xref: /openbmc/linux/include/linux/netdevice.h (revision 3a448205)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166 	unsigned long	rx_packets;
167 	unsigned long	tx_packets;
168 	unsigned long	rx_bytes;
169 	unsigned long	tx_bytes;
170 	unsigned long	rx_errors;
171 	unsigned long	tx_errors;
172 	unsigned long	rx_dropped;
173 	unsigned long	tx_dropped;
174 	unsigned long	multicast;
175 	unsigned long	collisions;
176 	unsigned long	rx_length_errors;
177 	unsigned long	rx_over_errors;
178 	unsigned long	rx_crc_errors;
179 	unsigned long	rx_frame_errors;
180 	unsigned long	rx_fifo_errors;
181 	unsigned long	rx_missed_errors;
182 	unsigned long	tx_aborted_errors;
183 	unsigned long	tx_carrier_errors;
184 	unsigned long	tx_fifo_errors;
185 	unsigned long	tx_heartbeat_errors;
186 	unsigned long	tx_window_errors;
187 	unsigned long	rx_compressed;
188 	unsigned long	tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206 	struct list_head	list;
207 	unsigned char		addr[MAX_ADDR_LEN];
208 	unsigned char		type;
209 #define NETDEV_HW_ADDR_T_LAN		1
210 #define NETDEV_HW_ADDR_T_SAN		2
211 #define NETDEV_HW_ADDR_T_SLAVE		3
212 #define NETDEV_HW_ADDR_T_UNICAST	4
213 #define NETDEV_HW_ADDR_T_MULTICAST	5
214 	bool			global_use;
215 	int			sync_cnt;
216 	int			refcount;
217 	int			synced;
218 	struct rcu_head		rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222 	struct list_head	list;
223 	int			count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229 	list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242 	unsigned int	hh_len;
243 	seqlock_t	hh_lock;
244 
245 	/* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD	16
247 #define HH_DATA_OFF(__len) \
248 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
269 			   unsigned short type, const void *daddr,
270 			   const void *saddr, unsigned int len);
271 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
272 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273 	void	(*cache_update)(struct hh_cache *hh,
274 				const struct net_device *dev,
275 				const unsigned char *haddr);
276 	bool	(*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285 	__LINK_STATE_START,
286 	__LINK_STATE_PRESENT,
287 	__LINK_STATE_NOCARRIER,
288 	__LINK_STATE_LINKWATCH_PENDING,
289 	__LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298 	char name[IFNAMSIZ];
299 	struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306 	struct list_head	list;
307 	int			count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS	8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320 	/* The poll_list must only be managed by the entity which
321 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
322 	 * whoever atomically sets that bit can add this napi_struct
323 	 * to the per-CPU poll_list, and whoever clears that bit
324 	 * can remove from the list right before clearing the bit.
325 	 */
326 	struct list_head	poll_list;
327 
328 	unsigned long		state;
329 	int			weight;
330 	unsigned long		gro_bitmask;
331 	int			(*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333 	int			poll_owner;
334 #endif
335 	struct net_device	*dev;
336 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
337 	struct sk_buff		*skb;
338 	struct hrtimer		timer;
339 	struct list_head	dev_list;
340 	struct hlist_node	napi_hash_node;
341 	unsigned int		napi_id;
342 };
343 
344 enum {
345 	NAPI_STATE_SCHED,	/* Poll is scheduled */
346 	NAPI_STATE_MISSED,	/* reschedule a napi */
347 	NAPI_STATE_DISABLE,	/* Disable pending */
348 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
349 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
350 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
360 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365 	GRO_MERGED,
366 	GRO_MERGED_FREE,
367 	GRO_HELD,
368 	GRO_NORMAL,
369 	GRO_DROP,
370 	GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416 	RX_HANDLER_CONSUMED,
417 	RX_HANDLER_ANOTHER,
418 	RX_HANDLER_EXACT,
419 	RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429 	return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *	napi_schedule - schedule NAPI poll
436  *	@n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443 	if (napi_schedule_prep(n))
444 		__napi_schedule(n);
445 }
446 
447 /**
448  *	napi_schedule_irqoff - schedule NAPI poll
449  *	@n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462 	if (napi_schedule_prep(napi)) {
463 		__napi_schedule(napi);
464 		return true;
465 	}
466 	return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *	napi_complete - NAPI processing complete
472  *	@n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480 	return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *	napi_hash_del - remove a NAPI from global table
485  *	@napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *	napi_disable - prevent NAPI from scheduling
499  *	@n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *	napi_enable - enable NAPI scheduling
508  *	@n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516 	smp_mb__before_atomic();
517 	clear_bit(NAPI_STATE_SCHED, &n->state);
518 	clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *	napi_synchronize - wait until NAPI is not running
523  *	@n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531 	if (IS_ENABLED(CONFIG_SMP))
532 		while (test_bit(NAPI_STATE_SCHED, &n->state))
533 			msleep(1);
534 	else
535 		barrier();
536 }
537 
538 /**
539  *	napi_if_scheduled_mark_missed - if napi is running, set the
540  *	NAPIF_STATE_MISSED
541  *	@n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548 	unsigned long val, new;
549 
550 	do {
551 		val = READ_ONCE(n->state);
552 		if (val & NAPIF_STATE_DISABLE)
553 			return true;
554 
555 		if (!(val & NAPIF_STATE_SCHED))
556 			return false;
557 
558 		new = val | NAPIF_STATE_MISSED;
559 	} while (cmpxchg(&n->state, val, new) != val);
560 
561 	return true;
562 }
563 
564 enum netdev_queue_state_t {
565 	__QUEUE_STATE_DRV_XOFF,
566 	__QUEUE_STATE_STACK_XOFF,
567 	__QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578 					QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594 	struct net_device	*dev;
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	unsigned long		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 };
850 
851 /* These structures hold the attributes of bpf state that are being passed
852  * to the netdevice through the bpf op.
853  */
854 enum bpf_netdev_command {
855 	/* Set or clear a bpf program used in the earliest stages of packet
856 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
857 	 * is responsible for calling bpf_prog_put on any old progs that are
858 	 * stored. In case of error, the callee need not release the new prog
859 	 * reference, but on success it takes ownership and must bpf_prog_put
860 	 * when it is no longer used.
861 	 */
862 	XDP_SETUP_PROG,
863 	XDP_SETUP_PROG_HW,
864 	XDP_QUERY_PROG,
865 	XDP_QUERY_PROG_HW,
866 	/* BPF program for offload callbacks, invoked at program load time. */
867 	BPF_OFFLOAD_VERIFIER_PREP,
868 	BPF_OFFLOAD_TRANSLATE,
869 	BPF_OFFLOAD_DESTROY,
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_QUERY_XSK_UMEM,
873 	XDP_SETUP_XSK_UMEM,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 
880 struct netdev_bpf {
881 	enum bpf_netdev_command command;
882 	union {
883 		/* XDP_SETUP_PROG */
884 		struct {
885 			u32 flags;
886 			struct bpf_prog *prog;
887 			struct netlink_ext_ack *extack;
888 		};
889 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
890 		struct {
891 			u32 prog_id;
892 			/* flags with which program was installed */
893 			u32 prog_flags;
894 		};
895 		/* BPF_OFFLOAD_VERIFIER_PREP */
896 		struct {
897 			struct bpf_prog *prog;
898 			const struct bpf_prog_offload_ops *ops; /* callee set */
899 		} verifier;
900 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
901 		struct {
902 			struct bpf_prog *prog;
903 		} offload;
904 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
905 		struct {
906 			struct bpf_offloaded_map *offmap;
907 		};
908 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
909 		struct {
910 			struct xdp_umem *umem; /* out for query*/
911 			u16 queue_id; /* in for query */
912 		} xsk;
913 	};
914 };
915 
916 #ifdef CONFIG_XFRM_OFFLOAD
917 struct xfrmdev_ops {
918 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
919 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
920 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
921 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
922 				       struct xfrm_state *x);
923 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
924 };
925 #endif
926 
927 #if IS_ENABLED(CONFIG_TLS_DEVICE)
928 enum tls_offload_ctx_dir {
929 	TLS_OFFLOAD_CTX_DIR_RX,
930 	TLS_OFFLOAD_CTX_DIR_TX,
931 };
932 
933 struct tls_crypto_info;
934 struct tls_context;
935 
936 struct tlsdev_ops {
937 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
938 			   enum tls_offload_ctx_dir direction,
939 			   struct tls_crypto_info *crypto_info,
940 			   u32 start_offload_tcp_sn);
941 	void (*tls_dev_del)(struct net_device *netdev,
942 			    struct tls_context *ctx,
943 			    enum tls_offload_ctx_dir direction);
944 	void (*tls_dev_resync_rx)(struct net_device *netdev,
945 				  struct sock *sk, u32 seq, u64 rcd_sn);
946 };
947 #endif
948 
949 struct dev_ifalias {
950 	struct rcu_head rcuhead;
951 	char ifalias[];
952 };
953 
954 /*
955  * This structure defines the management hooks for network devices.
956  * The following hooks can be defined; unless noted otherwise, they are
957  * optional and can be filled with a null pointer.
958  *
959  * int (*ndo_init)(struct net_device *dev);
960  *     This function is called once when a network device is registered.
961  *     The network device can use this for any late stage initialization
962  *     or semantic validation. It can fail with an error code which will
963  *     be propagated back to register_netdev.
964  *
965  * void (*ndo_uninit)(struct net_device *dev);
966  *     This function is called when device is unregistered or when registration
967  *     fails. It is not called if init fails.
968  *
969  * int (*ndo_open)(struct net_device *dev);
970  *     This function is called when a network device transitions to the up
971  *     state.
972  *
973  * int (*ndo_stop)(struct net_device *dev);
974  *     This function is called when a network device transitions to the down
975  *     state.
976  *
977  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
978  *                               struct net_device *dev);
979  *	Called when a packet needs to be transmitted.
980  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
981  *	the queue before that can happen; it's for obsolete devices and weird
982  *	corner cases, but the stack really does a non-trivial amount
983  *	of useless work if you return NETDEV_TX_BUSY.
984  *	Required; cannot be NULL.
985  *
986  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
987  *					   struct net_device *dev
988  *					   netdev_features_t features);
989  *	Called by core transmit path to determine if device is capable of
990  *	performing offload operations on a given packet. This is to give
991  *	the device an opportunity to implement any restrictions that cannot
992  *	be otherwise expressed by feature flags. The check is called with
993  *	the set of features that the stack has calculated and it returns
994  *	those the driver believes to be appropriate.
995  *
996  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
997  *                         struct net_device *sb_dev,
998  *                         select_queue_fallback_t fallback);
999  *	Called to decide which queue to use when device supports multiple
1000  *	transmit queues.
1001  *
1002  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1003  *	This function is called to allow device receiver to make
1004  *	changes to configuration when multicast or promiscuous is enabled.
1005  *
1006  * void (*ndo_set_rx_mode)(struct net_device *dev);
1007  *	This function is called device changes address list filtering.
1008  *	If driver handles unicast address filtering, it should set
1009  *	IFF_UNICAST_FLT in its priv_flags.
1010  *
1011  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1012  *	This function  is called when the Media Access Control address
1013  *	needs to be changed. If this interface is not defined, the
1014  *	MAC address can not be changed.
1015  *
1016  * int (*ndo_validate_addr)(struct net_device *dev);
1017  *	Test if Media Access Control address is valid for the device.
1018  *
1019  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1020  *	Called when a user requests an ioctl which can't be handled by
1021  *	the generic interface code. If not defined ioctls return
1022  *	not supported error code.
1023  *
1024  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1025  *	Used to set network devices bus interface parameters. This interface
1026  *	is retained for legacy reasons; new devices should use the bus
1027  *	interface (PCI) for low level management.
1028  *
1029  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1030  *	Called when a user wants to change the Maximum Transfer Unit
1031  *	of a device.
1032  *
1033  * void (*ndo_tx_timeout)(struct net_device *dev);
1034  *	Callback used when the transmitter has not made any progress
1035  *	for dev->watchdog ticks.
1036  *
1037  * void (*ndo_get_stats64)(struct net_device *dev,
1038  *                         struct rtnl_link_stats64 *storage);
1039  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1040  *	Called when a user wants to get the network device usage
1041  *	statistics. Drivers must do one of the following:
1042  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1043  *	   rtnl_link_stats64 structure passed by the caller.
1044  *	2. Define @ndo_get_stats to update a net_device_stats structure
1045  *	   (which should normally be dev->stats) and return a pointer to
1046  *	   it. The structure may be changed asynchronously only if each
1047  *	   field is written atomically.
1048  *	3. Update dev->stats asynchronously and atomically, and define
1049  *	   neither operation.
1050  *
1051  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1052  *	Return true if this device supports offload stats of this attr_id.
1053  *
1054  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1055  *	void *attr_data)
1056  *	Get statistics for offload operations by attr_id. Write it into the
1057  *	attr_data pointer.
1058  *
1059  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1060  *	If device supports VLAN filtering this function is called when a
1061  *	VLAN id is registered.
1062  *
1063  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1064  *	If device supports VLAN filtering this function is called when a
1065  *	VLAN id is unregistered.
1066  *
1067  * void (*ndo_poll_controller)(struct net_device *dev);
1068  *
1069  *	SR-IOV management functions.
1070  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1071  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1072  *			  u8 qos, __be16 proto);
1073  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1074  *			  int max_tx_rate);
1075  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1077  * int (*ndo_get_vf_config)(struct net_device *dev,
1078  *			    int vf, struct ifla_vf_info *ivf);
1079  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1080  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1081  *			  struct nlattr *port[]);
1082  *
1083  *      Enable or disable the VF ability to query its RSS Redirection Table and
1084  *      Hash Key. This is needed since on some devices VF share this information
1085  *      with PF and querying it may introduce a theoretical security risk.
1086  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1087  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1088  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1089  *		       void *type_data);
1090  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1091  *	This is always called from the stack with the rtnl lock held and netif
1092  *	tx queues stopped. This allows the netdevice to perform queue
1093  *	management safely.
1094  *
1095  *	Fiber Channel over Ethernet (FCoE) offload functions.
1096  * int (*ndo_fcoe_enable)(struct net_device *dev);
1097  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1098  *	so the underlying device can perform whatever needed configuration or
1099  *	initialization to support acceleration of FCoE traffic.
1100  *
1101  * int (*ndo_fcoe_disable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1103  *	so the underlying device can perform whatever needed clean-ups to
1104  *	stop supporting acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1107  *			     struct scatterlist *sgl, unsigned int sgc);
1108  *	Called when the FCoE Initiator wants to initialize an I/O that
1109  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1110  *	perform necessary setup and returns 1 to indicate the device is set up
1111  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1112  *
1113  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1114  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1115  *	indicated by the FC exchange id 'xid', so the underlying device can
1116  *	clean up and reuse resources for later DDP requests.
1117  *
1118  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1119  *			      struct scatterlist *sgl, unsigned int sgc);
1120  *	Called when the FCoE Target wants to initialize an I/O that
1121  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1122  *	perform necessary setup and returns 1 to indicate the device is set up
1123  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1124  *
1125  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126  *			       struct netdev_fcoe_hbainfo *hbainfo);
1127  *	Called when the FCoE Protocol stack wants information on the underlying
1128  *	device. This information is utilized by the FCoE protocol stack to
1129  *	register attributes with Fiber Channel management service as per the
1130  *	FC-GS Fabric Device Management Information(FDMI) specification.
1131  *
1132  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1133  *	Called when the underlying device wants to override default World Wide
1134  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1135  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1136  *	protocol stack to use.
1137  *
1138  *	RFS acceleration.
1139  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1140  *			    u16 rxq_index, u32 flow_id);
1141  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1142  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1143  *	Return the filter ID on success, or a negative error code.
1144  *
1145  *	Slave management functions (for bridge, bonding, etc).
1146  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1147  *	Called to make another netdev an underling.
1148  *
1149  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1150  *	Called to release previously enslaved netdev.
1151  *
1152  *      Feature/offload setting functions.
1153  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1154  *		netdev_features_t features);
1155  *	Adjusts the requested feature flags according to device-specific
1156  *	constraints, and returns the resulting flags. Must not modify
1157  *	the device state.
1158  *
1159  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1160  *	Called to update device configuration to new features. Passed
1161  *	feature set might be less than what was returned by ndo_fix_features()).
1162  *	Must return >0 or -errno if it changed dev->features itself.
1163  *
1164  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1165  *		      struct net_device *dev,
1166  *		      const unsigned char *addr, u16 vid, u16 flags)
1167  *	Adds an FDB entry to dev for addr.
1168  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid)
1171  *	Deletes the FDB entry from dev coresponding to addr.
1172  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1173  *		       struct net_device *dev, struct net_device *filter_dev,
1174  *		       int *idx)
1175  *	Used to add FDB entries to dump requests. Implementers should add
1176  *	entries to skb and update idx with the number of entries.
1177  *
1178  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1179  *			     u16 flags)
1180  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1181  *			     struct net_device *dev, u32 filter_mask,
1182  *			     int nlflags)
1183  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags);
1185  *
1186  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1187  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1188  *	which do not represent real hardware may define this to allow their
1189  *	userspace components to manage their virtual carrier state. Devices
1190  *	that determine carrier state from physical hardware properties (eg
1191  *	network cables) or protocol-dependent mechanisms (eg
1192  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1193  *
1194  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1195  *			       struct netdev_phys_item_id *ppid);
1196  *	Called to get ID of physical port of this device. If driver does
1197  *	not implement this, it is assumed that the hw is not able to have
1198  *	multiple net devices on single physical port.
1199  *
1200  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1201  *			      struct udp_tunnel_info *ti);
1202  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1203  *	address family that a UDP tunnel is listnening to. It is called only
1204  *	when a new port starts listening. The operation is protected by the
1205  *	RTNL.
1206  *
1207  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1208  *			      struct udp_tunnel_info *ti);
1209  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1210  *	address family that the UDP tunnel is not listening to anymore. The
1211  *	operation is protected by the RTNL.
1212  *
1213  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1214  *				 struct net_device *dev)
1215  *	Called by upper layer devices to accelerate switching or other
1216  *	station functionality into hardware. 'pdev is the lowerdev
1217  *	to use for the offload and 'dev' is the net device that will
1218  *	back the offload. Returns a pointer to the private structure
1219  *	the upper layer will maintain.
1220  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1221  *	Called by upper layer device to delete the station created
1222  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1223  *	the station and priv is the structure returned by the add
1224  *	operation.
1225  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1226  *			     int queue_index, u32 maxrate);
1227  *	Called when a user wants to set a max-rate limitation of specific
1228  *	TX queue.
1229  * int (*ndo_get_iflink)(const struct net_device *dev);
1230  *	Called to get the iflink value of this device.
1231  * void (*ndo_change_proto_down)(struct net_device *dev,
1232  *				 bool proto_down);
1233  *	This function is used to pass protocol port error state information
1234  *	to the switch driver. The switch driver can react to the proto_down
1235  *      by doing a phys down on the associated switch port.
1236  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1237  *	This function is used to get egress tunnel information for given skb.
1238  *	This is useful for retrieving outer tunnel header parameters while
1239  *	sampling packet.
1240  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1241  *	This function is used to specify the headroom that the skb must
1242  *	consider when allocation skb during packet reception. Setting
1243  *	appropriate rx headroom value allows avoiding skb head copy on
1244  *	forward. Setting a negative value resets the rx headroom to the
1245  *	default value.
1246  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1247  *	This function is used to set or query state related to XDP on the
1248  *	netdevice and manage BPF offload. See definition of
1249  *	enum bpf_netdev_command for details.
1250  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1251  *			u32 flags);
1252  *	This function is used to submit @n XDP packets for transmit on a
1253  *	netdevice. Returns number of frames successfully transmitted, frames
1254  *	that got dropped are freed/returned via xdp_return_frame().
1255  *	Returns negative number, means general error invoking ndo, meaning
1256  *	no frames were xmit'ed and core-caller will free all frames.
1257  */
1258 struct net_device_ops {
1259 	int			(*ndo_init)(struct net_device *dev);
1260 	void			(*ndo_uninit)(struct net_device *dev);
1261 	int			(*ndo_open)(struct net_device *dev);
1262 	int			(*ndo_stop)(struct net_device *dev);
1263 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1264 						  struct net_device *dev);
1265 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1266 						      struct net_device *dev,
1267 						      netdev_features_t features);
1268 	u16			(*ndo_select_queue)(struct net_device *dev,
1269 						    struct sk_buff *skb,
1270 						    struct net_device *sb_dev,
1271 						    select_queue_fallback_t fallback);
1272 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1273 						       int flags);
1274 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1275 	int			(*ndo_set_mac_address)(struct net_device *dev,
1276 						       void *addr);
1277 	int			(*ndo_validate_addr)(struct net_device *dev);
1278 	int			(*ndo_do_ioctl)(struct net_device *dev,
1279 					        struct ifreq *ifr, int cmd);
1280 	int			(*ndo_set_config)(struct net_device *dev,
1281 					          struct ifmap *map);
1282 	int			(*ndo_change_mtu)(struct net_device *dev,
1283 						  int new_mtu);
1284 	int			(*ndo_neigh_setup)(struct net_device *dev,
1285 						   struct neigh_parms *);
1286 	void			(*ndo_tx_timeout) (struct net_device *dev);
1287 
1288 	void			(*ndo_get_stats64)(struct net_device *dev,
1289 						   struct rtnl_link_stats64 *storage);
1290 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1291 	int			(*ndo_get_offload_stats)(int attr_id,
1292 							 const struct net_device *dev,
1293 							 void *attr_data);
1294 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1295 
1296 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1297 						       __be16 proto, u16 vid);
1298 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1299 						        __be16 proto, u16 vid);
1300 #ifdef CONFIG_NET_POLL_CONTROLLER
1301 	void                    (*ndo_poll_controller)(struct net_device *dev);
1302 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1303 						     struct netpoll_info *info);
1304 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1305 #endif
1306 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1307 						  int queue, u8 *mac);
1308 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1309 						   int queue, u16 vlan,
1310 						   u8 qos, __be16 proto);
1311 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1312 						   int vf, int min_tx_rate,
1313 						   int max_tx_rate);
1314 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1315 						       int vf, bool setting);
1316 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1317 						    int vf, bool setting);
1318 	int			(*ndo_get_vf_config)(struct net_device *dev,
1319 						     int vf,
1320 						     struct ifla_vf_info *ivf);
1321 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1322 							 int vf, int link_state);
1323 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1324 						    int vf,
1325 						    struct ifla_vf_stats
1326 						    *vf_stats);
1327 	int			(*ndo_set_vf_port)(struct net_device *dev,
1328 						   int vf,
1329 						   struct nlattr *port[]);
1330 	int			(*ndo_get_vf_port)(struct net_device *dev,
1331 						   int vf, struct sk_buff *skb);
1332 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1333 						   int vf, u64 guid,
1334 						   int guid_type);
1335 	int			(*ndo_set_vf_rss_query_en)(
1336 						   struct net_device *dev,
1337 						   int vf, bool setting);
1338 	int			(*ndo_setup_tc)(struct net_device *dev,
1339 						enum tc_setup_type type,
1340 						void *type_data);
1341 #if IS_ENABLED(CONFIG_FCOE)
1342 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1343 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1344 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1345 						      u16 xid,
1346 						      struct scatterlist *sgl,
1347 						      unsigned int sgc);
1348 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1349 						     u16 xid);
1350 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1351 						       u16 xid,
1352 						       struct scatterlist *sgl,
1353 						       unsigned int sgc);
1354 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1355 							struct netdev_fcoe_hbainfo *hbainfo);
1356 #endif
1357 
1358 #if IS_ENABLED(CONFIG_LIBFCOE)
1359 #define NETDEV_FCOE_WWNN 0
1360 #define NETDEV_FCOE_WWPN 1
1361 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1362 						    u64 *wwn, int type);
1363 #endif
1364 
1365 #ifdef CONFIG_RFS_ACCEL
1366 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1367 						     const struct sk_buff *skb,
1368 						     u16 rxq_index,
1369 						     u32 flow_id);
1370 #endif
1371 	int			(*ndo_add_slave)(struct net_device *dev,
1372 						 struct net_device *slave_dev,
1373 						 struct netlink_ext_ack *extack);
1374 	int			(*ndo_del_slave)(struct net_device *dev,
1375 						 struct net_device *slave_dev);
1376 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1377 						    netdev_features_t features);
1378 	int			(*ndo_set_features)(struct net_device *dev,
1379 						    netdev_features_t features);
1380 	int			(*ndo_neigh_construct)(struct net_device *dev,
1381 						       struct neighbour *n);
1382 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1383 						     struct neighbour *n);
1384 
1385 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1386 					       struct nlattr *tb[],
1387 					       struct net_device *dev,
1388 					       const unsigned char *addr,
1389 					       u16 vid,
1390 					       u16 flags);
1391 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1392 					       struct nlattr *tb[],
1393 					       struct net_device *dev,
1394 					       const unsigned char *addr,
1395 					       u16 vid);
1396 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1397 						struct netlink_callback *cb,
1398 						struct net_device *dev,
1399 						struct net_device *filter_dev,
1400 						int *idx);
1401 
1402 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1403 						      struct nlmsghdr *nlh,
1404 						      u16 flags);
1405 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1406 						      u32 pid, u32 seq,
1407 						      struct net_device *dev,
1408 						      u32 filter_mask,
1409 						      int nlflags);
1410 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1411 						      struct nlmsghdr *nlh,
1412 						      u16 flags);
1413 	int			(*ndo_change_carrier)(struct net_device *dev,
1414 						      bool new_carrier);
1415 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1416 							struct netdev_phys_item_id *ppid);
1417 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1418 							  char *name, size_t len);
1419 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1420 						      struct udp_tunnel_info *ti);
1421 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1422 						      struct udp_tunnel_info *ti);
1423 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1424 							struct net_device *dev);
1425 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1426 							void *priv);
1427 
1428 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1429 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1430 						      int queue_index,
1431 						      u32 maxrate);
1432 	int			(*ndo_get_iflink)(const struct net_device *dev);
1433 	int			(*ndo_change_proto_down)(struct net_device *dev,
1434 							 bool proto_down);
1435 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1436 						       struct sk_buff *skb);
1437 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1438 						       int needed_headroom);
1439 	int			(*ndo_bpf)(struct net_device *dev,
1440 					   struct netdev_bpf *bpf);
1441 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1442 						struct xdp_frame **xdp,
1443 						u32 flags);
1444 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1445 						      u32 queue_id);
1446 };
1447 
1448 /**
1449  * enum net_device_priv_flags - &struct net_device priv_flags
1450  *
1451  * These are the &struct net_device, they are only set internally
1452  * by drivers and used in the kernel. These flags are invisible to
1453  * userspace; this means that the order of these flags can change
1454  * during any kernel release.
1455  *
1456  * You should have a pretty good reason to be extending these flags.
1457  *
1458  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1459  * @IFF_EBRIDGE: Ethernet bridging device
1460  * @IFF_BONDING: bonding master or slave
1461  * @IFF_ISATAP: ISATAP interface (RFC4214)
1462  * @IFF_WAN_HDLC: WAN HDLC device
1463  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1464  *	release skb->dst
1465  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1466  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1467  * @IFF_MACVLAN_PORT: device used as macvlan port
1468  * @IFF_BRIDGE_PORT: device used as bridge port
1469  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1470  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1471  * @IFF_UNICAST_FLT: Supports unicast filtering
1472  * @IFF_TEAM_PORT: device used as team port
1473  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1474  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1475  *	change when it's running
1476  * @IFF_MACVLAN: Macvlan device
1477  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1478  *	underlying stacked devices
1479  * @IFF_L3MDEV_MASTER: device is an L3 master device
1480  * @IFF_NO_QUEUE: device can run without qdisc attached
1481  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1482  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1483  * @IFF_TEAM: device is a team device
1484  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1485  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1486  *	entity (i.e. the master device for bridged veth)
1487  * @IFF_MACSEC: device is a MACsec device
1488  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1489  * @IFF_FAILOVER: device is a failover master device
1490  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1491  */
1492 enum netdev_priv_flags {
1493 	IFF_802_1Q_VLAN			= 1<<0,
1494 	IFF_EBRIDGE			= 1<<1,
1495 	IFF_BONDING			= 1<<2,
1496 	IFF_ISATAP			= 1<<3,
1497 	IFF_WAN_HDLC			= 1<<4,
1498 	IFF_XMIT_DST_RELEASE		= 1<<5,
1499 	IFF_DONT_BRIDGE			= 1<<6,
1500 	IFF_DISABLE_NETPOLL		= 1<<7,
1501 	IFF_MACVLAN_PORT		= 1<<8,
1502 	IFF_BRIDGE_PORT			= 1<<9,
1503 	IFF_OVS_DATAPATH		= 1<<10,
1504 	IFF_TX_SKB_SHARING		= 1<<11,
1505 	IFF_UNICAST_FLT			= 1<<12,
1506 	IFF_TEAM_PORT			= 1<<13,
1507 	IFF_SUPP_NOFCS			= 1<<14,
1508 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1509 	IFF_MACVLAN			= 1<<16,
1510 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1511 	IFF_L3MDEV_MASTER		= 1<<18,
1512 	IFF_NO_QUEUE			= 1<<19,
1513 	IFF_OPENVSWITCH			= 1<<20,
1514 	IFF_L3MDEV_SLAVE		= 1<<21,
1515 	IFF_TEAM			= 1<<22,
1516 	IFF_RXFH_CONFIGURED		= 1<<23,
1517 	IFF_PHONY_HEADROOM		= 1<<24,
1518 	IFF_MACSEC			= 1<<25,
1519 	IFF_NO_RX_HANDLER		= 1<<26,
1520 	IFF_FAILOVER			= 1<<27,
1521 	IFF_FAILOVER_SLAVE		= 1<<28,
1522 };
1523 
1524 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1525 #define IFF_EBRIDGE			IFF_EBRIDGE
1526 #define IFF_BONDING			IFF_BONDING
1527 #define IFF_ISATAP			IFF_ISATAP
1528 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1529 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1530 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1531 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1532 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1533 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1534 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1535 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1536 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1537 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1538 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1539 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1540 #define IFF_MACVLAN			IFF_MACVLAN
1541 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1542 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1543 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1544 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1545 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1546 #define IFF_TEAM			IFF_TEAM
1547 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1548 #define IFF_MACSEC			IFF_MACSEC
1549 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1550 #define IFF_FAILOVER			IFF_FAILOVER
1551 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1552 
1553 /**
1554  *	struct net_device - The DEVICE structure.
1555  *
1556  *	Actually, this whole structure is a big mistake.  It mixes I/O
1557  *	data with strictly "high-level" data, and it has to know about
1558  *	almost every data structure used in the INET module.
1559  *
1560  *	@name:	This is the first field of the "visible" part of this structure
1561  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1562  *		of the interface.
1563  *
1564  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1565  *	@ifalias:	SNMP alias
1566  *	@mem_end:	Shared memory end
1567  *	@mem_start:	Shared memory start
1568  *	@base_addr:	Device I/O address
1569  *	@irq:		Device IRQ number
1570  *
1571  *	@state:		Generic network queuing layer state, see netdev_state_t
1572  *	@dev_list:	The global list of network devices
1573  *	@napi_list:	List entry used for polling NAPI devices
1574  *	@unreg_list:	List entry  when we are unregistering the
1575  *			device; see the function unregister_netdev
1576  *	@close_list:	List entry used when we are closing the device
1577  *	@ptype_all:     Device-specific packet handlers for all protocols
1578  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1579  *
1580  *	@adj_list:	Directly linked devices, like slaves for bonding
1581  *	@features:	Currently active device features
1582  *	@hw_features:	User-changeable features
1583  *
1584  *	@wanted_features:	User-requested features
1585  *	@vlan_features:		Mask of features inheritable by VLAN devices
1586  *
1587  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1588  *				This field indicates what encapsulation
1589  *				offloads the hardware is capable of doing,
1590  *				and drivers will need to set them appropriately.
1591  *
1592  *	@mpls_features:	Mask of features inheritable by MPLS
1593  *
1594  *	@ifindex:	interface index
1595  *	@group:		The group the device belongs to
1596  *
1597  *	@stats:		Statistics struct, which was left as a legacy, use
1598  *			rtnl_link_stats64 instead
1599  *
1600  *	@rx_dropped:	Dropped packets by core network,
1601  *			do not use this in drivers
1602  *	@tx_dropped:	Dropped packets by core network,
1603  *			do not use this in drivers
1604  *	@rx_nohandler:	nohandler dropped packets by core network on
1605  *			inactive devices, do not use this in drivers
1606  *	@carrier_up_count:	Number of times the carrier has been up
1607  *	@carrier_down_count:	Number of times the carrier has been down
1608  *
1609  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1610  *				instead of ioctl,
1611  *				see <net/iw_handler.h> for details.
1612  *	@wireless_data:	Instance data managed by the core of wireless extensions
1613  *
1614  *	@netdev_ops:	Includes several pointers to callbacks,
1615  *			if one wants to override the ndo_*() functions
1616  *	@ethtool_ops:	Management operations
1617  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1618  *			discovery handling. Necessary for e.g. 6LoWPAN.
1619  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1620  *			of Layer 2 headers.
1621  *
1622  *	@flags:		Interface flags (a la BSD)
1623  *	@priv_flags:	Like 'flags' but invisible to userspace,
1624  *			see if.h for the definitions
1625  *	@gflags:	Global flags ( kept as legacy )
1626  *	@padded:	How much padding added by alloc_netdev()
1627  *	@operstate:	RFC2863 operstate
1628  *	@link_mode:	Mapping policy to operstate
1629  *	@if_port:	Selectable AUI, TP, ...
1630  *	@dma:		DMA channel
1631  *	@mtu:		Interface MTU value
1632  *	@min_mtu:	Interface Minimum MTU value
1633  *	@max_mtu:	Interface Maximum MTU value
1634  *	@type:		Interface hardware type
1635  *	@hard_header_len: Maximum hardware header length.
1636  *	@min_header_len:  Minimum hardware header length
1637  *
1638  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1639  *			  cases can this be guaranteed
1640  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1641  *			  cases can this be guaranteed. Some cases also use
1642  *			  LL_MAX_HEADER instead to allocate the skb
1643  *
1644  *	interface address info:
1645  *
1646  * 	@perm_addr:		Permanent hw address
1647  * 	@addr_assign_type:	Hw address assignment type
1648  * 	@addr_len:		Hardware address length
1649  *	@neigh_priv_len:	Used in neigh_alloc()
1650  * 	@dev_id:		Used to differentiate devices that share
1651  * 				the same link layer address
1652  * 	@dev_port:		Used to differentiate devices that share
1653  * 				the same function
1654  *	@addr_list_lock:	XXX: need comments on this one
1655  *	@uc_promisc:		Counter that indicates promiscuous mode
1656  *				has been enabled due to the need to listen to
1657  *				additional unicast addresses in a device that
1658  *				does not implement ndo_set_rx_mode()
1659  *	@uc:			unicast mac addresses
1660  *	@mc:			multicast mac addresses
1661  *	@dev_addrs:		list of device hw addresses
1662  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1663  *	@promiscuity:		Number of times the NIC is told to work in
1664  *				promiscuous mode; if it becomes 0 the NIC will
1665  *				exit promiscuous mode
1666  *	@allmulti:		Counter, enables or disables allmulticast mode
1667  *
1668  *	@vlan_info:	VLAN info
1669  *	@dsa_ptr:	dsa specific data
1670  *	@tipc_ptr:	TIPC specific data
1671  *	@atalk_ptr:	AppleTalk link
1672  *	@ip_ptr:	IPv4 specific data
1673  *	@dn_ptr:	DECnet specific data
1674  *	@ip6_ptr:	IPv6 specific data
1675  *	@ax25_ptr:	AX.25 specific data
1676  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1677  *
1678  *	@dev_addr:	Hw address (before bcast,
1679  *			because most packets are unicast)
1680  *
1681  *	@_rx:			Array of RX queues
1682  *	@num_rx_queues:		Number of RX queues
1683  *				allocated at register_netdev() time
1684  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1685  *
1686  *	@rx_handler:		handler for received packets
1687  *	@rx_handler_data: 	XXX: need comments on this one
1688  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1689  *				ingress processing
1690  *	@ingress_queue:		XXX: need comments on this one
1691  *	@broadcast:		hw bcast address
1692  *
1693  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1694  *			indexed by RX queue number. Assigned by driver.
1695  *			This must only be set if the ndo_rx_flow_steer
1696  *			operation is defined
1697  *	@index_hlist:		Device index hash chain
1698  *
1699  *	@_tx:			Array of TX queues
1700  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1701  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1702  *	@qdisc:			Root qdisc from userspace point of view
1703  *	@tx_queue_len:		Max frames per queue allowed
1704  *	@tx_global_lock: 	XXX: need comments on this one
1705  *
1706  *	@xps_maps:	XXX: need comments on this one
1707  *	@miniq_egress:		clsact qdisc specific data for
1708  *				egress processing
1709  *	@watchdog_timeo:	Represents the timeout that is used by
1710  *				the watchdog (see dev_watchdog())
1711  *	@watchdog_timer:	List of timers
1712  *
1713  *	@pcpu_refcnt:		Number of references to this device
1714  *	@todo_list:		Delayed register/unregister
1715  *	@link_watch_list:	XXX: need comments on this one
1716  *
1717  *	@reg_state:		Register/unregister state machine
1718  *	@dismantle:		Device is going to be freed
1719  *	@rtnl_link_state:	This enum represents the phases of creating
1720  *				a new link
1721  *
1722  *	@needs_free_netdev:	Should unregister perform free_netdev?
1723  *	@priv_destructor:	Called from unregister
1724  *	@npinfo:		XXX: need comments on this one
1725  * 	@nd_net:		Network namespace this network device is inside
1726  *
1727  * 	@ml_priv:	Mid-layer private
1728  * 	@lstats:	Loopback statistics
1729  * 	@tstats:	Tunnel statistics
1730  * 	@dstats:	Dummy statistics
1731  * 	@vstats:	Virtual ethernet statistics
1732  *
1733  *	@garp_port:	GARP
1734  *	@mrp_port:	MRP
1735  *
1736  *	@dev:		Class/net/name entry
1737  *	@sysfs_groups:	Space for optional device, statistics and wireless
1738  *			sysfs groups
1739  *
1740  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1741  *	@rtnl_link_ops:	Rtnl_link_ops
1742  *
1743  *	@gso_max_size:	Maximum size of generic segmentation offload
1744  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1745  *			NIC for GSO
1746  *
1747  *	@dcbnl_ops:	Data Center Bridging netlink ops
1748  *	@num_tc:	Number of traffic classes in the net device
1749  *	@tc_to_txq:	XXX: need comments on this one
1750  *	@prio_tc_map:	XXX: need comments on this one
1751  *
1752  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1753  *
1754  *	@priomap:	XXX: need comments on this one
1755  *	@phydev:	Physical device may attach itself
1756  *			for hardware timestamping
1757  *	@sfp_bus:	attached &struct sfp_bus structure.
1758  *
1759  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1760  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1761  *
1762  *	@proto_down:	protocol port state information can be sent to the
1763  *			switch driver and used to set the phys state of the
1764  *			switch port.
1765  *
1766  *	@wol_enabled:	Wake-on-LAN is enabled
1767  *
1768  *	FIXME: cleanup struct net_device such that network protocol info
1769  *	moves out.
1770  */
1771 
1772 struct net_device {
1773 	char			name[IFNAMSIZ];
1774 	struct hlist_node	name_hlist;
1775 	struct dev_ifalias	__rcu *ifalias;
1776 	/*
1777 	 *	I/O specific fields
1778 	 *	FIXME: Merge these and struct ifmap into one
1779 	 */
1780 	unsigned long		mem_end;
1781 	unsigned long		mem_start;
1782 	unsigned long		base_addr;
1783 	int			irq;
1784 
1785 	/*
1786 	 *	Some hardware also needs these fields (state,dev_list,
1787 	 *	napi_list,unreg_list,close_list) but they are not
1788 	 *	part of the usual set specified in Space.c.
1789 	 */
1790 
1791 	unsigned long		state;
1792 
1793 	struct list_head	dev_list;
1794 	struct list_head	napi_list;
1795 	struct list_head	unreg_list;
1796 	struct list_head	close_list;
1797 	struct list_head	ptype_all;
1798 	struct list_head	ptype_specific;
1799 
1800 	struct {
1801 		struct list_head upper;
1802 		struct list_head lower;
1803 	} adj_list;
1804 
1805 	netdev_features_t	features;
1806 	netdev_features_t	hw_features;
1807 	netdev_features_t	wanted_features;
1808 	netdev_features_t	vlan_features;
1809 	netdev_features_t	hw_enc_features;
1810 	netdev_features_t	mpls_features;
1811 	netdev_features_t	gso_partial_features;
1812 
1813 	int			ifindex;
1814 	int			group;
1815 
1816 	struct net_device_stats	stats;
1817 
1818 	atomic_long_t		rx_dropped;
1819 	atomic_long_t		tx_dropped;
1820 	atomic_long_t		rx_nohandler;
1821 
1822 	/* Stats to monitor link on/off, flapping */
1823 	atomic_t		carrier_up_count;
1824 	atomic_t		carrier_down_count;
1825 
1826 #ifdef CONFIG_WIRELESS_EXT
1827 	const struct iw_handler_def *wireless_handlers;
1828 	struct iw_public_data	*wireless_data;
1829 #endif
1830 	const struct net_device_ops *netdev_ops;
1831 	const struct ethtool_ops *ethtool_ops;
1832 #ifdef CONFIG_NET_SWITCHDEV
1833 	const struct switchdev_ops *switchdev_ops;
1834 #endif
1835 #ifdef CONFIG_NET_L3_MASTER_DEV
1836 	const struct l3mdev_ops	*l3mdev_ops;
1837 #endif
1838 #if IS_ENABLED(CONFIG_IPV6)
1839 	const struct ndisc_ops *ndisc_ops;
1840 #endif
1841 
1842 #ifdef CONFIG_XFRM_OFFLOAD
1843 	const struct xfrmdev_ops *xfrmdev_ops;
1844 #endif
1845 
1846 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1847 	const struct tlsdev_ops *tlsdev_ops;
1848 #endif
1849 
1850 	const struct header_ops *header_ops;
1851 
1852 	unsigned int		flags;
1853 	unsigned int		priv_flags;
1854 
1855 	unsigned short		gflags;
1856 	unsigned short		padded;
1857 
1858 	unsigned char		operstate;
1859 	unsigned char		link_mode;
1860 
1861 	unsigned char		if_port;
1862 	unsigned char		dma;
1863 
1864 	unsigned int		mtu;
1865 	unsigned int		min_mtu;
1866 	unsigned int		max_mtu;
1867 	unsigned short		type;
1868 	unsigned short		hard_header_len;
1869 	unsigned char		min_header_len;
1870 
1871 	unsigned short		needed_headroom;
1872 	unsigned short		needed_tailroom;
1873 
1874 	/* Interface address info. */
1875 	unsigned char		perm_addr[MAX_ADDR_LEN];
1876 	unsigned char		addr_assign_type;
1877 	unsigned char		addr_len;
1878 	unsigned short		neigh_priv_len;
1879 	unsigned short          dev_id;
1880 	unsigned short          dev_port;
1881 	spinlock_t		addr_list_lock;
1882 	unsigned char		name_assign_type;
1883 	bool			uc_promisc;
1884 	struct netdev_hw_addr_list	uc;
1885 	struct netdev_hw_addr_list	mc;
1886 	struct netdev_hw_addr_list	dev_addrs;
1887 
1888 #ifdef CONFIG_SYSFS
1889 	struct kset		*queues_kset;
1890 #endif
1891 	unsigned int		promiscuity;
1892 	unsigned int		allmulti;
1893 
1894 
1895 	/* Protocol-specific pointers */
1896 
1897 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1898 	struct vlan_info __rcu	*vlan_info;
1899 #endif
1900 #if IS_ENABLED(CONFIG_NET_DSA)
1901 	struct dsa_port		*dsa_ptr;
1902 #endif
1903 #if IS_ENABLED(CONFIG_TIPC)
1904 	struct tipc_bearer __rcu *tipc_ptr;
1905 #endif
1906 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1907 	void 			*atalk_ptr;
1908 #endif
1909 	struct in_device __rcu	*ip_ptr;
1910 #if IS_ENABLED(CONFIG_DECNET)
1911 	struct dn_dev __rcu     *dn_ptr;
1912 #endif
1913 	struct inet6_dev __rcu	*ip6_ptr;
1914 #if IS_ENABLED(CONFIG_AX25)
1915 	void			*ax25_ptr;
1916 #endif
1917 	struct wireless_dev	*ieee80211_ptr;
1918 	struct wpan_dev		*ieee802154_ptr;
1919 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1920 	struct mpls_dev __rcu	*mpls_ptr;
1921 #endif
1922 
1923 /*
1924  * Cache lines mostly used on receive path (including eth_type_trans())
1925  */
1926 	/* Interface address info used in eth_type_trans() */
1927 	unsigned char		*dev_addr;
1928 
1929 	struct netdev_rx_queue	*_rx;
1930 	unsigned int		num_rx_queues;
1931 	unsigned int		real_num_rx_queues;
1932 
1933 	struct bpf_prog __rcu	*xdp_prog;
1934 	unsigned long		gro_flush_timeout;
1935 	rx_handler_func_t __rcu	*rx_handler;
1936 	void __rcu		*rx_handler_data;
1937 
1938 #ifdef CONFIG_NET_CLS_ACT
1939 	struct mini_Qdisc __rcu	*miniq_ingress;
1940 #endif
1941 	struct netdev_queue __rcu *ingress_queue;
1942 #ifdef CONFIG_NETFILTER_INGRESS
1943 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1944 #endif
1945 
1946 	unsigned char		broadcast[MAX_ADDR_LEN];
1947 #ifdef CONFIG_RFS_ACCEL
1948 	struct cpu_rmap		*rx_cpu_rmap;
1949 #endif
1950 	struct hlist_node	index_hlist;
1951 
1952 /*
1953  * Cache lines mostly used on transmit path
1954  */
1955 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1956 	unsigned int		num_tx_queues;
1957 	unsigned int		real_num_tx_queues;
1958 	struct Qdisc		*qdisc;
1959 #ifdef CONFIG_NET_SCHED
1960 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1961 #endif
1962 	unsigned int		tx_queue_len;
1963 	spinlock_t		tx_global_lock;
1964 	int			watchdog_timeo;
1965 
1966 #ifdef CONFIG_XPS
1967 	struct xps_dev_maps __rcu *xps_cpus_map;
1968 	struct xps_dev_maps __rcu *xps_rxqs_map;
1969 #endif
1970 #ifdef CONFIG_NET_CLS_ACT
1971 	struct mini_Qdisc __rcu	*miniq_egress;
1972 #endif
1973 
1974 	/* These may be needed for future network-power-down code. */
1975 	struct timer_list	watchdog_timer;
1976 
1977 	int __percpu		*pcpu_refcnt;
1978 	struct list_head	todo_list;
1979 
1980 	struct list_head	link_watch_list;
1981 
1982 	enum { NETREG_UNINITIALIZED=0,
1983 	       NETREG_REGISTERED,	/* completed register_netdevice */
1984 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1985 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1986 	       NETREG_RELEASED,		/* called free_netdev */
1987 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1988 	} reg_state:8;
1989 
1990 	bool dismantle;
1991 
1992 	enum {
1993 		RTNL_LINK_INITIALIZED,
1994 		RTNL_LINK_INITIALIZING,
1995 	} rtnl_link_state:16;
1996 
1997 	bool needs_free_netdev;
1998 	void (*priv_destructor)(struct net_device *dev);
1999 
2000 #ifdef CONFIG_NETPOLL
2001 	struct netpoll_info __rcu	*npinfo;
2002 #endif
2003 
2004 	possible_net_t			nd_net;
2005 
2006 	/* mid-layer private */
2007 	union {
2008 		void					*ml_priv;
2009 		struct pcpu_lstats __percpu		*lstats;
2010 		struct pcpu_sw_netstats __percpu	*tstats;
2011 		struct pcpu_dstats __percpu		*dstats;
2012 	};
2013 
2014 #if IS_ENABLED(CONFIG_GARP)
2015 	struct garp_port __rcu	*garp_port;
2016 #endif
2017 #if IS_ENABLED(CONFIG_MRP)
2018 	struct mrp_port __rcu	*mrp_port;
2019 #endif
2020 
2021 	struct device		dev;
2022 	const struct attribute_group *sysfs_groups[4];
2023 	const struct attribute_group *sysfs_rx_queue_group;
2024 
2025 	const struct rtnl_link_ops *rtnl_link_ops;
2026 
2027 	/* for setting kernel sock attribute on TCP connection setup */
2028 #define GSO_MAX_SIZE		65536
2029 	unsigned int		gso_max_size;
2030 #define GSO_MAX_SEGS		65535
2031 	u16			gso_max_segs;
2032 
2033 #ifdef CONFIG_DCB
2034 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2035 #endif
2036 	s16			num_tc;
2037 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2038 	u8			prio_tc_map[TC_BITMASK + 1];
2039 
2040 #if IS_ENABLED(CONFIG_FCOE)
2041 	unsigned int		fcoe_ddp_xid;
2042 #endif
2043 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2044 	struct netprio_map __rcu *priomap;
2045 #endif
2046 	struct phy_device	*phydev;
2047 	struct sfp_bus		*sfp_bus;
2048 	struct lock_class_key	*qdisc_tx_busylock;
2049 	struct lock_class_key	*qdisc_running_key;
2050 	bool			proto_down;
2051 	unsigned		wol_enabled:1;
2052 };
2053 #define to_net_dev(d) container_of(d, struct net_device, dev)
2054 
2055 static inline bool netif_elide_gro(const struct net_device *dev)
2056 {
2057 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2058 		return true;
2059 	return false;
2060 }
2061 
2062 #define	NETDEV_ALIGN		32
2063 
2064 static inline
2065 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2066 {
2067 	return dev->prio_tc_map[prio & TC_BITMASK];
2068 }
2069 
2070 static inline
2071 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2072 {
2073 	if (tc >= dev->num_tc)
2074 		return -EINVAL;
2075 
2076 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2077 	return 0;
2078 }
2079 
2080 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2081 void netdev_reset_tc(struct net_device *dev);
2082 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2083 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2084 
2085 static inline
2086 int netdev_get_num_tc(struct net_device *dev)
2087 {
2088 	return dev->num_tc;
2089 }
2090 
2091 void netdev_unbind_sb_channel(struct net_device *dev,
2092 			      struct net_device *sb_dev);
2093 int netdev_bind_sb_channel_queue(struct net_device *dev,
2094 				 struct net_device *sb_dev,
2095 				 u8 tc, u16 count, u16 offset);
2096 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2097 static inline int netdev_get_sb_channel(struct net_device *dev)
2098 {
2099 	return max_t(int, -dev->num_tc, 0);
2100 }
2101 
2102 static inline
2103 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2104 					 unsigned int index)
2105 {
2106 	return &dev->_tx[index];
2107 }
2108 
2109 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2110 						    const struct sk_buff *skb)
2111 {
2112 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2113 }
2114 
2115 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2116 					    void (*f)(struct net_device *,
2117 						      struct netdev_queue *,
2118 						      void *),
2119 					    void *arg)
2120 {
2121 	unsigned int i;
2122 
2123 	for (i = 0; i < dev->num_tx_queues; i++)
2124 		f(dev, &dev->_tx[i], arg);
2125 }
2126 
2127 #define netdev_lockdep_set_classes(dev)				\
2128 {								\
2129 	static struct lock_class_key qdisc_tx_busylock_key;	\
2130 	static struct lock_class_key qdisc_running_key;		\
2131 	static struct lock_class_key qdisc_xmit_lock_key;	\
2132 	static struct lock_class_key dev_addr_list_lock_key;	\
2133 	unsigned int i;						\
2134 								\
2135 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2136 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2137 	lockdep_set_class(&(dev)->addr_list_lock,		\
2138 			  &dev_addr_list_lock_key); 		\
2139 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2140 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2141 				  &qdisc_xmit_lock_key);	\
2142 }
2143 
2144 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2145 				    struct sk_buff *skb,
2146 				    struct net_device *sb_dev);
2147 
2148 /* returns the headroom that the master device needs to take in account
2149  * when forwarding to this dev
2150  */
2151 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2152 {
2153 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2154 }
2155 
2156 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2157 {
2158 	if (dev->netdev_ops->ndo_set_rx_headroom)
2159 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2160 }
2161 
2162 /* set the device rx headroom to the dev's default */
2163 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2164 {
2165 	netdev_set_rx_headroom(dev, -1);
2166 }
2167 
2168 /*
2169  * Net namespace inlines
2170  */
2171 static inline
2172 struct net *dev_net(const struct net_device *dev)
2173 {
2174 	return read_pnet(&dev->nd_net);
2175 }
2176 
2177 static inline
2178 void dev_net_set(struct net_device *dev, struct net *net)
2179 {
2180 	write_pnet(&dev->nd_net, net);
2181 }
2182 
2183 /**
2184  *	netdev_priv - access network device private data
2185  *	@dev: network device
2186  *
2187  * Get network device private data
2188  */
2189 static inline void *netdev_priv(const struct net_device *dev)
2190 {
2191 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2192 }
2193 
2194 /* Set the sysfs physical device reference for the network logical device
2195  * if set prior to registration will cause a symlink during initialization.
2196  */
2197 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2198 
2199 /* Set the sysfs device type for the network logical device to allow
2200  * fine-grained identification of different network device types. For
2201  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2202  */
2203 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2204 
2205 /* Default NAPI poll() weight
2206  * Device drivers are strongly advised to not use bigger value
2207  */
2208 #define NAPI_POLL_WEIGHT 64
2209 
2210 /**
2211  *	netif_napi_add - initialize a NAPI context
2212  *	@dev:  network device
2213  *	@napi: NAPI context
2214  *	@poll: polling function
2215  *	@weight: default weight
2216  *
2217  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2218  * *any* of the other NAPI-related functions.
2219  */
2220 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2221 		    int (*poll)(struct napi_struct *, int), int weight);
2222 
2223 /**
2224  *	netif_tx_napi_add - initialize a NAPI context
2225  *	@dev:  network device
2226  *	@napi: NAPI context
2227  *	@poll: polling function
2228  *	@weight: default weight
2229  *
2230  * This variant of netif_napi_add() should be used from drivers using NAPI
2231  * to exclusively poll a TX queue.
2232  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2233  */
2234 static inline void netif_tx_napi_add(struct net_device *dev,
2235 				     struct napi_struct *napi,
2236 				     int (*poll)(struct napi_struct *, int),
2237 				     int weight)
2238 {
2239 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2240 	netif_napi_add(dev, napi, poll, weight);
2241 }
2242 
2243 /**
2244  *  netif_napi_del - remove a NAPI context
2245  *  @napi: NAPI context
2246  *
2247  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2248  */
2249 void netif_napi_del(struct napi_struct *napi);
2250 
2251 struct napi_gro_cb {
2252 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2253 	void	*frag0;
2254 
2255 	/* Length of frag0. */
2256 	unsigned int frag0_len;
2257 
2258 	/* This indicates where we are processing relative to skb->data. */
2259 	int	data_offset;
2260 
2261 	/* This is non-zero if the packet cannot be merged with the new skb. */
2262 	u16	flush;
2263 
2264 	/* Save the IP ID here and check when we get to the transport layer */
2265 	u16	flush_id;
2266 
2267 	/* Number of segments aggregated. */
2268 	u16	count;
2269 
2270 	/* Start offset for remote checksum offload */
2271 	u16	gro_remcsum_start;
2272 
2273 	/* jiffies when first packet was created/queued */
2274 	unsigned long age;
2275 
2276 	/* Used in ipv6_gro_receive() and foo-over-udp */
2277 	u16	proto;
2278 
2279 	/* This is non-zero if the packet may be of the same flow. */
2280 	u8	same_flow:1;
2281 
2282 	/* Used in tunnel GRO receive */
2283 	u8	encap_mark:1;
2284 
2285 	/* GRO checksum is valid */
2286 	u8	csum_valid:1;
2287 
2288 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2289 	u8	csum_cnt:3;
2290 
2291 	/* Free the skb? */
2292 	u8	free:2;
2293 #define NAPI_GRO_FREE		  1
2294 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2295 
2296 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2297 	u8	is_ipv6:1;
2298 
2299 	/* Used in GRE, set in fou/gue_gro_receive */
2300 	u8	is_fou:1;
2301 
2302 	/* Used to determine if flush_id can be ignored */
2303 	u8	is_atomic:1;
2304 
2305 	/* Number of gro_receive callbacks this packet already went through */
2306 	u8 recursion_counter:4;
2307 
2308 	/* 1 bit hole */
2309 
2310 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2311 	__wsum	csum;
2312 
2313 	/* used in skb_gro_receive() slow path */
2314 	struct sk_buff *last;
2315 };
2316 
2317 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2318 
2319 #define GRO_RECURSION_LIMIT 15
2320 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2321 {
2322 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2323 }
2324 
2325 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2326 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2327 					       struct list_head *head,
2328 					       struct sk_buff *skb)
2329 {
2330 	if (unlikely(gro_recursion_inc_test(skb))) {
2331 		NAPI_GRO_CB(skb)->flush |= 1;
2332 		return NULL;
2333 	}
2334 
2335 	return cb(head, skb);
2336 }
2337 
2338 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2339 					    struct sk_buff *);
2340 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2341 						  struct sock *sk,
2342 						  struct list_head *head,
2343 						  struct sk_buff *skb)
2344 {
2345 	if (unlikely(gro_recursion_inc_test(skb))) {
2346 		NAPI_GRO_CB(skb)->flush |= 1;
2347 		return NULL;
2348 	}
2349 
2350 	return cb(sk, head, skb);
2351 }
2352 
2353 struct packet_type {
2354 	__be16			type;	/* This is really htons(ether_type). */
2355 	bool			ignore_outgoing;
2356 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2357 	int			(*func) (struct sk_buff *,
2358 					 struct net_device *,
2359 					 struct packet_type *,
2360 					 struct net_device *);
2361 	void			(*list_func) (struct list_head *,
2362 					      struct packet_type *,
2363 					      struct net_device *);
2364 	bool			(*id_match)(struct packet_type *ptype,
2365 					    struct sock *sk);
2366 	void			*af_packet_priv;
2367 	struct list_head	list;
2368 };
2369 
2370 struct offload_callbacks {
2371 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2372 						netdev_features_t features);
2373 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2374 						struct sk_buff *skb);
2375 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2376 };
2377 
2378 struct packet_offload {
2379 	__be16			 type;	/* This is really htons(ether_type). */
2380 	u16			 priority;
2381 	struct offload_callbacks callbacks;
2382 	struct list_head	 list;
2383 };
2384 
2385 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2386 struct pcpu_sw_netstats {
2387 	u64     rx_packets;
2388 	u64     rx_bytes;
2389 	u64     tx_packets;
2390 	u64     tx_bytes;
2391 	struct u64_stats_sync   syncp;
2392 } __aligned(4 * sizeof(u64));
2393 
2394 struct pcpu_lstats {
2395 	u64 packets;
2396 	u64 bytes;
2397 	struct u64_stats_sync syncp;
2398 } __aligned(2 * sizeof(u64));
2399 
2400 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2401 ({									\
2402 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2403 	if (pcpu_stats)	{						\
2404 		int __cpu;						\
2405 		for_each_possible_cpu(__cpu) {				\
2406 			typeof(type) *stat;				\
2407 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2408 			u64_stats_init(&stat->syncp);			\
2409 		}							\
2410 	}								\
2411 	pcpu_stats;							\
2412 })
2413 
2414 #define netdev_alloc_pcpu_stats(type)					\
2415 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2416 
2417 enum netdev_lag_tx_type {
2418 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2419 	NETDEV_LAG_TX_TYPE_RANDOM,
2420 	NETDEV_LAG_TX_TYPE_BROADCAST,
2421 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2422 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2423 	NETDEV_LAG_TX_TYPE_HASH,
2424 };
2425 
2426 enum netdev_lag_hash {
2427 	NETDEV_LAG_HASH_NONE,
2428 	NETDEV_LAG_HASH_L2,
2429 	NETDEV_LAG_HASH_L34,
2430 	NETDEV_LAG_HASH_L23,
2431 	NETDEV_LAG_HASH_E23,
2432 	NETDEV_LAG_HASH_E34,
2433 	NETDEV_LAG_HASH_UNKNOWN,
2434 };
2435 
2436 struct netdev_lag_upper_info {
2437 	enum netdev_lag_tx_type tx_type;
2438 	enum netdev_lag_hash hash_type;
2439 };
2440 
2441 struct netdev_lag_lower_state_info {
2442 	u8 link_up : 1,
2443 	   tx_enabled : 1;
2444 };
2445 
2446 #include <linux/notifier.h>
2447 
2448 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2449  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2450  * adding new types.
2451  */
2452 enum netdev_cmd {
2453 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2454 	NETDEV_DOWN,
2455 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2456 				   detected a hardware crash and restarted
2457 				   - we can use this eg to kick tcp sessions
2458 				   once done */
2459 	NETDEV_CHANGE,		/* Notify device state change */
2460 	NETDEV_REGISTER,
2461 	NETDEV_UNREGISTER,
2462 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2463 	NETDEV_CHANGEADDR,
2464 	NETDEV_GOING_DOWN,
2465 	NETDEV_CHANGENAME,
2466 	NETDEV_FEAT_CHANGE,
2467 	NETDEV_BONDING_FAILOVER,
2468 	NETDEV_PRE_UP,
2469 	NETDEV_PRE_TYPE_CHANGE,
2470 	NETDEV_POST_TYPE_CHANGE,
2471 	NETDEV_POST_INIT,
2472 	NETDEV_RELEASE,
2473 	NETDEV_NOTIFY_PEERS,
2474 	NETDEV_JOIN,
2475 	NETDEV_CHANGEUPPER,
2476 	NETDEV_RESEND_IGMP,
2477 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2478 	NETDEV_CHANGEINFODATA,
2479 	NETDEV_BONDING_INFO,
2480 	NETDEV_PRECHANGEUPPER,
2481 	NETDEV_CHANGELOWERSTATE,
2482 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2483 	NETDEV_UDP_TUNNEL_DROP_INFO,
2484 	NETDEV_CHANGE_TX_QUEUE_LEN,
2485 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2486 	NETDEV_CVLAN_FILTER_DROP_INFO,
2487 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2488 	NETDEV_SVLAN_FILTER_DROP_INFO,
2489 };
2490 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2491 
2492 int register_netdevice_notifier(struct notifier_block *nb);
2493 int unregister_netdevice_notifier(struct notifier_block *nb);
2494 
2495 struct netdev_notifier_info {
2496 	struct net_device	*dev;
2497 	struct netlink_ext_ack	*extack;
2498 };
2499 
2500 struct netdev_notifier_info_ext {
2501 	struct netdev_notifier_info info; /* must be first */
2502 	union {
2503 		u32 mtu;
2504 	} ext;
2505 };
2506 
2507 struct netdev_notifier_change_info {
2508 	struct netdev_notifier_info info; /* must be first */
2509 	unsigned int flags_changed;
2510 };
2511 
2512 struct netdev_notifier_changeupper_info {
2513 	struct netdev_notifier_info info; /* must be first */
2514 	struct net_device *upper_dev; /* new upper dev */
2515 	bool master; /* is upper dev master */
2516 	bool linking; /* is the notification for link or unlink */
2517 	void *upper_info; /* upper dev info */
2518 };
2519 
2520 struct netdev_notifier_changelowerstate_info {
2521 	struct netdev_notifier_info info; /* must be first */
2522 	void *lower_state_info; /* is lower dev state */
2523 };
2524 
2525 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2526 					     struct net_device *dev)
2527 {
2528 	info->dev = dev;
2529 	info->extack = NULL;
2530 }
2531 
2532 static inline struct net_device *
2533 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2534 {
2535 	return info->dev;
2536 }
2537 
2538 static inline struct netlink_ext_ack *
2539 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2540 {
2541 	return info->extack;
2542 }
2543 
2544 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2545 
2546 
2547 extern rwlock_t				dev_base_lock;		/* Device list lock */
2548 
2549 #define for_each_netdev(net, d)		\
2550 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2551 #define for_each_netdev_reverse(net, d)	\
2552 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2553 #define for_each_netdev_rcu(net, d)		\
2554 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2555 #define for_each_netdev_safe(net, d, n)	\
2556 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2557 #define for_each_netdev_continue(net, d)		\
2558 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2559 #define for_each_netdev_continue_rcu(net, d)		\
2560 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2561 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2562 		for_each_netdev_rcu(&init_net, slave)	\
2563 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2564 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2565 
2566 static inline struct net_device *next_net_device(struct net_device *dev)
2567 {
2568 	struct list_head *lh;
2569 	struct net *net;
2570 
2571 	net = dev_net(dev);
2572 	lh = dev->dev_list.next;
2573 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2574 }
2575 
2576 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2577 {
2578 	struct list_head *lh;
2579 	struct net *net;
2580 
2581 	net = dev_net(dev);
2582 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2583 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2584 }
2585 
2586 static inline struct net_device *first_net_device(struct net *net)
2587 {
2588 	return list_empty(&net->dev_base_head) ? NULL :
2589 		net_device_entry(net->dev_base_head.next);
2590 }
2591 
2592 static inline struct net_device *first_net_device_rcu(struct net *net)
2593 {
2594 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2595 
2596 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2597 }
2598 
2599 int netdev_boot_setup_check(struct net_device *dev);
2600 unsigned long netdev_boot_base(const char *prefix, int unit);
2601 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2602 				       const char *hwaddr);
2603 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2604 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2605 void dev_add_pack(struct packet_type *pt);
2606 void dev_remove_pack(struct packet_type *pt);
2607 void __dev_remove_pack(struct packet_type *pt);
2608 void dev_add_offload(struct packet_offload *po);
2609 void dev_remove_offload(struct packet_offload *po);
2610 
2611 int dev_get_iflink(const struct net_device *dev);
2612 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2613 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2614 				      unsigned short mask);
2615 struct net_device *dev_get_by_name(struct net *net, const char *name);
2616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2617 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2618 int dev_alloc_name(struct net_device *dev, const char *name);
2619 int dev_open(struct net_device *dev);
2620 void dev_close(struct net_device *dev);
2621 void dev_close_many(struct list_head *head, bool unlink);
2622 void dev_disable_lro(struct net_device *dev);
2623 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2624 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2625 		     struct net_device *sb_dev,
2626 		     select_queue_fallback_t fallback);
2627 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2628 		       struct net_device *sb_dev,
2629 		       select_queue_fallback_t fallback);
2630 int dev_queue_xmit(struct sk_buff *skb);
2631 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2632 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2633 int register_netdevice(struct net_device *dev);
2634 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2635 void unregister_netdevice_many(struct list_head *head);
2636 static inline void unregister_netdevice(struct net_device *dev)
2637 {
2638 	unregister_netdevice_queue(dev, NULL);
2639 }
2640 
2641 int netdev_refcnt_read(const struct net_device *dev);
2642 void free_netdev(struct net_device *dev);
2643 void netdev_freemem(struct net_device *dev);
2644 void synchronize_net(void);
2645 int init_dummy_netdev(struct net_device *dev);
2646 
2647 DECLARE_PER_CPU(int, xmit_recursion);
2648 #define XMIT_RECURSION_LIMIT	10
2649 
2650 static inline int dev_recursion_level(void)
2651 {
2652 	return this_cpu_read(xmit_recursion);
2653 }
2654 
2655 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2656 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2657 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2658 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2659 int netdev_get_name(struct net *net, char *name, int ifindex);
2660 int dev_restart(struct net_device *dev);
2661 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2662 
2663 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2664 {
2665 	return NAPI_GRO_CB(skb)->data_offset;
2666 }
2667 
2668 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2669 {
2670 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2671 }
2672 
2673 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2674 {
2675 	NAPI_GRO_CB(skb)->data_offset += len;
2676 }
2677 
2678 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2679 					unsigned int offset)
2680 {
2681 	return NAPI_GRO_CB(skb)->frag0 + offset;
2682 }
2683 
2684 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2685 {
2686 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2687 }
2688 
2689 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2690 {
2691 	NAPI_GRO_CB(skb)->frag0 = NULL;
2692 	NAPI_GRO_CB(skb)->frag0_len = 0;
2693 }
2694 
2695 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2696 					unsigned int offset)
2697 {
2698 	if (!pskb_may_pull(skb, hlen))
2699 		return NULL;
2700 
2701 	skb_gro_frag0_invalidate(skb);
2702 	return skb->data + offset;
2703 }
2704 
2705 static inline void *skb_gro_network_header(struct sk_buff *skb)
2706 {
2707 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2708 	       skb_network_offset(skb);
2709 }
2710 
2711 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2712 					const void *start, unsigned int len)
2713 {
2714 	if (NAPI_GRO_CB(skb)->csum_valid)
2715 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2716 						  csum_partial(start, len, 0));
2717 }
2718 
2719 /* GRO checksum functions. These are logical equivalents of the normal
2720  * checksum functions (in skbuff.h) except that they operate on the GRO
2721  * offsets and fields in sk_buff.
2722  */
2723 
2724 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2725 
2726 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2727 {
2728 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2729 }
2730 
2731 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2732 						      bool zero_okay,
2733 						      __sum16 check)
2734 {
2735 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2736 		skb_checksum_start_offset(skb) <
2737 		 skb_gro_offset(skb)) &&
2738 		!skb_at_gro_remcsum_start(skb) &&
2739 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2740 		(!zero_okay || check));
2741 }
2742 
2743 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2744 							   __wsum psum)
2745 {
2746 	if (NAPI_GRO_CB(skb)->csum_valid &&
2747 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2748 		return 0;
2749 
2750 	NAPI_GRO_CB(skb)->csum = psum;
2751 
2752 	return __skb_gro_checksum_complete(skb);
2753 }
2754 
2755 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2756 {
2757 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2758 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2759 		NAPI_GRO_CB(skb)->csum_cnt--;
2760 	} else {
2761 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2762 		 * verified a new top level checksum or an encapsulated one
2763 		 * during GRO. This saves work if we fallback to normal path.
2764 		 */
2765 		__skb_incr_checksum_unnecessary(skb);
2766 	}
2767 }
2768 
2769 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2770 				    compute_pseudo)			\
2771 ({									\
2772 	__sum16 __ret = 0;						\
2773 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2774 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2775 				compute_pseudo(skb, proto));		\
2776 	if (!__ret)							\
2777 		skb_gro_incr_csum_unnecessary(skb);			\
2778 	__ret;								\
2779 })
2780 
2781 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2782 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2783 
2784 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2785 					     compute_pseudo)		\
2786 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2787 
2788 #define skb_gro_checksum_simple_validate(skb)				\
2789 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2790 
2791 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2792 {
2793 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2794 		!NAPI_GRO_CB(skb)->csum_valid);
2795 }
2796 
2797 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2798 					      __sum16 check, __wsum pseudo)
2799 {
2800 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2801 	NAPI_GRO_CB(skb)->csum_valid = 1;
2802 }
2803 
2804 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2805 do {									\
2806 	if (__skb_gro_checksum_convert_check(skb))			\
2807 		__skb_gro_checksum_convert(skb, check,			\
2808 					   compute_pseudo(skb, proto));	\
2809 } while (0)
2810 
2811 struct gro_remcsum {
2812 	int offset;
2813 	__wsum delta;
2814 };
2815 
2816 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2817 {
2818 	grc->offset = 0;
2819 	grc->delta = 0;
2820 }
2821 
2822 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2823 					    unsigned int off, size_t hdrlen,
2824 					    int start, int offset,
2825 					    struct gro_remcsum *grc,
2826 					    bool nopartial)
2827 {
2828 	__wsum delta;
2829 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2830 
2831 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2832 
2833 	if (!nopartial) {
2834 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2835 		return ptr;
2836 	}
2837 
2838 	ptr = skb_gro_header_fast(skb, off);
2839 	if (skb_gro_header_hard(skb, off + plen)) {
2840 		ptr = skb_gro_header_slow(skb, off + plen, off);
2841 		if (!ptr)
2842 			return NULL;
2843 	}
2844 
2845 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2846 			       start, offset);
2847 
2848 	/* Adjust skb->csum since we changed the packet */
2849 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2850 
2851 	grc->offset = off + hdrlen + offset;
2852 	grc->delta = delta;
2853 
2854 	return ptr;
2855 }
2856 
2857 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2858 					   struct gro_remcsum *grc)
2859 {
2860 	void *ptr;
2861 	size_t plen = grc->offset + sizeof(u16);
2862 
2863 	if (!grc->delta)
2864 		return;
2865 
2866 	ptr = skb_gro_header_fast(skb, grc->offset);
2867 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2868 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2869 		if (!ptr)
2870 			return;
2871 	}
2872 
2873 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2874 }
2875 
2876 #ifdef CONFIG_XFRM_OFFLOAD
2877 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2878 {
2879 	if (PTR_ERR(pp) != -EINPROGRESS)
2880 		NAPI_GRO_CB(skb)->flush |= flush;
2881 }
2882 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2883 					       struct sk_buff *pp,
2884 					       int flush,
2885 					       struct gro_remcsum *grc)
2886 {
2887 	if (PTR_ERR(pp) != -EINPROGRESS) {
2888 		NAPI_GRO_CB(skb)->flush |= flush;
2889 		skb_gro_remcsum_cleanup(skb, grc);
2890 		skb->remcsum_offload = 0;
2891 	}
2892 }
2893 #else
2894 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2895 {
2896 	NAPI_GRO_CB(skb)->flush |= flush;
2897 }
2898 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2899 					       struct sk_buff *pp,
2900 					       int flush,
2901 					       struct gro_remcsum *grc)
2902 {
2903 	NAPI_GRO_CB(skb)->flush |= flush;
2904 	skb_gro_remcsum_cleanup(skb, grc);
2905 	skb->remcsum_offload = 0;
2906 }
2907 #endif
2908 
2909 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2910 				  unsigned short type,
2911 				  const void *daddr, const void *saddr,
2912 				  unsigned int len)
2913 {
2914 	if (!dev->header_ops || !dev->header_ops->create)
2915 		return 0;
2916 
2917 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2918 }
2919 
2920 static inline int dev_parse_header(const struct sk_buff *skb,
2921 				   unsigned char *haddr)
2922 {
2923 	const struct net_device *dev = skb->dev;
2924 
2925 	if (!dev->header_ops || !dev->header_ops->parse)
2926 		return 0;
2927 	return dev->header_ops->parse(skb, haddr);
2928 }
2929 
2930 /* ll_header must have at least hard_header_len allocated */
2931 static inline bool dev_validate_header(const struct net_device *dev,
2932 				       char *ll_header, int len)
2933 {
2934 	if (likely(len >= dev->hard_header_len))
2935 		return true;
2936 	if (len < dev->min_header_len)
2937 		return false;
2938 
2939 	if (capable(CAP_SYS_RAWIO)) {
2940 		memset(ll_header + len, 0, dev->hard_header_len - len);
2941 		return true;
2942 	}
2943 
2944 	if (dev->header_ops && dev->header_ops->validate)
2945 		return dev->header_ops->validate(ll_header, len);
2946 
2947 	return false;
2948 }
2949 
2950 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2951 			   int len, int size);
2952 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2953 static inline int unregister_gifconf(unsigned int family)
2954 {
2955 	return register_gifconf(family, NULL);
2956 }
2957 
2958 #ifdef CONFIG_NET_FLOW_LIMIT
2959 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2960 struct sd_flow_limit {
2961 	u64			count;
2962 	unsigned int		num_buckets;
2963 	unsigned int		history_head;
2964 	u16			history[FLOW_LIMIT_HISTORY];
2965 	u8			buckets[];
2966 };
2967 
2968 extern int netdev_flow_limit_table_len;
2969 #endif /* CONFIG_NET_FLOW_LIMIT */
2970 
2971 /*
2972  * Incoming packets are placed on per-CPU queues
2973  */
2974 struct softnet_data {
2975 	struct list_head	poll_list;
2976 	struct sk_buff_head	process_queue;
2977 
2978 	/* stats */
2979 	unsigned int		processed;
2980 	unsigned int		time_squeeze;
2981 	unsigned int		received_rps;
2982 #ifdef CONFIG_RPS
2983 	struct softnet_data	*rps_ipi_list;
2984 #endif
2985 #ifdef CONFIG_NET_FLOW_LIMIT
2986 	struct sd_flow_limit __rcu *flow_limit;
2987 #endif
2988 	struct Qdisc		*output_queue;
2989 	struct Qdisc		**output_queue_tailp;
2990 	struct sk_buff		*completion_queue;
2991 #ifdef CONFIG_XFRM_OFFLOAD
2992 	struct sk_buff_head	xfrm_backlog;
2993 #endif
2994 #ifdef CONFIG_RPS
2995 	/* input_queue_head should be written by cpu owning this struct,
2996 	 * and only read by other cpus. Worth using a cache line.
2997 	 */
2998 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2999 
3000 	/* Elements below can be accessed between CPUs for RPS/RFS */
3001 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3002 	struct softnet_data	*rps_ipi_next;
3003 	unsigned int		cpu;
3004 	unsigned int		input_queue_tail;
3005 #endif
3006 	unsigned int		dropped;
3007 	struct sk_buff_head	input_pkt_queue;
3008 	struct napi_struct	backlog;
3009 
3010 };
3011 
3012 static inline void input_queue_head_incr(struct softnet_data *sd)
3013 {
3014 #ifdef CONFIG_RPS
3015 	sd->input_queue_head++;
3016 #endif
3017 }
3018 
3019 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3020 					      unsigned int *qtail)
3021 {
3022 #ifdef CONFIG_RPS
3023 	*qtail = ++sd->input_queue_tail;
3024 #endif
3025 }
3026 
3027 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3028 
3029 void __netif_schedule(struct Qdisc *q);
3030 void netif_schedule_queue(struct netdev_queue *txq);
3031 
3032 static inline void netif_tx_schedule_all(struct net_device *dev)
3033 {
3034 	unsigned int i;
3035 
3036 	for (i = 0; i < dev->num_tx_queues; i++)
3037 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3038 }
3039 
3040 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3041 {
3042 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3043 }
3044 
3045 /**
3046  *	netif_start_queue - allow transmit
3047  *	@dev: network device
3048  *
3049  *	Allow upper layers to call the device hard_start_xmit routine.
3050  */
3051 static inline void netif_start_queue(struct net_device *dev)
3052 {
3053 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3054 }
3055 
3056 static inline void netif_tx_start_all_queues(struct net_device *dev)
3057 {
3058 	unsigned int i;
3059 
3060 	for (i = 0; i < dev->num_tx_queues; i++) {
3061 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3062 		netif_tx_start_queue(txq);
3063 	}
3064 }
3065 
3066 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3067 
3068 /**
3069  *	netif_wake_queue - restart transmit
3070  *	@dev: network device
3071  *
3072  *	Allow upper layers to call the device hard_start_xmit routine.
3073  *	Used for flow control when transmit resources are available.
3074  */
3075 static inline void netif_wake_queue(struct net_device *dev)
3076 {
3077 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3078 }
3079 
3080 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3081 {
3082 	unsigned int i;
3083 
3084 	for (i = 0; i < dev->num_tx_queues; i++) {
3085 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3086 		netif_tx_wake_queue(txq);
3087 	}
3088 }
3089 
3090 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3091 {
3092 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3093 }
3094 
3095 /**
3096  *	netif_stop_queue - stop transmitted packets
3097  *	@dev: network device
3098  *
3099  *	Stop upper layers calling the device hard_start_xmit routine.
3100  *	Used for flow control when transmit resources are unavailable.
3101  */
3102 static inline void netif_stop_queue(struct net_device *dev)
3103 {
3104 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3105 }
3106 
3107 void netif_tx_stop_all_queues(struct net_device *dev);
3108 
3109 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3110 {
3111 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3112 }
3113 
3114 /**
3115  *	netif_queue_stopped - test if transmit queue is flowblocked
3116  *	@dev: network device
3117  *
3118  *	Test if transmit queue on device is currently unable to send.
3119  */
3120 static inline bool netif_queue_stopped(const struct net_device *dev)
3121 {
3122 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3123 }
3124 
3125 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3126 {
3127 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3128 }
3129 
3130 static inline bool
3131 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3132 {
3133 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3134 }
3135 
3136 static inline bool
3137 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3138 {
3139 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3140 }
3141 
3142 /**
3143  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3144  *	@dev_queue: pointer to transmit queue
3145  *
3146  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3147  * to give appropriate hint to the CPU.
3148  */
3149 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3150 {
3151 #ifdef CONFIG_BQL
3152 	prefetchw(&dev_queue->dql.num_queued);
3153 #endif
3154 }
3155 
3156 /**
3157  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3158  *	@dev_queue: pointer to transmit queue
3159  *
3160  * BQL enabled drivers might use this helper in their TX completion path,
3161  * to give appropriate hint to the CPU.
3162  */
3163 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3164 {
3165 #ifdef CONFIG_BQL
3166 	prefetchw(&dev_queue->dql.limit);
3167 #endif
3168 }
3169 
3170 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3171 					unsigned int bytes)
3172 {
3173 #ifdef CONFIG_BQL
3174 	dql_queued(&dev_queue->dql, bytes);
3175 
3176 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3177 		return;
3178 
3179 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3180 
3181 	/*
3182 	 * The XOFF flag must be set before checking the dql_avail below,
3183 	 * because in netdev_tx_completed_queue we update the dql_completed
3184 	 * before checking the XOFF flag.
3185 	 */
3186 	smp_mb();
3187 
3188 	/* check again in case another CPU has just made room avail */
3189 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3190 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3191 #endif
3192 }
3193 
3194 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3195  * that they should not test BQL status themselves.
3196  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3197  * skb of a batch.
3198  * Returns true if the doorbell must be used to kick the NIC.
3199  */
3200 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3201 					  unsigned int bytes,
3202 					  bool xmit_more)
3203 {
3204 	if (xmit_more) {
3205 #ifdef CONFIG_BQL
3206 		dql_queued(&dev_queue->dql, bytes);
3207 #endif
3208 		return netif_tx_queue_stopped(dev_queue);
3209 	}
3210 	netdev_tx_sent_queue(dev_queue, bytes);
3211 	return true;
3212 }
3213 
3214 /**
3215  * 	netdev_sent_queue - report the number of bytes queued to hardware
3216  * 	@dev: network device
3217  * 	@bytes: number of bytes queued to the hardware device queue
3218  *
3219  * 	Report the number of bytes queued for sending/completion to the network
3220  * 	device hardware queue. @bytes should be a good approximation and should
3221  * 	exactly match netdev_completed_queue() @bytes
3222  */
3223 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3224 {
3225 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3226 }
3227 
3228 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3229 					     unsigned int pkts, unsigned int bytes)
3230 {
3231 #ifdef CONFIG_BQL
3232 	if (unlikely(!bytes))
3233 		return;
3234 
3235 	dql_completed(&dev_queue->dql, bytes);
3236 
3237 	/*
3238 	 * Without the memory barrier there is a small possiblity that
3239 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3240 	 * be stopped forever
3241 	 */
3242 	smp_mb();
3243 
3244 	if (dql_avail(&dev_queue->dql) < 0)
3245 		return;
3246 
3247 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3248 		netif_schedule_queue(dev_queue);
3249 #endif
3250 }
3251 
3252 /**
3253  * 	netdev_completed_queue - report bytes and packets completed by device
3254  * 	@dev: network device
3255  * 	@pkts: actual number of packets sent over the medium
3256  * 	@bytes: actual number of bytes sent over the medium
3257  *
3258  * 	Report the number of bytes and packets transmitted by the network device
3259  * 	hardware queue over the physical medium, @bytes must exactly match the
3260  * 	@bytes amount passed to netdev_sent_queue()
3261  */
3262 static inline void netdev_completed_queue(struct net_device *dev,
3263 					  unsigned int pkts, unsigned int bytes)
3264 {
3265 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3266 }
3267 
3268 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3269 {
3270 #ifdef CONFIG_BQL
3271 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3272 	dql_reset(&q->dql);
3273 #endif
3274 }
3275 
3276 /**
3277  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3278  * 	@dev_queue: network device
3279  *
3280  * 	Reset the bytes and packet count of a network device and clear the
3281  * 	software flow control OFF bit for this network device
3282  */
3283 static inline void netdev_reset_queue(struct net_device *dev_queue)
3284 {
3285 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3286 }
3287 
3288 /**
3289  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3290  * 	@dev: network device
3291  * 	@queue_index: given tx queue index
3292  *
3293  * 	Returns 0 if given tx queue index >= number of device tx queues,
3294  * 	otherwise returns the originally passed tx queue index.
3295  */
3296 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3297 {
3298 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3299 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3300 				     dev->name, queue_index,
3301 				     dev->real_num_tx_queues);
3302 		return 0;
3303 	}
3304 
3305 	return queue_index;
3306 }
3307 
3308 /**
3309  *	netif_running - test if up
3310  *	@dev: network device
3311  *
3312  *	Test if the device has been brought up.
3313  */
3314 static inline bool netif_running(const struct net_device *dev)
3315 {
3316 	return test_bit(__LINK_STATE_START, &dev->state);
3317 }
3318 
3319 /*
3320  * Routines to manage the subqueues on a device.  We only need start,
3321  * stop, and a check if it's stopped.  All other device management is
3322  * done at the overall netdevice level.
3323  * Also test the device if we're multiqueue.
3324  */
3325 
3326 /**
3327  *	netif_start_subqueue - allow sending packets on subqueue
3328  *	@dev: network device
3329  *	@queue_index: sub queue index
3330  *
3331  * Start individual transmit queue of a device with multiple transmit queues.
3332  */
3333 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3334 {
3335 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3336 
3337 	netif_tx_start_queue(txq);
3338 }
3339 
3340 /**
3341  *	netif_stop_subqueue - stop sending packets on subqueue
3342  *	@dev: network device
3343  *	@queue_index: sub queue index
3344  *
3345  * Stop individual transmit queue of a device with multiple transmit queues.
3346  */
3347 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3348 {
3349 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3350 	netif_tx_stop_queue(txq);
3351 }
3352 
3353 /**
3354  *	netif_subqueue_stopped - test status of subqueue
3355  *	@dev: network device
3356  *	@queue_index: sub queue index
3357  *
3358  * Check individual transmit queue of a device with multiple transmit queues.
3359  */
3360 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3361 					    u16 queue_index)
3362 {
3363 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3364 
3365 	return netif_tx_queue_stopped(txq);
3366 }
3367 
3368 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3369 					  struct sk_buff *skb)
3370 {
3371 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3372 }
3373 
3374 /**
3375  *	netif_wake_subqueue - allow sending packets on subqueue
3376  *	@dev: network device
3377  *	@queue_index: sub queue index
3378  *
3379  * Resume individual transmit queue of a device with multiple transmit queues.
3380  */
3381 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3382 {
3383 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3384 
3385 	netif_tx_wake_queue(txq);
3386 }
3387 
3388 #ifdef CONFIG_XPS
3389 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3390 			u16 index);
3391 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3392 			  u16 index, bool is_rxqs_map);
3393 
3394 /**
3395  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3396  *	@j: CPU/Rx queue index
3397  *	@mask: bitmask of all cpus/rx queues
3398  *	@nr_bits: number of bits in the bitmask
3399  *
3400  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3401  */
3402 static inline bool netif_attr_test_mask(unsigned long j,
3403 					const unsigned long *mask,
3404 					unsigned int nr_bits)
3405 {
3406 	cpu_max_bits_warn(j, nr_bits);
3407 	return test_bit(j, mask);
3408 }
3409 
3410 /**
3411  *	netif_attr_test_online - Test for online CPU/Rx queue
3412  *	@j: CPU/Rx queue index
3413  *	@online_mask: bitmask for CPUs/Rx queues that are online
3414  *	@nr_bits: number of bits in the bitmask
3415  *
3416  * Returns true if a CPU/Rx queue is online.
3417  */
3418 static inline bool netif_attr_test_online(unsigned long j,
3419 					  const unsigned long *online_mask,
3420 					  unsigned int nr_bits)
3421 {
3422 	cpu_max_bits_warn(j, nr_bits);
3423 
3424 	if (online_mask)
3425 		return test_bit(j, online_mask);
3426 
3427 	return (j < nr_bits);
3428 }
3429 
3430 /**
3431  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3432  *	@n: CPU/Rx queue index
3433  *	@srcp: the cpumask/Rx queue mask pointer
3434  *	@nr_bits: number of bits in the bitmask
3435  *
3436  * Returns >= nr_bits if no further CPUs/Rx queues set.
3437  */
3438 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3439 					       unsigned int nr_bits)
3440 {
3441 	/* -1 is a legal arg here. */
3442 	if (n != -1)
3443 		cpu_max_bits_warn(n, nr_bits);
3444 
3445 	if (srcp)
3446 		return find_next_bit(srcp, nr_bits, n + 1);
3447 
3448 	return n + 1;
3449 }
3450 
3451 /**
3452  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3453  *	@n: CPU/Rx queue index
3454  *	@src1p: the first CPUs/Rx queues mask pointer
3455  *	@src2p: the second CPUs/Rx queues mask pointer
3456  *	@nr_bits: number of bits in the bitmask
3457  *
3458  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3459  */
3460 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3461 					  const unsigned long *src2p,
3462 					  unsigned int nr_bits)
3463 {
3464 	/* -1 is a legal arg here. */
3465 	if (n != -1)
3466 		cpu_max_bits_warn(n, nr_bits);
3467 
3468 	if (src1p && src2p)
3469 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3470 	else if (src1p)
3471 		return find_next_bit(src1p, nr_bits, n + 1);
3472 	else if (src2p)
3473 		return find_next_bit(src2p, nr_bits, n + 1);
3474 
3475 	return n + 1;
3476 }
3477 #else
3478 static inline int netif_set_xps_queue(struct net_device *dev,
3479 				      const struct cpumask *mask,
3480 				      u16 index)
3481 {
3482 	return 0;
3483 }
3484 
3485 static inline int __netif_set_xps_queue(struct net_device *dev,
3486 					const unsigned long *mask,
3487 					u16 index, bool is_rxqs_map)
3488 {
3489 	return 0;
3490 }
3491 #endif
3492 
3493 /**
3494  *	netif_is_multiqueue - test if device has multiple transmit queues
3495  *	@dev: network device
3496  *
3497  * Check if device has multiple transmit queues
3498  */
3499 static inline bool netif_is_multiqueue(const struct net_device *dev)
3500 {
3501 	return dev->num_tx_queues > 1;
3502 }
3503 
3504 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3505 
3506 #ifdef CONFIG_SYSFS
3507 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3508 #else
3509 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3510 						unsigned int rxqs)
3511 {
3512 	dev->real_num_rx_queues = rxqs;
3513 	return 0;
3514 }
3515 #endif
3516 
3517 static inline struct netdev_rx_queue *
3518 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3519 {
3520 	return dev->_rx + rxq;
3521 }
3522 
3523 #ifdef CONFIG_SYSFS
3524 static inline unsigned int get_netdev_rx_queue_index(
3525 		struct netdev_rx_queue *queue)
3526 {
3527 	struct net_device *dev = queue->dev;
3528 	int index = queue - dev->_rx;
3529 
3530 	BUG_ON(index >= dev->num_rx_queues);
3531 	return index;
3532 }
3533 #endif
3534 
3535 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3536 int netif_get_num_default_rss_queues(void);
3537 
3538 enum skb_free_reason {
3539 	SKB_REASON_CONSUMED,
3540 	SKB_REASON_DROPPED,
3541 };
3542 
3543 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3544 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3545 
3546 /*
3547  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3548  * interrupt context or with hardware interrupts being disabled.
3549  * (in_irq() || irqs_disabled())
3550  *
3551  * We provide four helpers that can be used in following contexts :
3552  *
3553  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3554  *  replacing kfree_skb(skb)
3555  *
3556  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3557  *  Typically used in place of consume_skb(skb) in TX completion path
3558  *
3559  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3560  *  replacing kfree_skb(skb)
3561  *
3562  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3563  *  and consumed a packet. Used in place of consume_skb(skb)
3564  */
3565 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3566 {
3567 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3568 }
3569 
3570 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3571 {
3572 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3573 }
3574 
3575 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3576 {
3577 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3578 }
3579 
3580 static inline void dev_consume_skb_any(struct sk_buff *skb)
3581 {
3582 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3583 }
3584 
3585 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3586 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3587 int netif_rx(struct sk_buff *skb);
3588 int netif_rx_ni(struct sk_buff *skb);
3589 int netif_receive_skb(struct sk_buff *skb);
3590 int netif_receive_skb_core(struct sk_buff *skb);
3591 void netif_receive_skb_list(struct list_head *head);
3592 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3593 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3594 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3595 gro_result_t napi_gro_frags(struct napi_struct *napi);
3596 struct packet_offload *gro_find_receive_by_type(__be16 type);
3597 struct packet_offload *gro_find_complete_by_type(__be16 type);
3598 
3599 static inline void napi_free_frags(struct napi_struct *napi)
3600 {
3601 	kfree_skb(napi->skb);
3602 	napi->skb = NULL;
3603 }
3604 
3605 bool netdev_is_rx_handler_busy(struct net_device *dev);
3606 int netdev_rx_handler_register(struct net_device *dev,
3607 			       rx_handler_func_t *rx_handler,
3608 			       void *rx_handler_data);
3609 void netdev_rx_handler_unregister(struct net_device *dev);
3610 
3611 bool dev_valid_name(const char *name);
3612 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3613 		bool *need_copyout);
3614 int dev_ifconf(struct net *net, struct ifconf *, int);
3615 int dev_ethtool(struct net *net, struct ifreq *);
3616 unsigned int dev_get_flags(const struct net_device *);
3617 int __dev_change_flags(struct net_device *, unsigned int flags);
3618 int dev_change_flags(struct net_device *, unsigned int);
3619 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3620 			unsigned int gchanges);
3621 int dev_change_name(struct net_device *, const char *);
3622 int dev_set_alias(struct net_device *, const char *, size_t);
3623 int dev_get_alias(const struct net_device *, char *, size_t);
3624 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3625 int __dev_set_mtu(struct net_device *, int);
3626 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3627 		    struct netlink_ext_ack *extack);
3628 int dev_set_mtu(struct net_device *, int);
3629 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3630 void dev_set_group(struct net_device *, int);
3631 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3632 int dev_change_carrier(struct net_device *, bool new_carrier);
3633 int dev_get_phys_port_id(struct net_device *dev,
3634 			 struct netdev_phys_item_id *ppid);
3635 int dev_get_phys_port_name(struct net_device *dev,
3636 			   char *name, size_t len);
3637 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3638 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3639 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3640 				    struct netdev_queue *txq, int *ret);
3641 
3642 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3643 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3644 		      int fd, u32 flags);
3645 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3646 		    enum bpf_netdev_command cmd);
3647 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3648 
3649 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3650 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3651 bool is_skb_forwardable(const struct net_device *dev,
3652 			const struct sk_buff *skb);
3653 
3654 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3655 					       struct sk_buff *skb)
3656 {
3657 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3658 	    unlikely(!is_skb_forwardable(dev, skb))) {
3659 		atomic_long_inc(&dev->rx_dropped);
3660 		kfree_skb(skb);
3661 		return NET_RX_DROP;
3662 	}
3663 
3664 	skb_scrub_packet(skb, true);
3665 	skb->priority = 0;
3666 	return 0;
3667 }
3668 
3669 bool dev_nit_active(struct net_device *dev);
3670 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3671 
3672 extern int		netdev_budget;
3673 extern unsigned int	netdev_budget_usecs;
3674 
3675 /* Called by rtnetlink.c:rtnl_unlock() */
3676 void netdev_run_todo(void);
3677 
3678 /**
3679  *	dev_put - release reference to device
3680  *	@dev: network device
3681  *
3682  * Release reference to device to allow it to be freed.
3683  */
3684 static inline void dev_put(struct net_device *dev)
3685 {
3686 	this_cpu_dec(*dev->pcpu_refcnt);
3687 }
3688 
3689 /**
3690  *	dev_hold - get reference to device
3691  *	@dev: network device
3692  *
3693  * Hold reference to device to keep it from being freed.
3694  */
3695 static inline void dev_hold(struct net_device *dev)
3696 {
3697 	this_cpu_inc(*dev->pcpu_refcnt);
3698 }
3699 
3700 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3701  * and _off may be called from IRQ context, but it is caller
3702  * who is responsible for serialization of these calls.
3703  *
3704  * The name carrier is inappropriate, these functions should really be
3705  * called netif_lowerlayer_*() because they represent the state of any
3706  * kind of lower layer not just hardware media.
3707  */
3708 
3709 void linkwatch_init_dev(struct net_device *dev);
3710 void linkwatch_fire_event(struct net_device *dev);
3711 void linkwatch_forget_dev(struct net_device *dev);
3712 
3713 /**
3714  *	netif_carrier_ok - test if carrier present
3715  *	@dev: network device
3716  *
3717  * Check if carrier is present on device
3718  */
3719 static inline bool netif_carrier_ok(const struct net_device *dev)
3720 {
3721 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3722 }
3723 
3724 unsigned long dev_trans_start(struct net_device *dev);
3725 
3726 void __netdev_watchdog_up(struct net_device *dev);
3727 
3728 void netif_carrier_on(struct net_device *dev);
3729 
3730 void netif_carrier_off(struct net_device *dev);
3731 
3732 /**
3733  *	netif_dormant_on - mark device as dormant.
3734  *	@dev: network device
3735  *
3736  * Mark device as dormant (as per RFC2863).
3737  *
3738  * The dormant state indicates that the relevant interface is not
3739  * actually in a condition to pass packets (i.e., it is not 'up') but is
3740  * in a "pending" state, waiting for some external event.  For "on-
3741  * demand" interfaces, this new state identifies the situation where the
3742  * interface is waiting for events to place it in the up state.
3743  */
3744 static inline void netif_dormant_on(struct net_device *dev)
3745 {
3746 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3747 		linkwatch_fire_event(dev);
3748 }
3749 
3750 /**
3751  *	netif_dormant_off - set device as not dormant.
3752  *	@dev: network device
3753  *
3754  * Device is not in dormant state.
3755  */
3756 static inline void netif_dormant_off(struct net_device *dev)
3757 {
3758 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3759 		linkwatch_fire_event(dev);
3760 }
3761 
3762 /**
3763  *	netif_dormant - test if device is dormant
3764  *	@dev: network device
3765  *
3766  * Check if device is dormant.
3767  */
3768 static inline bool netif_dormant(const struct net_device *dev)
3769 {
3770 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3771 }
3772 
3773 
3774 /**
3775  *	netif_oper_up - test if device is operational
3776  *	@dev: network device
3777  *
3778  * Check if carrier is operational
3779  */
3780 static inline bool netif_oper_up(const struct net_device *dev)
3781 {
3782 	return (dev->operstate == IF_OPER_UP ||
3783 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3784 }
3785 
3786 /**
3787  *	netif_device_present - is device available or removed
3788  *	@dev: network device
3789  *
3790  * Check if device has not been removed from system.
3791  */
3792 static inline bool netif_device_present(struct net_device *dev)
3793 {
3794 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3795 }
3796 
3797 void netif_device_detach(struct net_device *dev);
3798 
3799 void netif_device_attach(struct net_device *dev);
3800 
3801 /*
3802  * Network interface message level settings
3803  */
3804 
3805 enum {
3806 	NETIF_MSG_DRV		= 0x0001,
3807 	NETIF_MSG_PROBE		= 0x0002,
3808 	NETIF_MSG_LINK		= 0x0004,
3809 	NETIF_MSG_TIMER		= 0x0008,
3810 	NETIF_MSG_IFDOWN	= 0x0010,
3811 	NETIF_MSG_IFUP		= 0x0020,
3812 	NETIF_MSG_RX_ERR	= 0x0040,
3813 	NETIF_MSG_TX_ERR	= 0x0080,
3814 	NETIF_MSG_TX_QUEUED	= 0x0100,
3815 	NETIF_MSG_INTR		= 0x0200,
3816 	NETIF_MSG_TX_DONE	= 0x0400,
3817 	NETIF_MSG_RX_STATUS	= 0x0800,
3818 	NETIF_MSG_PKTDATA	= 0x1000,
3819 	NETIF_MSG_HW		= 0x2000,
3820 	NETIF_MSG_WOL		= 0x4000,
3821 };
3822 
3823 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3824 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3825 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3826 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3827 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3828 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3829 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3830 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3831 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3832 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3833 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3834 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3835 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3836 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3837 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3838 
3839 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3840 {
3841 	/* use default */
3842 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3843 		return default_msg_enable_bits;
3844 	if (debug_value == 0)	/* no output */
3845 		return 0;
3846 	/* set low N bits */
3847 	return (1 << debug_value) - 1;
3848 }
3849 
3850 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3851 {
3852 	spin_lock(&txq->_xmit_lock);
3853 	txq->xmit_lock_owner = cpu;
3854 }
3855 
3856 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3857 {
3858 	__acquire(&txq->_xmit_lock);
3859 	return true;
3860 }
3861 
3862 static inline void __netif_tx_release(struct netdev_queue *txq)
3863 {
3864 	__release(&txq->_xmit_lock);
3865 }
3866 
3867 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3868 {
3869 	spin_lock_bh(&txq->_xmit_lock);
3870 	txq->xmit_lock_owner = smp_processor_id();
3871 }
3872 
3873 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3874 {
3875 	bool ok = spin_trylock(&txq->_xmit_lock);
3876 	if (likely(ok))
3877 		txq->xmit_lock_owner = smp_processor_id();
3878 	return ok;
3879 }
3880 
3881 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3882 {
3883 	txq->xmit_lock_owner = -1;
3884 	spin_unlock(&txq->_xmit_lock);
3885 }
3886 
3887 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3888 {
3889 	txq->xmit_lock_owner = -1;
3890 	spin_unlock_bh(&txq->_xmit_lock);
3891 }
3892 
3893 static inline void txq_trans_update(struct netdev_queue *txq)
3894 {
3895 	if (txq->xmit_lock_owner != -1)
3896 		txq->trans_start = jiffies;
3897 }
3898 
3899 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3900 static inline void netif_trans_update(struct net_device *dev)
3901 {
3902 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3903 
3904 	if (txq->trans_start != jiffies)
3905 		txq->trans_start = jiffies;
3906 }
3907 
3908 /**
3909  *	netif_tx_lock - grab network device transmit lock
3910  *	@dev: network device
3911  *
3912  * Get network device transmit lock
3913  */
3914 static inline void netif_tx_lock(struct net_device *dev)
3915 {
3916 	unsigned int i;
3917 	int cpu;
3918 
3919 	spin_lock(&dev->tx_global_lock);
3920 	cpu = smp_processor_id();
3921 	for (i = 0; i < dev->num_tx_queues; i++) {
3922 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3923 
3924 		/* We are the only thread of execution doing a
3925 		 * freeze, but we have to grab the _xmit_lock in
3926 		 * order to synchronize with threads which are in
3927 		 * the ->hard_start_xmit() handler and already
3928 		 * checked the frozen bit.
3929 		 */
3930 		__netif_tx_lock(txq, cpu);
3931 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3932 		__netif_tx_unlock(txq);
3933 	}
3934 }
3935 
3936 static inline void netif_tx_lock_bh(struct net_device *dev)
3937 {
3938 	local_bh_disable();
3939 	netif_tx_lock(dev);
3940 }
3941 
3942 static inline void netif_tx_unlock(struct net_device *dev)
3943 {
3944 	unsigned int i;
3945 
3946 	for (i = 0; i < dev->num_tx_queues; i++) {
3947 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3948 
3949 		/* No need to grab the _xmit_lock here.  If the
3950 		 * queue is not stopped for another reason, we
3951 		 * force a schedule.
3952 		 */
3953 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3954 		netif_schedule_queue(txq);
3955 	}
3956 	spin_unlock(&dev->tx_global_lock);
3957 }
3958 
3959 static inline void netif_tx_unlock_bh(struct net_device *dev)
3960 {
3961 	netif_tx_unlock(dev);
3962 	local_bh_enable();
3963 }
3964 
3965 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3966 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3967 		__netif_tx_lock(txq, cpu);		\
3968 	} else {					\
3969 		__netif_tx_acquire(txq);		\
3970 	}						\
3971 }
3972 
3973 #define HARD_TX_TRYLOCK(dev, txq)			\
3974 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3975 		__netif_tx_trylock(txq) :		\
3976 		__netif_tx_acquire(txq))
3977 
3978 #define HARD_TX_UNLOCK(dev, txq) {			\
3979 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3980 		__netif_tx_unlock(txq);			\
3981 	} else {					\
3982 		__netif_tx_release(txq);		\
3983 	}						\
3984 }
3985 
3986 static inline void netif_tx_disable(struct net_device *dev)
3987 {
3988 	unsigned int i;
3989 	int cpu;
3990 
3991 	local_bh_disable();
3992 	cpu = smp_processor_id();
3993 	for (i = 0; i < dev->num_tx_queues; i++) {
3994 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3995 
3996 		__netif_tx_lock(txq, cpu);
3997 		netif_tx_stop_queue(txq);
3998 		__netif_tx_unlock(txq);
3999 	}
4000 	local_bh_enable();
4001 }
4002 
4003 static inline void netif_addr_lock(struct net_device *dev)
4004 {
4005 	spin_lock(&dev->addr_list_lock);
4006 }
4007 
4008 static inline void netif_addr_lock_nested(struct net_device *dev)
4009 {
4010 	int subclass = SINGLE_DEPTH_NESTING;
4011 
4012 	if (dev->netdev_ops->ndo_get_lock_subclass)
4013 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4014 
4015 	spin_lock_nested(&dev->addr_list_lock, subclass);
4016 }
4017 
4018 static inline void netif_addr_lock_bh(struct net_device *dev)
4019 {
4020 	spin_lock_bh(&dev->addr_list_lock);
4021 }
4022 
4023 static inline void netif_addr_unlock(struct net_device *dev)
4024 {
4025 	spin_unlock(&dev->addr_list_lock);
4026 }
4027 
4028 static inline void netif_addr_unlock_bh(struct net_device *dev)
4029 {
4030 	spin_unlock_bh(&dev->addr_list_lock);
4031 }
4032 
4033 /*
4034  * dev_addrs walker. Should be used only for read access. Call with
4035  * rcu_read_lock held.
4036  */
4037 #define for_each_dev_addr(dev, ha) \
4038 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4039 
4040 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4041 
4042 void ether_setup(struct net_device *dev);
4043 
4044 /* Support for loadable net-drivers */
4045 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4046 				    unsigned char name_assign_type,
4047 				    void (*setup)(struct net_device *),
4048 				    unsigned int txqs, unsigned int rxqs);
4049 int dev_get_valid_name(struct net *net, struct net_device *dev,
4050 		       const char *name);
4051 
4052 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4053 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4054 
4055 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4056 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4057 			 count)
4058 
4059 int register_netdev(struct net_device *dev);
4060 void unregister_netdev(struct net_device *dev);
4061 
4062 /* General hardware address lists handling functions */
4063 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4064 		   struct netdev_hw_addr_list *from_list, int addr_len);
4065 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4066 		      struct netdev_hw_addr_list *from_list, int addr_len);
4067 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4068 		       struct net_device *dev,
4069 		       int (*sync)(struct net_device *, const unsigned char *),
4070 		       int (*unsync)(struct net_device *,
4071 				     const unsigned char *));
4072 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4073 			   struct net_device *dev,
4074 			   int (*sync)(struct net_device *,
4075 				       const unsigned char *, int),
4076 			   int (*unsync)(struct net_device *,
4077 					 const unsigned char *, int));
4078 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4079 			      struct net_device *dev,
4080 			      int (*unsync)(struct net_device *,
4081 					    const unsigned char *, int));
4082 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4083 			  struct net_device *dev,
4084 			  int (*unsync)(struct net_device *,
4085 					const unsigned char *));
4086 void __hw_addr_init(struct netdev_hw_addr_list *list);
4087 
4088 /* Functions used for device addresses handling */
4089 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4090 		 unsigned char addr_type);
4091 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4092 		 unsigned char addr_type);
4093 void dev_addr_flush(struct net_device *dev);
4094 int dev_addr_init(struct net_device *dev);
4095 
4096 /* Functions used for unicast addresses handling */
4097 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4098 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4099 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4100 int dev_uc_sync(struct net_device *to, struct net_device *from);
4101 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4102 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4103 void dev_uc_flush(struct net_device *dev);
4104 void dev_uc_init(struct net_device *dev);
4105 
4106 /**
4107  *  __dev_uc_sync - Synchonize device's unicast list
4108  *  @dev:  device to sync
4109  *  @sync: function to call if address should be added
4110  *  @unsync: function to call if address should be removed
4111  *
4112  *  Add newly added addresses to the interface, and release
4113  *  addresses that have been deleted.
4114  */
4115 static inline int __dev_uc_sync(struct net_device *dev,
4116 				int (*sync)(struct net_device *,
4117 					    const unsigned char *),
4118 				int (*unsync)(struct net_device *,
4119 					      const unsigned char *))
4120 {
4121 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4122 }
4123 
4124 /**
4125  *  __dev_uc_unsync - Remove synchronized addresses from device
4126  *  @dev:  device to sync
4127  *  @unsync: function to call if address should be removed
4128  *
4129  *  Remove all addresses that were added to the device by dev_uc_sync().
4130  */
4131 static inline void __dev_uc_unsync(struct net_device *dev,
4132 				   int (*unsync)(struct net_device *,
4133 						 const unsigned char *))
4134 {
4135 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4136 }
4137 
4138 /* Functions used for multicast addresses handling */
4139 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4140 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4141 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4142 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4143 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4144 int dev_mc_sync(struct net_device *to, struct net_device *from);
4145 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4146 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4147 void dev_mc_flush(struct net_device *dev);
4148 void dev_mc_init(struct net_device *dev);
4149 
4150 /**
4151  *  __dev_mc_sync - Synchonize device's multicast list
4152  *  @dev:  device to sync
4153  *  @sync: function to call if address should be added
4154  *  @unsync: function to call if address should be removed
4155  *
4156  *  Add newly added addresses to the interface, and release
4157  *  addresses that have been deleted.
4158  */
4159 static inline int __dev_mc_sync(struct net_device *dev,
4160 				int (*sync)(struct net_device *,
4161 					    const unsigned char *),
4162 				int (*unsync)(struct net_device *,
4163 					      const unsigned char *))
4164 {
4165 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4166 }
4167 
4168 /**
4169  *  __dev_mc_unsync - Remove synchronized addresses from device
4170  *  @dev:  device to sync
4171  *  @unsync: function to call if address should be removed
4172  *
4173  *  Remove all addresses that were added to the device by dev_mc_sync().
4174  */
4175 static inline void __dev_mc_unsync(struct net_device *dev,
4176 				   int (*unsync)(struct net_device *,
4177 						 const unsigned char *))
4178 {
4179 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4180 }
4181 
4182 /* Functions used for secondary unicast and multicast support */
4183 void dev_set_rx_mode(struct net_device *dev);
4184 void __dev_set_rx_mode(struct net_device *dev);
4185 int dev_set_promiscuity(struct net_device *dev, int inc);
4186 int dev_set_allmulti(struct net_device *dev, int inc);
4187 void netdev_state_change(struct net_device *dev);
4188 void netdev_notify_peers(struct net_device *dev);
4189 void netdev_features_change(struct net_device *dev);
4190 /* Load a device via the kmod */
4191 void dev_load(struct net *net, const char *name);
4192 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4193 					struct rtnl_link_stats64 *storage);
4194 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4195 			     const struct net_device_stats *netdev_stats);
4196 
4197 extern int		netdev_max_backlog;
4198 extern int		netdev_tstamp_prequeue;
4199 extern int		weight_p;
4200 extern int		dev_weight_rx_bias;
4201 extern int		dev_weight_tx_bias;
4202 extern int		dev_rx_weight;
4203 extern int		dev_tx_weight;
4204 
4205 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4206 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4207 						     struct list_head **iter);
4208 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4209 						     struct list_head **iter);
4210 
4211 /* iterate through upper list, must be called under RCU read lock */
4212 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4213 	for (iter = &(dev)->adj_list.upper, \
4214 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4215 	     updev; \
4216 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4217 
4218 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4219 				  int (*fn)(struct net_device *upper_dev,
4220 					    void *data),
4221 				  void *data);
4222 
4223 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4224 				  struct net_device *upper_dev);
4225 
4226 bool netdev_has_any_upper_dev(struct net_device *dev);
4227 
4228 void *netdev_lower_get_next_private(struct net_device *dev,
4229 				    struct list_head **iter);
4230 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4231 					struct list_head **iter);
4232 
4233 #define netdev_for_each_lower_private(dev, priv, iter) \
4234 	for (iter = (dev)->adj_list.lower.next, \
4235 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4236 	     priv; \
4237 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4238 
4239 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4240 	for (iter = &(dev)->adj_list.lower, \
4241 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4242 	     priv; \
4243 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4244 
4245 void *netdev_lower_get_next(struct net_device *dev,
4246 				struct list_head **iter);
4247 
4248 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4249 	for (iter = (dev)->adj_list.lower.next, \
4250 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4251 	     ldev; \
4252 	     ldev = netdev_lower_get_next(dev, &(iter)))
4253 
4254 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4255 					     struct list_head **iter);
4256 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4257 						 struct list_head **iter);
4258 
4259 int netdev_walk_all_lower_dev(struct net_device *dev,
4260 			      int (*fn)(struct net_device *lower_dev,
4261 					void *data),
4262 			      void *data);
4263 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4264 				  int (*fn)(struct net_device *lower_dev,
4265 					    void *data),
4266 				  void *data);
4267 
4268 void *netdev_adjacent_get_private(struct list_head *adj_list);
4269 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4270 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4271 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4272 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4273 			  struct netlink_ext_ack *extack);
4274 int netdev_master_upper_dev_link(struct net_device *dev,
4275 				 struct net_device *upper_dev,
4276 				 void *upper_priv, void *upper_info,
4277 				 struct netlink_ext_ack *extack);
4278 void netdev_upper_dev_unlink(struct net_device *dev,
4279 			     struct net_device *upper_dev);
4280 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4281 void *netdev_lower_dev_get_private(struct net_device *dev,
4282 				   struct net_device *lower_dev);
4283 void netdev_lower_state_changed(struct net_device *lower_dev,
4284 				void *lower_state_info);
4285 
4286 /* RSS keys are 40 or 52 bytes long */
4287 #define NETDEV_RSS_KEY_LEN 52
4288 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4289 void netdev_rss_key_fill(void *buffer, size_t len);
4290 
4291 int dev_get_nest_level(struct net_device *dev);
4292 int skb_checksum_help(struct sk_buff *skb);
4293 int skb_crc32c_csum_help(struct sk_buff *skb);
4294 int skb_csum_hwoffload_help(struct sk_buff *skb,
4295 			    const netdev_features_t features);
4296 
4297 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4298 				  netdev_features_t features, bool tx_path);
4299 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4300 				    netdev_features_t features);
4301 
4302 struct netdev_bonding_info {
4303 	ifslave	slave;
4304 	ifbond	master;
4305 };
4306 
4307 struct netdev_notifier_bonding_info {
4308 	struct netdev_notifier_info info; /* must be first */
4309 	struct netdev_bonding_info  bonding_info;
4310 };
4311 
4312 void netdev_bonding_info_change(struct net_device *dev,
4313 				struct netdev_bonding_info *bonding_info);
4314 
4315 static inline
4316 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4317 {
4318 	return __skb_gso_segment(skb, features, true);
4319 }
4320 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4321 
4322 static inline bool can_checksum_protocol(netdev_features_t features,
4323 					 __be16 protocol)
4324 {
4325 	if (protocol == htons(ETH_P_FCOE))
4326 		return !!(features & NETIF_F_FCOE_CRC);
4327 
4328 	/* Assume this is an IP checksum (not SCTP CRC) */
4329 
4330 	if (features & NETIF_F_HW_CSUM) {
4331 		/* Can checksum everything */
4332 		return true;
4333 	}
4334 
4335 	switch (protocol) {
4336 	case htons(ETH_P_IP):
4337 		return !!(features & NETIF_F_IP_CSUM);
4338 	case htons(ETH_P_IPV6):
4339 		return !!(features & NETIF_F_IPV6_CSUM);
4340 	default:
4341 		return false;
4342 	}
4343 }
4344 
4345 #ifdef CONFIG_BUG
4346 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4347 #else
4348 static inline void netdev_rx_csum_fault(struct net_device *dev,
4349 					struct sk_buff *skb)
4350 {
4351 }
4352 #endif
4353 /* rx skb timestamps */
4354 void net_enable_timestamp(void);
4355 void net_disable_timestamp(void);
4356 
4357 #ifdef CONFIG_PROC_FS
4358 int __init dev_proc_init(void);
4359 #else
4360 #define dev_proc_init() 0
4361 #endif
4362 
4363 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4364 					      struct sk_buff *skb, struct net_device *dev,
4365 					      bool more)
4366 {
4367 	skb->xmit_more = more ? 1 : 0;
4368 	return ops->ndo_start_xmit(skb, dev);
4369 }
4370 
4371 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4372 					    struct netdev_queue *txq, bool more)
4373 {
4374 	const struct net_device_ops *ops = dev->netdev_ops;
4375 	int rc;
4376 
4377 	rc = __netdev_start_xmit(ops, skb, dev, more);
4378 	if (rc == NETDEV_TX_OK)
4379 		txq_trans_update(txq);
4380 
4381 	return rc;
4382 }
4383 
4384 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4385 				const void *ns);
4386 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4387 				 const void *ns);
4388 
4389 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4390 {
4391 	return netdev_class_create_file_ns(class_attr, NULL);
4392 }
4393 
4394 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4395 {
4396 	netdev_class_remove_file_ns(class_attr, NULL);
4397 }
4398 
4399 extern const struct kobj_ns_type_operations net_ns_type_operations;
4400 
4401 const char *netdev_drivername(const struct net_device *dev);
4402 
4403 void linkwatch_run_queue(void);
4404 
4405 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4406 							  netdev_features_t f2)
4407 {
4408 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4409 		if (f1 & NETIF_F_HW_CSUM)
4410 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4411 		else
4412 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4413 	}
4414 
4415 	return f1 & f2;
4416 }
4417 
4418 static inline netdev_features_t netdev_get_wanted_features(
4419 	struct net_device *dev)
4420 {
4421 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4422 }
4423 netdev_features_t netdev_increment_features(netdev_features_t all,
4424 	netdev_features_t one, netdev_features_t mask);
4425 
4426 /* Allow TSO being used on stacked device :
4427  * Performing the GSO segmentation before last device
4428  * is a performance improvement.
4429  */
4430 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4431 							netdev_features_t mask)
4432 {
4433 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4434 }
4435 
4436 int __netdev_update_features(struct net_device *dev);
4437 void netdev_update_features(struct net_device *dev);
4438 void netdev_change_features(struct net_device *dev);
4439 
4440 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4441 					struct net_device *dev);
4442 
4443 netdev_features_t passthru_features_check(struct sk_buff *skb,
4444 					  struct net_device *dev,
4445 					  netdev_features_t features);
4446 netdev_features_t netif_skb_features(struct sk_buff *skb);
4447 
4448 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4449 {
4450 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4451 
4452 	/* check flags correspondence */
4453 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4454 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4455 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4456 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4457 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4458 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4459 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4460 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4461 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4462 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4463 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4464 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4465 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4466 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4467 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4468 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4469 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4470 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4471 
4472 	return (features & feature) == feature;
4473 }
4474 
4475 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4476 {
4477 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4478 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4479 }
4480 
4481 static inline bool netif_needs_gso(struct sk_buff *skb,
4482 				   netdev_features_t features)
4483 {
4484 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4485 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4486 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4487 }
4488 
4489 static inline void netif_set_gso_max_size(struct net_device *dev,
4490 					  unsigned int size)
4491 {
4492 	dev->gso_max_size = size;
4493 }
4494 
4495 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4496 					int pulled_hlen, u16 mac_offset,
4497 					int mac_len)
4498 {
4499 	skb->protocol = protocol;
4500 	skb->encapsulation = 1;
4501 	skb_push(skb, pulled_hlen);
4502 	skb_reset_transport_header(skb);
4503 	skb->mac_header = mac_offset;
4504 	skb->network_header = skb->mac_header + mac_len;
4505 	skb->mac_len = mac_len;
4506 }
4507 
4508 static inline bool netif_is_macsec(const struct net_device *dev)
4509 {
4510 	return dev->priv_flags & IFF_MACSEC;
4511 }
4512 
4513 static inline bool netif_is_macvlan(const struct net_device *dev)
4514 {
4515 	return dev->priv_flags & IFF_MACVLAN;
4516 }
4517 
4518 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4519 {
4520 	return dev->priv_flags & IFF_MACVLAN_PORT;
4521 }
4522 
4523 static inline bool netif_is_bond_master(const struct net_device *dev)
4524 {
4525 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4526 }
4527 
4528 static inline bool netif_is_bond_slave(const struct net_device *dev)
4529 {
4530 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4531 }
4532 
4533 static inline bool netif_supports_nofcs(struct net_device *dev)
4534 {
4535 	return dev->priv_flags & IFF_SUPP_NOFCS;
4536 }
4537 
4538 static inline bool netif_is_l3_master(const struct net_device *dev)
4539 {
4540 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4541 }
4542 
4543 static inline bool netif_is_l3_slave(const struct net_device *dev)
4544 {
4545 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4546 }
4547 
4548 static inline bool netif_is_bridge_master(const struct net_device *dev)
4549 {
4550 	return dev->priv_flags & IFF_EBRIDGE;
4551 }
4552 
4553 static inline bool netif_is_bridge_port(const struct net_device *dev)
4554 {
4555 	return dev->priv_flags & IFF_BRIDGE_PORT;
4556 }
4557 
4558 static inline bool netif_is_ovs_master(const struct net_device *dev)
4559 {
4560 	return dev->priv_flags & IFF_OPENVSWITCH;
4561 }
4562 
4563 static inline bool netif_is_ovs_port(const struct net_device *dev)
4564 {
4565 	return dev->priv_flags & IFF_OVS_DATAPATH;
4566 }
4567 
4568 static inline bool netif_is_team_master(const struct net_device *dev)
4569 {
4570 	return dev->priv_flags & IFF_TEAM;
4571 }
4572 
4573 static inline bool netif_is_team_port(const struct net_device *dev)
4574 {
4575 	return dev->priv_flags & IFF_TEAM_PORT;
4576 }
4577 
4578 static inline bool netif_is_lag_master(const struct net_device *dev)
4579 {
4580 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4581 }
4582 
4583 static inline bool netif_is_lag_port(const struct net_device *dev)
4584 {
4585 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4586 }
4587 
4588 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4589 {
4590 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4591 }
4592 
4593 static inline bool netif_is_failover(const struct net_device *dev)
4594 {
4595 	return dev->priv_flags & IFF_FAILOVER;
4596 }
4597 
4598 static inline bool netif_is_failover_slave(const struct net_device *dev)
4599 {
4600 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4601 }
4602 
4603 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4604 static inline void netif_keep_dst(struct net_device *dev)
4605 {
4606 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4607 }
4608 
4609 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4610 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4611 {
4612 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4613 	return dev->priv_flags & IFF_MACSEC;
4614 }
4615 
4616 extern struct pernet_operations __net_initdata loopback_net_ops;
4617 
4618 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4619 
4620 /* netdev_printk helpers, similar to dev_printk */
4621 
4622 static inline const char *netdev_name(const struct net_device *dev)
4623 {
4624 	if (!dev->name[0] || strchr(dev->name, '%'))
4625 		return "(unnamed net_device)";
4626 	return dev->name;
4627 }
4628 
4629 static inline bool netdev_unregistering(const struct net_device *dev)
4630 {
4631 	return dev->reg_state == NETREG_UNREGISTERING;
4632 }
4633 
4634 static inline const char *netdev_reg_state(const struct net_device *dev)
4635 {
4636 	switch (dev->reg_state) {
4637 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4638 	case NETREG_REGISTERED: return "";
4639 	case NETREG_UNREGISTERING: return " (unregistering)";
4640 	case NETREG_UNREGISTERED: return " (unregistered)";
4641 	case NETREG_RELEASED: return " (released)";
4642 	case NETREG_DUMMY: return " (dummy)";
4643 	}
4644 
4645 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4646 	return " (unknown)";
4647 }
4648 
4649 __printf(3, 4)
4650 void netdev_printk(const char *level, const struct net_device *dev,
4651 		   const char *format, ...);
4652 __printf(2, 3)
4653 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4654 __printf(2, 3)
4655 void netdev_alert(const struct net_device *dev, const char *format, ...);
4656 __printf(2, 3)
4657 void netdev_crit(const struct net_device *dev, const char *format, ...);
4658 __printf(2, 3)
4659 void netdev_err(const struct net_device *dev, const char *format, ...);
4660 __printf(2, 3)
4661 void netdev_warn(const struct net_device *dev, const char *format, ...);
4662 __printf(2, 3)
4663 void netdev_notice(const struct net_device *dev, const char *format, ...);
4664 __printf(2, 3)
4665 void netdev_info(const struct net_device *dev, const char *format, ...);
4666 
4667 #define netdev_level_once(level, dev, fmt, ...)			\
4668 do {								\
4669 	static bool __print_once __read_mostly;			\
4670 								\
4671 	if (!__print_once) {					\
4672 		__print_once = true;				\
4673 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4674 	}							\
4675 } while (0)
4676 
4677 #define netdev_emerg_once(dev, fmt, ...) \
4678 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4679 #define netdev_alert_once(dev, fmt, ...) \
4680 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4681 #define netdev_crit_once(dev, fmt, ...) \
4682 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4683 #define netdev_err_once(dev, fmt, ...) \
4684 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4685 #define netdev_warn_once(dev, fmt, ...) \
4686 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4687 #define netdev_notice_once(dev, fmt, ...) \
4688 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4689 #define netdev_info_once(dev, fmt, ...) \
4690 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4691 
4692 #define MODULE_ALIAS_NETDEV(device) \
4693 	MODULE_ALIAS("netdev-" device)
4694 
4695 #if defined(CONFIG_DYNAMIC_DEBUG)
4696 #define netdev_dbg(__dev, format, args...)			\
4697 do {								\
4698 	dynamic_netdev_dbg(__dev, format, ##args);		\
4699 } while (0)
4700 #elif defined(DEBUG)
4701 #define netdev_dbg(__dev, format, args...)			\
4702 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4703 #else
4704 #define netdev_dbg(__dev, format, args...)			\
4705 ({								\
4706 	if (0)							\
4707 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4708 })
4709 #endif
4710 
4711 #if defined(VERBOSE_DEBUG)
4712 #define netdev_vdbg	netdev_dbg
4713 #else
4714 
4715 #define netdev_vdbg(dev, format, args...)			\
4716 ({								\
4717 	if (0)							\
4718 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4719 	0;							\
4720 })
4721 #endif
4722 
4723 /*
4724  * netdev_WARN() acts like dev_printk(), but with the key difference
4725  * of using a WARN/WARN_ON to get the message out, including the
4726  * file/line information and a backtrace.
4727  */
4728 #define netdev_WARN(dev, format, args...)			\
4729 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4730 	     netdev_reg_state(dev), ##args)
4731 
4732 #define netdev_WARN_ONCE(dev, format, args...)				\
4733 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4734 		  netdev_reg_state(dev), ##args)
4735 
4736 /* netif printk helpers, similar to netdev_printk */
4737 
4738 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4739 do {					  			\
4740 	if (netif_msg_##type(priv))				\
4741 		netdev_printk(level, (dev), fmt, ##args);	\
4742 } while (0)
4743 
4744 #define netif_level(level, priv, type, dev, fmt, args...)	\
4745 do {								\
4746 	if (netif_msg_##type(priv))				\
4747 		netdev_##level(dev, fmt, ##args);		\
4748 } while (0)
4749 
4750 #define netif_emerg(priv, type, dev, fmt, args...)		\
4751 	netif_level(emerg, priv, type, dev, fmt, ##args)
4752 #define netif_alert(priv, type, dev, fmt, args...)		\
4753 	netif_level(alert, priv, type, dev, fmt, ##args)
4754 #define netif_crit(priv, type, dev, fmt, args...)		\
4755 	netif_level(crit, priv, type, dev, fmt, ##args)
4756 #define netif_err(priv, type, dev, fmt, args...)		\
4757 	netif_level(err, priv, type, dev, fmt, ##args)
4758 #define netif_warn(priv, type, dev, fmt, args...)		\
4759 	netif_level(warn, priv, type, dev, fmt, ##args)
4760 #define netif_notice(priv, type, dev, fmt, args...)		\
4761 	netif_level(notice, priv, type, dev, fmt, ##args)
4762 #define netif_info(priv, type, dev, fmt, args...)		\
4763 	netif_level(info, priv, type, dev, fmt, ##args)
4764 
4765 #if defined(CONFIG_DYNAMIC_DEBUG)
4766 #define netif_dbg(priv, type, netdev, format, args...)		\
4767 do {								\
4768 	if (netif_msg_##type(priv))				\
4769 		dynamic_netdev_dbg(netdev, format, ##args);	\
4770 } while (0)
4771 #elif defined(DEBUG)
4772 #define netif_dbg(priv, type, dev, format, args...)		\
4773 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4774 #else
4775 #define netif_dbg(priv, type, dev, format, args...)			\
4776 ({									\
4777 	if (0)								\
4778 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4779 	0;								\
4780 })
4781 #endif
4782 
4783 /* if @cond then downgrade to debug, else print at @level */
4784 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4785 	do {                                                              \
4786 		if (cond)                                                 \
4787 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4788 		else                                                      \
4789 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4790 	} while (0)
4791 
4792 #if defined(VERBOSE_DEBUG)
4793 #define netif_vdbg	netif_dbg
4794 #else
4795 #define netif_vdbg(priv, type, dev, format, args...)		\
4796 ({								\
4797 	if (0)							\
4798 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4799 	0;							\
4800 })
4801 #endif
4802 
4803 /*
4804  *	The list of packet types we will receive (as opposed to discard)
4805  *	and the routines to invoke.
4806  *
4807  *	Why 16. Because with 16 the only overlap we get on a hash of the
4808  *	low nibble of the protocol value is RARP/SNAP/X.25.
4809  *
4810  *		0800	IP
4811  *		0001	802.3
4812  *		0002	AX.25
4813  *		0004	802.2
4814  *		8035	RARP
4815  *		0005	SNAP
4816  *		0805	X.25
4817  *		0806	ARP
4818  *		8137	IPX
4819  *		0009	Localtalk
4820  *		86DD	IPv6
4821  */
4822 #define PTYPE_HASH_SIZE	(16)
4823 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4824 
4825 #endif	/* _LINUX_NETDEVICE_H */
4826