xref: /openbmc/linux/include/linux/netdevice.h (revision 29c37341)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void netdev_set_default_ethtool_ops(struct net_device *dev,
74 				    const struct ethtool_ops *ops);
75 
76 /* Backlog congestion levels */
77 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
78 #define NET_RX_DROP		1	/* packet dropped */
79 
80 #define MAX_NEST_DEV 8
81 
82 /*
83  * Transmit return codes: transmit return codes originate from three different
84  * namespaces:
85  *
86  * - qdisc return codes
87  * - driver transmit return codes
88  * - errno values
89  *
90  * Drivers are allowed to return any one of those in their hard_start_xmit()
91  * function. Real network devices commonly used with qdiscs should only return
92  * the driver transmit return codes though - when qdiscs are used, the actual
93  * transmission happens asynchronously, so the value is not propagated to
94  * higher layers. Virtual network devices transmit synchronously; in this case
95  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
96  * others are propagated to higher layers.
97  */
98 
99 /* qdisc ->enqueue() return codes. */
100 #define NET_XMIT_SUCCESS	0x00
101 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
102 #define NET_XMIT_CN		0x02	/* congestion notification	*/
103 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
104 
105 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
106  * indicates that the device will soon be dropping packets, or already drops
107  * some packets of the same priority; prompting us to send less aggressively. */
108 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
109 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
110 
111 /* Driver transmit return codes */
112 #define NETDEV_TX_MASK		0xf0
113 
114 enum netdev_tx {
115 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
116 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
117 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
118 };
119 typedef enum netdev_tx netdev_tx_t;
120 
121 /*
122  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
123  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
124  */
125 static inline bool dev_xmit_complete(int rc)
126 {
127 	/*
128 	 * Positive cases with an skb consumed by a driver:
129 	 * - successful transmission (rc == NETDEV_TX_OK)
130 	 * - error while transmitting (rc < 0)
131 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
132 	 */
133 	if (likely(rc < NET_XMIT_MASK))
134 		return true;
135 
136 	return false;
137 }
138 
139 /*
140  *	Compute the worst-case header length according to the protocols
141  *	used.
142  */
143 
144 #if defined(CONFIG_HYPERV_NET)
145 # define LL_MAX_HEADER 128
146 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
147 # if defined(CONFIG_MAC80211_MESH)
148 #  define LL_MAX_HEADER 128
149 # else
150 #  define LL_MAX_HEADER 96
151 # endif
152 #else
153 # define LL_MAX_HEADER 32
154 #endif
155 
156 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
157     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
158 #define MAX_HEADER LL_MAX_HEADER
159 #else
160 #define MAX_HEADER (LL_MAX_HEADER + 48)
161 #endif
162 
163 /*
164  *	Old network device statistics. Fields are native words
165  *	(unsigned long) so they can be read and written atomically.
166  */
167 
168 struct net_device_stats {
169 	unsigned long	rx_packets;
170 	unsigned long	tx_packets;
171 	unsigned long	rx_bytes;
172 	unsigned long	tx_bytes;
173 	unsigned long	rx_errors;
174 	unsigned long	tx_errors;
175 	unsigned long	rx_dropped;
176 	unsigned long	tx_dropped;
177 	unsigned long	multicast;
178 	unsigned long	collisions;
179 	unsigned long	rx_length_errors;
180 	unsigned long	rx_over_errors;
181 	unsigned long	rx_crc_errors;
182 	unsigned long	rx_frame_errors;
183 	unsigned long	rx_fifo_errors;
184 	unsigned long	rx_missed_errors;
185 	unsigned long	tx_aborted_errors;
186 	unsigned long	tx_carrier_errors;
187 	unsigned long	tx_fifo_errors;
188 	unsigned long	tx_heartbeat_errors;
189 	unsigned long	tx_window_errors;
190 	unsigned long	rx_compressed;
191 	unsigned long	tx_compressed;
192 };
193 
194 
195 #include <linux/cache.h>
196 #include <linux/skbuff.h>
197 
198 #ifdef CONFIG_RPS
199 #include <linux/static_key.h>
200 extern struct static_key_false rps_needed;
201 extern struct static_key_false rfs_needed;
202 #endif
203 
204 struct neighbour;
205 struct neigh_parms;
206 struct sk_buff;
207 
208 struct netdev_hw_addr {
209 	struct list_head	list;
210 	unsigned char		addr[MAX_ADDR_LEN];
211 	unsigned char		type;
212 #define NETDEV_HW_ADDR_T_LAN		1
213 #define NETDEV_HW_ADDR_T_SAN		2
214 #define NETDEV_HW_ADDR_T_SLAVE		3
215 #define NETDEV_HW_ADDR_T_UNICAST	4
216 #define NETDEV_HW_ADDR_T_MULTICAST	5
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_hash_del - remove a NAPI from global table
493  *	@napi: NAPI context
494  *
495  * Warning: caller must observe RCU grace period
496  * before freeing memory containing @napi, if
497  * this function returns true.
498  * Note: core networking stack automatically calls it
499  * from netif_napi_del().
500  * Drivers might want to call this helper to combine all
501  * the needed RCU grace periods into a single one.
502  */
503 bool napi_hash_del(struct napi_struct *napi);
504 
505 /**
506  *	napi_disable - prevent NAPI from scheduling
507  *	@n: NAPI context
508  *
509  * Stop NAPI from being scheduled on this context.
510  * Waits till any outstanding processing completes.
511  */
512 void napi_disable(struct napi_struct *n);
513 
514 /**
515  *	napi_enable - enable NAPI scheduling
516  *	@n: NAPI context
517  *
518  * Resume NAPI from being scheduled on this context.
519  * Must be paired with napi_disable.
520  */
521 static inline void napi_enable(struct napi_struct *n)
522 {
523 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
524 	smp_mb__before_atomic();
525 	clear_bit(NAPI_STATE_SCHED, &n->state);
526 	clear_bit(NAPI_STATE_NPSVC, &n->state);
527 }
528 
529 /**
530  *	napi_synchronize - wait until NAPI is not running
531  *	@n: NAPI context
532  *
533  * Wait until NAPI is done being scheduled on this context.
534  * Waits till any outstanding processing completes but
535  * does not disable future activations.
536  */
537 static inline void napi_synchronize(const struct napi_struct *n)
538 {
539 	if (IS_ENABLED(CONFIG_SMP))
540 		while (test_bit(NAPI_STATE_SCHED, &n->state))
541 			msleep(1);
542 	else
543 		barrier();
544 }
545 
546 /**
547  *	napi_if_scheduled_mark_missed - if napi is running, set the
548  *	NAPIF_STATE_MISSED
549  *	@n: NAPI context
550  *
551  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
552  * NAPI is scheduled.
553  **/
554 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
555 {
556 	unsigned long val, new;
557 
558 	do {
559 		val = READ_ONCE(n->state);
560 		if (val & NAPIF_STATE_DISABLE)
561 			return true;
562 
563 		if (!(val & NAPIF_STATE_SCHED))
564 			return false;
565 
566 		new = val | NAPIF_STATE_MISSED;
567 	} while (cmpxchg(&n->state, val, new) != val);
568 
569 	return true;
570 }
571 
572 enum netdev_queue_state_t {
573 	__QUEUE_STATE_DRV_XOFF,
574 	__QUEUE_STATE_STACK_XOFF,
575 	__QUEUE_STATE_FROZEN,
576 };
577 
578 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
579 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
581 
582 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
583 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
584 					QUEUE_STATE_FROZEN)
585 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
586 					QUEUE_STATE_FROZEN)
587 
588 /*
589  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
590  * netif_tx_* functions below are used to manipulate this flag.  The
591  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
592  * queue independently.  The netif_xmit_*stopped functions below are called
593  * to check if the queue has been stopped by the driver or stack (either
594  * of the XOFF bits are set in the state).  Drivers should not need to call
595  * netif_xmit*stopped functions, they should only be using netif_tx_*.
596  */
597 
598 struct netdev_queue {
599 /*
600  * read-mostly part
601  */
602 	struct net_device	*dev;
603 	struct Qdisc __rcu	*qdisc;
604 	struct Qdisc		*qdisc_sleeping;
605 #ifdef CONFIG_SYSFS
606 	struct kobject		kobj;
607 #endif
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 	int			numa_node;
610 #endif
611 	unsigned long		tx_maxrate;
612 	/*
613 	 * Number of TX timeouts for this queue
614 	 * (/sys/class/net/DEV/Q/trans_timeout)
615 	 */
616 	unsigned long		trans_timeout;
617 
618 	/* Subordinate device that the queue has been assigned to */
619 	struct net_device	*sb_dev;
620 #ifdef CONFIG_XDP_SOCKETS
621 	struct xdp_umem         *umem;
622 #endif
623 /*
624  * write-mostly part
625  */
626 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
627 	int			xmit_lock_owner;
628 	/*
629 	 * Time (in jiffies) of last Tx
630 	 */
631 	unsigned long		trans_start;
632 
633 	unsigned long		state;
634 
635 #ifdef CONFIG_BQL
636 	struct dql		dql;
637 #endif
638 } ____cacheline_aligned_in_smp;
639 
640 extern int sysctl_fb_tunnels_only_for_init_net;
641 extern int sysctl_devconf_inherit_init_net;
642 
643 static inline bool net_has_fallback_tunnels(const struct net *net)
644 {
645 	return net == &init_net ||
646 	       !IS_ENABLED(CONFIG_SYSCTL) ||
647 	       !sysctl_fb_tunnels_only_for_init_net;
648 }
649 
650 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	return q->numa_node;
654 #else
655 	return NUMA_NO_NODE;
656 #endif
657 }
658 
659 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
660 {
661 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
662 	q->numa_node = node;
663 #endif
664 }
665 
666 #ifdef CONFIG_RPS
667 /*
668  * This structure holds an RPS map which can be of variable length.  The
669  * map is an array of CPUs.
670  */
671 struct rps_map {
672 	unsigned int len;
673 	struct rcu_head rcu;
674 	u16 cpus[];
675 };
676 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
677 
678 /*
679  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
680  * tail pointer for that CPU's input queue at the time of last enqueue, and
681  * a hardware filter index.
682  */
683 struct rps_dev_flow {
684 	u16 cpu;
685 	u16 filter;
686 	unsigned int last_qtail;
687 };
688 #define RPS_NO_FILTER 0xffff
689 
690 /*
691  * The rps_dev_flow_table structure contains a table of flow mappings.
692  */
693 struct rps_dev_flow_table {
694 	unsigned int mask;
695 	struct rcu_head rcu;
696 	struct rps_dev_flow flows[];
697 };
698 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
699     ((_num) * sizeof(struct rps_dev_flow)))
700 
701 /*
702  * The rps_sock_flow_table contains mappings of flows to the last CPU
703  * on which they were processed by the application (set in recvmsg).
704  * Each entry is a 32bit value. Upper part is the high-order bits
705  * of flow hash, lower part is CPU number.
706  * rps_cpu_mask is used to partition the space, depending on number of
707  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
708  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
709  * meaning we use 32-6=26 bits for the hash.
710  */
711 struct rps_sock_flow_table {
712 	u32	mask;
713 
714 	u32	ents[] ____cacheline_aligned_in_smp;
715 };
716 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
717 
718 #define RPS_NO_CPU 0xffff
719 
720 extern u32 rps_cpu_mask;
721 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
722 
723 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
724 					u32 hash)
725 {
726 	if (table && hash) {
727 		unsigned int index = hash & table->mask;
728 		u32 val = hash & ~rps_cpu_mask;
729 
730 		/* We only give a hint, preemption can change CPU under us */
731 		val |= raw_smp_processor_id();
732 
733 		if (table->ents[index] != val)
734 			table->ents[index] = val;
735 	}
736 }
737 
738 #ifdef CONFIG_RFS_ACCEL
739 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
740 			 u16 filter_id);
741 #endif
742 #endif /* CONFIG_RPS */
743 
744 /* This structure contains an instance of an RX queue. */
745 struct netdev_rx_queue {
746 #ifdef CONFIG_RPS
747 	struct rps_map __rcu		*rps_map;
748 	struct rps_dev_flow_table __rcu	*rps_flow_table;
749 #endif
750 	struct kobject			kobj;
751 	struct net_device		*dev;
752 	struct xdp_rxq_info		xdp_rxq;
753 #ifdef CONFIG_XDP_SOCKETS
754 	struct xdp_umem                 *umem;
755 #endif
756 } ____cacheline_aligned_in_smp;
757 
758 /*
759  * RX queue sysfs structures and functions.
760  */
761 struct rx_queue_attribute {
762 	struct attribute attr;
763 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 	ssize_t (*store)(struct netdev_rx_queue *queue,
765 			 const char *buf, size_t len);
766 };
767 
768 #ifdef CONFIG_XPS
769 /*
770  * This structure holds an XPS map which can be of variable length.  The
771  * map is an array of queues.
772  */
773 struct xps_map {
774 	unsigned int len;
775 	unsigned int alloc_len;
776 	struct rcu_head rcu;
777 	u16 queues[];
778 };
779 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
780 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
781        - sizeof(struct xps_map)) / sizeof(u16))
782 
783 /*
784  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
785  */
786 struct xps_dev_maps {
787 	struct rcu_head rcu;
788 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
789 };
790 
791 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
792 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
793 
794 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
795 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
796 
797 #endif /* CONFIG_XPS */
798 
799 #define TC_MAX_QUEUE	16
800 #define TC_BITMASK	15
801 /* HW offloaded queuing disciplines txq count and offset maps */
802 struct netdev_tc_txq {
803 	u16 count;
804 	u16 offset;
805 };
806 
807 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
808 /*
809  * This structure is to hold information about the device
810  * configured to run FCoE protocol stack.
811  */
812 struct netdev_fcoe_hbainfo {
813 	char	manufacturer[64];
814 	char	serial_number[64];
815 	char	hardware_version[64];
816 	char	driver_version[64];
817 	char	optionrom_version[64];
818 	char	firmware_version[64];
819 	char	model[256];
820 	char	model_description[256];
821 };
822 #endif
823 
824 #define MAX_PHYS_ITEM_ID_LEN 32
825 
826 /* This structure holds a unique identifier to identify some
827  * physical item (port for example) used by a netdevice.
828  */
829 struct netdev_phys_item_id {
830 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
831 	unsigned char id_len;
832 };
833 
834 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
835 					    struct netdev_phys_item_id *b)
836 {
837 	return a->id_len == b->id_len &&
838 	       memcmp(a->id, b->id, a->id_len) == 0;
839 }
840 
841 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
842 				       struct sk_buff *skb,
843 				       struct net_device *sb_dev);
844 
845 enum tc_setup_type {
846 	TC_SETUP_QDISC_MQPRIO,
847 	TC_SETUP_CLSU32,
848 	TC_SETUP_CLSFLOWER,
849 	TC_SETUP_CLSMATCHALL,
850 	TC_SETUP_CLSBPF,
851 	TC_SETUP_BLOCK,
852 	TC_SETUP_QDISC_CBS,
853 	TC_SETUP_QDISC_RED,
854 	TC_SETUP_QDISC_PRIO,
855 	TC_SETUP_QDISC_MQ,
856 	TC_SETUP_QDISC_ETF,
857 	TC_SETUP_ROOT_QDISC,
858 	TC_SETUP_QDISC_GRED,
859 	TC_SETUP_QDISC_TAPRIO,
860 	TC_SETUP_FT,
861 	TC_SETUP_QDISC_ETS,
862 	TC_SETUP_QDISC_TBF,
863 	TC_SETUP_QDISC_FIFO,
864 };
865 
866 /* These structures hold the attributes of bpf state that are being passed
867  * to the netdevice through the bpf op.
868  */
869 enum bpf_netdev_command {
870 	/* Set or clear a bpf program used in the earliest stages of packet
871 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
872 	 * is responsible for calling bpf_prog_put on any old progs that are
873 	 * stored. In case of error, the callee need not release the new prog
874 	 * reference, but on success it takes ownership and must bpf_prog_put
875 	 * when it is no longer used.
876 	 */
877 	XDP_SETUP_PROG,
878 	XDP_SETUP_PROG_HW,
879 	/* BPF program for offload callbacks, invoked at program load time. */
880 	BPF_OFFLOAD_MAP_ALLOC,
881 	BPF_OFFLOAD_MAP_FREE,
882 	XDP_SETUP_XSK_UMEM,
883 };
884 
885 struct bpf_prog_offload_ops;
886 struct netlink_ext_ack;
887 struct xdp_umem;
888 struct xdp_dev_bulk_queue;
889 struct bpf_xdp_link;
890 
891 enum bpf_xdp_mode {
892 	XDP_MODE_SKB = 0,
893 	XDP_MODE_DRV = 1,
894 	XDP_MODE_HW = 2,
895 	__MAX_XDP_MODE
896 };
897 
898 struct bpf_xdp_entity {
899 	struct bpf_prog *prog;
900 	struct bpf_xdp_link *link;
901 };
902 
903 struct netdev_bpf {
904 	enum bpf_netdev_command command;
905 	union {
906 		/* XDP_SETUP_PROG */
907 		struct {
908 			u32 flags;
909 			struct bpf_prog *prog;
910 			struct netlink_ext_ack *extack;
911 		};
912 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
913 		struct {
914 			struct bpf_offloaded_map *offmap;
915 		};
916 		/* XDP_SETUP_XSK_UMEM */
917 		struct {
918 			struct xdp_umem *umem;
919 			u16 queue_id;
920 		} xsk;
921 	};
922 };
923 
924 /* Flags for ndo_xsk_wakeup. */
925 #define XDP_WAKEUP_RX (1 << 0)
926 #define XDP_WAKEUP_TX (1 << 1)
927 
928 #ifdef CONFIG_XFRM_OFFLOAD
929 struct xfrmdev_ops {
930 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
931 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
932 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
933 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
934 				       struct xfrm_state *x);
935 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
936 };
937 #endif
938 
939 struct dev_ifalias {
940 	struct rcu_head rcuhead;
941 	char ifalias[];
942 };
943 
944 struct devlink;
945 struct tlsdev_ops;
946 
947 struct netdev_name_node {
948 	struct hlist_node hlist;
949 	struct list_head list;
950 	struct net_device *dev;
951 	const char *name;
952 };
953 
954 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
955 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
956 
957 struct netdev_net_notifier {
958 	struct list_head list;
959 	struct notifier_block *nb;
960 };
961 
962 /*
963  * This structure defines the management hooks for network devices.
964  * The following hooks can be defined; unless noted otherwise, they are
965  * optional and can be filled with a null pointer.
966  *
967  * int (*ndo_init)(struct net_device *dev);
968  *     This function is called once when a network device is registered.
969  *     The network device can use this for any late stage initialization
970  *     or semantic validation. It can fail with an error code which will
971  *     be propagated back to register_netdev.
972  *
973  * void (*ndo_uninit)(struct net_device *dev);
974  *     This function is called when device is unregistered or when registration
975  *     fails. It is not called if init fails.
976  *
977  * int (*ndo_open)(struct net_device *dev);
978  *     This function is called when a network device transitions to the up
979  *     state.
980  *
981  * int (*ndo_stop)(struct net_device *dev);
982  *     This function is called when a network device transitions to the down
983  *     state.
984  *
985  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
986  *                               struct net_device *dev);
987  *	Called when a packet needs to be transmitted.
988  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
989  *	the queue before that can happen; it's for obsolete devices and weird
990  *	corner cases, but the stack really does a non-trivial amount
991  *	of useless work if you return NETDEV_TX_BUSY.
992  *	Required; cannot be NULL.
993  *
994  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
995  *					   struct net_device *dev
996  *					   netdev_features_t features);
997  *	Called by core transmit path to determine if device is capable of
998  *	performing offload operations on a given packet. This is to give
999  *	the device an opportunity to implement any restrictions that cannot
1000  *	be otherwise expressed by feature flags. The check is called with
1001  *	the set of features that the stack has calculated and it returns
1002  *	those the driver believes to be appropriate.
1003  *
1004  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005  *                         struct net_device *sb_dev);
1006  *	Called to decide which queue to use when device supports multiple
1007  *	transmit queues.
1008  *
1009  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010  *	This function is called to allow device receiver to make
1011  *	changes to configuration when multicast or promiscuous is enabled.
1012  *
1013  * void (*ndo_set_rx_mode)(struct net_device *dev);
1014  *	This function is called device changes address list filtering.
1015  *	If driver handles unicast address filtering, it should set
1016  *	IFF_UNICAST_FLT in its priv_flags.
1017  *
1018  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019  *	This function  is called when the Media Access Control address
1020  *	needs to be changed. If this interface is not defined, the
1021  *	MAC address can not be changed.
1022  *
1023  * int (*ndo_validate_addr)(struct net_device *dev);
1024  *	Test if Media Access Control address is valid for the device.
1025  *
1026  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027  *	Called when a user requests an ioctl which can't be handled by
1028  *	the generic interface code. If not defined ioctls return
1029  *	not supported error code.
1030  *
1031  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032  *	Used to set network devices bus interface parameters. This interface
1033  *	is retained for legacy reasons; new devices should use the bus
1034  *	interface (PCI) for low level management.
1035  *
1036  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037  *	Called when a user wants to change the Maximum Transfer Unit
1038  *	of a device.
1039  *
1040  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041  *	Callback used when the transmitter has not made any progress
1042  *	for dev->watchdog ticks.
1043  *
1044  * void (*ndo_get_stats64)(struct net_device *dev,
1045  *                         struct rtnl_link_stats64 *storage);
1046  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047  *	Called when a user wants to get the network device usage
1048  *	statistics. Drivers must do one of the following:
1049  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1050  *	   rtnl_link_stats64 structure passed by the caller.
1051  *	2. Define @ndo_get_stats to update a net_device_stats structure
1052  *	   (which should normally be dev->stats) and return a pointer to
1053  *	   it. The structure may be changed asynchronously only if each
1054  *	   field is written atomically.
1055  *	3. Update dev->stats asynchronously and atomically, and define
1056  *	   neither operation.
1057  *
1058  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059  *	Return true if this device supports offload stats of this attr_id.
1060  *
1061  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062  *	void *attr_data)
1063  *	Get statistics for offload operations by attr_id. Write it into the
1064  *	attr_data pointer.
1065  *
1066  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067  *	If device supports VLAN filtering this function is called when a
1068  *	VLAN id is registered.
1069  *
1070  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071  *	If device supports VLAN filtering this function is called when a
1072  *	VLAN id is unregistered.
1073  *
1074  * void (*ndo_poll_controller)(struct net_device *dev);
1075  *
1076  *	SR-IOV management functions.
1077  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079  *			  u8 qos, __be16 proto);
1080  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081  *			  int max_tx_rate);
1082  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084  * int (*ndo_get_vf_config)(struct net_device *dev,
1085  *			    int vf, struct ifla_vf_info *ivf);
1086  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088  *			  struct nlattr *port[]);
1089  *
1090  *      Enable or disable the VF ability to query its RSS Redirection Table and
1091  *      Hash Key. This is needed since on some devices VF share this information
1092  *      with PF and querying it may introduce a theoretical security risk.
1093  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096  *		       void *type_data);
1097  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1098  *	This is always called from the stack with the rtnl lock held and netif
1099  *	tx queues stopped. This allows the netdevice to perform queue
1100  *	management safely.
1101  *
1102  *	Fiber Channel over Ethernet (FCoE) offload functions.
1103  * int (*ndo_fcoe_enable)(struct net_device *dev);
1104  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1105  *	so the underlying device can perform whatever needed configuration or
1106  *	initialization to support acceleration of FCoE traffic.
1107  *
1108  * int (*ndo_fcoe_disable)(struct net_device *dev);
1109  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110  *	so the underlying device can perform whatever needed clean-ups to
1111  *	stop supporting acceleration of FCoE traffic.
1112  *
1113  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114  *			     struct scatterlist *sgl, unsigned int sgc);
1115  *	Called when the FCoE Initiator wants to initialize an I/O that
1116  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1117  *	perform necessary setup and returns 1 to indicate the device is set up
1118  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1119  *
1120  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1121  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122  *	indicated by the FC exchange id 'xid', so the underlying device can
1123  *	clean up and reuse resources for later DDP requests.
1124  *
1125  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126  *			      struct scatterlist *sgl, unsigned int sgc);
1127  *	Called when the FCoE Target wants to initialize an I/O that
1128  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1129  *	perform necessary setup and returns 1 to indicate the device is set up
1130  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1131  *
1132  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133  *			       struct netdev_fcoe_hbainfo *hbainfo);
1134  *	Called when the FCoE Protocol stack wants information on the underlying
1135  *	device. This information is utilized by the FCoE protocol stack to
1136  *	register attributes with Fiber Channel management service as per the
1137  *	FC-GS Fabric Device Management Information(FDMI) specification.
1138  *
1139  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140  *	Called when the underlying device wants to override default World Wide
1141  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143  *	protocol stack to use.
1144  *
1145  *	RFS acceleration.
1146  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147  *			    u16 rxq_index, u32 flow_id);
1148  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1149  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150  *	Return the filter ID on success, or a negative error code.
1151  *
1152  *	Slave management functions (for bridge, bonding, etc).
1153  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154  *	Called to make another netdev an underling.
1155  *
1156  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157  *	Called to release previously enslaved netdev.
1158  *
1159  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160  *					    struct sk_buff *skb,
1161  *					    bool all_slaves);
1162  *	Get the xmit slave of master device. If all_slaves is true, function
1163  *	assume all the slaves can transmit.
1164  *
1165  *      Feature/offload setting functions.
1166  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167  *		netdev_features_t features);
1168  *	Adjusts the requested feature flags according to device-specific
1169  *	constraints, and returns the resulting flags. Must not modify
1170  *	the device state.
1171  *
1172  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173  *	Called to update device configuration to new features. Passed
1174  *	feature set might be less than what was returned by ndo_fix_features()).
1175  *	Must return >0 or -errno if it changed dev->features itself.
1176  *
1177  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178  *		      struct net_device *dev,
1179  *		      const unsigned char *addr, u16 vid, u16 flags,
1180  *		      struct netlink_ext_ack *extack);
1181  *	Adds an FDB entry to dev for addr.
1182  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183  *		      struct net_device *dev,
1184  *		      const unsigned char *addr, u16 vid)
1185  *	Deletes the FDB entry from dev coresponding to addr.
1186  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187  *		       struct net_device *dev, struct net_device *filter_dev,
1188  *		       int *idx)
1189  *	Used to add FDB entries to dump requests. Implementers should add
1190  *	entries to skb and update idx with the number of entries.
1191  *
1192  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193  *			     u16 flags, struct netlink_ext_ack *extack)
1194  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195  *			     struct net_device *dev, u32 filter_mask,
1196  *			     int nlflags)
1197  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198  *			     u16 flags);
1199  *
1200  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1202  *	which do not represent real hardware may define this to allow their
1203  *	userspace components to manage their virtual carrier state. Devices
1204  *	that determine carrier state from physical hardware properties (eg
1205  *	network cables) or protocol-dependent mechanisms (eg
1206  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207  *
1208  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209  *			       struct netdev_phys_item_id *ppid);
1210  *	Called to get ID of physical port of this device. If driver does
1211  *	not implement this, it is assumed that the hw is not able to have
1212  *	multiple net devices on single physical port.
1213  *
1214  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215  *				 struct netdev_phys_item_id *ppid)
1216  *	Called to get the parent ID of the physical port of this device.
1217  *
1218  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219  *			      struct udp_tunnel_info *ti);
1220  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1221  *	address family that a UDP tunnel is listnening to. It is called only
1222  *	when a new port starts listening. The operation is protected by the
1223  *	RTNL.
1224  *
1225  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226  *			      struct udp_tunnel_info *ti);
1227  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1228  *	address family that the UDP tunnel is not listening to anymore. The
1229  *	operation is protected by the RTNL.
1230  *
1231  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232  *				 struct net_device *dev)
1233  *	Called by upper layer devices to accelerate switching or other
1234  *	station functionality into hardware. 'pdev is the lowerdev
1235  *	to use for the offload and 'dev' is the net device that will
1236  *	back the offload. Returns a pointer to the private structure
1237  *	the upper layer will maintain.
1238  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239  *	Called by upper layer device to delete the station created
1240  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241  *	the station and priv is the structure returned by the add
1242  *	operation.
1243  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244  *			     int queue_index, u32 maxrate);
1245  *	Called when a user wants to set a max-rate limitation of specific
1246  *	TX queue.
1247  * int (*ndo_get_iflink)(const struct net_device *dev);
1248  *	Called to get the iflink value of this device.
1249  * void (*ndo_change_proto_down)(struct net_device *dev,
1250  *				 bool proto_down);
1251  *	This function is used to pass protocol port error state information
1252  *	to the switch driver. The switch driver can react to the proto_down
1253  *      by doing a phys down on the associated switch port.
1254  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255  *	This function is used to get egress tunnel information for given skb.
1256  *	This is useful for retrieving outer tunnel header parameters while
1257  *	sampling packet.
1258  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259  *	This function is used to specify the headroom that the skb must
1260  *	consider when allocation skb during packet reception. Setting
1261  *	appropriate rx headroom value allows avoiding skb head copy on
1262  *	forward. Setting a negative value resets the rx headroom to the
1263  *	default value.
1264  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265  *	This function is used to set or query state related to XDP on the
1266  *	netdevice and manage BPF offload. See definition of
1267  *	enum bpf_netdev_command for details.
1268  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269  *			u32 flags);
1270  *	This function is used to submit @n XDP packets for transmit on a
1271  *	netdevice. Returns number of frames successfully transmitted, frames
1272  *	that got dropped are freed/returned via xdp_return_frame().
1273  *	Returns negative number, means general error invoking ndo, meaning
1274  *	no frames were xmit'ed and core-caller will free all frames.
1275  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276  *      This function is used to wake up the softirq, ksoftirqd or kthread
1277  *	responsible for sending and/or receiving packets on a specific
1278  *	queue id bound to an AF_XDP socket. The flags field specifies if
1279  *	only RX, only Tx, or both should be woken up using the flags
1280  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282  *	Get devlink port instance associated with a given netdev.
1283  *	Called with a reference on the netdevice and devlink locks only,
1284  *	rtnl_lock is not held.
1285  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286  *			 int cmd);
1287  *	Add, change, delete or get information on an IPv4 tunnel.
1288  */
1289 struct net_device_ops {
1290 	int			(*ndo_init)(struct net_device *dev);
1291 	void			(*ndo_uninit)(struct net_device *dev);
1292 	int			(*ndo_open)(struct net_device *dev);
1293 	int			(*ndo_stop)(struct net_device *dev);
1294 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1295 						  struct net_device *dev);
1296 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1297 						      struct net_device *dev,
1298 						      netdev_features_t features);
1299 	u16			(*ndo_select_queue)(struct net_device *dev,
1300 						    struct sk_buff *skb,
1301 						    struct net_device *sb_dev);
1302 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1303 						       int flags);
1304 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1305 	int			(*ndo_set_mac_address)(struct net_device *dev,
1306 						       void *addr);
1307 	int			(*ndo_validate_addr)(struct net_device *dev);
1308 	int			(*ndo_do_ioctl)(struct net_device *dev,
1309 					        struct ifreq *ifr, int cmd);
1310 	int			(*ndo_set_config)(struct net_device *dev,
1311 					          struct ifmap *map);
1312 	int			(*ndo_change_mtu)(struct net_device *dev,
1313 						  int new_mtu);
1314 	int			(*ndo_neigh_setup)(struct net_device *dev,
1315 						   struct neigh_parms *);
1316 	void			(*ndo_tx_timeout) (struct net_device *dev,
1317 						   unsigned int txqueue);
1318 
1319 	void			(*ndo_get_stats64)(struct net_device *dev,
1320 						   struct rtnl_link_stats64 *storage);
1321 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322 	int			(*ndo_get_offload_stats)(int attr_id,
1323 							 const struct net_device *dev,
1324 							 void *attr_data);
1325 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326 
1327 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328 						       __be16 proto, u16 vid);
1329 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330 						        __be16 proto, u16 vid);
1331 #ifdef CONFIG_NET_POLL_CONTROLLER
1332 	void                    (*ndo_poll_controller)(struct net_device *dev);
1333 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1334 						     struct netpoll_info *info);
1335 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1336 #endif
1337 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1338 						  int queue, u8 *mac);
1339 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1340 						   int queue, u16 vlan,
1341 						   u8 qos, __be16 proto);
1342 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1343 						   int vf, int min_tx_rate,
1344 						   int max_tx_rate);
1345 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1346 						       int vf, bool setting);
1347 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1348 						    int vf, bool setting);
1349 	int			(*ndo_get_vf_config)(struct net_device *dev,
1350 						     int vf,
1351 						     struct ifla_vf_info *ivf);
1352 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1353 							 int vf, int link_state);
1354 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1355 						    int vf,
1356 						    struct ifla_vf_stats
1357 						    *vf_stats);
1358 	int			(*ndo_set_vf_port)(struct net_device *dev,
1359 						   int vf,
1360 						   struct nlattr *port[]);
1361 	int			(*ndo_get_vf_port)(struct net_device *dev,
1362 						   int vf, struct sk_buff *skb);
1363 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1364 						   int vf,
1365 						   struct ifla_vf_guid *node_guid,
1366 						   struct ifla_vf_guid *port_guid);
1367 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1368 						   int vf, u64 guid,
1369 						   int guid_type);
1370 	int			(*ndo_set_vf_rss_query_en)(
1371 						   struct net_device *dev,
1372 						   int vf, bool setting);
1373 	int			(*ndo_setup_tc)(struct net_device *dev,
1374 						enum tc_setup_type type,
1375 						void *type_data);
1376 #if IS_ENABLED(CONFIG_FCOE)
1377 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1378 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1379 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380 						      u16 xid,
1381 						      struct scatterlist *sgl,
1382 						      unsigned int sgc);
1383 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1384 						     u16 xid);
1385 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1386 						       u16 xid,
1387 						       struct scatterlist *sgl,
1388 						       unsigned int sgc);
1389 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390 							struct netdev_fcoe_hbainfo *hbainfo);
1391 #endif
1392 
1393 #if IS_ENABLED(CONFIG_LIBFCOE)
1394 #define NETDEV_FCOE_WWNN 0
1395 #define NETDEV_FCOE_WWPN 1
1396 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1397 						    u64 *wwn, int type);
1398 #endif
1399 
1400 #ifdef CONFIG_RFS_ACCEL
1401 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1402 						     const struct sk_buff *skb,
1403 						     u16 rxq_index,
1404 						     u32 flow_id);
1405 #endif
1406 	int			(*ndo_add_slave)(struct net_device *dev,
1407 						 struct net_device *slave_dev,
1408 						 struct netlink_ext_ack *extack);
1409 	int			(*ndo_del_slave)(struct net_device *dev,
1410 						 struct net_device *slave_dev);
1411 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1412 						      struct sk_buff *skb,
1413 						      bool all_slaves);
1414 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1415 						    netdev_features_t features);
1416 	int			(*ndo_set_features)(struct net_device *dev,
1417 						    netdev_features_t features);
1418 	int			(*ndo_neigh_construct)(struct net_device *dev,
1419 						       struct neighbour *n);
1420 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1421 						     struct neighbour *n);
1422 
1423 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1424 					       struct nlattr *tb[],
1425 					       struct net_device *dev,
1426 					       const unsigned char *addr,
1427 					       u16 vid,
1428 					       u16 flags,
1429 					       struct netlink_ext_ack *extack);
1430 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1431 					       struct nlattr *tb[],
1432 					       struct net_device *dev,
1433 					       const unsigned char *addr,
1434 					       u16 vid);
1435 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1436 						struct netlink_callback *cb,
1437 						struct net_device *dev,
1438 						struct net_device *filter_dev,
1439 						int *idx);
1440 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1441 					       struct nlattr *tb[],
1442 					       struct net_device *dev,
1443 					       const unsigned char *addr,
1444 					       u16 vid, u32 portid, u32 seq,
1445 					       struct netlink_ext_ack *extack);
1446 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1447 						      struct nlmsghdr *nlh,
1448 						      u16 flags,
1449 						      struct netlink_ext_ack *extack);
1450 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1451 						      u32 pid, u32 seq,
1452 						      struct net_device *dev,
1453 						      u32 filter_mask,
1454 						      int nlflags);
1455 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1456 						      struct nlmsghdr *nlh,
1457 						      u16 flags);
1458 	int			(*ndo_change_carrier)(struct net_device *dev,
1459 						      bool new_carrier);
1460 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1461 							struct netdev_phys_item_id *ppid);
1462 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1463 							  struct netdev_phys_item_id *ppid);
1464 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1465 							  char *name, size_t len);
1466 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1467 						      struct udp_tunnel_info *ti);
1468 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1469 						      struct udp_tunnel_info *ti);
1470 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1471 							struct net_device *dev);
1472 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1473 							void *priv);
1474 
1475 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1476 						      int queue_index,
1477 						      u32 maxrate);
1478 	int			(*ndo_get_iflink)(const struct net_device *dev);
1479 	int			(*ndo_change_proto_down)(struct net_device *dev,
1480 							 bool proto_down);
1481 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1482 						       struct sk_buff *skb);
1483 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1484 						       int needed_headroom);
1485 	int			(*ndo_bpf)(struct net_device *dev,
1486 					   struct netdev_bpf *bpf);
1487 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1488 						struct xdp_frame **xdp,
1489 						u32 flags);
1490 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1491 						  u32 queue_id, u32 flags);
1492 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1493 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1494 						  struct ip_tunnel_parm *p, int cmd);
1495 };
1496 
1497 /**
1498  * enum net_device_priv_flags - &struct net_device priv_flags
1499  *
1500  * These are the &struct net_device, they are only set internally
1501  * by drivers and used in the kernel. These flags are invisible to
1502  * userspace; this means that the order of these flags can change
1503  * during any kernel release.
1504  *
1505  * You should have a pretty good reason to be extending these flags.
1506  *
1507  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508  * @IFF_EBRIDGE: Ethernet bridging device
1509  * @IFF_BONDING: bonding master or slave
1510  * @IFF_ISATAP: ISATAP interface (RFC4214)
1511  * @IFF_WAN_HDLC: WAN HDLC device
1512  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513  *	release skb->dst
1514  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516  * @IFF_MACVLAN_PORT: device used as macvlan port
1517  * @IFF_BRIDGE_PORT: device used as bridge port
1518  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520  * @IFF_UNICAST_FLT: Supports unicast filtering
1521  * @IFF_TEAM_PORT: device used as team port
1522  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524  *	change when it's running
1525  * @IFF_MACVLAN: Macvlan device
1526  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527  *	underlying stacked devices
1528  * @IFF_L3MDEV_MASTER: device is an L3 master device
1529  * @IFF_NO_QUEUE: device can run without qdisc attached
1530  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532  * @IFF_TEAM: device is a team device
1533  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535  *	entity (i.e. the master device for bridged veth)
1536  * @IFF_MACSEC: device is a MACsec device
1537  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538  * @IFF_FAILOVER: device is a failover master device
1539  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1542  */
1543 enum netdev_priv_flags {
1544 	IFF_802_1Q_VLAN			= 1<<0,
1545 	IFF_EBRIDGE			= 1<<1,
1546 	IFF_BONDING			= 1<<2,
1547 	IFF_ISATAP			= 1<<3,
1548 	IFF_WAN_HDLC			= 1<<4,
1549 	IFF_XMIT_DST_RELEASE		= 1<<5,
1550 	IFF_DONT_BRIDGE			= 1<<6,
1551 	IFF_DISABLE_NETPOLL		= 1<<7,
1552 	IFF_MACVLAN_PORT		= 1<<8,
1553 	IFF_BRIDGE_PORT			= 1<<9,
1554 	IFF_OVS_DATAPATH		= 1<<10,
1555 	IFF_TX_SKB_SHARING		= 1<<11,
1556 	IFF_UNICAST_FLT			= 1<<12,
1557 	IFF_TEAM_PORT			= 1<<13,
1558 	IFF_SUPP_NOFCS			= 1<<14,
1559 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1560 	IFF_MACVLAN			= 1<<16,
1561 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1562 	IFF_L3MDEV_MASTER		= 1<<18,
1563 	IFF_NO_QUEUE			= 1<<19,
1564 	IFF_OPENVSWITCH			= 1<<20,
1565 	IFF_L3MDEV_SLAVE		= 1<<21,
1566 	IFF_TEAM			= 1<<22,
1567 	IFF_RXFH_CONFIGURED		= 1<<23,
1568 	IFF_PHONY_HEADROOM		= 1<<24,
1569 	IFF_MACSEC			= 1<<25,
1570 	IFF_NO_RX_HANDLER		= 1<<26,
1571 	IFF_FAILOVER			= 1<<27,
1572 	IFF_FAILOVER_SLAVE		= 1<<28,
1573 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1574 	IFF_LIVE_RENAME_OK		= 1<<30,
1575 };
1576 
1577 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1578 #define IFF_EBRIDGE			IFF_EBRIDGE
1579 #define IFF_BONDING			IFF_BONDING
1580 #define IFF_ISATAP			IFF_ISATAP
1581 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1582 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1583 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1584 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1585 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1586 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1587 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1588 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1589 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1590 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1591 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1592 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1593 #define IFF_MACVLAN			IFF_MACVLAN
1594 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1595 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1596 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1597 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1598 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1599 #define IFF_TEAM			IFF_TEAM
1600 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1601 #define IFF_MACSEC			IFF_MACSEC
1602 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1603 #define IFF_FAILOVER			IFF_FAILOVER
1604 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1605 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1606 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1607 
1608 /**
1609  *	struct net_device - The DEVICE structure.
1610  *
1611  *	Actually, this whole structure is a big mistake.  It mixes I/O
1612  *	data with strictly "high-level" data, and it has to know about
1613  *	almost every data structure used in the INET module.
1614  *
1615  *	@name:	This is the first field of the "visible" part of this structure
1616  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1617  *		of the interface.
1618  *
1619  *	@name_node:	Name hashlist node
1620  *	@ifalias:	SNMP alias
1621  *	@mem_end:	Shared memory end
1622  *	@mem_start:	Shared memory start
1623  *	@base_addr:	Device I/O address
1624  *	@irq:		Device IRQ number
1625  *
1626  *	@state:		Generic network queuing layer state, see netdev_state_t
1627  *	@dev_list:	The global list of network devices
1628  *	@napi_list:	List entry used for polling NAPI devices
1629  *	@unreg_list:	List entry  when we are unregistering the
1630  *			device; see the function unregister_netdev
1631  *	@close_list:	List entry used when we are closing the device
1632  *	@ptype_all:     Device-specific packet handlers for all protocols
1633  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1634  *
1635  *	@adj_list:	Directly linked devices, like slaves for bonding
1636  *	@features:	Currently active device features
1637  *	@hw_features:	User-changeable features
1638  *
1639  *	@wanted_features:	User-requested features
1640  *	@vlan_features:		Mask of features inheritable by VLAN devices
1641  *
1642  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1643  *				This field indicates what encapsulation
1644  *				offloads the hardware is capable of doing,
1645  *				and drivers will need to set them appropriately.
1646  *
1647  *	@mpls_features:	Mask of features inheritable by MPLS
1648  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1649  *
1650  *	@ifindex:	interface index
1651  *	@group:		The group the device belongs to
1652  *
1653  *	@stats:		Statistics struct, which was left as a legacy, use
1654  *			rtnl_link_stats64 instead
1655  *
1656  *	@rx_dropped:	Dropped packets by core network,
1657  *			do not use this in drivers
1658  *	@tx_dropped:	Dropped packets by core network,
1659  *			do not use this in drivers
1660  *	@rx_nohandler:	nohandler dropped packets by core network on
1661  *			inactive devices, do not use this in drivers
1662  *	@carrier_up_count:	Number of times the carrier has been up
1663  *	@carrier_down_count:	Number of times the carrier has been down
1664  *
1665  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1666  *				instead of ioctl,
1667  *				see <net/iw_handler.h> for details.
1668  *	@wireless_data:	Instance data managed by the core of wireless extensions
1669  *
1670  *	@netdev_ops:	Includes several pointers to callbacks,
1671  *			if one wants to override the ndo_*() functions
1672  *	@ethtool_ops:	Management operations
1673  *	@l3mdev_ops:	Layer 3 master device operations
1674  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1675  *			discovery handling. Necessary for e.g. 6LoWPAN.
1676  *	@xfrmdev_ops:	Transformation offload operations
1677  *	@tlsdev_ops:	Transport Layer Security offload operations
1678  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1679  *			of Layer 2 headers.
1680  *
1681  *	@flags:		Interface flags (a la BSD)
1682  *	@priv_flags:	Like 'flags' but invisible to userspace,
1683  *			see if.h for the definitions
1684  *	@gflags:	Global flags ( kept as legacy )
1685  *	@padded:	How much padding added by alloc_netdev()
1686  *	@operstate:	RFC2863 operstate
1687  *	@link_mode:	Mapping policy to operstate
1688  *	@if_port:	Selectable AUI, TP, ...
1689  *	@dma:		DMA channel
1690  *	@mtu:		Interface MTU value
1691  *	@min_mtu:	Interface Minimum MTU value
1692  *	@max_mtu:	Interface Maximum MTU value
1693  *	@type:		Interface hardware type
1694  *	@hard_header_len: Maximum hardware header length.
1695  *	@min_header_len:  Minimum hardware header length
1696  *
1697  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1698  *			  cases can this be guaranteed
1699  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1700  *			  cases can this be guaranteed. Some cases also use
1701  *			  LL_MAX_HEADER instead to allocate the skb
1702  *
1703  *	interface address info:
1704  *
1705  * 	@perm_addr:		Permanent hw address
1706  * 	@addr_assign_type:	Hw address assignment type
1707  * 	@addr_len:		Hardware address length
1708  *	@upper_level:		Maximum depth level of upper devices.
1709  *	@lower_level:		Maximum depth level of lower devices.
1710  *	@neigh_priv_len:	Used in neigh_alloc()
1711  * 	@dev_id:		Used to differentiate devices that share
1712  * 				the same link layer address
1713  * 	@dev_port:		Used to differentiate devices that share
1714  * 				the same function
1715  *	@addr_list_lock:	XXX: need comments on this one
1716  *	@name_assign_type:	network interface name assignment type
1717  *	@uc_promisc:		Counter that indicates promiscuous mode
1718  *				has been enabled due to the need to listen to
1719  *				additional unicast addresses in a device that
1720  *				does not implement ndo_set_rx_mode()
1721  *	@uc:			unicast mac addresses
1722  *	@mc:			multicast mac addresses
1723  *	@dev_addrs:		list of device hw addresses
1724  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1725  *	@promiscuity:		Number of times the NIC is told to work in
1726  *				promiscuous mode; if it becomes 0 the NIC will
1727  *				exit promiscuous mode
1728  *	@allmulti:		Counter, enables or disables allmulticast mode
1729  *
1730  *	@vlan_info:	VLAN info
1731  *	@dsa_ptr:	dsa specific data
1732  *	@tipc_ptr:	TIPC specific data
1733  *	@atalk_ptr:	AppleTalk link
1734  *	@ip_ptr:	IPv4 specific data
1735  *	@dn_ptr:	DECnet specific data
1736  *	@ip6_ptr:	IPv6 specific data
1737  *	@ax25_ptr:	AX.25 specific data
1738  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1739  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740  *			 device struct
1741  *	@mpls_ptr:	mpls_dev struct pointer
1742  *
1743  *	@dev_addr:	Hw address (before bcast,
1744  *			because most packets are unicast)
1745  *
1746  *	@_rx:			Array of RX queues
1747  *	@num_rx_queues:		Number of RX queues
1748  *				allocated at register_netdev() time
1749  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1750  *	@xdp_prog:		XDP sockets filter program pointer
1751  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1752  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1753  *				allow to avoid NIC hard IRQ, on busy queues.
1754  *
1755  *	@rx_handler:		handler for received packets
1756  *	@rx_handler_data: 	XXX: need comments on this one
1757  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1758  *				ingress processing
1759  *	@ingress_queue:		XXX: need comments on this one
1760  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1761  *	@broadcast:		hw bcast address
1762  *
1763  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1764  *			indexed by RX queue number. Assigned by driver.
1765  *			This must only be set if the ndo_rx_flow_steer
1766  *			operation is defined
1767  *	@index_hlist:		Device index hash chain
1768  *
1769  *	@_tx:			Array of TX queues
1770  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1771  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1772  *	@qdisc:			Root qdisc from userspace point of view
1773  *	@tx_queue_len:		Max frames per queue allowed
1774  *	@tx_global_lock: 	XXX: need comments on this one
1775  *	@xdp_bulkq:		XDP device bulk queue
1776  *	@xps_cpus_map:		all CPUs map for XPS device
1777  *	@xps_rxqs_map:		all RXQs map for XPS device
1778  *
1779  *	@xps_maps:	XXX: need comments on this one
1780  *	@miniq_egress:		clsact qdisc specific data for
1781  *				egress processing
1782  *	@qdisc_hash:		qdisc hash table
1783  *	@watchdog_timeo:	Represents the timeout that is used by
1784  *				the watchdog (see dev_watchdog())
1785  *	@watchdog_timer:	List of timers
1786  *
1787  *	@pcpu_refcnt:		Number of references to this device
1788  *	@todo_list:		Delayed register/unregister
1789  *	@link_watch_list:	XXX: need comments on this one
1790  *
1791  *	@reg_state:		Register/unregister state machine
1792  *	@dismantle:		Device is going to be freed
1793  *	@rtnl_link_state:	This enum represents the phases of creating
1794  *				a new link
1795  *
1796  *	@needs_free_netdev:	Should unregister perform free_netdev?
1797  *	@priv_destructor:	Called from unregister
1798  *	@npinfo:		XXX: need comments on this one
1799  * 	@nd_net:		Network namespace this network device is inside
1800  *
1801  * 	@ml_priv:	Mid-layer private
1802  * 	@lstats:	Loopback statistics
1803  * 	@tstats:	Tunnel statistics
1804  * 	@dstats:	Dummy statistics
1805  * 	@vstats:	Virtual ethernet statistics
1806  *
1807  *	@garp_port:	GARP
1808  *	@mrp_port:	MRP
1809  *
1810  *	@dev:		Class/net/name entry
1811  *	@sysfs_groups:	Space for optional device, statistics and wireless
1812  *			sysfs groups
1813  *
1814  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1815  *	@rtnl_link_ops:	Rtnl_link_ops
1816  *
1817  *	@gso_max_size:	Maximum size of generic segmentation offload
1818  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1819  *			NIC for GSO
1820  *
1821  *	@dcbnl_ops:	Data Center Bridging netlink ops
1822  *	@num_tc:	Number of traffic classes in the net device
1823  *	@tc_to_txq:	XXX: need comments on this one
1824  *	@prio_tc_map:	XXX: need comments on this one
1825  *
1826  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1827  *
1828  *	@priomap:	XXX: need comments on this one
1829  *	@phydev:	Physical device may attach itself
1830  *			for hardware timestamping
1831  *	@sfp_bus:	attached &struct sfp_bus structure.
1832  *
1833  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1834  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1835  *
1836  *	@proto_down:	protocol port state information can be sent to the
1837  *			switch driver and used to set the phys state of the
1838  *			switch port.
1839  *
1840  *	@wol_enabled:	Wake-on-LAN is enabled
1841  *
1842  *	@net_notifier_list:	List of per-net netdev notifier block
1843  *				that follow this device when it is moved
1844  *				to another network namespace.
1845  *
1846  *	@macsec_ops:    MACsec offloading ops
1847  *
1848  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1849  *				offload capabilities of the device
1850  *	@udp_tunnel_nic:	UDP tunnel offload state
1851  *
1852  *	FIXME: cleanup struct net_device such that network protocol info
1853  *	moves out.
1854  */
1855 
1856 struct net_device {
1857 	char			name[IFNAMSIZ];
1858 	struct netdev_name_node	*name_node;
1859 	struct dev_ifalias	__rcu *ifalias;
1860 	/*
1861 	 *	I/O specific fields
1862 	 *	FIXME: Merge these and struct ifmap into one
1863 	 */
1864 	unsigned long		mem_end;
1865 	unsigned long		mem_start;
1866 	unsigned long		base_addr;
1867 	int			irq;
1868 
1869 	/*
1870 	 *	Some hardware also needs these fields (state,dev_list,
1871 	 *	napi_list,unreg_list,close_list) but they are not
1872 	 *	part of the usual set specified in Space.c.
1873 	 */
1874 
1875 	unsigned long		state;
1876 
1877 	struct list_head	dev_list;
1878 	struct list_head	napi_list;
1879 	struct list_head	unreg_list;
1880 	struct list_head	close_list;
1881 	struct list_head	ptype_all;
1882 	struct list_head	ptype_specific;
1883 
1884 	struct {
1885 		struct list_head upper;
1886 		struct list_head lower;
1887 	} adj_list;
1888 
1889 	netdev_features_t	features;
1890 	netdev_features_t	hw_features;
1891 	netdev_features_t	wanted_features;
1892 	netdev_features_t	vlan_features;
1893 	netdev_features_t	hw_enc_features;
1894 	netdev_features_t	mpls_features;
1895 	netdev_features_t	gso_partial_features;
1896 
1897 	int			ifindex;
1898 	int			group;
1899 
1900 	struct net_device_stats	stats;
1901 
1902 	atomic_long_t		rx_dropped;
1903 	atomic_long_t		tx_dropped;
1904 	atomic_long_t		rx_nohandler;
1905 
1906 	/* Stats to monitor link on/off, flapping */
1907 	atomic_t		carrier_up_count;
1908 	atomic_t		carrier_down_count;
1909 
1910 #ifdef CONFIG_WIRELESS_EXT
1911 	const struct iw_handler_def *wireless_handlers;
1912 	struct iw_public_data	*wireless_data;
1913 #endif
1914 	const struct net_device_ops *netdev_ops;
1915 	const struct ethtool_ops *ethtool_ops;
1916 #ifdef CONFIG_NET_L3_MASTER_DEV
1917 	const struct l3mdev_ops	*l3mdev_ops;
1918 #endif
1919 #if IS_ENABLED(CONFIG_IPV6)
1920 	const struct ndisc_ops *ndisc_ops;
1921 #endif
1922 
1923 #ifdef CONFIG_XFRM_OFFLOAD
1924 	const struct xfrmdev_ops *xfrmdev_ops;
1925 #endif
1926 
1927 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1928 	const struct tlsdev_ops *tlsdev_ops;
1929 #endif
1930 
1931 	const struct header_ops *header_ops;
1932 
1933 	unsigned int		flags;
1934 	unsigned int		priv_flags;
1935 
1936 	unsigned short		gflags;
1937 	unsigned short		padded;
1938 
1939 	unsigned char		operstate;
1940 	unsigned char		link_mode;
1941 
1942 	unsigned char		if_port;
1943 	unsigned char		dma;
1944 
1945 	/* Note : dev->mtu is often read without holding a lock.
1946 	 * Writers usually hold RTNL.
1947 	 * It is recommended to use READ_ONCE() to annotate the reads,
1948 	 * and to use WRITE_ONCE() to annotate the writes.
1949 	 */
1950 	unsigned int		mtu;
1951 	unsigned int		min_mtu;
1952 	unsigned int		max_mtu;
1953 	unsigned short		type;
1954 	unsigned short		hard_header_len;
1955 	unsigned char		min_header_len;
1956 
1957 	unsigned short		needed_headroom;
1958 	unsigned short		needed_tailroom;
1959 
1960 	/* Interface address info. */
1961 	unsigned char		perm_addr[MAX_ADDR_LEN];
1962 	unsigned char		addr_assign_type;
1963 	unsigned char		addr_len;
1964 	unsigned char		upper_level;
1965 	unsigned char		lower_level;
1966 	unsigned short		neigh_priv_len;
1967 	unsigned short          dev_id;
1968 	unsigned short          dev_port;
1969 	spinlock_t		addr_list_lock;
1970 	unsigned char		name_assign_type;
1971 	bool			uc_promisc;
1972 	struct netdev_hw_addr_list	uc;
1973 	struct netdev_hw_addr_list	mc;
1974 	struct netdev_hw_addr_list	dev_addrs;
1975 
1976 #ifdef CONFIG_SYSFS
1977 	struct kset		*queues_kset;
1978 #endif
1979 	unsigned int		promiscuity;
1980 	unsigned int		allmulti;
1981 
1982 
1983 	/* Protocol-specific pointers */
1984 
1985 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1986 	struct vlan_info __rcu	*vlan_info;
1987 #endif
1988 #if IS_ENABLED(CONFIG_NET_DSA)
1989 	struct dsa_port		*dsa_ptr;
1990 #endif
1991 #if IS_ENABLED(CONFIG_TIPC)
1992 	struct tipc_bearer __rcu *tipc_ptr;
1993 #endif
1994 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1995 	void 			*atalk_ptr;
1996 #endif
1997 	struct in_device __rcu	*ip_ptr;
1998 #if IS_ENABLED(CONFIG_DECNET)
1999 	struct dn_dev __rcu     *dn_ptr;
2000 #endif
2001 	struct inet6_dev __rcu	*ip6_ptr;
2002 #if IS_ENABLED(CONFIG_AX25)
2003 	void			*ax25_ptr;
2004 #endif
2005 	struct wireless_dev	*ieee80211_ptr;
2006 	struct wpan_dev		*ieee802154_ptr;
2007 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2008 	struct mpls_dev __rcu	*mpls_ptr;
2009 #endif
2010 
2011 /*
2012  * Cache lines mostly used on receive path (including eth_type_trans())
2013  */
2014 	/* Interface address info used in eth_type_trans() */
2015 	unsigned char		*dev_addr;
2016 
2017 	struct netdev_rx_queue	*_rx;
2018 	unsigned int		num_rx_queues;
2019 	unsigned int		real_num_rx_queues;
2020 
2021 	struct bpf_prog __rcu	*xdp_prog;
2022 	unsigned long		gro_flush_timeout;
2023 	int			napi_defer_hard_irqs;
2024 	rx_handler_func_t __rcu	*rx_handler;
2025 	void __rcu		*rx_handler_data;
2026 
2027 #ifdef CONFIG_NET_CLS_ACT
2028 	struct mini_Qdisc __rcu	*miniq_ingress;
2029 #endif
2030 	struct netdev_queue __rcu *ingress_queue;
2031 #ifdef CONFIG_NETFILTER_INGRESS
2032 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2033 #endif
2034 
2035 	unsigned char		broadcast[MAX_ADDR_LEN];
2036 #ifdef CONFIG_RFS_ACCEL
2037 	struct cpu_rmap		*rx_cpu_rmap;
2038 #endif
2039 	struct hlist_node	index_hlist;
2040 
2041 /*
2042  * Cache lines mostly used on transmit path
2043  */
2044 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2045 	unsigned int		num_tx_queues;
2046 	unsigned int		real_num_tx_queues;
2047 	struct Qdisc		*qdisc;
2048 	unsigned int		tx_queue_len;
2049 	spinlock_t		tx_global_lock;
2050 
2051 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2052 
2053 #ifdef CONFIG_XPS
2054 	struct xps_dev_maps __rcu *xps_cpus_map;
2055 	struct xps_dev_maps __rcu *xps_rxqs_map;
2056 #endif
2057 #ifdef CONFIG_NET_CLS_ACT
2058 	struct mini_Qdisc __rcu	*miniq_egress;
2059 #endif
2060 
2061 #ifdef CONFIG_NET_SCHED
2062 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2063 #endif
2064 	/* These may be needed for future network-power-down code. */
2065 	struct timer_list	watchdog_timer;
2066 	int			watchdog_timeo;
2067 
2068 	u32                     proto_down_reason;
2069 
2070 	struct list_head	todo_list;
2071 	int __percpu		*pcpu_refcnt;
2072 
2073 	struct list_head	link_watch_list;
2074 
2075 	enum { NETREG_UNINITIALIZED=0,
2076 	       NETREG_REGISTERED,	/* completed register_netdevice */
2077 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2078 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2079 	       NETREG_RELEASED,		/* called free_netdev */
2080 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2081 	} reg_state:8;
2082 
2083 	bool dismantle;
2084 
2085 	enum {
2086 		RTNL_LINK_INITIALIZED,
2087 		RTNL_LINK_INITIALIZING,
2088 	} rtnl_link_state:16;
2089 
2090 	bool needs_free_netdev;
2091 	void (*priv_destructor)(struct net_device *dev);
2092 
2093 #ifdef CONFIG_NETPOLL
2094 	struct netpoll_info __rcu	*npinfo;
2095 #endif
2096 
2097 	possible_net_t			nd_net;
2098 
2099 	/* mid-layer private */
2100 	union {
2101 		void					*ml_priv;
2102 		struct pcpu_lstats __percpu		*lstats;
2103 		struct pcpu_sw_netstats __percpu	*tstats;
2104 		struct pcpu_dstats __percpu		*dstats;
2105 	};
2106 
2107 #if IS_ENABLED(CONFIG_GARP)
2108 	struct garp_port __rcu	*garp_port;
2109 #endif
2110 #if IS_ENABLED(CONFIG_MRP)
2111 	struct mrp_port __rcu	*mrp_port;
2112 #endif
2113 
2114 	struct device		dev;
2115 	const struct attribute_group *sysfs_groups[4];
2116 	const struct attribute_group *sysfs_rx_queue_group;
2117 
2118 	const struct rtnl_link_ops *rtnl_link_ops;
2119 
2120 	/* for setting kernel sock attribute on TCP connection setup */
2121 #define GSO_MAX_SIZE		65536
2122 	unsigned int		gso_max_size;
2123 #define GSO_MAX_SEGS		65535
2124 	u16			gso_max_segs;
2125 
2126 #ifdef CONFIG_DCB
2127 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2128 #endif
2129 	s16			num_tc;
2130 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2131 	u8			prio_tc_map[TC_BITMASK + 1];
2132 
2133 #if IS_ENABLED(CONFIG_FCOE)
2134 	unsigned int		fcoe_ddp_xid;
2135 #endif
2136 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2137 	struct netprio_map __rcu *priomap;
2138 #endif
2139 	struct phy_device	*phydev;
2140 	struct sfp_bus		*sfp_bus;
2141 	struct lock_class_key	*qdisc_tx_busylock;
2142 	struct lock_class_key	*qdisc_running_key;
2143 	bool			proto_down;
2144 	unsigned		wol_enabled:1;
2145 
2146 	struct list_head	net_notifier_list;
2147 
2148 #if IS_ENABLED(CONFIG_MACSEC)
2149 	/* MACsec management functions */
2150 	const struct macsec_ops *macsec_ops;
2151 #endif
2152 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2153 	struct udp_tunnel_nic	*udp_tunnel_nic;
2154 
2155 	/* protected by rtnl_lock */
2156 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2157 };
2158 #define to_net_dev(d) container_of(d, struct net_device, dev)
2159 
2160 static inline bool netif_elide_gro(const struct net_device *dev)
2161 {
2162 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2163 		return true;
2164 	return false;
2165 }
2166 
2167 #define	NETDEV_ALIGN		32
2168 
2169 static inline
2170 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2171 {
2172 	return dev->prio_tc_map[prio & TC_BITMASK];
2173 }
2174 
2175 static inline
2176 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2177 {
2178 	if (tc >= dev->num_tc)
2179 		return -EINVAL;
2180 
2181 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2182 	return 0;
2183 }
2184 
2185 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2186 void netdev_reset_tc(struct net_device *dev);
2187 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2188 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2189 
2190 static inline
2191 int netdev_get_num_tc(struct net_device *dev)
2192 {
2193 	return dev->num_tc;
2194 }
2195 
2196 void netdev_unbind_sb_channel(struct net_device *dev,
2197 			      struct net_device *sb_dev);
2198 int netdev_bind_sb_channel_queue(struct net_device *dev,
2199 				 struct net_device *sb_dev,
2200 				 u8 tc, u16 count, u16 offset);
2201 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2202 static inline int netdev_get_sb_channel(struct net_device *dev)
2203 {
2204 	return max_t(int, -dev->num_tc, 0);
2205 }
2206 
2207 static inline
2208 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2209 					 unsigned int index)
2210 {
2211 	return &dev->_tx[index];
2212 }
2213 
2214 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2215 						    const struct sk_buff *skb)
2216 {
2217 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2218 }
2219 
2220 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2221 					    void (*f)(struct net_device *,
2222 						      struct netdev_queue *,
2223 						      void *),
2224 					    void *arg)
2225 {
2226 	unsigned int i;
2227 
2228 	for (i = 0; i < dev->num_tx_queues; i++)
2229 		f(dev, &dev->_tx[i], arg);
2230 }
2231 
2232 #define netdev_lockdep_set_classes(dev)				\
2233 {								\
2234 	static struct lock_class_key qdisc_tx_busylock_key;	\
2235 	static struct lock_class_key qdisc_running_key;		\
2236 	static struct lock_class_key qdisc_xmit_lock_key;	\
2237 	static struct lock_class_key dev_addr_list_lock_key;	\
2238 	unsigned int i;						\
2239 								\
2240 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2241 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2242 	lockdep_set_class(&(dev)->addr_list_lock,		\
2243 			  &dev_addr_list_lock_key);		\
2244 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2245 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2246 				  &qdisc_xmit_lock_key);	\
2247 }
2248 
2249 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2250 		     struct net_device *sb_dev);
2251 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2252 					 struct sk_buff *skb,
2253 					 struct net_device *sb_dev);
2254 
2255 /* returns the headroom that the master device needs to take in account
2256  * when forwarding to this dev
2257  */
2258 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2259 {
2260 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2261 }
2262 
2263 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2264 {
2265 	if (dev->netdev_ops->ndo_set_rx_headroom)
2266 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2267 }
2268 
2269 /* set the device rx headroom to the dev's default */
2270 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2271 {
2272 	netdev_set_rx_headroom(dev, -1);
2273 }
2274 
2275 /*
2276  * Net namespace inlines
2277  */
2278 static inline
2279 struct net *dev_net(const struct net_device *dev)
2280 {
2281 	return read_pnet(&dev->nd_net);
2282 }
2283 
2284 static inline
2285 void dev_net_set(struct net_device *dev, struct net *net)
2286 {
2287 	write_pnet(&dev->nd_net, net);
2288 }
2289 
2290 /**
2291  *	netdev_priv - access network device private data
2292  *	@dev: network device
2293  *
2294  * Get network device private data
2295  */
2296 static inline void *netdev_priv(const struct net_device *dev)
2297 {
2298 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2299 }
2300 
2301 /* Set the sysfs physical device reference for the network logical device
2302  * if set prior to registration will cause a symlink during initialization.
2303  */
2304 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2305 
2306 /* Set the sysfs device type for the network logical device to allow
2307  * fine-grained identification of different network device types. For
2308  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2309  */
2310 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2311 
2312 /* Default NAPI poll() weight
2313  * Device drivers are strongly advised to not use bigger value
2314  */
2315 #define NAPI_POLL_WEIGHT 64
2316 
2317 /**
2318  *	netif_napi_add - initialize a NAPI context
2319  *	@dev:  network device
2320  *	@napi: NAPI context
2321  *	@poll: polling function
2322  *	@weight: default weight
2323  *
2324  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2325  * *any* of the other NAPI-related functions.
2326  */
2327 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2328 		    int (*poll)(struct napi_struct *, int), int weight);
2329 
2330 /**
2331  *	netif_tx_napi_add - initialize a NAPI context
2332  *	@dev:  network device
2333  *	@napi: NAPI context
2334  *	@poll: polling function
2335  *	@weight: default weight
2336  *
2337  * This variant of netif_napi_add() should be used from drivers using NAPI
2338  * to exclusively poll a TX queue.
2339  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2340  */
2341 static inline void netif_tx_napi_add(struct net_device *dev,
2342 				     struct napi_struct *napi,
2343 				     int (*poll)(struct napi_struct *, int),
2344 				     int weight)
2345 {
2346 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2347 	netif_napi_add(dev, napi, poll, weight);
2348 }
2349 
2350 /**
2351  *  netif_napi_del - remove a NAPI context
2352  *  @napi: NAPI context
2353  *
2354  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2355  */
2356 void netif_napi_del(struct napi_struct *napi);
2357 
2358 struct napi_gro_cb {
2359 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2360 	void	*frag0;
2361 
2362 	/* Length of frag0. */
2363 	unsigned int frag0_len;
2364 
2365 	/* This indicates where we are processing relative to skb->data. */
2366 	int	data_offset;
2367 
2368 	/* This is non-zero if the packet cannot be merged with the new skb. */
2369 	u16	flush;
2370 
2371 	/* Save the IP ID here and check when we get to the transport layer */
2372 	u16	flush_id;
2373 
2374 	/* Number of segments aggregated. */
2375 	u16	count;
2376 
2377 	/* Start offset for remote checksum offload */
2378 	u16	gro_remcsum_start;
2379 
2380 	/* jiffies when first packet was created/queued */
2381 	unsigned long age;
2382 
2383 	/* Used in ipv6_gro_receive() and foo-over-udp */
2384 	u16	proto;
2385 
2386 	/* This is non-zero if the packet may be of the same flow. */
2387 	u8	same_flow:1;
2388 
2389 	/* Used in tunnel GRO receive */
2390 	u8	encap_mark:1;
2391 
2392 	/* GRO checksum is valid */
2393 	u8	csum_valid:1;
2394 
2395 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2396 	u8	csum_cnt:3;
2397 
2398 	/* Free the skb? */
2399 	u8	free:2;
2400 #define NAPI_GRO_FREE		  1
2401 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2402 
2403 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2404 	u8	is_ipv6:1;
2405 
2406 	/* Used in GRE, set in fou/gue_gro_receive */
2407 	u8	is_fou:1;
2408 
2409 	/* Used to determine if flush_id can be ignored */
2410 	u8	is_atomic:1;
2411 
2412 	/* Number of gro_receive callbacks this packet already went through */
2413 	u8 recursion_counter:4;
2414 
2415 	/* GRO is done by frag_list pointer chaining. */
2416 	u8	is_flist:1;
2417 
2418 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2419 	__wsum	csum;
2420 
2421 	/* used in skb_gro_receive() slow path */
2422 	struct sk_buff *last;
2423 };
2424 
2425 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2426 
2427 #define GRO_RECURSION_LIMIT 15
2428 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2429 {
2430 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2431 }
2432 
2433 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2434 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2435 					       struct list_head *head,
2436 					       struct sk_buff *skb)
2437 {
2438 	if (unlikely(gro_recursion_inc_test(skb))) {
2439 		NAPI_GRO_CB(skb)->flush |= 1;
2440 		return NULL;
2441 	}
2442 
2443 	return cb(head, skb);
2444 }
2445 
2446 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2447 					    struct sk_buff *);
2448 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2449 						  struct sock *sk,
2450 						  struct list_head *head,
2451 						  struct sk_buff *skb)
2452 {
2453 	if (unlikely(gro_recursion_inc_test(skb))) {
2454 		NAPI_GRO_CB(skb)->flush |= 1;
2455 		return NULL;
2456 	}
2457 
2458 	return cb(sk, head, skb);
2459 }
2460 
2461 struct packet_type {
2462 	__be16			type;	/* This is really htons(ether_type). */
2463 	bool			ignore_outgoing;
2464 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2465 	int			(*func) (struct sk_buff *,
2466 					 struct net_device *,
2467 					 struct packet_type *,
2468 					 struct net_device *);
2469 	void			(*list_func) (struct list_head *,
2470 					      struct packet_type *,
2471 					      struct net_device *);
2472 	bool			(*id_match)(struct packet_type *ptype,
2473 					    struct sock *sk);
2474 	void			*af_packet_priv;
2475 	struct list_head	list;
2476 };
2477 
2478 struct offload_callbacks {
2479 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2480 						netdev_features_t features);
2481 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2482 						struct sk_buff *skb);
2483 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2484 };
2485 
2486 struct packet_offload {
2487 	__be16			 type;	/* This is really htons(ether_type). */
2488 	u16			 priority;
2489 	struct offload_callbacks callbacks;
2490 	struct list_head	 list;
2491 };
2492 
2493 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2494 struct pcpu_sw_netstats {
2495 	u64     rx_packets;
2496 	u64     rx_bytes;
2497 	u64     tx_packets;
2498 	u64     tx_bytes;
2499 	struct u64_stats_sync   syncp;
2500 } __aligned(4 * sizeof(u64));
2501 
2502 struct pcpu_lstats {
2503 	u64_stats_t packets;
2504 	u64_stats_t bytes;
2505 	struct u64_stats_sync syncp;
2506 } __aligned(2 * sizeof(u64));
2507 
2508 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2509 
2510 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2511 {
2512 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2513 
2514 	u64_stats_update_begin(&lstats->syncp);
2515 	u64_stats_add(&lstats->bytes, len);
2516 	u64_stats_inc(&lstats->packets);
2517 	u64_stats_update_end(&lstats->syncp);
2518 }
2519 
2520 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2521 ({									\
2522 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2523 	if (pcpu_stats)	{						\
2524 		int __cpu;						\
2525 		for_each_possible_cpu(__cpu) {				\
2526 			typeof(type) *stat;				\
2527 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2528 			u64_stats_init(&stat->syncp);			\
2529 		}							\
2530 	}								\
2531 	pcpu_stats;							\
2532 })
2533 
2534 #define netdev_alloc_pcpu_stats(type)					\
2535 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2536 
2537 enum netdev_lag_tx_type {
2538 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2539 	NETDEV_LAG_TX_TYPE_RANDOM,
2540 	NETDEV_LAG_TX_TYPE_BROADCAST,
2541 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2542 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2543 	NETDEV_LAG_TX_TYPE_HASH,
2544 };
2545 
2546 enum netdev_lag_hash {
2547 	NETDEV_LAG_HASH_NONE,
2548 	NETDEV_LAG_HASH_L2,
2549 	NETDEV_LAG_HASH_L34,
2550 	NETDEV_LAG_HASH_L23,
2551 	NETDEV_LAG_HASH_E23,
2552 	NETDEV_LAG_HASH_E34,
2553 	NETDEV_LAG_HASH_UNKNOWN,
2554 };
2555 
2556 struct netdev_lag_upper_info {
2557 	enum netdev_lag_tx_type tx_type;
2558 	enum netdev_lag_hash hash_type;
2559 };
2560 
2561 struct netdev_lag_lower_state_info {
2562 	u8 link_up : 1,
2563 	   tx_enabled : 1;
2564 };
2565 
2566 #include <linux/notifier.h>
2567 
2568 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2569  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2570  * adding new types.
2571  */
2572 enum netdev_cmd {
2573 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2574 	NETDEV_DOWN,
2575 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2576 				   detected a hardware crash and restarted
2577 				   - we can use this eg to kick tcp sessions
2578 				   once done */
2579 	NETDEV_CHANGE,		/* Notify device state change */
2580 	NETDEV_REGISTER,
2581 	NETDEV_UNREGISTER,
2582 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2583 	NETDEV_CHANGEADDR,	/* notify after the address change */
2584 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2585 	NETDEV_GOING_DOWN,
2586 	NETDEV_CHANGENAME,
2587 	NETDEV_FEAT_CHANGE,
2588 	NETDEV_BONDING_FAILOVER,
2589 	NETDEV_PRE_UP,
2590 	NETDEV_PRE_TYPE_CHANGE,
2591 	NETDEV_POST_TYPE_CHANGE,
2592 	NETDEV_POST_INIT,
2593 	NETDEV_RELEASE,
2594 	NETDEV_NOTIFY_PEERS,
2595 	NETDEV_JOIN,
2596 	NETDEV_CHANGEUPPER,
2597 	NETDEV_RESEND_IGMP,
2598 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2599 	NETDEV_CHANGEINFODATA,
2600 	NETDEV_BONDING_INFO,
2601 	NETDEV_PRECHANGEUPPER,
2602 	NETDEV_CHANGELOWERSTATE,
2603 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2604 	NETDEV_UDP_TUNNEL_DROP_INFO,
2605 	NETDEV_CHANGE_TX_QUEUE_LEN,
2606 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2607 	NETDEV_CVLAN_FILTER_DROP_INFO,
2608 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2609 	NETDEV_SVLAN_FILTER_DROP_INFO,
2610 };
2611 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2612 
2613 int register_netdevice_notifier(struct notifier_block *nb);
2614 int unregister_netdevice_notifier(struct notifier_block *nb);
2615 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2616 int unregister_netdevice_notifier_net(struct net *net,
2617 				      struct notifier_block *nb);
2618 int register_netdevice_notifier_dev_net(struct net_device *dev,
2619 					struct notifier_block *nb,
2620 					struct netdev_net_notifier *nn);
2621 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2622 					  struct notifier_block *nb,
2623 					  struct netdev_net_notifier *nn);
2624 
2625 struct netdev_notifier_info {
2626 	struct net_device	*dev;
2627 	struct netlink_ext_ack	*extack;
2628 };
2629 
2630 struct netdev_notifier_info_ext {
2631 	struct netdev_notifier_info info; /* must be first */
2632 	union {
2633 		u32 mtu;
2634 	} ext;
2635 };
2636 
2637 struct netdev_notifier_change_info {
2638 	struct netdev_notifier_info info; /* must be first */
2639 	unsigned int flags_changed;
2640 };
2641 
2642 struct netdev_notifier_changeupper_info {
2643 	struct netdev_notifier_info info; /* must be first */
2644 	struct net_device *upper_dev; /* new upper dev */
2645 	bool master; /* is upper dev master */
2646 	bool linking; /* is the notification for link or unlink */
2647 	void *upper_info; /* upper dev info */
2648 };
2649 
2650 struct netdev_notifier_changelowerstate_info {
2651 	struct netdev_notifier_info info; /* must be first */
2652 	void *lower_state_info; /* is lower dev state */
2653 };
2654 
2655 struct netdev_notifier_pre_changeaddr_info {
2656 	struct netdev_notifier_info info; /* must be first */
2657 	const unsigned char *dev_addr;
2658 };
2659 
2660 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2661 					     struct net_device *dev)
2662 {
2663 	info->dev = dev;
2664 	info->extack = NULL;
2665 }
2666 
2667 static inline struct net_device *
2668 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2669 {
2670 	return info->dev;
2671 }
2672 
2673 static inline struct netlink_ext_ack *
2674 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2675 {
2676 	return info->extack;
2677 }
2678 
2679 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2680 
2681 
2682 extern rwlock_t				dev_base_lock;		/* Device list lock */
2683 
2684 #define for_each_netdev(net, d)		\
2685 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2686 #define for_each_netdev_reverse(net, d)	\
2687 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2688 #define for_each_netdev_rcu(net, d)		\
2689 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2690 #define for_each_netdev_safe(net, d, n)	\
2691 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2692 #define for_each_netdev_continue(net, d)		\
2693 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2694 #define for_each_netdev_continue_reverse(net, d)		\
2695 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2696 						     dev_list)
2697 #define for_each_netdev_continue_rcu(net, d)		\
2698 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2699 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2700 		for_each_netdev_rcu(&init_net, slave)	\
2701 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2702 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2703 
2704 static inline struct net_device *next_net_device(struct net_device *dev)
2705 {
2706 	struct list_head *lh;
2707 	struct net *net;
2708 
2709 	net = dev_net(dev);
2710 	lh = dev->dev_list.next;
2711 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2712 }
2713 
2714 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2715 {
2716 	struct list_head *lh;
2717 	struct net *net;
2718 
2719 	net = dev_net(dev);
2720 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2721 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2722 }
2723 
2724 static inline struct net_device *first_net_device(struct net *net)
2725 {
2726 	return list_empty(&net->dev_base_head) ? NULL :
2727 		net_device_entry(net->dev_base_head.next);
2728 }
2729 
2730 static inline struct net_device *first_net_device_rcu(struct net *net)
2731 {
2732 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2733 
2734 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2735 }
2736 
2737 int netdev_boot_setup_check(struct net_device *dev);
2738 unsigned long netdev_boot_base(const char *prefix, int unit);
2739 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2740 				       const char *hwaddr);
2741 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2742 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2743 void dev_add_pack(struct packet_type *pt);
2744 void dev_remove_pack(struct packet_type *pt);
2745 void __dev_remove_pack(struct packet_type *pt);
2746 void dev_add_offload(struct packet_offload *po);
2747 void dev_remove_offload(struct packet_offload *po);
2748 
2749 int dev_get_iflink(const struct net_device *dev);
2750 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2751 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2752 				      unsigned short mask);
2753 struct net_device *dev_get_by_name(struct net *net, const char *name);
2754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2755 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2756 int dev_alloc_name(struct net_device *dev, const char *name);
2757 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2758 void dev_close(struct net_device *dev);
2759 void dev_close_many(struct list_head *head, bool unlink);
2760 void dev_disable_lro(struct net_device *dev);
2761 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2762 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2763 		     struct net_device *sb_dev);
2764 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2765 		       struct net_device *sb_dev);
2766 int dev_queue_xmit(struct sk_buff *skb);
2767 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2768 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2769 int register_netdevice(struct net_device *dev);
2770 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2771 void unregister_netdevice_many(struct list_head *head);
2772 static inline void unregister_netdevice(struct net_device *dev)
2773 {
2774 	unregister_netdevice_queue(dev, NULL);
2775 }
2776 
2777 int netdev_refcnt_read(const struct net_device *dev);
2778 void free_netdev(struct net_device *dev);
2779 void netdev_freemem(struct net_device *dev);
2780 void synchronize_net(void);
2781 int init_dummy_netdev(struct net_device *dev);
2782 
2783 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2784 					 struct sk_buff *skb,
2785 					 bool all_slaves);
2786 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2787 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2788 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2789 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2790 int netdev_get_name(struct net *net, char *name, int ifindex);
2791 int dev_restart(struct net_device *dev);
2792 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2793 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2794 
2795 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2796 {
2797 	return NAPI_GRO_CB(skb)->data_offset;
2798 }
2799 
2800 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2801 {
2802 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2803 }
2804 
2805 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2806 {
2807 	NAPI_GRO_CB(skb)->data_offset += len;
2808 }
2809 
2810 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2811 					unsigned int offset)
2812 {
2813 	return NAPI_GRO_CB(skb)->frag0 + offset;
2814 }
2815 
2816 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2817 {
2818 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2819 }
2820 
2821 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2822 {
2823 	NAPI_GRO_CB(skb)->frag0 = NULL;
2824 	NAPI_GRO_CB(skb)->frag0_len = 0;
2825 }
2826 
2827 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2828 					unsigned int offset)
2829 {
2830 	if (!pskb_may_pull(skb, hlen))
2831 		return NULL;
2832 
2833 	skb_gro_frag0_invalidate(skb);
2834 	return skb->data + offset;
2835 }
2836 
2837 static inline void *skb_gro_network_header(struct sk_buff *skb)
2838 {
2839 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2840 	       skb_network_offset(skb);
2841 }
2842 
2843 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2844 					const void *start, unsigned int len)
2845 {
2846 	if (NAPI_GRO_CB(skb)->csum_valid)
2847 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2848 						  csum_partial(start, len, 0));
2849 }
2850 
2851 /* GRO checksum functions. These are logical equivalents of the normal
2852  * checksum functions (in skbuff.h) except that they operate on the GRO
2853  * offsets and fields in sk_buff.
2854  */
2855 
2856 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2857 
2858 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2859 {
2860 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2861 }
2862 
2863 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2864 						      bool zero_okay,
2865 						      __sum16 check)
2866 {
2867 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2868 		skb_checksum_start_offset(skb) <
2869 		 skb_gro_offset(skb)) &&
2870 		!skb_at_gro_remcsum_start(skb) &&
2871 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2872 		(!zero_okay || check));
2873 }
2874 
2875 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2876 							   __wsum psum)
2877 {
2878 	if (NAPI_GRO_CB(skb)->csum_valid &&
2879 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2880 		return 0;
2881 
2882 	NAPI_GRO_CB(skb)->csum = psum;
2883 
2884 	return __skb_gro_checksum_complete(skb);
2885 }
2886 
2887 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2888 {
2889 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2890 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2891 		NAPI_GRO_CB(skb)->csum_cnt--;
2892 	} else {
2893 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2894 		 * verified a new top level checksum or an encapsulated one
2895 		 * during GRO. This saves work if we fallback to normal path.
2896 		 */
2897 		__skb_incr_checksum_unnecessary(skb);
2898 	}
2899 }
2900 
2901 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2902 				    compute_pseudo)			\
2903 ({									\
2904 	__sum16 __ret = 0;						\
2905 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2906 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2907 				compute_pseudo(skb, proto));		\
2908 	if (!__ret)							\
2909 		skb_gro_incr_csum_unnecessary(skb);			\
2910 	__ret;								\
2911 })
2912 
2913 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2914 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2915 
2916 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2917 					     compute_pseudo)		\
2918 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2919 
2920 #define skb_gro_checksum_simple_validate(skb)				\
2921 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2922 
2923 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2924 {
2925 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2926 		!NAPI_GRO_CB(skb)->csum_valid);
2927 }
2928 
2929 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2930 					      __wsum pseudo)
2931 {
2932 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2933 	NAPI_GRO_CB(skb)->csum_valid = 1;
2934 }
2935 
2936 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2937 do {									\
2938 	if (__skb_gro_checksum_convert_check(skb))			\
2939 		__skb_gro_checksum_convert(skb, 			\
2940 					   compute_pseudo(skb, proto));	\
2941 } while (0)
2942 
2943 struct gro_remcsum {
2944 	int offset;
2945 	__wsum delta;
2946 };
2947 
2948 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2949 {
2950 	grc->offset = 0;
2951 	grc->delta = 0;
2952 }
2953 
2954 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2955 					    unsigned int off, size_t hdrlen,
2956 					    int start, int offset,
2957 					    struct gro_remcsum *grc,
2958 					    bool nopartial)
2959 {
2960 	__wsum delta;
2961 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2962 
2963 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2964 
2965 	if (!nopartial) {
2966 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2967 		return ptr;
2968 	}
2969 
2970 	ptr = skb_gro_header_fast(skb, off);
2971 	if (skb_gro_header_hard(skb, off + plen)) {
2972 		ptr = skb_gro_header_slow(skb, off + plen, off);
2973 		if (!ptr)
2974 			return NULL;
2975 	}
2976 
2977 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2978 			       start, offset);
2979 
2980 	/* Adjust skb->csum since we changed the packet */
2981 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2982 
2983 	grc->offset = off + hdrlen + offset;
2984 	grc->delta = delta;
2985 
2986 	return ptr;
2987 }
2988 
2989 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2990 					   struct gro_remcsum *grc)
2991 {
2992 	void *ptr;
2993 	size_t plen = grc->offset + sizeof(u16);
2994 
2995 	if (!grc->delta)
2996 		return;
2997 
2998 	ptr = skb_gro_header_fast(skb, grc->offset);
2999 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3000 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3001 		if (!ptr)
3002 			return;
3003 	}
3004 
3005 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3006 }
3007 
3008 #ifdef CONFIG_XFRM_OFFLOAD
3009 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3010 {
3011 	if (PTR_ERR(pp) != -EINPROGRESS)
3012 		NAPI_GRO_CB(skb)->flush |= flush;
3013 }
3014 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3015 					       struct sk_buff *pp,
3016 					       int flush,
3017 					       struct gro_remcsum *grc)
3018 {
3019 	if (PTR_ERR(pp) != -EINPROGRESS) {
3020 		NAPI_GRO_CB(skb)->flush |= flush;
3021 		skb_gro_remcsum_cleanup(skb, grc);
3022 		skb->remcsum_offload = 0;
3023 	}
3024 }
3025 #else
3026 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3027 {
3028 	NAPI_GRO_CB(skb)->flush |= flush;
3029 }
3030 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3031 					       struct sk_buff *pp,
3032 					       int flush,
3033 					       struct gro_remcsum *grc)
3034 {
3035 	NAPI_GRO_CB(skb)->flush |= flush;
3036 	skb_gro_remcsum_cleanup(skb, grc);
3037 	skb->remcsum_offload = 0;
3038 }
3039 #endif
3040 
3041 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3042 				  unsigned short type,
3043 				  const void *daddr, const void *saddr,
3044 				  unsigned int len)
3045 {
3046 	if (!dev->header_ops || !dev->header_ops->create)
3047 		return 0;
3048 
3049 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3050 }
3051 
3052 static inline int dev_parse_header(const struct sk_buff *skb,
3053 				   unsigned char *haddr)
3054 {
3055 	const struct net_device *dev = skb->dev;
3056 
3057 	if (!dev->header_ops || !dev->header_ops->parse)
3058 		return 0;
3059 	return dev->header_ops->parse(skb, haddr);
3060 }
3061 
3062 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3063 {
3064 	const struct net_device *dev = skb->dev;
3065 
3066 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3067 		return 0;
3068 	return dev->header_ops->parse_protocol(skb);
3069 }
3070 
3071 /* ll_header must have at least hard_header_len allocated */
3072 static inline bool dev_validate_header(const struct net_device *dev,
3073 				       char *ll_header, int len)
3074 {
3075 	if (likely(len >= dev->hard_header_len))
3076 		return true;
3077 	if (len < dev->min_header_len)
3078 		return false;
3079 
3080 	if (capable(CAP_SYS_RAWIO)) {
3081 		memset(ll_header + len, 0, dev->hard_header_len - len);
3082 		return true;
3083 	}
3084 
3085 	if (dev->header_ops && dev->header_ops->validate)
3086 		return dev->header_ops->validate(ll_header, len);
3087 
3088 	return false;
3089 }
3090 
3091 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3092 			   int len, int size);
3093 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3094 static inline int unregister_gifconf(unsigned int family)
3095 {
3096 	return register_gifconf(family, NULL);
3097 }
3098 
3099 #ifdef CONFIG_NET_FLOW_LIMIT
3100 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3101 struct sd_flow_limit {
3102 	u64			count;
3103 	unsigned int		num_buckets;
3104 	unsigned int		history_head;
3105 	u16			history[FLOW_LIMIT_HISTORY];
3106 	u8			buckets[];
3107 };
3108 
3109 extern int netdev_flow_limit_table_len;
3110 #endif /* CONFIG_NET_FLOW_LIMIT */
3111 
3112 /*
3113  * Incoming packets are placed on per-CPU queues
3114  */
3115 struct softnet_data {
3116 	struct list_head	poll_list;
3117 	struct sk_buff_head	process_queue;
3118 
3119 	/* stats */
3120 	unsigned int		processed;
3121 	unsigned int		time_squeeze;
3122 	unsigned int		received_rps;
3123 #ifdef CONFIG_RPS
3124 	struct softnet_data	*rps_ipi_list;
3125 #endif
3126 #ifdef CONFIG_NET_FLOW_LIMIT
3127 	struct sd_flow_limit __rcu *flow_limit;
3128 #endif
3129 	struct Qdisc		*output_queue;
3130 	struct Qdisc		**output_queue_tailp;
3131 	struct sk_buff		*completion_queue;
3132 #ifdef CONFIG_XFRM_OFFLOAD
3133 	struct sk_buff_head	xfrm_backlog;
3134 #endif
3135 	/* written and read only by owning cpu: */
3136 	struct {
3137 		u16 recursion;
3138 		u8  more;
3139 	} xmit;
3140 #ifdef CONFIG_RPS
3141 	/* input_queue_head should be written by cpu owning this struct,
3142 	 * and only read by other cpus. Worth using a cache line.
3143 	 */
3144 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3145 
3146 	/* Elements below can be accessed between CPUs for RPS/RFS */
3147 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3148 	struct softnet_data	*rps_ipi_next;
3149 	unsigned int		cpu;
3150 	unsigned int		input_queue_tail;
3151 #endif
3152 	unsigned int		dropped;
3153 	struct sk_buff_head	input_pkt_queue;
3154 	struct napi_struct	backlog;
3155 
3156 };
3157 
3158 static inline void input_queue_head_incr(struct softnet_data *sd)
3159 {
3160 #ifdef CONFIG_RPS
3161 	sd->input_queue_head++;
3162 #endif
3163 }
3164 
3165 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3166 					      unsigned int *qtail)
3167 {
3168 #ifdef CONFIG_RPS
3169 	*qtail = ++sd->input_queue_tail;
3170 #endif
3171 }
3172 
3173 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3174 
3175 static inline int dev_recursion_level(void)
3176 {
3177 	return this_cpu_read(softnet_data.xmit.recursion);
3178 }
3179 
3180 #define XMIT_RECURSION_LIMIT	8
3181 static inline bool dev_xmit_recursion(void)
3182 {
3183 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3184 			XMIT_RECURSION_LIMIT);
3185 }
3186 
3187 static inline void dev_xmit_recursion_inc(void)
3188 {
3189 	__this_cpu_inc(softnet_data.xmit.recursion);
3190 }
3191 
3192 static inline void dev_xmit_recursion_dec(void)
3193 {
3194 	__this_cpu_dec(softnet_data.xmit.recursion);
3195 }
3196 
3197 void __netif_schedule(struct Qdisc *q);
3198 void netif_schedule_queue(struct netdev_queue *txq);
3199 
3200 static inline void netif_tx_schedule_all(struct net_device *dev)
3201 {
3202 	unsigned int i;
3203 
3204 	for (i = 0; i < dev->num_tx_queues; i++)
3205 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3206 }
3207 
3208 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3209 {
3210 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3211 }
3212 
3213 /**
3214  *	netif_start_queue - allow transmit
3215  *	@dev: network device
3216  *
3217  *	Allow upper layers to call the device hard_start_xmit routine.
3218  */
3219 static inline void netif_start_queue(struct net_device *dev)
3220 {
3221 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3222 }
3223 
3224 static inline void netif_tx_start_all_queues(struct net_device *dev)
3225 {
3226 	unsigned int i;
3227 
3228 	for (i = 0; i < dev->num_tx_queues; i++) {
3229 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3230 		netif_tx_start_queue(txq);
3231 	}
3232 }
3233 
3234 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3235 
3236 /**
3237  *	netif_wake_queue - restart transmit
3238  *	@dev: network device
3239  *
3240  *	Allow upper layers to call the device hard_start_xmit routine.
3241  *	Used for flow control when transmit resources are available.
3242  */
3243 static inline void netif_wake_queue(struct net_device *dev)
3244 {
3245 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3246 }
3247 
3248 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3249 {
3250 	unsigned int i;
3251 
3252 	for (i = 0; i < dev->num_tx_queues; i++) {
3253 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3254 		netif_tx_wake_queue(txq);
3255 	}
3256 }
3257 
3258 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3259 {
3260 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3261 }
3262 
3263 /**
3264  *	netif_stop_queue - stop transmitted packets
3265  *	@dev: network device
3266  *
3267  *	Stop upper layers calling the device hard_start_xmit routine.
3268  *	Used for flow control when transmit resources are unavailable.
3269  */
3270 static inline void netif_stop_queue(struct net_device *dev)
3271 {
3272 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3273 }
3274 
3275 void netif_tx_stop_all_queues(struct net_device *dev);
3276 
3277 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3278 {
3279 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3280 }
3281 
3282 /**
3283  *	netif_queue_stopped - test if transmit queue is flowblocked
3284  *	@dev: network device
3285  *
3286  *	Test if transmit queue on device is currently unable to send.
3287  */
3288 static inline bool netif_queue_stopped(const struct net_device *dev)
3289 {
3290 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3291 }
3292 
3293 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3294 {
3295 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3296 }
3297 
3298 static inline bool
3299 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3300 {
3301 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3302 }
3303 
3304 static inline bool
3305 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3306 {
3307 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3308 }
3309 
3310 /**
3311  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3312  *	@dev_queue: pointer to transmit queue
3313  *
3314  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3315  * to give appropriate hint to the CPU.
3316  */
3317 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3318 {
3319 #ifdef CONFIG_BQL
3320 	prefetchw(&dev_queue->dql.num_queued);
3321 #endif
3322 }
3323 
3324 /**
3325  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3326  *	@dev_queue: pointer to transmit queue
3327  *
3328  * BQL enabled drivers might use this helper in their TX completion path,
3329  * to give appropriate hint to the CPU.
3330  */
3331 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3332 {
3333 #ifdef CONFIG_BQL
3334 	prefetchw(&dev_queue->dql.limit);
3335 #endif
3336 }
3337 
3338 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3339 					unsigned int bytes)
3340 {
3341 #ifdef CONFIG_BQL
3342 	dql_queued(&dev_queue->dql, bytes);
3343 
3344 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3345 		return;
3346 
3347 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3348 
3349 	/*
3350 	 * The XOFF flag must be set before checking the dql_avail below,
3351 	 * because in netdev_tx_completed_queue we update the dql_completed
3352 	 * before checking the XOFF flag.
3353 	 */
3354 	smp_mb();
3355 
3356 	/* check again in case another CPU has just made room avail */
3357 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3358 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3359 #endif
3360 }
3361 
3362 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3363  * that they should not test BQL status themselves.
3364  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3365  * skb of a batch.
3366  * Returns true if the doorbell must be used to kick the NIC.
3367  */
3368 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3369 					  unsigned int bytes,
3370 					  bool xmit_more)
3371 {
3372 	if (xmit_more) {
3373 #ifdef CONFIG_BQL
3374 		dql_queued(&dev_queue->dql, bytes);
3375 #endif
3376 		return netif_tx_queue_stopped(dev_queue);
3377 	}
3378 	netdev_tx_sent_queue(dev_queue, bytes);
3379 	return true;
3380 }
3381 
3382 /**
3383  * 	netdev_sent_queue - report the number of bytes queued to hardware
3384  * 	@dev: network device
3385  * 	@bytes: number of bytes queued to the hardware device queue
3386  *
3387  * 	Report the number of bytes queued for sending/completion to the network
3388  * 	device hardware queue. @bytes should be a good approximation and should
3389  * 	exactly match netdev_completed_queue() @bytes
3390  */
3391 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3392 {
3393 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3394 }
3395 
3396 static inline bool __netdev_sent_queue(struct net_device *dev,
3397 				       unsigned int bytes,
3398 				       bool xmit_more)
3399 {
3400 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3401 				      xmit_more);
3402 }
3403 
3404 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3405 					     unsigned int pkts, unsigned int bytes)
3406 {
3407 #ifdef CONFIG_BQL
3408 	if (unlikely(!bytes))
3409 		return;
3410 
3411 	dql_completed(&dev_queue->dql, bytes);
3412 
3413 	/*
3414 	 * Without the memory barrier there is a small possiblity that
3415 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3416 	 * be stopped forever
3417 	 */
3418 	smp_mb();
3419 
3420 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3421 		return;
3422 
3423 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3424 		netif_schedule_queue(dev_queue);
3425 #endif
3426 }
3427 
3428 /**
3429  * 	netdev_completed_queue - report bytes and packets completed by device
3430  * 	@dev: network device
3431  * 	@pkts: actual number of packets sent over the medium
3432  * 	@bytes: actual number of bytes sent over the medium
3433  *
3434  * 	Report the number of bytes and packets transmitted by the network device
3435  * 	hardware queue over the physical medium, @bytes must exactly match the
3436  * 	@bytes amount passed to netdev_sent_queue()
3437  */
3438 static inline void netdev_completed_queue(struct net_device *dev,
3439 					  unsigned int pkts, unsigned int bytes)
3440 {
3441 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3442 }
3443 
3444 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3445 {
3446 #ifdef CONFIG_BQL
3447 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3448 	dql_reset(&q->dql);
3449 #endif
3450 }
3451 
3452 /**
3453  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3454  * 	@dev_queue: network device
3455  *
3456  * 	Reset the bytes and packet count of a network device and clear the
3457  * 	software flow control OFF bit for this network device
3458  */
3459 static inline void netdev_reset_queue(struct net_device *dev_queue)
3460 {
3461 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3462 }
3463 
3464 /**
3465  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3466  * 	@dev: network device
3467  * 	@queue_index: given tx queue index
3468  *
3469  * 	Returns 0 if given tx queue index >= number of device tx queues,
3470  * 	otherwise returns the originally passed tx queue index.
3471  */
3472 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3473 {
3474 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3475 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3476 				     dev->name, queue_index,
3477 				     dev->real_num_tx_queues);
3478 		return 0;
3479 	}
3480 
3481 	return queue_index;
3482 }
3483 
3484 /**
3485  *	netif_running - test if up
3486  *	@dev: network device
3487  *
3488  *	Test if the device has been brought up.
3489  */
3490 static inline bool netif_running(const struct net_device *dev)
3491 {
3492 	return test_bit(__LINK_STATE_START, &dev->state);
3493 }
3494 
3495 /*
3496  * Routines to manage the subqueues on a device.  We only need start,
3497  * stop, and a check if it's stopped.  All other device management is
3498  * done at the overall netdevice level.
3499  * Also test the device if we're multiqueue.
3500  */
3501 
3502 /**
3503  *	netif_start_subqueue - allow sending packets on subqueue
3504  *	@dev: network device
3505  *	@queue_index: sub queue index
3506  *
3507  * Start individual transmit queue of a device with multiple transmit queues.
3508  */
3509 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3510 {
3511 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3512 
3513 	netif_tx_start_queue(txq);
3514 }
3515 
3516 /**
3517  *	netif_stop_subqueue - stop sending packets on subqueue
3518  *	@dev: network device
3519  *	@queue_index: sub queue index
3520  *
3521  * Stop individual transmit queue of a device with multiple transmit queues.
3522  */
3523 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3524 {
3525 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3526 	netif_tx_stop_queue(txq);
3527 }
3528 
3529 /**
3530  *	netif_subqueue_stopped - test status of subqueue
3531  *	@dev: network device
3532  *	@queue_index: sub queue index
3533  *
3534  * Check individual transmit queue of a device with multiple transmit queues.
3535  */
3536 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3537 					    u16 queue_index)
3538 {
3539 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3540 
3541 	return netif_tx_queue_stopped(txq);
3542 }
3543 
3544 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3545 					  struct sk_buff *skb)
3546 {
3547 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3548 }
3549 
3550 /**
3551  *	netif_wake_subqueue - allow sending packets on subqueue
3552  *	@dev: network device
3553  *	@queue_index: sub queue index
3554  *
3555  * Resume individual transmit queue of a device with multiple transmit queues.
3556  */
3557 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3558 {
3559 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3560 
3561 	netif_tx_wake_queue(txq);
3562 }
3563 
3564 #ifdef CONFIG_XPS
3565 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3566 			u16 index);
3567 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3568 			  u16 index, bool is_rxqs_map);
3569 
3570 /**
3571  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3572  *	@j: CPU/Rx queue index
3573  *	@mask: bitmask of all cpus/rx queues
3574  *	@nr_bits: number of bits in the bitmask
3575  *
3576  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3577  */
3578 static inline bool netif_attr_test_mask(unsigned long j,
3579 					const unsigned long *mask,
3580 					unsigned int nr_bits)
3581 {
3582 	cpu_max_bits_warn(j, nr_bits);
3583 	return test_bit(j, mask);
3584 }
3585 
3586 /**
3587  *	netif_attr_test_online - Test for online CPU/Rx queue
3588  *	@j: CPU/Rx queue index
3589  *	@online_mask: bitmask for CPUs/Rx queues that are online
3590  *	@nr_bits: number of bits in the bitmask
3591  *
3592  * Returns true if a CPU/Rx queue is online.
3593  */
3594 static inline bool netif_attr_test_online(unsigned long j,
3595 					  const unsigned long *online_mask,
3596 					  unsigned int nr_bits)
3597 {
3598 	cpu_max_bits_warn(j, nr_bits);
3599 
3600 	if (online_mask)
3601 		return test_bit(j, online_mask);
3602 
3603 	return (j < nr_bits);
3604 }
3605 
3606 /**
3607  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3608  *	@n: CPU/Rx queue index
3609  *	@srcp: the cpumask/Rx queue mask pointer
3610  *	@nr_bits: number of bits in the bitmask
3611  *
3612  * Returns >= nr_bits if no further CPUs/Rx queues set.
3613  */
3614 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3615 					       unsigned int nr_bits)
3616 {
3617 	/* -1 is a legal arg here. */
3618 	if (n != -1)
3619 		cpu_max_bits_warn(n, nr_bits);
3620 
3621 	if (srcp)
3622 		return find_next_bit(srcp, nr_bits, n + 1);
3623 
3624 	return n + 1;
3625 }
3626 
3627 /**
3628  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3629  *	@n: CPU/Rx queue index
3630  *	@src1p: the first CPUs/Rx queues mask pointer
3631  *	@src2p: the second CPUs/Rx queues mask pointer
3632  *	@nr_bits: number of bits in the bitmask
3633  *
3634  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3635  */
3636 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3637 					  const unsigned long *src2p,
3638 					  unsigned int nr_bits)
3639 {
3640 	/* -1 is a legal arg here. */
3641 	if (n != -1)
3642 		cpu_max_bits_warn(n, nr_bits);
3643 
3644 	if (src1p && src2p)
3645 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3646 	else if (src1p)
3647 		return find_next_bit(src1p, nr_bits, n + 1);
3648 	else if (src2p)
3649 		return find_next_bit(src2p, nr_bits, n + 1);
3650 
3651 	return n + 1;
3652 }
3653 #else
3654 static inline int netif_set_xps_queue(struct net_device *dev,
3655 				      const struct cpumask *mask,
3656 				      u16 index)
3657 {
3658 	return 0;
3659 }
3660 
3661 static inline int __netif_set_xps_queue(struct net_device *dev,
3662 					const unsigned long *mask,
3663 					u16 index, bool is_rxqs_map)
3664 {
3665 	return 0;
3666 }
3667 #endif
3668 
3669 /**
3670  *	netif_is_multiqueue - test if device has multiple transmit queues
3671  *	@dev: network device
3672  *
3673  * Check if device has multiple transmit queues
3674  */
3675 static inline bool netif_is_multiqueue(const struct net_device *dev)
3676 {
3677 	return dev->num_tx_queues > 1;
3678 }
3679 
3680 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3681 
3682 #ifdef CONFIG_SYSFS
3683 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3684 #else
3685 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3686 						unsigned int rxqs)
3687 {
3688 	dev->real_num_rx_queues = rxqs;
3689 	return 0;
3690 }
3691 #endif
3692 
3693 static inline struct netdev_rx_queue *
3694 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3695 {
3696 	return dev->_rx + rxq;
3697 }
3698 
3699 #ifdef CONFIG_SYSFS
3700 static inline unsigned int get_netdev_rx_queue_index(
3701 		struct netdev_rx_queue *queue)
3702 {
3703 	struct net_device *dev = queue->dev;
3704 	int index = queue - dev->_rx;
3705 
3706 	BUG_ON(index >= dev->num_rx_queues);
3707 	return index;
3708 }
3709 #endif
3710 
3711 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3712 int netif_get_num_default_rss_queues(void);
3713 
3714 enum skb_free_reason {
3715 	SKB_REASON_CONSUMED,
3716 	SKB_REASON_DROPPED,
3717 };
3718 
3719 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3720 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3721 
3722 /*
3723  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3724  * interrupt context or with hardware interrupts being disabled.
3725  * (in_irq() || irqs_disabled())
3726  *
3727  * We provide four helpers that can be used in following contexts :
3728  *
3729  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3730  *  replacing kfree_skb(skb)
3731  *
3732  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3733  *  Typically used in place of consume_skb(skb) in TX completion path
3734  *
3735  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3736  *  replacing kfree_skb(skb)
3737  *
3738  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3739  *  and consumed a packet. Used in place of consume_skb(skb)
3740  */
3741 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3742 {
3743 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3744 }
3745 
3746 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3747 {
3748 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3749 }
3750 
3751 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3752 {
3753 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3754 }
3755 
3756 static inline void dev_consume_skb_any(struct sk_buff *skb)
3757 {
3758 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3759 }
3760 
3761 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3762 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3763 int netif_rx(struct sk_buff *skb);
3764 int netif_rx_ni(struct sk_buff *skb);
3765 int netif_receive_skb(struct sk_buff *skb);
3766 int netif_receive_skb_core(struct sk_buff *skb);
3767 void netif_receive_skb_list(struct list_head *head);
3768 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3769 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3770 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3771 gro_result_t napi_gro_frags(struct napi_struct *napi);
3772 struct packet_offload *gro_find_receive_by_type(__be16 type);
3773 struct packet_offload *gro_find_complete_by_type(__be16 type);
3774 
3775 static inline void napi_free_frags(struct napi_struct *napi)
3776 {
3777 	kfree_skb(napi->skb);
3778 	napi->skb = NULL;
3779 }
3780 
3781 bool netdev_is_rx_handler_busy(struct net_device *dev);
3782 int netdev_rx_handler_register(struct net_device *dev,
3783 			       rx_handler_func_t *rx_handler,
3784 			       void *rx_handler_data);
3785 void netdev_rx_handler_unregister(struct net_device *dev);
3786 
3787 bool dev_valid_name(const char *name);
3788 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3789 		bool *need_copyout);
3790 int dev_ifconf(struct net *net, struct ifconf *, int);
3791 int dev_ethtool(struct net *net, struct ifreq *);
3792 unsigned int dev_get_flags(const struct net_device *);
3793 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3794 		       struct netlink_ext_ack *extack);
3795 int dev_change_flags(struct net_device *dev, unsigned int flags,
3796 		     struct netlink_ext_ack *extack);
3797 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3798 			unsigned int gchanges);
3799 int dev_change_name(struct net_device *, const char *);
3800 int dev_set_alias(struct net_device *, const char *, size_t);
3801 int dev_get_alias(const struct net_device *, char *, size_t);
3802 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3803 int __dev_set_mtu(struct net_device *, int);
3804 int dev_validate_mtu(struct net_device *dev, int mtu,
3805 		     struct netlink_ext_ack *extack);
3806 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3807 		    struct netlink_ext_ack *extack);
3808 int dev_set_mtu(struct net_device *, int);
3809 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3810 void dev_set_group(struct net_device *, int);
3811 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3812 			      struct netlink_ext_ack *extack);
3813 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3814 			struct netlink_ext_ack *extack);
3815 int dev_change_carrier(struct net_device *, bool new_carrier);
3816 int dev_get_phys_port_id(struct net_device *dev,
3817 			 struct netdev_phys_item_id *ppid);
3818 int dev_get_phys_port_name(struct net_device *dev,
3819 			   char *name, size_t len);
3820 int dev_get_port_parent_id(struct net_device *dev,
3821 			   struct netdev_phys_item_id *ppid, bool recurse);
3822 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3823 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3824 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3825 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3826 				  u32 value);
3827 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3828 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3829 				    struct netdev_queue *txq, int *ret);
3830 
3831 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3832 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3833 		      int fd, int expected_fd, u32 flags);
3834 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3835 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3836 
3837 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3838 
3839 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3840 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3841 bool is_skb_forwardable(const struct net_device *dev,
3842 			const struct sk_buff *skb);
3843 
3844 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3845 					       struct sk_buff *skb)
3846 {
3847 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3848 	    unlikely(!is_skb_forwardable(dev, skb))) {
3849 		atomic_long_inc(&dev->rx_dropped);
3850 		kfree_skb(skb);
3851 		return NET_RX_DROP;
3852 	}
3853 
3854 	skb_scrub_packet(skb, true);
3855 	skb->priority = 0;
3856 	return 0;
3857 }
3858 
3859 bool dev_nit_active(struct net_device *dev);
3860 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3861 
3862 extern int		netdev_budget;
3863 extern unsigned int	netdev_budget_usecs;
3864 
3865 /* Called by rtnetlink.c:rtnl_unlock() */
3866 void netdev_run_todo(void);
3867 
3868 /**
3869  *	dev_put - release reference to device
3870  *	@dev: network device
3871  *
3872  * Release reference to device to allow it to be freed.
3873  */
3874 static inline void dev_put(struct net_device *dev)
3875 {
3876 	this_cpu_dec(*dev->pcpu_refcnt);
3877 }
3878 
3879 /**
3880  *	dev_hold - get reference to device
3881  *	@dev: network device
3882  *
3883  * Hold reference to device to keep it from being freed.
3884  */
3885 static inline void dev_hold(struct net_device *dev)
3886 {
3887 	this_cpu_inc(*dev->pcpu_refcnt);
3888 }
3889 
3890 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3891  * and _off may be called from IRQ context, but it is caller
3892  * who is responsible for serialization of these calls.
3893  *
3894  * The name carrier is inappropriate, these functions should really be
3895  * called netif_lowerlayer_*() because they represent the state of any
3896  * kind of lower layer not just hardware media.
3897  */
3898 
3899 void linkwatch_init_dev(struct net_device *dev);
3900 void linkwatch_fire_event(struct net_device *dev);
3901 void linkwatch_forget_dev(struct net_device *dev);
3902 
3903 /**
3904  *	netif_carrier_ok - test if carrier present
3905  *	@dev: network device
3906  *
3907  * Check if carrier is present on device
3908  */
3909 static inline bool netif_carrier_ok(const struct net_device *dev)
3910 {
3911 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3912 }
3913 
3914 unsigned long dev_trans_start(struct net_device *dev);
3915 
3916 void __netdev_watchdog_up(struct net_device *dev);
3917 
3918 void netif_carrier_on(struct net_device *dev);
3919 
3920 void netif_carrier_off(struct net_device *dev);
3921 
3922 /**
3923  *	netif_dormant_on - mark device as dormant.
3924  *	@dev: network device
3925  *
3926  * Mark device as dormant (as per RFC2863).
3927  *
3928  * The dormant state indicates that the relevant interface is not
3929  * actually in a condition to pass packets (i.e., it is not 'up') but is
3930  * in a "pending" state, waiting for some external event.  For "on-
3931  * demand" interfaces, this new state identifies the situation where the
3932  * interface is waiting for events to place it in the up state.
3933  */
3934 static inline void netif_dormant_on(struct net_device *dev)
3935 {
3936 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3937 		linkwatch_fire_event(dev);
3938 }
3939 
3940 /**
3941  *	netif_dormant_off - set device as not dormant.
3942  *	@dev: network device
3943  *
3944  * Device is not in dormant state.
3945  */
3946 static inline void netif_dormant_off(struct net_device *dev)
3947 {
3948 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3949 		linkwatch_fire_event(dev);
3950 }
3951 
3952 /**
3953  *	netif_dormant - test if device is dormant
3954  *	@dev: network device
3955  *
3956  * Check if device is dormant.
3957  */
3958 static inline bool netif_dormant(const struct net_device *dev)
3959 {
3960 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3961 }
3962 
3963 
3964 /**
3965  *	netif_testing_on - mark device as under test.
3966  *	@dev: network device
3967  *
3968  * Mark device as under test (as per RFC2863).
3969  *
3970  * The testing state indicates that some test(s) must be performed on
3971  * the interface. After completion, of the test, the interface state
3972  * will change to up, dormant, or down, as appropriate.
3973  */
3974 static inline void netif_testing_on(struct net_device *dev)
3975 {
3976 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3977 		linkwatch_fire_event(dev);
3978 }
3979 
3980 /**
3981  *	netif_testing_off - set device as not under test.
3982  *	@dev: network device
3983  *
3984  * Device is not in testing state.
3985  */
3986 static inline void netif_testing_off(struct net_device *dev)
3987 {
3988 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3989 		linkwatch_fire_event(dev);
3990 }
3991 
3992 /**
3993  *	netif_testing - test if device is under test
3994  *	@dev: network device
3995  *
3996  * Check if device is under test
3997  */
3998 static inline bool netif_testing(const struct net_device *dev)
3999 {
4000 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4001 }
4002 
4003 
4004 /**
4005  *	netif_oper_up - test if device is operational
4006  *	@dev: network device
4007  *
4008  * Check if carrier is operational
4009  */
4010 static inline bool netif_oper_up(const struct net_device *dev)
4011 {
4012 	return (dev->operstate == IF_OPER_UP ||
4013 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4014 }
4015 
4016 /**
4017  *	netif_device_present - is device available or removed
4018  *	@dev: network device
4019  *
4020  * Check if device has not been removed from system.
4021  */
4022 static inline bool netif_device_present(struct net_device *dev)
4023 {
4024 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4025 }
4026 
4027 void netif_device_detach(struct net_device *dev);
4028 
4029 void netif_device_attach(struct net_device *dev);
4030 
4031 /*
4032  * Network interface message level settings
4033  */
4034 
4035 enum {
4036 	NETIF_MSG_DRV_BIT,
4037 	NETIF_MSG_PROBE_BIT,
4038 	NETIF_MSG_LINK_BIT,
4039 	NETIF_MSG_TIMER_BIT,
4040 	NETIF_MSG_IFDOWN_BIT,
4041 	NETIF_MSG_IFUP_BIT,
4042 	NETIF_MSG_RX_ERR_BIT,
4043 	NETIF_MSG_TX_ERR_BIT,
4044 	NETIF_MSG_TX_QUEUED_BIT,
4045 	NETIF_MSG_INTR_BIT,
4046 	NETIF_MSG_TX_DONE_BIT,
4047 	NETIF_MSG_RX_STATUS_BIT,
4048 	NETIF_MSG_PKTDATA_BIT,
4049 	NETIF_MSG_HW_BIT,
4050 	NETIF_MSG_WOL_BIT,
4051 
4052 	/* When you add a new bit above, update netif_msg_class_names array
4053 	 * in net/ethtool/common.c
4054 	 */
4055 	NETIF_MSG_CLASS_COUNT,
4056 };
4057 /* Both ethtool_ops interface and internal driver implementation use u32 */
4058 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4059 
4060 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4061 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4062 
4063 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4064 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4065 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4066 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4067 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4068 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4069 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4070 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4071 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4072 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4073 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4074 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4075 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4076 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4077 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4078 
4079 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4080 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4081 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4082 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4083 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4084 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4085 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4086 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4087 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4088 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4089 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4090 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4091 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4092 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4093 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4094 
4095 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4096 {
4097 	/* use default */
4098 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4099 		return default_msg_enable_bits;
4100 	if (debug_value == 0)	/* no output */
4101 		return 0;
4102 	/* set low N bits */
4103 	return (1U << debug_value) - 1;
4104 }
4105 
4106 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4107 {
4108 	spin_lock(&txq->_xmit_lock);
4109 	txq->xmit_lock_owner = cpu;
4110 }
4111 
4112 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4113 {
4114 	__acquire(&txq->_xmit_lock);
4115 	return true;
4116 }
4117 
4118 static inline void __netif_tx_release(struct netdev_queue *txq)
4119 {
4120 	__release(&txq->_xmit_lock);
4121 }
4122 
4123 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4124 {
4125 	spin_lock_bh(&txq->_xmit_lock);
4126 	txq->xmit_lock_owner = smp_processor_id();
4127 }
4128 
4129 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4130 {
4131 	bool ok = spin_trylock(&txq->_xmit_lock);
4132 	if (likely(ok))
4133 		txq->xmit_lock_owner = smp_processor_id();
4134 	return ok;
4135 }
4136 
4137 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4138 {
4139 	txq->xmit_lock_owner = -1;
4140 	spin_unlock(&txq->_xmit_lock);
4141 }
4142 
4143 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4144 {
4145 	txq->xmit_lock_owner = -1;
4146 	spin_unlock_bh(&txq->_xmit_lock);
4147 }
4148 
4149 static inline void txq_trans_update(struct netdev_queue *txq)
4150 {
4151 	if (txq->xmit_lock_owner != -1)
4152 		txq->trans_start = jiffies;
4153 }
4154 
4155 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4156 static inline void netif_trans_update(struct net_device *dev)
4157 {
4158 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4159 
4160 	if (txq->trans_start != jiffies)
4161 		txq->trans_start = jiffies;
4162 }
4163 
4164 /**
4165  *	netif_tx_lock - grab network device transmit lock
4166  *	@dev: network device
4167  *
4168  * Get network device transmit lock
4169  */
4170 static inline void netif_tx_lock(struct net_device *dev)
4171 {
4172 	unsigned int i;
4173 	int cpu;
4174 
4175 	spin_lock(&dev->tx_global_lock);
4176 	cpu = smp_processor_id();
4177 	for (i = 0; i < dev->num_tx_queues; i++) {
4178 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4179 
4180 		/* We are the only thread of execution doing a
4181 		 * freeze, but we have to grab the _xmit_lock in
4182 		 * order to synchronize with threads which are in
4183 		 * the ->hard_start_xmit() handler and already
4184 		 * checked the frozen bit.
4185 		 */
4186 		__netif_tx_lock(txq, cpu);
4187 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4188 		__netif_tx_unlock(txq);
4189 	}
4190 }
4191 
4192 static inline void netif_tx_lock_bh(struct net_device *dev)
4193 {
4194 	local_bh_disable();
4195 	netif_tx_lock(dev);
4196 }
4197 
4198 static inline void netif_tx_unlock(struct net_device *dev)
4199 {
4200 	unsigned int i;
4201 
4202 	for (i = 0; i < dev->num_tx_queues; i++) {
4203 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4204 
4205 		/* No need to grab the _xmit_lock here.  If the
4206 		 * queue is not stopped for another reason, we
4207 		 * force a schedule.
4208 		 */
4209 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4210 		netif_schedule_queue(txq);
4211 	}
4212 	spin_unlock(&dev->tx_global_lock);
4213 }
4214 
4215 static inline void netif_tx_unlock_bh(struct net_device *dev)
4216 {
4217 	netif_tx_unlock(dev);
4218 	local_bh_enable();
4219 }
4220 
4221 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4222 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4223 		__netif_tx_lock(txq, cpu);		\
4224 	} else {					\
4225 		__netif_tx_acquire(txq);		\
4226 	}						\
4227 }
4228 
4229 #define HARD_TX_TRYLOCK(dev, txq)			\
4230 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4231 		__netif_tx_trylock(txq) :		\
4232 		__netif_tx_acquire(txq))
4233 
4234 #define HARD_TX_UNLOCK(dev, txq) {			\
4235 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4236 		__netif_tx_unlock(txq);			\
4237 	} else {					\
4238 		__netif_tx_release(txq);		\
4239 	}						\
4240 }
4241 
4242 static inline void netif_tx_disable(struct net_device *dev)
4243 {
4244 	unsigned int i;
4245 	int cpu;
4246 
4247 	local_bh_disable();
4248 	cpu = smp_processor_id();
4249 	for (i = 0; i < dev->num_tx_queues; i++) {
4250 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4251 
4252 		__netif_tx_lock(txq, cpu);
4253 		netif_tx_stop_queue(txq);
4254 		__netif_tx_unlock(txq);
4255 	}
4256 	local_bh_enable();
4257 }
4258 
4259 static inline void netif_addr_lock(struct net_device *dev)
4260 {
4261 	spin_lock(&dev->addr_list_lock);
4262 }
4263 
4264 static inline void netif_addr_lock_nested(struct net_device *dev)
4265 {
4266 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4267 }
4268 
4269 static inline void netif_addr_lock_bh(struct net_device *dev)
4270 {
4271 	spin_lock_bh(&dev->addr_list_lock);
4272 }
4273 
4274 static inline void netif_addr_unlock(struct net_device *dev)
4275 {
4276 	spin_unlock(&dev->addr_list_lock);
4277 }
4278 
4279 static inline void netif_addr_unlock_bh(struct net_device *dev)
4280 {
4281 	spin_unlock_bh(&dev->addr_list_lock);
4282 }
4283 
4284 /*
4285  * dev_addrs walker. Should be used only for read access. Call with
4286  * rcu_read_lock held.
4287  */
4288 #define for_each_dev_addr(dev, ha) \
4289 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4290 
4291 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4292 
4293 void ether_setup(struct net_device *dev);
4294 
4295 /* Support for loadable net-drivers */
4296 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4297 				    unsigned char name_assign_type,
4298 				    void (*setup)(struct net_device *),
4299 				    unsigned int txqs, unsigned int rxqs);
4300 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4301 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4302 
4303 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4304 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4305 			 count)
4306 
4307 int register_netdev(struct net_device *dev);
4308 void unregister_netdev(struct net_device *dev);
4309 
4310 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4311 
4312 /* General hardware address lists handling functions */
4313 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4314 		   struct netdev_hw_addr_list *from_list, int addr_len);
4315 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4316 		      struct netdev_hw_addr_list *from_list, int addr_len);
4317 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4318 		       struct net_device *dev,
4319 		       int (*sync)(struct net_device *, const unsigned char *),
4320 		       int (*unsync)(struct net_device *,
4321 				     const unsigned char *));
4322 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4323 			   struct net_device *dev,
4324 			   int (*sync)(struct net_device *,
4325 				       const unsigned char *, int),
4326 			   int (*unsync)(struct net_device *,
4327 					 const unsigned char *, int));
4328 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4329 			      struct net_device *dev,
4330 			      int (*unsync)(struct net_device *,
4331 					    const unsigned char *, int));
4332 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4333 			  struct net_device *dev,
4334 			  int (*unsync)(struct net_device *,
4335 					const unsigned char *));
4336 void __hw_addr_init(struct netdev_hw_addr_list *list);
4337 
4338 /* Functions used for device addresses handling */
4339 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4340 		 unsigned char addr_type);
4341 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4342 		 unsigned char addr_type);
4343 void dev_addr_flush(struct net_device *dev);
4344 int dev_addr_init(struct net_device *dev);
4345 
4346 /* Functions used for unicast addresses handling */
4347 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4348 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4349 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4350 int dev_uc_sync(struct net_device *to, struct net_device *from);
4351 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4352 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4353 void dev_uc_flush(struct net_device *dev);
4354 void dev_uc_init(struct net_device *dev);
4355 
4356 /**
4357  *  __dev_uc_sync - Synchonize device's unicast list
4358  *  @dev:  device to sync
4359  *  @sync: function to call if address should be added
4360  *  @unsync: function to call if address should be removed
4361  *
4362  *  Add newly added addresses to the interface, and release
4363  *  addresses that have been deleted.
4364  */
4365 static inline int __dev_uc_sync(struct net_device *dev,
4366 				int (*sync)(struct net_device *,
4367 					    const unsigned char *),
4368 				int (*unsync)(struct net_device *,
4369 					      const unsigned char *))
4370 {
4371 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4372 }
4373 
4374 /**
4375  *  __dev_uc_unsync - Remove synchronized addresses from device
4376  *  @dev:  device to sync
4377  *  @unsync: function to call if address should be removed
4378  *
4379  *  Remove all addresses that were added to the device by dev_uc_sync().
4380  */
4381 static inline void __dev_uc_unsync(struct net_device *dev,
4382 				   int (*unsync)(struct net_device *,
4383 						 const unsigned char *))
4384 {
4385 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4386 }
4387 
4388 /* Functions used for multicast addresses handling */
4389 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4390 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4391 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4392 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4393 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4394 int dev_mc_sync(struct net_device *to, struct net_device *from);
4395 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4396 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4397 void dev_mc_flush(struct net_device *dev);
4398 void dev_mc_init(struct net_device *dev);
4399 
4400 /**
4401  *  __dev_mc_sync - Synchonize device's multicast list
4402  *  @dev:  device to sync
4403  *  @sync: function to call if address should be added
4404  *  @unsync: function to call if address should be removed
4405  *
4406  *  Add newly added addresses to the interface, and release
4407  *  addresses that have been deleted.
4408  */
4409 static inline int __dev_mc_sync(struct net_device *dev,
4410 				int (*sync)(struct net_device *,
4411 					    const unsigned char *),
4412 				int (*unsync)(struct net_device *,
4413 					      const unsigned char *))
4414 {
4415 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4416 }
4417 
4418 /**
4419  *  __dev_mc_unsync - Remove synchronized addresses from device
4420  *  @dev:  device to sync
4421  *  @unsync: function to call if address should be removed
4422  *
4423  *  Remove all addresses that were added to the device by dev_mc_sync().
4424  */
4425 static inline void __dev_mc_unsync(struct net_device *dev,
4426 				   int (*unsync)(struct net_device *,
4427 						 const unsigned char *))
4428 {
4429 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4430 }
4431 
4432 /* Functions used for secondary unicast and multicast support */
4433 void dev_set_rx_mode(struct net_device *dev);
4434 void __dev_set_rx_mode(struct net_device *dev);
4435 int dev_set_promiscuity(struct net_device *dev, int inc);
4436 int dev_set_allmulti(struct net_device *dev, int inc);
4437 void netdev_state_change(struct net_device *dev);
4438 void netdev_notify_peers(struct net_device *dev);
4439 void netdev_features_change(struct net_device *dev);
4440 /* Load a device via the kmod */
4441 void dev_load(struct net *net, const char *name);
4442 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4443 					struct rtnl_link_stats64 *storage);
4444 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4445 			     const struct net_device_stats *netdev_stats);
4446 
4447 extern int		netdev_max_backlog;
4448 extern int		netdev_tstamp_prequeue;
4449 extern int		weight_p;
4450 extern int		dev_weight_rx_bias;
4451 extern int		dev_weight_tx_bias;
4452 extern int		dev_rx_weight;
4453 extern int		dev_tx_weight;
4454 extern int		gro_normal_batch;
4455 
4456 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4457 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4458 						     struct list_head **iter);
4459 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4460 						     struct list_head **iter);
4461 
4462 /* iterate through upper list, must be called under RCU read lock */
4463 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4464 	for (iter = &(dev)->adj_list.upper, \
4465 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4466 	     updev; \
4467 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4468 
4469 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4470 				  int (*fn)(struct net_device *upper_dev,
4471 					    void *data),
4472 				  void *data);
4473 
4474 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4475 				  struct net_device *upper_dev);
4476 
4477 bool netdev_has_any_upper_dev(struct net_device *dev);
4478 
4479 void *netdev_lower_get_next_private(struct net_device *dev,
4480 				    struct list_head **iter);
4481 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4482 					struct list_head **iter);
4483 
4484 #define netdev_for_each_lower_private(dev, priv, iter) \
4485 	for (iter = (dev)->adj_list.lower.next, \
4486 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4487 	     priv; \
4488 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4489 
4490 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4491 	for (iter = &(dev)->adj_list.lower, \
4492 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4493 	     priv; \
4494 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4495 
4496 void *netdev_lower_get_next(struct net_device *dev,
4497 				struct list_head **iter);
4498 
4499 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4500 	for (iter = (dev)->adj_list.lower.next, \
4501 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4502 	     ldev; \
4503 	     ldev = netdev_lower_get_next(dev, &(iter)))
4504 
4505 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4506 					     struct list_head **iter);
4507 int netdev_walk_all_lower_dev(struct net_device *dev,
4508 			      int (*fn)(struct net_device *lower_dev,
4509 					void *data),
4510 			      void *data);
4511 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4512 				  int (*fn)(struct net_device *lower_dev,
4513 					    void *data),
4514 				  void *data);
4515 
4516 void *netdev_adjacent_get_private(struct list_head *adj_list);
4517 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4518 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4519 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4520 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4521 			  struct netlink_ext_ack *extack);
4522 int netdev_master_upper_dev_link(struct net_device *dev,
4523 				 struct net_device *upper_dev,
4524 				 void *upper_priv, void *upper_info,
4525 				 struct netlink_ext_ack *extack);
4526 void netdev_upper_dev_unlink(struct net_device *dev,
4527 			     struct net_device *upper_dev);
4528 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4529 				   struct net_device *new_dev,
4530 				   struct net_device *dev,
4531 				   struct netlink_ext_ack *extack);
4532 void netdev_adjacent_change_commit(struct net_device *old_dev,
4533 				   struct net_device *new_dev,
4534 				   struct net_device *dev);
4535 void netdev_adjacent_change_abort(struct net_device *old_dev,
4536 				  struct net_device *new_dev,
4537 				  struct net_device *dev);
4538 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4539 void *netdev_lower_dev_get_private(struct net_device *dev,
4540 				   struct net_device *lower_dev);
4541 void netdev_lower_state_changed(struct net_device *lower_dev,
4542 				void *lower_state_info);
4543 
4544 /* RSS keys are 40 or 52 bytes long */
4545 #define NETDEV_RSS_KEY_LEN 52
4546 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4547 void netdev_rss_key_fill(void *buffer, size_t len);
4548 
4549 int skb_checksum_help(struct sk_buff *skb);
4550 int skb_crc32c_csum_help(struct sk_buff *skb);
4551 int skb_csum_hwoffload_help(struct sk_buff *skb,
4552 			    const netdev_features_t features);
4553 
4554 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4555 				  netdev_features_t features, bool tx_path);
4556 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4557 				    netdev_features_t features);
4558 
4559 struct netdev_bonding_info {
4560 	ifslave	slave;
4561 	ifbond	master;
4562 };
4563 
4564 struct netdev_notifier_bonding_info {
4565 	struct netdev_notifier_info info; /* must be first */
4566 	struct netdev_bonding_info  bonding_info;
4567 };
4568 
4569 void netdev_bonding_info_change(struct net_device *dev,
4570 				struct netdev_bonding_info *bonding_info);
4571 
4572 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4573 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4574 #else
4575 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4576 				  const void *data)
4577 {
4578 }
4579 #endif
4580 
4581 static inline
4582 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4583 {
4584 	return __skb_gso_segment(skb, features, true);
4585 }
4586 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4587 
4588 static inline bool can_checksum_protocol(netdev_features_t features,
4589 					 __be16 protocol)
4590 {
4591 	if (protocol == htons(ETH_P_FCOE))
4592 		return !!(features & NETIF_F_FCOE_CRC);
4593 
4594 	/* Assume this is an IP checksum (not SCTP CRC) */
4595 
4596 	if (features & NETIF_F_HW_CSUM) {
4597 		/* Can checksum everything */
4598 		return true;
4599 	}
4600 
4601 	switch (protocol) {
4602 	case htons(ETH_P_IP):
4603 		return !!(features & NETIF_F_IP_CSUM);
4604 	case htons(ETH_P_IPV6):
4605 		return !!(features & NETIF_F_IPV6_CSUM);
4606 	default:
4607 		return false;
4608 	}
4609 }
4610 
4611 #ifdef CONFIG_BUG
4612 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4613 #else
4614 static inline void netdev_rx_csum_fault(struct net_device *dev,
4615 					struct sk_buff *skb)
4616 {
4617 }
4618 #endif
4619 /* rx skb timestamps */
4620 void net_enable_timestamp(void);
4621 void net_disable_timestamp(void);
4622 
4623 #ifdef CONFIG_PROC_FS
4624 int __init dev_proc_init(void);
4625 #else
4626 #define dev_proc_init() 0
4627 #endif
4628 
4629 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4630 					      struct sk_buff *skb, struct net_device *dev,
4631 					      bool more)
4632 {
4633 	__this_cpu_write(softnet_data.xmit.more, more);
4634 	return ops->ndo_start_xmit(skb, dev);
4635 }
4636 
4637 static inline bool netdev_xmit_more(void)
4638 {
4639 	return __this_cpu_read(softnet_data.xmit.more);
4640 }
4641 
4642 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4643 					    struct netdev_queue *txq, bool more)
4644 {
4645 	const struct net_device_ops *ops = dev->netdev_ops;
4646 	netdev_tx_t rc;
4647 
4648 	rc = __netdev_start_xmit(ops, skb, dev, more);
4649 	if (rc == NETDEV_TX_OK)
4650 		txq_trans_update(txq);
4651 
4652 	return rc;
4653 }
4654 
4655 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4656 				const void *ns);
4657 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4658 				 const void *ns);
4659 
4660 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4661 {
4662 	return netdev_class_create_file_ns(class_attr, NULL);
4663 }
4664 
4665 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4666 {
4667 	netdev_class_remove_file_ns(class_attr, NULL);
4668 }
4669 
4670 extern const struct kobj_ns_type_operations net_ns_type_operations;
4671 
4672 const char *netdev_drivername(const struct net_device *dev);
4673 
4674 void linkwatch_run_queue(void);
4675 
4676 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4677 							  netdev_features_t f2)
4678 {
4679 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4680 		if (f1 & NETIF_F_HW_CSUM)
4681 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4682 		else
4683 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4684 	}
4685 
4686 	return f1 & f2;
4687 }
4688 
4689 static inline netdev_features_t netdev_get_wanted_features(
4690 	struct net_device *dev)
4691 {
4692 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4693 }
4694 netdev_features_t netdev_increment_features(netdev_features_t all,
4695 	netdev_features_t one, netdev_features_t mask);
4696 
4697 /* Allow TSO being used on stacked device :
4698  * Performing the GSO segmentation before last device
4699  * is a performance improvement.
4700  */
4701 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4702 							netdev_features_t mask)
4703 {
4704 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4705 }
4706 
4707 int __netdev_update_features(struct net_device *dev);
4708 void netdev_update_features(struct net_device *dev);
4709 void netdev_change_features(struct net_device *dev);
4710 
4711 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4712 					struct net_device *dev);
4713 
4714 netdev_features_t passthru_features_check(struct sk_buff *skb,
4715 					  struct net_device *dev,
4716 					  netdev_features_t features);
4717 netdev_features_t netif_skb_features(struct sk_buff *skb);
4718 
4719 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4720 {
4721 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4722 
4723 	/* check flags correspondence */
4724 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4725 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4726 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4727 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4728 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4729 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4730 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4731 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4732 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4733 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4734 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4735 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4736 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4737 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4738 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4739 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4740 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4741 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4742 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4743 
4744 	return (features & feature) == feature;
4745 }
4746 
4747 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4748 {
4749 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4750 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4751 }
4752 
4753 static inline bool netif_needs_gso(struct sk_buff *skb,
4754 				   netdev_features_t features)
4755 {
4756 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4757 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4758 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4759 }
4760 
4761 static inline void netif_set_gso_max_size(struct net_device *dev,
4762 					  unsigned int size)
4763 {
4764 	dev->gso_max_size = size;
4765 }
4766 
4767 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4768 					int pulled_hlen, u16 mac_offset,
4769 					int mac_len)
4770 {
4771 	skb->protocol = protocol;
4772 	skb->encapsulation = 1;
4773 	skb_push(skb, pulled_hlen);
4774 	skb_reset_transport_header(skb);
4775 	skb->mac_header = mac_offset;
4776 	skb->network_header = skb->mac_header + mac_len;
4777 	skb->mac_len = mac_len;
4778 }
4779 
4780 static inline bool netif_is_macsec(const struct net_device *dev)
4781 {
4782 	return dev->priv_flags & IFF_MACSEC;
4783 }
4784 
4785 static inline bool netif_is_macvlan(const struct net_device *dev)
4786 {
4787 	return dev->priv_flags & IFF_MACVLAN;
4788 }
4789 
4790 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4791 {
4792 	return dev->priv_flags & IFF_MACVLAN_PORT;
4793 }
4794 
4795 static inline bool netif_is_bond_master(const struct net_device *dev)
4796 {
4797 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4798 }
4799 
4800 static inline bool netif_is_bond_slave(const struct net_device *dev)
4801 {
4802 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4803 }
4804 
4805 static inline bool netif_supports_nofcs(struct net_device *dev)
4806 {
4807 	return dev->priv_flags & IFF_SUPP_NOFCS;
4808 }
4809 
4810 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4811 {
4812 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4813 }
4814 
4815 static inline bool netif_is_l3_master(const struct net_device *dev)
4816 {
4817 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4818 }
4819 
4820 static inline bool netif_is_l3_slave(const struct net_device *dev)
4821 {
4822 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4823 }
4824 
4825 static inline bool netif_is_bridge_master(const struct net_device *dev)
4826 {
4827 	return dev->priv_flags & IFF_EBRIDGE;
4828 }
4829 
4830 static inline bool netif_is_bridge_port(const struct net_device *dev)
4831 {
4832 	return dev->priv_flags & IFF_BRIDGE_PORT;
4833 }
4834 
4835 static inline bool netif_is_ovs_master(const struct net_device *dev)
4836 {
4837 	return dev->priv_flags & IFF_OPENVSWITCH;
4838 }
4839 
4840 static inline bool netif_is_ovs_port(const struct net_device *dev)
4841 {
4842 	return dev->priv_flags & IFF_OVS_DATAPATH;
4843 }
4844 
4845 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4846 {
4847 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4848 }
4849 
4850 static inline bool netif_is_team_master(const struct net_device *dev)
4851 {
4852 	return dev->priv_flags & IFF_TEAM;
4853 }
4854 
4855 static inline bool netif_is_team_port(const struct net_device *dev)
4856 {
4857 	return dev->priv_flags & IFF_TEAM_PORT;
4858 }
4859 
4860 static inline bool netif_is_lag_master(const struct net_device *dev)
4861 {
4862 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4863 }
4864 
4865 static inline bool netif_is_lag_port(const struct net_device *dev)
4866 {
4867 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4868 }
4869 
4870 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4871 {
4872 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4873 }
4874 
4875 static inline bool netif_is_failover(const struct net_device *dev)
4876 {
4877 	return dev->priv_flags & IFF_FAILOVER;
4878 }
4879 
4880 static inline bool netif_is_failover_slave(const struct net_device *dev)
4881 {
4882 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4883 }
4884 
4885 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4886 static inline void netif_keep_dst(struct net_device *dev)
4887 {
4888 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4889 }
4890 
4891 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4892 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4893 {
4894 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4895 	return dev->priv_flags & IFF_MACSEC;
4896 }
4897 
4898 extern struct pernet_operations __net_initdata loopback_net_ops;
4899 
4900 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4901 
4902 /* netdev_printk helpers, similar to dev_printk */
4903 
4904 static inline const char *netdev_name(const struct net_device *dev)
4905 {
4906 	if (!dev->name[0] || strchr(dev->name, '%'))
4907 		return "(unnamed net_device)";
4908 	return dev->name;
4909 }
4910 
4911 static inline bool netdev_unregistering(const struct net_device *dev)
4912 {
4913 	return dev->reg_state == NETREG_UNREGISTERING;
4914 }
4915 
4916 static inline const char *netdev_reg_state(const struct net_device *dev)
4917 {
4918 	switch (dev->reg_state) {
4919 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4920 	case NETREG_REGISTERED: return "";
4921 	case NETREG_UNREGISTERING: return " (unregistering)";
4922 	case NETREG_UNREGISTERED: return " (unregistered)";
4923 	case NETREG_RELEASED: return " (released)";
4924 	case NETREG_DUMMY: return " (dummy)";
4925 	}
4926 
4927 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4928 	return " (unknown)";
4929 }
4930 
4931 __printf(3, 4) __cold
4932 void netdev_printk(const char *level, const struct net_device *dev,
4933 		   const char *format, ...);
4934 __printf(2, 3) __cold
4935 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4936 __printf(2, 3) __cold
4937 void netdev_alert(const struct net_device *dev, const char *format, ...);
4938 __printf(2, 3) __cold
4939 void netdev_crit(const struct net_device *dev, const char *format, ...);
4940 __printf(2, 3) __cold
4941 void netdev_err(const struct net_device *dev, const char *format, ...);
4942 __printf(2, 3) __cold
4943 void netdev_warn(const struct net_device *dev, const char *format, ...);
4944 __printf(2, 3) __cold
4945 void netdev_notice(const struct net_device *dev, const char *format, ...);
4946 __printf(2, 3) __cold
4947 void netdev_info(const struct net_device *dev, const char *format, ...);
4948 
4949 #define netdev_level_once(level, dev, fmt, ...)			\
4950 do {								\
4951 	static bool __print_once __read_mostly;			\
4952 								\
4953 	if (!__print_once) {					\
4954 		__print_once = true;				\
4955 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4956 	}							\
4957 } while (0)
4958 
4959 #define netdev_emerg_once(dev, fmt, ...) \
4960 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4961 #define netdev_alert_once(dev, fmt, ...) \
4962 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4963 #define netdev_crit_once(dev, fmt, ...) \
4964 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4965 #define netdev_err_once(dev, fmt, ...) \
4966 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4967 #define netdev_warn_once(dev, fmt, ...) \
4968 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4969 #define netdev_notice_once(dev, fmt, ...) \
4970 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4971 #define netdev_info_once(dev, fmt, ...) \
4972 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4973 
4974 #define MODULE_ALIAS_NETDEV(device) \
4975 	MODULE_ALIAS("netdev-" device)
4976 
4977 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4978 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4979 #define netdev_dbg(__dev, format, args...)			\
4980 do {								\
4981 	dynamic_netdev_dbg(__dev, format, ##args);		\
4982 } while (0)
4983 #elif defined(DEBUG)
4984 #define netdev_dbg(__dev, format, args...)			\
4985 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4986 #else
4987 #define netdev_dbg(__dev, format, args...)			\
4988 ({								\
4989 	if (0)							\
4990 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4991 })
4992 #endif
4993 
4994 #if defined(VERBOSE_DEBUG)
4995 #define netdev_vdbg	netdev_dbg
4996 #else
4997 
4998 #define netdev_vdbg(dev, format, args...)			\
4999 ({								\
5000 	if (0)							\
5001 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5002 	0;							\
5003 })
5004 #endif
5005 
5006 /*
5007  * netdev_WARN() acts like dev_printk(), but with the key difference
5008  * of using a WARN/WARN_ON to get the message out, including the
5009  * file/line information and a backtrace.
5010  */
5011 #define netdev_WARN(dev, format, args...)			\
5012 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5013 	     netdev_reg_state(dev), ##args)
5014 
5015 #define netdev_WARN_ONCE(dev, format, args...)				\
5016 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5017 		  netdev_reg_state(dev), ##args)
5018 
5019 /* netif printk helpers, similar to netdev_printk */
5020 
5021 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5022 do {					  			\
5023 	if (netif_msg_##type(priv))				\
5024 		netdev_printk(level, (dev), fmt, ##args);	\
5025 } while (0)
5026 
5027 #define netif_level(level, priv, type, dev, fmt, args...)	\
5028 do {								\
5029 	if (netif_msg_##type(priv))				\
5030 		netdev_##level(dev, fmt, ##args);		\
5031 } while (0)
5032 
5033 #define netif_emerg(priv, type, dev, fmt, args...)		\
5034 	netif_level(emerg, priv, type, dev, fmt, ##args)
5035 #define netif_alert(priv, type, dev, fmt, args...)		\
5036 	netif_level(alert, priv, type, dev, fmt, ##args)
5037 #define netif_crit(priv, type, dev, fmt, args...)		\
5038 	netif_level(crit, priv, type, dev, fmt, ##args)
5039 #define netif_err(priv, type, dev, fmt, args...)		\
5040 	netif_level(err, priv, type, dev, fmt, ##args)
5041 #define netif_warn(priv, type, dev, fmt, args...)		\
5042 	netif_level(warn, priv, type, dev, fmt, ##args)
5043 #define netif_notice(priv, type, dev, fmt, args...)		\
5044 	netif_level(notice, priv, type, dev, fmt, ##args)
5045 #define netif_info(priv, type, dev, fmt, args...)		\
5046 	netif_level(info, priv, type, dev, fmt, ##args)
5047 
5048 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5049 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5050 #define netif_dbg(priv, type, netdev, format, args...)		\
5051 do {								\
5052 	if (netif_msg_##type(priv))				\
5053 		dynamic_netdev_dbg(netdev, format, ##args);	\
5054 } while (0)
5055 #elif defined(DEBUG)
5056 #define netif_dbg(priv, type, dev, format, args...)		\
5057 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5058 #else
5059 #define netif_dbg(priv, type, dev, format, args...)			\
5060 ({									\
5061 	if (0)								\
5062 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5063 	0;								\
5064 })
5065 #endif
5066 
5067 /* if @cond then downgrade to debug, else print at @level */
5068 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5069 	do {                                                              \
5070 		if (cond)                                                 \
5071 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5072 		else                                                      \
5073 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5074 	} while (0)
5075 
5076 #if defined(VERBOSE_DEBUG)
5077 #define netif_vdbg	netif_dbg
5078 #else
5079 #define netif_vdbg(priv, type, dev, format, args...)		\
5080 ({								\
5081 	if (0)							\
5082 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5083 	0;							\
5084 })
5085 #endif
5086 
5087 /*
5088  *	The list of packet types we will receive (as opposed to discard)
5089  *	and the routines to invoke.
5090  *
5091  *	Why 16. Because with 16 the only overlap we get on a hash of the
5092  *	low nibble of the protocol value is RARP/SNAP/X.25.
5093  *
5094  *		0800	IP
5095  *		0001	802.3
5096  *		0002	AX.25
5097  *		0004	802.2
5098  *		8035	RARP
5099  *		0005	SNAP
5100  *		0805	X.25
5101  *		0806	ARP
5102  *		8137	IPX
5103  *		0009	Localtalk
5104  *		86DD	IPv6
5105  */
5106 #define PTYPE_HASH_SIZE	(16)
5107 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5108 
5109 extern struct net_device *blackhole_netdev;
5110 
5111 #endif	/* _LINUX_NETDEVICE_H */
5112