xref: /openbmc/linux/include/linux/netdevice.h (revision 3ac14b39)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 /*
306  * Structure for NAPI scheduling similar to tasklet but with weighting
307  */
308 struct napi_struct {
309 	/* The poll_list must only be managed by the entity which
310 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
311 	 * whoever atomically sets that bit can add this napi_struct
312 	 * to the per-CPU poll_list, and whoever clears that bit
313 	 * can remove from the list right before clearing the bit.
314 	 */
315 	struct list_head	poll_list;
316 
317 	unsigned long		state;
318 	int			weight;
319 	unsigned int		gro_count;
320 	int			(*poll)(struct napi_struct *, int);
321 #ifdef CONFIG_NETPOLL
322 	int			poll_owner;
323 #endif
324 	struct net_device	*dev;
325 	struct sk_buff		*gro_list;
326 	struct sk_buff		*skb;
327 	struct hrtimer		timer;
328 	struct list_head	dev_list;
329 	struct hlist_node	napi_hash_node;
330 	unsigned int		napi_id;
331 };
332 
333 enum {
334 	NAPI_STATE_SCHED,	/* Poll is scheduled */
335 	NAPI_STATE_MISSED,	/* reschedule a napi */
336 	NAPI_STATE_DISABLE,	/* Disable pending */
337 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
338 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
339 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
340 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
341 };
342 
343 enum {
344 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
345 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
346 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
347 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
348 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
349 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
350 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
351 };
352 
353 enum gro_result {
354 	GRO_MERGED,
355 	GRO_MERGED_FREE,
356 	GRO_HELD,
357 	GRO_NORMAL,
358 	GRO_DROP,
359 	GRO_CONSUMED,
360 };
361 typedef enum gro_result gro_result_t;
362 
363 /*
364  * enum rx_handler_result - Possible return values for rx_handlers.
365  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
366  * further.
367  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
368  * case skb->dev was changed by rx_handler.
369  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
370  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
371  *
372  * rx_handlers are functions called from inside __netif_receive_skb(), to do
373  * special processing of the skb, prior to delivery to protocol handlers.
374  *
375  * Currently, a net_device can only have a single rx_handler registered. Trying
376  * to register a second rx_handler will return -EBUSY.
377  *
378  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
379  * To unregister a rx_handler on a net_device, use
380  * netdev_rx_handler_unregister().
381  *
382  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
383  * do with the skb.
384  *
385  * If the rx_handler consumed the skb in some way, it should return
386  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
387  * the skb to be delivered in some other way.
388  *
389  * If the rx_handler changed skb->dev, to divert the skb to another
390  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
391  * new device will be called if it exists.
392  *
393  * If the rx_handler decides the skb should be ignored, it should return
394  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
395  * are registered on exact device (ptype->dev == skb->dev).
396  *
397  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
398  * delivered, it should return RX_HANDLER_PASS.
399  *
400  * A device without a registered rx_handler will behave as if rx_handler
401  * returned RX_HANDLER_PASS.
402  */
403 
404 enum rx_handler_result {
405 	RX_HANDLER_CONSUMED,
406 	RX_HANDLER_ANOTHER,
407 	RX_HANDLER_EXACT,
408 	RX_HANDLER_PASS,
409 };
410 typedef enum rx_handler_result rx_handler_result_t;
411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
412 
413 void __napi_schedule(struct napi_struct *n);
414 void __napi_schedule_irqoff(struct napi_struct *n);
415 
416 static inline bool napi_disable_pending(struct napi_struct *n)
417 {
418 	return test_bit(NAPI_STATE_DISABLE, &n->state);
419 }
420 
421 bool napi_schedule_prep(struct napi_struct *n);
422 
423 /**
424  *	napi_schedule - schedule NAPI poll
425  *	@n: NAPI context
426  *
427  * Schedule NAPI poll routine to be called if it is not already
428  * running.
429  */
430 static inline void napi_schedule(struct napi_struct *n)
431 {
432 	if (napi_schedule_prep(n))
433 		__napi_schedule(n);
434 }
435 
436 /**
437  *	napi_schedule_irqoff - schedule NAPI poll
438  *	@n: NAPI context
439  *
440  * Variant of napi_schedule(), assuming hard irqs are masked.
441  */
442 static inline void napi_schedule_irqoff(struct napi_struct *n)
443 {
444 	if (napi_schedule_prep(n))
445 		__napi_schedule_irqoff(n);
446 }
447 
448 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
449 static inline bool napi_reschedule(struct napi_struct *napi)
450 {
451 	if (napi_schedule_prep(napi)) {
452 		__napi_schedule(napi);
453 		return true;
454 	}
455 	return false;
456 }
457 
458 bool napi_complete_done(struct napi_struct *n, int work_done);
459 /**
460  *	napi_complete - NAPI processing complete
461  *	@n: NAPI context
462  *
463  * Mark NAPI processing as complete.
464  * Consider using napi_complete_done() instead.
465  * Return false if device should avoid rearming interrupts.
466  */
467 static inline bool napi_complete(struct napi_struct *n)
468 {
469 	return napi_complete_done(n, 0);
470 }
471 
472 /**
473  *	napi_hash_del - remove a NAPI from global table
474  *	@napi: NAPI context
475  *
476  * Warning: caller must observe RCU grace period
477  * before freeing memory containing @napi, if
478  * this function returns true.
479  * Note: core networking stack automatically calls it
480  * from netif_napi_del().
481  * Drivers might want to call this helper to combine all
482  * the needed RCU grace periods into a single one.
483  */
484 bool napi_hash_del(struct napi_struct *napi);
485 
486 /**
487  *	napi_disable - prevent NAPI from scheduling
488  *	@n: NAPI context
489  *
490  * Stop NAPI from being scheduled on this context.
491  * Waits till any outstanding processing completes.
492  */
493 void napi_disable(struct napi_struct *n);
494 
495 /**
496  *	napi_enable - enable NAPI scheduling
497  *	@n: NAPI context
498  *
499  * Resume NAPI from being scheduled on this context.
500  * Must be paired with napi_disable.
501  */
502 static inline void napi_enable(struct napi_struct *n)
503 {
504 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
505 	smp_mb__before_atomic();
506 	clear_bit(NAPI_STATE_SCHED, &n->state);
507 	clear_bit(NAPI_STATE_NPSVC, &n->state);
508 }
509 
510 /**
511  *	napi_synchronize - wait until NAPI is not running
512  *	@n: NAPI context
513  *
514  * Wait until NAPI is done being scheduled on this context.
515  * Waits till any outstanding processing completes but
516  * does not disable future activations.
517  */
518 static inline void napi_synchronize(const struct napi_struct *n)
519 {
520 	if (IS_ENABLED(CONFIG_SMP))
521 		while (test_bit(NAPI_STATE_SCHED, &n->state))
522 			msleep(1);
523 	else
524 		barrier();
525 }
526 
527 enum netdev_queue_state_t {
528 	__QUEUE_STATE_DRV_XOFF,
529 	__QUEUE_STATE_STACK_XOFF,
530 	__QUEUE_STATE_FROZEN,
531 };
532 
533 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
534 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
535 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
536 
537 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
539 					QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
541 					QUEUE_STATE_FROZEN)
542 
543 /*
544  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
545  * netif_tx_* functions below are used to manipulate this flag.  The
546  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
547  * queue independently.  The netif_xmit_*stopped functions below are called
548  * to check if the queue has been stopped by the driver or stack (either
549  * of the XOFF bits are set in the state).  Drivers should not need to call
550  * netif_xmit*stopped functions, they should only be using netif_tx_*.
551  */
552 
553 struct netdev_queue {
554 /*
555  * read-mostly part
556  */
557 	struct net_device	*dev;
558 	struct Qdisc __rcu	*qdisc;
559 	struct Qdisc		*qdisc_sleeping;
560 #ifdef CONFIG_SYSFS
561 	struct kobject		kobj;
562 #endif
563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
564 	int			numa_node;
565 #endif
566 	unsigned long		tx_maxrate;
567 	/*
568 	 * Number of TX timeouts for this queue
569 	 * (/sys/class/net/DEV/Q/trans_timeout)
570 	 */
571 	unsigned long		trans_timeout;
572 /*
573  * write-mostly part
574  */
575 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
576 	int			xmit_lock_owner;
577 	/*
578 	 * Time (in jiffies) of last Tx
579 	 */
580 	unsigned long		trans_start;
581 
582 	unsigned long		state;
583 
584 #ifdef CONFIG_BQL
585 	struct dql		dql;
586 #endif
587 } ____cacheline_aligned_in_smp;
588 
589 extern int sysctl_fb_tunnels_only_for_init_net;
590 
591 static inline bool net_has_fallback_tunnels(const struct net *net)
592 {
593 	return net == &init_net ||
594 	       !IS_ENABLED(CONFIG_SYSCTL) ||
595 	       !sysctl_fb_tunnels_only_for_init_net;
596 }
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	return q->numa_node;
602 #else
603 	return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 	q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620 	unsigned int len;
621 	struct rcu_head rcu;
622 	u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632 	u16 cpu;
633 	u16 filter;
634 	unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642 	unsigned int mask;
643 	struct rcu_head rcu;
644 	struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660 	u32	mask;
661 
662 	u32	ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 					u32 hash)
673 {
674 	if (table && hash) {
675 		unsigned int index = hash & table->mask;
676 		u32 val = hash & ~rps_cpu_mask;
677 
678 		/* We only give a hint, preemption can change CPU under us */
679 		val |= raw_smp_processor_id();
680 
681 		if (table->ents[index] != val)
682 			table->ents[index] = val;
683 	}
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 			 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 	struct rps_map __rcu		*rps_map;
696 	struct rps_dev_flow_table __rcu	*rps_flow_table;
697 #endif
698 	struct kobject			kobj;
699 	struct net_device		*dev;
700 	struct xdp_rxq_info		xdp_rxq;
701 } ____cacheline_aligned_in_smp;
702 
703 /*
704  * RX queue sysfs structures and functions.
705  */
706 struct rx_queue_attribute {
707 	struct attribute attr;
708 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
709 	ssize_t (*store)(struct netdev_rx_queue *queue,
710 			 const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719 	unsigned int len;
720 	unsigned int alloc_len;
721 	struct rcu_head rcu;
722 	u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732 	struct rcu_head rcu;
733 	struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +		\
736 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE	16
740 #define TC_BITMASK	15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 	u16 count;
744 	u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753 	char	manufacturer[64];
754 	char	serial_number[64];
755 	char	hardware_version[64];
756 	char	driver_version[64];
757 	char	optionrom_version[64];
758 	char	firmware_version[64];
759 	char	model[256];
760 	char	model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 	unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 					    struct netdev_phys_item_id *b)
776 {
777 	return a->id_len == b->id_len &&
778 	       memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 				       struct sk_buff *skb);
783 
784 enum tc_setup_type {
785 	TC_SETUP_QDISC_MQPRIO,
786 	TC_SETUP_CLSU32,
787 	TC_SETUP_CLSFLOWER,
788 	TC_SETUP_CLSMATCHALL,
789 	TC_SETUP_CLSBPF,
790 	TC_SETUP_BLOCK,
791 	TC_SETUP_QDISC_CBS,
792 	TC_SETUP_QDISC_RED,
793 	TC_SETUP_QDISC_PRIO,
794 	TC_SETUP_QDISC_MQ,
795 };
796 
797 /* These structures hold the attributes of bpf state that are being passed
798  * to the netdevice through the bpf op.
799  */
800 enum bpf_netdev_command {
801 	/* Set or clear a bpf program used in the earliest stages of packet
802 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
803 	 * is responsible for calling bpf_prog_put on any old progs that are
804 	 * stored. In case of error, the callee need not release the new prog
805 	 * reference, but on success it takes ownership and must bpf_prog_put
806 	 * when it is no longer used.
807 	 */
808 	XDP_SETUP_PROG,
809 	XDP_SETUP_PROG_HW,
810 	/* Check if a bpf program is set on the device.  The callee should
811 	 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
812 	 * is equivalent to XDP_ATTACHED_DRV.
813 	 */
814 	XDP_QUERY_PROG,
815 	/* BPF program for offload callbacks, invoked at program load time. */
816 	BPF_OFFLOAD_VERIFIER_PREP,
817 	BPF_OFFLOAD_TRANSLATE,
818 	BPF_OFFLOAD_DESTROY,
819 	BPF_OFFLOAD_MAP_ALLOC,
820 	BPF_OFFLOAD_MAP_FREE,
821 	XDP_QUERY_XSK_UMEM,
822 	XDP_SETUP_XSK_UMEM,
823 };
824 
825 struct bpf_prog_offload_ops;
826 struct netlink_ext_ack;
827 struct xdp_umem;
828 
829 struct netdev_bpf {
830 	enum bpf_netdev_command command;
831 	union {
832 		/* XDP_SETUP_PROG */
833 		struct {
834 			u32 flags;
835 			struct bpf_prog *prog;
836 			struct netlink_ext_ack *extack;
837 		};
838 		/* XDP_QUERY_PROG */
839 		struct {
840 			u8 prog_attached;
841 			u32 prog_id;
842 			/* flags with which program was installed */
843 			u32 prog_flags;
844 		};
845 		/* BPF_OFFLOAD_VERIFIER_PREP */
846 		struct {
847 			struct bpf_prog *prog;
848 			const struct bpf_prog_offload_ops *ops; /* callee set */
849 		} verifier;
850 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
851 		struct {
852 			struct bpf_prog *prog;
853 		} offload;
854 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
855 		struct {
856 			struct bpf_offloaded_map *offmap;
857 		};
858 		/* XDP_SETUP_XSK_UMEM */
859 		struct {
860 			struct xdp_umem *umem;
861 			u16 queue_id;
862 		} xsk;
863 	};
864 };
865 
866 #ifdef CONFIG_XFRM_OFFLOAD
867 struct xfrmdev_ops {
868 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
869 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
870 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
871 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
872 				       struct xfrm_state *x);
873 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
874 };
875 #endif
876 
877 #if IS_ENABLED(CONFIG_TLS_DEVICE)
878 enum tls_offload_ctx_dir {
879 	TLS_OFFLOAD_CTX_DIR_RX,
880 	TLS_OFFLOAD_CTX_DIR_TX,
881 };
882 
883 struct tls_crypto_info;
884 struct tls_context;
885 
886 struct tlsdev_ops {
887 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
888 			   enum tls_offload_ctx_dir direction,
889 			   struct tls_crypto_info *crypto_info,
890 			   u32 start_offload_tcp_sn);
891 	void (*tls_dev_del)(struct net_device *netdev,
892 			    struct tls_context *ctx,
893 			    enum tls_offload_ctx_dir direction);
894 };
895 #endif
896 
897 struct dev_ifalias {
898 	struct rcu_head rcuhead;
899 	char ifalias[];
900 };
901 
902 /*
903  * This structure defines the management hooks for network devices.
904  * The following hooks can be defined; unless noted otherwise, they are
905  * optional and can be filled with a null pointer.
906  *
907  * int (*ndo_init)(struct net_device *dev);
908  *     This function is called once when a network device is registered.
909  *     The network device can use this for any late stage initialization
910  *     or semantic validation. It can fail with an error code which will
911  *     be propagated back to register_netdev.
912  *
913  * void (*ndo_uninit)(struct net_device *dev);
914  *     This function is called when device is unregistered or when registration
915  *     fails. It is not called if init fails.
916  *
917  * int (*ndo_open)(struct net_device *dev);
918  *     This function is called when a network device transitions to the up
919  *     state.
920  *
921  * int (*ndo_stop)(struct net_device *dev);
922  *     This function is called when a network device transitions to the down
923  *     state.
924  *
925  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
926  *                               struct net_device *dev);
927  *	Called when a packet needs to be transmitted.
928  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
929  *	the queue before that can happen; it's for obsolete devices and weird
930  *	corner cases, but the stack really does a non-trivial amount
931  *	of useless work if you return NETDEV_TX_BUSY.
932  *	Required; cannot be NULL.
933  *
934  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
935  *					   struct net_device *dev
936  *					   netdev_features_t features);
937  *	Called by core transmit path to determine if device is capable of
938  *	performing offload operations on a given packet. This is to give
939  *	the device an opportunity to implement any restrictions that cannot
940  *	be otherwise expressed by feature flags. The check is called with
941  *	the set of features that the stack has calculated and it returns
942  *	those the driver believes to be appropriate.
943  *
944  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
945  *                         void *accel_priv, select_queue_fallback_t fallback);
946  *	Called to decide which queue to use when device supports multiple
947  *	transmit queues.
948  *
949  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
950  *	This function is called to allow device receiver to make
951  *	changes to configuration when multicast or promiscuous is enabled.
952  *
953  * void (*ndo_set_rx_mode)(struct net_device *dev);
954  *	This function is called device changes address list filtering.
955  *	If driver handles unicast address filtering, it should set
956  *	IFF_UNICAST_FLT in its priv_flags.
957  *
958  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
959  *	This function  is called when the Media Access Control address
960  *	needs to be changed. If this interface is not defined, the
961  *	MAC address can not be changed.
962  *
963  * int (*ndo_validate_addr)(struct net_device *dev);
964  *	Test if Media Access Control address is valid for the device.
965  *
966  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
967  *	Called when a user requests an ioctl which can't be handled by
968  *	the generic interface code. If not defined ioctls return
969  *	not supported error code.
970  *
971  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
972  *	Used to set network devices bus interface parameters. This interface
973  *	is retained for legacy reasons; new devices should use the bus
974  *	interface (PCI) for low level management.
975  *
976  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
977  *	Called when a user wants to change the Maximum Transfer Unit
978  *	of a device.
979  *
980  * void (*ndo_tx_timeout)(struct net_device *dev);
981  *	Callback used when the transmitter has not made any progress
982  *	for dev->watchdog ticks.
983  *
984  * void (*ndo_get_stats64)(struct net_device *dev,
985  *                         struct rtnl_link_stats64 *storage);
986  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
987  *	Called when a user wants to get the network device usage
988  *	statistics. Drivers must do one of the following:
989  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
990  *	   rtnl_link_stats64 structure passed by the caller.
991  *	2. Define @ndo_get_stats to update a net_device_stats structure
992  *	   (which should normally be dev->stats) and return a pointer to
993  *	   it. The structure may be changed asynchronously only if each
994  *	   field is written atomically.
995  *	3. Update dev->stats asynchronously and atomically, and define
996  *	   neither operation.
997  *
998  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
999  *	Return true if this device supports offload stats of this attr_id.
1000  *
1001  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1002  *	void *attr_data)
1003  *	Get statistics for offload operations by attr_id. Write it into the
1004  *	attr_data pointer.
1005  *
1006  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1007  *	If device supports VLAN filtering this function is called when a
1008  *	VLAN id is registered.
1009  *
1010  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1011  *	If device supports VLAN filtering this function is called when a
1012  *	VLAN id is unregistered.
1013  *
1014  * void (*ndo_poll_controller)(struct net_device *dev);
1015  *
1016  *	SR-IOV management functions.
1017  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1018  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1019  *			  u8 qos, __be16 proto);
1020  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1021  *			  int max_tx_rate);
1022  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1023  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1024  * int (*ndo_get_vf_config)(struct net_device *dev,
1025  *			    int vf, struct ifla_vf_info *ivf);
1026  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1027  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1028  *			  struct nlattr *port[]);
1029  *
1030  *      Enable or disable the VF ability to query its RSS Redirection Table and
1031  *      Hash Key. This is needed since on some devices VF share this information
1032  *      with PF and querying it may introduce a theoretical security risk.
1033  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1034  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1035  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1036  *		       void *type_data);
1037  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1038  *	This is always called from the stack with the rtnl lock held and netif
1039  *	tx queues stopped. This allows the netdevice to perform queue
1040  *	management safely.
1041  *
1042  *	Fiber Channel over Ethernet (FCoE) offload functions.
1043  * int (*ndo_fcoe_enable)(struct net_device *dev);
1044  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1045  *	so the underlying device can perform whatever needed configuration or
1046  *	initialization to support acceleration of FCoE traffic.
1047  *
1048  * int (*ndo_fcoe_disable)(struct net_device *dev);
1049  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1050  *	so the underlying device can perform whatever needed clean-ups to
1051  *	stop supporting acceleration of FCoE traffic.
1052  *
1053  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1054  *			     struct scatterlist *sgl, unsigned int sgc);
1055  *	Called when the FCoE Initiator wants to initialize an I/O that
1056  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1057  *	perform necessary setup and returns 1 to indicate the device is set up
1058  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1059  *
1060  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1061  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1062  *	indicated by the FC exchange id 'xid', so the underlying device can
1063  *	clean up and reuse resources for later DDP requests.
1064  *
1065  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1066  *			      struct scatterlist *sgl, unsigned int sgc);
1067  *	Called when the FCoE Target wants to initialize an I/O that
1068  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1069  *	perform necessary setup and returns 1 to indicate the device is set up
1070  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1071  *
1072  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1073  *			       struct netdev_fcoe_hbainfo *hbainfo);
1074  *	Called when the FCoE Protocol stack wants information on the underlying
1075  *	device. This information is utilized by the FCoE protocol stack to
1076  *	register attributes with Fiber Channel management service as per the
1077  *	FC-GS Fabric Device Management Information(FDMI) specification.
1078  *
1079  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1080  *	Called when the underlying device wants to override default World Wide
1081  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1082  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1083  *	protocol stack to use.
1084  *
1085  *	RFS acceleration.
1086  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1087  *			    u16 rxq_index, u32 flow_id);
1088  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1089  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1090  *	Return the filter ID on success, or a negative error code.
1091  *
1092  *	Slave management functions (for bridge, bonding, etc).
1093  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1094  *	Called to make another netdev an underling.
1095  *
1096  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1097  *	Called to release previously enslaved netdev.
1098  *
1099  *      Feature/offload setting functions.
1100  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1101  *		netdev_features_t features);
1102  *	Adjusts the requested feature flags according to device-specific
1103  *	constraints, and returns the resulting flags. Must not modify
1104  *	the device state.
1105  *
1106  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1107  *	Called to update device configuration to new features. Passed
1108  *	feature set might be less than what was returned by ndo_fix_features()).
1109  *	Must return >0 or -errno if it changed dev->features itself.
1110  *
1111  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1112  *		      struct net_device *dev,
1113  *		      const unsigned char *addr, u16 vid, u16 flags)
1114  *	Adds an FDB entry to dev for addr.
1115  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1116  *		      struct net_device *dev,
1117  *		      const unsigned char *addr, u16 vid)
1118  *	Deletes the FDB entry from dev coresponding to addr.
1119  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1120  *		       struct net_device *dev, struct net_device *filter_dev,
1121  *		       int *idx)
1122  *	Used to add FDB entries to dump requests. Implementers should add
1123  *	entries to skb and update idx with the number of entries.
1124  *
1125  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1126  *			     u16 flags)
1127  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1128  *			     struct net_device *dev, u32 filter_mask,
1129  *			     int nlflags)
1130  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1131  *			     u16 flags);
1132  *
1133  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1134  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1135  *	which do not represent real hardware may define this to allow their
1136  *	userspace components to manage their virtual carrier state. Devices
1137  *	that determine carrier state from physical hardware properties (eg
1138  *	network cables) or protocol-dependent mechanisms (eg
1139  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1140  *
1141  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1142  *			       struct netdev_phys_item_id *ppid);
1143  *	Called to get ID of physical port of this device. If driver does
1144  *	not implement this, it is assumed that the hw is not able to have
1145  *	multiple net devices on single physical port.
1146  *
1147  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1148  *			      struct udp_tunnel_info *ti);
1149  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1150  *	address family that a UDP tunnel is listnening to. It is called only
1151  *	when a new port starts listening. The operation is protected by the
1152  *	RTNL.
1153  *
1154  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1155  *			      struct udp_tunnel_info *ti);
1156  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1157  *	address family that the UDP tunnel is not listening to anymore. The
1158  *	operation is protected by the RTNL.
1159  *
1160  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1161  *				 struct net_device *dev)
1162  *	Called by upper layer devices to accelerate switching or other
1163  *	station functionality into hardware. 'pdev is the lowerdev
1164  *	to use for the offload and 'dev' is the net device that will
1165  *	back the offload. Returns a pointer to the private structure
1166  *	the upper layer will maintain.
1167  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1168  *	Called by upper layer device to delete the station created
1169  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1170  *	the station and priv is the structure returned by the add
1171  *	operation.
1172  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1173  *			     int queue_index, u32 maxrate);
1174  *	Called when a user wants to set a max-rate limitation of specific
1175  *	TX queue.
1176  * int (*ndo_get_iflink)(const struct net_device *dev);
1177  *	Called to get the iflink value of this device.
1178  * void (*ndo_change_proto_down)(struct net_device *dev,
1179  *				 bool proto_down);
1180  *	This function is used to pass protocol port error state information
1181  *	to the switch driver. The switch driver can react to the proto_down
1182  *      by doing a phys down on the associated switch port.
1183  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1184  *	This function is used to get egress tunnel information for given skb.
1185  *	This is useful for retrieving outer tunnel header parameters while
1186  *	sampling packet.
1187  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1188  *	This function is used to specify the headroom that the skb must
1189  *	consider when allocation skb during packet reception. Setting
1190  *	appropriate rx headroom value allows avoiding skb head copy on
1191  *	forward. Setting a negative value resets the rx headroom to the
1192  *	default value.
1193  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1194  *	This function is used to set or query state related to XDP on the
1195  *	netdevice and manage BPF offload. See definition of
1196  *	enum bpf_netdev_command for details.
1197  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1198  *			u32 flags);
1199  *	This function is used to submit @n XDP packets for transmit on a
1200  *	netdevice. Returns number of frames successfully transmitted, frames
1201  *	that got dropped are freed/returned via xdp_return_frame().
1202  *	Returns negative number, means general error invoking ndo, meaning
1203  *	no frames were xmit'ed and core-caller will free all frames.
1204  */
1205 struct net_device_ops {
1206 	int			(*ndo_init)(struct net_device *dev);
1207 	void			(*ndo_uninit)(struct net_device *dev);
1208 	int			(*ndo_open)(struct net_device *dev);
1209 	int			(*ndo_stop)(struct net_device *dev);
1210 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1211 						  struct net_device *dev);
1212 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1213 						      struct net_device *dev,
1214 						      netdev_features_t features);
1215 	u16			(*ndo_select_queue)(struct net_device *dev,
1216 						    struct sk_buff *skb,
1217 						    void *accel_priv,
1218 						    select_queue_fallback_t fallback);
1219 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1220 						       int flags);
1221 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1222 	int			(*ndo_set_mac_address)(struct net_device *dev,
1223 						       void *addr);
1224 	int			(*ndo_validate_addr)(struct net_device *dev);
1225 	int			(*ndo_do_ioctl)(struct net_device *dev,
1226 					        struct ifreq *ifr, int cmd);
1227 	int			(*ndo_set_config)(struct net_device *dev,
1228 					          struct ifmap *map);
1229 	int			(*ndo_change_mtu)(struct net_device *dev,
1230 						  int new_mtu);
1231 	int			(*ndo_neigh_setup)(struct net_device *dev,
1232 						   struct neigh_parms *);
1233 	void			(*ndo_tx_timeout) (struct net_device *dev);
1234 
1235 	void			(*ndo_get_stats64)(struct net_device *dev,
1236 						   struct rtnl_link_stats64 *storage);
1237 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1238 	int			(*ndo_get_offload_stats)(int attr_id,
1239 							 const struct net_device *dev,
1240 							 void *attr_data);
1241 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1242 
1243 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1244 						       __be16 proto, u16 vid);
1245 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1246 						        __be16 proto, u16 vid);
1247 #ifdef CONFIG_NET_POLL_CONTROLLER
1248 	void                    (*ndo_poll_controller)(struct net_device *dev);
1249 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1250 						     struct netpoll_info *info);
1251 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1252 #endif
1253 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1254 						  int queue, u8 *mac);
1255 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1256 						   int queue, u16 vlan,
1257 						   u8 qos, __be16 proto);
1258 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1259 						   int vf, int min_tx_rate,
1260 						   int max_tx_rate);
1261 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1262 						       int vf, bool setting);
1263 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1264 						    int vf, bool setting);
1265 	int			(*ndo_get_vf_config)(struct net_device *dev,
1266 						     int vf,
1267 						     struct ifla_vf_info *ivf);
1268 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1269 							 int vf, int link_state);
1270 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1271 						    int vf,
1272 						    struct ifla_vf_stats
1273 						    *vf_stats);
1274 	int			(*ndo_set_vf_port)(struct net_device *dev,
1275 						   int vf,
1276 						   struct nlattr *port[]);
1277 	int			(*ndo_get_vf_port)(struct net_device *dev,
1278 						   int vf, struct sk_buff *skb);
1279 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1280 						   int vf, u64 guid,
1281 						   int guid_type);
1282 	int			(*ndo_set_vf_rss_query_en)(
1283 						   struct net_device *dev,
1284 						   int vf, bool setting);
1285 	int			(*ndo_setup_tc)(struct net_device *dev,
1286 						enum tc_setup_type type,
1287 						void *type_data);
1288 #if IS_ENABLED(CONFIG_FCOE)
1289 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1290 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1291 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1292 						      u16 xid,
1293 						      struct scatterlist *sgl,
1294 						      unsigned int sgc);
1295 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1296 						     u16 xid);
1297 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1298 						       u16 xid,
1299 						       struct scatterlist *sgl,
1300 						       unsigned int sgc);
1301 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1302 							struct netdev_fcoe_hbainfo *hbainfo);
1303 #endif
1304 
1305 #if IS_ENABLED(CONFIG_LIBFCOE)
1306 #define NETDEV_FCOE_WWNN 0
1307 #define NETDEV_FCOE_WWPN 1
1308 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1309 						    u64 *wwn, int type);
1310 #endif
1311 
1312 #ifdef CONFIG_RFS_ACCEL
1313 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1314 						     const struct sk_buff *skb,
1315 						     u16 rxq_index,
1316 						     u32 flow_id);
1317 #endif
1318 	int			(*ndo_add_slave)(struct net_device *dev,
1319 						 struct net_device *slave_dev,
1320 						 struct netlink_ext_ack *extack);
1321 	int			(*ndo_del_slave)(struct net_device *dev,
1322 						 struct net_device *slave_dev);
1323 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1324 						    netdev_features_t features);
1325 	int			(*ndo_set_features)(struct net_device *dev,
1326 						    netdev_features_t features);
1327 	int			(*ndo_neigh_construct)(struct net_device *dev,
1328 						       struct neighbour *n);
1329 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1330 						     struct neighbour *n);
1331 
1332 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1333 					       struct nlattr *tb[],
1334 					       struct net_device *dev,
1335 					       const unsigned char *addr,
1336 					       u16 vid,
1337 					       u16 flags);
1338 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1339 					       struct nlattr *tb[],
1340 					       struct net_device *dev,
1341 					       const unsigned char *addr,
1342 					       u16 vid);
1343 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1344 						struct netlink_callback *cb,
1345 						struct net_device *dev,
1346 						struct net_device *filter_dev,
1347 						int *idx);
1348 
1349 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1350 						      struct nlmsghdr *nlh,
1351 						      u16 flags);
1352 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1353 						      u32 pid, u32 seq,
1354 						      struct net_device *dev,
1355 						      u32 filter_mask,
1356 						      int nlflags);
1357 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1358 						      struct nlmsghdr *nlh,
1359 						      u16 flags);
1360 	int			(*ndo_change_carrier)(struct net_device *dev,
1361 						      bool new_carrier);
1362 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1363 							struct netdev_phys_item_id *ppid);
1364 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1365 							  char *name, size_t len);
1366 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1367 						      struct udp_tunnel_info *ti);
1368 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1369 						      struct udp_tunnel_info *ti);
1370 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1371 							struct net_device *dev);
1372 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1373 							void *priv);
1374 
1375 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1376 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1377 						      int queue_index,
1378 						      u32 maxrate);
1379 	int			(*ndo_get_iflink)(const struct net_device *dev);
1380 	int			(*ndo_change_proto_down)(struct net_device *dev,
1381 							 bool proto_down);
1382 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1383 						       struct sk_buff *skb);
1384 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1385 						       int needed_headroom);
1386 	int			(*ndo_bpf)(struct net_device *dev,
1387 					   struct netdev_bpf *bpf);
1388 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1389 						struct xdp_frame **xdp,
1390 						u32 flags);
1391 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1392 						      u32 queue_id);
1393 };
1394 
1395 /**
1396  * enum net_device_priv_flags - &struct net_device priv_flags
1397  *
1398  * These are the &struct net_device, they are only set internally
1399  * by drivers and used in the kernel. These flags are invisible to
1400  * userspace; this means that the order of these flags can change
1401  * during any kernel release.
1402  *
1403  * You should have a pretty good reason to be extending these flags.
1404  *
1405  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1406  * @IFF_EBRIDGE: Ethernet bridging device
1407  * @IFF_BONDING: bonding master or slave
1408  * @IFF_ISATAP: ISATAP interface (RFC4214)
1409  * @IFF_WAN_HDLC: WAN HDLC device
1410  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1411  *	release skb->dst
1412  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1413  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1414  * @IFF_MACVLAN_PORT: device used as macvlan port
1415  * @IFF_BRIDGE_PORT: device used as bridge port
1416  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1417  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1418  * @IFF_UNICAST_FLT: Supports unicast filtering
1419  * @IFF_TEAM_PORT: device used as team port
1420  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1421  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1422  *	change when it's running
1423  * @IFF_MACVLAN: Macvlan device
1424  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1425  *	underlying stacked devices
1426  * @IFF_L3MDEV_MASTER: device is an L3 master device
1427  * @IFF_NO_QUEUE: device can run without qdisc attached
1428  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1429  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1430  * @IFF_TEAM: device is a team device
1431  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1432  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1433  *	entity (i.e. the master device for bridged veth)
1434  * @IFF_MACSEC: device is a MACsec device
1435  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1436  * @IFF_FAILOVER: device is a failover master device
1437  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1438  */
1439 enum netdev_priv_flags {
1440 	IFF_802_1Q_VLAN			= 1<<0,
1441 	IFF_EBRIDGE			= 1<<1,
1442 	IFF_BONDING			= 1<<2,
1443 	IFF_ISATAP			= 1<<3,
1444 	IFF_WAN_HDLC			= 1<<4,
1445 	IFF_XMIT_DST_RELEASE		= 1<<5,
1446 	IFF_DONT_BRIDGE			= 1<<6,
1447 	IFF_DISABLE_NETPOLL		= 1<<7,
1448 	IFF_MACVLAN_PORT		= 1<<8,
1449 	IFF_BRIDGE_PORT			= 1<<9,
1450 	IFF_OVS_DATAPATH		= 1<<10,
1451 	IFF_TX_SKB_SHARING		= 1<<11,
1452 	IFF_UNICAST_FLT			= 1<<12,
1453 	IFF_TEAM_PORT			= 1<<13,
1454 	IFF_SUPP_NOFCS			= 1<<14,
1455 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1456 	IFF_MACVLAN			= 1<<16,
1457 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1458 	IFF_L3MDEV_MASTER		= 1<<18,
1459 	IFF_NO_QUEUE			= 1<<19,
1460 	IFF_OPENVSWITCH			= 1<<20,
1461 	IFF_L3MDEV_SLAVE		= 1<<21,
1462 	IFF_TEAM			= 1<<22,
1463 	IFF_RXFH_CONFIGURED		= 1<<23,
1464 	IFF_PHONY_HEADROOM		= 1<<24,
1465 	IFF_MACSEC			= 1<<25,
1466 	IFF_NO_RX_HANDLER		= 1<<26,
1467 	IFF_FAILOVER			= 1<<27,
1468 	IFF_FAILOVER_SLAVE		= 1<<28,
1469 };
1470 
1471 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1472 #define IFF_EBRIDGE			IFF_EBRIDGE
1473 #define IFF_BONDING			IFF_BONDING
1474 #define IFF_ISATAP			IFF_ISATAP
1475 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1476 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1477 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1478 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1479 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1480 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1481 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1482 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1483 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1484 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1485 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1486 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1487 #define IFF_MACVLAN			IFF_MACVLAN
1488 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1489 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1490 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1491 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1492 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1493 #define IFF_TEAM			IFF_TEAM
1494 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1495 #define IFF_MACSEC			IFF_MACSEC
1496 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1497 #define IFF_FAILOVER			IFF_FAILOVER
1498 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1499 
1500 /**
1501  *	struct net_device - The DEVICE structure.
1502  *
1503  *	Actually, this whole structure is a big mistake.  It mixes I/O
1504  *	data with strictly "high-level" data, and it has to know about
1505  *	almost every data structure used in the INET module.
1506  *
1507  *	@name:	This is the first field of the "visible" part of this structure
1508  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1509  *		of the interface.
1510  *
1511  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1512  *	@ifalias:	SNMP alias
1513  *	@mem_end:	Shared memory end
1514  *	@mem_start:	Shared memory start
1515  *	@base_addr:	Device I/O address
1516  *	@irq:		Device IRQ number
1517  *
1518  *	@state:		Generic network queuing layer state, see netdev_state_t
1519  *	@dev_list:	The global list of network devices
1520  *	@napi_list:	List entry used for polling NAPI devices
1521  *	@unreg_list:	List entry  when we are unregistering the
1522  *			device; see the function unregister_netdev
1523  *	@close_list:	List entry used when we are closing the device
1524  *	@ptype_all:     Device-specific packet handlers for all protocols
1525  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1526  *
1527  *	@adj_list:	Directly linked devices, like slaves for bonding
1528  *	@features:	Currently active device features
1529  *	@hw_features:	User-changeable features
1530  *
1531  *	@wanted_features:	User-requested features
1532  *	@vlan_features:		Mask of features inheritable by VLAN devices
1533  *
1534  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1535  *				This field indicates what encapsulation
1536  *				offloads the hardware is capable of doing,
1537  *				and drivers will need to set them appropriately.
1538  *
1539  *	@mpls_features:	Mask of features inheritable by MPLS
1540  *
1541  *	@ifindex:	interface index
1542  *	@group:		The group the device belongs to
1543  *
1544  *	@stats:		Statistics struct, which was left as a legacy, use
1545  *			rtnl_link_stats64 instead
1546  *
1547  *	@rx_dropped:	Dropped packets by core network,
1548  *			do not use this in drivers
1549  *	@tx_dropped:	Dropped packets by core network,
1550  *			do not use this in drivers
1551  *	@rx_nohandler:	nohandler dropped packets by core network on
1552  *			inactive devices, do not use this in drivers
1553  *	@carrier_up_count:	Number of times the carrier has been up
1554  *	@carrier_down_count:	Number of times the carrier has been down
1555  *
1556  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1557  *				instead of ioctl,
1558  *				see <net/iw_handler.h> for details.
1559  *	@wireless_data:	Instance data managed by the core of wireless extensions
1560  *
1561  *	@netdev_ops:	Includes several pointers to callbacks,
1562  *			if one wants to override the ndo_*() functions
1563  *	@ethtool_ops:	Management operations
1564  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1565  *			discovery handling. Necessary for e.g. 6LoWPAN.
1566  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1567  *			of Layer 2 headers.
1568  *
1569  *	@flags:		Interface flags (a la BSD)
1570  *	@priv_flags:	Like 'flags' but invisible to userspace,
1571  *			see if.h for the definitions
1572  *	@gflags:	Global flags ( kept as legacy )
1573  *	@padded:	How much padding added by alloc_netdev()
1574  *	@operstate:	RFC2863 operstate
1575  *	@link_mode:	Mapping policy to operstate
1576  *	@if_port:	Selectable AUI, TP, ...
1577  *	@dma:		DMA channel
1578  *	@mtu:		Interface MTU value
1579  *	@min_mtu:	Interface Minimum MTU value
1580  *	@max_mtu:	Interface Maximum MTU value
1581  *	@type:		Interface hardware type
1582  *	@hard_header_len: Maximum hardware header length.
1583  *	@min_header_len:  Minimum hardware header length
1584  *
1585  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1586  *			  cases can this be guaranteed
1587  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1588  *			  cases can this be guaranteed. Some cases also use
1589  *			  LL_MAX_HEADER instead to allocate the skb
1590  *
1591  *	interface address info:
1592  *
1593  * 	@perm_addr:		Permanent hw address
1594  * 	@addr_assign_type:	Hw address assignment type
1595  * 	@addr_len:		Hardware address length
1596  *	@neigh_priv_len:	Used in neigh_alloc()
1597  * 	@dev_id:		Used to differentiate devices that share
1598  * 				the same link layer address
1599  * 	@dev_port:		Used to differentiate devices that share
1600  * 				the same function
1601  *	@addr_list_lock:	XXX: need comments on this one
1602  *	@uc_promisc:		Counter that indicates promiscuous mode
1603  *				has been enabled due to the need to listen to
1604  *				additional unicast addresses in a device that
1605  *				does not implement ndo_set_rx_mode()
1606  *	@uc:			unicast mac addresses
1607  *	@mc:			multicast mac addresses
1608  *	@dev_addrs:		list of device hw addresses
1609  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1610  *	@promiscuity:		Number of times the NIC is told to work in
1611  *				promiscuous mode; if it becomes 0 the NIC will
1612  *				exit promiscuous mode
1613  *	@allmulti:		Counter, enables or disables allmulticast mode
1614  *
1615  *	@vlan_info:	VLAN info
1616  *	@dsa_ptr:	dsa specific data
1617  *	@tipc_ptr:	TIPC specific data
1618  *	@atalk_ptr:	AppleTalk link
1619  *	@ip_ptr:	IPv4 specific data
1620  *	@dn_ptr:	DECnet specific data
1621  *	@ip6_ptr:	IPv6 specific data
1622  *	@ax25_ptr:	AX.25 specific data
1623  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1624  *
1625  *	@dev_addr:	Hw address (before bcast,
1626  *			because most packets are unicast)
1627  *
1628  *	@_rx:			Array of RX queues
1629  *	@num_rx_queues:		Number of RX queues
1630  *				allocated at register_netdev() time
1631  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1632  *
1633  *	@rx_handler:		handler for received packets
1634  *	@rx_handler_data: 	XXX: need comments on this one
1635  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1636  *				ingress processing
1637  *	@ingress_queue:		XXX: need comments on this one
1638  *	@broadcast:		hw bcast address
1639  *
1640  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1641  *			indexed by RX queue number. Assigned by driver.
1642  *			This must only be set if the ndo_rx_flow_steer
1643  *			operation is defined
1644  *	@index_hlist:		Device index hash chain
1645  *
1646  *	@_tx:			Array of TX queues
1647  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1648  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1649  *	@qdisc:			Root qdisc from userspace point of view
1650  *	@tx_queue_len:		Max frames per queue allowed
1651  *	@tx_global_lock: 	XXX: need comments on this one
1652  *
1653  *	@xps_maps:	XXX: need comments on this one
1654  *	@miniq_egress:		clsact qdisc specific data for
1655  *				egress processing
1656  *	@watchdog_timeo:	Represents the timeout that is used by
1657  *				the watchdog (see dev_watchdog())
1658  *	@watchdog_timer:	List of timers
1659  *
1660  *	@pcpu_refcnt:		Number of references to this device
1661  *	@todo_list:		Delayed register/unregister
1662  *	@link_watch_list:	XXX: need comments on this one
1663  *
1664  *	@reg_state:		Register/unregister state machine
1665  *	@dismantle:		Device is going to be freed
1666  *	@rtnl_link_state:	This enum represents the phases of creating
1667  *				a new link
1668  *
1669  *	@needs_free_netdev:	Should unregister perform free_netdev?
1670  *	@priv_destructor:	Called from unregister
1671  *	@npinfo:		XXX: need comments on this one
1672  * 	@nd_net:		Network namespace this network device is inside
1673  *
1674  * 	@ml_priv:	Mid-layer private
1675  * 	@lstats:	Loopback statistics
1676  * 	@tstats:	Tunnel statistics
1677  * 	@dstats:	Dummy statistics
1678  * 	@vstats:	Virtual ethernet statistics
1679  *
1680  *	@garp_port:	GARP
1681  *	@mrp_port:	MRP
1682  *
1683  *	@dev:		Class/net/name entry
1684  *	@sysfs_groups:	Space for optional device, statistics and wireless
1685  *			sysfs groups
1686  *
1687  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1688  *	@rtnl_link_ops:	Rtnl_link_ops
1689  *
1690  *	@gso_max_size:	Maximum size of generic segmentation offload
1691  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1692  *			NIC for GSO
1693  *
1694  *	@dcbnl_ops:	Data Center Bridging netlink ops
1695  *	@num_tc:	Number of traffic classes in the net device
1696  *	@tc_to_txq:	XXX: need comments on this one
1697  *	@prio_tc_map:	XXX: need comments on this one
1698  *
1699  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1700  *
1701  *	@priomap:	XXX: need comments on this one
1702  *	@phydev:	Physical device may attach itself
1703  *			for hardware timestamping
1704  *	@sfp_bus:	attached &struct sfp_bus structure.
1705  *
1706  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1707  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1708  *
1709  *	@proto_down:	protocol port state information can be sent to the
1710  *			switch driver and used to set the phys state of the
1711  *			switch port.
1712  *
1713  *	FIXME: cleanup struct net_device such that network protocol info
1714  *	moves out.
1715  */
1716 
1717 struct net_device {
1718 	char			name[IFNAMSIZ];
1719 	struct hlist_node	name_hlist;
1720 	struct dev_ifalias	__rcu *ifalias;
1721 	/*
1722 	 *	I/O specific fields
1723 	 *	FIXME: Merge these and struct ifmap into one
1724 	 */
1725 	unsigned long		mem_end;
1726 	unsigned long		mem_start;
1727 	unsigned long		base_addr;
1728 	int			irq;
1729 
1730 	/*
1731 	 *	Some hardware also needs these fields (state,dev_list,
1732 	 *	napi_list,unreg_list,close_list) but they are not
1733 	 *	part of the usual set specified in Space.c.
1734 	 */
1735 
1736 	unsigned long		state;
1737 
1738 	struct list_head	dev_list;
1739 	struct list_head	napi_list;
1740 	struct list_head	unreg_list;
1741 	struct list_head	close_list;
1742 	struct list_head	ptype_all;
1743 	struct list_head	ptype_specific;
1744 
1745 	struct {
1746 		struct list_head upper;
1747 		struct list_head lower;
1748 	} adj_list;
1749 
1750 	netdev_features_t	features;
1751 	netdev_features_t	hw_features;
1752 	netdev_features_t	wanted_features;
1753 	netdev_features_t	vlan_features;
1754 	netdev_features_t	hw_enc_features;
1755 	netdev_features_t	mpls_features;
1756 	netdev_features_t	gso_partial_features;
1757 
1758 	int			ifindex;
1759 	int			group;
1760 
1761 	struct net_device_stats	stats;
1762 
1763 	atomic_long_t		rx_dropped;
1764 	atomic_long_t		tx_dropped;
1765 	atomic_long_t		rx_nohandler;
1766 
1767 	/* Stats to monitor link on/off, flapping */
1768 	atomic_t		carrier_up_count;
1769 	atomic_t		carrier_down_count;
1770 
1771 #ifdef CONFIG_WIRELESS_EXT
1772 	const struct iw_handler_def *wireless_handlers;
1773 	struct iw_public_data	*wireless_data;
1774 #endif
1775 	const struct net_device_ops *netdev_ops;
1776 	const struct ethtool_ops *ethtool_ops;
1777 #ifdef CONFIG_NET_SWITCHDEV
1778 	const struct switchdev_ops *switchdev_ops;
1779 #endif
1780 #ifdef CONFIG_NET_L3_MASTER_DEV
1781 	const struct l3mdev_ops	*l3mdev_ops;
1782 #endif
1783 #if IS_ENABLED(CONFIG_IPV6)
1784 	const struct ndisc_ops *ndisc_ops;
1785 #endif
1786 
1787 #ifdef CONFIG_XFRM_OFFLOAD
1788 	const struct xfrmdev_ops *xfrmdev_ops;
1789 #endif
1790 
1791 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1792 	const struct tlsdev_ops *tlsdev_ops;
1793 #endif
1794 
1795 	const struct header_ops *header_ops;
1796 
1797 	unsigned int		flags;
1798 	unsigned int		priv_flags;
1799 
1800 	unsigned short		gflags;
1801 	unsigned short		padded;
1802 
1803 	unsigned char		operstate;
1804 	unsigned char		link_mode;
1805 
1806 	unsigned char		if_port;
1807 	unsigned char		dma;
1808 
1809 	unsigned int		mtu;
1810 	unsigned int		min_mtu;
1811 	unsigned int		max_mtu;
1812 	unsigned short		type;
1813 	unsigned short		hard_header_len;
1814 	unsigned char		min_header_len;
1815 
1816 	unsigned short		needed_headroom;
1817 	unsigned short		needed_tailroom;
1818 
1819 	/* Interface address info. */
1820 	unsigned char		perm_addr[MAX_ADDR_LEN];
1821 	unsigned char		addr_assign_type;
1822 	unsigned char		addr_len;
1823 	unsigned short		neigh_priv_len;
1824 	unsigned short          dev_id;
1825 	unsigned short          dev_port;
1826 	spinlock_t		addr_list_lock;
1827 	unsigned char		name_assign_type;
1828 	bool			uc_promisc;
1829 	struct netdev_hw_addr_list	uc;
1830 	struct netdev_hw_addr_list	mc;
1831 	struct netdev_hw_addr_list	dev_addrs;
1832 
1833 #ifdef CONFIG_SYSFS
1834 	struct kset		*queues_kset;
1835 #endif
1836 	unsigned int		promiscuity;
1837 	unsigned int		allmulti;
1838 
1839 
1840 	/* Protocol-specific pointers */
1841 
1842 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1843 	struct vlan_info __rcu	*vlan_info;
1844 #endif
1845 #if IS_ENABLED(CONFIG_NET_DSA)
1846 	struct dsa_port		*dsa_ptr;
1847 #endif
1848 #if IS_ENABLED(CONFIG_TIPC)
1849 	struct tipc_bearer __rcu *tipc_ptr;
1850 #endif
1851 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1852 	void 			*atalk_ptr;
1853 #endif
1854 	struct in_device __rcu	*ip_ptr;
1855 #if IS_ENABLED(CONFIG_DECNET)
1856 	struct dn_dev __rcu     *dn_ptr;
1857 #endif
1858 	struct inet6_dev __rcu	*ip6_ptr;
1859 #if IS_ENABLED(CONFIG_AX25)
1860 	void			*ax25_ptr;
1861 #endif
1862 	struct wireless_dev	*ieee80211_ptr;
1863 	struct wpan_dev		*ieee802154_ptr;
1864 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1865 	struct mpls_dev __rcu	*mpls_ptr;
1866 #endif
1867 
1868 /*
1869  * Cache lines mostly used on receive path (including eth_type_trans())
1870  */
1871 	/* Interface address info used in eth_type_trans() */
1872 	unsigned char		*dev_addr;
1873 
1874 	struct netdev_rx_queue	*_rx;
1875 	unsigned int		num_rx_queues;
1876 	unsigned int		real_num_rx_queues;
1877 
1878 	struct bpf_prog __rcu	*xdp_prog;
1879 	unsigned long		gro_flush_timeout;
1880 	rx_handler_func_t __rcu	*rx_handler;
1881 	void __rcu		*rx_handler_data;
1882 
1883 #ifdef CONFIG_NET_CLS_ACT
1884 	struct mini_Qdisc __rcu	*miniq_ingress;
1885 #endif
1886 	struct netdev_queue __rcu *ingress_queue;
1887 #ifdef CONFIG_NETFILTER_INGRESS
1888 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1889 #endif
1890 
1891 	unsigned char		broadcast[MAX_ADDR_LEN];
1892 #ifdef CONFIG_RFS_ACCEL
1893 	struct cpu_rmap		*rx_cpu_rmap;
1894 #endif
1895 	struct hlist_node	index_hlist;
1896 
1897 /*
1898  * Cache lines mostly used on transmit path
1899  */
1900 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1901 	unsigned int		num_tx_queues;
1902 	unsigned int		real_num_tx_queues;
1903 	struct Qdisc		*qdisc;
1904 #ifdef CONFIG_NET_SCHED
1905 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1906 #endif
1907 	unsigned int		tx_queue_len;
1908 	spinlock_t		tx_global_lock;
1909 	int			watchdog_timeo;
1910 
1911 #ifdef CONFIG_XPS
1912 	struct xps_dev_maps __rcu *xps_maps;
1913 #endif
1914 #ifdef CONFIG_NET_CLS_ACT
1915 	struct mini_Qdisc __rcu	*miniq_egress;
1916 #endif
1917 
1918 	/* These may be needed for future network-power-down code. */
1919 	struct timer_list	watchdog_timer;
1920 
1921 	int __percpu		*pcpu_refcnt;
1922 	struct list_head	todo_list;
1923 
1924 	struct list_head	link_watch_list;
1925 
1926 	enum { NETREG_UNINITIALIZED=0,
1927 	       NETREG_REGISTERED,	/* completed register_netdevice */
1928 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1929 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1930 	       NETREG_RELEASED,		/* called free_netdev */
1931 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1932 	} reg_state:8;
1933 
1934 	bool dismantle;
1935 
1936 	enum {
1937 		RTNL_LINK_INITIALIZED,
1938 		RTNL_LINK_INITIALIZING,
1939 	} rtnl_link_state:16;
1940 
1941 	bool needs_free_netdev;
1942 	void (*priv_destructor)(struct net_device *dev);
1943 
1944 #ifdef CONFIG_NETPOLL
1945 	struct netpoll_info __rcu	*npinfo;
1946 #endif
1947 
1948 	possible_net_t			nd_net;
1949 
1950 	/* mid-layer private */
1951 	union {
1952 		void					*ml_priv;
1953 		struct pcpu_lstats __percpu		*lstats;
1954 		struct pcpu_sw_netstats __percpu	*tstats;
1955 		struct pcpu_dstats __percpu		*dstats;
1956 		struct pcpu_vstats __percpu		*vstats;
1957 	};
1958 
1959 #if IS_ENABLED(CONFIG_GARP)
1960 	struct garp_port __rcu	*garp_port;
1961 #endif
1962 #if IS_ENABLED(CONFIG_MRP)
1963 	struct mrp_port __rcu	*mrp_port;
1964 #endif
1965 
1966 	struct device		dev;
1967 	const struct attribute_group *sysfs_groups[4];
1968 	const struct attribute_group *sysfs_rx_queue_group;
1969 
1970 	const struct rtnl_link_ops *rtnl_link_ops;
1971 
1972 	/* for setting kernel sock attribute on TCP connection setup */
1973 #define GSO_MAX_SIZE		65536
1974 	unsigned int		gso_max_size;
1975 #define GSO_MAX_SEGS		65535
1976 	u16			gso_max_segs;
1977 
1978 #ifdef CONFIG_DCB
1979 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1980 #endif
1981 	u8			num_tc;
1982 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
1983 	u8			prio_tc_map[TC_BITMASK + 1];
1984 
1985 #if IS_ENABLED(CONFIG_FCOE)
1986 	unsigned int		fcoe_ddp_xid;
1987 #endif
1988 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1989 	struct netprio_map __rcu *priomap;
1990 #endif
1991 	struct phy_device	*phydev;
1992 	struct sfp_bus		*sfp_bus;
1993 	struct lock_class_key	*qdisc_tx_busylock;
1994 	struct lock_class_key	*qdisc_running_key;
1995 	bool			proto_down;
1996 };
1997 #define to_net_dev(d) container_of(d, struct net_device, dev)
1998 
1999 static inline bool netif_elide_gro(const struct net_device *dev)
2000 {
2001 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2002 		return true;
2003 	return false;
2004 }
2005 
2006 #define	NETDEV_ALIGN		32
2007 
2008 static inline
2009 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2010 {
2011 	return dev->prio_tc_map[prio & TC_BITMASK];
2012 }
2013 
2014 static inline
2015 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2016 {
2017 	if (tc >= dev->num_tc)
2018 		return -EINVAL;
2019 
2020 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2021 	return 0;
2022 }
2023 
2024 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2025 void netdev_reset_tc(struct net_device *dev);
2026 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2027 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2028 
2029 static inline
2030 int netdev_get_num_tc(struct net_device *dev)
2031 {
2032 	return dev->num_tc;
2033 }
2034 
2035 static inline
2036 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2037 					 unsigned int index)
2038 {
2039 	return &dev->_tx[index];
2040 }
2041 
2042 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2043 						    const struct sk_buff *skb)
2044 {
2045 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2046 }
2047 
2048 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2049 					    void (*f)(struct net_device *,
2050 						      struct netdev_queue *,
2051 						      void *),
2052 					    void *arg)
2053 {
2054 	unsigned int i;
2055 
2056 	for (i = 0; i < dev->num_tx_queues; i++)
2057 		f(dev, &dev->_tx[i], arg);
2058 }
2059 
2060 #define netdev_lockdep_set_classes(dev)				\
2061 {								\
2062 	static struct lock_class_key qdisc_tx_busylock_key;	\
2063 	static struct lock_class_key qdisc_running_key;		\
2064 	static struct lock_class_key qdisc_xmit_lock_key;	\
2065 	static struct lock_class_key dev_addr_list_lock_key;	\
2066 	unsigned int i;						\
2067 								\
2068 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2069 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2070 	lockdep_set_class(&(dev)->addr_list_lock,		\
2071 			  &dev_addr_list_lock_key); 		\
2072 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2073 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2074 				  &qdisc_xmit_lock_key);	\
2075 }
2076 
2077 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2078 				    struct sk_buff *skb,
2079 				    void *accel_priv);
2080 
2081 /* returns the headroom that the master device needs to take in account
2082  * when forwarding to this dev
2083  */
2084 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2085 {
2086 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2087 }
2088 
2089 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2090 {
2091 	if (dev->netdev_ops->ndo_set_rx_headroom)
2092 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2093 }
2094 
2095 /* set the device rx headroom to the dev's default */
2096 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2097 {
2098 	netdev_set_rx_headroom(dev, -1);
2099 }
2100 
2101 /*
2102  * Net namespace inlines
2103  */
2104 static inline
2105 struct net *dev_net(const struct net_device *dev)
2106 {
2107 	return read_pnet(&dev->nd_net);
2108 }
2109 
2110 static inline
2111 void dev_net_set(struct net_device *dev, struct net *net)
2112 {
2113 	write_pnet(&dev->nd_net, net);
2114 }
2115 
2116 /**
2117  *	netdev_priv - access network device private data
2118  *	@dev: network device
2119  *
2120  * Get network device private data
2121  */
2122 static inline void *netdev_priv(const struct net_device *dev)
2123 {
2124 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2125 }
2126 
2127 /* Set the sysfs physical device reference for the network logical device
2128  * if set prior to registration will cause a symlink during initialization.
2129  */
2130 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2131 
2132 /* Set the sysfs device type for the network logical device to allow
2133  * fine-grained identification of different network device types. For
2134  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2135  */
2136 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2137 
2138 /* Default NAPI poll() weight
2139  * Device drivers are strongly advised to not use bigger value
2140  */
2141 #define NAPI_POLL_WEIGHT 64
2142 
2143 /**
2144  *	netif_napi_add - initialize a NAPI context
2145  *	@dev:  network device
2146  *	@napi: NAPI context
2147  *	@poll: polling function
2148  *	@weight: default weight
2149  *
2150  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2151  * *any* of the other NAPI-related functions.
2152  */
2153 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2154 		    int (*poll)(struct napi_struct *, int), int weight);
2155 
2156 /**
2157  *	netif_tx_napi_add - initialize a NAPI context
2158  *	@dev:  network device
2159  *	@napi: NAPI context
2160  *	@poll: polling function
2161  *	@weight: default weight
2162  *
2163  * This variant of netif_napi_add() should be used from drivers using NAPI
2164  * to exclusively poll a TX queue.
2165  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2166  */
2167 static inline void netif_tx_napi_add(struct net_device *dev,
2168 				     struct napi_struct *napi,
2169 				     int (*poll)(struct napi_struct *, int),
2170 				     int weight)
2171 {
2172 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2173 	netif_napi_add(dev, napi, poll, weight);
2174 }
2175 
2176 /**
2177  *  netif_napi_del - remove a NAPI context
2178  *  @napi: NAPI context
2179  *
2180  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2181  */
2182 void netif_napi_del(struct napi_struct *napi);
2183 
2184 struct napi_gro_cb {
2185 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2186 	void	*frag0;
2187 
2188 	/* Length of frag0. */
2189 	unsigned int frag0_len;
2190 
2191 	/* This indicates where we are processing relative to skb->data. */
2192 	int	data_offset;
2193 
2194 	/* This is non-zero if the packet cannot be merged with the new skb. */
2195 	u16	flush;
2196 
2197 	/* Save the IP ID here and check when we get to the transport layer */
2198 	u16	flush_id;
2199 
2200 	/* Number of segments aggregated. */
2201 	u16	count;
2202 
2203 	/* Start offset for remote checksum offload */
2204 	u16	gro_remcsum_start;
2205 
2206 	/* jiffies when first packet was created/queued */
2207 	unsigned long age;
2208 
2209 	/* Used in ipv6_gro_receive() and foo-over-udp */
2210 	u16	proto;
2211 
2212 	/* This is non-zero if the packet may be of the same flow. */
2213 	u8	same_flow:1;
2214 
2215 	/* Used in tunnel GRO receive */
2216 	u8	encap_mark:1;
2217 
2218 	/* GRO checksum is valid */
2219 	u8	csum_valid:1;
2220 
2221 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2222 	u8	csum_cnt:3;
2223 
2224 	/* Free the skb? */
2225 	u8	free:2;
2226 #define NAPI_GRO_FREE		  1
2227 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2228 
2229 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2230 	u8	is_ipv6:1;
2231 
2232 	/* Used in GRE, set in fou/gue_gro_receive */
2233 	u8	is_fou:1;
2234 
2235 	/* Used to determine if flush_id can be ignored */
2236 	u8	is_atomic:1;
2237 
2238 	/* Number of gro_receive callbacks this packet already went through */
2239 	u8 recursion_counter:4;
2240 
2241 	/* 1 bit hole */
2242 
2243 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2244 	__wsum	csum;
2245 
2246 	/* used in skb_gro_receive() slow path */
2247 	struct sk_buff *last;
2248 };
2249 
2250 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2251 
2252 #define GRO_RECURSION_LIMIT 15
2253 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2254 {
2255 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2256 }
2257 
2258 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2259 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2260 						struct sk_buff **head,
2261 						struct sk_buff *skb)
2262 {
2263 	if (unlikely(gro_recursion_inc_test(skb))) {
2264 		NAPI_GRO_CB(skb)->flush |= 1;
2265 		return NULL;
2266 	}
2267 
2268 	return cb(head, skb);
2269 }
2270 
2271 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2272 					     struct sk_buff *);
2273 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2274 						   struct sock *sk,
2275 						   struct sk_buff **head,
2276 						   struct sk_buff *skb)
2277 {
2278 	if (unlikely(gro_recursion_inc_test(skb))) {
2279 		NAPI_GRO_CB(skb)->flush |= 1;
2280 		return NULL;
2281 	}
2282 
2283 	return cb(sk, head, skb);
2284 }
2285 
2286 struct packet_type {
2287 	__be16			type;	/* This is really htons(ether_type). */
2288 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2289 	int			(*func) (struct sk_buff *,
2290 					 struct net_device *,
2291 					 struct packet_type *,
2292 					 struct net_device *);
2293 	bool			(*id_match)(struct packet_type *ptype,
2294 					    struct sock *sk);
2295 	void			*af_packet_priv;
2296 	struct list_head	list;
2297 };
2298 
2299 struct offload_callbacks {
2300 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2301 						netdev_features_t features);
2302 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2303 						 struct sk_buff *skb);
2304 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2305 };
2306 
2307 struct packet_offload {
2308 	__be16			 type;	/* This is really htons(ether_type). */
2309 	u16			 priority;
2310 	struct offload_callbacks callbacks;
2311 	struct list_head	 list;
2312 };
2313 
2314 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2315 struct pcpu_sw_netstats {
2316 	u64     rx_packets;
2317 	u64     rx_bytes;
2318 	u64     tx_packets;
2319 	u64     tx_bytes;
2320 	struct u64_stats_sync   syncp;
2321 };
2322 
2323 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2324 ({									\
2325 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2326 	if (pcpu_stats)	{						\
2327 		int __cpu;						\
2328 		for_each_possible_cpu(__cpu) {				\
2329 			typeof(type) *stat;				\
2330 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2331 			u64_stats_init(&stat->syncp);			\
2332 		}							\
2333 	}								\
2334 	pcpu_stats;							\
2335 })
2336 
2337 #define netdev_alloc_pcpu_stats(type)					\
2338 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2339 
2340 enum netdev_lag_tx_type {
2341 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2342 	NETDEV_LAG_TX_TYPE_RANDOM,
2343 	NETDEV_LAG_TX_TYPE_BROADCAST,
2344 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2345 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2346 	NETDEV_LAG_TX_TYPE_HASH,
2347 };
2348 
2349 enum netdev_lag_hash {
2350 	NETDEV_LAG_HASH_NONE,
2351 	NETDEV_LAG_HASH_L2,
2352 	NETDEV_LAG_HASH_L34,
2353 	NETDEV_LAG_HASH_L23,
2354 	NETDEV_LAG_HASH_E23,
2355 	NETDEV_LAG_HASH_E34,
2356 	NETDEV_LAG_HASH_UNKNOWN,
2357 };
2358 
2359 struct netdev_lag_upper_info {
2360 	enum netdev_lag_tx_type tx_type;
2361 	enum netdev_lag_hash hash_type;
2362 };
2363 
2364 struct netdev_lag_lower_state_info {
2365 	u8 link_up : 1,
2366 	   tx_enabled : 1;
2367 };
2368 
2369 #include <linux/notifier.h>
2370 
2371 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2372  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2373  * adding new types.
2374  */
2375 enum netdev_cmd {
2376 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2377 	NETDEV_DOWN,
2378 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2379 				   detected a hardware crash and restarted
2380 				   - we can use this eg to kick tcp sessions
2381 				   once done */
2382 	NETDEV_CHANGE,		/* Notify device state change */
2383 	NETDEV_REGISTER,
2384 	NETDEV_UNREGISTER,
2385 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2386 	NETDEV_CHANGEADDR,
2387 	NETDEV_GOING_DOWN,
2388 	NETDEV_CHANGENAME,
2389 	NETDEV_FEAT_CHANGE,
2390 	NETDEV_BONDING_FAILOVER,
2391 	NETDEV_PRE_UP,
2392 	NETDEV_PRE_TYPE_CHANGE,
2393 	NETDEV_POST_TYPE_CHANGE,
2394 	NETDEV_POST_INIT,
2395 	NETDEV_RELEASE,
2396 	NETDEV_NOTIFY_PEERS,
2397 	NETDEV_JOIN,
2398 	NETDEV_CHANGEUPPER,
2399 	NETDEV_RESEND_IGMP,
2400 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2401 	NETDEV_CHANGEINFODATA,
2402 	NETDEV_BONDING_INFO,
2403 	NETDEV_PRECHANGEUPPER,
2404 	NETDEV_CHANGELOWERSTATE,
2405 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2406 	NETDEV_UDP_TUNNEL_DROP_INFO,
2407 	NETDEV_CHANGE_TX_QUEUE_LEN,
2408 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2409 	NETDEV_CVLAN_FILTER_DROP_INFO,
2410 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2411 	NETDEV_SVLAN_FILTER_DROP_INFO,
2412 };
2413 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2414 
2415 int register_netdevice_notifier(struct notifier_block *nb);
2416 int unregister_netdevice_notifier(struct notifier_block *nb);
2417 
2418 struct netdev_notifier_info {
2419 	struct net_device	*dev;
2420 	struct netlink_ext_ack	*extack;
2421 };
2422 
2423 struct netdev_notifier_change_info {
2424 	struct netdev_notifier_info info; /* must be first */
2425 	unsigned int flags_changed;
2426 };
2427 
2428 struct netdev_notifier_changeupper_info {
2429 	struct netdev_notifier_info info; /* must be first */
2430 	struct net_device *upper_dev; /* new upper dev */
2431 	bool master; /* is upper dev master */
2432 	bool linking; /* is the notification for link or unlink */
2433 	void *upper_info; /* upper dev info */
2434 };
2435 
2436 struct netdev_notifier_changelowerstate_info {
2437 	struct netdev_notifier_info info; /* must be first */
2438 	void *lower_state_info; /* is lower dev state */
2439 };
2440 
2441 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2442 					     struct net_device *dev)
2443 {
2444 	info->dev = dev;
2445 	info->extack = NULL;
2446 }
2447 
2448 static inline struct net_device *
2449 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2450 {
2451 	return info->dev;
2452 }
2453 
2454 static inline struct netlink_ext_ack *
2455 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2456 {
2457 	return info->extack;
2458 }
2459 
2460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2461 
2462 
2463 extern rwlock_t				dev_base_lock;		/* Device list lock */
2464 
2465 #define for_each_netdev(net, d)		\
2466 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2467 #define for_each_netdev_reverse(net, d)	\
2468 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2469 #define for_each_netdev_rcu(net, d)		\
2470 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2471 #define for_each_netdev_safe(net, d, n)	\
2472 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2473 #define for_each_netdev_continue(net, d)		\
2474 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2475 #define for_each_netdev_continue_rcu(net, d)		\
2476 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2477 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2478 		for_each_netdev_rcu(&init_net, slave)	\
2479 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2480 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2481 
2482 static inline struct net_device *next_net_device(struct net_device *dev)
2483 {
2484 	struct list_head *lh;
2485 	struct net *net;
2486 
2487 	net = dev_net(dev);
2488 	lh = dev->dev_list.next;
2489 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2490 }
2491 
2492 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2493 {
2494 	struct list_head *lh;
2495 	struct net *net;
2496 
2497 	net = dev_net(dev);
2498 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2499 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2500 }
2501 
2502 static inline struct net_device *first_net_device(struct net *net)
2503 {
2504 	return list_empty(&net->dev_base_head) ? NULL :
2505 		net_device_entry(net->dev_base_head.next);
2506 }
2507 
2508 static inline struct net_device *first_net_device_rcu(struct net *net)
2509 {
2510 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2511 
2512 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2513 }
2514 
2515 int netdev_boot_setup_check(struct net_device *dev);
2516 unsigned long netdev_boot_base(const char *prefix, int unit);
2517 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2518 				       const char *hwaddr);
2519 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2520 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2521 void dev_add_pack(struct packet_type *pt);
2522 void dev_remove_pack(struct packet_type *pt);
2523 void __dev_remove_pack(struct packet_type *pt);
2524 void dev_add_offload(struct packet_offload *po);
2525 void dev_remove_offload(struct packet_offload *po);
2526 
2527 int dev_get_iflink(const struct net_device *dev);
2528 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2529 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2530 				      unsigned short mask);
2531 struct net_device *dev_get_by_name(struct net *net, const char *name);
2532 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2533 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2534 int dev_alloc_name(struct net_device *dev, const char *name);
2535 int dev_open(struct net_device *dev);
2536 void dev_close(struct net_device *dev);
2537 void dev_close_many(struct list_head *head, bool unlink);
2538 void dev_disable_lro(struct net_device *dev);
2539 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2540 int dev_queue_xmit(struct sk_buff *skb);
2541 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2542 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2543 int register_netdevice(struct net_device *dev);
2544 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2545 void unregister_netdevice_many(struct list_head *head);
2546 static inline void unregister_netdevice(struct net_device *dev)
2547 {
2548 	unregister_netdevice_queue(dev, NULL);
2549 }
2550 
2551 int netdev_refcnt_read(const struct net_device *dev);
2552 void free_netdev(struct net_device *dev);
2553 void netdev_freemem(struct net_device *dev);
2554 void synchronize_net(void);
2555 int init_dummy_netdev(struct net_device *dev);
2556 
2557 DECLARE_PER_CPU(int, xmit_recursion);
2558 #define XMIT_RECURSION_LIMIT	10
2559 
2560 static inline int dev_recursion_level(void)
2561 {
2562 	return this_cpu_read(xmit_recursion);
2563 }
2564 
2565 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2566 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2567 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2568 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2569 int netdev_get_name(struct net *net, char *name, int ifindex);
2570 int dev_restart(struct net_device *dev);
2571 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2572 
2573 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2574 {
2575 	return NAPI_GRO_CB(skb)->data_offset;
2576 }
2577 
2578 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2579 {
2580 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2581 }
2582 
2583 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2584 {
2585 	NAPI_GRO_CB(skb)->data_offset += len;
2586 }
2587 
2588 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2589 					unsigned int offset)
2590 {
2591 	return NAPI_GRO_CB(skb)->frag0 + offset;
2592 }
2593 
2594 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2595 {
2596 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2597 }
2598 
2599 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2600 {
2601 	NAPI_GRO_CB(skb)->frag0 = NULL;
2602 	NAPI_GRO_CB(skb)->frag0_len = 0;
2603 }
2604 
2605 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2606 					unsigned int offset)
2607 {
2608 	if (!pskb_may_pull(skb, hlen))
2609 		return NULL;
2610 
2611 	skb_gro_frag0_invalidate(skb);
2612 	return skb->data + offset;
2613 }
2614 
2615 static inline void *skb_gro_network_header(struct sk_buff *skb)
2616 {
2617 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2618 	       skb_network_offset(skb);
2619 }
2620 
2621 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2622 					const void *start, unsigned int len)
2623 {
2624 	if (NAPI_GRO_CB(skb)->csum_valid)
2625 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2626 						  csum_partial(start, len, 0));
2627 }
2628 
2629 /* GRO checksum functions. These are logical equivalents of the normal
2630  * checksum functions (in skbuff.h) except that they operate on the GRO
2631  * offsets and fields in sk_buff.
2632  */
2633 
2634 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2635 
2636 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2637 {
2638 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2639 }
2640 
2641 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2642 						      bool zero_okay,
2643 						      __sum16 check)
2644 {
2645 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2646 		skb_checksum_start_offset(skb) <
2647 		 skb_gro_offset(skb)) &&
2648 		!skb_at_gro_remcsum_start(skb) &&
2649 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2650 		(!zero_okay || check));
2651 }
2652 
2653 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2654 							   __wsum psum)
2655 {
2656 	if (NAPI_GRO_CB(skb)->csum_valid &&
2657 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2658 		return 0;
2659 
2660 	NAPI_GRO_CB(skb)->csum = psum;
2661 
2662 	return __skb_gro_checksum_complete(skb);
2663 }
2664 
2665 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2666 {
2667 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2668 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2669 		NAPI_GRO_CB(skb)->csum_cnt--;
2670 	} else {
2671 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2672 		 * verified a new top level checksum or an encapsulated one
2673 		 * during GRO. This saves work if we fallback to normal path.
2674 		 */
2675 		__skb_incr_checksum_unnecessary(skb);
2676 	}
2677 }
2678 
2679 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2680 				    compute_pseudo)			\
2681 ({									\
2682 	__sum16 __ret = 0;						\
2683 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2684 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2685 				compute_pseudo(skb, proto));		\
2686 	if (!__ret)							\
2687 		skb_gro_incr_csum_unnecessary(skb);			\
2688 	__ret;								\
2689 })
2690 
2691 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2692 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2693 
2694 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2695 					     compute_pseudo)		\
2696 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2697 
2698 #define skb_gro_checksum_simple_validate(skb)				\
2699 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2700 
2701 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2702 {
2703 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2704 		!NAPI_GRO_CB(skb)->csum_valid);
2705 }
2706 
2707 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2708 					      __sum16 check, __wsum pseudo)
2709 {
2710 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2711 	NAPI_GRO_CB(skb)->csum_valid = 1;
2712 }
2713 
2714 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2715 do {									\
2716 	if (__skb_gro_checksum_convert_check(skb))			\
2717 		__skb_gro_checksum_convert(skb, check,			\
2718 					   compute_pseudo(skb, proto));	\
2719 } while (0)
2720 
2721 struct gro_remcsum {
2722 	int offset;
2723 	__wsum delta;
2724 };
2725 
2726 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2727 {
2728 	grc->offset = 0;
2729 	grc->delta = 0;
2730 }
2731 
2732 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2733 					    unsigned int off, size_t hdrlen,
2734 					    int start, int offset,
2735 					    struct gro_remcsum *grc,
2736 					    bool nopartial)
2737 {
2738 	__wsum delta;
2739 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2740 
2741 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2742 
2743 	if (!nopartial) {
2744 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2745 		return ptr;
2746 	}
2747 
2748 	ptr = skb_gro_header_fast(skb, off);
2749 	if (skb_gro_header_hard(skb, off + plen)) {
2750 		ptr = skb_gro_header_slow(skb, off + plen, off);
2751 		if (!ptr)
2752 			return NULL;
2753 	}
2754 
2755 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2756 			       start, offset);
2757 
2758 	/* Adjust skb->csum since we changed the packet */
2759 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2760 
2761 	grc->offset = off + hdrlen + offset;
2762 	grc->delta = delta;
2763 
2764 	return ptr;
2765 }
2766 
2767 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2768 					   struct gro_remcsum *grc)
2769 {
2770 	void *ptr;
2771 	size_t plen = grc->offset + sizeof(u16);
2772 
2773 	if (!grc->delta)
2774 		return;
2775 
2776 	ptr = skb_gro_header_fast(skb, grc->offset);
2777 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2778 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2779 		if (!ptr)
2780 			return;
2781 	}
2782 
2783 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2784 }
2785 
2786 #ifdef CONFIG_XFRM_OFFLOAD
2787 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2788 {
2789 	if (PTR_ERR(pp) != -EINPROGRESS)
2790 		NAPI_GRO_CB(skb)->flush |= flush;
2791 }
2792 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2793 					       struct sk_buff **pp,
2794 					       int flush,
2795 					       struct gro_remcsum *grc)
2796 {
2797 	if (PTR_ERR(pp) != -EINPROGRESS) {
2798 		NAPI_GRO_CB(skb)->flush |= flush;
2799 		skb_gro_remcsum_cleanup(skb, grc);
2800 		skb->remcsum_offload = 0;
2801 	}
2802 }
2803 #else
2804 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2805 {
2806 	NAPI_GRO_CB(skb)->flush |= flush;
2807 }
2808 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2809 					       struct sk_buff **pp,
2810 					       int flush,
2811 					       struct gro_remcsum *grc)
2812 {
2813 	NAPI_GRO_CB(skb)->flush |= flush;
2814 	skb_gro_remcsum_cleanup(skb, grc);
2815 	skb->remcsum_offload = 0;
2816 }
2817 #endif
2818 
2819 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2820 				  unsigned short type,
2821 				  const void *daddr, const void *saddr,
2822 				  unsigned int len)
2823 {
2824 	if (!dev->header_ops || !dev->header_ops->create)
2825 		return 0;
2826 
2827 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2828 }
2829 
2830 static inline int dev_parse_header(const struct sk_buff *skb,
2831 				   unsigned char *haddr)
2832 {
2833 	const struct net_device *dev = skb->dev;
2834 
2835 	if (!dev->header_ops || !dev->header_ops->parse)
2836 		return 0;
2837 	return dev->header_ops->parse(skb, haddr);
2838 }
2839 
2840 /* ll_header must have at least hard_header_len allocated */
2841 static inline bool dev_validate_header(const struct net_device *dev,
2842 				       char *ll_header, int len)
2843 {
2844 	if (likely(len >= dev->hard_header_len))
2845 		return true;
2846 	if (len < dev->min_header_len)
2847 		return false;
2848 
2849 	if (capable(CAP_SYS_RAWIO)) {
2850 		memset(ll_header + len, 0, dev->hard_header_len - len);
2851 		return true;
2852 	}
2853 
2854 	if (dev->header_ops && dev->header_ops->validate)
2855 		return dev->header_ops->validate(ll_header, len);
2856 
2857 	return false;
2858 }
2859 
2860 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2861 			   int len, int size);
2862 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2863 static inline int unregister_gifconf(unsigned int family)
2864 {
2865 	return register_gifconf(family, NULL);
2866 }
2867 
2868 #ifdef CONFIG_NET_FLOW_LIMIT
2869 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2870 struct sd_flow_limit {
2871 	u64			count;
2872 	unsigned int		num_buckets;
2873 	unsigned int		history_head;
2874 	u16			history[FLOW_LIMIT_HISTORY];
2875 	u8			buckets[];
2876 };
2877 
2878 extern int netdev_flow_limit_table_len;
2879 #endif /* CONFIG_NET_FLOW_LIMIT */
2880 
2881 /*
2882  * Incoming packets are placed on per-CPU queues
2883  */
2884 struct softnet_data {
2885 	struct list_head	poll_list;
2886 	struct sk_buff_head	process_queue;
2887 
2888 	/* stats */
2889 	unsigned int		processed;
2890 	unsigned int		time_squeeze;
2891 	unsigned int		received_rps;
2892 #ifdef CONFIG_RPS
2893 	struct softnet_data	*rps_ipi_list;
2894 #endif
2895 #ifdef CONFIG_NET_FLOW_LIMIT
2896 	struct sd_flow_limit __rcu *flow_limit;
2897 #endif
2898 	struct Qdisc		*output_queue;
2899 	struct Qdisc		**output_queue_tailp;
2900 	struct sk_buff		*completion_queue;
2901 #ifdef CONFIG_XFRM_OFFLOAD
2902 	struct sk_buff_head	xfrm_backlog;
2903 #endif
2904 #ifdef CONFIG_RPS
2905 	/* input_queue_head should be written by cpu owning this struct,
2906 	 * and only read by other cpus. Worth using a cache line.
2907 	 */
2908 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2909 
2910 	/* Elements below can be accessed between CPUs for RPS/RFS */
2911 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2912 	struct softnet_data	*rps_ipi_next;
2913 	unsigned int		cpu;
2914 	unsigned int		input_queue_tail;
2915 #endif
2916 	unsigned int		dropped;
2917 	struct sk_buff_head	input_pkt_queue;
2918 	struct napi_struct	backlog;
2919 
2920 };
2921 
2922 static inline void input_queue_head_incr(struct softnet_data *sd)
2923 {
2924 #ifdef CONFIG_RPS
2925 	sd->input_queue_head++;
2926 #endif
2927 }
2928 
2929 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2930 					      unsigned int *qtail)
2931 {
2932 #ifdef CONFIG_RPS
2933 	*qtail = ++sd->input_queue_tail;
2934 #endif
2935 }
2936 
2937 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2938 
2939 void __netif_schedule(struct Qdisc *q);
2940 void netif_schedule_queue(struct netdev_queue *txq);
2941 
2942 static inline void netif_tx_schedule_all(struct net_device *dev)
2943 {
2944 	unsigned int i;
2945 
2946 	for (i = 0; i < dev->num_tx_queues; i++)
2947 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2948 }
2949 
2950 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2951 {
2952 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2953 }
2954 
2955 /**
2956  *	netif_start_queue - allow transmit
2957  *	@dev: network device
2958  *
2959  *	Allow upper layers to call the device hard_start_xmit routine.
2960  */
2961 static inline void netif_start_queue(struct net_device *dev)
2962 {
2963 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2964 }
2965 
2966 static inline void netif_tx_start_all_queues(struct net_device *dev)
2967 {
2968 	unsigned int i;
2969 
2970 	for (i = 0; i < dev->num_tx_queues; i++) {
2971 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2972 		netif_tx_start_queue(txq);
2973 	}
2974 }
2975 
2976 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2977 
2978 /**
2979  *	netif_wake_queue - restart transmit
2980  *	@dev: network device
2981  *
2982  *	Allow upper layers to call the device hard_start_xmit routine.
2983  *	Used for flow control when transmit resources are available.
2984  */
2985 static inline void netif_wake_queue(struct net_device *dev)
2986 {
2987 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2988 }
2989 
2990 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2991 {
2992 	unsigned int i;
2993 
2994 	for (i = 0; i < dev->num_tx_queues; i++) {
2995 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2996 		netif_tx_wake_queue(txq);
2997 	}
2998 }
2999 
3000 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3001 {
3002 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3003 }
3004 
3005 /**
3006  *	netif_stop_queue - stop transmitted packets
3007  *	@dev: network device
3008  *
3009  *	Stop upper layers calling the device hard_start_xmit routine.
3010  *	Used for flow control when transmit resources are unavailable.
3011  */
3012 static inline void netif_stop_queue(struct net_device *dev)
3013 {
3014 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3015 }
3016 
3017 void netif_tx_stop_all_queues(struct net_device *dev);
3018 
3019 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3020 {
3021 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3022 }
3023 
3024 /**
3025  *	netif_queue_stopped - test if transmit queue is flowblocked
3026  *	@dev: network device
3027  *
3028  *	Test if transmit queue on device is currently unable to send.
3029  */
3030 static inline bool netif_queue_stopped(const struct net_device *dev)
3031 {
3032 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3033 }
3034 
3035 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3036 {
3037 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3038 }
3039 
3040 static inline bool
3041 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3042 {
3043 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3044 }
3045 
3046 static inline bool
3047 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3048 {
3049 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3050 }
3051 
3052 /**
3053  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3054  *	@dev_queue: pointer to transmit queue
3055  *
3056  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3057  * to give appropriate hint to the CPU.
3058  */
3059 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3060 {
3061 #ifdef CONFIG_BQL
3062 	prefetchw(&dev_queue->dql.num_queued);
3063 #endif
3064 }
3065 
3066 /**
3067  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3068  *	@dev_queue: pointer to transmit queue
3069  *
3070  * BQL enabled drivers might use this helper in their TX completion path,
3071  * to give appropriate hint to the CPU.
3072  */
3073 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3074 {
3075 #ifdef CONFIG_BQL
3076 	prefetchw(&dev_queue->dql.limit);
3077 #endif
3078 }
3079 
3080 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3081 					unsigned int bytes)
3082 {
3083 #ifdef CONFIG_BQL
3084 	dql_queued(&dev_queue->dql, bytes);
3085 
3086 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3087 		return;
3088 
3089 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3090 
3091 	/*
3092 	 * The XOFF flag must be set before checking the dql_avail below,
3093 	 * because in netdev_tx_completed_queue we update the dql_completed
3094 	 * before checking the XOFF flag.
3095 	 */
3096 	smp_mb();
3097 
3098 	/* check again in case another CPU has just made room avail */
3099 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3100 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3101 #endif
3102 }
3103 
3104 /**
3105  * 	netdev_sent_queue - report the number of bytes queued to hardware
3106  * 	@dev: network device
3107  * 	@bytes: number of bytes queued to the hardware device queue
3108  *
3109  * 	Report the number of bytes queued for sending/completion to the network
3110  * 	device hardware queue. @bytes should be a good approximation and should
3111  * 	exactly match netdev_completed_queue() @bytes
3112  */
3113 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3114 {
3115 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3116 }
3117 
3118 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3119 					     unsigned int pkts, unsigned int bytes)
3120 {
3121 #ifdef CONFIG_BQL
3122 	if (unlikely(!bytes))
3123 		return;
3124 
3125 	dql_completed(&dev_queue->dql, bytes);
3126 
3127 	/*
3128 	 * Without the memory barrier there is a small possiblity that
3129 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3130 	 * be stopped forever
3131 	 */
3132 	smp_mb();
3133 
3134 	if (dql_avail(&dev_queue->dql) < 0)
3135 		return;
3136 
3137 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3138 		netif_schedule_queue(dev_queue);
3139 #endif
3140 }
3141 
3142 /**
3143  * 	netdev_completed_queue - report bytes and packets completed by device
3144  * 	@dev: network device
3145  * 	@pkts: actual number of packets sent over the medium
3146  * 	@bytes: actual number of bytes sent over the medium
3147  *
3148  * 	Report the number of bytes and packets transmitted by the network device
3149  * 	hardware queue over the physical medium, @bytes must exactly match the
3150  * 	@bytes amount passed to netdev_sent_queue()
3151  */
3152 static inline void netdev_completed_queue(struct net_device *dev,
3153 					  unsigned int pkts, unsigned int bytes)
3154 {
3155 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3156 }
3157 
3158 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3159 {
3160 #ifdef CONFIG_BQL
3161 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3162 	dql_reset(&q->dql);
3163 #endif
3164 }
3165 
3166 /**
3167  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3168  * 	@dev_queue: network device
3169  *
3170  * 	Reset the bytes and packet count of a network device and clear the
3171  * 	software flow control OFF bit for this network device
3172  */
3173 static inline void netdev_reset_queue(struct net_device *dev_queue)
3174 {
3175 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3176 }
3177 
3178 /**
3179  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3180  * 	@dev: network device
3181  * 	@queue_index: given tx queue index
3182  *
3183  * 	Returns 0 if given tx queue index >= number of device tx queues,
3184  * 	otherwise returns the originally passed tx queue index.
3185  */
3186 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3187 {
3188 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3189 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3190 				     dev->name, queue_index,
3191 				     dev->real_num_tx_queues);
3192 		return 0;
3193 	}
3194 
3195 	return queue_index;
3196 }
3197 
3198 /**
3199  *	netif_running - test if up
3200  *	@dev: network device
3201  *
3202  *	Test if the device has been brought up.
3203  */
3204 static inline bool netif_running(const struct net_device *dev)
3205 {
3206 	return test_bit(__LINK_STATE_START, &dev->state);
3207 }
3208 
3209 /*
3210  * Routines to manage the subqueues on a device.  We only need start,
3211  * stop, and a check if it's stopped.  All other device management is
3212  * done at the overall netdevice level.
3213  * Also test the device if we're multiqueue.
3214  */
3215 
3216 /**
3217  *	netif_start_subqueue - allow sending packets on subqueue
3218  *	@dev: network device
3219  *	@queue_index: sub queue index
3220  *
3221  * Start individual transmit queue of a device with multiple transmit queues.
3222  */
3223 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3224 {
3225 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3226 
3227 	netif_tx_start_queue(txq);
3228 }
3229 
3230 /**
3231  *	netif_stop_subqueue - stop sending packets on subqueue
3232  *	@dev: network device
3233  *	@queue_index: sub queue index
3234  *
3235  * Stop individual transmit queue of a device with multiple transmit queues.
3236  */
3237 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3238 {
3239 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3240 	netif_tx_stop_queue(txq);
3241 }
3242 
3243 /**
3244  *	netif_subqueue_stopped - test status of subqueue
3245  *	@dev: network device
3246  *	@queue_index: sub queue index
3247  *
3248  * Check individual transmit queue of a device with multiple transmit queues.
3249  */
3250 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3251 					    u16 queue_index)
3252 {
3253 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3254 
3255 	return netif_tx_queue_stopped(txq);
3256 }
3257 
3258 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3259 					  struct sk_buff *skb)
3260 {
3261 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3262 }
3263 
3264 /**
3265  *	netif_wake_subqueue - allow sending packets on subqueue
3266  *	@dev: network device
3267  *	@queue_index: sub queue index
3268  *
3269  * Resume individual transmit queue of a device with multiple transmit queues.
3270  */
3271 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3272 {
3273 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3274 
3275 	netif_tx_wake_queue(txq);
3276 }
3277 
3278 #ifdef CONFIG_XPS
3279 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3280 			u16 index);
3281 #else
3282 static inline int netif_set_xps_queue(struct net_device *dev,
3283 				      const struct cpumask *mask,
3284 				      u16 index)
3285 {
3286 	return 0;
3287 }
3288 #endif
3289 
3290 /**
3291  *	netif_is_multiqueue - test if device has multiple transmit queues
3292  *	@dev: network device
3293  *
3294  * Check if device has multiple transmit queues
3295  */
3296 static inline bool netif_is_multiqueue(const struct net_device *dev)
3297 {
3298 	return dev->num_tx_queues > 1;
3299 }
3300 
3301 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3302 
3303 #ifdef CONFIG_SYSFS
3304 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3305 #else
3306 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3307 						unsigned int rxq)
3308 {
3309 	return 0;
3310 }
3311 #endif
3312 
3313 static inline struct netdev_rx_queue *
3314 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3315 {
3316 	return dev->_rx + rxq;
3317 }
3318 
3319 #ifdef CONFIG_SYSFS
3320 static inline unsigned int get_netdev_rx_queue_index(
3321 		struct netdev_rx_queue *queue)
3322 {
3323 	struct net_device *dev = queue->dev;
3324 	int index = queue - dev->_rx;
3325 
3326 	BUG_ON(index >= dev->num_rx_queues);
3327 	return index;
3328 }
3329 #endif
3330 
3331 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3332 int netif_get_num_default_rss_queues(void);
3333 
3334 enum skb_free_reason {
3335 	SKB_REASON_CONSUMED,
3336 	SKB_REASON_DROPPED,
3337 };
3338 
3339 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3340 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3341 
3342 /*
3343  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3344  * interrupt context or with hardware interrupts being disabled.
3345  * (in_irq() || irqs_disabled())
3346  *
3347  * We provide four helpers that can be used in following contexts :
3348  *
3349  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3350  *  replacing kfree_skb(skb)
3351  *
3352  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3353  *  Typically used in place of consume_skb(skb) in TX completion path
3354  *
3355  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3356  *  replacing kfree_skb(skb)
3357  *
3358  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3359  *  and consumed a packet. Used in place of consume_skb(skb)
3360  */
3361 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3362 {
3363 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3364 }
3365 
3366 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3367 {
3368 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3369 }
3370 
3371 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3372 {
3373 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3374 }
3375 
3376 static inline void dev_consume_skb_any(struct sk_buff *skb)
3377 {
3378 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3379 }
3380 
3381 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3382 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3383 int netif_rx(struct sk_buff *skb);
3384 int netif_rx_ni(struct sk_buff *skb);
3385 int netif_receive_skb(struct sk_buff *skb);
3386 int netif_receive_skb_core(struct sk_buff *skb);
3387 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3388 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3389 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3390 gro_result_t napi_gro_frags(struct napi_struct *napi);
3391 struct packet_offload *gro_find_receive_by_type(__be16 type);
3392 struct packet_offload *gro_find_complete_by_type(__be16 type);
3393 
3394 static inline void napi_free_frags(struct napi_struct *napi)
3395 {
3396 	kfree_skb(napi->skb);
3397 	napi->skb = NULL;
3398 }
3399 
3400 bool netdev_is_rx_handler_busy(struct net_device *dev);
3401 int netdev_rx_handler_register(struct net_device *dev,
3402 			       rx_handler_func_t *rx_handler,
3403 			       void *rx_handler_data);
3404 void netdev_rx_handler_unregister(struct net_device *dev);
3405 
3406 bool dev_valid_name(const char *name);
3407 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3408 		bool *need_copyout);
3409 int dev_ifconf(struct net *net, struct ifconf *, int);
3410 int dev_ethtool(struct net *net, struct ifreq *);
3411 unsigned int dev_get_flags(const struct net_device *);
3412 int __dev_change_flags(struct net_device *, unsigned int flags);
3413 int dev_change_flags(struct net_device *, unsigned int);
3414 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3415 			unsigned int gchanges);
3416 int dev_change_name(struct net_device *, const char *);
3417 int dev_set_alias(struct net_device *, const char *, size_t);
3418 int dev_get_alias(const struct net_device *, char *, size_t);
3419 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3420 int __dev_set_mtu(struct net_device *, int);
3421 int dev_set_mtu(struct net_device *, int);
3422 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3423 void dev_set_group(struct net_device *, int);
3424 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3425 int dev_change_carrier(struct net_device *, bool new_carrier);
3426 int dev_get_phys_port_id(struct net_device *dev,
3427 			 struct netdev_phys_item_id *ppid);
3428 int dev_get_phys_port_name(struct net_device *dev,
3429 			   char *name, size_t len);
3430 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3431 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3432 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3433 				    struct netdev_queue *txq, int *ret);
3434 
3435 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3436 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3437 		      int fd, u32 flags);
3438 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3439 		     struct netdev_bpf *xdp);
3440 
3441 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3442 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3443 bool is_skb_forwardable(const struct net_device *dev,
3444 			const struct sk_buff *skb);
3445 
3446 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3447 					       struct sk_buff *skb)
3448 {
3449 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3450 	    unlikely(!is_skb_forwardable(dev, skb))) {
3451 		atomic_long_inc(&dev->rx_dropped);
3452 		kfree_skb(skb);
3453 		return NET_RX_DROP;
3454 	}
3455 
3456 	skb_scrub_packet(skb, true);
3457 	skb->priority = 0;
3458 	return 0;
3459 }
3460 
3461 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3462 
3463 extern int		netdev_budget;
3464 extern unsigned int	netdev_budget_usecs;
3465 
3466 /* Called by rtnetlink.c:rtnl_unlock() */
3467 void netdev_run_todo(void);
3468 
3469 /**
3470  *	dev_put - release reference to device
3471  *	@dev: network device
3472  *
3473  * Release reference to device to allow it to be freed.
3474  */
3475 static inline void dev_put(struct net_device *dev)
3476 {
3477 	this_cpu_dec(*dev->pcpu_refcnt);
3478 }
3479 
3480 /**
3481  *	dev_hold - get reference to device
3482  *	@dev: network device
3483  *
3484  * Hold reference to device to keep it from being freed.
3485  */
3486 static inline void dev_hold(struct net_device *dev)
3487 {
3488 	this_cpu_inc(*dev->pcpu_refcnt);
3489 }
3490 
3491 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3492  * and _off may be called from IRQ context, but it is caller
3493  * who is responsible for serialization of these calls.
3494  *
3495  * The name carrier is inappropriate, these functions should really be
3496  * called netif_lowerlayer_*() because they represent the state of any
3497  * kind of lower layer not just hardware media.
3498  */
3499 
3500 void linkwatch_init_dev(struct net_device *dev);
3501 void linkwatch_fire_event(struct net_device *dev);
3502 void linkwatch_forget_dev(struct net_device *dev);
3503 
3504 /**
3505  *	netif_carrier_ok - test if carrier present
3506  *	@dev: network device
3507  *
3508  * Check if carrier is present on device
3509  */
3510 static inline bool netif_carrier_ok(const struct net_device *dev)
3511 {
3512 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3513 }
3514 
3515 unsigned long dev_trans_start(struct net_device *dev);
3516 
3517 void __netdev_watchdog_up(struct net_device *dev);
3518 
3519 void netif_carrier_on(struct net_device *dev);
3520 
3521 void netif_carrier_off(struct net_device *dev);
3522 
3523 /**
3524  *	netif_dormant_on - mark device as dormant.
3525  *	@dev: network device
3526  *
3527  * Mark device as dormant (as per RFC2863).
3528  *
3529  * The dormant state indicates that the relevant interface is not
3530  * actually in a condition to pass packets (i.e., it is not 'up') but is
3531  * in a "pending" state, waiting for some external event.  For "on-
3532  * demand" interfaces, this new state identifies the situation where the
3533  * interface is waiting for events to place it in the up state.
3534  */
3535 static inline void netif_dormant_on(struct net_device *dev)
3536 {
3537 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3538 		linkwatch_fire_event(dev);
3539 }
3540 
3541 /**
3542  *	netif_dormant_off - set device as not dormant.
3543  *	@dev: network device
3544  *
3545  * Device is not in dormant state.
3546  */
3547 static inline void netif_dormant_off(struct net_device *dev)
3548 {
3549 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3550 		linkwatch_fire_event(dev);
3551 }
3552 
3553 /**
3554  *	netif_dormant - test if device is dormant
3555  *	@dev: network device
3556  *
3557  * Check if device is dormant.
3558  */
3559 static inline bool netif_dormant(const struct net_device *dev)
3560 {
3561 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3562 }
3563 
3564 
3565 /**
3566  *	netif_oper_up - test if device is operational
3567  *	@dev: network device
3568  *
3569  * Check if carrier is operational
3570  */
3571 static inline bool netif_oper_up(const struct net_device *dev)
3572 {
3573 	return (dev->operstate == IF_OPER_UP ||
3574 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3575 }
3576 
3577 /**
3578  *	netif_device_present - is device available or removed
3579  *	@dev: network device
3580  *
3581  * Check if device has not been removed from system.
3582  */
3583 static inline bool netif_device_present(struct net_device *dev)
3584 {
3585 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3586 }
3587 
3588 void netif_device_detach(struct net_device *dev);
3589 
3590 void netif_device_attach(struct net_device *dev);
3591 
3592 /*
3593  * Network interface message level settings
3594  */
3595 
3596 enum {
3597 	NETIF_MSG_DRV		= 0x0001,
3598 	NETIF_MSG_PROBE		= 0x0002,
3599 	NETIF_MSG_LINK		= 0x0004,
3600 	NETIF_MSG_TIMER		= 0x0008,
3601 	NETIF_MSG_IFDOWN	= 0x0010,
3602 	NETIF_MSG_IFUP		= 0x0020,
3603 	NETIF_MSG_RX_ERR	= 0x0040,
3604 	NETIF_MSG_TX_ERR	= 0x0080,
3605 	NETIF_MSG_TX_QUEUED	= 0x0100,
3606 	NETIF_MSG_INTR		= 0x0200,
3607 	NETIF_MSG_TX_DONE	= 0x0400,
3608 	NETIF_MSG_RX_STATUS	= 0x0800,
3609 	NETIF_MSG_PKTDATA	= 0x1000,
3610 	NETIF_MSG_HW		= 0x2000,
3611 	NETIF_MSG_WOL		= 0x4000,
3612 };
3613 
3614 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3615 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3616 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3617 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3618 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3619 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3620 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3621 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3622 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3623 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3624 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3625 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3626 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3627 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3628 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3629 
3630 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3631 {
3632 	/* use default */
3633 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3634 		return default_msg_enable_bits;
3635 	if (debug_value == 0)	/* no output */
3636 		return 0;
3637 	/* set low N bits */
3638 	return (1 << debug_value) - 1;
3639 }
3640 
3641 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3642 {
3643 	spin_lock(&txq->_xmit_lock);
3644 	txq->xmit_lock_owner = cpu;
3645 }
3646 
3647 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3648 {
3649 	__acquire(&txq->_xmit_lock);
3650 	return true;
3651 }
3652 
3653 static inline void __netif_tx_release(struct netdev_queue *txq)
3654 {
3655 	__release(&txq->_xmit_lock);
3656 }
3657 
3658 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3659 {
3660 	spin_lock_bh(&txq->_xmit_lock);
3661 	txq->xmit_lock_owner = smp_processor_id();
3662 }
3663 
3664 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3665 {
3666 	bool ok = spin_trylock(&txq->_xmit_lock);
3667 	if (likely(ok))
3668 		txq->xmit_lock_owner = smp_processor_id();
3669 	return ok;
3670 }
3671 
3672 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3673 {
3674 	txq->xmit_lock_owner = -1;
3675 	spin_unlock(&txq->_xmit_lock);
3676 }
3677 
3678 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3679 {
3680 	txq->xmit_lock_owner = -1;
3681 	spin_unlock_bh(&txq->_xmit_lock);
3682 }
3683 
3684 static inline void txq_trans_update(struct netdev_queue *txq)
3685 {
3686 	if (txq->xmit_lock_owner != -1)
3687 		txq->trans_start = jiffies;
3688 }
3689 
3690 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3691 static inline void netif_trans_update(struct net_device *dev)
3692 {
3693 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3694 
3695 	if (txq->trans_start != jiffies)
3696 		txq->trans_start = jiffies;
3697 }
3698 
3699 /**
3700  *	netif_tx_lock - grab network device transmit lock
3701  *	@dev: network device
3702  *
3703  * Get network device transmit lock
3704  */
3705 static inline void netif_tx_lock(struct net_device *dev)
3706 {
3707 	unsigned int i;
3708 	int cpu;
3709 
3710 	spin_lock(&dev->tx_global_lock);
3711 	cpu = smp_processor_id();
3712 	for (i = 0; i < dev->num_tx_queues; i++) {
3713 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3714 
3715 		/* We are the only thread of execution doing a
3716 		 * freeze, but we have to grab the _xmit_lock in
3717 		 * order to synchronize with threads which are in
3718 		 * the ->hard_start_xmit() handler and already
3719 		 * checked the frozen bit.
3720 		 */
3721 		__netif_tx_lock(txq, cpu);
3722 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3723 		__netif_tx_unlock(txq);
3724 	}
3725 }
3726 
3727 static inline void netif_tx_lock_bh(struct net_device *dev)
3728 {
3729 	local_bh_disable();
3730 	netif_tx_lock(dev);
3731 }
3732 
3733 static inline void netif_tx_unlock(struct net_device *dev)
3734 {
3735 	unsigned int i;
3736 
3737 	for (i = 0; i < dev->num_tx_queues; i++) {
3738 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3739 
3740 		/* No need to grab the _xmit_lock here.  If the
3741 		 * queue is not stopped for another reason, we
3742 		 * force a schedule.
3743 		 */
3744 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3745 		netif_schedule_queue(txq);
3746 	}
3747 	spin_unlock(&dev->tx_global_lock);
3748 }
3749 
3750 static inline void netif_tx_unlock_bh(struct net_device *dev)
3751 {
3752 	netif_tx_unlock(dev);
3753 	local_bh_enable();
3754 }
3755 
3756 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3757 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3758 		__netif_tx_lock(txq, cpu);		\
3759 	} else {					\
3760 		__netif_tx_acquire(txq);		\
3761 	}						\
3762 }
3763 
3764 #define HARD_TX_TRYLOCK(dev, txq)			\
3765 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3766 		__netif_tx_trylock(txq) :		\
3767 		__netif_tx_acquire(txq))
3768 
3769 #define HARD_TX_UNLOCK(dev, txq) {			\
3770 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3771 		__netif_tx_unlock(txq);			\
3772 	} else {					\
3773 		__netif_tx_release(txq);		\
3774 	}						\
3775 }
3776 
3777 static inline void netif_tx_disable(struct net_device *dev)
3778 {
3779 	unsigned int i;
3780 	int cpu;
3781 
3782 	local_bh_disable();
3783 	cpu = smp_processor_id();
3784 	for (i = 0; i < dev->num_tx_queues; i++) {
3785 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3786 
3787 		__netif_tx_lock(txq, cpu);
3788 		netif_tx_stop_queue(txq);
3789 		__netif_tx_unlock(txq);
3790 	}
3791 	local_bh_enable();
3792 }
3793 
3794 static inline void netif_addr_lock(struct net_device *dev)
3795 {
3796 	spin_lock(&dev->addr_list_lock);
3797 }
3798 
3799 static inline void netif_addr_lock_nested(struct net_device *dev)
3800 {
3801 	int subclass = SINGLE_DEPTH_NESTING;
3802 
3803 	if (dev->netdev_ops->ndo_get_lock_subclass)
3804 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3805 
3806 	spin_lock_nested(&dev->addr_list_lock, subclass);
3807 }
3808 
3809 static inline void netif_addr_lock_bh(struct net_device *dev)
3810 {
3811 	spin_lock_bh(&dev->addr_list_lock);
3812 }
3813 
3814 static inline void netif_addr_unlock(struct net_device *dev)
3815 {
3816 	spin_unlock(&dev->addr_list_lock);
3817 }
3818 
3819 static inline void netif_addr_unlock_bh(struct net_device *dev)
3820 {
3821 	spin_unlock_bh(&dev->addr_list_lock);
3822 }
3823 
3824 /*
3825  * dev_addrs walker. Should be used only for read access. Call with
3826  * rcu_read_lock held.
3827  */
3828 #define for_each_dev_addr(dev, ha) \
3829 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3830 
3831 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3832 
3833 void ether_setup(struct net_device *dev);
3834 
3835 /* Support for loadable net-drivers */
3836 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3837 				    unsigned char name_assign_type,
3838 				    void (*setup)(struct net_device *),
3839 				    unsigned int txqs, unsigned int rxqs);
3840 int dev_get_valid_name(struct net *net, struct net_device *dev,
3841 		       const char *name);
3842 
3843 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3844 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3845 
3846 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3847 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3848 			 count)
3849 
3850 int register_netdev(struct net_device *dev);
3851 void unregister_netdev(struct net_device *dev);
3852 
3853 /* General hardware address lists handling functions */
3854 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3855 		   struct netdev_hw_addr_list *from_list, int addr_len);
3856 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3857 		      struct netdev_hw_addr_list *from_list, int addr_len);
3858 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3859 		       struct net_device *dev,
3860 		       int (*sync)(struct net_device *, const unsigned char *),
3861 		       int (*unsync)(struct net_device *,
3862 				     const unsigned char *));
3863 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3864 			  struct net_device *dev,
3865 			  int (*unsync)(struct net_device *,
3866 					const unsigned char *));
3867 void __hw_addr_init(struct netdev_hw_addr_list *list);
3868 
3869 /* Functions used for device addresses handling */
3870 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3871 		 unsigned char addr_type);
3872 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3873 		 unsigned char addr_type);
3874 void dev_addr_flush(struct net_device *dev);
3875 int dev_addr_init(struct net_device *dev);
3876 
3877 /* Functions used for unicast addresses handling */
3878 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3879 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3880 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3881 int dev_uc_sync(struct net_device *to, struct net_device *from);
3882 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3883 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3884 void dev_uc_flush(struct net_device *dev);
3885 void dev_uc_init(struct net_device *dev);
3886 
3887 /**
3888  *  __dev_uc_sync - Synchonize device's unicast list
3889  *  @dev:  device to sync
3890  *  @sync: function to call if address should be added
3891  *  @unsync: function to call if address should be removed
3892  *
3893  *  Add newly added addresses to the interface, and release
3894  *  addresses that have been deleted.
3895  */
3896 static inline int __dev_uc_sync(struct net_device *dev,
3897 				int (*sync)(struct net_device *,
3898 					    const unsigned char *),
3899 				int (*unsync)(struct net_device *,
3900 					      const unsigned char *))
3901 {
3902 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3903 }
3904 
3905 /**
3906  *  __dev_uc_unsync - Remove synchronized addresses from device
3907  *  @dev:  device to sync
3908  *  @unsync: function to call if address should be removed
3909  *
3910  *  Remove all addresses that were added to the device by dev_uc_sync().
3911  */
3912 static inline void __dev_uc_unsync(struct net_device *dev,
3913 				   int (*unsync)(struct net_device *,
3914 						 const unsigned char *))
3915 {
3916 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3917 }
3918 
3919 /* Functions used for multicast addresses handling */
3920 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3921 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3922 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3923 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3924 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3925 int dev_mc_sync(struct net_device *to, struct net_device *from);
3926 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3927 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3928 void dev_mc_flush(struct net_device *dev);
3929 void dev_mc_init(struct net_device *dev);
3930 
3931 /**
3932  *  __dev_mc_sync - Synchonize device's multicast list
3933  *  @dev:  device to sync
3934  *  @sync: function to call if address should be added
3935  *  @unsync: function to call if address should be removed
3936  *
3937  *  Add newly added addresses to the interface, and release
3938  *  addresses that have been deleted.
3939  */
3940 static inline int __dev_mc_sync(struct net_device *dev,
3941 				int (*sync)(struct net_device *,
3942 					    const unsigned char *),
3943 				int (*unsync)(struct net_device *,
3944 					      const unsigned char *))
3945 {
3946 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3947 }
3948 
3949 /**
3950  *  __dev_mc_unsync - Remove synchronized addresses from device
3951  *  @dev:  device to sync
3952  *  @unsync: function to call if address should be removed
3953  *
3954  *  Remove all addresses that were added to the device by dev_mc_sync().
3955  */
3956 static inline void __dev_mc_unsync(struct net_device *dev,
3957 				   int (*unsync)(struct net_device *,
3958 						 const unsigned char *))
3959 {
3960 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3961 }
3962 
3963 /* Functions used for secondary unicast and multicast support */
3964 void dev_set_rx_mode(struct net_device *dev);
3965 void __dev_set_rx_mode(struct net_device *dev);
3966 int dev_set_promiscuity(struct net_device *dev, int inc);
3967 int dev_set_allmulti(struct net_device *dev, int inc);
3968 void netdev_state_change(struct net_device *dev);
3969 void netdev_notify_peers(struct net_device *dev);
3970 void netdev_features_change(struct net_device *dev);
3971 /* Load a device via the kmod */
3972 void dev_load(struct net *net, const char *name);
3973 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3974 					struct rtnl_link_stats64 *storage);
3975 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3976 			     const struct net_device_stats *netdev_stats);
3977 
3978 extern int		netdev_max_backlog;
3979 extern int		netdev_tstamp_prequeue;
3980 extern int		weight_p;
3981 extern int		dev_weight_rx_bias;
3982 extern int		dev_weight_tx_bias;
3983 extern int		dev_rx_weight;
3984 extern int		dev_tx_weight;
3985 
3986 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3987 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3988 						     struct list_head **iter);
3989 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3990 						     struct list_head **iter);
3991 
3992 /* iterate through upper list, must be called under RCU read lock */
3993 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3994 	for (iter = &(dev)->adj_list.upper, \
3995 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3996 	     updev; \
3997 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3998 
3999 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4000 				  int (*fn)(struct net_device *upper_dev,
4001 					    void *data),
4002 				  void *data);
4003 
4004 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4005 				  struct net_device *upper_dev);
4006 
4007 bool netdev_has_any_upper_dev(struct net_device *dev);
4008 
4009 void *netdev_lower_get_next_private(struct net_device *dev,
4010 				    struct list_head **iter);
4011 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4012 					struct list_head **iter);
4013 
4014 #define netdev_for_each_lower_private(dev, priv, iter) \
4015 	for (iter = (dev)->adj_list.lower.next, \
4016 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4017 	     priv; \
4018 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4019 
4020 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4021 	for (iter = &(dev)->adj_list.lower, \
4022 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4023 	     priv; \
4024 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4025 
4026 void *netdev_lower_get_next(struct net_device *dev,
4027 				struct list_head **iter);
4028 
4029 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4030 	for (iter = (dev)->adj_list.lower.next, \
4031 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4032 	     ldev; \
4033 	     ldev = netdev_lower_get_next(dev, &(iter)))
4034 
4035 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4036 					     struct list_head **iter);
4037 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4038 						 struct list_head **iter);
4039 
4040 int netdev_walk_all_lower_dev(struct net_device *dev,
4041 			      int (*fn)(struct net_device *lower_dev,
4042 					void *data),
4043 			      void *data);
4044 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4045 				  int (*fn)(struct net_device *lower_dev,
4046 					    void *data),
4047 				  void *data);
4048 
4049 void *netdev_adjacent_get_private(struct list_head *adj_list);
4050 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4051 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4052 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4053 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4054 			  struct netlink_ext_ack *extack);
4055 int netdev_master_upper_dev_link(struct net_device *dev,
4056 				 struct net_device *upper_dev,
4057 				 void *upper_priv, void *upper_info,
4058 				 struct netlink_ext_ack *extack);
4059 void netdev_upper_dev_unlink(struct net_device *dev,
4060 			     struct net_device *upper_dev);
4061 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4062 void *netdev_lower_dev_get_private(struct net_device *dev,
4063 				   struct net_device *lower_dev);
4064 void netdev_lower_state_changed(struct net_device *lower_dev,
4065 				void *lower_state_info);
4066 
4067 /* RSS keys are 40 or 52 bytes long */
4068 #define NETDEV_RSS_KEY_LEN 52
4069 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4070 void netdev_rss_key_fill(void *buffer, size_t len);
4071 
4072 int dev_get_nest_level(struct net_device *dev);
4073 int skb_checksum_help(struct sk_buff *skb);
4074 int skb_crc32c_csum_help(struct sk_buff *skb);
4075 int skb_csum_hwoffload_help(struct sk_buff *skb,
4076 			    const netdev_features_t features);
4077 
4078 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4079 				  netdev_features_t features, bool tx_path);
4080 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4081 				    netdev_features_t features);
4082 
4083 struct netdev_bonding_info {
4084 	ifslave	slave;
4085 	ifbond	master;
4086 };
4087 
4088 struct netdev_notifier_bonding_info {
4089 	struct netdev_notifier_info info; /* must be first */
4090 	struct netdev_bonding_info  bonding_info;
4091 };
4092 
4093 void netdev_bonding_info_change(struct net_device *dev,
4094 				struct netdev_bonding_info *bonding_info);
4095 
4096 static inline
4097 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4098 {
4099 	return __skb_gso_segment(skb, features, true);
4100 }
4101 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4102 
4103 static inline bool can_checksum_protocol(netdev_features_t features,
4104 					 __be16 protocol)
4105 {
4106 	if (protocol == htons(ETH_P_FCOE))
4107 		return !!(features & NETIF_F_FCOE_CRC);
4108 
4109 	/* Assume this is an IP checksum (not SCTP CRC) */
4110 
4111 	if (features & NETIF_F_HW_CSUM) {
4112 		/* Can checksum everything */
4113 		return true;
4114 	}
4115 
4116 	switch (protocol) {
4117 	case htons(ETH_P_IP):
4118 		return !!(features & NETIF_F_IP_CSUM);
4119 	case htons(ETH_P_IPV6):
4120 		return !!(features & NETIF_F_IPV6_CSUM);
4121 	default:
4122 		return false;
4123 	}
4124 }
4125 
4126 #ifdef CONFIG_BUG
4127 void netdev_rx_csum_fault(struct net_device *dev);
4128 #else
4129 static inline void netdev_rx_csum_fault(struct net_device *dev)
4130 {
4131 }
4132 #endif
4133 /* rx skb timestamps */
4134 void net_enable_timestamp(void);
4135 void net_disable_timestamp(void);
4136 
4137 #ifdef CONFIG_PROC_FS
4138 int __init dev_proc_init(void);
4139 #else
4140 #define dev_proc_init() 0
4141 #endif
4142 
4143 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4144 					      struct sk_buff *skb, struct net_device *dev,
4145 					      bool more)
4146 {
4147 	skb->xmit_more = more ? 1 : 0;
4148 	return ops->ndo_start_xmit(skb, dev);
4149 }
4150 
4151 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4152 					    struct netdev_queue *txq, bool more)
4153 {
4154 	const struct net_device_ops *ops = dev->netdev_ops;
4155 	int rc;
4156 
4157 	rc = __netdev_start_xmit(ops, skb, dev, more);
4158 	if (rc == NETDEV_TX_OK)
4159 		txq_trans_update(txq);
4160 
4161 	return rc;
4162 }
4163 
4164 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4165 				const void *ns);
4166 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4167 				 const void *ns);
4168 
4169 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4170 {
4171 	return netdev_class_create_file_ns(class_attr, NULL);
4172 }
4173 
4174 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4175 {
4176 	netdev_class_remove_file_ns(class_attr, NULL);
4177 }
4178 
4179 extern const struct kobj_ns_type_operations net_ns_type_operations;
4180 
4181 const char *netdev_drivername(const struct net_device *dev);
4182 
4183 void linkwatch_run_queue(void);
4184 
4185 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4186 							  netdev_features_t f2)
4187 {
4188 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4189 		if (f1 & NETIF_F_HW_CSUM)
4190 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4191 		else
4192 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4193 	}
4194 
4195 	return f1 & f2;
4196 }
4197 
4198 static inline netdev_features_t netdev_get_wanted_features(
4199 	struct net_device *dev)
4200 {
4201 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4202 }
4203 netdev_features_t netdev_increment_features(netdev_features_t all,
4204 	netdev_features_t one, netdev_features_t mask);
4205 
4206 /* Allow TSO being used on stacked device :
4207  * Performing the GSO segmentation before last device
4208  * is a performance improvement.
4209  */
4210 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4211 							netdev_features_t mask)
4212 {
4213 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4214 }
4215 
4216 int __netdev_update_features(struct net_device *dev);
4217 void netdev_update_features(struct net_device *dev);
4218 void netdev_change_features(struct net_device *dev);
4219 
4220 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4221 					struct net_device *dev);
4222 
4223 netdev_features_t passthru_features_check(struct sk_buff *skb,
4224 					  struct net_device *dev,
4225 					  netdev_features_t features);
4226 netdev_features_t netif_skb_features(struct sk_buff *skb);
4227 
4228 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4229 {
4230 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4231 
4232 	/* check flags correspondence */
4233 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4234 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4235 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4236 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4237 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4238 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4239 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4240 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4241 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4242 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4243 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4244 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4245 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4246 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4247 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4248 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4249 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4250 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4251 
4252 	return (features & feature) == feature;
4253 }
4254 
4255 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4256 {
4257 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4258 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4259 }
4260 
4261 static inline bool netif_needs_gso(struct sk_buff *skb,
4262 				   netdev_features_t features)
4263 {
4264 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4265 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4266 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4267 }
4268 
4269 static inline void netif_set_gso_max_size(struct net_device *dev,
4270 					  unsigned int size)
4271 {
4272 	dev->gso_max_size = size;
4273 }
4274 
4275 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4276 					int pulled_hlen, u16 mac_offset,
4277 					int mac_len)
4278 {
4279 	skb->protocol = protocol;
4280 	skb->encapsulation = 1;
4281 	skb_push(skb, pulled_hlen);
4282 	skb_reset_transport_header(skb);
4283 	skb->mac_header = mac_offset;
4284 	skb->network_header = skb->mac_header + mac_len;
4285 	skb->mac_len = mac_len;
4286 }
4287 
4288 static inline bool netif_is_macsec(const struct net_device *dev)
4289 {
4290 	return dev->priv_flags & IFF_MACSEC;
4291 }
4292 
4293 static inline bool netif_is_macvlan(const struct net_device *dev)
4294 {
4295 	return dev->priv_flags & IFF_MACVLAN;
4296 }
4297 
4298 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4299 {
4300 	return dev->priv_flags & IFF_MACVLAN_PORT;
4301 }
4302 
4303 static inline bool netif_is_bond_master(const struct net_device *dev)
4304 {
4305 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4306 }
4307 
4308 static inline bool netif_is_bond_slave(const struct net_device *dev)
4309 {
4310 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4311 }
4312 
4313 static inline bool netif_supports_nofcs(struct net_device *dev)
4314 {
4315 	return dev->priv_flags & IFF_SUPP_NOFCS;
4316 }
4317 
4318 static inline bool netif_is_l3_master(const struct net_device *dev)
4319 {
4320 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4321 }
4322 
4323 static inline bool netif_is_l3_slave(const struct net_device *dev)
4324 {
4325 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4326 }
4327 
4328 static inline bool netif_is_bridge_master(const struct net_device *dev)
4329 {
4330 	return dev->priv_flags & IFF_EBRIDGE;
4331 }
4332 
4333 static inline bool netif_is_bridge_port(const struct net_device *dev)
4334 {
4335 	return dev->priv_flags & IFF_BRIDGE_PORT;
4336 }
4337 
4338 static inline bool netif_is_ovs_master(const struct net_device *dev)
4339 {
4340 	return dev->priv_flags & IFF_OPENVSWITCH;
4341 }
4342 
4343 static inline bool netif_is_ovs_port(const struct net_device *dev)
4344 {
4345 	return dev->priv_flags & IFF_OVS_DATAPATH;
4346 }
4347 
4348 static inline bool netif_is_team_master(const struct net_device *dev)
4349 {
4350 	return dev->priv_flags & IFF_TEAM;
4351 }
4352 
4353 static inline bool netif_is_team_port(const struct net_device *dev)
4354 {
4355 	return dev->priv_flags & IFF_TEAM_PORT;
4356 }
4357 
4358 static inline bool netif_is_lag_master(const struct net_device *dev)
4359 {
4360 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4361 }
4362 
4363 static inline bool netif_is_lag_port(const struct net_device *dev)
4364 {
4365 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4366 }
4367 
4368 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4369 {
4370 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4371 }
4372 
4373 static inline bool netif_is_failover(const struct net_device *dev)
4374 {
4375 	return dev->priv_flags & IFF_FAILOVER;
4376 }
4377 
4378 static inline bool netif_is_failover_slave(const struct net_device *dev)
4379 {
4380 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4381 }
4382 
4383 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4384 static inline void netif_keep_dst(struct net_device *dev)
4385 {
4386 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4387 }
4388 
4389 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4390 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4391 {
4392 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4393 	return dev->priv_flags & IFF_MACSEC;
4394 }
4395 
4396 extern struct pernet_operations __net_initdata loopback_net_ops;
4397 
4398 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4399 
4400 /* netdev_printk helpers, similar to dev_printk */
4401 
4402 static inline const char *netdev_name(const struct net_device *dev)
4403 {
4404 	if (!dev->name[0] || strchr(dev->name, '%'))
4405 		return "(unnamed net_device)";
4406 	return dev->name;
4407 }
4408 
4409 static inline bool netdev_unregistering(const struct net_device *dev)
4410 {
4411 	return dev->reg_state == NETREG_UNREGISTERING;
4412 }
4413 
4414 static inline const char *netdev_reg_state(const struct net_device *dev)
4415 {
4416 	switch (dev->reg_state) {
4417 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4418 	case NETREG_REGISTERED: return "";
4419 	case NETREG_UNREGISTERING: return " (unregistering)";
4420 	case NETREG_UNREGISTERED: return " (unregistered)";
4421 	case NETREG_RELEASED: return " (released)";
4422 	case NETREG_DUMMY: return " (dummy)";
4423 	}
4424 
4425 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4426 	return " (unknown)";
4427 }
4428 
4429 __printf(3, 4)
4430 void netdev_printk(const char *level, const struct net_device *dev,
4431 		   const char *format, ...);
4432 __printf(2, 3)
4433 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4434 __printf(2, 3)
4435 void netdev_alert(const struct net_device *dev, const char *format, ...);
4436 __printf(2, 3)
4437 void netdev_crit(const struct net_device *dev, const char *format, ...);
4438 __printf(2, 3)
4439 void netdev_err(const struct net_device *dev, const char *format, ...);
4440 __printf(2, 3)
4441 void netdev_warn(const struct net_device *dev, const char *format, ...);
4442 __printf(2, 3)
4443 void netdev_notice(const struct net_device *dev, const char *format, ...);
4444 __printf(2, 3)
4445 void netdev_info(const struct net_device *dev, const char *format, ...);
4446 
4447 #define netdev_level_once(level, dev, fmt, ...)			\
4448 do {								\
4449 	static bool __print_once __read_mostly;			\
4450 								\
4451 	if (!__print_once) {					\
4452 		__print_once = true;				\
4453 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4454 	}							\
4455 } while (0)
4456 
4457 #define netdev_emerg_once(dev, fmt, ...) \
4458 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4459 #define netdev_alert_once(dev, fmt, ...) \
4460 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4461 #define netdev_crit_once(dev, fmt, ...) \
4462 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4463 #define netdev_err_once(dev, fmt, ...) \
4464 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4465 #define netdev_warn_once(dev, fmt, ...) \
4466 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4467 #define netdev_notice_once(dev, fmt, ...) \
4468 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4469 #define netdev_info_once(dev, fmt, ...) \
4470 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4471 
4472 #define MODULE_ALIAS_NETDEV(device) \
4473 	MODULE_ALIAS("netdev-" device)
4474 
4475 #if defined(CONFIG_DYNAMIC_DEBUG)
4476 #define netdev_dbg(__dev, format, args...)			\
4477 do {								\
4478 	dynamic_netdev_dbg(__dev, format, ##args);		\
4479 } while (0)
4480 #elif defined(DEBUG)
4481 #define netdev_dbg(__dev, format, args...)			\
4482 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4483 #else
4484 #define netdev_dbg(__dev, format, args...)			\
4485 ({								\
4486 	if (0)							\
4487 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4488 })
4489 #endif
4490 
4491 #if defined(VERBOSE_DEBUG)
4492 #define netdev_vdbg	netdev_dbg
4493 #else
4494 
4495 #define netdev_vdbg(dev, format, args...)			\
4496 ({								\
4497 	if (0)							\
4498 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4499 	0;							\
4500 })
4501 #endif
4502 
4503 /*
4504  * netdev_WARN() acts like dev_printk(), but with the key difference
4505  * of using a WARN/WARN_ON to get the message out, including the
4506  * file/line information and a backtrace.
4507  */
4508 #define netdev_WARN(dev, format, args...)			\
4509 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4510 	     netdev_reg_state(dev), ##args)
4511 
4512 #define netdev_WARN_ONCE(dev, format, args...)				\
4513 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4514 		  netdev_reg_state(dev), ##args)
4515 
4516 /* netif printk helpers, similar to netdev_printk */
4517 
4518 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4519 do {					  			\
4520 	if (netif_msg_##type(priv))				\
4521 		netdev_printk(level, (dev), fmt, ##args);	\
4522 } while (0)
4523 
4524 #define netif_level(level, priv, type, dev, fmt, args...)	\
4525 do {								\
4526 	if (netif_msg_##type(priv))				\
4527 		netdev_##level(dev, fmt, ##args);		\
4528 } while (0)
4529 
4530 #define netif_emerg(priv, type, dev, fmt, args...)		\
4531 	netif_level(emerg, priv, type, dev, fmt, ##args)
4532 #define netif_alert(priv, type, dev, fmt, args...)		\
4533 	netif_level(alert, priv, type, dev, fmt, ##args)
4534 #define netif_crit(priv, type, dev, fmt, args...)		\
4535 	netif_level(crit, priv, type, dev, fmt, ##args)
4536 #define netif_err(priv, type, dev, fmt, args...)		\
4537 	netif_level(err, priv, type, dev, fmt, ##args)
4538 #define netif_warn(priv, type, dev, fmt, args...)		\
4539 	netif_level(warn, priv, type, dev, fmt, ##args)
4540 #define netif_notice(priv, type, dev, fmt, args...)		\
4541 	netif_level(notice, priv, type, dev, fmt, ##args)
4542 #define netif_info(priv, type, dev, fmt, args...)		\
4543 	netif_level(info, priv, type, dev, fmt, ##args)
4544 
4545 #if defined(CONFIG_DYNAMIC_DEBUG)
4546 #define netif_dbg(priv, type, netdev, format, args...)		\
4547 do {								\
4548 	if (netif_msg_##type(priv))				\
4549 		dynamic_netdev_dbg(netdev, format, ##args);	\
4550 } while (0)
4551 #elif defined(DEBUG)
4552 #define netif_dbg(priv, type, dev, format, args...)		\
4553 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4554 #else
4555 #define netif_dbg(priv, type, dev, format, args...)			\
4556 ({									\
4557 	if (0)								\
4558 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4559 	0;								\
4560 })
4561 #endif
4562 
4563 /* if @cond then downgrade to debug, else print at @level */
4564 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4565 	do {                                                              \
4566 		if (cond)                                                 \
4567 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4568 		else                                                      \
4569 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4570 	} while (0)
4571 
4572 #if defined(VERBOSE_DEBUG)
4573 #define netif_vdbg	netif_dbg
4574 #else
4575 #define netif_vdbg(priv, type, dev, format, args...)		\
4576 ({								\
4577 	if (0)							\
4578 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4579 	0;							\
4580 })
4581 #endif
4582 
4583 /*
4584  *	The list of packet types we will receive (as opposed to discard)
4585  *	and the routines to invoke.
4586  *
4587  *	Why 16. Because with 16 the only overlap we get on a hash of the
4588  *	low nibble of the protocol value is RARP/SNAP/X.25.
4589  *
4590  *		0800	IP
4591  *		0001	802.3
4592  *		0002	AX.25
4593  *		0004	802.2
4594  *		8035	RARP
4595  *		0005	SNAP
4596  *		0805	X.25
4597  *		0806	ARP
4598  *		8137	IPX
4599  *		0009	Localtalk
4600  *		86DD	IPv6
4601  */
4602 #define PTYPE_HASH_SIZE	(16)
4603 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4604 
4605 #endif	/* _LINUX_NETDEVICE_H */
4606