xref: /openbmc/linux/include/linux/netdevice.h (revision 2a12187d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
82 
83 /* Backlog congestion levels */
84 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
85 #define NET_RX_DROP		1	/* packet dropped */
86 
87 #define MAX_NEST_DEV 8
88 
89 /*
90  * Transmit return codes: transmit return codes originate from three different
91  * namespaces:
92  *
93  * - qdisc return codes
94  * - driver transmit return codes
95  * - errno values
96  *
97  * Drivers are allowed to return any one of those in their hard_start_xmit()
98  * function. Real network devices commonly used with qdiscs should only return
99  * the driver transmit return codes though - when qdiscs are used, the actual
100  * transmission happens asynchronously, so the value is not propagated to
101  * higher layers. Virtual network devices transmit synchronously; in this case
102  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
103  * others are propagated to higher layers.
104  */
105 
106 /* qdisc ->enqueue() return codes. */
107 #define NET_XMIT_SUCCESS	0x00
108 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
109 #define NET_XMIT_CN		0x02	/* congestion notification	*/
110 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
111 
112 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
113  * indicates that the device will soon be dropping packets, or already drops
114  * some packets of the same priority; prompting us to send less aggressively. */
115 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
116 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
117 
118 /* Driver transmit return codes */
119 #define NETDEV_TX_MASK		0xf0
120 
121 enum netdev_tx {
122 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
123 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
124 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
125 };
126 typedef enum netdev_tx netdev_tx_t;
127 
128 /*
129  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
130  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
131  */
132 static inline bool dev_xmit_complete(int rc)
133 {
134 	/*
135 	 * Positive cases with an skb consumed by a driver:
136 	 * - successful transmission (rc == NETDEV_TX_OK)
137 	 * - error while transmitting (rc < 0)
138 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
139 	 */
140 	if (likely(rc < NET_XMIT_MASK))
141 		return true;
142 
143 	return false;
144 }
145 
146 /*
147  *	Compute the worst-case header length according to the protocols
148  *	used.
149  */
150 
151 #if defined(CONFIG_HYPERV_NET)
152 # define LL_MAX_HEADER 128
153 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
154 # if defined(CONFIG_MAC80211_MESH)
155 #  define LL_MAX_HEADER 128
156 # else
157 #  define LL_MAX_HEADER 96
158 # endif
159 #else
160 # define LL_MAX_HEADER 32
161 #endif
162 
163 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
164     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
165 #define MAX_HEADER LL_MAX_HEADER
166 #else
167 #define MAX_HEADER (LL_MAX_HEADER + 48)
168 #endif
169 
170 /*
171  *	Old network device statistics. Fields are native words
172  *	(unsigned long) so they can be read and written atomically.
173  */
174 
175 #define NET_DEV_STAT(FIELD)			\
176 	union {					\
177 		unsigned long FIELD;		\
178 		atomic_long_t __##FIELD;	\
179 	}
180 
181 struct net_device_stats {
182 	NET_DEV_STAT(rx_packets);
183 	NET_DEV_STAT(tx_packets);
184 	NET_DEV_STAT(rx_bytes);
185 	NET_DEV_STAT(tx_bytes);
186 	NET_DEV_STAT(rx_errors);
187 	NET_DEV_STAT(tx_errors);
188 	NET_DEV_STAT(rx_dropped);
189 	NET_DEV_STAT(tx_dropped);
190 	NET_DEV_STAT(multicast);
191 	NET_DEV_STAT(collisions);
192 	NET_DEV_STAT(rx_length_errors);
193 	NET_DEV_STAT(rx_over_errors);
194 	NET_DEV_STAT(rx_crc_errors);
195 	NET_DEV_STAT(rx_frame_errors);
196 	NET_DEV_STAT(rx_fifo_errors);
197 	NET_DEV_STAT(rx_missed_errors);
198 	NET_DEV_STAT(tx_aborted_errors);
199 	NET_DEV_STAT(tx_carrier_errors);
200 	NET_DEV_STAT(tx_fifo_errors);
201 	NET_DEV_STAT(tx_heartbeat_errors);
202 	NET_DEV_STAT(tx_window_errors);
203 	NET_DEV_STAT(rx_compressed);
204 	NET_DEV_STAT(tx_compressed);
205 };
206 #undef NET_DEV_STAT
207 
208 /* per-cpu stats, allocated on demand.
209  * Try to fit them in a single cache line, for dev_get_stats() sake.
210  */
211 struct net_device_core_stats {
212 	unsigned long	rx_dropped;
213 	unsigned long	tx_dropped;
214 	unsigned long	rx_nohandler;
215 	unsigned long	rx_otherhost_dropped;
216 } __aligned(4 * sizeof(unsigned long));
217 
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220 
221 #ifdef CONFIG_RPS
222 #include <linux/static_key.h>
223 extern struct static_key_false rps_needed;
224 extern struct static_key_false rfs_needed;
225 #endif
226 
227 struct neighbour;
228 struct neigh_parms;
229 struct sk_buff;
230 
231 struct netdev_hw_addr {
232 	struct list_head	list;
233 	struct rb_node		node;
234 	unsigned char		addr[MAX_ADDR_LEN];
235 	unsigned char		type;
236 #define NETDEV_HW_ADDR_T_LAN		1
237 #define NETDEV_HW_ADDR_T_SAN		2
238 #define NETDEV_HW_ADDR_T_UNICAST	3
239 #define NETDEV_HW_ADDR_T_MULTICAST	4
240 	bool			global_use;
241 	int			sync_cnt;
242 	int			refcount;
243 	int			synced;
244 	struct rcu_head		rcu_head;
245 };
246 
247 struct netdev_hw_addr_list {
248 	struct list_head	list;
249 	int			count;
250 
251 	/* Auxiliary tree for faster lookup on addition and deletion */
252 	struct rb_root		tree;
253 };
254 
255 #define netdev_hw_addr_list_count(l) ((l)->count)
256 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
257 #define netdev_hw_addr_list_for_each(ha, l) \
258 	list_for_each_entry(ha, &(l)->list, list)
259 
260 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
261 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
262 #define netdev_for_each_uc_addr(ha, dev) \
263 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
264 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
265 	netdev_for_each_uc_addr((_ha), (_dev)) \
266 		if ((_ha)->sync_cnt)
267 
268 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
269 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
270 #define netdev_for_each_mc_addr(ha, dev) \
271 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
272 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
273 	netdev_for_each_mc_addr((_ha), (_dev)) \
274 		if ((_ha)->sync_cnt)
275 
276 struct hh_cache {
277 	unsigned int	hh_len;
278 	seqlock_t	hh_lock;
279 
280 	/* cached hardware header; allow for machine alignment needs.        */
281 #define HH_DATA_MOD	16
282 #define HH_DATA_OFF(__len) \
283 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
284 #define HH_DATA_ALIGN(__len) \
285 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
286 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
287 };
288 
289 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
290  * Alternative is:
291  *   dev->hard_header_len ? (dev->hard_header_len +
292  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
293  *
294  * We could use other alignment values, but we must maintain the
295  * relationship HH alignment <= LL alignment.
296  */
297 #define LL_RESERVED_SPACE(dev) \
298 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
299 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
300 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301 
302 struct header_ops {
303 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
304 			   unsigned short type, const void *daddr,
305 			   const void *saddr, unsigned int len);
306 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
307 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
308 	void	(*cache_update)(struct hh_cache *hh,
309 				const struct net_device *dev,
310 				const unsigned char *haddr);
311 	bool	(*validate)(const char *ll_header, unsigned int len);
312 	__be16	(*parse_protocol)(const struct sk_buff *skb);
313 };
314 
315 /* These flag bits are private to the generic network queueing
316  * layer; they may not be explicitly referenced by any other
317  * code.
318  */
319 
320 enum netdev_state_t {
321 	__LINK_STATE_START,
322 	__LINK_STATE_PRESENT,
323 	__LINK_STATE_NOCARRIER,
324 	__LINK_STATE_LINKWATCH_PENDING,
325 	__LINK_STATE_DORMANT,
326 	__LINK_STATE_TESTING,
327 };
328 
329 struct gro_list {
330 	struct list_head	list;
331 	int			count;
332 };
333 
334 /*
335  * size of gro hash buckets, must less than bit number of
336  * napi_struct::gro_bitmask
337  */
338 #define GRO_HASH_BUCKETS	8
339 
340 /*
341  * Structure for NAPI scheduling similar to tasklet but with weighting
342  */
343 struct napi_struct {
344 	/* The poll_list must only be managed by the entity which
345 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
346 	 * whoever atomically sets that bit can add this napi_struct
347 	 * to the per-CPU poll_list, and whoever clears that bit
348 	 * can remove from the list right before clearing the bit.
349 	 */
350 	struct list_head	poll_list;
351 
352 	unsigned long		state;
353 	int			weight;
354 	int			defer_hard_irqs_count;
355 	unsigned long		gro_bitmask;
356 	int			(*poll)(struct napi_struct *, int);
357 #ifdef CONFIG_NETPOLL
358 	int			poll_owner;
359 #endif
360 	struct net_device	*dev;
361 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
362 	struct sk_buff		*skb;
363 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
364 	int			rx_count; /* length of rx_list */
365 	struct hrtimer		timer;
366 	struct list_head	dev_list;
367 	struct hlist_node	napi_hash_node;
368 	unsigned int		napi_id;
369 	struct task_struct	*thread;
370 };
371 
372 enum {
373 	NAPI_STATE_SCHED,		/* Poll is scheduled */
374 	NAPI_STATE_MISSED,		/* reschedule a napi */
375 	NAPI_STATE_DISABLE,		/* Disable pending */
376 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
377 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
378 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
379 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
380 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
381 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
382 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
383 };
384 
385 enum {
386 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
387 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
388 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
389 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
390 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
391 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
392 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
393 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
394 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
395 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
396 };
397 
398 enum gro_result {
399 	GRO_MERGED,
400 	GRO_MERGED_FREE,
401 	GRO_HELD,
402 	GRO_NORMAL,
403 	GRO_CONSUMED,
404 };
405 typedef enum gro_result gro_result_t;
406 
407 /*
408  * enum rx_handler_result - Possible return values for rx_handlers.
409  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
410  * further.
411  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
412  * case skb->dev was changed by rx_handler.
413  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
414  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
415  *
416  * rx_handlers are functions called from inside __netif_receive_skb(), to do
417  * special processing of the skb, prior to delivery to protocol handlers.
418  *
419  * Currently, a net_device can only have a single rx_handler registered. Trying
420  * to register a second rx_handler will return -EBUSY.
421  *
422  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
423  * To unregister a rx_handler on a net_device, use
424  * netdev_rx_handler_unregister().
425  *
426  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
427  * do with the skb.
428  *
429  * If the rx_handler consumed the skb in some way, it should return
430  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
431  * the skb to be delivered in some other way.
432  *
433  * If the rx_handler changed skb->dev, to divert the skb to another
434  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
435  * new device will be called if it exists.
436  *
437  * If the rx_handler decides the skb should be ignored, it should return
438  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
439  * are registered on exact device (ptype->dev == skb->dev).
440  *
441  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
442  * delivered, it should return RX_HANDLER_PASS.
443  *
444  * A device without a registered rx_handler will behave as if rx_handler
445  * returned RX_HANDLER_PASS.
446  */
447 
448 enum rx_handler_result {
449 	RX_HANDLER_CONSUMED,
450 	RX_HANDLER_ANOTHER,
451 	RX_HANDLER_EXACT,
452 	RX_HANDLER_PASS,
453 };
454 typedef enum rx_handler_result rx_handler_result_t;
455 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
456 
457 void __napi_schedule(struct napi_struct *n);
458 void __napi_schedule_irqoff(struct napi_struct *n);
459 
460 static inline bool napi_disable_pending(struct napi_struct *n)
461 {
462 	return test_bit(NAPI_STATE_DISABLE, &n->state);
463 }
464 
465 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
466 {
467 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
468 }
469 
470 bool napi_schedule_prep(struct napi_struct *n);
471 
472 /**
473  *	napi_schedule - schedule NAPI poll
474  *	@n: NAPI context
475  *
476  * Schedule NAPI poll routine to be called if it is not already
477  * running.
478  */
479 static inline void napi_schedule(struct napi_struct *n)
480 {
481 	if (napi_schedule_prep(n))
482 		__napi_schedule(n);
483 }
484 
485 /**
486  *	napi_schedule_irqoff - schedule NAPI poll
487  *	@n: NAPI context
488  *
489  * Variant of napi_schedule(), assuming hard irqs are masked.
490  */
491 static inline void napi_schedule_irqoff(struct napi_struct *n)
492 {
493 	if (napi_schedule_prep(n))
494 		__napi_schedule_irqoff(n);
495 }
496 
497 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
498 static inline bool napi_reschedule(struct napi_struct *napi)
499 {
500 	if (napi_schedule_prep(napi)) {
501 		__napi_schedule(napi);
502 		return true;
503 	}
504 	return false;
505 }
506 
507 bool napi_complete_done(struct napi_struct *n, int work_done);
508 /**
509  *	napi_complete - NAPI processing complete
510  *	@n: NAPI context
511  *
512  * Mark NAPI processing as complete.
513  * Consider using napi_complete_done() instead.
514  * Return false if device should avoid rearming interrupts.
515  */
516 static inline bool napi_complete(struct napi_struct *n)
517 {
518 	return napi_complete_done(n, 0);
519 }
520 
521 int dev_set_threaded(struct net_device *dev, bool threaded);
522 
523 /**
524  *	napi_disable - prevent NAPI from scheduling
525  *	@n: NAPI context
526  *
527  * Stop NAPI from being scheduled on this context.
528  * Waits till any outstanding processing completes.
529  */
530 void napi_disable(struct napi_struct *n);
531 
532 void napi_enable(struct napi_struct *n);
533 
534 /**
535  *	napi_synchronize - wait until NAPI is not running
536  *	@n: NAPI context
537  *
538  * Wait until NAPI is done being scheduled on this context.
539  * Waits till any outstanding processing completes but
540  * does not disable future activations.
541  */
542 static inline void napi_synchronize(const struct napi_struct *n)
543 {
544 	if (IS_ENABLED(CONFIG_SMP))
545 		while (test_bit(NAPI_STATE_SCHED, &n->state))
546 			msleep(1);
547 	else
548 		barrier();
549 }
550 
551 /**
552  *	napi_if_scheduled_mark_missed - if napi is running, set the
553  *	NAPIF_STATE_MISSED
554  *	@n: NAPI context
555  *
556  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
557  * NAPI is scheduled.
558  **/
559 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
560 {
561 	unsigned long val, new;
562 
563 	val = READ_ONCE(n->state);
564 	do {
565 		if (val & NAPIF_STATE_DISABLE)
566 			return true;
567 
568 		if (!(val & NAPIF_STATE_SCHED))
569 			return false;
570 
571 		new = val | NAPIF_STATE_MISSED;
572 	} while (!try_cmpxchg(&n->state, &val, new));
573 
574 	return true;
575 }
576 
577 enum netdev_queue_state_t {
578 	__QUEUE_STATE_DRV_XOFF,
579 	__QUEUE_STATE_STACK_XOFF,
580 	__QUEUE_STATE_FROZEN,
581 };
582 
583 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
584 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
585 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
586 
587 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
588 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
589 					QUEUE_STATE_FROZEN)
590 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
591 					QUEUE_STATE_FROZEN)
592 
593 /*
594  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
595  * netif_tx_* functions below are used to manipulate this flag.  The
596  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
597  * queue independently.  The netif_xmit_*stopped functions below are called
598  * to check if the queue has been stopped by the driver or stack (either
599  * of the XOFF bits are set in the state).  Drivers should not need to call
600  * netif_xmit*stopped functions, they should only be using netif_tx_*.
601  */
602 
603 struct netdev_queue {
604 /*
605  * read-mostly part
606  */
607 	struct net_device	*dev;
608 	netdevice_tracker	dev_tracker;
609 
610 	struct Qdisc __rcu	*qdisc;
611 	struct Qdisc		*qdisc_sleeping;
612 #ifdef CONFIG_SYSFS
613 	struct kobject		kobj;
614 #endif
615 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
616 	int			numa_node;
617 #endif
618 	unsigned long		tx_maxrate;
619 	/*
620 	 * Number of TX timeouts for this queue
621 	 * (/sys/class/net/DEV/Q/trans_timeout)
622 	 */
623 	atomic_long_t		trans_timeout;
624 
625 	/* Subordinate device that the queue has been assigned to */
626 	struct net_device	*sb_dev;
627 #ifdef CONFIG_XDP_SOCKETS
628 	struct xsk_buff_pool    *pool;
629 #endif
630 /*
631  * write-mostly part
632  */
633 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
634 	int			xmit_lock_owner;
635 	/*
636 	 * Time (in jiffies) of last Tx
637 	 */
638 	unsigned long		trans_start;
639 
640 	unsigned long		state;
641 
642 #ifdef CONFIG_BQL
643 	struct dql		dql;
644 #endif
645 } ____cacheline_aligned_in_smp;
646 
647 extern int sysctl_fb_tunnels_only_for_init_net;
648 extern int sysctl_devconf_inherit_init_net;
649 
650 /*
651  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
652  *                                     == 1 : For initns only
653  *                                     == 2 : For none.
654  */
655 static inline bool net_has_fallback_tunnels(const struct net *net)
656 {
657 #if IS_ENABLED(CONFIG_SYSCTL)
658 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
659 
660 	return !fb_tunnels_only_for_init_net ||
661 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
662 #else
663 	return true;
664 #endif
665 }
666 
667 static inline int net_inherit_devconf(void)
668 {
669 #if IS_ENABLED(CONFIG_SYSCTL)
670 	return READ_ONCE(sysctl_devconf_inherit_init_net);
671 #else
672 	return 0;
673 #endif
674 }
675 
676 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
677 {
678 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
679 	return q->numa_node;
680 #else
681 	return NUMA_NO_NODE;
682 #endif
683 }
684 
685 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
686 {
687 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
688 	q->numa_node = node;
689 #endif
690 }
691 
692 #ifdef CONFIG_RPS
693 /*
694  * This structure holds an RPS map which can be of variable length.  The
695  * map is an array of CPUs.
696  */
697 struct rps_map {
698 	unsigned int len;
699 	struct rcu_head rcu;
700 	u16 cpus[];
701 };
702 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
703 
704 /*
705  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
706  * tail pointer for that CPU's input queue at the time of last enqueue, and
707  * a hardware filter index.
708  */
709 struct rps_dev_flow {
710 	u16 cpu;
711 	u16 filter;
712 	unsigned int last_qtail;
713 };
714 #define RPS_NO_FILTER 0xffff
715 
716 /*
717  * The rps_dev_flow_table structure contains a table of flow mappings.
718  */
719 struct rps_dev_flow_table {
720 	unsigned int mask;
721 	struct rcu_head rcu;
722 	struct rps_dev_flow flows[];
723 };
724 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
725     ((_num) * sizeof(struct rps_dev_flow)))
726 
727 /*
728  * The rps_sock_flow_table contains mappings of flows to the last CPU
729  * on which they were processed by the application (set in recvmsg).
730  * Each entry is a 32bit value. Upper part is the high-order bits
731  * of flow hash, lower part is CPU number.
732  * rps_cpu_mask is used to partition the space, depending on number of
733  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
734  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
735  * meaning we use 32-6=26 bits for the hash.
736  */
737 struct rps_sock_flow_table {
738 	u32	mask;
739 
740 	u32	ents[] ____cacheline_aligned_in_smp;
741 };
742 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
743 
744 #define RPS_NO_CPU 0xffff
745 
746 extern u32 rps_cpu_mask;
747 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
748 
749 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
750 					u32 hash)
751 {
752 	if (table && hash) {
753 		unsigned int index = hash & table->mask;
754 		u32 val = hash & ~rps_cpu_mask;
755 
756 		/* We only give a hint, preemption can change CPU under us */
757 		val |= raw_smp_processor_id();
758 
759 		if (table->ents[index] != val)
760 			table->ents[index] = val;
761 	}
762 }
763 
764 #ifdef CONFIG_RFS_ACCEL
765 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
766 			 u16 filter_id);
767 #endif
768 #endif /* CONFIG_RPS */
769 
770 /* This structure contains an instance of an RX queue. */
771 struct netdev_rx_queue {
772 	struct xdp_rxq_info		xdp_rxq;
773 #ifdef CONFIG_RPS
774 	struct rps_map __rcu		*rps_map;
775 	struct rps_dev_flow_table __rcu	*rps_flow_table;
776 #endif
777 	struct kobject			kobj;
778 	struct net_device		*dev;
779 	netdevice_tracker		dev_tracker;
780 
781 #ifdef CONFIG_XDP_SOCKETS
782 	struct xsk_buff_pool            *pool;
783 #endif
784 } ____cacheline_aligned_in_smp;
785 
786 /*
787  * RX queue sysfs structures and functions.
788  */
789 struct rx_queue_attribute {
790 	struct attribute attr;
791 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
792 	ssize_t (*store)(struct netdev_rx_queue *queue,
793 			 const char *buf, size_t len);
794 };
795 
796 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
797 enum xps_map_type {
798 	XPS_CPUS = 0,
799 	XPS_RXQS,
800 	XPS_MAPS_MAX,
801 };
802 
803 #ifdef CONFIG_XPS
804 /*
805  * This structure holds an XPS map which can be of variable length.  The
806  * map is an array of queues.
807  */
808 struct xps_map {
809 	unsigned int len;
810 	unsigned int alloc_len;
811 	struct rcu_head rcu;
812 	u16 queues[];
813 };
814 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
815 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
816        - sizeof(struct xps_map)) / sizeof(u16))
817 
818 /*
819  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
820  *
821  * We keep track of the number of cpus/rxqs used when the struct is allocated,
822  * in nr_ids. This will help not accessing out-of-bound memory.
823  *
824  * We keep track of the number of traffic classes used when the struct is
825  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
826  * not crossing its upper bound, as the original dev->num_tc can be updated in
827  * the meantime.
828  */
829 struct xps_dev_maps {
830 	struct rcu_head rcu;
831 	unsigned int nr_ids;
832 	s16 num_tc;
833 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
834 };
835 
836 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
837 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
838 
839 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
840 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
841 
842 #endif /* CONFIG_XPS */
843 
844 #define TC_MAX_QUEUE	16
845 #define TC_BITMASK	15
846 /* HW offloaded queuing disciplines txq count and offset maps */
847 struct netdev_tc_txq {
848 	u16 count;
849 	u16 offset;
850 };
851 
852 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
853 /*
854  * This structure is to hold information about the device
855  * configured to run FCoE protocol stack.
856  */
857 struct netdev_fcoe_hbainfo {
858 	char	manufacturer[64];
859 	char	serial_number[64];
860 	char	hardware_version[64];
861 	char	driver_version[64];
862 	char	optionrom_version[64];
863 	char	firmware_version[64];
864 	char	model[256];
865 	char	model_description[256];
866 };
867 #endif
868 
869 #define MAX_PHYS_ITEM_ID_LEN 32
870 
871 /* This structure holds a unique identifier to identify some
872  * physical item (port for example) used by a netdevice.
873  */
874 struct netdev_phys_item_id {
875 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
876 	unsigned char id_len;
877 };
878 
879 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
880 					    struct netdev_phys_item_id *b)
881 {
882 	return a->id_len == b->id_len &&
883 	       memcmp(a->id, b->id, a->id_len) == 0;
884 }
885 
886 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
887 				       struct sk_buff *skb,
888 				       struct net_device *sb_dev);
889 
890 enum net_device_path_type {
891 	DEV_PATH_ETHERNET = 0,
892 	DEV_PATH_VLAN,
893 	DEV_PATH_BRIDGE,
894 	DEV_PATH_PPPOE,
895 	DEV_PATH_DSA,
896 	DEV_PATH_MTK_WDMA,
897 };
898 
899 struct net_device_path {
900 	enum net_device_path_type	type;
901 	const struct net_device		*dev;
902 	union {
903 		struct {
904 			u16		id;
905 			__be16		proto;
906 			u8		h_dest[ETH_ALEN];
907 		} encap;
908 		struct {
909 			enum {
910 				DEV_PATH_BR_VLAN_KEEP,
911 				DEV_PATH_BR_VLAN_TAG,
912 				DEV_PATH_BR_VLAN_UNTAG,
913 				DEV_PATH_BR_VLAN_UNTAG_HW,
914 			}		vlan_mode;
915 			u16		vlan_id;
916 			__be16		vlan_proto;
917 		} bridge;
918 		struct {
919 			int port;
920 			u16 proto;
921 		} dsa;
922 		struct {
923 			u8 wdma_idx;
924 			u8 queue;
925 			u16 wcid;
926 			u8 bss;
927 		} mtk_wdma;
928 	};
929 };
930 
931 #define NET_DEVICE_PATH_STACK_MAX	5
932 #define NET_DEVICE_PATH_VLAN_MAX	2
933 
934 struct net_device_path_stack {
935 	int			num_paths;
936 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
937 };
938 
939 struct net_device_path_ctx {
940 	const struct net_device *dev;
941 	u8			daddr[ETH_ALEN];
942 
943 	int			num_vlans;
944 	struct {
945 		u16		id;
946 		__be16		proto;
947 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
948 };
949 
950 enum tc_setup_type {
951 	TC_QUERY_CAPS,
952 	TC_SETUP_QDISC_MQPRIO,
953 	TC_SETUP_CLSU32,
954 	TC_SETUP_CLSFLOWER,
955 	TC_SETUP_CLSMATCHALL,
956 	TC_SETUP_CLSBPF,
957 	TC_SETUP_BLOCK,
958 	TC_SETUP_QDISC_CBS,
959 	TC_SETUP_QDISC_RED,
960 	TC_SETUP_QDISC_PRIO,
961 	TC_SETUP_QDISC_MQ,
962 	TC_SETUP_QDISC_ETF,
963 	TC_SETUP_ROOT_QDISC,
964 	TC_SETUP_QDISC_GRED,
965 	TC_SETUP_QDISC_TAPRIO,
966 	TC_SETUP_FT,
967 	TC_SETUP_QDISC_ETS,
968 	TC_SETUP_QDISC_TBF,
969 	TC_SETUP_QDISC_FIFO,
970 	TC_SETUP_QDISC_HTB,
971 	TC_SETUP_ACT,
972 };
973 
974 /* These structures hold the attributes of bpf state that are being passed
975  * to the netdevice through the bpf op.
976  */
977 enum bpf_netdev_command {
978 	/* Set or clear a bpf program used in the earliest stages of packet
979 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
980 	 * is responsible for calling bpf_prog_put on any old progs that are
981 	 * stored. In case of error, the callee need not release the new prog
982 	 * reference, but on success it takes ownership and must bpf_prog_put
983 	 * when it is no longer used.
984 	 */
985 	XDP_SETUP_PROG,
986 	XDP_SETUP_PROG_HW,
987 	/* BPF program for offload callbacks, invoked at program load time. */
988 	BPF_OFFLOAD_MAP_ALLOC,
989 	BPF_OFFLOAD_MAP_FREE,
990 	XDP_SETUP_XSK_POOL,
991 };
992 
993 struct bpf_prog_offload_ops;
994 struct netlink_ext_ack;
995 struct xdp_umem;
996 struct xdp_dev_bulk_queue;
997 struct bpf_xdp_link;
998 
999 enum bpf_xdp_mode {
1000 	XDP_MODE_SKB = 0,
1001 	XDP_MODE_DRV = 1,
1002 	XDP_MODE_HW = 2,
1003 	__MAX_XDP_MODE
1004 };
1005 
1006 struct bpf_xdp_entity {
1007 	struct bpf_prog *prog;
1008 	struct bpf_xdp_link *link;
1009 };
1010 
1011 struct netdev_bpf {
1012 	enum bpf_netdev_command command;
1013 	union {
1014 		/* XDP_SETUP_PROG */
1015 		struct {
1016 			u32 flags;
1017 			struct bpf_prog *prog;
1018 			struct netlink_ext_ack *extack;
1019 		};
1020 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1021 		struct {
1022 			struct bpf_offloaded_map *offmap;
1023 		};
1024 		/* XDP_SETUP_XSK_POOL */
1025 		struct {
1026 			struct xsk_buff_pool *pool;
1027 			u16 queue_id;
1028 		} xsk;
1029 	};
1030 };
1031 
1032 /* Flags for ndo_xsk_wakeup. */
1033 #define XDP_WAKEUP_RX (1 << 0)
1034 #define XDP_WAKEUP_TX (1 << 1)
1035 
1036 #ifdef CONFIG_XFRM_OFFLOAD
1037 struct xfrmdev_ops {
1038 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1039 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1040 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1041 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1042 				       struct xfrm_state *x);
1043 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1044 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1045 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x);
1046 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1047 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1048 };
1049 #endif
1050 
1051 struct dev_ifalias {
1052 	struct rcu_head rcuhead;
1053 	char ifalias[];
1054 };
1055 
1056 struct devlink;
1057 struct tlsdev_ops;
1058 
1059 struct netdev_net_notifier {
1060 	struct list_head list;
1061 	struct notifier_block *nb;
1062 };
1063 
1064 /*
1065  * This structure defines the management hooks for network devices.
1066  * The following hooks can be defined; unless noted otherwise, they are
1067  * optional and can be filled with a null pointer.
1068  *
1069  * int (*ndo_init)(struct net_device *dev);
1070  *     This function is called once when a network device is registered.
1071  *     The network device can use this for any late stage initialization
1072  *     or semantic validation. It can fail with an error code which will
1073  *     be propagated back to register_netdev.
1074  *
1075  * void (*ndo_uninit)(struct net_device *dev);
1076  *     This function is called when device is unregistered or when registration
1077  *     fails. It is not called if init fails.
1078  *
1079  * int (*ndo_open)(struct net_device *dev);
1080  *     This function is called when a network device transitions to the up
1081  *     state.
1082  *
1083  * int (*ndo_stop)(struct net_device *dev);
1084  *     This function is called when a network device transitions to the down
1085  *     state.
1086  *
1087  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1088  *                               struct net_device *dev);
1089  *	Called when a packet needs to be transmitted.
1090  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1091  *	the queue before that can happen; it's for obsolete devices and weird
1092  *	corner cases, but the stack really does a non-trivial amount
1093  *	of useless work if you return NETDEV_TX_BUSY.
1094  *	Required; cannot be NULL.
1095  *
1096  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1097  *					   struct net_device *dev
1098  *					   netdev_features_t features);
1099  *	Called by core transmit path to determine if device is capable of
1100  *	performing offload operations on a given packet. This is to give
1101  *	the device an opportunity to implement any restrictions that cannot
1102  *	be otherwise expressed by feature flags. The check is called with
1103  *	the set of features that the stack has calculated and it returns
1104  *	those the driver believes to be appropriate.
1105  *
1106  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1107  *                         struct net_device *sb_dev);
1108  *	Called to decide which queue to use when device supports multiple
1109  *	transmit queues.
1110  *
1111  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1112  *	This function is called to allow device receiver to make
1113  *	changes to configuration when multicast or promiscuous is enabled.
1114  *
1115  * void (*ndo_set_rx_mode)(struct net_device *dev);
1116  *	This function is called device changes address list filtering.
1117  *	If driver handles unicast address filtering, it should set
1118  *	IFF_UNICAST_FLT in its priv_flags.
1119  *
1120  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1121  *	This function  is called when the Media Access Control address
1122  *	needs to be changed. If this interface is not defined, the
1123  *	MAC address can not be changed.
1124  *
1125  * int (*ndo_validate_addr)(struct net_device *dev);
1126  *	Test if Media Access Control address is valid for the device.
1127  *
1128  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1129  *	Old-style ioctl entry point. This is used internally by the
1130  *	appletalk and ieee802154 subsystems but is no longer called by
1131  *	the device ioctl handler.
1132  *
1133  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1134  *	Used by the bonding driver for its device specific ioctls:
1135  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1136  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1137  *
1138  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1139  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1140  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1141  *
1142  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1143  *	Used to set network devices bus interface parameters. This interface
1144  *	is retained for legacy reasons; new devices should use the bus
1145  *	interface (PCI) for low level management.
1146  *
1147  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1148  *	Called when a user wants to change the Maximum Transfer Unit
1149  *	of a device.
1150  *
1151  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1152  *	Callback used when the transmitter has not made any progress
1153  *	for dev->watchdog ticks.
1154  *
1155  * void (*ndo_get_stats64)(struct net_device *dev,
1156  *                         struct rtnl_link_stats64 *storage);
1157  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1158  *	Called when a user wants to get the network device usage
1159  *	statistics. Drivers must do one of the following:
1160  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1161  *	   rtnl_link_stats64 structure passed by the caller.
1162  *	2. Define @ndo_get_stats to update a net_device_stats structure
1163  *	   (which should normally be dev->stats) and return a pointer to
1164  *	   it. The structure may be changed asynchronously only if each
1165  *	   field is written atomically.
1166  *	3. Update dev->stats asynchronously and atomically, and define
1167  *	   neither operation.
1168  *
1169  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1170  *	Return true if this device supports offload stats of this attr_id.
1171  *
1172  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1173  *	void *attr_data)
1174  *	Get statistics for offload operations by attr_id. Write it into the
1175  *	attr_data pointer.
1176  *
1177  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1178  *	If device supports VLAN filtering this function is called when a
1179  *	VLAN id is registered.
1180  *
1181  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1182  *	If device supports VLAN filtering this function is called when a
1183  *	VLAN id is unregistered.
1184  *
1185  * void (*ndo_poll_controller)(struct net_device *dev);
1186  *
1187  *	SR-IOV management functions.
1188  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1189  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1190  *			  u8 qos, __be16 proto);
1191  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1192  *			  int max_tx_rate);
1193  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1194  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1195  * int (*ndo_get_vf_config)(struct net_device *dev,
1196  *			    int vf, struct ifla_vf_info *ivf);
1197  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1198  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1199  *			  struct nlattr *port[]);
1200  *
1201  *      Enable or disable the VF ability to query its RSS Redirection Table and
1202  *      Hash Key. This is needed since on some devices VF share this information
1203  *      with PF and querying it may introduce a theoretical security risk.
1204  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1205  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1206  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1207  *		       void *type_data);
1208  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1209  *	This is always called from the stack with the rtnl lock held and netif
1210  *	tx queues stopped. This allows the netdevice to perform queue
1211  *	management safely.
1212  *
1213  *	Fiber Channel over Ethernet (FCoE) offload functions.
1214  * int (*ndo_fcoe_enable)(struct net_device *dev);
1215  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1216  *	so the underlying device can perform whatever needed configuration or
1217  *	initialization to support acceleration of FCoE traffic.
1218  *
1219  * int (*ndo_fcoe_disable)(struct net_device *dev);
1220  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1221  *	so the underlying device can perform whatever needed clean-ups to
1222  *	stop supporting acceleration of FCoE traffic.
1223  *
1224  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1225  *			     struct scatterlist *sgl, unsigned int sgc);
1226  *	Called when the FCoE Initiator wants to initialize an I/O that
1227  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1228  *	perform necessary setup and returns 1 to indicate the device is set up
1229  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1230  *
1231  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1232  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1233  *	indicated by the FC exchange id 'xid', so the underlying device can
1234  *	clean up and reuse resources for later DDP requests.
1235  *
1236  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1237  *			      struct scatterlist *sgl, unsigned int sgc);
1238  *	Called when the FCoE Target wants to initialize an I/O that
1239  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1240  *	perform necessary setup and returns 1 to indicate the device is set up
1241  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1242  *
1243  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1244  *			       struct netdev_fcoe_hbainfo *hbainfo);
1245  *	Called when the FCoE Protocol stack wants information on the underlying
1246  *	device. This information is utilized by the FCoE protocol stack to
1247  *	register attributes with Fiber Channel management service as per the
1248  *	FC-GS Fabric Device Management Information(FDMI) specification.
1249  *
1250  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1251  *	Called when the underlying device wants to override default World Wide
1252  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1253  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1254  *	protocol stack to use.
1255  *
1256  *	RFS acceleration.
1257  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1258  *			    u16 rxq_index, u32 flow_id);
1259  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1260  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1261  *	Return the filter ID on success, or a negative error code.
1262  *
1263  *	Slave management functions (for bridge, bonding, etc).
1264  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1265  *	Called to make another netdev an underling.
1266  *
1267  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1268  *	Called to release previously enslaved netdev.
1269  *
1270  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1271  *					    struct sk_buff *skb,
1272  *					    bool all_slaves);
1273  *	Get the xmit slave of master device. If all_slaves is true, function
1274  *	assume all the slaves can transmit.
1275  *
1276  *      Feature/offload setting functions.
1277  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1278  *		netdev_features_t features);
1279  *	Adjusts the requested feature flags according to device-specific
1280  *	constraints, and returns the resulting flags. Must not modify
1281  *	the device state.
1282  *
1283  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1284  *	Called to update device configuration to new features. Passed
1285  *	feature set might be less than what was returned by ndo_fix_features()).
1286  *	Must return >0 or -errno if it changed dev->features itself.
1287  *
1288  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1289  *		      struct net_device *dev,
1290  *		      const unsigned char *addr, u16 vid, u16 flags,
1291  *		      struct netlink_ext_ack *extack);
1292  *	Adds an FDB entry to dev for addr.
1293  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1294  *		      struct net_device *dev,
1295  *		      const unsigned char *addr, u16 vid)
1296  *	Deletes the FDB entry from dev coresponding to addr.
1297  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1298  *			   struct net_device *dev,
1299  *			   u16 vid,
1300  *			   struct netlink_ext_ack *extack);
1301  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1302  *		       struct net_device *dev, struct net_device *filter_dev,
1303  *		       int *idx)
1304  *	Used to add FDB entries to dump requests. Implementers should add
1305  *	entries to skb and update idx with the number of entries.
1306  *
1307  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1308  *			     u16 flags, struct netlink_ext_ack *extack)
1309  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1310  *			     struct net_device *dev, u32 filter_mask,
1311  *			     int nlflags)
1312  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1313  *			     u16 flags);
1314  *
1315  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1316  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1317  *	which do not represent real hardware may define this to allow their
1318  *	userspace components to manage their virtual carrier state. Devices
1319  *	that determine carrier state from physical hardware properties (eg
1320  *	network cables) or protocol-dependent mechanisms (eg
1321  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1322  *
1323  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1324  *			       struct netdev_phys_item_id *ppid);
1325  *	Called to get ID of physical port of this device. If driver does
1326  *	not implement this, it is assumed that the hw is not able to have
1327  *	multiple net devices on single physical port.
1328  *
1329  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1330  *				 struct netdev_phys_item_id *ppid)
1331  *	Called to get the parent ID of the physical port of this device.
1332  *
1333  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1334  *				 struct net_device *dev)
1335  *	Called by upper layer devices to accelerate switching or other
1336  *	station functionality into hardware. 'pdev is the lowerdev
1337  *	to use for the offload and 'dev' is the net device that will
1338  *	back the offload. Returns a pointer to the private structure
1339  *	the upper layer will maintain.
1340  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1341  *	Called by upper layer device to delete the station created
1342  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1343  *	the station and priv is the structure returned by the add
1344  *	operation.
1345  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1346  *			     int queue_index, u32 maxrate);
1347  *	Called when a user wants to set a max-rate limitation of specific
1348  *	TX queue.
1349  * int (*ndo_get_iflink)(const struct net_device *dev);
1350  *	Called to get the iflink value of this device.
1351  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1352  *	This function is used to get egress tunnel information for given skb.
1353  *	This is useful for retrieving outer tunnel header parameters while
1354  *	sampling packet.
1355  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1356  *	This function is used to specify the headroom that the skb must
1357  *	consider when allocation skb during packet reception. Setting
1358  *	appropriate rx headroom value allows avoiding skb head copy on
1359  *	forward. Setting a negative value resets the rx headroom to the
1360  *	default value.
1361  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1362  *	This function is used to set or query state related to XDP on the
1363  *	netdevice and manage BPF offload. See definition of
1364  *	enum bpf_netdev_command for details.
1365  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1366  *			u32 flags);
1367  *	This function is used to submit @n XDP packets for transmit on a
1368  *	netdevice. Returns number of frames successfully transmitted, frames
1369  *	that got dropped are freed/returned via xdp_return_frame().
1370  *	Returns negative number, means general error invoking ndo, meaning
1371  *	no frames were xmit'ed and core-caller will free all frames.
1372  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1373  *					        struct xdp_buff *xdp);
1374  *      Get the xmit slave of master device based on the xdp_buff.
1375  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1376  *      This function is used to wake up the softirq, ksoftirqd or kthread
1377  *	responsible for sending and/or receiving packets on a specific
1378  *	queue id bound to an AF_XDP socket. The flags field specifies if
1379  *	only RX, only Tx, or both should be woken up using the flags
1380  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1381  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1382  *			 int cmd);
1383  *	Add, change, delete or get information on an IPv4 tunnel.
1384  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1385  *	If a device is paired with a peer device, return the peer instance.
1386  *	The caller must be under RCU read context.
1387  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1388  *     Get the forwarding path to reach the real device from the HW destination address
1389  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1390  *			     const struct skb_shared_hwtstamps *hwtstamps,
1391  *			     bool cycles);
1392  *	Get hardware timestamp based on normal/adjustable time or free running
1393  *	cycle counter. This function is required if physical clock supports a
1394  *	free running cycle counter.
1395  */
1396 struct net_device_ops {
1397 	int			(*ndo_init)(struct net_device *dev);
1398 	void			(*ndo_uninit)(struct net_device *dev);
1399 	int			(*ndo_open)(struct net_device *dev);
1400 	int			(*ndo_stop)(struct net_device *dev);
1401 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1402 						  struct net_device *dev);
1403 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1404 						      struct net_device *dev,
1405 						      netdev_features_t features);
1406 	u16			(*ndo_select_queue)(struct net_device *dev,
1407 						    struct sk_buff *skb,
1408 						    struct net_device *sb_dev);
1409 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1410 						       int flags);
1411 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1412 	int			(*ndo_set_mac_address)(struct net_device *dev,
1413 						       void *addr);
1414 	int			(*ndo_validate_addr)(struct net_device *dev);
1415 	int			(*ndo_do_ioctl)(struct net_device *dev,
1416 					        struct ifreq *ifr, int cmd);
1417 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1418 						 struct ifreq *ifr, int cmd);
1419 	int			(*ndo_siocbond)(struct net_device *dev,
1420 						struct ifreq *ifr, int cmd);
1421 	int			(*ndo_siocwandev)(struct net_device *dev,
1422 						  struct if_settings *ifs);
1423 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1424 						      struct ifreq *ifr,
1425 						      void __user *data, int cmd);
1426 	int			(*ndo_set_config)(struct net_device *dev,
1427 					          struct ifmap *map);
1428 	int			(*ndo_change_mtu)(struct net_device *dev,
1429 						  int new_mtu);
1430 	int			(*ndo_neigh_setup)(struct net_device *dev,
1431 						   struct neigh_parms *);
1432 	void			(*ndo_tx_timeout) (struct net_device *dev,
1433 						   unsigned int txqueue);
1434 
1435 	void			(*ndo_get_stats64)(struct net_device *dev,
1436 						   struct rtnl_link_stats64 *storage);
1437 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1438 	int			(*ndo_get_offload_stats)(int attr_id,
1439 							 const struct net_device *dev,
1440 							 void *attr_data);
1441 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1442 
1443 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1444 						       __be16 proto, u16 vid);
1445 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1446 						        __be16 proto, u16 vid);
1447 #ifdef CONFIG_NET_POLL_CONTROLLER
1448 	void                    (*ndo_poll_controller)(struct net_device *dev);
1449 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1450 						     struct netpoll_info *info);
1451 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1452 #endif
1453 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1454 						  int queue, u8 *mac);
1455 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1456 						   int queue, u16 vlan,
1457 						   u8 qos, __be16 proto);
1458 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1459 						   int vf, int min_tx_rate,
1460 						   int max_tx_rate);
1461 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1462 						       int vf, bool setting);
1463 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1464 						    int vf, bool setting);
1465 	int			(*ndo_get_vf_config)(struct net_device *dev,
1466 						     int vf,
1467 						     struct ifla_vf_info *ivf);
1468 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1469 							 int vf, int link_state);
1470 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1471 						    int vf,
1472 						    struct ifla_vf_stats
1473 						    *vf_stats);
1474 	int			(*ndo_set_vf_port)(struct net_device *dev,
1475 						   int vf,
1476 						   struct nlattr *port[]);
1477 	int			(*ndo_get_vf_port)(struct net_device *dev,
1478 						   int vf, struct sk_buff *skb);
1479 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1480 						   int vf,
1481 						   struct ifla_vf_guid *node_guid,
1482 						   struct ifla_vf_guid *port_guid);
1483 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1484 						   int vf, u64 guid,
1485 						   int guid_type);
1486 	int			(*ndo_set_vf_rss_query_en)(
1487 						   struct net_device *dev,
1488 						   int vf, bool setting);
1489 	int			(*ndo_setup_tc)(struct net_device *dev,
1490 						enum tc_setup_type type,
1491 						void *type_data);
1492 #if IS_ENABLED(CONFIG_FCOE)
1493 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1494 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1495 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1496 						      u16 xid,
1497 						      struct scatterlist *sgl,
1498 						      unsigned int sgc);
1499 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1500 						     u16 xid);
1501 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1502 						       u16 xid,
1503 						       struct scatterlist *sgl,
1504 						       unsigned int sgc);
1505 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1506 							struct netdev_fcoe_hbainfo *hbainfo);
1507 #endif
1508 
1509 #if IS_ENABLED(CONFIG_LIBFCOE)
1510 #define NETDEV_FCOE_WWNN 0
1511 #define NETDEV_FCOE_WWPN 1
1512 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1513 						    u64 *wwn, int type);
1514 #endif
1515 
1516 #ifdef CONFIG_RFS_ACCEL
1517 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1518 						     const struct sk_buff *skb,
1519 						     u16 rxq_index,
1520 						     u32 flow_id);
1521 #endif
1522 	int			(*ndo_add_slave)(struct net_device *dev,
1523 						 struct net_device *slave_dev,
1524 						 struct netlink_ext_ack *extack);
1525 	int			(*ndo_del_slave)(struct net_device *dev,
1526 						 struct net_device *slave_dev);
1527 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1528 						      struct sk_buff *skb,
1529 						      bool all_slaves);
1530 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1531 							struct sock *sk);
1532 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1533 						    netdev_features_t features);
1534 	int			(*ndo_set_features)(struct net_device *dev,
1535 						    netdev_features_t features);
1536 	int			(*ndo_neigh_construct)(struct net_device *dev,
1537 						       struct neighbour *n);
1538 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1539 						     struct neighbour *n);
1540 
1541 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1542 					       struct nlattr *tb[],
1543 					       struct net_device *dev,
1544 					       const unsigned char *addr,
1545 					       u16 vid,
1546 					       u16 flags,
1547 					       struct netlink_ext_ack *extack);
1548 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1549 					       struct nlattr *tb[],
1550 					       struct net_device *dev,
1551 					       const unsigned char *addr,
1552 					       u16 vid, struct netlink_ext_ack *extack);
1553 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1554 						    struct nlattr *tb[],
1555 						    struct net_device *dev,
1556 						    u16 vid,
1557 						    struct netlink_ext_ack *extack);
1558 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1559 						struct netlink_callback *cb,
1560 						struct net_device *dev,
1561 						struct net_device *filter_dev,
1562 						int *idx);
1563 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1564 					       struct nlattr *tb[],
1565 					       struct net_device *dev,
1566 					       const unsigned char *addr,
1567 					       u16 vid, u32 portid, u32 seq,
1568 					       struct netlink_ext_ack *extack);
1569 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1570 						      struct nlmsghdr *nlh,
1571 						      u16 flags,
1572 						      struct netlink_ext_ack *extack);
1573 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1574 						      u32 pid, u32 seq,
1575 						      struct net_device *dev,
1576 						      u32 filter_mask,
1577 						      int nlflags);
1578 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1579 						      struct nlmsghdr *nlh,
1580 						      u16 flags);
1581 	int			(*ndo_change_carrier)(struct net_device *dev,
1582 						      bool new_carrier);
1583 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1584 							struct netdev_phys_item_id *ppid);
1585 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1586 							  struct netdev_phys_item_id *ppid);
1587 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1588 							  char *name, size_t len);
1589 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1590 							struct net_device *dev);
1591 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1592 							void *priv);
1593 
1594 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1595 						      int queue_index,
1596 						      u32 maxrate);
1597 	int			(*ndo_get_iflink)(const struct net_device *dev);
1598 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1599 						       struct sk_buff *skb);
1600 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1601 						       int needed_headroom);
1602 	int			(*ndo_bpf)(struct net_device *dev,
1603 					   struct netdev_bpf *bpf);
1604 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1605 						struct xdp_frame **xdp,
1606 						u32 flags);
1607 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1608 							  struct xdp_buff *xdp);
1609 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1610 						  u32 queue_id, u32 flags);
1611 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1612 						  struct ip_tunnel_parm *p, int cmd);
1613 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1614 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1615                                                          struct net_device_path *path);
1616 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1617 						  const struct skb_shared_hwtstamps *hwtstamps,
1618 						  bool cycles);
1619 };
1620 
1621 /**
1622  * enum netdev_priv_flags - &struct net_device priv_flags
1623  *
1624  * These are the &struct net_device, they are only set internally
1625  * by drivers and used in the kernel. These flags are invisible to
1626  * userspace; this means that the order of these flags can change
1627  * during any kernel release.
1628  *
1629  * You should have a pretty good reason to be extending these flags.
1630  *
1631  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1632  * @IFF_EBRIDGE: Ethernet bridging device
1633  * @IFF_BONDING: bonding master or slave
1634  * @IFF_ISATAP: ISATAP interface (RFC4214)
1635  * @IFF_WAN_HDLC: WAN HDLC device
1636  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1637  *	release skb->dst
1638  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1639  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1640  * @IFF_MACVLAN_PORT: device used as macvlan port
1641  * @IFF_BRIDGE_PORT: device used as bridge port
1642  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1643  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1644  * @IFF_UNICAST_FLT: Supports unicast filtering
1645  * @IFF_TEAM_PORT: device used as team port
1646  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1647  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1648  *	change when it's running
1649  * @IFF_MACVLAN: Macvlan device
1650  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1651  *	underlying stacked devices
1652  * @IFF_L3MDEV_MASTER: device is an L3 master device
1653  * @IFF_NO_QUEUE: device can run without qdisc attached
1654  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1655  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1656  * @IFF_TEAM: device is a team device
1657  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1658  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1659  *	entity (i.e. the master device for bridged veth)
1660  * @IFF_MACSEC: device is a MACsec device
1661  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1662  * @IFF_FAILOVER: device is a failover master device
1663  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1664  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1665  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1666  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1667  *	skb_headlen(skb) == 0 (data starts from frag0)
1668  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1669  */
1670 enum netdev_priv_flags {
1671 	IFF_802_1Q_VLAN			= 1<<0,
1672 	IFF_EBRIDGE			= 1<<1,
1673 	IFF_BONDING			= 1<<2,
1674 	IFF_ISATAP			= 1<<3,
1675 	IFF_WAN_HDLC			= 1<<4,
1676 	IFF_XMIT_DST_RELEASE		= 1<<5,
1677 	IFF_DONT_BRIDGE			= 1<<6,
1678 	IFF_DISABLE_NETPOLL		= 1<<7,
1679 	IFF_MACVLAN_PORT		= 1<<8,
1680 	IFF_BRIDGE_PORT			= 1<<9,
1681 	IFF_OVS_DATAPATH		= 1<<10,
1682 	IFF_TX_SKB_SHARING		= 1<<11,
1683 	IFF_UNICAST_FLT			= 1<<12,
1684 	IFF_TEAM_PORT			= 1<<13,
1685 	IFF_SUPP_NOFCS			= 1<<14,
1686 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1687 	IFF_MACVLAN			= 1<<16,
1688 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1689 	IFF_L3MDEV_MASTER		= 1<<18,
1690 	IFF_NO_QUEUE			= 1<<19,
1691 	IFF_OPENVSWITCH			= 1<<20,
1692 	IFF_L3MDEV_SLAVE		= 1<<21,
1693 	IFF_TEAM			= 1<<22,
1694 	IFF_RXFH_CONFIGURED		= 1<<23,
1695 	IFF_PHONY_HEADROOM		= 1<<24,
1696 	IFF_MACSEC			= 1<<25,
1697 	IFF_NO_RX_HANDLER		= 1<<26,
1698 	IFF_FAILOVER			= 1<<27,
1699 	IFF_FAILOVER_SLAVE		= 1<<28,
1700 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1701 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1702 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1703 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1704 };
1705 
1706 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1707 #define IFF_EBRIDGE			IFF_EBRIDGE
1708 #define IFF_BONDING			IFF_BONDING
1709 #define IFF_ISATAP			IFF_ISATAP
1710 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1711 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1712 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1713 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1714 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1715 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1716 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1717 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1718 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1719 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1720 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1721 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1722 #define IFF_MACVLAN			IFF_MACVLAN
1723 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1724 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1725 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1726 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1727 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1728 #define IFF_TEAM			IFF_TEAM
1729 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1730 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1731 #define IFF_MACSEC			IFF_MACSEC
1732 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1733 #define IFF_FAILOVER			IFF_FAILOVER
1734 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1735 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1736 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1737 
1738 /* Specifies the type of the struct net_device::ml_priv pointer */
1739 enum netdev_ml_priv_type {
1740 	ML_PRIV_NONE,
1741 	ML_PRIV_CAN,
1742 };
1743 
1744 /**
1745  *	struct net_device - The DEVICE structure.
1746  *
1747  *	Actually, this whole structure is a big mistake.  It mixes I/O
1748  *	data with strictly "high-level" data, and it has to know about
1749  *	almost every data structure used in the INET module.
1750  *
1751  *	@name:	This is the first field of the "visible" part of this structure
1752  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1753  *		of the interface.
1754  *
1755  *	@name_node:	Name hashlist node
1756  *	@ifalias:	SNMP alias
1757  *	@mem_end:	Shared memory end
1758  *	@mem_start:	Shared memory start
1759  *	@base_addr:	Device I/O address
1760  *	@irq:		Device IRQ number
1761  *
1762  *	@state:		Generic network queuing layer state, see netdev_state_t
1763  *	@dev_list:	The global list of network devices
1764  *	@napi_list:	List entry used for polling NAPI devices
1765  *	@unreg_list:	List entry  when we are unregistering the
1766  *			device; see the function unregister_netdev
1767  *	@close_list:	List entry used when we are closing the device
1768  *	@ptype_all:     Device-specific packet handlers for all protocols
1769  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1770  *
1771  *	@adj_list:	Directly linked devices, like slaves for bonding
1772  *	@features:	Currently active device features
1773  *	@hw_features:	User-changeable features
1774  *
1775  *	@wanted_features:	User-requested features
1776  *	@vlan_features:		Mask of features inheritable by VLAN devices
1777  *
1778  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1779  *				This field indicates what encapsulation
1780  *				offloads the hardware is capable of doing,
1781  *				and drivers will need to set them appropriately.
1782  *
1783  *	@mpls_features:	Mask of features inheritable by MPLS
1784  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1785  *
1786  *	@ifindex:	interface index
1787  *	@group:		The group the device belongs to
1788  *
1789  *	@stats:		Statistics struct, which was left as a legacy, use
1790  *			rtnl_link_stats64 instead
1791  *
1792  *	@core_stats:	core networking counters,
1793  *			do not use this in drivers
1794  *	@carrier_up_count:	Number of times the carrier has been up
1795  *	@carrier_down_count:	Number of times the carrier has been down
1796  *
1797  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1798  *				instead of ioctl,
1799  *				see <net/iw_handler.h> for details.
1800  *	@wireless_data:	Instance data managed by the core of wireless extensions
1801  *
1802  *	@netdev_ops:	Includes several pointers to callbacks,
1803  *			if one wants to override the ndo_*() functions
1804  *	@ethtool_ops:	Management operations
1805  *	@l3mdev_ops:	Layer 3 master device operations
1806  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1807  *			discovery handling. Necessary for e.g. 6LoWPAN.
1808  *	@xfrmdev_ops:	Transformation offload operations
1809  *	@tlsdev_ops:	Transport Layer Security offload operations
1810  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1811  *			of Layer 2 headers.
1812  *
1813  *	@flags:		Interface flags (a la BSD)
1814  *	@priv_flags:	Like 'flags' but invisible to userspace,
1815  *			see if.h for the definitions
1816  *	@gflags:	Global flags ( kept as legacy )
1817  *	@padded:	How much padding added by alloc_netdev()
1818  *	@operstate:	RFC2863 operstate
1819  *	@link_mode:	Mapping policy to operstate
1820  *	@if_port:	Selectable AUI, TP, ...
1821  *	@dma:		DMA channel
1822  *	@mtu:		Interface MTU value
1823  *	@min_mtu:	Interface Minimum MTU value
1824  *	@max_mtu:	Interface Maximum MTU value
1825  *	@type:		Interface hardware type
1826  *	@hard_header_len: Maximum hardware header length.
1827  *	@min_header_len:  Minimum hardware header length
1828  *
1829  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1830  *			  cases can this be guaranteed
1831  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1832  *			  cases can this be guaranteed. Some cases also use
1833  *			  LL_MAX_HEADER instead to allocate the skb
1834  *
1835  *	interface address info:
1836  *
1837  * 	@perm_addr:		Permanent hw address
1838  * 	@addr_assign_type:	Hw address assignment type
1839  * 	@addr_len:		Hardware address length
1840  *	@upper_level:		Maximum depth level of upper devices.
1841  *	@lower_level:		Maximum depth level of lower devices.
1842  *	@neigh_priv_len:	Used in neigh_alloc()
1843  * 	@dev_id:		Used to differentiate devices that share
1844  * 				the same link layer address
1845  * 	@dev_port:		Used to differentiate devices that share
1846  * 				the same function
1847  *	@addr_list_lock:	XXX: need comments on this one
1848  *	@name_assign_type:	network interface name assignment type
1849  *	@uc_promisc:		Counter that indicates promiscuous mode
1850  *				has been enabled due to the need to listen to
1851  *				additional unicast addresses in a device that
1852  *				does not implement ndo_set_rx_mode()
1853  *	@uc:			unicast mac addresses
1854  *	@mc:			multicast mac addresses
1855  *	@dev_addrs:		list of device hw addresses
1856  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1857  *	@promiscuity:		Number of times the NIC is told to work in
1858  *				promiscuous mode; if it becomes 0 the NIC will
1859  *				exit promiscuous mode
1860  *	@allmulti:		Counter, enables or disables allmulticast mode
1861  *
1862  *	@vlan_info:	VLAN info
1863  *	@dsa_ptr:	dsa specific data
1864  *	@tipc_ptr:	TIPC specific data
1865  *	@atalk_ptr:	AppleTalk link
1866  *	@ip_ptr:	IPv4 specific data
1867  *	@ip6_ptr:	IPv6 specific data
1868  *	@ax25_ptr:	AX.25 specific data
1869  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1870  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1871  *			 device struct
1872  *	@mpls_ptr:	mpls_dev struct pointer
1873  *	@mctp_ptr:	MCTP specific data
1874  *
1875  *	@dev_addr:	Hw address (before bcast,
1876  *			because most packets are unicast)
1877  *
1878  *	@_rx:			Array of RX queues
1879  *	@num_rx_queues:		Number of RX queues
1880  *				allocated at register_netdev() time
1881  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1882  *	@xdp_prog:		XDP sockets filter program pointer
1883  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1884  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1885  *				allow to avoid NIC hard IRQ, on busy queues.
1886  *
1887  *	@rx_handler:		handler for received packets
1888  *	@rx_handler_data: 	XXX: need comments on this one
1889  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1890  *				ingress processing
1891  *	@ingress_queue:		XXX: need comments on this one
1892  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1893  *	@broadcast:		hw bcast address
1894  *
1895  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1896  *			indexed by RX queue number. Assigned by driver.
1897  *			This must only be set if the ndo_rx_flow_steer
1898  *			operation is defined
1899  *	@index_hlist:		Device index hash chain
1900  *
1901  *	@_tx:			Array of TX queues
1902  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1903  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1904  *	@qdisc:			Root qdisc from userspace point of view
1905  *	@tx_queue_len:		Max frames per queue allowed
1906  *	@tx_global_lock: 	XXX: need comments on this one
1907  *	@xdp_bulkq:		XDP device bulk queue
1908  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1909  *
1910  *	@xps_maps:	XXX: need comments on this one
1911  *	@miniq_egress:		clsact qdisc specific data for
1912  *				egress processing
1913  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1914  *	@qdisc_hash:		qdisc hash table
1915  *	@watchdog_timeo:	Represents the timeout that is used by
1916  *				the watchdog (see dev_watchdog())
1917  *	@watchdog_timer:	List of timers
1918  *
1919  *	@proto_down_reason:	reason a netdev interface is held down
1920  *	@pcpu_refcnt:		Number of references to this device
1921  *	@dev_refcnt:		Number of references to this device
1922  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1923  *	@todo_list:		Delayed register/unregister
1924  *	@link_watch_list:	XXX: need comments on this one
1925  *
1926  *	@reg_state:		Register/unregister state machine
1927  *	@dismantle:		Device is going to be freed
1928  *	@rtnl_link_state:	This enum represents the phases of creating
1929  *				a new link
1930  *
1931  *	@needs_free_netdev:	Should unregister perform free_netdev?
1932  *	@priv_destructor:	Called from unregister
1933  *	@npinfo:		XXX: need comments on this one
1934  * 	@nd_net:		Network namespace this network device is inside
1935  *
1936  * 	@ml_priv:	Mid-layer private
1937  *	@ml_priv_type:  Mid-layer private type
1938  * 	@lstats:	Loopback statistics
1939  * 	@tstats:	Tunnel statistics
1940  * 	@dstats:	Dummy statistics
1941  * 	@vstats:	Virtual ethernet statistics
1942  *
1943  *	@garp_port:	GARP
1944  *	@mrp_port:	MRP
1945  *
1946  *	@dm_private:	Drop monitor private
1947  *
1948  *	@dev:		Class/net/name entry
1949  *	@sysfs_groups:	Space for optional device, statistics and wireless
1950  *			sysfs groups
1951  *
1952  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1953  *	@rtnl_link_ops:	Rtnl_link_ops
1954  *
1955  *	@gso_max_size:	Maximum size of generic segmentation offload
1956  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1957  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1958  *			NIC for GSO
1959  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1960  *
1961  *	@dcbnl_ops:	Data Center Bridging netlink ops
1962  *	@num_tc:	Number of traffic classes in the net device
1963  *	@tc_to_txq:	XXX: need comments on this one
1964  *	@prio_tc_map:	XXX: need comments on this one
1965  *
1966  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1967  *
1968  *	@priomap:	XXX: need comments on this one
1969  *	@phydev:	Physical device may attach itself
1970  *			for hardware timestamping
1971  *	@sfp_bus:	attached &struct sfp_bus structure.
1972  *
1973  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1974  *
1975  *	@proto_down:	protocol port state information can be sent to the
1976  *			switch driver and used to set the phys state of the
1977  *			switch port.
1978  *
1979  *	@wol_enabled:	Wake-on-LAN is enabled
1980  *
1981  *	@threaded:	napi threaded mode is enabled
1982  *
1983  *	@net_notifier_list:	List of per-net netdev notifier block
1984  *				that follow this device when it is moved
1985  *				to another network namespace.
1986  *
1987  *	@macsec_ops:    MACsec offloading ops
1988  *
1989  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1990  *				offload capabilities of the device
1991  *	@udp_tunnel_nic:	UDP tunnel offload state
1992  *	@xdp_state:		stores info on attached XDP BPF programs
1993  *
1994  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1995  *			dev->addr_list_lock.
1996  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1997  *			keep a list of interfaces to be deleted.
1998  *	@gro_max_size:	Maximum size of aggregated packet in generic
1999  *			receive offload (GRO)
2000  *
2001  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2002  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2003  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2004  *	@dev_registered_tracker:	tracker for reference held while
2005  *					registered
2006  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2007  *
2008  *	@devlink_port:	Pointer to related devlink port structure.
2009  *			Assigned by a driver before netdev registration using
2010  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2011  *			during the time netdevice is registered.
2012  *
2013  *	FIXME: cleanup struct net_device such that network protocol info
2014  *	moves out.
2015  */
2016 
2017 struct net_device {
2018 	char			name[IFNAMSIZ];
2019 	struct netdev_name_node	*name_node;
2020 	struct dev_ifalias	__rcu *ifalias;
2021 	/*
2022 	 *	I/O specific fields
2023 	 *	FIXME: Merge these and struct ifmap into one
2024 	 */
2025 	unsigned long		mem_end;
2026 	unsigned long		mem_start;
2027 	unsigned long		base_addr;
2028 
2029 	/*
2030 	 *	Some hardware also needs these fields (state,dev_list,
2031 	 *	napi_list,unreg_list,close_list) but they are not
2032 	 *	part of the usual set specified in Space.c.
2033 	 */
2034 
2035 	unsigned long		state;
2036 
2037 	struct list_head	dev_list;
2038 	struct list_head	napi_list;
2039 	struct list_head	unreg_list;
2040 	struct list_head	close_list;
2041 	struct list_head	ptype_all;
2042 	struct list_head	ptype_specific;
2043 
2044 	struct {
2045 		struct list_head upper;
2046 		struct list_head lower;
2047 	} adj_list;
2048 
2049 	/* Read-mostly cache-line for fast-path access */
2050 	unsigned int		flags;
2051 	unsigned long long	priv_flags;
2052 	const struct net_device_ops *netdev_ops;
2053 	int			ifindex;
2054 	unsigned short		gflags;
2055 	unsigned short		hard_header_len;
2056 
2057 	/* Note : dev->mtu is often read without holding a lock.
2058 	 * Writers usually hold RTNL.
2059 	 * It is recommended to use READ_ONCE() to annotate the reads,
2060 	 * and to use WRITE_ONCE() to annotate the writes.
2061 	 */
2062 	unsigned int		mtu;
2063 	unsigned short		needed_headroom;
2064 	unsigned short		needed_tailroom;
2065 
2066 	netdev_features_t	features;
2067 	netdev_features_t	hw_features;
2068 	netdev_features_t	wanted_features;
2069 	netdev_features_t	vlan_features;
2070 	netdev_features_t	hw_enc_features;
2071 	netdev_features_t	mpls_features;
2072 	netdev_features_t	gso_partial_features;
2073 
2074 	unsigned int		min_mtu;
2075 	unsigned int		max_mtu;
2076 	unsigned short		type;
2077 	unsigned char		min_header_len;
2078 	unsigned char		name_assign_type;
2079 
2080 	int			group;
2081 
2082 	struct net_device_stats	stats; /* not used by modern drivers */
2083 
2084 	struct net_device_core_stats __percpu *core_stats;
2085 
2086 	/* Stats to monitor link on/off, flapping */
2087 	atomic_t		carrier_up_count;
2088 	atomic_t		carrier_down_count;
2089 
2090 #ifdef CONFIG_WIRELESS_EXT
2091 	const struct iw_handler_def *wireless_handlers;
2092 	struct iw_public_data	*wireless_data;
2093 #endif
2094 	const struct ethtool_ops *ethtool_ops;
2095 #ifdef CONFIG_NET_L3_MASTER_DEV
2096 	const struct l3mdev_ops	*l3mdev_ops;
2097 #endif
2098 #if IS_ENABLED(CONFIG_IPV6)
2099 	const struct ndisc_ops *ndisc_ops;
2100 #endif
2101 
2102 #ifdef CONFIG_XFRM_OFFLOAD
2103 	const struct xfrmdev_ops *xfrmdev_ops;
2104 #endif
2105 
2106 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2107 	const struct tlsdev_ops *tlsdev_ops;
2108 #endif
2109 
2110 	const struct header_ops *header_ops;
2111 
2112 	unsigned char		operstate;
2113 	unsigned char		link_mode;
2114 
2115 	unsigned char		if_port;
2116 	unsigned char		dma;
2117 
2118 	/* Interface address info. */
2119 	unsigned char		perm_addr[MAX_ADDR_LEN];
2120 	unsigned char		addr_assign_type;
2121 	unsigned char		addr_len;
2122 	unsigned char		upper_level;
2123 	unsigned char		lower_level;
2124 
2125 	unsigned short		neigh_priv_len;
2126 	unsigned short          dev_id;
2127 	unsigned short          dev_port;
2128 	unsigned short		padded;
2129 
2130 	spinlock_t		addr_list_lock;
2131 	int			irq;
2132 
2133 	struct netdev_hw_addr_list	uc;
2134 	struct netdev_hw_addr_list	mc;
2135 	struct netdev_hw_addr_list	dev_addrs;
2136 
2137 #ifdef CONFIG_SYSFS
2138 	struct kset		*queues_kset;
2139 #endif
2140 #ifdef CONFIG_LOCKDEP
2141 	struct list_head	unlink_list;
2142 #endif
2143 	unsigned int		promiscuity;
2144 	unsigned int		allmulti;
2145 	bool			uc_promisc;
2146 #ifdef CONFIG_LOCKDEP
2147 	unsigned char		nested_level;
2148 #endif
2149 
2150 
2151 	/* Protocol-specific pointers */
2152 
2153 	struct in_device __rcu	*ip_ptr;
2154 	struct inet6_dev __rcu	*ip6_ptr;
2155 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2156 	struct vlan_info __rcu	*vlan_info;
2157 #endif
2158 #if IS_ENABLED(CONFIG_NET_DSA)
2159 	struct dsa_port		*dsa_ptr;
2160 #endif
2161 #if IS_ENABLED(CONFIG_TIPC)
2162 	struct tipc_bearer __rcu *tipc_ptr;
2163 #endif
2164 #if IS_ENABLED(CONFIG_ATALK)
2165 	void 			*atalk_ptr;
2166 #endif
2167 #if IS_ENABLED(CONFIG_AX25)
2168 	void			*ax25_ptr;
2169 #endif
2170 #if IS_ENABLED(CONFIG_CFG80211)
2171 	struct wireless_dev	*ieee80211_ptr;
2172 #endif
2173 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2174 	struct wpan_dev		*ieee802154_ptr;
2175 #endif
2176 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2177 	struct mpls_dev __rcu	*mpls_ptr;
2178 #endif
2179 #if IS_ENABLED(CONFIG_MCTP)
2180 	struct mctp_dev __rcu	*mctp_ptr;
2181 #endif
2182 
2183 /*
2184  * Cache lines mostly used on receive path (including eth_type_trans())
2185  */
2186 	/* Interface address info used in eth_type_trans() */
2187 	const unsigned char	*dev_addr;
2188 
2189 	struct netdev_rx_queue	*_rx;
2190 	unsigned int		num_rx_queues;
2191 	unsigned int		real_num_rx_queues;
2192 
2193 	struct bpf_prog __rcu	*xdp_prog;
2194 	unsigned long		gro_flush_timeout;
2195 	int			napi_defer_hard_irqs;
2196 #define GRO_LEGACY_MAX_SIZE	65536u
2197 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2198  * and shinfo->gso_segs is a 16bit field.
2199  */
2200 #define GRO_MAX_SIZE		(8 * 65535u)
2201 	unsigned int		gro_max_size;
2202 	rx_handler_func_t __rcu	*rx_handler;
2203 	void __rcu		*rx_handler_data;
2204 
2205 #ifdef CONFIG_NET_CLS_ACT
2206 	struct mini_Qdisc __rcu	*miniq_ingress;
2207 #endif
2208 	struct netdev_queue __rcu *ingress_queue;
2209 #ifdef CONFIG_NETFILTER_INGRESS
2210 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2211 #endif
2212 
2213 	unsigned char		broadcast[MAX_ADDR_LEN];
2214 #ifdef CONFIG_RFS_ACCEL
2215 	struct cpu_rmap		*rx_cpu_rmap;
2216 #endif
2217 	struct hlist_node	index_hlist;
2218 
2219 /*
2220  * Cache lines mostly used on transmit path
2221  */
2222 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2223 	unsigned int		num_tx_queues;
2224 	unsigned int		real_num_tx_queues;
2225 	struct Qdisc __rcu	*qdisc;
2226 	unsigned int		tx_queue_len;
2227 	spinlock_t		tx_global_lock;
2228 
2229 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2230 
2231 #ifdef CONFIG_XPS
2232 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2233 #endif
2234 #ifdef CONFIG_NET_CLS_ACT
2235 	struct mini_Qdisc __rcu	*miniq_egress;
2236 #endif
2237 #ifdef CONFIG_NETFILTER_EGRESS
2238 	struct nf_hook_entries __rcu *nf_hooks_egress;
2239 #endif
2240 
2241 #ifdef CONFIG_NET_SCHED
2242 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2243 #endif
2244 	/* These may be needed for future network-power-down code. */
2245 	struct timer_list	watchdog_timer;
2246 	int			watchdog_timeo;
2247 
2248 	u32                     proto_down_reason;
2249 
2250 	struct list_head	todo_list;
2251 
2252 #ifdef CONFIG_PCPU_DEV_REFCNT
2253 	int __percpu		*pcpu_refcnt;
2254 #else
2255 	refcount_t		dev_refcnt;
2256 #endif
2257 	struct ref_tracker_dir	refcnt_tracker;
2258 
2259 	struct list_head	link_watch_list;
2260 
2261 	enum { NETREG_UNINITIALIZED=0,
2262 	       NETREG_REGISTERED,	/* completed register_netdevice */
2263 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2264 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2265 	       NETREG_RELEASED,		/* called free_netdev */
2266 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2267 	} reg_state:8;
2268 
2269 	bool dismantle;
2270 
2271 	enum {
2272 		RTNL_LINK_INITIALIZED,
2273 		RTNL_LINK_INITIALIZING,
2274 	} rtnl_link_state:16;
2275 
2276 	bool needs_free_netdev;
2277 	void (*priv_destructor)(struct net_device *dev);
2278 
2279 #ifdef CONFIG_NETPOLL
2280 	struct netpoll_info __rcu	*npinfo;
2281 #endif
2282 
2283 	possible_net_t			nd_net;
2284 
2285 	/* mid-layer private */
2286 	void				*ml_priv;
2287 	enum netdev_ml_priv_type	ml_priv_type;
2288 
2289 	union {
2290 		struct pcpu_lstats __percpu		*lstats;
2291 		struct pcpu_sw_netstats __percpu	*tstats;
2292 		struct pcpu_dstats __percpu		*dstats;
2293 	};
2294 
2295 #if IS_ENABLED(CONFIG_GARP)
2296 	struct garp_port __rcu	*garp_port;
2297 #endif
2298 #if IS_ENABLED(CONFIG_MRP)
2299 	struct mrp_port __rcu	*mrp_port;
2300 #endif
2301 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2302 	struct dm_hw_stat_delta __rcu *dm_private;
2303 #endif
2304 	struct device		dev;
2305 	const struct attribute_group *sysfs_groups[4];
2306 	const struct attribute_group *sysfs_rx_queue_group;
2307 
2308 	const struct rtnl_link_ops *rtnl_link_ops;
2309 
2310 	/* for setting kernel sock attribute on TCP connection setup */
2311 #define GSO_MAX_SEGS		65535u
2312 #define GSO_LEGACY_MAX_SIZE	65536u
2313 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2314  * and shinfo->gso_segs is a 16bit field.
2315  */
2316 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2317 
2318 	unsigned int		gso_max_size;
2319 #define TSO_LEGACY_MAX_SIZE	65536
2320 #define TSO_MAX_SIZE		UINT_MAX
2321 	unsigned int		tso_max_size;
2322 	u16			gso_max_segs;
2323 #define TSO_MAX_SEGS		U16_MAX
2324 	u16			tso_max_segs;
2325 
2326 #ifdef CONFIG_DCB
2327 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2328 #endif
2329 	s16			num_tc;
2330 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2331 	u8			prio_tc_map[TC_BITMASK + 1];
2332 
2333 #if IS_ENABLED(CONFIG_FCOE)
2334 	unsigned int		fcoe_ddp_xid;
2335 #endif
2336 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2337 	struct netprio_map __rcu *priomap;
2338 #endif
2339 	struct phy_device	*phydev;
2340 	struct sfp_bus		*sfp_bus;
2341 	struct lock_class_key	*qdisc_tx_busylock;
2342 	bool			proto_down;
2343 	unsigned		wol_enabled:1;
2344 	unsigned		threaded:1;
2345 
2346 	struct list_head	net_notifier_list;
2347 
2348 #if IS_ENABLED(CONFIG_MACSEC)
2349 	/* MACsec management functions */
2350 	const struct macsec_ops *macsec_ops;
2351 #endif
2352 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2353 	struct udp_tunnel_nic	*udp_tunnel_nic;
2354 
2355 	/* protected by rtnl_lock */
2356 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2357 
2358 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2359 	netdevice_tracker	linkwatch_dev_tracker;
2360 	netdevice_tracker	watchdog_dev_tracker;
2361 	netdevice_tracker	dev_registered_tracker;
2362 	struct rtnl_hw_stats64	*offload_xstats_l3;
2363 
2364 	struct devlink_port	*devlink_port;
2365 };
2366 #define to_net_dev(d) container_of(d, struct net_device, dev)
2367 
2368 /*
2369  * Driver should use this to assign devlink port instance to a netdevice
2370  * before it registers the netdevice. Therefore devlink_port is static
2371  * during the netdev lifetime after it is registered.
2372  */
2373 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2374 ({								\
2375 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2376 	((dev)->devlink_port = (port));				\
2377 })
2378 
2379 static inline bool netif_elide_gro(const struct net_device *dev)
2380 {
2381 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2382 		return true;
2383 	return false;
2384 }
2385 
2386 #define	NETDEV_ALIGN		32
2387 
2388 static inline
2389 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2390 {
2391 	return dev->prio_tc_map[prio & TC_BITMASK];
2392 }
2393 
2394 static inline
2395 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2396 {
2397 	if (tc >= dev->num_tc)
2398 		return -EINVAL;
2399 
2400 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2401 	return 0;
2402 }
2403 
2404 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2405 void netdev_reset_tc(struct net_device *dev);
2406 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2407 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2408 
2409 static inline
2410 int netdev_get_num_tc(struct net_device *dev)
2411 {
2412 	return dev->num_tc;
2413 }
2414 
2415 static inline void net_prefetch(void *p)
2416 {
2417 	prefetch(p);
2418 #if L1_CACHE_BYTES < 128
2419 	prefetch((u8 *)p + L1_CACHE_BYTES);
2420 #endif
2421 }
2422 
2423 static inline void net_prefetchw(void *p)
2424 {
2425 	prefetchw(p);
2426 #if L1_CACHE_BYTES < 128
2427 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2428 #endif
2429 }
2430 
2431 void netdev_unbind_sb_channel(struct net_device *dev,
2432 			      struct net_device *sb_dev);
2433 int netdev_bind_sb_channel_queue(struct net_device *dev,
2434 				 struct net_device *sb_dev,
2435 				 u8 tc, u16 count, u16 offset);
2436 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2437 static inline int netdev_get_sb_channel(struct net_device *dev)
2438 {
2439 	return max_t(int, -dev->num_tc, 0);
2440 }
2441 
2442 static inline
2443 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2444 					 unsigned int index)
2445 {
2446 	return &dev->_tx[index];
2447 }
2448 
2449 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2450 						    const struct sk_buff *skb)
2451 {
2452 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2453 }
2454 
2455 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2456 					    void (*f)(struct net_device *,
2457 						      struct netdev_queue *,
2458 						      void *),
2459 					    void *arg)
2460 {
2461 	unsigned int i;
2462 
2463 	for (i = 0; i < dev->num_tx_queues; i++)
2464 		f(dev, &dev->_tx[i], arg);
2465 }
2466 
2467 #define netdev_lockdep_set_classes(dev)				\
2468 {								\
2469 	static struct lock_class_key qdisc_tx_busylock_key;	\
2470 	static struct lock_class_key qdisc_xmit_lock_key;	\
2471 	static struct lock_class_key dev_addr_list_lock_key;	\
2472 	unsigned int i;						\
2473 								\
2474 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2475 	lockdep_set_class(&(dev)->addr_list_lock,		\
2476 			  &dev_addr_list_lock_key);		\
2477 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2478 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2479 				  &qdisc_xmit_lock_key);	\
2480 }
2481 
2482 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2483 		     struct net_device *sb_dev);
2484 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2485 					 struct sk_buff *skb,
2486 					 struct net_device *sb_dev);
2487 
2488 /* returns the headroom that the master device needs to take in account
2489  * when forwarding to this dev
2490  */
2491 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2492 {
2493 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2494 }
2495 
2496 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2497 {
2498 	if (dev->netdev_ops->ndo_set_rx_headroom)
2499 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2500 }
2501 
2502 /* set the device rx headroom to the dev's default */
2503 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2504 {
2505 	netdev_set_rx_headroom(dev, -1);
2506 }
2507 
2508 static inline void *netdev_get_ml_priv(struct net_device *dev,
2509 				       enum netdev_ml_priv_type type)
2510 {
2511 	if (dev->ml_priv_type != type)
2512 		return NULL;
2513 
2514 	return dev->ml_priv;
2515 }
2516 
2517 static inline void netdev_set_ml_priv(struct net_device *dev,
2518 				      void *ml_priv,
2519 				      enum netdev_ml_priv_type type)
2520 {
2521 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2522 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2523 	     dev->ml_priv_type, type);
2524 	WARN(!dev->ml_priv_type && dev->ml_priv,
2525 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2526 
2527 	dev->ml_priv = ml_priv;
2528 	dev->ml_priv_type = type;
2529 }
2530 
2531 /*
2532  * Net namespace inlines
2533  */
2534 static inline
2535 struct net *dev_net(const struct net_device *dev)
2536 {
2537 	return read_pnet(&dev->nd_net);
2538 }
2539 
2540 static inline
2541 void dev_net_set(struct net_device *dev, struct net *net)
2542 {
2543 	write_pnet(&dev->nd_net, net);
2544 }
2545 
2546 /**
2547  *	netdev_priv - access network device private data
2548  *	@dev: network device
2549  *
2550  * Get network device private data
2551  */
2552 static inline void *netdev_priv(const struct net_device *dev)
2553 {
2554 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2555 }
2556 
2557 /* Set the sysfs physical device reference for the network logical device
2558  * if set prior to registration will cause a symlink during initialization.
2559  */
2560 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2561 
2562 /* Set the sysfs device type for the network logical device to allow
2563  * fine-grained identification of different network device types. For
2564  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2565  */
2566 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2567 
2568 /* Default NAPI poll() weight
2569  * Device drivers are strongly advised to not use bigger value
2570  */
2571 #define NAPI_POLL_WEIGHT 64
2572 
2573 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2574 			   int (*poll)(struct napi_struct *, int), int weight);
2575 
2576 /**
2577  * netif_napi_add() - initialize a NAPI context
2578  * @dev:  network device
2579  * @napi: NAPI context
2580  * @poll: polling function
2581  *
2582  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2583  * *any* of the other NAPI-related functions.
2584  */
2585 static inline void
2586 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2587 	       int (*poll)(struct napi_struct *, int))
2588 {
2589 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2590 }
2591 
2592 static inline void
2593 netif_napi_add_tx_weight(struct net_device *dev,
2594 			 struct napi_struct *napi,
2595 			 int (*poll)(struct napi_struct *, int),
2596 			 int weight)
2597 {
2598 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2599 	netif_napi_add_weight(dev, napi, poll, weight);
2600 }
2601 
2602 /**
2603  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2604  * @dev:  network device
2605  * @napi: NAPI context
2606  * @poll: polling function
2607  *
2608  * This variant of netif_napi_add() should be used from drivers using NAPI
2609  * to exclusively poll a TX queue.
2610  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2611  */
2612 static inline void netif_napi_add_tx(struct net_device *dev,
2613 				     struct napi_struct *napi,
2614 				     int (*poll)(struct napi_struct *, int))
2615 {
2616 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2617 }
2618 
2619 /**
2620  *  __netif_napi_del - remove a NAPI context
2621  *  @napi: NAPI context
2622  *
2623  * Warning: caller must observe RCU grace period before freeing memory
2624  * containing @napi. Drivers might want to call this helper to combine
2625  * all the needed RCU grace periods into a single one.
2626  */
2627 void __netif_napi_del(struct napi_struct *napi);
2628 
2629 /**
2630  *  netif_napi_del - remove a NAPI context
2631  *  @napi: NAPI context
2632  *
2633  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2634  */
2635 static inline void netif_napi_del(struct napi_struct *napi)
2636 {
2637 	__netif_napi_del(napi);
2638 	synchronize_net();
2639 }
2640 
2641 struct packet_type {
2642 	__be16			type;	/* This is really htons(ether_type). */
2643 	bool			ignore_outgoing;
2644 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2645 	netdevice_tracker	dev_tracker;
2646 	int			(*func) (struct sk_buff *,
2647 					 struct net_device *,
2648 					 struct packet_type *,
2649 					 struct net_device *);
2650 	void			(*list_func) (struct list_head *,
2651 					      struct packet_type *,
2652 					      struct net_device *);
2653 	bool			(*id_match)(struct packet_type *ptype,
2654 					    struct sock *sk);
2655 	struct net		*af_packet_net;
2656 	void			*af_packet_priv;
2657 	struct list_head	list;
2658 };
2659 
2660 struct offload_callbacks {
2661 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2662 						netdev_features_t features);
2663 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2664 						struct sk_buff *skb);
2665 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2666 };
2667 
2668 struct packet_offload {
2669 	__be16			 type;	/* This is really htons(ether_type). */
2670 	u16			 priority;
2671 	struct offload_callbacks callbacks;
2672 	struct list_head	 list;
2673 };
2674 
2675 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2676 struct pcpu_sw_netstats {
2677 	u64_stats_t		rx_packets;
2678 	u64_stats_t		rx_bytes;
2679 	u64_stats_t		tx_packets;
2680 	u64_stats_t		tx_bytes;
2681 	struct u64_stats_sync   syncp;
2682 } __aligned(4 * sizeof(u64));
2683 
2684 struct pcpu_lstats {
2685 	u64_stats_t packets;
2686 	u64_stats_t bytes;
2687 	struct u64_stats_sync syncp;
2688 } __aligned(2 * sizeof(u64));
2689 
2690 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2691 
2692 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2693 {
2694 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2695 
2696 	u64_stats_update_begin(&tstats->syncp);
2697 	u64_stats_add(&tstats->rx_bytes, len);
2698 	u64_stats_inc(&tstats->rx_packets);
2699 	u64_stats_update_end(&tstats->syncp);
2700 }
2701 
2702 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2703 					  unsigned int packets,
2704 					  unsigned int len)
2705 {
2706 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2707 
2708 	u64_stats_update_begin(&tstats->syncp);
2709 	u64_stats_add(&tstats->tx_bytes, len);
2710 	u64_stats_add(&tstats->tx_packets, packets);
2711 	u64_stats_update_end(&tstats->syncp);
2712 }
2713 
2714 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2715 {
2716 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2717 
2718 	u64_stats_update_begin(&lstats->syncp);
2719 	u64_stats_add(&lstats->bytes, len);
2720 	u64_stats_inc(&lstats->packets);
2721 	u64_stats_update_end(&lstats->syncp);
2722 }
2723 
2724 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2725 ({									\
2726 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2727 	if (pcpu_stats)	{						\
2728 		int __cpu;						\
2729 		for_each_possible_cpu(__cpu) {				\
2730 			typeof(type) *stat;				\
2731 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2732 			u64_stats_init(&stat->syncp);			\
2733 		}							\
2734 	}								\
2735 	pcpu_stats;							\
2736 })
2737 
2738 #define netdev_alloc_pcpu_stats(type)					\
2739 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2740 
2741 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2742 ({									\
2743 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2744 	if (pcpu_stats) {						\
2745 		int __cpu;						\
2746 		for_each_possible_cpu(__cpu) {				\
2747 			typeof(type) *stat;				\
2748 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2749 			u64_stats_init(&stat->syncp);			\
2750 		}							\
2751 	}								\
2752 	pcpu_stats;							\
2753 })
2754 
2755 enum netdev_lag_tx_type {
2756 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2757 	NETDEV_LAG_TX_TYPE_RANDOM,
2758 	NETDEV_LAG_TX_TYPE_BROADCAST,
2759 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2760 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2761 	NETDEV_LAG_TX_TYPE_HASH,
2762 };
2763 
2764 enum netdev_lag_hash {
2765 	NETDEV_LAG_HASH_NONE,
2766 	NETDEV_LAG_HASH_L2,
2767 	NETDEV_LAG_HASH_L34,
2768 	NETDEV_LAG_HASH_L23,
2769 	NETDEV_LAG_HASH_E23,
2770 	NETDEV_LAG_HASH_E34,
2771 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2772 	NETDEV_LAG_HASH_UNKNOWN,
2773 };
2774 
2775 struct netdev_lag_upper_info {
2776 	enum netdev_lag_tx_type tx_type;
2777 	enum netdev_lag_hash hash_type;
2778 };
2779 
2780 struct netdev_lag_lower_state_info {
2781 	u8 link_up : 1,
2782 	   tx_enabled : 1;
2783 };
2784 
2785 #include <linux/notifier.h>
2786 
2787 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2788  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2789  * adding new types.
2790  */
2791 enum netdev_cmd {
2792 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2793 	NETDEV_DOWN,
2794 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2795 				   detected a hardware crash and restarted
2796 				   - we can use this eg to kick tcp sessions
2797 				   once done */
2798 	NETDEV_CHANGE,		/* Notify device state change */
2799 	NETDEV_REGISTER,
2800 	NETDEV_UNREGISTER,
2801 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2802 	NETDEV_CHANGEADDR,	/* notify after the address change */
2803 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2804 	NETDEV_GOING_DOWN,
2805 	NETDEV_CHANGENAME,
2806 	NETDEV_FEAT_CHANGE,
2807 	NETDEV_BONDING_FAILOVER,
2808 	NETDEV_PRE_UP,
2809 	NETDEV_PRE_TYPE_CHANGE,
2810 	NETDEV_POST_TYPE_CHANGE,
2811 	NETDEV_POST_INIT,
2812 	NETDEV_PRE_UNINIT,
2813 	NETDEV_RELEASE,
2814 	NETDEV_NOTIFY_PEERS,
2815 	NETDEV_JOIN,
2816 	NETDEV_CHANGEUPPER,
2817 	NETDEV_RESEND_IGMP,
2818 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2819 	NETDEV_CHANGEINFODATA,
2820 	NETDEV_BONDING_INFO,
2821 	NETDEV_PRECHANGEUPPER,
2822 	NETDEV_CHANGELOWERSTATE,
2823 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2824 	NETDEV_UDP_TUNNEL_DROP_INFO,
2825 	NETDEV_CHANGE_TX_QUEUE_LEN,
2826 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2827 	NETDEV_CVLAN_FILTER_DROP_INFO,
2828 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2829 	NETDEV_SVLAN_FILTER_DROP_INFO,
2830 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2831 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2832 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2833 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2834 };
2835 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2836 
2837 int register_netdevice_notifier(struct notifier_block *nb);
2838 int unregister_netdevice_notifier(struct notifier_block *nb);
2839 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2840 int unregister_netdevice_notifier_net(struct net *net,
2841 				      struct notifier_block *nb);
2842 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
2843 				 struct notifier_block *nb);
2844 int register_netdevice_notifier_dev_net(struct net_device *dev,
2845 					struct notifier_block *nb,
2846 					struct netdev_net_notifier *nn);
2847 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2848 					  struct notifier_block *nb,
2849 					  struct netdev_net_notifier *nn);
2850 
2851 struct netdev_notifier_info {
2852 	struct net_device	*dev;
2853 	struct netlink_ext_ack	*extack;
2854 };
2855 
2856 struct netdev_notifier_info_ext {
2857 	struct netdev_notifier_info info; /* must be first */
2858 	union {
2859 		u32 mtu;
2860 	} ext;
2861 };
2862 
2863 struct netdev_notifier_change_info {
2864 	struct netdev_notifier_info info; /* must be first */
2865 	unsigned int flags_changed;
2866 };
2867 
2868 struct netdev_notifier_changeupper_info {
2869 	struct netdev_notifier_info info; /* must be first */
2870 	struct net_device *upper_dev; /* new upper dev */
2871 	bool master; /* is upper dev master */
2872 	bool linking; /* is the notification for link or unlink */
2873 	void *upper_info; /* upper dev info */
2874 };
2875 
2876 struct netdev_notifier_changelowerstate_info {
2877 	struct netdev_notifier_info info; /* must be first */
2878 	void *lower_state_info; /* is lower dev state */
2879 };
2880 
2881 struct netdev_notifier_pre_changeaddr_info {
2882 	struct netdev_notifier_info info; /* must be first */
2883 	const unsigned char *dev_addr;
2884 };
2885 
2886 enum netdev_offload_xstats_type {
2887 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2888 };
2889 
2890 struct netdev_notifier_offload_xstats_info {
2891 	struct netdev_notifier_info info; /* must be first */
2892 	enum netdev_offload_xstats_type type;
2893 
2894 	union {
2895 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2896 		struct netdev_notifier_offload_xstats_rd *report_delta;
2897 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2898 		struct netdev_notifier_offload_xstats_ru *report_used;
2899 	};
2900 };
2901 
2902 int netdev_offload_xstats_enable(struct net_device *dev,
2903 				 enum netdev_offload_xstats_type type,
2904 				 struct netlink_ext_ack *extack);
2905 int netdev_offload_xstats_disable(struct net_device *dev,
2906 				  enum netdev_offload_xstats_type type);
2907 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2908 				   enum netdev_offload_xstats_type type);
2909 int netdev_offload_xstats_get(struct net_device *dev,
2910 			      enum netdev_offload_xstats_type type,
2911 			      struct rtnl_hw_stats64 *stats, bool *used,
2912 			      struct netlink_ext_ack *extack);
2913 void
2914 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2915 				   const struct rtnl_hw_stats64 *stats);
2916 void
2917 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2918 void netdev_offload_xstats_push_delta(struct net_device *dev,
2919 				      enum netdev_offload_xstats_type type,
2920 				      const struct rtnl_hw_stats64 *stats);
2921 
2922 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2923 					     struct net_device *dev)
2924 {
2925 	info->dev = dev;
2926 	info->extack = NULL;
2927 }
2928 
2929 static inline struct net_device *
2930 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2931 {
2932 	return info->dev;
2933 }
2934 
2935 static inline struct netlink_ext_ack *
2936 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2937 {
2938 	return info->extack;
2939 }
2940 
2941 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2942 
2943 
2944 extern rwlock_t				dev_base_lock;		/* Device list lock */
2945 
2946 #define for_each_netdev(net, d)		\
2947 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2948 #define for_each_netdev_reverse(net, d)	\
2949 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2950 #define for_each_netdev_rcu(net, d)		\
2951 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2952 #define for_each_netdev_safe(net, d, n)	\
2953 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2954 #define for_each_netdev_continue(net, d)		\
2955 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2956 #define for_each_netdev_continue_reverse(net, d)		\
2957 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2958 						     dev_list)
2959 #define for_each_netdev_continue_rcu(net, d)		\
2960 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2961 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2962 		for_each_netdev_rcu(&init_net, slave)	\
2963 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2964 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2965 
2966 static inline struct net_device *next_net_device(struct net_device *dev)
2967 {
2968 	struct list_head *lh;
2969 	struct net *net;
2970 
2971 	net = dev_net(dev);
2972 	lh = dev->dev_list.next;
2973 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2974 }
2975 
2976 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2977 {
2978 	struct list_head *lh;
2979 	struct net *net;
2980 
2981 	net = dev_net(dev);
2982 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2983 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2984 }
2985 
2986 static inline struct net_device *first_net_device(struct net *net)
2987 {
2988 	return list_empty(&net->dev_base_head) ? NULL :
2989 		net_device_entry(net->dev_base_head.next);
2990 }
2991 
2992 static inline struct net_device *first_net_device_rcu(struct net *net)
2993 {
2994 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2995 
2996 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2997 }
2998 
2999 int netdev_boot_setup_check(struct net_device *dev);
3000 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3001 				       const char *hwaddr);
3002 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3003 void dev_add_pack(struct packet_type *pt);
3004 void dev_remove_pack(struct packet_type *pt);
3005 void __dev_remove_pack(struct packet_type *pt);
3006 void dev_add_offload(struct packet_offload *po);
3007 void dev_remove_offload(struct packet_offload *po);
3008 
3009 int dev_get_iflink(const struct net_device *dev);
3010 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3011 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3012 			  struct net_device_path_stack *stack);
3013 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3014 				      unsigned short mask);
3015 struct net_device *dev_get_by_name(struct net *net, const char *name);
3016 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3017 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3018 bool netdev_name_in_use(struct net *net, const char *name);
3019 int dev_alloc_name(struct net_device *dev, const char *name);
3020 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3021 void dev_close(struct net_device *dev);
3022 void dev_close_many(struct list_head *head, bool unlink);
3023 void dev_disable_lro(struct net_device *dev);
3024 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3025 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3026 		     struct net_device *sb_dev);
3027 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3028 		       struct net_device *sb_dev);
3029 
3030 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3031 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3032 
3033 static inline int dev_queue_xmit(struct sk_buff *skb)
3034 {
3035 	return __dev_queue_xmit(skb, NULL);
3036 }
3037 
3038 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3039 				       struct net_device *sb_dev)
3040 {
3041 	return __dev_queue_xmit(skb, sb_dev);
3042 }
3043 
3044 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3045 {
3046 	int ret;
3047 
3048 	ret = __dev_direct_xmit(skb, queue_id);
3049 	if (!dev_xmit_complete(ret))
3050 		kfree_skb(skb);
3051 	return ret;
3052 }
3053 
3054 int register_netdevice(struct net_device *dev);
3055 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3056 void unregister_netdevice_many(struct list_head *head);
3057 static inline void unregister_netdevice(struct net_device *dev)
3058 {
3059 	unregister_netdevice_queue(dev, NULL);
3060 }
3061 
3062 int netdev_refcnt_read(const struct net_device *dev);
3063 void free_netdev(struct net_device *dev);
3064 void netdev_freemem(struct net_device *dev);
3065 int init_dummy_netdev(struct net_device *dev);
3066 
3067 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3068 					 struct sk_buff *skb,
3069 					 bool all_slaves);
3070 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3071 					    struct sock *sk);
3072 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3073 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3074 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3075 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3076 int dev_restart(struct net_device *dev);
3077 
3078 
3079 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3080 				  unsigned short type,
3081 				  const void *daddr, const void *saddr,
3082 				  unsigned int len)
3083 {
3084 	if (!dev->header_ops || !dev->header_ops->create)
3085 		return 0;
3086 
3087 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3088 }
3089 
3090 static inline int dev_parse_header(const struct sk_buff *skb,
3091 				   unsigned char *haddr)
3092 {
3093 	const struct net_device *dev = skb->dev;
3094 
3095 	if (!dev->header_ops || !dev->header_ops->parse)
3096 		return 0;
3097 	return dev->header_ops->parse(skb, haddr);
3098 }
3099 
3100 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3101 {
3102 	const struct net_device *dev = skb->dev;
3103 
3104 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3105 		return 0;
3106 	return dev->header_ops->parse_protocol(skb);
3107 }
3108 
3109 /* ll_header must have at least hard_header_len allocated */
3110 static inline bool dev_validate_header(const struct net_device *dev,
3111 				       char *ll_header, int len)
3112 {
3113 	if (likely(len >= dev->hard_header_len))
3114 		return true;
3115 	if (len < dev->min_header_len)
3116 		return false;
3117 
3118 	if (capable(CAP_SYS_RAWIO)) {
3119 		memset(ll_header + len, 0, dev->hard_header_len - len);
3120 		return true;
3121 	}
3122 
3123 	if (dev->header_ops && dev->header_ops->validate)
3124 		return dev->header_ops->validate(ll_header, len);
3125 
3126 	return false;
3127 }
3128 
3129 static inline bool dev_has_header(const struct net_device *dev)
3130 {
3131 	return dev->header_ops && dev->header_ops->create;
3132 }
3133 
3134 /*
3135  * Incoming packets are placed on per-CPU queues
3136  */
3137 struct softnet_data {
3138 	struct list_head	poll_list;
3139 	struct sk_buff_head	process_queue;
3140 
3141 	/* stats */
3142 	unsigned int		processed;
3143 	unsigned int		time_squeeze;
3144 #ifdef CONFIG_RPS
3145 	struct softnet_data	*rps_ipi_list;
3146 #endif
3147 #ifdef CONFIG_NET_FLOW_LIMIT
3148 	struct sd_flow_limit __rcu *flow_limit;
3149 #endif
3150 	struct Qdisc		*output_queue;
3151 	struct Qdisc		**output_queue_tailp;
3152 	struct sk_buff		*completion_queue;
3153 #ifdef CONFIG_XFRM_OFFLOAD
3154 	struct sk_buff_head	xfrm_backlog;
3155 #endif
3156 	/* written and read only by owning cpu: */
3157 	struct {
3158 		u16 recursion;
3159 		u8  more;
3160 #ifdef CONFIG_NET_EGRESS
3161 		u8  skip_txqueue;
3162 #endif
3163 	} xmit;
3164 #ifdef CONFIG_RPS
3165 	/* input_queue_head should be written by cpu owning this struct,
3166 	 * and only read by other cpus. Worth using a cache line.
3167 	 */
3168 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3169 
3170 	/* Elements below can be accessed between CPUs for RPS/RFS */
3171 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3172 	struct softnet_data	*rps_ipi_next;
3173 	unsigned int		cpu;
3174 	unsigned int		input_queue_tail;
3175 #endif
3176 	unsigned int		received_rps;
3177 	unsigned int		dropped;
3178 	struct sk_buff_head	input_pkt_queue;
3179 	struct napi_struct	backlog;
3180 
3181 	/* Another possibly contended cache line */
3182 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3183 	int			defer_count;
3184 	int			defer_ipi_scheduled;
3185 	struct sk_buff		*defer_list;
3186 	call_single_data_t	defer_csd;
3187 };
3188 
3189 static inline void input_queue_head_incr(struct softnet_data *sd)
3190 {
3191 #ifdef CONFIG_RPS
3192 	sd->input_queue_head++;
3193 #endif
3194 }
3195 
3196 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3197 					      unsigned int *qtail)
3198 {
3199 #ifdef CONFIG_RPS
3200 	*qtail = ++sd->input_queue_tail;
3201 #endif
3202 }
3203 
3204 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3205 
3206 static inline int dev_recursion_level(void)
3207 {
3208 	return this_cpu_read(softnet_data.xmit.recursion);
3209 }
3210 
3211 #define XMIT_RECURSION_LIMIT	8
3212 static inline bool dev_xmit_recursion(void)
3213 {
3214 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3215 			XMIT_RECURSION_LIMIT);
3216 }
3217 
3218 static inline void dev_xmit_recursion_inc(void)
3219 {
3220 	__this_cpu_inc(softnet_data.xmit.recursion);
3221 }
3222 
3223 static inline void dev_xmit_recursion_dec(void)
3224 {
3225 	__this_cpu_dec(softnet_data.xmit.recursion);
3226 }
3227 
3228 void __netif_schedule(struct Qdisc *q);
3229 void netif_schedule_queue(struct netdev_queue *txq);
3230 
3231 static inline void netif_tx_schedule_all(struct net_device *dev)
3232 {
3233 	unsigned int i;
3234 
3235 	for (i = 0; i < dev->num_tx_queues; i++)
3236 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3237 }
3238 
3239 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3240 {
3241 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3242 }
3243 
3244 /**
3245  *	netif_start_queue - allow transmit
3246  *	@dev: network device
3247  *
3248  *	Allow upper layers to call the device hard_start_xmit routine.
3249  */
3250 static inline void netif_start_queue(struct net_device *dev)
3251 {
3252 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3253 }
3254 
3255 static inline void netif_tx_start_all_queues(struct net_device *dev)
3256 {
3257 	unsigned int i;
3258 
3259 	for (i = 0; i < dev->num_tx_queues; i++) {
3260 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3261 		netif_tx_start_queue(txq);
3262 	}
3263 }
3264 
3265 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3266 
3267 /**
3268  *	netif_wake_queue - restart transmit
3269  *	@dev: network device
3270  *
3271  *	Allow upper layers to call the device hard_start_xmit routine.
3272  *	Used for flow control when transmit resources are available.
3273  */
3274 static inline void netif_wake_queue(struct net_device *dev)
3275 {
3276 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3277 }
3278 
3279 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3280 {
3281 	unsigned int i;
3282 
3283 	for (i = 0; i < dev->num_tx_queues; i++) {
3284 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3285 		netif_tx_wake_queue(txq);
3286 	}
3287 }
3288 
3289 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3290 {
3291 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3292 }
3293 
3294 /**
3295  *	netif_stop_queue - stop transmitted packets
3296  *	@dev: network device
3297  *
3298  *	Stop upper layers calling the device hard_start_xmit routine.
3299  *	Used for flow control when transmit resources are unavailable.
3300  */
3301 static inline void netif_stop_queue(struct net_device *dev)
3302 {
3303 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3304 }
3305 
3306 void netif_tx_stop_all_queues(struct net_device *dev);
3307 
3308 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3309 {
3310 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3311 }
3312 
3313 /**
3314  *	netif_queue_stopped - test if transmit queue is flowblocked
3315  *	@dev: network device
3316  *
3317  *	Test if transmit queue on device is currently unable to send.
3318  */
3319 static inline bool netif_queue_stopped(const struct net_device *dev)
3320 {
3321 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3322 }
3323 
3324 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3325 {
3326 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3327 }
3328 
3329 static inline bool
3330 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3331 {
3332 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3333 }
3334 
3335 static inline bool
3336 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3337 {
3338 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3339 }
3340 
3341 /**
3342  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3343  *	@dev_queue: pointer to transmit queue
3344  *	@min_limit: dql minimum limit
3345  *
3346  * Forces xmit_more() to return true until the minimum threshold
3347  * defined by @min_limit is reached (or until the tx queue is
3348  * empty). Warning: to be use with care, misuse will impact the
3349  * latency.
3350  */
3351 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3352 						  unsigned int min_limit)
3353 {
3354 #ifdef CONFIG_BQL
3355 	dev_queue->dql.min_limit = min_limit;
3356 #endif
3357 }
3358 
3359 /**
3360  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3361  *	@dev_queue: pointer to transmit queue
3362  *
3363  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3364  * to give appropriate hint to the CPU.
3365  */
3366 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3367 {
3368 #ifdef CONFIG_BQL
3369 	prefetchw(&dev_queue->dql.num_queued);
3370 #endif
3371 }
3372 
3373 /**
3374  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3375  *	@dev_queue: pointer to transmit queue
3376  *
3377  * BQL enabled drivers might use this helper in their TX completion path,
3378  * to give appropriate hint to the CPU.
3379  */
3380 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3381 {
3382 #ifdef CONFIG_BQL
3383 	prefetchw(&dev_queue->dql.limit);
3384 #endif
3385 }
3386 
3387 /**
3388  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3389  *	@dev_queue: network device queue
3390  *	@bytes: number of bytes queued to the device queue
3391  *
3392  *	Report the number of bytes queued for sending/completion to the network
3393  *	device hardware queue. @bytes should be a good approximation and should
3394  *	exactly match netdev_completed_queue() @bytes.
3395  *	This is typically called once per packet, from ndo_start_xmit().
3396  */
3397 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3398 					unsigned int bytes)
3399 {
3400 #ifdef CONFIG_BQL
3401 	dql_queued(&dev_queue->dql, bytes);
3402 
3403 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3404 		return;
3405 
3406 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3407 
3408 	/*
3409 	 * The XOFF flag must be set before checking the dql_avail below,
3410 	 * because in netdev_tx_completed_queue we update the dql_completed
3411 	 * before checking the XOFF flag.
3412 	 */
3413 	smp_mb();
3414 
3415 	/* check again in case another CPU has just made room avail */
3416 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3417 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3418 #endif
3419 }
3420 
3421 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3422  * that they should not test BQL status themselves.
3423  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3424  * skb of a batch.
3425  * Returns true if the doorbell must be used to kick the NIC.
3426  */
3427 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3428 					  unsigned int bytes,
3429 					  bool xmit_more)
3430 {
3431 	if (xmit_more) {
3432 #ifdef CONFIG_BQL
3433 		dql_queued(&dev_queue->dql, bytes);
3434 #endif
3435 		return netif_tx_queue_stopped(dev_queue);
3436 	}
3437 	netdev_tx_sent_queue(dev_queue, bytes);
3438 	return true;
3439 }
3440 
3441 /**
3442  *	netdev_sent_queue - report the number of bytes queued to hardware
3443  *	@dev: network device
3444  *	@bytes: number of bytes queued to the hardware device queue
3445  *
3446  *	Report the number of bytes queued for sending/completion to the network
3447  *	device hardware queue#0. @bytes should be a good approximation and should
3448  *	exactly match netdev_completed_queue() @bytes.
3449  *	This is typically called once per packet, from ndo_start_xmit().
3450  */
3451 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3452 {
3453 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3454 }
3455 
3456 static inline bool __netdev_sent_queue(struct net_device *dev,
3457 				       unsigned int bytes,
3458 				       bool xmit_more)
3459 {
3460 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3461 				      xmit_more);
3462 }
3463 
3464 /**
3465  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3466  *	@dev_queue: network device queue
3467  *	@pkts: number of packets (currently ignored)
3468  *	@bytes: number of bytes dequeued from the device queue
3469  *
3470  *	Must be called at most once per TX completion round (and not per
3471  *	individual packet), so that BQL can adjust its limits appropriately.
3472  */
3473 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3474 					     unsigned int pkts, unsigned int bytes)
3475 {
3476 #ifdef CONFIG_BQL
3477 	if (unlikely(!bytes))
3478 		return;
3479 
3480 	dql_completed(&dev_queue->dql, bytes);
3481 
3482 	/*
3483 	 * Without the memory barrier there is a small possiblity that
3484 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3485 	 * be stopped forever
3486 	 */
3487 	smp_mb();
3488 
3489 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3490 		return;
3491 
3492 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3493 		netif_schedule_queue(dev_queue);
3494 #endif
3495 }
3496 
3497 /**
3498  * 	netdev_completed_queue - report bytes and packets completed by device
3499  * 	@dev: network device
3500  * 	@pkts: actual number of packets sent over the medium
3501  * 	@bytes: actual number of bytes sent over the medium
3502  *
3503  * 	Report the number of bytes and packets transmitted by the network device
3504  * 	hardware queue over the physical medium, @bytes must exactly match the
3505  * 	@bytes amount passed to netdev_sent_queue()
3506  */
3507 static inline void netdev_completed_queue(struct net_device *dev,
3508 					  unsigned int pkts, unsigned int bytes)
3509 {
3510 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3511 }
3512 
3513 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3514 {
3515 #ifdef CONFIG_BQL
3516 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3517 	dql_reset(&q->dql);
3518 #endif
3519 }
3520 
3521 /**
3522  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3523  * 	@dev_queue: network device
3524  *
3525  * 	Reset the bytes and packet count of a network device and clear the
3526  * 	software flow control OFF bit for this network device
3527  */
3528 static inline void netdev_reset_queue(struct net_device *dev_queue)
3529 {
3530 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3531 }
3532 
3533 /**
3534  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3535  * 	@dev: network device
3536  * 	@queue_index: given tx queue index
3537  *
3538  * 	Returns 0 if given tx queue index >= number of device tx queues,
3539  * 	otherwise returns the originally passed tx queue index.
3540  */
3541 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3542 {
3543 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3544 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3545 				     dev->name, queue_index,
3546 				     dev->real_num_tx_queues);
3547 		return 0;
3548 	}
3549 
3550 	return queue_index;
3551 }
3552 
3553 /**
3554  *	netif_running - test if up
3555  *	@dev: network device
3556  *
3557  *	Test if the device has been brought up.
3558  */
3559 static inline bool netif_running(const struct net_device *dev)
3560 {
3561 	return test_bit(__LINK_STATE_START, &dev->state);
3562 }
3563 
3564 /*
3565  * Routines to manage the subqueues on a device.  We only need start,
3566  * stop, and a check if it's stopped.  All other device management is
3567  * done at the overall netdevice level.
3568  * Also test the device if we're multiqueue.
3569  */
3570 
3571 /**
3572  *	netif_start_subqueue - allow sending packets on subqueue
3573  *	@dev: network device
3574  *	@queue_index: sub queue index
3575  *
3576  * Start individual transmit queue of a device with multiple transmit queues.
3577  */
3578 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3579 {
3580 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3581 
3582 	netif_tx_start_queue(txq);
3583 }
3584 
3585 /**
3586  *	netif_stop_subqueue - stop sending packets on subqueue
3587  *	@dev: network device
3588  *	@queue_index: sub queue index
3589  *
3590  * Stop individual transmit queue of a device with multiple transmit queues.
3591  */
3592 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3593 {
3594 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3595 	netif_tx_stop_queue(txq);
3596 }
3597 
3598 /**
3599  *	__netif_subqueue_stopped - test status of subqueue
3600  *	@dev: network device
3601  *	@queue_index: sub queue index
3602  *
3603  * Check individual transmit queue of a device with multiple transmit queues.
3604  */
3605 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3606 					    u16 queue_index)
3607 {
3608 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3609 
3610 	return netif_tx_queue_stopped(txq);
3611 }
3612 
3613 /**
3614  *	netif_subqueue_stopped - test status of subqueue
3615  *	@dev: network device
3616  *	@skb: sub queue buffer pointer
3617  *
3618  * Check individual transmit queue of a device with multiple transmit queues.
3619  */
3620 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3621 					  struct sk_buff *skb)
3622 {
3623 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3624 }
3625 
3626 /**
3627  *	netif_wake_subqueue - allow sending packets on subqueue
3628  *	@dev: network device
3629  *	@queue_index: sub queue index
3630  *
3631  * Resume individual transmit queue of a device with multiple transmit queues.
3632  */
3633 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3634 {
3635 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3636 
3637 	netif_tx_wake_queue(txq);
3638 }
3639 
3640 #ifdef CONFIG_XPS
3641 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3642 			u16 index);
3643 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3644 			  u16 index, enum xps_map_type type);
3645 
3646 /**
3647  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3648  *	@j: CPU/Rx queue index
3649  *	@mask: bitmask of all cpus/rx queues
3650  *	@nr_bits: number of bits in the bitmask
3651  *
3652  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3653  */
3654 static inline bool netif_attr_test_mask(unsigned long j,
3655 					const unsigned long *mask,
3656 					unsigned int nr_bits)
3657 {
3658 	cpu_max_bits_warn(j, nr_bits);
3659 	return test_bit(j, mask);
3660 }
3661 
3662 /**
3663  *	netif_attr_test_online - Test for online CPU/Rx queue
3664  *	@j: CPU/Rx queue index
3665  *	@online_mask: bitmask for CPUs/Rx queues that are online
3666  *	@nr_bits: number of bits in the bitmask
3667  *
3668  * Returns true if a CPU/Rx queue is online.
3669  */
3670 static inline bool netif_attr_test_online(unsigned long j,
3671 					  const unsigned long *online_mask,
3672 					  unsigned int nr_bits)
3673 {
3674 	cpu_max_bits_warn(j, nr_bits);
3675 
3676 	if (online_mask)
3677 		return test_bit(j, online_mask);
3678 
3679 	return (j < nr_bits);
3680 }
3681 
3682 /**
3683  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3684  *	@n: CPU/Rx queue index
3685  *	@srcp: the cpumask/Rx queue mask pointer
3686  *	@nr_bits: number of bits in the bitmask
3687  *
3688  * Returns >= nr_bits if no further CPUs/Rx queues set.
3689  */
3690 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3691 					       unsigned int nr_bits)
3692 {
3693 	/* -1 is a legal arg here. */
3694 	if (n != -1)
3695 		cpu_max_bits_warn(n, nr_bits);
3696 
3697 	if (srcp)
3698 		return find_next_bit(srcp, nr_bits, n + 1);
3699 
3700 	return n + 1;
3701 }
3702 
3703 /**
3704  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3705  *	@n: CPU/Rx queue index
3706  *	@src1p: the first CPUs/Rx queues mask pointer
3707  *	@src2p: the second CPUs/Rx queues mask pointer
3708  *	@nr_bits: number of bits in the bitmask
3709  *
3710  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3711  */
3712 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3713 					  const unsigned long *src2p,
3714 					  unsigned int nr_bits)
3715 {
3716 	/* -1 is a legal arg here. */
3717 	if (n != -1)
3718 		cpu_max_bits_warn(n, nr_bits);
3719 
3720 	if (src1p && src2p)
3721 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3722 	else if (src1p)
3723 		return find_next_bit(src1p, nr_bits, n + 1);
3724 	else if (src2p)
3725 		return find_next_bit(src2p, nr_bits, n + 1);
3726 
3727 	return n + 1;
3728 }
3729 #else
3730 static inline int netif_set_xps_queue(struct net_device *dev,
3731 				      const struct cpumask *mask,
3732 				      u16 index)
3733 {
3734 	return 0;
3735 }
3736 
3737 static inline int __netif_set_xps_queue(struct net_device *dev,
3738 					const unsigned long *mask,
3739 					u16 index, enum xps_map_type type)
3740 {
3741 	return 0;
3742 }
3743 #endif
3744 
3745 /**
3746  *	netif_is_multiqueue - test if device has multiple transmit queues
3747  *	@dev: network device
3748  *
3749  * Check if device has multiple transmit queues
3750  */
3751 static inline bool netif_is_multiqueue(const struct net_device *dev)
3752 {
3753 	return dev->num_tx_queues > 1;
3754 }
3755 
3756 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3757 
3758 #ifdef CONFIG_SYSFS
3759 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3760 #else
3761 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3762 						unsigned int rxqs)
3763 {
3764 	dev->real_num_rx_queues = rxqs;
3765 	return 0;
3766 }
3767 #endif
3768 int netif_set_real_num_queues(struct net_device *dev,
3769 			      unsigned int txq, unsigned int rxq);
3770 
3771 static inline struct netdev_rx_queue *
3772 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3773 {
3774 	return dev->_rx + rxq;
3775 }
3776 
3777 #ifdef CONFIG_SYSFS
3778 static inline unsigned int get_netdev_rx_queue_index(
3779 		struct netdev_rx_queue *queue)
3780 {
3781 	struct net_device *dev = queue->dev;
3782 	int index = queue - dev->_rx;
3783 
3784 	BUG_ON(index >= dev->num_rx_queues);
3785 	return index;
3786 }
3787 #endif
3788 
3789 int netif_get_num_default_rss_queues(void);
3790 
3791 enum skb_free_reason {
3792 	SKB_REASON_CONSUMED,
3793 	SKB_REASON_DROPPED,
3794 };
3795 
3796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3797 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3798 
3799 /*
3800  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3801  * interrupt context or with hardware interrupts being disabled.
3802  * (in_hardirq() || irqs_disabled())
3803  *
3804  * We provide four helpers that can be used in following contexts :
3805  *
3806  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3807  *  replacing kfree_skb(skb)
3808  *
3809  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3810  *  Typically used in place of consume_skb(skb) in TX completion path
3811  *
3812  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3813  *  replacing kfree_skb(skb)
3814  *
3815  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3816  *  and consumed a packet. Used in place of consume_skb(skb)
3817  */
3818 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3819 {
3820 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3821 }
3822 
3823 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3824 {
3825 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3826 }
3827 
3828 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3829 {
3830 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3831 }
3832 
3833 static inline void dev_consume_skb_any(struct sk_buff *skb)
3834 {
3835 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3836 }
3837 
3838 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3839 			     struct bpf_prog *xdp_prog);
3840 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3841 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3842 int netif_rx(struct sk_buff *skb);
3843 int __netif_rx(struct sk_buff *skb);
3844 
3845 int netif_receive_skb(struct sk_buff *skb);
3846 int netif_receive_skb_core(struct sk_buff *skb);
3847 void netif_receive_skb_list_internal(struct list_head *head);
3848 void netif_receive_skb_list(struct list_head *head);
3849 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3850 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3851 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3852 void napi_get_frags_check(struct napi_struct *napi);
3853 gro_result_t napi_gro_frags(struct napi_struct *napi);
3854 struct packet_offload *gro_find_receive_by_type(__be16 type);
3855 struct packet_offload *gro_find_complete_by_type(__be16 type);
3856 
3857 static inline void napi_free_frags(struct napi_struct *napi)
3858 {
3859 	kfree_skb(napi->skb);
3860 	napi->skb = NULL;
3861 }
3862 
3863 bool netdev_is_rx_handler_busy(struct net_device *dev);
3864 int netdev_rx_handler_register(struct net_device *dev,
3865 			       rx_handler_func_t *rx_handler,
3866 			       void *rx_handler_data);
3867 void netdev_rx_handler_unregister(struct net_device *dev);
3868 
3869 bool dev_valid_name(const char *name);
3870 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3871 {
3872 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3873 }
3874 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3875 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3876 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3877 		void __user *data, bool *need_copyout);
3878 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3879 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3880 unsigned int dev_get_flags(const struct net_device *);
3881 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3882 		       struct netlink_ext_ack *extack);
3883 int dev_change_flags(struct net_device *dev, unsigned int flags,
3884 		     struct netlink_ext_ack *extack);
3885 int dev_set_alias(struct net_device *, const char *, size_t);
3886 int dev_get_alias(const struct net_device *, char *, size_t);
3887 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3888 			       const char *pat, int new_ifindex);
3889 static inline
3890 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3891 			     const char *pat)
3892 {
3893 	return __dev_change_net_namespace(dev, net, pat, 0);
3894 }
3895 int __dev_set_mtu(struct net_device *, int);
3896 int dev_set_mtu(struct net_device *, int);
3897 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3898 			      struct netlink_ext_ack *extack);
3899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3900 			struct netlink_ext_ack *extack);
3901 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3902 			     struct netlink_ext_ack *extack);
3903 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3904 int dev_get_port_parent_id(struct net_device *dev,
3905 			   struct netdev_phys_item_id *ppid, bool recurse);
3906 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3907 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3908 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3909 				    struct netdev_queue *txq, int *ret);
3910 
3911 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3912 u8 dev_xdp_prog_count(struct net_device *dev);
3913 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3914 
3915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3916 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3917 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3918 bool is_skb_forwardable(const struct net_device *dev,
3919 			const struct sk_buff *skb);
3920 
3921 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3922 						 const struct sk_buff *skb,
3923 						 const bool check_mtu)
3924 {
3925 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3926 	unsigned int len;
3927 
3928 	if (!(dev->flags & IFF_UP))
3929 		return false;
3930 
3931 	if (!check_mtu)
3932 		return true;
3933 
3934 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3935 	if (skb->len <= len)
3936 		return true;
3937 
3938 	/* if TSO is enabled, we don't care about the length as the packet
3939 	 * could be forwarded without being segmented before
3940 	 */
3941 	if (skb_is_gso(skb))
3942 		return true;
3943 
3944 	return false;
3945 }
3946 
3947 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3948 
3949 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3950 {
3951 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3952 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3953 
3954 	if (likely(p))
3955 		return p;
3956 
3957 	return netdev_core_stats_alloc(dev);
3958 }
3959 
3960 #define DEV_CORE_STATS_INC(FIELD)						\
3961 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3962 {										\
3963 	struct net_device_core_stats __percpu *p;				\
3964 										\
3965 	p = dev_core_stats(dev);						\
3966 	if (p)									\
3967 		this_cpu_inc(p->FIELD);						\
3968 }
3969 DEV_CORE_STATS_INC(rx_dropped)
3970 DEV_CORE_STATS_INC(tx_dropped)
3971 DEV_CORE_STATS_INC(rx_nohandler)
3972 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3973 
3974 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3975 					       struct sk_buff *skb,
3976 					       const bool check_mtu)
3977 {
3978 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3979 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3980 		dev_core_stats_rx_dropped_inc(dev);
3981 		kfree_skb(skb);
3982 		return NET_RX_DROP;
3983 	}
3984 
3985 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3986 	skb->priority = 0;
3987 	return 0;
3988 }
3989 
3990 bool dev_nit_active(struct net_device *dev);
3991 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3992 
3993 static inline void __dev_put(struct net_device *dev)
3994 {
3995 	if (dev) {
3996 #ifdef CONFIG_PCPU_DEV_REFCNT
3997 		this_cpu_dec(*dev->pcpu_refcnt);
3998 #else
3999 		refcount_dec(&dev->dev_refcnt);
4000 #endif
4001 	}
4002 }
4003 
4004 static inline void __dev_hold(struct net_device *dev)
4005 {
4006 	if (dev) {
4007 #ifdef CONFIG_PCPU_DEV_REFCNT
4008 		this_cpu_inc(*dev->pcpu_refcnt);
4009 #else
4010 		refcount_inc(&dev->dev_refcnt);
4011 #endif
4012 	}
4013 }
4014 
4015 static inline void __netdev_tracker_alloc(struct net_device *dev,
4016 					  netdevice_tracker *tracker,
4017 					  gfp_t gfp)
4018 {
4019 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4020 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4021 #endif
4022 }
4023 
4024 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4025  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4026  */
4027 static inline void netdev_tracker_alloc(struct net_device *dev,
4028 					netdevice_tracker *tracker, gfp_t gfp)
4029 {
4030 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4031 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4032 	__netdev_tracker_alloc(dev, tracker, gfp);
4033 #endif
4034 }
4035 
4036 static inline void netdev_tracker_free(struct net_device *dev,
4037 				       netdevice_tracker *tracker)
4038 {
4039 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4040 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4041 #endif
4042 }
4043 
4044 static inline void netdev_hold(struct net_device *dev,
4045 			       netdevice_tracker *tracker, gfp_t gfp)
4046 {
4047 	if (dev) {
4048 		__dev_hold(dev);
4049 		__netdev_tracker_alloc(dev, tracker, gfp);
4050 	}
4051 }
4052 
4053 static inline void netdev_put(struct net_device *dev,
4054 			      netdevice_tracker *tracker)
4055 {
4056 	if (dev) {
4057 		netdev_tracker_free(dev, tracker);
4058 		__dev_put(dev);
4059 	}
4060 }
4061 
4062 /**
4063  *	dev_hold - get reference to device
4064  *	@dev: network device
4065  *
4066  * Hold reference to device to keep it from being freed.
4067  * Try using netdev_hold() instead.
4068  */
4069 static inline void dev_hold(struct net_device *dev)
4070 {
4071 	netdev_hold(dev, NULL, GFP_ATOMIC);
4072 }
4073 
4074 /**
4075  *	dev_put - release reference to device
4076  *	@dev: network device
4077  *
4078  * Release reference to device to allow it to be freed.
4079  * Try using netdev_put() instead.
4080  */
4081 static inline void dev_put(struct net_device *dev)
4082 {
4083 	netdev_put(dev, NULL);
4084 }
4085 
4086 static inline void netdev_ref_replace(struct net_device *odev,
4087 				      struct net_device *ndev,
4088 				      netdevice_tracker *tracker,
4089 				      gfp_t gfp)
4090 {
4091 	if (odev)
4092 		netdev_tracker_free(odev, tracker);
4093 
4094 	__dev_hold(ndev);
4095 	__dev_put(odev);
4096 
4097 	if (ndev)
4098 		__netdev_tracker_alloc(ndev, tracker, gfp);
4099 }
4100 
4101 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4102  * and _off may be called from IRQ context, but it is caller
4103  * who is responsible for serialization of these calls.
4104  *
4105  * The name carrier is inappropriate, these functions should really be
4106  * called netif_lowerlayer_*() because they represent the state of any
4107  * kind of lower layer not just hardware media.
4108  */
4109 void linkwatch_fire_event(struct net_device *dev);
4110 
4111 /**
4112  *	netif_carrier_ok - test if carrier present
4113  *	@dev: network device
4114  *
4115  * Check if carrier is present on device
4116  */
4117 static inline bool netif_carrier_ok(const struct net_device *dev)
4118 {
4119 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4120 }
4121 
4122 unsigned long dev_trans_start(struct net_device *dev);
4123 
4124 void __netdev_watchdog_up(struct net_device *dev);
4125 
4126 void netif_carrier_on(struct net_device *dev);
4127 void netif_carrier_off(struct net_device *dev);
4128 void netif_carrier_event(struct net_device *dev);
4129 
4130 /**
4131  *	netif_dormant_on - mark device as dormant.
4132  *	@dev: network device
4133  *
4134  * Mark device as dormant (as per RFC2863).
4135  *
4136  * The dormant state indicates that the relevant interface is not
4137  * actually in a condition to pass packets (i.e., it is not 'up') but is
4138  * in a "pending" state, waiting for some external event.  For "on-
4139  * demand" interfaces, this new state identifies the situation where the
4140  * interface is waiting for events to place it in the up state.
4141  */
4142 static inline void netif_dormant_on(struct net_device *dev)
4143 {
4144 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4145 		linkwatch_fire_event(dev);
4146 }
4147 
4148 /**
4149  *	netif_dormant_off - set device as not dormant.
4150  *	@dev: network device
4151  *
4152  * Device is not in dormant state.
4153  */
4154 static inline void netif_dormant_off(struct net_device *dev)
4155 {
4156 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4157 		linkwatch_fire_event(dev);
4158 }
4159 
4160 /**
4161  *	netif_dormant - test if device is dormant
4162  *	@dev: network device
4163  *
4164  * Check if device is dormant.
4165  */
4166 static inline bool netif_dormant(const struct net_device *dev)
4167 {
4168 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4169 }
4170 
4171 
4172 /**
4173  *	netif_testing_on - mark device as under test.
4174  *	@dev: network device
4175  *
4176  * Mark device as under test (as per RFC2863).
4177  *
4178  * The testing state indicates that some test(s) must be performed on
4179  * the interface. After completion, of the test, the interface state
4180  * will change to up, dormant, or down, as appropriate.
4181  */
4182 static inline void netif_testing_on(struct net_device *dev)
4183 {
4184 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4185 		linkwatch_fire_event(dev);
4186 }
4187 
4188 /**
4189  *	netif_testing_off - set device as not under test.
4190  *	@dev: network device
4191  *
4192  * Device is not in testing state.
4193  */
4194 static inline void netif_testing_off(struct net_device *dev)
4195 {
4196 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4197 		linkwatch_fire_event(dev);
4198 }
4199 
4200 /**
4201  *	netif_testing - test if device is under test
4202  *	@dev: network device
4203  *
4204  * Check if device is under test
4205  */
4206 static inline bool netif_testing(const struct net_device *dev)
4207 {
4208 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4209 }
4210 
4211 
4212 /**
4213  *	netif_oper_up - test if device is operational
4214  *	@dev: network device
4215  *
4216  * Check if carrier is operational
4217  */
4218 static inline bool netif_oper_up(const struct net_device *dev)
4219 {
4220 	return (dev->operstate == IF_OPER_UP ||
4221 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4222 }
4223 
4224 /**
4225  *	netif_device_present - is device available or removed
4226  *	@dev: network device
4227  *
4228  * Check if device has not been removed from system.
4229  */
4230 static inline bool netif_device_present(const struct net_device *dev)
4231 {
4232 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4233 }
4234 
4235 void netif_device_detach(struct net_device *dev);
4236 
4237 void netif_device_attach(struct net_device *dev);
4238 
4239 /*
4240  * Network interface message level settings
4241  */
4242 
4243 enum {
4244 	NETIF_MSG_DRV_BIT,
4245 	NETIF_MSG_PROBE_BIT,
4246 	NETIF_MSG_LINK_BIT,
4247 	NETIF_MSG_TIMER_BIT,
4248 	NETIF_MSG_IFDOWN_BIT,
4249 	NETIF_MSG_IFUP_BIT,
4250 	NETIF_MSG_RX_ERR_BIT,
4251 	NETIF_MSG_TX_ERR_BIT,
4252 	NETIF_MSG_TX_QUEUED_BIT,
4253 	NETIF_MSG_INTR_BIT,
4254 	NETIF_MSG_TX_DONE_BIT,
4255 	NETIF_MSG_RX_STATUS_BIT,
4256 	NETIF_MSG_PKTDATA_BIT,
4257 	NETIF_MSG_HW_BIT,
4258 	NETIF_MSG_WOL_BIT,
4259 
4260 	/* When you add a new bit above, update netif_msg_class_names array
4261 	 * in net/ethtool/common.c
4262 	 */
4263 	NETIF_MSG_CLASS_COUNT,
4264 };
4265 /* Both ethtool_ops interface and internal driver implementation use u32 */
4266 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4267 
4268 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4269 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4270 
4271 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4272 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4273 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4274 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4275 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4276 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4277 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4278 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4279 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4280 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4281 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4282 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4283 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4284 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4285 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4286 
4287 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4288 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4289 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4290 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4291 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4292 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4293 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4294 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4295 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4296 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4297 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4298 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4299 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4300 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4301 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4302 
4303 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4304 {
4305 	/* use default */
4306 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4307 		return default_msg_enable_bits;
4308 	if (debug_value == 0)	/* no output */
4309 		return 0;
4310 	/* set low N bits */
4311 	return (1U << debug_value) - 1;
4312 }
4313 
4314 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4315 {
4316 	spin_lock(&txq->_xmit_lock);
4317 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4318 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4319 }
4320 
4321 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4322 {
4323 	__acquire(&txq->_xmit_lock);
4324 	return true;
4325 }
4326 
4327 static inline void __netif_tx_release(struct netdev_queue *txq)
4328 {
4329 	__release(&txq->_xmit_lock);
4330 }
4331 
4332 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4333 {
4334 	spin_lock_bh(&txq->_xmit_lock);
4335 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4336 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4337 }
4338 
4339 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4340 {
4341 	bool ok = spin_trylock(&txq->_xmit_lock);
4342 
4343 	if (likely(ok)) {
4344 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4345 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4346 	}
4347 	return ok;
4348 }
4349 
4350 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4351 {
4352 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4353 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4354 	spin_unlock(&txq->_xmit_lock);
4355 }
4356 
4357 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4358 {
4359 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4360 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4361 	spin_unlock_bh(&txq->_xmit_lock);
4362 }
4363 
4364 /*
4365  * txq->trans_start can be read locklessly from dev_watchdog()
4366  */
4367 static inline void txq_trans_update(struct netdev_queue *txq)
4368 {
4369 	if (txq->xmit_lock_owner != -1)
4370 		WRITE_ONCE(txq->trans_start, jiffies);
4371 }
4372 
4373 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4374 {
4375 	unsigned long now = jiffies;
4376 
4377 	if (READ_ONCE(txq->trans_start) != now)
4378 		WRITE_ONCE(txq->trans_start, now);
4379 }
4380 
4381 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4382 static inline void netif_trans_update(struct net_device *dev)
4383 {
4384 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4385 
4386 	txq_trans_cond_update(txq);
4387 }
4388 
4389 /**
4390  *	netif_tx_lock - grab network device transmit lock
4391  *	@dev: network device
4392  *
4393  * Get network device transmit lock
4394  */
4395 void netif_tx_lock(struct net_device *dev);
4396 
4397 static inline void netif_tx_lock_bh(struct net_device *dev)
4398 {
4399 	local_bh_disable();
4400 	netif_tx_lock(dev);
4401 }
4402 
4403 void netif_tx_unlock(struct net_device *dev);
4404 
4405 static inline void netif_tx_unlock_bh(struct net_device *dev)
4406 {
4407 	netif_tx_unlock(dev);
4408 	local_bh_enable();
4409 }
4410 
4411 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4412 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4413 		__netif_tx_lock(txq, cpu);		\
4414 	} else {					\
4415 		__netif_tx_acquire(txq);		\
4416 	}						\
4417 }
4418 
4419 #define HARD_TX_TRYLOCK(dev, txq)			\
4420 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4421 		__netif_tx_trylock(txq) :		\
4422 		__netif_tx_acquire(txq))
4423 
4424 #define HARD_TX_UNLOCK(dev, txq) {			\
4425 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4426 		__netif_tx_unlock(txq);			\
4427 	} else {					\
4428 		__netif_tx_release(txq);		\
4429 	}						\
4430 }
4431 
4432 static inline void netif_tx_disable(struct net_device *dev)
4433 {
4434 	unsigned int i;
4435 	int cpu;
4436 
4437 	local_bh_disable();
4438 	cpu = smp_processor_id();
4439 	spin_lock(&dev->tx_global_lock);
4440 	for (i = 0; i < dev->num_tx_queues; i++) {
4441 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4442 
4443 		__netif_tx_lock(txq, cpu);
4444 		netif_tx_stop_queue(txq);
4445 		__netif_tx_unlock(txq);
4446 	}
4447 	spin_unlock(&dev->tx_global_lock);
4448 	local_bh_enable();
4449 }
4450 
4451 static inline void netif_addr_lock(struct net_device *dev)
4452 {
4453 	unsigned char nest_level = 0;
4454 
4455 #ifdef CONFIG_LOCKDEP
4456 	nest_level = dev->nested_level;
4457 #endif
4458 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4459 }
4460 
4461 static inline void netif_addr_lock_bh(struct net_device *dev)
4462 {
4463 	unsigned char nest_level = 0;
4464 
4465 #ifdef CONFIG_LOCKDEP
4466 	nest_level = dev->nested_level;
4467 #endif
4468 	local_bh_disable();
4469 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4470 }
4471 
4472 static inline void netif_addr_unlock(struct net_device *dev)
4473 {
4474 	spin_unlock(&dev->addr_list_lock);
4475 }
4476 
4477 static inline void netif_addr_unlock_bh(struct net_device *dev)
4478 {
4479 	spin_unlock_bh(&dev->addr_list_lock);
4480 }
4481 
4482 /*
4483  * dev_addrs walker. Should be used only for read access. Call with
4484  * rcu_read_lock held.
4485  */
4486 #define for_each_dev_addr(dev, ha) \
4487 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4488 
4489 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4490 
4491 void ether_setup(struct net_device *dev);
4492 
4493 /* Support for loadable net-drivers */
4494 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4495 				    unsigned char name_assign_type,
4496 				    void (*setup)(struct net_device *),
4497 				    unsigned int txqs, unsigned int rxqs);
4498 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4499 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4500 
4501 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4502 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4503 			 count)
4504 
4505 int register_netdev(struct net_device *dev);
4506 void unregister_netdev(struct net_device *dev);
4507 
4508 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4509 
4510 /* General hardware address lists handling functions */
4511 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4512 		   struct netdev_hw_addr_list *from_list, int addr_len);
4513 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4514 		      struct netdev_hw_addr_list *from_list, int addr_len);
4515 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4516 		       struct net_device *dev,
4517 		       int (*sync)(struct net_device *, const unsigned char *),
4518 		       int (*unsync)(struct net_device *,
4519 				     const unsigned char *));
4520 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4521 			   struct net_device *dev,
4522 			   int (*sync)(struct net_device *,
4523 				       const unsigned char *, int),
4524 			   int (*unsync)(struct net_device *,
4525 					 const unsigned char *, int));
4526 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4527 			      struct net_device *dev,
4528 			      int (*unsync)(struct net_device *,
4529 					    const unsigned char *, int));
4530 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4531 			  struct net_device *dev,
4532 			  int (*unsync)(struct net_device *,
4533 					const unsigned char *));
4534 void __hw_addr_init(struct netdev_hw_addr_list *list);
4535 
4536 /* Functions used for device addresses handling */
4537 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4538 		  const void *addr, size_t len);
4539 
4540 static inline void
4541 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4542 {
4543 	dev_addr_mod(dev, 0, addr, len);
4544 }
4545 
4546 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4547 {
4548 	__dev_addr_set(dev, addr, dev->addr_len);
4549 }
4550 
4551 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4552 		 unsigned char addr_type);
4553 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4554 		 unsigned char addr_type);
4555 
4556 /* Functions used for unicast addresses handling */
4557 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4558 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4559 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4560 int dev_uc_sync(struct net_device *to, struct net_device *from);
4561 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4562 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4563 void dev_uc_flush(struct net_device *dev);
4564 void dev_uc_init(struct net_device *dev);
4565 
4566 /**
4567  *  __dev_uc_sync - Synchonize device's unicast list
4568  *  @dev:  device to sync
4569  *  @sync: function to call if address should be added
4570  *  @unsync: function to call if address should be removed
4571  *
4572  *  Add newly added addresses to the interface, and release
4573  *  addresses that have been deleted.
4574  */
4575 static inline int __dev_uc_sync(struct net_device *dev,
4576 				int (*sync)(struct net_device *,
4577 					    const unsigned char *),
4578 				int (*unsync)(struct net_device *,
4579 					      const unsigned char *))
4580 {
4581 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4582 }
4583 
4584 /**
4585  *  __dev_uc_unsync - Remove synchronized addresses from device
4586  *  @dev:  device to sync
4587  *  @unsync: function to call if address should be removed
4588  *
4589  *  Remove all addresses that were added to the device by dev_uc_sync().
4590  */
4591 static inline void __dev_uc_unsync(struct net_device *dev,
4592 				   int (*unsync)(struct net_device *,
4593 						 const unsigned char *))
4594 {
4595 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4596 }
4597 
4598 /* Functions used for multicast addresses handling */
4599 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4600 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4601 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4602 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4603 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4604 int dev_mc_sync(struct net_device *to, struct net_device *from);
4605 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4606 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4607 void dev_mc_flush(struct net_device *dev);
4608 void dev_mc_init(struct net_device *dev);
4609 
4610 /**
4611  *  __dev_mc_sync - Synchonize device's multicast list
4612  *  @dev:  device to sync
4613  *  @sync: function to call if address should be added
4614  *  @unsync: function to call if address should be removed
4615  *
4616  *  Add newly added addresses to the interface, and release
4617  *  addresses that have been deleted.
4618  */
4619 static inline int __dev_mc_sync(struct net_device *dev,
4620 				int (*sync)(struct net_device *,
4621 					    const unsigned char *),
4622 				int (*unsync)(struct net_device *,
4623 					      const unsigned char *))
4624 {
4625 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4626 }
4627 
4628 /**
4629  *  __dev_mc_unsync - Remove synchronized addresses from device
4630  *  @dev:  device to sync
4631  *  @unsync: function to call if address should be removed
4632  *
4633  *  Remove all addresses that were added to the device by dev_mc_sync().
4634  */
4635 static inline void __dev_mc_unsync(struct net_device *dev,
4636 				   int (*unsync)(struct net_device *,
4637 						 const unsigned char *))
4638 {
4639 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4640 }
4641 
4642 /* Functions used for secondary unicast and multicast support */
4643 void dev_set_rx_mode(struct net_device *dev);
4644 int dev_set_promiscuity(struct net_device *dev, int inc);
4645 int dev_set_allmulti(struct net_device *dev, int inc);
4646 void netdev_state_change(struct net_device *dev);
4647 void __netdev_notify_peers(struct net_device *dev);
4648 void netdev_notify_peers(struct net_device *dev);
4649 void netdev_features_change(struct net_device *dev);
4650 /* Load a device via the kmod */
4651 void dev_load(struct net *net, const char *name);
4652 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4653 					struct rtnl_link_stats64 *storage);
4654 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4655 			     const struct net_device_stats *netdev_stats);
4656 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4657 			   const struct pcpu_sw_netstats __percpu *netstats);
4658 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4659 
4660 extern int		netdev_max_backlog;
4661 extern int		dev_rx_weight;
4662 extern int		dev_tx_weight;
4663 extern int		gro_normal_batch;
4664 
4665 enum {
4666 	NESTED_SYNC_IMM_BIT,
4667 	NESTED_SYNC_TODO_BIT,
4668 };
4669 
4670 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4671 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4672 
4673 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4674 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4675 
4676 struct netdev_nested_priv {
4677 	unsigned char flags;
4678 	void *data;
4679 };
4680 
4681 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4682 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4683 						     struct list_head **iter);
4684 
4685 /* iterate through upper list, must be called under RCU read lock */
4686 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4687 	for (iter = &(dev)->adj_list.upper, \
4688 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4689 	     updev; \
4690 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4691 
4692 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4693 				  int (*fn)(struct net_device *upper_dev,
4694 					    struct netdev_nested_priv *priv),
4695 				  struct netdev_nested_priv *priv);
4696 
4697 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4698 				  struct net_device *upper_dev);
4699 
4700 bool netdev_has_any_upper_dev(struct net_device *dev);
4701 
4702 void *netdev_lower_get_next_private(struct net_device *dev,
4703 				    struct list_head **iter);
4704 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4705 					struct list_head **iter);
4706 
4707 #define netdev_for_each_lower_private(dev, priv, iter) \
4708 	for (iter = (dev)->adj_list.lower.next, \
4709 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4710 	     priv; \
4711 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4712 
4713 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4714 	for (iter = &(dev)->adj_list.lower, \
4715 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4716 	     priv; \
4717 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4718 
4719 void *netdev_lower_get_next(struct net_device *dev,
4720 				struct list_head **iter);
4721 
4722 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4723 	for (iter = (dev)->adj_list.lower.next, \
4724 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4725 	     ldev; \
4726 	     ldev = netdev_lower_get_next(dev, &(iter)))
4727 
4728 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4729 					     struct list_head **iter);
4730 int netdev_walk_all_lower_dev(struct net_device *dev,
4731 			      int (*fn)(struct net_device *lower_dev,
4732 					struct netdev_nested_priv *priv),
4733 			      struct netdev_nested_priv *priv);
4734 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4735 				  int (*fn)(struct net_device *lower_dev,
4736 					    struct netdev_nested_priv *priv),
4737 				  struct netdev_nested_priv *priv);
4738 
4739 void *netdev_adjacent_get_private(struct list_head *adj_list);
4740 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4741 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4742 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4743 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4744 			  struct netlink_ext_ack *extack);
4745 int netdev_master_upper_dev_link(struct net_device *dev,
4746 				 struct net_device *upper_dev,
4747 				 void *upper_priv, void *upper_info,
4748 				 struct netlink_ext_ack *extack);
4749 void netdev_upper_dev_unlink(struct net_device *dev,
4750 			     struct net_device *upper_dev);
4751 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4752 				   struct net_device *new_dev,
4753 				   struct net_device *dev,
4754 				   struct netlink_ext_ack *extack);
4755 void netdev_adjacent_change_commit(struct net_device *old_dev,
4756 				   struct net_device *new_dev,
4757 				   struct net_device *dev);
4758 void netdev_adjacent_change_abort(struct net_device *old_dev,
4759 				  struct net_device *new_dev,
4760 				  struct net_device *dev);
4761 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4762 void *netdev_lower_dev_get_private(struct net_device *dev,
4763 				   struct net_device *lower_dev);
4764 void netdev_lower_state_changed(struct net_device *lower_dev,
4765 				void *lower_state_info);
4766 
4767 /* RSS keys are 40 or 52 bytes long */
4768 #define NETDEV_RSS_KEY_LEN 52
4769 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4770 void netdev_rss_key_fill(void *buffer, size_t len);
4771 
4772 int skb_checksum_help(struct sk_buff *skb);
4773 int skb_crc32c_csum_help(struct sk_buff *skb);
4774 int skb_csum_hwoffload_help(struct sk_buff *skb,
4775 			    const netdev_features_t features);
4776 
4777 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4778 				  netdev_features_t features, bool tx_path);
4779 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4780 				    netdev_features_t features, __be16 type);
4781 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4782 				    netdev_features_t features);
4783 
4784 struct netdev_bonding_info {
4785 	ifslave	slave;
4786 	ifbond	master;
4787 };
4788 
4789 struct netdev_notifier_bonding_info {
4790 	struct netdev_notifier_info info; /* must be first */
4791 	struct netdev_bonding_info  bonding_info;
4792 };
4793 
4794 void netdev_bonding_info_change(struct net_device *dev,
4795 				struct netdev_bonding_info *bonding_info);
4796 
4797 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4798 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4799 #else
4800 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4801 				  const void *data)
4802 {
4803 }
4804 #endif
4805 
4806 static inline
4807 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4808 {
4809 	return __skb_gso_segment(skb, features, true);
4810 }
4811 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4812 
4813 static inline bool can_checksum_protocol(netdev_features_t features,
4814 					 __be16 protocol)
4815 {
4816 	if (protocol == htons(ETH_P_FCOE))
4817 		return !!(features & NETIF_F_FCOE_CRC);
4818 
4819 	/* Assume this is an IP checksum (not SCTP CRC) */
4820 
4821 	if (features & NETIF_F_HW_CSUM) {
4822 		/* Can checksum everything */
4823 		return true;
4824 	}
4825 
4826 	switch (protocol) {
4827 	case htons(ETH_P_IP):
4828 		return !!(features & NETIF_F_IP_CSUM);
4829 	case htons(ETH_P_IPV6):
4830 		return !!(features & NETIF_F_IPV6_CSUM);
4831 	default:
4832 		return false;
4833 	}
4834 }
4835 
4836 #ifdef CONFIG_BUG
4837 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4838 #else
4839 static inline void netdev_rx_csum_fault(struct net_device *dev,
4840 					struct sk_buff *skb)
4841 {
4842 }
4843 #endif
4844 /* rx skb timestamps */
4845 void net_enable_timestamp(void);
4846 void net_disable_timestamp(void);
4847 
4848 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4849 					const struct skb_shared_hwtstamps *hwtstamps,
4850 					bool cycles)
4851 {
4852 	const struct net_device_ops *ops = dev->netdev_ops;
4853 
4854 	if (ops->ndo_get_tstamp)
4855 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4856 
4857 	return hwtstamps->hwtstamp;
4858 }
4859 
4860 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4861 					      struct sk_buff *skb, struct net_device *dev,
4862 					      bool more)
4863 {
4864 	__this_cpu_write(softnet_data.xmit.more, more);
4865 	return ops->ndo_start_xmit(skb, dev);
4866 }
4867 
4868 static inline bool netdev_xmit_more(void)
4869 {
4870 	return __this_cpu_read(softnet_data.xmit.more);
4871 }
4872 
4873 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4874 					    struct netdev_queue *txq, bool more)
4875 {
4876 	const struct net_device_ops *ops = dev->netdev_ops;
4877 	netdev_tx_t rc;
4878 
4879 	rc = __netdev_start_xmit(ops, skb, dev, more);
4880 	if (rc == NETDEV_TX_OK)
4881 		txq_trans_update(txq);
4882 
4883 	return rc;
4884 }
4885 
4886 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4887 				const void *ns);
4888 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4889 				 const void *ns);
4890 
4891 extern const struct kobj_ns_type_operations net_ns_type_operations;
4892 
4893 const char *netdev_drivername(const struct net_device *dev);
4894 
4895 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4896 							  netdev_features_t f2)
4897 {
4898 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4899 		if (f1 & NETIF_F_HW_CSUM)
4900 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4901 		else
4902 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4903 	}
4904 
4905 	return f1 & f2;
4906 }
4907 
4908 static inline netdev_features_t netdev_get_wanted_features(
4909 	struct net_device *dev)
4910 {
4911 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4912 }
4913 netdev_features_t netdev_increment_features(netdev_features_t all,
4914 	netdev_features_t one, netdev_features_t mask);
4915 
4916 /* Allow TSO being used on stacked device :
4917  * Performing the GSO segmentation before last device
4918  * is a performance improvement.
4919  */
4920 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4921 							netdev_features_t mask)
4922 {
4923 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4924 }
4925 
4926 int __netdev_update_features(struct net_device *dev);
4927 void netdev_update_features(struct net_device *dev);
4928 void netdev_change_features(struct net_device *dev);
4929 
4930 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4931 					struct net_device *dev);
4932 
4933 netdev_features_t passthru_features_check(struct sk_buff *skb,
4934 					  struct net_device *dev,
4935 					  netdev_features_t features);
4936 netdev_features_t netif_skb_features(struct sk_buff *skb);
4937 
4938 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4939 {
4940 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4941 
4942 	/* check flags correspondence */
4943 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4944 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4945 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4946 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4947 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4948 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4949 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4950 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4951 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4952 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4953 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4954 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4955 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4956 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4957 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4958 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4959 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4960 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4961 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4962 
4963 	return (features & feature) == feature;
4964 }
4965 
4966 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4967 {
4968 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4969 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4970 }
4971 
4972 static inline bool netif_needs_gso(struct sk_buff *skb,
4973 				   netdev_features_t features)
4974 {
4975 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4976 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4977 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4978 }
4979 
4980 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4981 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4982 void netif_inherit_tso_max(struct net_device *to,
4983 			   const struct net_device *from);
4984 
4985 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4986 					int pulled_hlen, u16 mac_offset,
4987 					int mac_len)
4988 {
4989 	skb->protocol = protocol;
4990 	skb->encapsulation = 1;
4991 	skb_push(skb, pulled_hlen);
4992 	skb_reset_transport_header(skb);
4993 	skb->mac_header = mac_offset;
4994 	skb->network_header = skb->mac_header + mac_len;
4995 	skb->mac_len = mac_len;
4996 }
4997 
4998 static inline bool netif_is_macsec(const struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_MACSEC;
5001 }
5002 
5003 static inline bool netif_is_macvlan(const struct net_device *dev)
5004 {
5005 	return dev->priv_flags & IFF_MACVLAN;
5006 }
5007 
5008 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5009 {
5010 	return dev->priv_flags & IFF_MACVLAN_PORT;
5011 }
5012 
5013 static inline bool netif_is_bond_master(const struct net_device *dev)
5014 {
5015 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5016 }
5017 
5018 static inline bool netif_is_bond_slave(const struct net_device *dev)
5019 {
5020 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5021 }
5022 
5023 static inline bool netif_supports_nofcs(struct net_device *dev)
5024 {
5025 	return dev->priv_flags & IFF_SUPP_NOFCS;
5026 }
5027 
5028 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5029 {
5030 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5031 }
5032 
5033 static inline bool netif_is_l3_master(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5036 }
5037 
5038 static inline bool netif_is_l3_slave(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5041 }
5042 
5043 static inline bool netif_is_bridge_master(const struct net_device *dev)
5044 {
5045 	return dev->priv_flags & IFF_EBRIDGE;
5046 }
5047 
5048 static inline bool netif_is_bridge_port(const struct net_device *dev)
5049 {
5050 	return dev->priv_flags & IFF_BRIDGE_PORT;
5051 }
5052 
5053 static inline bool netif_is_ovs_master(const struct net_device *dev)
5054 {
5055 	return dev->priv_flags & IFF_OPENVSWITCH;
5056 }
5057 
5058 static inline bool netif_is_ovs_port(const struct net_device *dev)
5059 {
5060 	return dev->priv_flags & IFF_OVS_DATAPATH;
5061 }
5062 
5063 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5064 {
5065 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5066 }
5067 
5068 static inline bool netif_is_team_master(const struct net_device *dev)
5069 {
5070 	return dev->priv_flags & IFF_TEAM;
5071 }
5072 
5073 static inline bool netif_is_team_port(const struct net_device *dev)
5074 {
5075 	return dev->priv_flags & IFF_TEAM_PORT;
5076 }
5077 
5078 static inline bool netif_is_lag_master(const struct net_device *dev)
5079 {
5080 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5081 }
5082 
5083 static inline bool netif_is_lag_port(const struct net_device *dev)
5084 {
5085 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5086 }
5087 
5088 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5089 {
5090 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5091 }
5092 
5093 static inline bool netif_is_failover(const struct net_device *dev)
5094 {
5095 	return dev->priv_flags & IFF_FAILOVER;
5096 }
5097 
5098 static inline bool netif_is_failover_slave(const struct net_device *dev)
5099 {
5100 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5101 }
5102 
5103 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5104 static inline void netif_keep_dst(struct net_device *dev)
5105 {
5106 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5107 }
5108 
5109 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5110 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5111 {
5112 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5113 	return netif_is_macsec(dev);
5114 }
5115 
5116 extern struct pernet_operations __net_initdata loopback_net_ops;
5117 
5118 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5119 
5120 /* netdev_printk helpers, similar to dev_printk */
5121 
5122 static inline const char *netdev_name(const struct net_device *dev)
5123 {
5124 	if (!dev->name[0] || strchr(dev->name, '%'))
5125 		return "(unnamed net_device)";
5126 	return dev->name;
5127 }
5128 
5129 static inline const char *netdev_reg_state(const struct net_device *dev)
5130 {
5131 	switch (dev->reg_state) {
5132 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5133 	case NETREG_REGISTERED: return "";
5134 	case NETREG_UNREGISTERING: return " (unregistering)";
5135 	case NETREG_UNREGISTERED: return " (unregistered)";
5136 	case NETREG_RELEASED: return " (released)";
5137 	case NETREG_DUMMY: return " (dummy)";
5138 	}
5139 
5140 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5141 	return " (unknown)";
5142 }
5143 
5144 #define MODULE_ALIAS_NETDEV(device) \
5145 	MODULE_ALIAS("netdev-" device)
5146 
5147 /*
5148  * netdev_WARN() acts like dev_printk(), but with the key difference
5149  * of using a WARN/WARN_ON to get the message out, including the
5150  * file/line information and a backtrace.
5151  */
5152 #define netdev_WARN(dev, format, args...)			\
5153 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5154 	     netdev_reg_state(dev), ##args)
5155 
5156 #define netdev_WARN_ONCE(dev, format, args...)				\
5157 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5158 		  netdev_reg_state(dev), ##args)
5159 
5160 /*
5161  *	The list of packet types we will receive (as opposed to discard)
5162  *	and the routines to invoke.
5163  *
5164  *	Why 16. Because with 16 the only overlap we get on a hash of the
5165  *	low nibble of the protocol value is RARP/SNAP/X.25.
5166  *
5167  *		0800	IP
5168  *		0001	802.3
5169  *		0002	AX.25
5170  *		0004	802.2
5171  *		8035	RARP
5172  *		0005	SNAP
5173  *		0805	X.25
5174  *		0806	ARP
5175  *		8137	IPX
5176  *		0009	Localtalk
5177  *		86DD	IPv6
5178  */
5179 #define PTYPE_HASH_SIZE	(16)
5180 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5181 
5182 extern struct list_head ptype_all __read_mostly;
5183 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5184 
5185 extern struct net_device *blackhole_netdev;
5186 
5187 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5188 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5189 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5190 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5191 
5192 #endif	/* _LINUX_NETDEVICE_H */
5193