytes: actual number of bytes sent over the medium
3256  *
3257  * 	Report the number of bytes and packets transmitted by the network device
3258  * 	hardware queue over the physical medium, @bytes must exactly match the
3259  * 	@bytes amount passed to netdev_sent_queue()
3260  */
3261 static inline void netdev_completed_queue(struct net_device *dev,
3262 					  unsigned int pkts, unsigned int bytes)
3263 {
3264 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3265 }
3266 
3267 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3268 {
3269 #ifdef CONFIG_BQL
3270 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3271 	dql_reset(&q->dql);
3272 #endif
3273 }
3274 
3275 /**
3276  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3277  * 	@dev_queue: network device
3278  *
3279  * 	Reset the bytes and packet count of a network device and clear the
3280  * 	software flow control OFF bit for this network device
3281  */
3282 static inline void netdev_reset_queue(struct net_device *dev_queue)
3283 {
3284 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3285 }
3286 
3287 /**
3288  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3289  * 	@dev: network device
3290  * 	@queue_index: given tx queue index
3291  *
3292  * 	Returns 0 if given tx queue index >= number of device tx queues,
3293  * 	otherwise returns the originally passed tx queue index.
3294  */
3295 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3296 {
3297 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3298 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3299 				     dev->name, queue_index,
3300 				     dev->real_num_tx_queues);
3301 		return 0;
3302 	}
3303 
3304 	return queue_index;
3305 }
3306 
3307 /**
3308  *	netif_running - test if up
3309  *	@dev: network device
3310  *
3311  *	Test if the device has been brought up.
3312  */
3313 static inline bool netif_running(const struct net_device *dev)
3314 {
3315 	return test_bit(__LINK_STATE_START, &dev->state);
3316 }
3317 
3318 /*
3319  * Routines to manage the subqueues on a device.  We only need start,
3320  * stop, and a check if it's stopped.  All other device management is
3321  * done at the overall netdevice level.
3322  * Also test the device if we're multiqueue.
3323  */
3324 
3325 /**
3326  *	netif_start_subqueue - allow sending packets on subqueue
3327  *	@dev: network device
3328  *	@queue_index: sub queue index
3329  *
3330  * Start individual transmit queue of a device with multiple transmit queues.
3331  */
3332 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3333 {
3334 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3335 
3336 	netif_tx_start_queue(txq);
3337 }
3338 
3339 /**
3340  *	netif_stop_subqueue - stop sending packets on subqueue
3341  *	@dev: network device
3342  *	@queue_index: sub queue index
3343  *
3344  * Stop individual transmit queue of a device with multiple transmit queues.
3345  */
3346 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3347 {
3348 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3349 	netif_tx_stop_queue(txq);
3350 }
3351 
3352 /**
3353  *	netif_subqueue_stopped - test status of subqueue
3354  *	@dev: network device
3355  *	@queue_index: sub queue index
3356  *
3357  * Check individual transmit queue of a device with multiple transmit queues.
3358  */
3359 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3360 					    u16 queue_index)
3361 {
3362 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3363 
3364 	return netif_tx_queue_stopped(txq);
3365 }
3366 
3367 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3368 					  struct sk_buff *skb)
3369 {
3370 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3371 }
3372 
3373 /**
3374  *	netif_wake_subqueue - allow sending packets on subqueue
3375  *	@dev: network device
3376  *	@queue_index: sub queue index
3377  *
3378  * Resume individual transmit queue of a device with multiple transmit queues.
3379  */
3380 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3381 {
3382 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3383 
3384 	netif_tx_wake_queue(txq);
3385 }
3386 
3387 #ifdef CONFIG_XPS
3388 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3389 			u16 index);
3390 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3391 			  u16 index, bool is_rxqs_map);
3392 
3393 /**
3394  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3395  *	@j: CPU/Rx queue index
3396  *	@mask: bitmask of all cpus/rx queues
3397  *	@nr_bits: number of bits in the bitmask
3398  *
3399  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3400  */
3401 static inline bool netif_attr_test_mask(unsigned long j,
3402 					const unsigned long *mask,
3403 					unsigned int nr_bits)
3404 {
3405 	cpu_max_bits_warn(j, nr_bits);
3406 	return test_bit(j, mask);
3407 }
3408 
3409 /**
3410  *	netif_attr_test_online - Test for online CPU/Rx queue
3411  *	@j: CPU/Rx queue index
3412  *	@online_mask: bitmask for CPUs/Rx queues that are online
3413  *	@nr_bits: number of bits in the bitmask
3414  *
3415  * Returns true if a CPU/Rx queue is online.
3416  */
3417 static inline bool netif_attr_test_online(unsigned long j,
3418 					  const unsigned long *online_mask,
3419 					  unsigned int nr_bits)
3420 {
3421 	cpu_max_bits_warn(j, nr_bits);
3422 
3423 	if (online_mask)
3424 		return test_bit(j, online_mask);
3425 
3426 	return (j < nr_bits);
3427 }
3428 
3429 /**
3430  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3431  *	@n: CPU/Rx queue index
3432  *	@srcp: the cpumask/Rx queue mask pointer
3433  *	@nr_bits: number of bits in the bitmask
3434  *
3435  * Returns >= nr_bits if no further CPUs/Rx queues set.
3436  */
3437 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3438 					       unsigned int nr_bits)
3439 {
3440 	/* -1 is a legal arg here. */
3441 	if (n != -1)
3442 		cpu_max_bits_warn(n, nr_bits);
3443 
3444 	if (srcp)
3445 		return find_next_bit(srcp, nr_bits, n + 1);
3446 
3447 	return n + 1;
3448 }
3449 
3450 /**
3451  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3452  *	@n: CPU/Rx queue index
3453  *	@src1p: the first CPUs/Rx queues mask pointer
3454  *	@src2p: the second CPUs/Rx queues mask pointer
3455  *	@nr_bits: number of bits in the bitmask
3456  *
3457  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3458  */
3459 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3460 					  const unsigned long *src2p,
3461 					  unsigned int nr_bits)
3462 {
3463 	/* -1 is a legal arg here. */
3464 	if (n != -1)
3465 		cpu_max_bits_warn(n, nr_bits);
3466 
3467 	if (src1p && src2p)
3468 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3469 	else if (src1p)
3470 		return find_next_bit(src1p, nr_bits, n + 1);
3471 	else if (src2p)
3472 		return find_next_bit(src2p, nr_bits, n + 1);
3473 
3474 	return n + 1;
3475 }
3476 #else
3477 static inline int netif_set_xps_queue(struct net_device *dev,
3478 				      const struct cpumask *mask,
3479 				      u16 index)
3480 {
3481 	return 0;
3482 }
3483 
3484 static inline int __netif_set_xps_queue(struct net_device *dev,
3485 					const unsigned long *mask,
3486 					u16 index, bool is_rxqs_map)
3487 {
3488 	return 0;
3489 }
3490 #endif
3491 
3492 /**
3493  *	netif_is_multiqueue - test if device has multiple transmit queues
3494  *	@dev: network device
3495  *
3496  * Check if device has multiple transmit queues
3497  */
3498 static inline bool netif_is_multiqueue(const struct net_device *dev)
3499 {
3500 	return dev->num_tx_queues > 1;
3501 }
3502 
3503 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3504 
3505 #ifdef CONFIG_SYSFS
3506 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3507 #else
3508 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3509 						unsigned int rxqs)
3510 {
3511 	dev->real_num_rx_queues = rxqs;
3512 	return 0;
3513 }
3514 #endif
3515 
3516 static inline struct netdev_rx_queue *
3517 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3518 {
3519 	return dev->_rx + rxq;
3520 }
3521 
3522 #ifdef CONFIG_SYSFS
3523 static inline unsigned int get_netdev_rx_queue_index(
3524 		struct netdev_rx_queue *queue)
3525 {
3526 	struct net_device *dev = queue->dev;
3527 	int index = queue - dev->_rx;
3528 
3529 	BUG_ON(index >= dev->num_rx_queues);
3530 	return index;
3531 }
3532 #endif
3533 
3534 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3535 int netif_get_num_default_rss_queues(void);
3536 
3537 enum skb_free_reason {
3538 	SKB_REASON_CONSUMED,
3539 	SKB_REASON_DROPPED,
3540 };
3541 
3542 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3543 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3544 
3545 /*
3546  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3547  * interrupt context or with hardware interrupts being disabled.
3548  * (in_irq() || irqs_disabled())
3549  *
3550  * We provide four helpers that can be used in following contexts :
3551  *
3552  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3553  *  replacing kfree_skb(skb)
3554  *
3555  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3556  *  Typically used in place of consume_skb(skb) in TX completion path
3557  *
3558  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3559  *  replacing kfree_skb(skb)
3560  *
3561  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3562  *  and consumed a packet. Used in place of consume_skb(skb)
3563  */
3564 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3565 {
3566 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3567 }
3568 
3569 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3570 {
3571 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3572 }
3573 
3574 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3575 {
3576 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3577 }
3578 
3579 static inline void dev_consume_skb_any(struct sk_buff *skb)
3580 {
3581 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3582 }
3583 
3584 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3585 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3586 int netif_rx(struct sk_buff *skb);
3587 int netif_rx_ni(struct sk_buff *skb);
3588 int netif_receive_skb(struct sk_buff *skb);
3589 int netif_receive_skb_core(struct sk_buff *skb);
3590 void netif_receive_skb_list(struct list_head *head);
3591 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3592 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3593 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3594 gro_result_t napi_gro_frags(struct napi_struct *napi);
3595 struct packet_offload *gro_find_receive_by_type(__be16 type);
3596 struct packet_offload *gro_find_complete_by_type(__be16 type);
3597 
3598 static inline void napi_free_frags(struct napi_struct *napi)
3599 {
3600 	kfree_skb(napi->skb);
3601 	napi->skb = NULL;
3602 }
3603 
3604 bool netdev_is_rx_handler_busy(struct net_device *dev);
3605 int netdev_rx_handler_register(struct net_device *dev,
3606 			       rx_handler_func_t *rx_handler,
3607 			       void *rx_handler_data);
3608 void netdev_rx_handler_unregister(struct net_device *dev);
3609 
3610 bool dev_valid_name(const char *name);
3611 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3612 		bool *need_copyout);
3613 int dev_ifconf(struct net *net, struct ifconf *, int);
3614 int dev_ethtool(struct net *net, struct ifreq *);
3615 unsigned int dev_get_flags(const struct net_device *);
3616 int __dev_change_flags(struct net_device *, unsigned int flags);
3617 int dev_change_flags(struct net_device *, unsigned int);
3618 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3619 			unsigned int gchanges);
3620 int dev_change_name(struct net_device *, const char *);
3621 int dev_set_alias(struct net_device *, const char *, size_t);
3622 int dev_get_alias(const struct net_device *, char *, size_t);
3623 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3624 int __dev_set_mtu(struct net_device *, int);
3625 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3626 		    struct netlink_ext_ack *extack);
3627 int dev_set_mtu(struct net_device *, int);
3628 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3629 void dev_set_group(struct net_device *, int);
3630 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3631 int dev_change_carrier(struct net_device *, bool new_carrier);
3632 int dev_get_phys_port_id(struct net_device *dev,
3633 			 struct netdev_phys_item_id *ppid);
3634 int dev_get_phys_port_name(struct net_device *dev,
3635 			   char *name, size_t len);
3636 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3637 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3638 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3639 				    struct netdev_queue *txq, int *ret);
3640 
3641 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3642 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3643 		      int fd, u32 flags);
3644 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3645 		    enum bpf_netdev_command cmd);
3646 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3647 
3648 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3649 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3650 bool is_skb_forwardable(const struct net_device *dev,
3651 			const struct sk_buff *skb);
3652 
3653 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3654 					       struct sk_buff *skb)
3655 {
3656 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3657 	    unlikely(!is_skb_forwardable(dev, skb))) {
3658 		atomic_long_inc(&dev->rx_dropped);
3659 		kfree_skb(skb);
3660 		return NET_RX_DROP;
3661 	}
3662 
3663 	skb_scrub_packet(skb, true);
3664 	skb->priority = 0;
3665 	return 0;
3666 }
3667 
3668 bool dev_nit_active(struct net_device *dev);
3669 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3670 
3671 extern int		netdev_budget;
3672 extern unsigned int	netdev_budget_usecs;
3673 
3674 /* Called by rtnetlink.c:rtnl_unlock() */
3675 void netdev_run_todo(void);
3676 
3677 /**
3678  *	dev_put - release reference to device
3679  *	@dev: network device
3680  *
3681  * Release reference to device to allow it to be freed.
3682  */
3683 static inline void dev_put(struct net_device *dev)
3684 {
3685 	this_cpu_dec(*dev->pcpu_refcnt);
3686 }
3687 
3688 /**
3689  *	dev_hold - get reference to device
3690  *	@dev: network device
3691  *
3692  * Hold reference to device to keep it from being freed.
3693  */
3694 static inline void dev_hold(struct net_device *dev)
3695 {
3696 	this_cpu_inc(*dev->pcpu_refcnt);
3697 }
3698 
3699 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3700  * and _off may be called from IRQ context, but it is caller
3701  * who is responsible for serialization of these calls.
3702  *
3703  * The name carrier is inappropriate, these functions should really be
3704  * called netif_lowerlayer_*() because they represent the state of any
3705  * kind of lower layer not just hardware media.
3706  */
3707 
3708 void linkwatch_init_dev(struct net_device *dev);
3709 void linkwatch_fire_event(struct net_device *dev);
3710 void linkwatch_forget_dev(struct net_device *dev);
3711 
3712 /**
3713  *	netif_carrier_ok - test if carrier present
3714  *	@dev: network device
3715  *
3716  * Check if carrier is present on device
3717  */
3718 static inline bool netif_carrier_ok(const struct net_device *dev)
3719 {
3720 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3721 }
3722 
3723 unsigned long dev_trans_start(struct net_device *dev);
3724 
3725 void __netdev_watchdog_up(struct net_device *dev);
3726 
3727 void netif_carrier_on(struct net_device *dev);
3728 
3729 void netif_carrier_off(struct net_device *dev);
3730 
3731 /**
3732  *	netif_dormant_on - mark device as dormant.
3733  *	@dev: network device
3734  *
3735  * Mark device as dormant (as per RFC2863).
3736  *
3737  * The dormant state indicates that the relevant interface is not
3738  * actually in a condition to pass packets (i.e., it is not 'up') but is
3739  * in a "pending" state, waiting for some external event.  For "on-
3740  * demand" interfaces, this new state identifies the situation where the
3741  * interface is waiting for events to place it in the up state.
3742  */
3743 static inline void netif_dormant_on(struct net_device *dev)
3744 {
3745 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3746 		linkwatch_fire_event(dev);
3747 }
3748 
3749 /**
3750  *	netif_dormant_off - set device as not dormant.
3751  *	@dev: network device
3752  *
3753  * Device is not in dormant state.
3754  */
3755 static inline void netif_dormant_off(struct net_device *dev)
3756 {
3757 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3758 		linkwatch_fire_event(dev);
3759 }
3760 
3761 /**
3762  *	netif_dormant - test if device is dormant
3763  *	@dev: network device
3764  *
3765  * Check if device is dormant.
3766  */
3767 static inline bool netif_dormant(const struct net_device *dev)
3768 {
3769 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3770 }
3771 
3772 
3773 /**
3774  *	netif_oper_up - test if device is operational
3775  *	@dev: network device
3776  *
3777  * Check if carrier is operational
3778  */
3779 static inline bool netif_oper_up(const struct net_device *dev)
3780 {
3781 	return (dev->operstate == IF_OPER_UP ||
3782 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3783 }
3784 
3785 /**
3786  *	netif_device_present - is device available or removed
3787  *	@dev: network device
3788  *
3789  * Check if device has not been removed from system.
3790  */
3791 static inline bool netif_device_present(struct net_device *dev)
3792 {
3793 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3794 }
3795 
3796 void netif_device_detach(struct net_device *dev);
3797 
3798 void netif_device_attach(struct net_device *dev);
3799 
3800 /*
3801  * Network interface message level settings
3802  */
3803 
3804 enum {
3805 	NETIF_MSG_DRV		= 0x0001,
3806 	NETIF_MSG_PROBE		= 0x0002,
3807 	NETIF_MSG_LINK		= 0x0004,
3808 	NETIF_MSG_TIMER		= 0x0008,
3809 	NETIF_MSG_IFDOWN	= 0x0010,
3810 	NETIF_MSG_IFUP		= 0x0020,
3811 	NETIF_MSG_RX_ERR	= 0x0040,
3812 	NETIF_MSG_TX_ERR	= 0x0080,
3813 	NETIF_MSG_TX_QUEUED	= 0x0100,
3814 	NETIF_MSG_INTR		= 0x0200,
3815 	NETIF_MSG_TX_DONE	= 0x0400,
3816 	NETIF_MSG_RX_STATUS	= 0x0800,
3817 	NETIF_MSG_PKTDATA	= 0x1000,
3818 	NETIF_MSG_HW		= 0x2000,
3819 	NETIF_MSG_WOL		= 0x4000,
3820 };
3821 
3822 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3823 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3824 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3825 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3826 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3827 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3828 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3829 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3830 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3831 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3832 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3833 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3834 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3835 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3836 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3837 
3838 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3839 {
3840 	/* use default */
3841 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3842 		return default_msg_enable_bits;
3843 	if (debug_value == 0)	/* no output */
3844 		return 0;
3845 	/* set low N bits */
3846 	return (1 << debug_value) - 1;
3847 }
3848 
3849 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3850 {
3851 	spin_lock(&txq->_xmit_lock);
3852 	txq->xmit_lock_owner = cpu;
3853 }
3854 
3855 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3856 {
3857 	__acquire(&txq->_xmit_lock);
3858 	return true;
3859 }
3860 
3861 static inline void __netif_tx_release(struct netdev_queue *txq)
3862 {
3863 	__release(&txq->_xmit_lock);
3864 }
3865 
3866 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3867 {
3868 	spin_lock_bh(&txq->_xmit_lock);
3869 	txq->xmit_lock_owner = smp_processor_id();
3870 }
3871 
3872 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3873 {
3874 	bool ok = spin_trylock(&txq->_xmit_lock);
3875 	if (likely(ok))
3876 		txq->xmit_lock_owner = smp_processor_id();
3877 	return ok;
3878 }
3879 
3880 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3881 {
3882 	txq->xmit_lock_owner = -1;
3883 	spin_unlock(&txq->_xmit_lock);
3884 }
3885 
3886 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3887 {
3888 	txq->xmit_lock_owner = -1;
3889 	spin_unlock_bh(&txq->_xmit_lock);
3890 }
3891 
3892 static inline void txq_trans_update(struct netdev_queue *txq)
3893 {
3894 	if (txq->xmit_lock_owner != -1)
3895 		txq->trans_start = jiffies;
3896 }
3897 
3898 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3899 static inline void netif_trans_update(struct net_device *dev)
3900 {
3901 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3902 
3903 	if (txq->trans_start != jiffies)
3904 		txq->trans_start = jiffies;
3905 }
3906 
3907 /**
3908  *	netif_tx_lock - grab network device transmit lock
3909  *	@dev: network device
3910  *
3911  * Get network device transmit lock
3912  */
3913 static inline void netif_tx_lock(struct net_device *dev)
3914 {
3915 	unsigned int i;
3916 	int cpu;
3917 
3918 	spin_lock(&dev->tx_global_lock);
3919 	cpu = smp_processor_id();
3920 	for (i = 0; i < dev->num_tx_queues; i++) {
3921 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3922 
3923 		/* We are the only thread of execution doing a
3924 		 * freeze, but we have to grab the _xmit_lock in
3925 		 * order to synchronize with threads which are in
3926 		 * the ->hard_start_xmit() handler and already
3927 		 * checked the frozen bit.
3928 		 */
3929 		__netif_tx_lock(txq, cpu);
3930 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3931 		__netif_tx_unlock(txq);
3932 	}
3933 }
3934 
3935 static inline void netif_tx_lock_bh(struct net_device *dev)
3936 {
3937 	local_bh_disable();
3938 	netif_tx_lock(dev);
3939 }
3940 
3941 static inline void netif_tx_unlock(struct net_device *dev)
3942 {
3943 	unsigned int i;
3944 
3945 	for (i = 0; i < dev->num_tx_queues; i++) {
3946 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3947 
3948 		/* No need to grab the _xmit_lock here.  If the
3949 		 * queue is not stopped for another reason, we
3950 		 * force a schedule.
3951 		 */
3952 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3953 		netif_schedule_queue(txq);
3954 	}
3955 	spin_unlock(&dev->tx_global_lock);
3956 }
3957 
3958 static inline void netif_tx_unlock_bh(struct net_device *dev)
3959 {
3960 	netif_tx_unlock(dev);
3961 	local_bh_enable();
3962 }
3963 
3964 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3965 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3966 		__netif_tx_lock(txq, cpu);		\
3967 	} else {					\
3968 		__netif_tx_acquire(txq);		\
3969 	}						\
3970 }
3971 
3972 #define HARD_TX_TRYLOCK(dev, txq)			\
3973 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3974 		__netif_tx_trylock(txq) :		\
3975 		__netif_tx_acquire(txq))
3976 
3977 #define HARD_TX_UNLOCK(dev, txq) {			\
3978 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3979 		__netif_tx_unlock(txq);			\
3980 	} else {					\
3981 		__netif_tx_release(txq);		\
3982 	}						\
3983 }
3984 
3985 static inline void netif_tx_disable(struct net_device *dev)
3986 {
3987 	unsigned int i;
3988 	int cpu;
3989 
3990 	local_bh_disable();
3991 	cpu = smp_processor_id();
3992 	for (i = 0; i < dev->num_tx_queues; i++) {
3993 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3994 
3995 		__netif_tx_lock(txq, cpu);
3996 		netif_tx_stop_queue(txq);
3997 		__netif_tx_unlock(txq);
3998 	}
3999 	local_bh_enable();
4000 }
4001 
4002 static inline void netif_addr_lock(struct net_device *dev)
4003 {
4004 	spin_lock(&dev->addr_list_lock);
4005 }
4006 
4007 static inline void netif_addr_lock_nested(struct net_device *dev)
4008 {
4009 	int subclass = SINGLE_DEPTH_NESTING;
4010 
4011 	if (dev->netdev_ops->ndo_get_lock_subclass)
4012 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4013 
4014 	spin_lock_nested(&dev->addr_list_lock, subclass);
4015 }
4016 
4017 static inline void netif_addr_lock_bh(struct net_device *dev)
4018 {
4019 	spin_lock_bh(&dev->addr_list_lock);
4020 }
4021 
4022 static inline void netif_addr_unlock(struct net_device *dev)
4023 {
4024 	spin_unlock(&dev->addr_list_lock);
4025 }
4026 
4027 static inline void netif_addr_unlock_bh(struct net_device *dev)
4028 {
4029 	spin_unlock_bh(&dev->addr_list_lock);
4030 }
4031 
4032 /*
4033  * dev_addrs walker. Should be used only for read access. Call with
4034  * rcu_read_lock held.
4035  */
4036 #define for_each_dev_addr(dev, ha) \
4037 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4038 
4039 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4040 
4041 void ether_setup(struct net_device *dev);
4042 
4043 /* Support for loadable net-drivers */
4044 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4045 				    unsigned char name_assign_type,
4046 				    void (*setup)(struct net_device *),
4047 				    unsigned int txqs, unsigned int rxqs);
4048 int dev_get_valid_name(struct net *net, struct net_device *dev,
4049 		       const char *name);
4050 
4051 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4052 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4053 
4054 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4055 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4056 			 count)
4057 
4058 int register_netdev(struct net_device *dev);
4059 void unregister_netdev(struct net_device *dev);
4060 
4061 /* General hardware address lists handling functions */
4062 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4063 		   struct netdev_hw_addr_list *from_list, int addr_len);
4064 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4065 		      struct netdev_hw_addr_list *from_list, int addr_len);
4066 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4067 		       struct net_device *dev,
4068 		       int (*sync)(struct net_device *, const unsigned char *),
4069 		       int (*unsync)(struct net_device *,
4070 				     const unsigned char *));
4071 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4072 			  struct net_device *dev,
4073 			  int (*unsync)(struct net_device *,
4074 					const unsigned char *));
4075 void __hw_addr_init(struct netdev_hw_addr_list *list);
4076 
4077 /* Functions used for device addresses handling */
4078 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4079 		 unsigned char addr_type);
4080 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4081 		 unsigned char addr_type);
4082 void dev_addr_flush(struct net_device *dev);
4083 int dev_addr_init(struct net_device *dev);
4084 
4085 /* Functions used for unicast addresses handling */
4086 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4087 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4088 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4089 int dev_uc_sync(struct net_device *to, struct net_device *from);
4090 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4091 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4092 void dev_uc_flush(struct net_device *dev);
4093 void dev_uc_init(struct net_device *dev);
4094 
4095 /**
4096  *  __dev_uc_sync - Synchonize device's unicast list
4097  *  @dev:  device to sync
4098  *  @sync: function to call if address should be added
4099  *  @unsync: function to call if address should be removed
4100  *
4101  *  Add newly added addresses to the interface, and release
4102  *  addresses that have been deleted.
4103  */
4104 static inline int __dev_uc_sync(struct net_device *dev,
4105 				int (*sync)(struct net_device *,
4106 					    const unsigned char *),
4107 				int (*unsync)(struct net_device *,
4108 					      const unsigned char *))
4109 {
4110 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4111 }
4112 
4113 /**
4114  *  __dev_uc_unsync - Remove synchronized addresses from device
4115  *  @dev:  device to sync
4116  *  @unsync: function to call if address should be removed
4117  *
4118  *  Remove all addresses that were added to the device by dev_uc_sync().
4119  */
4120 static inline void __dev_uc_unsync(struct net_device *dev,
4121 				   int (*unsync)(struct net_device *,
4122 						 const unsigned char *))
4123 {
4124 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4125 }
4126 
4127 /* Functions used for multicast addresses handling */
4128 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4129 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4130 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4131 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4132 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4133 int dev_mc_sync(struct net_device *to, struct net_device *from);
4134 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4135 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4136 void dev_mc_flush(struct net_device *dev);
4137 void dev_mc_init(struct net_device *dev);
4138 
4139 /**
4140  *  __dev_mc_sync - Synchonize device's multicast list
4141  *  @dev:  device to sync
4142  *  @sync: function to call if address should be added
4143  *  @unsync: function to call if address should be removed
4144  *
4145  *  Add newly added addresses to the interface, and release
4146  *  addresses that have been deleted.
4147  */
4148 static inline int __dev_mc_sync(struct net_device *dev,
4149 				int (*sync)(struct net_device *,
4150 					    const unsigned char *),
4151 				int (*unsync)(struct net_device *,
4152 					      const unsigned char *))
4153 {
4154 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4155 }
4156 
4157 /**
4158  *  __dev_mc_unsync - Remove synchronized addresses from device
4159  *  @dev:  device to sync
4160  *  @unsync: function to call if address should be removed
4161  *
4162  *  Remove all addresses that were added to the device by dev_mc_sync().
4163  */
4164 static inline void __dev_mc_unsync(struct net_device *dev,
4165 				   int (*unsync)(struct net_device *,
4166 						 const unsigned char *))
4167 {
4168 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4169 }
4170 
4171 /* Functions used for secondary unicast and multicast support */
4172 void dev_set_rx_mode(struct net_device *dev);
4173 void __dev_set_rx_mode(struct net_device *dev);
4174 int dev_set_promiscuity(struct net_device *dev, int inc);
4175 int dev_set_allmulti(struct net_device *dev, int inc);
4176 void netdev_state_change(struct net_device *dev);
4177 void netdev_notify_peers(struct net_device *dev);
4178 void netdev_features_change(struct net_device *dev);
4179 /* Load a device via the kmod */
4180 void dev_load(struct net *net, const char *name);
4181 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4182 					struct rtnl_link_stats64 *storage);
4183 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4184 			     const struct net_device_stats *netdev_stats);
4185 
4186 extern int		netdev_max_backlog;
4187 extern int		netdev_tstamp_prequeue;
4188 extern int		weight_p;
4189 extern int		dev_weight_rx_bias;
4190 extern int		dev_weight_tx_bias;
4191 extern int		dev_rx_weight;
4192 extern int		dev_tx_weight;
4193 
4194 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4195 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4196 						     struct list_head **iter);
4197 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4198 						     struct list_head **iter);
4199 
4200 /* iterate through upper list, must be called under RCU read lock */
4201 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4202 	for (iter = &(dev)->adj_list.upper, \
4203 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4204 	     updev; \
4205 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4206 
4207 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4208 				  int (*fn)(struct net_device *upper_dev,
4209 					    void *data),
4210 				  void *data);
4211 
4212 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4213 				  struct net_device *upper_dev);
4214 
4215 bool netdev_has_any_upper_dev(struct net_device *dev);
4216 
4217 void *netdev_lower_get_next_private(struct net_device *dev,
4218 				    struct list_head **iter);
4219 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4220 					struct list_head **iter);
4221 
4222 #define netdev_for_each_lower_private(dev, priv, iter) \
4223 	for (iter = (dev)->adj_list.lower.next, \
4224 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4225 	     priv; \
4226 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4227 
4228 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4229 	for (iter = &(dev)->adj_list.lower, \
4230 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4231 	     priv; \
4232 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4233 
4234 void *netdev_lower_get_next(struct net_device *dev,
4235 				struct list_head **iter);
4236 
4237 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4238 	for (iter = (dev)->adj_list.lower.next, \
4239 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4240 	     ldev; \
4241 	     ldev = netdev_lower_get_next(dev, &(iter)))
4242 
4243 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4244 					     struct list_head **iter);
4245 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4246 						 struct list_head **iter);
4247 
4248 int netdev_walk_all_lower_dev(struct net_device *dev,
4249 			      int (*fn)(struct net_device *lower_dev,
4250 					void *data),
4251 			      void *data);
4252 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4253 				  int (*fn)(struct net_device *lower_dev,
4254 					    void *data),
4255 				  void *data);
4256 
4257 void *netdev_adjacent_get_private(struct list_head *adj_list);
4258 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4259 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4260 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4261 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4262 			  struct netlink_ext_ack *extack);
4263 int netdev_master_upper_dev_link(struct net_device *dev,
4264 				 struct net_device *upper_dev,
4265 				 void *upper_priv, void *upper_info,
4266 				 struct netlink_ext_ack *extack);
4267 void netdev_upper_dev_unlink(struct net_device *dev,
4268 			     struct net_device *upper_dev);
4269 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4270 void *netdev_lower_dev_get_private(struct net_device *dev,
4271 				   struct net_device *lower_dev);
4272 void netdev_lower_state_changed(struct net_device *lower_dev,
4273 				void *lower_state_info);
4274 
4275 /* RSS keys are 40 or 52 bytes long */
4276 #define NETDEV_RSS_KEY_LEN 52
4277 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4278 void netdev_rss_key_fill(void *buffer, size_t len);
4279 
4280 int dev_get_nest_level(struct net_device *dev);
4281 int skb_checksum_help(struct sk_buff *skb);
4282 int skb_crc32c_csum_help(struct sk_buff *skb);
4283 int skb_csum_hwoffload_help(struct sk_buff *skb,
4284 			    const netdev_features_t features);
4285 
4286 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4287 				  netdev_features_t features, bool tx_path);
4288 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4289 				    netdev_features_t features);
4290 
4291 struct netdev_bonding_info {
4292 	ifslave	slave;
4293 	ifbond	master;
4294 };
4295 
4296 struct netdev_notifier_bonding_info {
4297 	struct netdev_notifier_info info; /* must be first */
4298 	struct netdev_bonding_info  bonding_info;
4299 };
4300 
4301 void netdev_bonding_info_change(struct net_device *dev,
4302 				struct netdev_bonding_info *bonding_info);
4303 
4304 static inline
4305 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4306 {
4307 	return __skb_gso_segment(skb, features, true);
4308 }
4309 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4310 
4311 static inline bool can_checksum_protocol(netdev_features_t features,
4312 					 __be16 protocol)
4313 {
4314 	if (protocol == htons(ETH_P_FCOE))
4315 		return !!(features & NETIF_F_FCOE_CRC);
4316 
4317 	/* Assume this is an IP checksum (not SCTP CRC) */
4318 
4319 	if (features & NETIF_F_HW_CSUM) {
4320 		/* Can checksum everything */
4321 		return true;
4322 	}
4323 
4324 	switch (protocol) {
4325 	case htons(ETH_P_IP):
4326 		return !!(features & NETIF_F_IP_CSUM);
4327 	case htons(ETH_P_IPV6):
4328 		return !!(features & NETIF_F_IPV6_CSUM);
4329 	default:
4330 		return false;
4331 	}
4332 }
4333 
4334 #ifdef CONFIG_BUG
4335 void netdev_rx_csum_fault(struct net_device *dev);
4336 #else
4337 static inline void netdev_rx_csum_fault(struct net_device *dev)
4338 {
4339 }
4340 #endif
4341 /* rx skb timestamps */
4342 void net_enable_timestamp(void);
4343 void net_disable_timestamp(void);
4344 
4345 #ifdef CONFIG_PROC_FS
4346 int __init dev_proc_init(void);
4347 #else
4348 #define dev_proc_init() 0
4349 #endif
4350 
4351 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4352 					      struct sk_buff *skb, struct net_device *dev,
4353 					      bool more)
4354 {
4355 	skb->xmit_more = more ? 1 : 0;
4356 	return ops->ndo_start_xmit(skb, dev);
4357 }
4358 
4359 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4360 					    struct netdev_queue *txq, bool more)
4361 {
4362 	const struct net_device_ops *ops = dev->netdev_ops;
4363 	int rc;
4364 
4365 	rc = __netdev_start_xmit(ops, skb, dev, more);
4366 	if (rc == NETDEV_TX_OK)
4367 		txq_trans_update(txq);
4368 
4369 	return rc;
4370 }
4371 
4372 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4373 				const void *ns);
4374 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4375 				 const void *ns);
4376 
4377 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4378 {
4379 	return netdev_class_create_file_ns(class_attr, NULL);
4380 }
4381 
4382 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4383 {
4384 	netdev_class_remove_file_ns(class_attr, NULL);
4385 }
4386 
4387 extern const struct kobj_ns_type_operations net_ns_type_operations;
4388 
4389 const char *netdev_drivername(const struct net_device *dev);
4390 
4391 void linkwatch_run_queue(void);
4392 
4393 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4394 							  netdev_features_t f2)
4395 {
4396 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4397 		if (f1 & NETIF_F_HW_CSUM)
4398 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4399 		else
4400 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4401 	}
4402 
4403 	return f1 & f2;
4404 }
4405 
4406 static inline netdev_features_t netdev_get_wanted_features(
4407 	struct net_device *dev)
4408 {
4409 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4410 }
4411 netdev_features_t netdev_increment_features(netdev_features_t all,
4412 	netdev_features_t one, netdev_features_t mask);
4413 
4414 /* Allow TSO being used on stacked device :
4415  * Performing the GSO segmentation before last device
4416  * is a performance improvement.
4417  */
4418 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4419 							netdev_features_t mask)
4420 {
4421 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4422 }
4423 
4424 int __netdev_update_features(struct net_device *dev);
4425 void netdev_update_features(struct net_device *dev);
4426 void netdev_change_features(struct net_device *dev);
4427 
4428 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4429 					struct net_device *dev);
4430 
4431 netdev_features_t passthru_features_check(struct sk_buff *skb,
4432 					  struct net_device *dev,
4433 					  netdev_features_t features);
4434 netdev_features_t netif_skb_features(struct sk_buff *skb);
4435 
4436 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4437 {
4438 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4439 
4440 	/* check flags correspondence */
4441 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4442 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4443 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4444 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4445 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4446 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4447 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4448 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4449 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4450 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4451 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4452 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4453 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4454 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4455 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4456 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4457 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4458 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4459 
4460 	return (features & feature) == feature;
4461 }
4462 
4463 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4464 {
4465 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4466 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4467 }
4468 
4469 static inline bool netif_needs_gso(struct sk_buff *skb,
4470 				   netdev_features_t features)
4471 {
4472 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4473 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4474 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4475 }
4476 
4477 static inline void netif_set_gso_max_size(struct net_device *dev,
4478 					  unsigned int size)
4479 {
4480 	dev->gso_max_size = size;
4481 }
4482 
4483 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4484 					int pulled_hlen, u16 mac_offset,
4485 					int mac_len)
4486 {
4487 	skb->protocol = protocol;
4488 	skb->encapsulation = 1;
4489 	skb_push(skb, pulled_hlen);
4490 	skb_reset_transport_header(skb);
4491 	skb->mac_header = mac_offset;
4492 	skb->network_header = skb->mac_header + mac_len;
4493 	skb->mac_len = mac_len;
4494 }
4495 
4496 static inline bool netif_is_macsec(const struct net_device *dev)
4497 {
4498 	return dev->priv_flags & IFF_MACSEC;
4499 }
4500 
4501 static inline bool netif_is_macvlan(const struct net_device *dev)
4502 {
4503 	return dev->priv_flags & IFF_MACVLAN;
4504 }
4505 
4506 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4507 {
4508 	return dev->priv_flags & IFF_MACVLAN_PORT;
4509 }
4510 
4511 static inline bool netif_is_bond_master(const struct net_device *dev)
4512 {
4513 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4514 }
4515 
4516 static inline bool netif_is_bond_slave(const struct net_device *dev)
4517 {
4518 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4519 }
4520 
4521 static inline bool netif_supports_nofcs(struct net_device *dev)
4522 {
4523 	return dev->priv_flags & IFF_SUPP_NOFCS;
4524 }
4525 
4526 static inline bool netif_is_l3_master(const struct net_device *dev)
4527 {
4528 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4529 }
4530 
4531 static inline bool netif_is_l3_slave(const struct net_device *dev)
4532 {
4533 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4534 }
4535 
4536 static inline bool netif_is_bridge_master(const struct net_device *dev)
4537 {
4538 	return dev->priv_flags & IFF_EBRIDGE;
4539 }
4540 
4541 static inline bool netif_is_bridge_port(const struct net_device *dev)
4542 {
4543 	return dev->priv_flags & IFF_BRIDGE_PORT;
4544 }
4545 
4546 static inline bool netif_is_ovs_master(const struct net_device *dev)
4547 {
4548 	return dev->priv_flags & IFF_OPENVSWITCH;
4549 }
4550 
4551 static inline bool netif_is_ovs_port(const struct net_device *dev)
4552 {
4553 	return dev->priv_flags & IFF_OVS_DATAPATH;
4554 }
4555 
4556 static inline bool netif_is_team_master(const struct net_device *dev)
4557 {
4558 	return dev->priv_flags & IFF_TEAM;
4559 }
4560 
4561 static inline bool netif_is_team_port(const struct net_device *dev)
4562 {
4563 	return dev->priv_flags & IFF_TEAM_PORT;
4564 }
4565 
4566 static inline bool netif_is_lag_master(const struct net_device *dev)
4567 {
4568 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4569 }
4570 
4571 static inline bool netif_is_lag_port(const struct net_device *dev)
4572 {
4573 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4574 }
4575 
4576 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4577 {
4578 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4579 }
4580 
4581 static inline bool netif_is_failover(const struct net_device *dev)
4582 {
4583 	return dev->priv_flags & IFF_FAILOVER;
4584 }
4585 
4586 static inline bool netif_is_failover_slave(const struct net_device *dev)
4587 {
4588 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4589 }
4590 
4591 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4592 static inline void netif_keep_dst(struct net_device *dev)
4593 {
4594 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4595 }
4596 
4597 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4598 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4599 {
4600 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4601 	return dev->priv_flags & IFF_MACSEC;
4602 }
4603 
4604 extern struct pernet_operations __net_initdata loopback_net_ops;
4605 
4606 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4607 
4608 /* netdev_printk helpers, similar to dev_printk */
4609 
4610 static inline const char *netdev_name(const struct net_device *dev)
4611 {
4612 	if (!dev->name[0] || strchr(dev->name, '%'))
4613 		return "(unnamed net_device)";
4614 	return dev->name;
4615 }
4616 
4617 static inline bool netdev_unregistering(const struct net_device *dev)
4618 {
4619 	return dev->reg_state == NETREG_UNREGISTERING;
4620 }
4621 
4622 static inline const char *netdev_reg_state(const struct net_device *dev)
4623 {
4624 	switch (dev->reg_state) {
4625 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4626 	case NETREG_REGISTERED: return "";
4627 	case NETREG_UNREGISTERING: return " (unregistering)";
4628 	case NETREG_UNREGISTERED: return " (unregistered)";
4629 	case NETREG_RELEASED: return " (released)";
4630 	case NETREG_DUMMY: return " (dummy)";
4631 	}
4632 
4633 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4634 	return " (unknown)";
4635 }
4636 
4637 __printf(3, 4)
4638 void netdev_printk(const char *level, const struct net_device *dev,
4639 		   const char *format, ...);
4640 __printf(2, 3)
4641 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4642 __printf(2, 3)
4643 void netdev_alert(const struct net_device *dev, const char *format, ...);
4644 __printf(2, 3)
4645 void netdev_crit(const struct net_device *dev, const char *format, ...);
4646 __printf(2, 3)
4647 void netdev_err(const struct net_device *dev, const char *format, ...);
4648 __printf(2, 3)
4649 void netdev_warn(const struct net_device *dev, const char *format, ...);
4650 __printf(2, 3)
4651 void netdev_notice(const struct net_device *dev, const char *format, ...);
4652 __printf(2, 3)
4653 void netdev_info(const struct net_device *dev, const char *format, ...);
4654 
4655 #define netdev_level_once(level, dev, fmt, ...)			\
4656 do {								\
4657 	static bool __print_once __read_mostly;			\
4658 								\
4659 	if (!__print_once) {					\
4660 		__print_once = true;				\
4661 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4662 	}							\
4663 } while (0)
4664 
4665 #define netdev_emerg_once(dev, fmt, ...) \
4666 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4667 #define netdev_alert_once(dev, fmt, ...) \
4668 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4669 #define netdev_crit_once(dev, fmt, ...) \
4670 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4671 #define netdev_err_once(dev, fmt, ...) \
4672 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4673 #define netdev_warn_once(dev, fmt, ...) \
4674 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4675 #define netdev_notice_once(dev, fmt, ...) \
4676 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4677 #define netdev_info_once(dev, fmt, ...) \
4678 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4679 
4680 #define MODULE_ALIAS_NETDEV(device) \
4681 	MODULE_ALIAS("netdev-" device)
4682 
4683 #if defined(CONFIG_DYNAMIC_DEBUG)
4684 #define netdev_dbg(__dev, format, args...)			\
4685 do {								\
4686 	dynamic_netdev_dbg(__dev, format, ##args);		\
4687 } while (0)
4688 #elif defined(DEBUG)
4689 #define netdev_dbg(__dev, format, args...)			\
4690 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4691 #else
4692 #define netdev_dbg(__dev, format, args...)			\
4693 ({								\
4694 	if (0)							\
4695 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4696 })
4697 #endif
4698 
4699 #if defined(VERBOSE_DEBUG)
4700 #define netdev_vdbg	netdev_dbg
4701 #else
4702 
4703 #define netdev_vdbg(dev, format, args...)			\
4704 ({								\
4705 	if (0)							\
4706 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4707 	0;							\
4708 })
4709 #endif
4710 
4711 /*
4712  * netdev_WARN() acts like dev_printk(), but with the key difference
4713  * of using a WARN/WARN_ON to get the message out, including the
4714  * file/line information and a backtrace.
4715  */
4716 #define netdev_WARN(dev, format, args...)			\
4717 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4718 	     netdev_reg_state(dev), ##args)
4719 
4720 #define netdev_WARN_ONCE(dev, format, args...)				\
4721 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4722 		  netdev_reg_state(dev), ##args)
4723 
4724 /* netif printk helpers, similar to netdev_printk */
4725 
4726 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4727 do {					  			\
4728 	if (netif_msg_##type(priv))				\
4729 		netdev_printk(level, (dev), fmt, ##args);	\
4730 } while (0)
4731 
4732 #define netif_level(level, priv, type, dev, fmt, args...)	\
4733 do {								\
4734 	if (netif_msg_##type(priv))				\
4735 		netdev_##level(dev, fmt, ##args);		\
4736 } while (0)
4737 
4738 #define netif_emerg(priv, type, dev, fmt, args...)		\
4739 	netif_level(emerg, priv, type, dev, fmt, ##args)
4740 #define netif_alert(priv, type, dev, fmt, args...)		\
4741 	netif_level(alert, priv, type, dev, fmt, ##args)
4742 #define netif_crit(priv, type, dev, fmt, args...)		\
4743 	netif_level(crit, priv, type, dev, fmt, ##args)
4744 #define netif_err(priv, type, dev, fmt, args...)		\
4745 	netif_level(err, priv, type, dev, fmt, ##args)
4746 #define netif_warn(priv, type, dev, fmt, args...)		\
4747 	netif_level(warn, priv, type, dev, fmt, ##args)
4748 #define netif_notice(priv, type, dev, fmt, args...)		\
4749 	netif_level(notice, priv, type, dev, fmt, ##args)
4750 #define netif_info(priv, type, dev, fmt, args...)		\
4751 	netif_level(info, priv, type, dev, fmt, ##args)
4752 
4753 #if defined(CONFIG_DYNAMIC_DEBUG)
4754 #define netif_dbg(priv, type, netdev, format, args...)		\
4755 do {								\
4756 	if (netif_msg_##type(priv))				\
4757 		dynamic_netdev_dbg(netdev, format, ##args);	\
4758 } while (0)
4759 #elif defined(DEBUG)
4760 #define netif_dbg(priv, type, dev, format, args...)		\
4761 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4762 #else
4763 #define netif_dbg(priv, type, dev, format, args...)			\
4764 ({									\
4765 	if (0)								\
4766 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4767 	0;								\
4768 })
4769 #endif
4770 
4771 /* if @cond then downgrade to debug, else print at @level */
4772 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4773 	do {                                                              \
4774 		if (cond)                                                 \
4775 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4776 		else                                                      \
4777 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4778 	} while (0)
4779 
4780 #if defined(VERBOSE_DEBUG)
4781 #define netif_vdbg	netif_dbg
4782 #else
4783 #define netif_vdbg(priv, type, dev, format, args...)		\
4784 ({								\
4785 	if (0)							\
4786 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4787 	0;							\
4788 })
4789 #endif
4790 
4791 /*
4792  *	The list of packet types we will receive (as opposed to discard)
4793  *	and the routines to invoke.
4794  *
4795  *	Why 16. Because with 16 the only overlap we get on a hash of the
4796  *	low nibble of the protocol value is RARP/SNAP/X.25.
4797  *
4798  *		0800	IP
4799  *		0001	802.3
4800  *		0002	AX.25
4801  *		0004	802.2
4802  *		8035	RARP
4803  *		0005	SNAP
4804  *		0805	X.25
4805  *		0806	ARP
4806  *		8137	IPX
4807  *		0009	Localtalk
4808  *		86DD	IPv6
4809  */
4810 #define PTYPE_HASH_SIZE	(16)
4811 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4812 
4813 #endif	/* _LINUX_NETDEVICE_H */
4814