1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 54 struct netpoll_info; 55 struct device; 56 struct phy_device; 57 /* 802.11 specific */ 58 struct wireless_dev; 59 60 void netdev_set_default_ethtool_ops(struct net_device *dev, 61 const struct ethtool_ops *ops); 62 63 /* Backlog congestion levels */ 64 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 65 #define NET_RX_DROP 1 /* packet dropped */ 66 67 /* 68 * Transmit return codes: transmit return codes originate from three different 69 * namespaces: 70 * 71 * - qdisc return codes 72 * - driver transmit return codes 73 * - errno values 74 * 75 * Drivers are allowed to return any one of those in their hard_start_xmit() 76 * function. Real network devices commonly used with qdiscs should only return 77 * the driver transmit return codes though - when qdiscs are used, the actual 78 * transmission happens asynchronously, so the value is not propagated to 79 * higher layers. Virtual network devices transmit synchronously, in this case 80 * the driver transmit return codes are consumed by dev_queue_xmit(), all 81 * others are propagated to higher layers. 82 */ 83 84 /* qdisc ->enqueue() return codes. */ 85 #define NET_XMIT_SUCCESS 0x00 86 #define NET_XMIT_DROP 0x01 /* skb dropped */ 87 #define NET_XMIT_CN 0x02 /* congestion notification */ 88 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 89 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 90 91 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 92 * indicates that the device will soon be dropping packets, or already drops 93 * some packets of the same priority; prompting us to send less aggressively. */ 94 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 95 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 96 97 /* Driver transmit return codes */ 98 #define NETDEV_TX_MASK 0xf0 99 100 enum netdev_tx { 101 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 102 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 103 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 104 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 105 }; 106 typedef enum netdev_tx netdev_tx_t; 107 108 /* 109 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 110 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 111 */ 112 static inline bool dev_xmit_complete(int rc) 113 { 114 /* 115 * Positive cases with an skb consumed by a driver: 116 * - successful transmission (rc == NETDEV_TX_OK) 117 * - error while transmitting (rc < 0) 118 * - error while queueing to a different device (rc & NET_XMIT_MASK) 119 */ 120 if (likely(rc < NET_XMIT_MASK)) 121 return true; 122 123 return false; 124 } 125 126 /* 127 * Compute the worst case header length according to the protocols 128 * used. 129 */ 130 131 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 132 # if defined(CONFIG_MAC80211_MESH) 133 # define LL_MAX_HEADER 128 134 # else 135 # define LL_MAX_HEADER 96 136 # endif 137 #else 138 # define LL_MAX_HEADER 32 139 #endif 140 141 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 142 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 143 #define MAX_HEADER LL_MAX_HEADER 144 #else 145 #define MAX_HEADER (LL_MAX_HEADER + 48) 146 #endif 147 148 /* 149 * Old network device statistics. Fields are native words 150 * (unsigned long) so they can be read and written atomically. 151 */ 152 153 struct net_device_stats { 154 unsigned long rx_packets; 155 unsigned long tx_packets; 156 unsigned long rx_bytes; 157 unsigned long tx_bytes; 158 unsigned long rx_errors; 159 unsigned long tx_errors; 160 unsigned long rx_dropped; 161 unsigned long tx_dropped; 162 unsigned long multicast; 163 unsigned long collisions; 164 unsigned long rx_length_errors; 165 unsigned long rx_over_errors; 166 unsigned long rx_crc_errors; 167 unsigned long rx_frame_errors; 168 unsigned long rx_fifo_errors; 169 unsigned long rx_missed_errors; 170 unsigned long tx_aborted_errors; 171 unsigned long tx_carrier_errors; 172 unsigned long tx_fifo_errors; 173 unsigned long tx_heartbeat_errors; 174 unsigned long tx_window_errors; 175 unsigned long rx_compressed; 176 unsigned long tx_compressed; 177 }; 178 179 180 #include <linux/cache.h> 181 #include <linux/skbuff.h> 182 183 #ifdef CONFIG_RPS 184 #include <linux/static_key.h> 185 extern struct static_key rps_needed; 186 #endif 187 188 struct neighbour; 189 struct neigh_parms; 190 struct sk_buff; 191 192 struct netdev_hw_addr { 193 struct list_head list; 194 unsigned char addr[MAX_ADDR_LEN]; 195 unsigned char type; 196 #define NETDEV_HW_ADDR_T_LAN 1 197 #define NETDEV_HW_ADDR_T_SAN 2 198 #define NETDEV_HW_ADDR_T_SLAVE 3 199 #define NETDEV_HW_ADDR_T_UNICAST 4 200 #define NETDEV_HW_ADDR_T_MULTICAST 5 201 bool global_use; 202 int sync_cnt; 203 int refcount; 204 int synced; 205 struct rcu_head rcu_head; 206 }; 207 208 struct netdev_hw_addr_list { 209 struct list_head list; 210 int count; 211 }; 212 213 #define netdev_hw_addr_list_count(l) ((l)->count) 214 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 215 #define netdev_hw_addr_list_for_each(ha, l) \ 216 list_for_each_entry(ha, &(l)->list, list) 217 218 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 219 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 220 #define netdev_for_each_uc_addr(ha, dev) \ 221 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 222 223 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 224 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 225 #define netdev_for_each_mc_addr(ha, dev) \ 226 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 227 228 struct hh_cache { 229 u16 hh_len; 230 u16 __pad; 231 seqlock_t hh_lock; 232 233 /* cached hardware header; allow for machine alignment needs. */ 234 #define HH_DATA_MOD 16 235 #define HH_DATA_OFF(__len) \ 236 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 237 #define HH_DATA_ALIGN(__len) \ 238 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 239 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 240 }; 241 242 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 243 * Alternative is: 244 * dev->hard_header_len ? (dev->hard_header_len + 245 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 246 * 247 * We could use other alignment values, but we must maintain the 248 * relationship HH alignment <= LL alignment. 249 */ 250 #define LL_RESERVED_SPACE(dev) \ 251 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 252 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 253 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 254 255 struct header_ops { 256 int (*create) (struct sk_buff *skb, struct net_device *dev, 257 unsigned short type, const void *daddr, 258 const void *saddr, unsigned int len); 259 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 260 int (*rebuild)(struct sk_buff *skb); 261 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 262 void (*cache_update)(struct hh_cache *hh, 263 const struct net_device *dev, 264 const unsigned char *haddr); 265 }; 266 267 /* These flag bits are private to the generic network queueing 268 * layer, they may not be explicitly referenced by any other 269 * code. 270 */ 271 272 enum netdev_state_t { 273 __LINK_STATE_START, 274 __LINK_STATE_PRESENT, 275 __LINK_STATE_NOCARRIER, 276 __LINK_STATE_LINKWATCH_PENDING, 277 __LINK_STATE_DORMANT, 278 }; 279 280 281 /* 282 * This structure holds at boot time configured netdevice settings. They 283 * are then used in the device probing. 284 */ 285 struct netdev_boot_setup { 286 char name[IFNAMSIZ]; 287 struct ifmap map; 288 }; 289 #define NETDEV_BOOT_SETUP_MAX 8 290 291 int __init netdev_boot_setup(char *str); 292 293 /* 294 * Structure for NAPI scheduling similar to tasklet but with weighting 295 */ 296 struct napi_struct { 297 /* The poll_list must only be managed by the entity which 298 * changes the state of the NAPI_STATE_SCHED bit. This means 299 * whoever atomically sets that bit can add this napi_struct 300 * to the per-cpu poll_list, and whoever clears that bit 301 * can remove from the list right before clearing the bit. 302 */ 303 struct list_head poll_list; 304 305 unsigned long state; 306 int weight; 307 unsigned int gro_count; 308 int (*poll)(struct napi_struct *, int); 309 #ifdef CONFIG_NETPOLL 310 spinlock_t poll_lock; 311 int poll_owner; 312 #endif 313 struct net_device *dev; 314 struct sk_buff *gro_list; 315 struct sk_buff *skb; 316 struct list_head dev_list; 317 struct hlist_node napi_hash_node; 318 unsigned int napi_id; 319 }; 320 321 enum { 322 NAPI_STATE_SCHED, /* Poll is scheduled */ 323 NAPI_STATE_DISABLE, /* Disable pending */ 324 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 325 NAPI_STATE_HASHED, /* In NAPI hash */ 326 }; 327 328 enum gro_result { 329 GRO_MERGED, 330 GRO_MERGED_FREE, 331 GRO_HELD, 332 GRO_NORMAL, 333 GRO_DROP, 334 }; 335 typedef enum gro_result gro_result_t; 336 337 /* 338 * enum rx_handler_result - Possible return values for rx_handlers. 339 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 340 * further. 341 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 342 * case skb->dev was changed by rx_handler. 343 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 344 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 345 * 346 * rx_handlers are functions called from inside __netif_receive_skb(), to do 347 * special processing of the skb, prior to delivery to protocol handlers. 348 * 349 * Currently, a net_device can only have a single rx_handler registered. Trying 350 * to register a second rx_handler will return -EBUSY. 351 * 352 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 353 * To unregister a rx_handler on a net_device, use 354 * netdev_rx_handler_unregister(). 355 * 356 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 357 * do with the skb. 358 * 359 * If the rx_handler consumed to skb in some way, it should return 360 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 361 * the skb to be delivered in some other ways. 362 * 363 * If the rx_handler changed skb->dev, to divert the skb to another 364 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 365 * new device will be called if it exists. 366 * 367 * If the rx_handler consider the skb should be ignored, it should return 368 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 369 * are registered on exact device (ptype->dev == skb->dev). 370 * 371 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 372 * delivered, it should return RX_HANDLER_PASS. 373 * 374 * A device without a registered rx_handler will behave as if rx_handler 375 * returned RX_HANDLER_PASS. 376 */ 377 378 enum rx_handler_result { 379 RX_HANDLER_CONSUMED, 380 RX_HANDLER_ANOTHER, 381 RX_HANDLER_EXACT, 382 RX_HANDLER_PASS, 383 }; 384 typedef enum rx_handler_result rx_handler_result_t; 385 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 386 387 void __napi_schedule(struct napi_struct *n); 388 389 static inline bool napi_disable_pending(struct napi_struct *n) 390 { 391 return test_bit(NAPI_STATE_DISABLE, &n->state); 392 } 393 394 /** 395 * napi_schedule_prep - check if napi can be scheduled 396 * @n: napi context 397 * 398 * Test if NAPI routine is already running, and if not mark 399 * it as running. This is used as a condition variable 400 * insure only one NAPI poll instance runs. We also make 401 * sure there is no pending NAPI disable. 402 */ 403 static inline bool napi_schedule_prep(struct napi_struct *n) 404 { 405 return !napi_disable_pending(n) && 406 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 407 } 408 409 /** 410 * napi_schedule - schedule NAPI poll 411 * @n: napi context 412 * 413 * Schedule NAPI poll routine to be called if it is not already 414 * running. 415 */ 416 static inline void napi_schedule(struct napi_struct *n) 417 { 418 if (napi_schedule_prep(n)) 419 __napi_schedule(n); 420 } 421 422 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 423 static inline bool napi_reschedule(struct napi_struct *napi) 424 { 425 if (napi_schedule_prep(napi)) { 426 __napi_schedule(napi); 427 return true; 428 } 429 return false; 430 } 431 432 /** 433 * napi_complete - NAPI processing complete 434 * @n: napi context 435 * 436 * Mark NAPI processing as complete. 437 */ 438 void __napi_complete(struct napi_struct *n); 439 void napi_complete(struct napi_struct *n); 440 441 /** 442 * napi_by_id - lookup a NAPI by napi_id 443 * @napi_id: hashed napi_id 444 * 445 * lookup @napi_id in napi_hash table 446 * must be called under rcu_read_lock() 447 */ 448 struct napi_struct *napi_by_id(unsigned int napi_id); 449 450 /** 451 * napi_hash_add - add a NAPI to global hashtable 452 * @napi: napi context 453 * 454 * generate a new napi_id and store a @napi under it in napi_hash 455 */ 456 void napi_hash_add(struct napi_struct *napi); 457 458 /** 459 * napi_hash_del - remove a NAPI from global table 460 * @napi: napi context 461 * 462 * Warning: caller must observe rcu grace period 463 * before freeing memory containing @napi 464 */ 465 void napi_hash_del(struct napi_struct *napi); 466 467 /** 468 * napi_disable - prevent NAPI from scheduling 469 * @n: napi context 470 * 471 * Stop NAPI from being scheduled on this context. 472 * Waits till any outstanding processing completes. 473 */ 474 static inline void napi_disable(struct napi_struct *n) 475 { 476 might_sleep(); 477 set_bit(NAPI_STATE_DISABLE, &n->state); 478 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 479 msleep(1); 480 clear_bit(NAPI_STATE_DISABLE, &n->state); 481 } 482 483 /** 484 * napi_enable - enable NAPI scheduling 485 * @n: napi context 486 * 487 * Resume NAPI from being scheduled on this context. 488 * Must be paired with napi_disable. 489 */ 490 static inline void napi_enable(struct napi_struct *n) 491 { 492 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 493 smp_mb__before_atomic(); 494 clear_bit(NAPI_STATE_SCHED, &n->state); 495 } 496 497 #ifdef CONFIG_SMP 498 /** 499 * napi_synchronize - wait until NAPI is not running 500 * @n: napi context 501 * 502 * Wait until NAPI is done being scheduled on this context. 503 * Waits till any outstanding processing completes but 504 * does not disable future activations. 505 */ 506 static inline void napi_synchronize(const struct napi_struct *n) 507 { 508 while (test_bit(NAPI_STATE_SCHED, &n->state)) 509 msleep(1); 510 } 511 #else 512 # define napi_synchronize(n) barrier() 513 #endif 514 515 enum netdev_queue_state_t { 516 __QUEUE_STATE_DRV_XOFF, 517 __QUEUE_STATE_STACK_XOFF, 518 __QUEUE_STATE_FROZEN, 519 }; 520 521 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 522 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 523 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 524 525 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 526 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 527 QUEUE_STATE_FROZEN) 528 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 529 QUEUE_STATE_FROZEN) 530 531 /* 532 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 533 * netif_tx_* functions below are used to manipulate this flag. The 534 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 535 * queue independently. The netif_xmit_*stopped functions below are called 536 * to check if the queue has been stopped by the driver or stack (either 537 * of the XOFF bits are set in the state). Drivers should not need to call 538 * netif_xmit*stopped functions, they should only be using netif_tx_*. 539 */ 540 541 struct netdev_queue { 542 /* 543 * read mostly part 544 */ 545 struct net_device *dev; 546 struct Qdisc *qdisc; 547 struct Qdisc *qdisc_sleeping; 548 #ifdef CONFIG_SYSFS 549 struct kobject kobj; 550 #endif 551 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 552 int numa_node; 553 #endif 554 /* 555 * write mostly part 556 */ 557 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 558 int xmit_lock_owner; 559 /* 560 * please use this field instead of dev->trans_start 561 */ 562 unsigned long trans_start; 563 564 /* 565 * Number of TX timeouts for this queue 566 * (/sys/class/net/DEV/Q/trans_timeout) 567 */ 568 unsigned long trans_timeout; 569 570 unsigned long state; 571 572 #ifdef CONFIG_BQL 573 struct dql dql; 574 #endif 575 } ____cacheline_aligned_in_smp; 576 577 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 578 { 579 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 580 return q->numa_node; 581 #else 582 return NUMA_NO_NODE; 583 #endif 584 } 585 586 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 587 { 588 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 589 q->numa_node = node; 590 #endif 591 } 592 593 #ifdef CONFIG_RPS 594 /* 595 * This structure holds an RPS map which can be of variable length. The 596 * map is an array of CPUs. 597 */ 598 struct rps_map { 599 unsigned int len; 600 struct rcu_head rcu; 601 u16 cpus[0]; 602 }; 603 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 604 605 /* 606 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 607 * tail pointer for that CPU's input queue at the time of last enqueue, and 608 * a hardware filter index. 609 */ 610 struct rps_dev_flow { 611 u16 cpu; 612 u16 filter; 613 unsigned int last_qtail; 614 }; 615 #define RPS_NO_FILTER 0xffff 616 617 /* 618 * The rps_dev_flow_table structure contains a table of flow mappings. 619 */ 620 struct rps_dev_flow_table { 621 unsigned int mask; 622 struct rcu_head rcu; 623 struct rps_dev_flow flows[0]; 624 }; 625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 626 ((_num) * sizeof(struct rps_dev_flow))) 627 628 /* 629 * The rps_sock_flow_table contains mappings of flows to the last CPU 630 * on which they were processed by the application (set in recvmsg). 631 */ 632 struct rps_sock_flow_table { 633 unsigned int mask; 634 u16 ents[0]; 635 }; 636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 637 ((_num) * sizeof(u16))) 638 639 #define RPS_NO_CPU 0xffff 640 641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 642 u32 hash) 643 { 644 if (table && hash) { 645 unsigned int cpu, index = hash & table->mask; 646 647 /* We only give a hint, preemption can change cpu under us */ 648 cpu = raw_smp_processor_id(); 649 650 if (table->ents[index] != cpu) 651 table->ents[index] = cpu; 652 } 653 } 654 655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 656 u32 hash) 657 { 658 if (table && hash) 659 table->ents[hash & table->mask] = RPS_NO_CPU; 660 } 661 662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 663 664 #ifdef CONFIG_RFS_ACCEL 665 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 666 u16 filter_id); 667 #endif 668 #endif /* CONFIG_RPS */ 669 670 /* This structure contains an instance of an RX queue. */ 671 struct netdev_rx_queue { 672 #ifdef CONFIG_RPS 673 struct rps_map __rcu *rps_map; 674 struct rps_dev_flow_table __rcu *rps_flow_table; 675 #endif 676 struct kobject kobj; 677 struct net_device *dev; 678 } ____cacheline_aligned_in_smp; 679 680 /* 681 * RX queue sysfs structures and functions. 682 */ 683 struct rx_queue_attribute { 684 struct attribute attr; 685 ssize_t (*show)(struct netdev_rx_queue *queue, 686 struct rx_queue_attribute *attr, char *buf); 687 ssize_t (*store)(struct netdev_rx_queue *queue, 688 struct rx_queue_attribute *attr, const char *buf, size_t len); 689 }; 690 691 #ifdef CONFIG_XPS 692 /* 693 * This structure holds an XPS map which can be of variable length. The 694 * map is an array of queues. 695 */ 696 struct xps_map { 697 unsigned int len; 698 unsigned int alloc_len; 699 struct rcu_head rcu; 700 u16 queues[0]; 701 }; 702 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 703 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 704 / sizeof(u16)) 705 706 /* 707 * This structure holds all XPS maps for device. Maps are indexed by CPU. 708 */ 709 struct xps_dev_maps { 710 struct rcu_head rcu; 711 struct xps_map __rcu *cpu_map[0]; 712 }; 713 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 714 (nr_cpu_ids * sizeof(struct xps_map *))) 715 #endif /* CONFIG_XPS */ 716 717 #define TC_MAX_QUEUE 16 718 #define TC_BITMASK 15 719 /* HW offloaded queuing disciplines txq count and offset maps */ 720 struct netdev_tc_txq { 721 u16 count; 722 u16 offset; 723 }; 724 725 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 726 /* 727 * This structure is to hold information about the device 728 * configured to run FCoE protocol stack. 729 */ 730 struct netdev_fcoe_hbainfo { 731 char manufacturer[64]; 732 char serial_number[64]; 733 char hardware_version[64]; 734 char driver_version[64]; 735 char optionrom_version[64]; 736 char firmware_version[64]; 737 char model[256]; 738 char model_description[256]; 739 }; 740 #endif 741 742 #define MAX_PHYS_PORT_ID_LEN 32 743 744 /* This structure holds a unique identifier to identify the 745 * physical port used by a netdevice. 746 */ 747 struct netdev_phys_port_id { 748 unsigned char id[MAX_PHYS_PORT_ID_LEN]; 749 unsigned char id_len; 750 }; 751 752 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 753 struct sk_buff *skb); 754 755 /* 756 * This structure defines the management hooks for network devices. 757 * The following hooks can be defined; unless noted otherwise, they are 758 * optional and can be filled with a null pointer. 759 * 760 * int (*ndo_init)(struct net_device *dev); 761 * This function is called once when network device is registered. 762 * The network device can use this to any late stage initializaton 763 * or semantic validattion. It can fail with an error code which will 764 * be propogated back to register_netdev 765 * 766 * void (*ndo_uninit)(struct net_device *dev); 767 * This function is called when device is unregistered or when registration 768 * fails. It is not called if init fails. 769 * 770 * int (*ndo_open)(struct net_device *dev); 771 * This function is called when network device transistions to the up 772 * state. 773 * 774 * int (*ndo_stop)(struct net_device *dev); 775 * This function is called when network device transistions to the down 776 * state. 777 * 778 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 779 * struct net_device *dev); 780 * Called when a packet needs to be transmitted. 781 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 782 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 783 * Required can not be NULL. 784 * 785 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 786 * void *accel_priv, select_queue_fallback_t fallback); 787 * Called to decide which queue to when device supports multiple 788 * transmit queues. 789 * 790 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 791 * This function is called to allow device receiver to make 792 * changes to configuration when multicast or promiscious is enabled. 793 * 794 * void (*ndo_set_rx_mode)(struct net_device *dev); 795 * This function is called device changes address list filtering. 796 * If driver handles unicast address filtering, it should set 797 * IFF_UNICAST_FLT to its priv_flags. 798 * 799 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 800 * This function is called when the Media Access Control address 801 * needs to be changed. If this interface is not defined, the 802 * mac address can not be changed. 803 * 804 * int (*ndo_validate_addr)(struct net_device *dev); 805 * Test if Media Access Control address is valid for the device. 806 * 807 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 808 * Called when a user request an ioctl which can't be handled by 809 * the generic interface code. If not defined ioctl's return 810 * not supported error code. 811 * 812 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 813 * Used to set network devices bus interface parameters. This interface 814 * is retained for legacy reason, new devices should use the bus 815 * interface (PCI) for low level management. 816 * 817 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 818 * Called when a user wants to change the Maximum Transfer Unit 819 * of a device. If not defined, any request to change MTU will 820 * will return an error. 821 * 822 * void (*ndo_tx_timeout)(struct net_device *dev); 823 * Callback uses when the transmitter has not made any progress 824 * for dev->watchdog ticks. 825 * 826 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 827 * struct rtnl_link_stats64 *storage); 828 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 829 * Called when a user wants to get the network device usage 830 * statistics. Drivers must do one of the following: 831 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 832 * rtnl_link_stats64 structure passed by the caller. 833 * 2. Define @ndo_get_stats to update a net_device_stats structure 834 * (which should normally be dev->stats) and return a pointer to 835 * it. The structure may be changed asynchronously only if each 836 * field is written atomically. 837 * 3. Update dev->stats asynchronously and atomically, and define 838 * neither operation. 839 * 840 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid); 841 * If device support VLAN filtering this function is called when a 842 * VLAN id is registered. 843 * 844 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 845 * If device support VLAN filtering this function is called when a 846 * VLAN id is unregistered. 847 * 848 * void (*ndo_poll_controller)(struct net_device *dev); 849 * 850 * SR-IOV management functions. 851 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 852 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 853 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 854 * int max_tx_rate); 855 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 856 * int (*ndo_get_vf_config)(struct net_device *dev, 857 * int vf, struct ifla_vf_info *ivf); 858 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 859 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 860 * struct nlattr *port[]); 861 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 862 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 863 * Called to setup 'tc' number of traffic classes in the net device. This 864 * is always called from the stack with the rtnl lock held and netif tx 865 * queues stopped. This allows the netdevice to perform queue management 866 * safely. 867 * 868 * Fiber Channel over Ethernet (FCoE) offload functions. 869 * int (*ndo_fcoe_enable)(struct net_device *dev); 870 * Called when the FCoE protocol stack wants to start using LLD for FCoE 871 * so the underlying device can perform whatever needed configuration or 872 * initialization to support acceleration of FCoE traffic. 873 * 874 * int (*ndo_fcoe_disable)(struct net_device *dev); 875 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 876 * so the underlying device can perform whatever needed clean-ups to 877 * stop supporting acceleration of FCoE traffic. 878 * 879 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 880 * struct scatterlist *sgl, unsigned int sgc); 881 * Called when the FCoE Initiator wants to initialize an I/O that 882 * is a possible candidate for Direct Data Placement (DDP). The LLD can 883 * perform necessary setup and returns 1 to indicate the device is set up 884 * successfully to perform DDP on this I/O, otherwise this returns 0. 885 * 886 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 887 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 888 * indicated by the FC exchange id 'xid', so the underlying device can 889 * clean up and reuse resources for later DDP requests. 890 * 891 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 892 * struct scatterlist *sgl, unsigned int sgc); 893 * Called when the FCoE Target wants to initialize an I/O that 894 * is a possible candidate for Direct Data Placement (DDP). The LLD can 895 * perform necessary setup and returns 1 to indicate the device is set up 896 * successfully to perform DDP on this I/O, otherwise this returns 0. 897 * 898 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 899 * struct netdev_fcoe_hbainfo *hbainfo); 900 * Called when the FCoE Protocol stack wants information on the underlying 901 * device. This information is utilized by the FCoE protocol stack to 902 * register attributes with Fiber Channel management service as per the 903 * FC-GS Fabric Device Management Information(FDMI) specification. 904 * 905 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 906 * Called when the underlying device wants to override default World Wide 907 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 908 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 909 * protocol stack to use. 910 * 911 * RFS acceleration. 912 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 913 * u16 rxq_index, u32 flow_id); 914 * Set hardware filter for RFS. rxq_index is the target queue index; 915 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 916 * Return the filter ID on success, or a negative error code. 917 * 918 * Slave management functions (for bridge, bonding, etc). 919 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 920 * Called to make another netdev an underling. 921 * 922 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 923 * Called to release previously enslaved netdev. 924 * 925 * Feature/offload setting functions. 926 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 927 * netdev_features_t features); 928 * Adjusts the requested feature flags according to device-specific 929 * constraints, and returns the resulting flags. Must not modify 930 * the device state. 931 * 932 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 933 * Called to update device configuration to new features. Passed 934 * feature set might be less than what was returned by ndo_fix_features()). 935 * Must return >0 or -errno if it changed dev->features itself. 936 * 937 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 938 * struct net_device *dev, 939 * const unsigned char *addr, u16 flags) 940 * Adds an FDB entry to dev for addr. 941 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 942 * struct net_device *dev, 943 * const unsigned char *addr) 944 * Deletes the FDB entry from dev coresponding to addr. 945 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 946 * struct net_device *dev, struct net_device *filter_dev, 947 * int idx) 948 * Used to add FDB entries to dump requests. Implementers should add 949 * entries to skb and update idx with the number of entries. 950 * 951 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 952 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 953 * struct net_device *dev, u32 filter_mask) 954 * 955 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 956 * Called to change device carrier. Soft-devices (like dummy, team, etc) 957 * which do not represent real hardware may define this to allow their 958 * userspace components to manage their virtual carrier state. Devices 959 * that determine carrier state from physical hardware properties (eg 960 * network cables) or protocol-dependent mechanisms (eg 961 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 962 * 963 * int (*ndo_get_phys_port_id)(struct net_device *dev, 964 * struct netdev_phys_port_id *ppid); 965 * Called to get ID of physical port of this device. If driver does 966 * not implement this, it is assumed that the hw is not able to have 967 * multiple net devices on single physical port. 968 * 969 * void (*ndo_add_vxlan_port)(struct net_device *dev, 970 * sa_family_t sa_family, __be16 port); 971 * Called by vxlan to notiy a driver about the UDP port and socket 972 * address family that vxlan is listnening to. It is called only when 973 * a new port starts listening. The operation is protected by the 974 * vxlan_net->sock_lock. 975 * 976 * void (*ndo_del_vxlan_port)(struct net_device *dev, 977 * sa_family_t sa_family, __be16 port); 978 * Called by vxlan to notify the driver about a UDP port and socket 979 * address family that vxlan is not listening to anymore. The operation 980 * is protected by the vxlan_net->sock_lock. 981 * 982 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 983 * struct net_device *dev) 984 * Called by upper layer devices to accelerate switching or other 985 * station functionality into hardware. 'pdev is the lowerdev 986 * to use for the offload and 'dev' is the net device that will 987 * back the offload. Returns a pointer to the private structure 988 * the upper layer will maintain. 989 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 990 * Called by upper layer device to delete the station created 991 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 992 * the station and priv is the structure returned by the add 993 * operation. 994 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 995 * struct net_device *dev, 996 * void *priv); 997 * Callback to use for xmit over the accelerated station. This 998 * is used in place of ndo_start_xmit on accelerated net 999 * devices. 1000 */ 1001 struct net_device_ops { 1002 int (*ndo_init)(struct net_device *dev); 1003 void (*ndo_uninit)(struct net_device *dev); 1004 int (*ndo_open)(struct net_device *dev); 1005 int (*ndo_stop)(struct net_device *dev); 1006 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1007 struct net_device *dev); 1008 u16 (*ndo_select_queue)(struct net_device *dev, 1009 struct sk_buff *skb, 1010 void *accel_priv, 1011 select_queue_fallback_t fallback); 1012 void (*ndo_change_rx_flags)(struct net_device *dev, 1013 int flags); 1014 void (*ndo_set_rx_mode)(struct net_device *dev); 1015 int (*ndo_set_mac_address)(struct net_device *dev, 1016 void *addr); 1017 int (*ndo_validate_addr)(struct net_device *dev); 1018 int (*ndo_do_ioctl)(struct net_device *dev, 1019 struct ifreq *ifr, int cmd); 1020 int (*ndo_set_config)(struct net_device *dev, 1021 struct ifmap *map); 1022 int (*ndo_change_mtu)(struct net_device *dev, 1023 int new_mtu); 1024 int (*ndo_neigh_setup)(struct net_device *dev, 1025 struct neigh_parms *); 1026 void (*ndo_tx_timeout) (struct net_device *dev); 1027 1028 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1029 struct rtnl_link_stats64 *storage); 1030 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1031 1032 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1033 __be16 proto, u16 vid); 1034 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1035 __be16 proto, u16 vid); 1036 #ifdef CONFIG_NET_POLL_CONTROLLER 1037 void (*ndo_poll_controller)(struct net_device *dev); 1038 int (*ndo_netpoll_setup)(struct net_device *dev, 1039 struct netpoll_info *info); 1040 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1041 #endif 1042 #ifdef CONFIG_NET_RX_BUSY_POLL 1043 int (*ndo_busy_poll)(struct napi_struct *dev); 1044 #endif 1045 int (*ndo_set_vf_mac)(struct net_device *dev, 1046 int queue, u8 *mac); 1047 int (*ndo_set_vf_vlan)(struct net_device *dev, 1048 int queue, u16 vlan, u8 qos); 1049 int (*ndo_set_vf_rate)(struct net_device *dev, 1050 int vf, int min_tx_rate, 1051 int max_tx_rate); 1052 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1053 int vf, bool setting); 1054 int (*ndo_get_vf_config)(struct net_device *dev, 1055 int vf, 1056 struct ifla_vf_info *ivf); 1057 int (*ndo_set_vf_link_state)(struct net_device *dev, 1058 int vf, int link_state); 1059 int (*ndo_set_vf_port)(struct net_device *dev, 1060 int vf, 1061 struct nlattr *port[]); 1062 int (*ndo_get_vf_port)(struct net_device *dev, 1063 int vf, struct sk_buff *skb); 1064 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1065 #if IS_ENABLED(CONFIG_FCOE) 1066 int (*ndo_fcoe_enable)(struct net_device *dev); 1067 int (*ndo_fcoe_disable)(struct net_device *dev); 1068 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1069 u16 xid, 1070 struct scatterlist *sgl, 1071 unsigned int sgc); 1072 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1073 u16 xid); 1074 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1075 u16 xid, 1076 struct scatterlist *sgl, 1077 unsigned int sgc); 1078 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1079 struct netdev_fcoe_hbainfo *hbainfo); 1080 #endif 1081 1082 #if IS_ENABLED(CONFIG_LIBFCOE) 1083 #define NETDEV_FCOE_WWNN 0 1084 #define NETDEV_FCOE_WWPN 1 1085 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1086 u64 *wwn, int type); 1087 #endif 1088 1089 #ifdef CONFIG_RFS_ACCEL 1090 int (*ndo_rx_flow_steer)(struct net_device *dev, 1091 const struct sk_buff *skb, 1092 u16 rxq_index, 1093 u32 flow_id); 1094 #endif 1095 int (*ndo_add_slave)(struct net_device *dev, 1096 struct net_device *slave_dev); 1097 int (*ndo_del_slave)(struct net_device *dev, 1098 struct net_device *slave_dev); 1099 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1100 netdev_features_t features); 1101 int (*ndo_set_features)(struct net_device *dev, 1102 netdev_features_t features); 1103 int (*ndo_neigh_construct)(struct neighbour *n); 1104 void (*ndo_neigh_destroy)(struct neighbour *n); 1105 1106 int (*ndo_fdb_add)(struct ndmsg *ndm, 1107 struct nlattr *tb[], 1108 struct net_device *dev, 1109 const unsigned char *addr, 1110 u16 flags); 1111 int (*ndo_fdb_del)(struct ndmsg *ndm, 1112 struct nlattr *tb[], 1113 struct net_device *dev, 1114 const unsigned char *addr); 1115 int (*ndo_fdb_dump)(struct sk_buff *skb, 1116 struct netlink_callback *cb, 1117 struct net_device *dev, 1118 struct net_device *filter_dev, 1119 int idx); 1120 1121 int (*ndo_bridge_setlink)(struct net_device *dev, 1122 struct nlmsghdr *nlh); 1123 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1124 u32 pid, u32 seq, 1125 struct net_device *dev, 1126 u32 filter_mask); 1127 int (*ndo_bridge_dellink)(struct net_device *dev, 1128 struct nlmsghdr *nlh); 1129 int (*ndo_change_carrier)(struct net_device *dev, 1130 bool new_carrier); 1131 int (*ndo_get_phys_port_id)(struct net_device *dev, 1132 struct netdev_phys_port_id *ppid); 1133 void (*ndo_add_vxlan_port)(struct net_device *dev, 1134 sa_family_t sa_family, 1135 __be16 port); 1136 void (*ndo_del_vxlan_port)(struct net_device *dev, 1137 sa_family_t sa_family, 1138 __be16 port); 1139 1140 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1141 struct net_device *dev); 1142 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1143 void *priv); 1144 1145 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1146 struct net_device *dev, 1147 void *priv); 1148 int (*ndo_get_lock_subclass)(struct net_device *dev); 1149 }; 1150 1151 /** 1152 * enum net_device_priv_flags - &struct net_device priv_flags 1153 * 1154 * These are the &struct net_device, they are only set internally 1155 * by drivers and used in the kernel. These flags are invisible to 1156 * userspace, this means that the order of these flags can change 1157 * during any kernel release. 1158 * 1159 * You should have a pretty good reason to be extending these flags. 1160 * 1161 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1162 * @IFF_EBRIDGE: Ethernet bridging device 1163 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1164 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1165 * @IFF_MASTER_ALB: bonding master, balance-alb 1166 * @IFF_BONDING: bonding master or slave 1167 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1168 * @IFF_ISATAP: ISATAP interface (RFC4214) 1169 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1170 * @IFF_WAN_HDLC: WAN HDLC device 1171 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1172 * release skb->dst 1173 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1174 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1175 * @IFF_MACVLAN_PORT: device used as macvlan port 1176 * @IFF_BRIDGE_PORT: device used as bridge port 1177 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1178 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1179 * @IFF_UNICAST_FLT: Supports unicast filtering 1180 * @IFF_TEAM_PORT: device used as team port 1181 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1182 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1183 * change when it's running 1184 * @IFF_MACVLAN: Macvlan device 1185 */ 1186 enum netdev_priv_flags { 1187 IFF_802_1Q_VLAN = 1<<0, 1188 IFF_EBRIDGE = 1<<1, 1189 IFF_SLAVE_INACTIVE = 1<<2, 1190 IFF_MASTER_8023AD = 1<<3, 1191 IFF_MASTER_ALB = 1<<4, 1192 IFF_BONDING = 1<<5, 1193 IFF_SLAVE_NEEDARP = 1<<6, 1194 IFF_ISATAP = 1<<7, 1195 IFF_MASTER_ARPMON = 1<<8, 1196 IFF_WAN_HDLC = 1<<9, 1197 IFF_XMIT_DST_RELEASE = 1<<10, 1198 IFF_DONT_BRIDGE = 1<<11, 1199 IFF_DISABLE_NETPOLL = 1<<12, 1200 IFF_MACVLAN_PORT = 1<<13, 1201 IFF_BRIDGE_PORT = 1<<14, 1202 IFF_OVS_DATAPATH = 1<<15, 1203 IFF_TX_SKB_SHARING = 1<<16, 1204 IFF_UNICAST_FLT = 1<<17, 1205 IFF_TEAM_PORT = 1<<18, 1206 IFF_SUPP_NOFCS = 1<<19, 1207 IFF_LIVE_ADDR_CHANGE = 1<<20, 1208 IFF_MACVLAN = 1<<21, 1209 }; 1210 1211 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1212 #define IFF_EBRIDGE IFF_EBRIDGE 1213 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1214 #define IFF_MASTER_8023AD IFF_MASTER_8023AD 1215 #define IFF_MASTER_ALB IFF_MASTER_ALB 1216 #define IFF_BONDING IFF_BONDING 1217 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1218 #define IFF_ISATAP IFF_ISATAP 1219 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1220 #define IFF_WAN_HDLC IFF_WAN_HDLC 1221 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1222 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1223 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1224 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1225 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1226 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1227 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1228 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1229 #define IFF_TEAM_PORT IFF_TEAM_PORT 1230 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1231 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1232 #define IFF_MACVLAN IFF_MACVLAN 1233 1234 /** 1235 * struct net_device - The DEVICE structure. 1236 * Actually, this whole structure is a big mistake. It mixes I/O 1237 * data with strictly "high-level" data, and it has to know about 1238 * almost every data structure used in the INET module. 1239 * 1240 * @name: This is the first field of the "visible" part of this structure 1241 * (i.e. as seen by users in the "Space.c" file). It is the name 1242 * of the interface. 1243 * 1244 * @name_hlist: Device name hash chain, please keep it close to name[] 1245 * @ifalias: SNMP alias 1246 * @mem_end: Shared memory end 1247 * @mem_start: Shared memory start 1248 * @base_addr: Device I/O address 1249 * @irq: Device IRQ number 1250 * 1251 * @state: Generic network queuing layer state, see netdev_state_t 1252 * @dev_list: The global list of network devices 1253 * @napi_list: List entry, that is used for polling napi devices 1254 * @unreg_list: List entry, that is used, when we are unregistering the 1255 * device, see the function unregister_netdev 1256 * @close_list: List entry, that is used, when we are closing the device 1257 * 1258 * @adj_list: Directly linked devices, like slaves for bonding 1259 * @all_adj_list: All linked devices, *including* neighbours 1260 * @features: Currently active device features 1261 * @hw_features: User-changeable features 1262 * 1263 * @wanted_features: User-requested features 1264 * @vlan_features: Mask of features inheritable by VLAN devices 1265 * 1266 * @hw_enc_features: Mask of features inherited by encapsulating devices 1267 * This field indicates what encapsulation 1268 * offloads the hardware is capable of doing, 1269 * and drivers will need to set them appropriately. 1270 * 1271 * @mpls_features: Mask of features inheritable by MPLS 1272 * 1273 * @ifindex: interface index 1274 * @iflink: unique device identifier 1275 * 1276 * @stats: Statistics struct, which was left as a legacy, use 1277 * rtnl_link_stats64 instead 1278 * 1279 * @rx_dropped: Dropped packets by core network, 1280 * do not use this in drivers 1281 * @tx_dropped: Dropped packets by core network, 1282 * do not use this in drivers 1283 * 1284 * @carrier_changes: Stats to monitor carrier on<->off transitions 1285 * 1286 * @wireless_handlers: List of functions to handle Wireless Extensions, 1287 * instead of ioctl, 1288 * see <net/iw_handler.h> for details. 1289 * @wireless_data: Instance data managed by the core of wireless extensions 1290 * 1291 * @netdev_ops: Includes several pointers to callbacks, 1292 * if one wants to override the ndo_*() functions 1293 * @ethtool_ops: Management operations 1294 * @fwd_ops: Management operations 1295 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc 1296 * of Layer 2 headers. 1297 * 1298 * @flags: Interface flags (a la BSD) 1299 * @priv_flags: Like 'flags' but invisible to userspace, 1300 * see if.h for the definitions 1301 * @gflags: Global flags ( kept as legacy ) 1302 * @padded: How much padding added by alloc_netdev() 1303 * @operstate: RFC2863 operstate 1304 * @link_mode: Mapping policy to operstate 1305 * @if_port: Selectable AUI, TP, ... 1306 * @dma: DMA channel 1307 * @mtu: Interface MTU value 1308 * @type: Interface hardware type 1309 * @hard_header_len: Hardware header length 1310 * 1311 * @needed_headroom: Extra headroom the hardware may need, but not in all 1312 * cases can this be guaranteed 1313 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1314 * cases can this be guaranteed. Some cases also use 1315 * LL_MAX_HEADER instead to allocate the skb 1316 * 1317 * interface address info: 1318 * 1319 * @perm_addr: Permanent hw address 1320 * @addr_assign_type: Hw address assignment type 1321 * @addr_len: Hardware address length 1322 * @neigh_priv_len; Used in neigh_alloc(), 1323 * initialized only in atm/clip.c 1324 * @dev_id: Used to differentiate devices that share 1325 * the same link layer address 1326 * @dev_port: Used to differentiate devices that share 1327 * the same function 1328 * @addr_list_lock: XXX: need comments on this one 1329 * @uc: unicast mac addresses 1330 * @mc: multicast mac addresses 1331 * @dev_addrs: list of device hw addresses 1332 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1333 * @uc_promisc: Counter, that indicates, that promiscuous mode 1334 * has been enabled due to the need to listen to 1335 * additional unicast addresses in a device that 1336 * does not implement ndo_set_rx_mode() 1337 * @promiscuity: Number of times, the NIC is told to work in 1338 * Promiscuous mode, if it becomes 0 the NIC will 1339 * exit from working in Promiscuous mode 1340 * @allmulti: Counter, enables or disables allmulticast mode 1341 * 1342 * @vlan_info: VLAN info 1343 * @dsa_ptr: dsa specific data 1344 * @tipc_ptr: TIPC specific data 1345 * @atalk_ptr: AppleTalk link 1346 * @ip_ptr: IPv4 specific data 1347 * @dn_ptr: DECnet specific data 1348 * @ip6_ptr: IPv6 specific data 1349 * @ax25_ptr: AX.25 specific data 1350 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1351 * 1352 * @last_rx: Time of last Rx 1353 * @dev_addr: Hw address (before bcast, 1354 * because most packets are unicast) 1355 * 1356 * @_rx: Array of RX queues 1357 * @num_rx_queues: Number of RX queues 1358 * allocated at register_netdev() time 1359 * @real_num_rx_queues: Number of RX queues currently active in device 1360 * 1361 * @rx_handler: handler for received packets 1362 * @rx_handler_data: XXX: need comments on this one 1363 * @ingress_queue: XXX: need comments on this one 1364 * @broadcast: hw bcast address 1365 * 1366 * @_tx: Array of TX queues 1367 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1368 * @real_num_tx_queues: Number of TX queues currently active in device 1369 * @qdisc: Root qdisc from userspace point of view 1370 * @tx_queue_len: Max frames per queue allowed 1371 * @tx_global_lock: XXX: need comments on this one 1372 * 1373 * @xps_maps: XXX: need comments on this one 1374 * 1375 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1376 * indexed by RX queue number. Assigned by driver. 1377 * This must only be set if the ndo_rx_flow_steer 1378 * operation is defined 1379 * 1380 * @trans_start: Time (in jiffies) of last Tx 1381 * @watchdog_timeo: Represents the timeout that is used by 1382 * the watchdog ( see dev_watchdog() ) 1383 * @watchdog_timer: List of timers 1384 * 1385 * @pcpu_refcnt: Number of references to this device 1386 * @todo_list: Delayed register/unregister 1387 * @index_hlist: Device index hash chain 1388 * @link_watch_list: XXX: need comments on this one 1389 * 1390 * @reg_state: Register/unregister state machine 1391 * @dismantle: Device is going to be freed 1392 * @rtnl_link_state: This enum represents the phases of creating 1393 * a new link 1394 * 1395 * @destructor: Called from unregister, 1396 * can be used to call free_netdev 1397 * @npinfo: XXX: need comments on this one 1398 * @nd_net: Network namespace this network device is inside 1399 * 1400 * @ml_priv: Mid-layer private 1401 * @lstats: Loopback statistics 1402 * @tstats: Tunnel statistics 1403 * @dstats: Dummy statistics 1404 * @vstats: Virtual ethernet statistics 1405 * 1406 * @garp_port: GARP 1407 * @mrp_port: MRP 1408 * 1409 * @dev: Class/net/name entry 1410 * @sysfs_groups: Space for optional device, statistics and wireless 1411 * sysfs groups 1412 * 1413 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1414 * @rtnl_link_ops: Rtnl_link_ops 1415 * 1416 * @gso_max_size: Maximum size of generic segmentation offload 1417 * @gso_max_segs: Maximum number of segments that can be passed to the 1418 * NIC for GSO 1419 * 1420 * @dcbnl_ops: Data Center Bridging netlink ops 1421 * @num_tc: Number of traffic classes in the net device 1422 * @tc_to_txq: XXX: need comments on this one 1423 * @prio_tc_map XXX: need comments on this one 1424 * 1425 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1426 * 1427 * @priomap: XXX: need comments on this one 1428 * @phydev: Physical device may attach itself 1429 * for hardware timestamping 1430 * 1431 * @qdisc_tx_busylock: XXX: need comments on this one 1432 * 1433 * @group: The group, that the device belongs to 1434 * @pm_qos_req: Power Management QoS object 1435 * 1436 * FIXME: cleanup struct net_device such that network protocol info 1437 * moves out. 1438 */ 1439 1440 struct net_device { 1441 char name[IFNAMSIZ]; 1442 struct hlist_node name_hlist; 1443 char *ifalias; 1444 /* 1445 * I/O specific fields 1446 * FIXME: Merge these and struct ifmap into one 1447 */ 1448 unsigned long mem_end; 1449 unsigned long mem_start; 1450 unsigned long base_addr; 1451 int irq; 1452 1453 /* 1454 * Some hardware also needs these fields (state,dev_list, 1455 * napi_list,unreg_list,close_list) but they are not 1456 * part of the usual set specified in Space.c. 1457 */ 1458 1459 unsigned long state; 1460 1461 struct list_head dev_list; 1462 struct list_head napi_list; 1463 struct list_head unreg_list; 1464 struct list_head close_list; 1465 1466 struct { 1467 struct list_head upper; 1468 struct list_head lower; 1469 } adj_list; 1470 1471 struct { 1472 struct list_head upper; 1473 struct list_head lower; 1474 } all_adj_list; 1475 1476 netdev_features_t features; 1477 netdev_features_t hw_features; 1478 netdev_features_t wanted_features; 1479 netdev_features_t vlan_features; 1480 netdev_features_t hw_enc_features; 1481 netdev_features_t mpls_features; 1482 1483 int ifindex; 1484 int iflink; 1485 1486 struct net_device_stats stats; 1487 1488 atomic_long_t rx_dropped; 1489 atomic_long_t tx_dropped; 1490 1491 atomic_t carrier_changes; 1492 1493 #ifdef CONFIG_WIRELESS_EXT 1494 const struct iw_handler_def * wireless_handlers; 1495 struct iw_public_data * wireless_data; 1496 #endif 1497 const struct net_device_ops *netdev_ops; 1498 const struct ethtool_ops *ethtool_ops; 1499 const struct forwarding_accel_ops *fwd_ops; 1500 1501 const struct header_ops *header_ops; 1502 1503 unsigned int flags; 1504 unsigned int priv_flags; 1505 1506 unsigned short gflags; 1507 unsigned short padded; 1508 1509 unsigned char operstate; 1510 unsigned char link_mode; 1511 1512 unsigned char if_port; 1513 unsigned char dma; 1514 1515 unsigned int mtu; 1516 unsigned short type; 1517 unsigned short hard_header_len; 1518 1519 unsigned short needed_headroom; 1520 unsigned short needed_tailroom; 1521 1522 /* Interface address info. */ 1523 unsigned char perm_addr[MAX_ADDR_LEN]; 1524 unsigned char addr_assign_type; 1525 unsigned char addr_len; 1526 unsigned short neigh_priv_len; 1527 unsigned short dev_id; 1528 unsigned short dev_port; 1529 spinlock_t addr_list_lock; 1530 struct netdev_hw_addr_list uc; 1531 struct netdev_hw_addr_list mc; 1532 struct netdev_hw_addr_list dev_addrs; 1533 1534 #ifdef CONFIG_SYSFS 1535 struct kset *queues_kset; 1536 #endif 1537 1538 unsigned char name_assign_type; 1539 1540 bool uc_promisc; 1541 unsigned int promiscuity; 1542 unsigned int allmulti; 1543 1544 1545 /* Protocol specific pointers */ 1546 1547 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1548 struct vlan_info __rcu *vlan_info; 1549 #endif 1550 #if IS_ENABLED(CONFIG_NET_DSA) 1551 struct dsa_switch_tree *dsa_ptr; 1552 #endif 1553 #if IS_ENABLED(CONFIG_TIPC) 1554 struct tipc_bearer __rcu *tipc_ptr; 1555 #endif 1556 void *atalk_ptr; 1557 struct in_device __rcu *ip_ptr; 1558 struct dn_dev __rcu *dn_ptr; 1559 struct inet6_dev __rcu *ip6_ptr; 1560 void *ax25_ptr; 1561 struct wireless_dev *ieee80211_ptr; 1562 1563 /* 1564 * Cache lines mostly used on receive path (including eth_type_trans()) 1565 */ 1566 unsigned long last_rx; 1567 1568 /* Interface address info used in eth_type_trans() */ 1569 unsigned char *dev_addr; 1570 1571 1572 #ifdef CONFIG_SYSFS 1573 struct netdev_rx_queue *_rx; 1574 1575 unsigned int num_rx_queues; 1576 unsigned int real_num_rx_queues; 1577 1578 #endif 1579 1580 rx_handler_func_t __rcu *rx_handler; 1581 void __rcu *rx_handler_data; 1582 1583 struct netdev_queue __rcu *ingress_queue; 1584 unsigned char broadcast[MAX_ADDR_LEN]; 1585 1586 1587 /* 1588 * Cache lines mostly used on transmit path 1589 */ 1590 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1591 unsigned int num_tx_queues; 1592 unsigned int real_num_tx_queues; 1593 struct Qdisc *qdisc; 1594 unsigned long tx_queue_len; 1595 spinlock_t tx_global_lock; 1596 1597 #ifdef CONFIG_XPS 1598 struct xps_dev_maps __rcu *xps_maps; 1599 #endif 1600 #ifdef CONFIG_RFS_ACCEL 1601 struct cpu_rmap *rx_cpu_rmap; 1602 #endif 1603 1604 /* These may be needed for future network-power-down code. */ 1605 1606 /* 1607 * trans_start here is expensive for high speed devices on SMP, 1608 * please use netdev_queue->trans_start instead. 1609 */ 1610 unsigned long trans_start; 1611 1612 int watchdog_timeo; 1613 struct timer_list watchdog_timer; 1614 1615 int __percpu *pcpu_refcnt; 1616 struct list_head todo_list; 1617 1618 struct hlist_node index_hlist; 1619 struct list_head link_watch_list; 1620 1621 enum { NETREG_UNINITIALIZED=0, 1622 NETREG_REGISTERED, /* completed register_netdevice */ 1623 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1624 NETREG_UNREGISTERED, /* completed unregister todo */ 1625 NETREG_RELEASED, /* called free_netdev */ 1626 NETREG_DUMMY, /* dummy device for NAPI poll */ 1627 } reg_state:8; 1628 1629 bool dismantle; 1630 1631 enum { 1632 RTNL_LINK_INITIALIZED, 1633 RTNL_LINK_INITIALIZING, 1634 } rtnl_link_state:16; 1635 1636 void (*destructor)(struct net_device *dev); 1637 1638 #ifdef CONFIG_NETPOLL 1639 struct netpoll_info __rcu *npinfo; 1640 #endif 1641 1642 #ifdef CONFIG_NET_NS 1643 struct net *nd_net; 1644 #endif 1645 1646 /* mid-layer private */ 1647 union { 1648 void *ml_priv; 1649 struct pcpu_lstats __percpu *lstats; 1650 struct pcpu_sw_netstats __percpu *tstats; 1651 struct pcpu_dstats __percpu *dstats; 1652 struct pcpu_vstats __percpu *vstats; 1653 }; 1654 1655 struct garp_port __rcu *garp_port; 1656 struct mrp_port __rcu *mrp_port; 1657 1658 struct device dev; 1659 const struct attribute_group *sysfs_groups[4]; 1660 const struct attribute_group *sysfs_rx_queue_group; 1661 1662 const struct rtnl_link_ops *rtnl_link_ops; 1663 1664 /* for setting kernel sock attribute on TCP connection setup */ 1665 #define GSO_MAX_SIZE 65536 1666 unsigned int gso_max_size; 1667 #define GSO_MAX_SEGS 65535 1668 u16 gso_max_segs; 1669 1670 #ifdef CONFIG_DCB 1671 const struct dcbnl_rtnl_ops *dcbnl_ops; 1672 #endif 1673 u8 num_tc; 1674 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1675 u8 prio_tc_map[TC_BITMASK + 1]; 1676 1677 #if IS_ENABLED(CONFIG_FCOE) 1678 unsigned int fcoe_ddp_xid; 1679 #endif 1680 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1681 struct netprio_map __rcu *priomap; 1682 #endif 1683 struct phy_device *phydev; 1684 struct lock_class_key *qdisc_tx_busylock; 1685 int group; 1686 struct pm_qos_request pm_qos_req; 1687 }; 1688 #define to_net_dev(d) container_of(d, struct net_device, dev) 1689 1690 #define NETDEV_ALIGN 32 1691 1692 static inline 1693 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1694 { 1695 return dev->prio_tc_map[prio & TC_BITMASK]; 1696 } 1697 1698 static inline 1699 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1700 { 1701 if (tc >= dev->num_tc) 1702 return -EINVAL; 1703 1704 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1705 return 0; 1706 } 1707 1708 static inline 1709 void netdev_reset_tc(struct net_device *dev) 1710 { 1711 dev->num_tc = 0; 1712 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1713 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1714 } 1715 1716 static inline 1717 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1718 { 1719 if (tc >= dev->num_tc) 1720 return -EINVAL; 1721 1722 dev->tc_to_txq[tc].count = count; 1723 dev->tc_to_txq[tc].offset = offset; 1724 return 0; 1725 } 1726 1727 static inline 1728 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1729 { 1730 if (num_tc > TC_MAX_QUEUE) 1731 return -EINVAL; 1732 1733 dev->num_tc = num_tc; 1734 return 0; 1735 } 1736 1737 static inline 1738 int netdev_get_num_tc(struct net_device *dev) 1739 { 1740 return dev->num_tc; 1741 } 1742 1743 static inline 1744 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1745 unsigned int index) 1746 { 1747 return &dev->_tx[index]; 1748 } 1749 1750 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1751 void (*f)(struct net_device *, 1752 struct netdev_queue *, 1753 void *), 1754 void *arg) 1755 { 1756 unsigned int i; 1757 1758 for (i = 0; i < dev->num_tx_queues; i++) 1759 f(dev, &dev->_tx[i], arg); 1760 } 1761 1762 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1763 struct sk_buff *skb, 1764 void *accel_priv); 1765 1766 /* 1767 * Net namespace inlines 1768 */ 1769 static inline 1770 struct net *dev_net(const struct net_device *dev) 1771 { 1772 return read_pnet(&dev->nd_net); 1773 } 1774 1775 static inline 1776 void dev_net_set(struct net_device *dev, struct net *net) 1777 { 1778 #ifdef CONFIG_NET_NS 1779 release_net(dev->nd_net); 1780 dev->nd_net = hold_net(net); 1781 #endif 1782 } 1783 1784 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1785 { 1786 #ifdef CONFIG_NET_DSA_TAG_DSA 1787 if (dev->dsa_ptr != NULL) 1788 return dsa_uses_dsa_tags(dev->dsa_ptr); 1789 #endif 1790 1791 return 0; 1792 } 1793 1794 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1795 { 1796 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1797 if (dev->dsa_ptr != NULL) 1798 return dsa_uses_trailer_tags(dev->dsa_ptr); 1799 #endif 1800 1801 return 0; 1802 } 1803 1804 /** 1805 * netdev_priv - access network device private data 1806 * @dev: network device 1807 * 1808 * Get network device private data 1809 */ 1810 static inline void *netdev_priv(const struct net_device *dev) 1811 { 1812 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1813 } 1814 1815 /* Set the sysfs physical device reference for the network logical device 1816 * if set prior to registration will cause a symlink during initialization. 1817 */ 1818 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1819 1820 /* Set the sysfs device type for the network logical device to allow 1821 * fine-grained identification of different network device types. For 1822 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1823 */ 1824 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1825 1826 /* Default NAPI poll() weight 1827 * Device drivers are strongly advised to not use bigger value 1828 */ 1829 #define NAPI_POLL_WEIGHT 64 1830 1831 /** 1832 * netif_napi_add - initialize a napi context 1833 * @dev: network device 1834 * @napi: napi context 1835 * @poll: polling function 1836 * @weight: default weight 1837 * 1838 * netif_napi_add() must be used to initialize a napi context prior to calling 1839 * *any* of the other napi related functions. 1840 */ 1841 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1842 int (*poll)(struct napi_struct *, int), int weight); 1843 1844 /** 1845 * netif_napi_del - remove a napi context 1846 * @napi: napi context 1847 * 1848 * netif_napi_del() removes a napi context from the network device napi list 1849 */ 1850 void netif_napi_del(struct napi_struct *napi); 1851 1852 struct napi_gro_cb { 1853 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1854 void *frag0; 1855 1856 /* Length of frag0. */ 1857 unsigned int frag0_len; 1858 1859 /* This indicates where we are processing relative to skb->data. */ 1860 int data_offset; 1861 1862 /* This is non-zero if the packet cannot be merged with the new skb. */ 1863 u16 flush; 1864 1865 /* Save the IP ID here and check when we get to the transport layer */ 1866 u16 flush_id; 1867 1868 /* Number of segments aggregated. */ 1869 u16 count; 1870 1871 /* This is non-zero if the packet may be of the same flow. */ 1872 u8 same_flow; 1873 1874 /* Free the skb? */ 1875 u8 free; 1876 #define NAPI_GRO_FREE 1 1877 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1878 1879 /* jiffies when first packet was created/queued */ 1880 unsigned long age; 1881 1882 /* Used in ipv6_gro_receive() */ 1883 u16 proto; 1884 1885 /* Used in udp_gro_receive */ 1886 u16 udp_mark; 1887 1888 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1889 __wsum csum; 1890 1891 /* used in skb_gro_receive() slow path */ 1892 struct sk_buff *last; 1893 }; 1894 1895 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1896 1897 struct packet_type { 1898 __be16 type; /* This is really htons(ether_type). */ 1899 struct net_device *dev; /* NULL is wildcarded here */ 1900 int (*func) (struct sk_buff *, 1901 struct net_device *, 1902 struct packet_type *, 1903 struct net_device *); 1904 bool (*id_match)(struct packet_type *ptype, 1905 struct sock *sk); 1906 void *af_packet_priv; 1907 struct list_head list; 1908 }; 1909 1910 struct offload_callbacks { 1911 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1912 netdev_features_t features); 1913 int (*gso_send_check)(struct sk_buff *skb); 1914 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1915 struct sk_buff *skb); 1916 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1917 }; 1918 1919 struct packet_offload { 1920 __be16 type; /* This is really htons(ether_type). */ 1921 struct offload_callbacks callbacks; 1922 struct list_head list; 1923 }; 1924 1925 struct udp_offload { 1926 __be16 port; 1927 struct offload_callbacks callbacks; 1928 }; 1929 1930 /* often modified stats are per cpu, other are shared (netdev->stats) */ 1931 struct pcpu_sw_netstats { 1932 u64 rx_packets; 1933 u64 rx_bytes; 1934 u64 tx_packets; 1935 u64 tx_bytes; 1936 struct u64_stats_sync syncp; 1937 }; 1938 1939 #define netdev_alloc_pcpu_stats(type) \ 1940 ({ \ 1941 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 1942 if (pcpu_stats) { \ 1943 int i; \ 1944 for_each_possible_cpu(i) { \ 1945 typeof(type) *stat; \ 1946 stat = per_cpu_ptr(pcpu_stats, i); \ 1947 u64_stats_init(&stat->syncp); \ 1948 } \ 1949 } \ 1950 pcpu_stats; \ 1951 }) 1952 1953 #include <linux/notifier.h> 1954 1955 /* netdevice notifier chain. Please remember to update the rtnetlink 1956 * notification exclusion list in rtnetlink_event() when adding new 1957 * types. 1958 */ 1959 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1960 #define NETDEV_DOWN 0x0002 1961 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1962 detected a hardware crash and restarted 1963 - we can use this eg to kick tcp sessions 1964 once done */ 1965 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1966 #define NETDEV_REGISTER 0x0005 1967 #define NETDEV_UNREGISTER 0x0006 1968 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 1969 #define NETDEV_CHANGEADDR 0x0008 1970 #define NETDEV_GOING_DOWN 0x0009 1971 #define NETDEV_CHANGENAME 0x000A 1972 #define NETDEV_FEAT_CHANGE 0x000B 1973 #define NETDEV_BONDING_FAILOVER 0x000C 1974 #define NETDEV_PRE_UP 0x000D 1975 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1976 #define NETDEV_POST_TYPE_CHANGE 0x000F 1977 #define NETDEV_POST_INIT 0x0010 1978 #define NETDEV_UNREGISTER_FINAL 0x0011 1979 #define NETDEV_RELEASE 0x0012 1980 #define NETDEV_NOTIFY_PEERS 0x0013 1981 #define NETDEV_JOIN 0x0014 1982 #define NETDEV_CHANGEUPPER 0x0015 1983 #define NETDEV_RESEND_IGMP 0x0016 1984 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 1985 1986 int register_netdevice_notifier(struct notifier_block *nb); 1987 int unregister_netdevice_notifier(struct notifier_block *nb); 1988 1989 struct netdev_notifier_info { 1990 struct net_device *dev; 1991 }; 1992 1993 struct netdev_notifier_change_info { 1994 struct netdev_notifier_info info; /* must be first */ 1995 unsigned int flags_changed; 1996 }; 1997 1998 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 1999 struct net_device *dev) 2000 { 2001 info->dev = dev; 2002 } 2003 2004 static inline struct net_device * 2005 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2006 { 2007 return info->dev; 2008 } 2009 2010 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2011 2012 2013 extern rwlock_t dev_base_lock; /* Device list lock */ 2014 2015 #define for_each_netdev(net, d) \ 2016 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2017 #define for_each_netdev_reverse(net, d) \ 2018 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2019 #define for_each_netdev_rcu(net, d) \ 2020 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2021 #define for_each_netdev_safe(net, d, n) \ 2022 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2023 #define for_each_netdev_continue(net, d) \ 2024 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2025 #define for_each_netdev_continue_rcu(net, d) \ 2026 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2027 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2028 for_each_netdev_rcu(&init_net, slave) \ 2029 if (netdev_master_upper_dev_get_rcu(slave) == bond) 2030 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2031 2032 static inline struct net_device *next_net_device(struct net_device *dev) 2033 { 2034 struct list_head *lh; 2035 struct net *net; 2036 2037 net = dev_net(dev); 2038 lh = dev->dev_list.next; 2039 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2040 } 2041 2042 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2043 { 2044 struct list_head *lh; 2045 struct net *net; 2046 2047 net = dev_net(dev); 2048 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2049 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2050 } 2051 2052 static inline struct net_device *first_net_device(struct net *net) 2053 { 2054 return list_empty(&net->dev_base_head) ? NULL : 2055 net_device_entry(net->dev_base_head.next); 2056 } 2057 2058 static inline struct net_device *first_net_device_rcu(struct net *net) 2059 { 2060 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2061 2062 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2063 } 2064 2065 int netdev_boot_setup_check(struct net_device *dev); 2066 unsigned long netdev_boot_base(const char *prefix, int unit); 2067 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2068 const char *hwaddr); 2069 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2071 void dev_add_pack(struct packet_type *pt); 2072 void dev_remove_pack(struct packet_type *pt); 2073 void __dev_remove_pack(struct packet_type *pt); 2074 void dev_add_offload(struct packet_offload *po); 2075 void dev_remove_offload(struct packet_offload *po); 2076 2077 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 2078 unsigned short mask); 2079 struct net_device *dev_get_by_name(struct net *net, const char *name); 2080 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2081 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2082 int dev_alloc_name(struct net_device *dev, const char *name); 2083 int dev_open(struct net_device *dev); 2084 int dev_close(struct net_device *dev); 2085 void dev_disable_lro(struct net_device *dev); 2086 int dev_loopback_xmit(struct sk_buff *newskb); 2087 int dev_queue_xmit(struct sk_buff *skb); 2088 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2089 int register_netdevice(struct net_device *dev); 2090 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2091 void unregister_netdevice_many(struct list_head *head); 2092 static inline void unregister_netdevice(struct net_device *dev) 2093 { 2094 unregister_netdevice_queue(dev, NULL); 2095 } 2096 2097 int netdev_refcnt_read(const struct net_device *dev); 2098 void free_netdev(struct net_device *dev); 2099 void netdev_freemem(struct net_device *dev); 2100 void synchronize_net(void); 2101 int init_dummy_netdev(struct net_device *dev); 2102 2103 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2104 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2105 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2106 int netdev_get_name(struct net *net, char *name, int ifindex); 2107 int dev_restart(struct net_device *dev); 2108 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2109 2110 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2111 { 2112 return NAPI_GRO_CB(skb)->data_offset; 2113 } 2114 2115 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2116 { 2117 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2118 } 2119 2120 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2121 { 2122 NAPI_GRO_CB(skb)->data_offset += len; 2123 } 2124 2125 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2126 unsigned int offset) 2127 { 2128 return NAPI_GRO_CB(skb)->frag0 + offset; 2129 } 2130 2131 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2132 { 2133 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2134 } 2135 2136 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2137 unsigned int offset) 2138 { 2139 if (!pskb_may_pull(skb, hlen)) 2140 return NULL; 2141 2142 NAPI_GRO_CB(skb)->frag0 = NULL; 2143 NAPI_GRO_CB(skb)->frag0_len = 0; 2144 return skb->data + offset; 2145 } 2146 2147 static inline void *skb_gro_network_header(struct sk_buff *skb) 2148 { 2149 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2150 skb_network_offset(skb); 2151 } 2152 2153 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2154 const void *start, unsigned int len) 2155 { 2156 if (skb->ip_summed == CHECKSUM_COMPLETE) 2157 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2158 csum_partial(start, len, 0)); 2159 } 2160 2161 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2162 unsigned short type, 2163 const void *daddr, const void *saddr, 2164 unsigned int len) 2165 { 2166 if (!dev->header_ops || !dev->header_ops->create) 2167 return 0; 2168 2169 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2170 } 2171 2172 static inline int dev_parse_header(const struct sk_buff *skb, 2173 unsigned char *haddr) 2174 { 2175 const struct net_device *dev = skb->dev; 2176 2177 if (!dev->header_ops || !dev->header_ops->parse) 2178 return 0; 2179 return dev->header_ops->parse(skb, haddr); 2180 } 2181 2182 static inline int dev_rebuild_header(struct sk_buff *skb) 2183 { 2184 const struct net_device *dev = skb->dev; 2185 2186 if (!dev->header_ops || !dev->header_ops->rebuild) 2187 return 0; 2188 return dev->header_ops->rebuild(skb); 2189 } 2190 2191 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2192 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2193 static inline int unregister_gifconf(unsigned int family) 2194 { 2195 return register_gifconf(family, NULL); 2196 } 2197 2198 #ifdef CONFIG_NET_FLOW_LIMIT 2199 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2200 struct sd_flow_limit { 2201 u64 count; 2202 unsigned int num_buckets; 2203 unsigned int history_head; 2204 u16 history[FLOW_LIMIT_HISTORY]; 2205 u8 buckets[]; 2206 }; 2207 2208 extern int netdev_flow_limit_table_len; 2209 #endif /* CONFIG_NET_FLOW_LIMIT */ 2210 2211 /* 2212 * Incoming packets are placed on per-cpu queues 2213 */ 2214 struct softnet_data { 2215 struct Qdisc *output_queue; 2216 struct Qdisc **output_queue_tailp; 2217 struct list_head poll_list; 2218 struct sk_buff *completion_queue; 2219 struct sk_buff_head process_queue; 2220 2221 /* stats */ 2222 unsigned int processed; 2223 unsigned int time_squeeze; 2224 unsigned int cpu_collision; 2225 unsigned int received_rps; 2226 2227 #ifdef CONFIG_RPS 2228 struct softnet_data *rps_ipi_list; 2229 2230 /* Elements below can be accessed between CPUs for RPS */ 2231 struct call_single_data csd ____cacheline_aligned_in_smp; 2232 struct softnet_data *rps_ipi_next; 2233 unsigned int cpu; 2234 unsigned int input_queue_head; 2235 unsigned int input_queue_tail; 2236 #endif 2237 unsigned int dropped; 2238 struct sk_buff_head input_pkt_queue; 2239 struct napi_struct backlog; 2240 2241 #ifdef CONFIG_NET_FLOW_LIMIT 2242 struct sd_flow_limit __rcu *flow_limit; 2243 #endif 2244 }; 2245 2246 static inline void input_queue_head_incr(struct softnet_data *sd) 2247 { 2248 #ifdef CONFIG_RPS 2249 sd->input_queue_head++; 2250 #endif 2251 } 2252 2253 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2254 unsigned int *qtail) 2255 { 2256 #ifdef CONFIG_RPS 2257 *qtail = ++sd->input_queue_tail; 2258 #endif 2259 } 2260 2261 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2262 2263 void __netif_schedule(struct Qdisc *q); 2264 2265 static inline void netif_schedule_queue(struct netdev_queue *txq) 2266 { 2267 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 2268 __netif_schedule(txq->qdisc); 2269 } 2270 2271 static inline void netif_tx_schedule_all(struct net_device *dev) 2272 { 2273 unsigned int i; 2274 2275 for (i = 0; i < dev->num_tx_queues; i++) 2276 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2277 } 2278 2279 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2280 { 2281 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2282 } 2283 2284 /** 2285 * netif_start_queue - allow transmit 2286 * @dev: network device 2287 * 2288 * Allow upper layers to call the device hard_start_xmit routine. 2289 */ 2290 static inline void netif_start_queue(struct net_device *dev) 2291 { 2292 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2293 } 2294 2295 static inline void netif_tx_start_all_queues(struct net_device *dev) 2296 { 2297 unsigned int i; 2298 2299 for (i = 0; i < dev->num_tx_queues; i++) { 2300 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2301 netif_tx_start_queue(txq); 2302 } 2303 } 2304 2305 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2306 { 2307 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 2308 __netif_schedule(dev_queue->qdisc); 2309 } 2310 2311 /** 2312 * netif_wake_queue - restart transmit 2313 * @dev: network device 2314 * 2315 * Allow upper layers to call the device hard_start_xmit routine. 2316 * Used for flow control when transmit resources are available. 2317 */ 2318 static inline void netif_wake_queue(struct net_device *dev) 2319 { 2320 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2321 } 2322 2323 static inline void netif_tx_wake_all_queues(struct net_device *dev) 2324 { 2325 unsigned int i; 2326 2327 for (i = 0; i < dev->num_tx_queues; i++) { 2328 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2329 netif_tx_wake_queue(txq); 2330 } 2331 } 2332 2333 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2334 { 2335 if (WARN_ON(!dev_queue)) { 2336 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2337 return; 2338 } 2339 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2340 } 2341 2342 /** 2343 * netif_stop_queue - stop transmitted packets 2344 * @dev: network device 2345 * 2346 * Stop upper layers calling the device hard_start_xmit routine. 2347 * Used for flow control when transmit resources are unavailable. 2348 */ 2349 static inline void netif_stop_queue(struct net_device *dev) 2350 { 2351 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2352 } 2353 2354 static inline void netif_tx_stop_all_queues(struct net_device *dev) 2355 { 2356 unsigned int i; 2357 2358 for (i = 0; i < dev->num_tx_queues; i++) { 2359 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2360 netif_tx_stop_queue(txq); 2361 } 2362 } 2363 2364 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2365 { 2366 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2367 } 2368 2369 /** 2370 * netif_queue_stopped - test if transmit queue is flowblocked 2371 * @dev: network device 2372 * 2373 * Test if transmit queue on device is currently unable to send. 2374 */ 2375 static inline bool netif_queue_stopped(const struct net_device *dev) 2376 { 2377 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2378 } 2379 2380 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2381 { 2382 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2383 } 2384 2385 static inline bool 2386 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2387 { 2388 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2389 } 2390 2391 static inline bool 2392 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2393 { 2394 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2395 } 2396 2397 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2398 unsigned int bytes) 2399 { 2400 #ifdef CONFIG_BQL 2401 dql_queued(&dev_queue->dql, bytes); 2402 2403 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2404 return; 2405 2406 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2407 2408 /* 2409 * The XOFF flag must be set before checking the dql_avail below, 2410 * because in netdev_tx_completed_queue we update the dql_completed 2411 * before checking the XOFF flag. 2412 */ 2413 smp_mb(); 2414 2415 /* check again in case another CPU has just made room avail */ 2416 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2417 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2418 #endif 2419 } 2420 2421 /** 2422 * netdev_sent_queue - report the number of bytes queued to hardware 2423 * @dev: network device 2424 * @bytes: number of bytes queued to the hardware device queue 2425 * 2426 * Report the number of bytes queued for sending/completion to the network 2427 * device hardware queue. @bytes should be a good approximation and should 2428 * exactly match netdev_completed_queue() @bytes 2429 */ 2430 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2431 { 2432 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2433 } 2434 2435 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2436 unsigned int pkts, unsigned int bytes) 2437 { 2438 #ifdef CONFIG_BQL 2439 if (unlikely(!bytes)) 2440 return; 2441 2442 dql_completed(&dev_queue->dql, bytes); 2443 2444 /* 2445 * Without the memory barrier there is a small possiblity that 2446 * netdev_tx_sent_queue will miss the update and cause the queue to 2447 * be stopped forever 2448 */ 2449 smp_mb(); 2450 2451 if (dql_avail(&dev_queue->dql) < 0) 2452 return; 2453 2454 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2455 netif_schedule_queue(dev_queue); 2456 #endif 2457 } 2458 2459 /** 2460 * netdev_completed_queue - report bytes and packets completed by device 2461 * @dev: network device 2462 * @pkts: actual number of packets sent over the medium 2463 * @bytes: actual number of bytes sent over the medium 2464 * 2465 * Report the number of bytes and packets transmitted by the network device 2466 * hardware queue over the physical medium, @bytes must exactly match the 2467 * @bytes amount passed to netdev_sent_queue() 2468 */ 2469 static inline void netdev_completed_queue(struct net_device *dev, 2470 unsigned int pkts, unsigned int bytes) 2471 { 2472 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2473 } 2474 2475 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2476 { 2477 #ifdef CONFIG_BQL 2478 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2479 dql_reset(&q->dql); 2480 #endif 2481 } 2482 2483 /** 2484 * netdev_reset_queue - reset the packets and bytes count of a network device 2485 * @dev_queue: network device 2486 * 2487 * Reset the bytes and packet count of a network device and clear the 2488 * software flow control OFF bit for this network device 2489 */ 2490 static inline void netdev_reset_queue(struct net_device *dev_queue) 2491 { 2492 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2493 } 2494 2495 /** 2496 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2497 * @dev: network device 2498 * @queue_index: given tx queue index 2499 * 2500 * Returns 0 if given tx queue index >= number of device tx queues, 2501 * otherwise returns the originally passed tx queue index. 2502 */ 2503 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2504 { 2505 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2506 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2507 dev->name, queue_index, 2508 dev->real_num_tx_queues); 2509 return 0; 2510 } 2511 2512 return queue_index; 2513 } 2514 2515 /** 2516 * netif_running - test if up 2517 * @dev: network device 2518 * 2519 * Test if the device has been brought up. 2520 */ 2521 static inline bool netif_running(const struct net_device *dev) 2522 { 2523 return test_bit(__LINK_STATE_START, &dev->state); 2524 } 2525 2526 /* 2527 * Routines to manage the subqueues on a device. We only need start 2528 * stop, and a check if it's stopped. All other device management is 2529 * done at the overall netdevice level. 2530 * Also test the device if we're multiqueue. 2531 */ 2532 2533 /** 2534 * netif_start_subqueue - allow sending packets on subqueue 2535 * @dev: network device 2536 * @queue_index: sub queue index 2537 * 2538 * Start individual transmit queue of a device with multiple transmit queues. 2539 */ 2540 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2541 { 2542 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2543 2544 netif_tx_start_queue(txq); 2545 } 2546 2547 /** 2548 * netif_stop_subqueue - stop sending packets on subqueue 2549 * @dev: network device 2550 * @queue_index: sub queue index 2551 * 2552 * Stop individual transmit queue of a device with multiple transmit queues. 2553 */ 2554 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2555 { 2556 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2557 netif_tx_stop_queue(txq); 2558 } 2559 2560 /** 2561 * netif_subqueue_stopped - test status of subqueue 2562 * @dev: network device 2563 * @queue_index: sub queue index 2564 * 2565 * Check individual transmit queue of a device with multiple transmit queues. 2566 */ 2567 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2568 u16 queue_index) 2569 { 2570 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2571 2572 return netif_tx_queue_stopped(txq); 2573 } 2574 2575 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2576 struct sk_buff *skb) 2577 { 2578 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2579 } 2580 2581 /** 2582 * netif_wake_subqueue - allow sending packets on subqueue 2583 * @dev: network device 2584 * @queue_index: sub queue index 2585 * 2586 * Resume individual transmit queue of a device with multiple transmit queues. 2587 */ 2588 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2589 { 2590 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2591 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2592 __netif_schedule(txq->qdisc); 2593 } 2594 2595 #ifdef CONFIG_XPS 2596 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2597 u16 index); 2598 #else 2599 static inline int netif_set_xps_queue(struct net_device *dev, 2600 const struct cpumask *mask, 2601 u16 index) 2602 { 2603 return 0; 2604 } 2605 #endif 2606 2607 /* 2608 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2609 * as a distribution range limit for the returned value. 2610 */ 2611 static inline u16 skb_tx_hash(const struct net_device *dev, 2612 struct sk_buff *skb) 2613 { 2614 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2615 } 2616 2617 /** 2618 * netif_is_multiqueue - test if device has multiple transmit queues 2619 * @dev: network device 2620 * 2621 * Check if device has multiple transmit queues 2622 */ 2623 static inline bool netif_is_multiqueue(const struct net_device *dev) 2624 { 2625 return dev->num_tx_queues > 1; 2626 } 2627 2628 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2629 2630 #ifdef CONFIG_SYSFS 2631 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2632 #else 2633 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2634 unsigned int rxq) 2635 { 2636 return 0; 2637 } 2638 #endif 2639 2640 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2641 const struct net_device *from_dev) 2642 { 2643 int err; 2644 2645 err = netif_set_real_num_tx_queues(to_dev, 2646 from_dev->real_num_tx_queues); 2647 if (err) 2648 return err; 2649 #ifdef CONFIG_SYSFS 2650 return netif_set_real_num_rx_queues(to_dev, 2651 from_dev->real_num_rx_queues); 2652 #else 2653 return 0; 2654 #endif 2655 } 2656 2657 #ifdef CONFIG_SYSFS 2658 static inline unsigned int get_netdev_rx_queue_index( 2659 struct netdev_rx_queue *queue) 2660 { 2661 struct net_device *dev = queue->dev; 2662 int index = queue - dev->_rx; 2663 2664 BUG_ON(index >= dev->num_rx_queues); 2665 return index; 2666 } 2667 #endif 2668 2669 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2670 int netif_get_num_default_rss_queues(void); 2671 2672 enum skb_free_reason { 2673 SKB_REASON_CONSUMED, 2674 SKB_REASON_DROPPED, 2675 }; 2676 2677 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2678 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2679 2680 /* 2681 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2682 * interrupt context or with hardware interrupts being disabled. 2683 * (in_irq() || irqs_disabled()) 2684 * 2685 * We provide four helpers that can be used in following contexts : 2686 * 2687 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2688 * replacing kfree_skb(skb) 2689 * 2690 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2691 * Typically used in place of consume_skb(skb) in TX completion path 2692 * 2693 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2694 * replacing kfree_skb(skb) 2695 * 2696 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2697 * and consumed a packet. Used in place of consume_skb(skb) 2698 */ 2699 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2700 { 2701 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2702 } 2703 2704 static inline void dev_consume_skb_irq(struct sk_buff *skb) 2705 { 2706 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2707 } 2708 2709 static inline void dev_kfree_skb_any(struct sk_buff *skb) 2710 { 2711 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2712 } 2713 2714 static inline void dev_consume_skb_any(struct sk_buff *skb) 2715 { 2716 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2717 } 2718 2719 int netif_rx(struct sk_buff *skb); 2720 int netif_rx_ni(struct sk_buff *skb); 2721 int netif_receive_skb(struct sk_buff *skb); 2722 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2723 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2724 struct sk_buff *napi_get_frags(struct napi_struct *napi); 2725 gro_result_t napi_gro_frags(struct napi_struct *napi); 2726 struct packet_offload *gro_find_receive_by_type(__be16 type); 2727 struct packet_offload *gro_find_complete_by_type(__be16 type); 2728 2729 static inline void napi_free_frags(struct napi_struct *napi) 2730 { 2731 kfree_skb(napi->skb); 2732 napi->skb = NULL; 2733 } 2734 2735 int netdev_rx_handler_register(struct net_device *dev, 2736 rx_handler_func_t *rx_handler, 2737 void *rx_handler_data); 2738 void netdev_rx_handler_unregister(struct net_device *dev); 2739 2740 bool dev_valid_name(const char *name); 2741 int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2742 int dev_ethtool(struct net *net, struct ifreq *); 2743 unsigned int dev_get_flags(const struct net_device *); 2744 int __dev_change_flags(struct net_device *, unsigned int flags); 2745 int dev_change_flags(struct net_device *, unsigned int); 2746 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2747 unsigned int gchanges); 2748 int dev_change_name(struct net_device *, const char *); 2749 int dev_set_alias(struct net_device *, const char *, size_t); 2750 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2751 int dev_set_mtu(struct net_device *, int); 2752 void dev_set_group(struct net_device *, int); 2753 int dev_set_mac_address(struct net_device *, struct sockaddr *); 2754 int dev_change_carrier(struct net_device *, bool new_carrier); 2755 int dev_get_phys_port_id(struct net_device *dev, 2756 struct netdev_phys_port_id *ppid); 2757 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2758 struct netdev_queue *txq); 2759 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2760 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2761 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2762 2763 extern int netdev_budget; 2764 2765 /* Called by rtnetlink.c:rtnl_unlock() */ 2766 void netdev_run_todo(void); 2767 2768 /** 2769 * dev_put - release reference to device 2770 * @dev: network device 2771 * 2772 * Release reference to device to allow it to be freed. 2773 */ 2774 static inline void dev_put(struct net_device *dev) 2775 { 2776 this_cpu_dec(*dev->pcpu_refcnt); 2777 } 2778 2779 /** 2780 * dev_hold - get reference to device 2781 * @dev: network device 2782 * 2783 * Hold reference to device to keep it from being freed. 2784 */ 2785 static inline void dev_hold(struct net_device *dev) 2786 { 2787 this_cpu_inc(*dev->pcpu_refcnt); 2788 } 2789 2790 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2791 * and _off may be called from IRQ context, but it is caller 2792 * who is responsible for serialization of these calls. 2793 * 2794 * The name carrier is inappropriate, these functions should really be 2795 * called netif_lowerlayer_*() because they represent the state of any 2796 * kind of lower layer not just hardware media. 2797 */ 2798 2799 void linkwatch_init_dev(struct net_device *dev); 2800 void linkwatch_fire_event(struct net_device *dev); 2801 void linkwatch_forget_dev(struct net_device *dev); 2802 2803 /** 2804 * netif_carrier_ok - test if carrier present 2805 * @dev: network device 2806 * 2807 * Check if carrier is present on device 2808 */ 2809 static inline bool netif_carrier_ok(const struct net_device *dev) 2810 { 2811 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2812 } 2813 2814 unsigned long dev_trans_start(struct net_device *dev); 2815 2816 void __netdev_watchdog_up(struct net_device *dev); 2817 2818 void netif_carrier_on(struct net_device *dev); 2819 2820 void netif_carrier_off(struct net_device *dev); 2821 2822 /** 2823 * netif_dormant_on - mark device as dormant. 2824 * @dev: network device 2825 * 2826 * Mark device as dormant (as per RFC2863). 2827 * 2828 * The dormant state indicates that the relevant interface is not 2829 * actually in a condition to pass packets (i.e., it is not 'up') but is 2830 * in a "pending" state, waiting for some external event. For "on- 2831 * demand" interfaces, this new state identifies the situation where the 2832 * interface is waiting for events to place it in the up state. 2833 * 2834 */ 2835 static inline void netif_dormant_on(struct net_device *dev) 2836 { 2837 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2838 linkwatch_fire_event(dev); 2839 } 2840 2841 /** 2842 * netif_dormant_off - set device as not dormant. 2843 * @dev: network device 2844 * 2845 * Device is not in dormant state. 2846 */ 2847 static inline void netif_dormant_off(struct net_device *dev) 2848 { 2849 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2850 linkwatch_fire_event(dev); 2851 } 2852 2853 /** 2854 * netif_dormant - test if carrier present 2855 * @dev: network device 2856 * 2857 * Check if carrier is present on device 2858 */ 2859 static inline bool netif_dormant(const struct net_device *dev) 2860 { 2861 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2862 } 2863 2864 2865 /** 2866 * netif_oper_up - test if device is operational 2867 * @dev: network device 2868 * 2869 * Check if carrier is operational 2870 */ 2871 static inline bool netif_oper_up(const struct net_device *dev) 2872 { 2873 return (dev->operstate == IF_OPER_UP || 2874 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2875 } 2876 2877 /** 2878 * netif_device_present - is device available or removed 2879 * @dev: network device 2880 * 2881 * Check if device has not been removed from system. 2882 */ 2883 static inline bool netif_device_present(struct net_device *dev) 2884 { 2885 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2886 } 2887 2888 void netif_device_detach(struct net_device *dev); 2889 2890 void netif_device_attach(struct net_device *dev); 2891 2892 /* 2893 * Network interface message level settings 2894 */ 2895 2896 enum { 2897 NETIF_MSG_DRV = 0x0001, 2898 NETIF_MSG_PROBE = 0x0002, 2899 NETIF_MSG_LINK = 0x0004, 2900 NETIF_MSG_TIMER = 0x0008, 2901 NETIF_MSG_IFDOWN = 0x0010, 2902 NETIF_MSG_IFUP = 0x0020, 2903 NETIF_MSG_RX_ERR = 0x0040, 2904 NETIF_MSG_TX_ERR = 0x0080, 2905 NETIF_MSG_TX_QUEUED = 0x0100, 2906 NETIF_MSG_INTR = 0x0200, 2907 NETIF_MSG_TX_DONE = 0x0400, 2908 NETIF_MSG_RX_STATUS = 0x0800, 2909 NETIF_MSG_PKTDATA = 0x1000, 2910 NETIF_MSG_HW = 0x2000, 2911 NETIF_MSG_WOL = 0x4000, 2912 }; 2913 2914 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2915 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2916 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2917 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2918 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2919 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2920 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2921 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2922 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2923 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2924 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2925 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2926 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2927 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2928 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2929 2930 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2931 { 2932 /* use default */ 2933 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2934 return default_msg_enable_bits; 2935 if (debug_value == 0) /* no output */ 2936 return 0; 2937 /* set low N bits */ 2938 return (1 << debug_value) - 1; 2939 } 2940 2941 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2942 { 2943 spin_lock(&txq->_xmit_lock); 2944 txq->xmit_lock_owner = cpu; 2945 } 2946 2947 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2948 { 2949 spin_lock_bh(&txq->_xmit_lock); 2950 txq->xmit_lock_owner = smp_processor_id(); 2951 } 2952 2953 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2954 { 2955 bool ok = spin_trylock(&txq->_xmit_lock); 2956 if (likely(ok)) 2957 txq->xmit_lock_owner = smp_processor_id(); 2958 return ok; 2959 } 2960 2961 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2962 { 2963 txq->xmit_lock_owner = -1; 2964 spin_unlock(&txq->_xmit_lock); 2965 } 2966 2967 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2968 { 2969 txq->xmit_lock_owner = -1; 2970 spin_unlock_bh(&txq->_xmit_lock); 2971 } 2972 2973 static inline void txq_trans_update(struct netdev_queue *txq) 2974 { 2975 if (txq->xmit_lock_owner != -1) 2976 txq->trans_start = jiffies; 2977 } 2978 2979 /** 2980 * netif_tx_lock - grab network device transmit lock 2981 * @dev: network device 2982 * 2983 * Get network device transmit lock 2984 */ 2985 static inline void netif_tx_lock(struct net_device *dev) 2986 { 2987 unsigned int i; 2988 int cpu; 2989 2990 spin_lock(&dev->tx_global_lock); 2991 cpu = smp_processor_id(); 2992 for (i = 0; i < dev->num_tx_queues; i++) { 2993 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2994 2995 /* We are the only thread of execution doing a 2996 * freeze, but we have to grab the _xmit_lock in 2997 * order to synchronize with threads which are in 2998 * the ->hard_start_xmit() handler and already 2999 * checked the frozen bit. 3000 */ 3001 __netif_tx_lock(txq, cpu); 3002 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3003 __netif_tx_unlock(txq); 3004 } 3005 } 3006 3007 static inline void netif_tx_lock_bh(struct net_device *dev) 3008 { 3009 local_bh_disable(); 3010 netif_tx_lock(dev); 3011 } 3012 3013 static inline void netif_tx_unlock(struct net_device *dev) 3014 { 3015 unsigned int i; 3016 3017 for (i = 0; i < dev->num_tx_queues; i++) { 3018 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3019 3020 /* No need to grab the _xmit_lock here. If the 3021 * queue is not stopped for another reason, we 3022 * force a schedule. 3023 */ 3024 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3025 netif_schedule_queue(txq); 3026 } 3027 spin_unlock(&dev->tx_global_lock); 3028 } 3029 3030 static inline void netif_tx_unlock_bh(struct net_device *dev) 3031 { 3032 netif_tx_unlock(dev); 3033 local_bh_enable(); 3034 } 3035 3036 #define HARD_TX_LOCK(dev, txq, cpu) { \ 3037 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3038 __netif_tx_lock(txq, cpu); \ 3039 } \ 3040 } 3041 3042 #define HARD_TX_TRYLOCK(dev, txq) \ 3043 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3044 __netif_tx_trylock(txq) : \ 3045 true ) 3046 3047 #define HARD_TX_UNLOCK(dev, txq) { \ 3048 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3049 __netif_tx_unlock(txq); \ 3050 } \ 3051 } 3052 3053 static inline void netif_tx_disable(struct net_device *dev) 3054 { 3055 unsigned int i; 3056 int cpu; 3057 3058 local_bh_disable(); 3059 cpu = smp_processor_id(); 3060 for (i = 0; i < dev->num_tx_queues; i++) { 3061 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3062 3063 __netif_tx_lock(txq, cpu); 3064 netif_tx_stop_queue(txq); 3065 __netif_tx_unlock(txq); 3066 } 3067 local_bh_enable(); 3068 } 3069 3070 static inline void netif_addr_lock(struct net_device *dev) 3071 { 3072 spin_lock(&dev->addr_list_lock); 3073 } 3074 3075 static inline void netif_addr_lock_nested(struct net_device *dev) 3076 { 3077 int subclass = SINGLE_DEPTH_NESTING; 3078 3079 if (dev->netdev_ops->ndo_get_lock_subclass) 3080 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3081 3082 spin_lock_nested(&dev->addr_list_lock, subclass); 3083 } 3084 3085 static inline void netif_addr_lock_bh(struct net_device *dev) 3086 { 3087 spin_lock_bh(&dev->addr_list_lock); 3088 } 3089 3090 static inline void netif_addr_unlock(struct net_device *dev) 3091 { 3092 spin_unlock(&dev->addr_list_lock); 3093 } 3094 3095 static inline void netif_addr_unlock_bh(struct net_device *dev) 3096 { 3097 spin_unlock_bh(&dev->addr_list_lock); 3098 } 3099 3100 /* 3101 * dev_addrs walker. Should be used only for read access. Call with 3102 * rcu_read_lock held. 3103 */ 3104 #define for_each_dev_addr(dev, ha) \ 3105 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3106 3107 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3108 3109 void ether_setup(struct net_device *dev); 3110 3111 /* Support for loadable net-drivers */ 3112 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3113 unsigned char name_assign_type, 3114 void (*setup)(struct net_device *), 3115 unsigned int txqs, unsigned int rxqs); 3116 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3117 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3118 3119 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3120 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3121 count) 3122 3123 int register_netdev(struct net_device *dev); 3124 void unregister_netdev(struct net_device *dev); 3125 3126 /* General hardware address lists handling functions */ 3127 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3128 struct netdev_hw_addr_list *from_list, int addr_len); 3129 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3130 struct netdev_hw_addr_list *from_list, int addr_len); 3131 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3132 struct net_device *dev, 3133 int (*sync)(struct net_device *, const unsigned char *), 3134 int (*unsync)(struct net_device *, 3135 const unsigned char *)); 3136 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3137 struct net_device *dev, 3138 int (*unsync)(struct net_device *, 3139 const unsigned char *)); 3140 void __hw_addr_init(struct netdev_hw_addr_list *list); 3141 3142 /* Functions used for device addresses handling */ 3143 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3144 unsigned char addr_type); 3145 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3146 unsigned char addr_type); 3147 void dev_addr_flush(struct net_device *dev); 3148 int dev_addr_init(struct net_device *dev); 3149 3150 /* Functions used for unicast addresses handling */ 3151 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3152 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3153 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3154 int dev_uc_sync(struct net_device *to, struct net_device *from); 3155 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3156 void dev_uc_unsync(struct net_device *to, struct net_device *from); 3157 void dev_uc_flush(struct net_device *dev); 3158 void dev_uc_init(struct net_device *dev); 3159 3160 /** 3161 * __dev_uc_sync - Synchonize device's unicast list 3162 * @dev: device to sync 3163 * @sync: function to call if address should be added 3164 * @unsync: function to call if address should be removed 3165 * 3166 * Add newly added addresses to the interface, and release 3167 * addresses that have been deleted. 3168 **/ 3169 static inline int __dev_uc_sync(struct net_device *dev, 3170 int (*sync)(struct net_device *, 3171 const unsigned char *), 3172 int (*unsync)(struct net_device *, 3173 const unsigned char *)) 3174 { 3175 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3176 } 3177 3178 /** 3179 * __dev_uc_unsync - Remove synchonized addresses from device 3180 * @dev: device to sync 3181 * @unsync: function to call if address should be removed 3182 * 3183 * Remove all addresses that were added to the device by dev_uc_sync(). 3184 **/ 3185 static inline void __dev_uc_unsync(struct net_device *dev, 3186 int (*unsync)(struct net_device *, 3187 const unsigned char *)) 3188 { 3189 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3190 } 3191 3192 /* Functions used for multicast addresses handling */ 3193 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3194 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3195 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3196 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3197 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3198 int dev_mc_sync(struct net_device *to, struct net_device *from); 3199 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3200 void dev_mc_unsync(struct net_device *to, struct net_device *from); 3201 void dev_mc_flush(struct net_device *dev); 3202 void dev_mc_init(struct net_device *dev); 3203 3204 /** 3205 * __dev_mc_sync - Synchonize device's multicast list 3206 * @dev: device to sync 3207 * @sync: function to call if address should be added 3208 * @unsync: function to call if address should be removed 3209 * 3210 * Add newly added addresses to the interface, and release 3211 * addresses that have been deleted. 3212 **/ 3213 static inline int __dev_mc_sync(struct net_device *dev, 3214 int (*sync)(struct net_device *, 3215 const unsigned char *), 3216 int (*unsync)(struct net_device *, 3217 const unsigned char *)) 3218 { 3219 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3220 } 3221 3222 /** 3223 * __dev_mc_unsync - Remove synchonized addresses from device 3224 * @dev: device to sync 3225 * @unsync: function to call if address should be removed 3226 * 3227 * Remove all addresses that were added to the device by dev_mc_sync(). 3228 **/ 3229 static inline void __dev_mc_unsync(struct net_device *dev, 3230 int (*unsync)(struct net_device *, 3231 const unsigned char *)) 3232 { 3233 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3234 } 3235 3236 /* Functions used for secondary unicast and multicast support */ 3237 void dev_set_rx_mode(struct net_device *dev); 3238 void __dev_set_rx_mode(struct net_device *dev); 3239 int dev_set_promiscuity(struct net_device *dev, int inc); 3240 int dev_set_allmulti(struct net_device *dev, int inc); 3241 void netdev_state_change(struct net_device *dev); 3242 void netdev_notify_peers(struct net_device *dev); 3243 void netdev_features_change(struct net_device *dev); 3244 /* Load a device via the kmod */ 3245 void dev_load(struct net *net, const char *name); 3246 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3247 struct rtnl_link_stats64 *storage); 3248 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3249 const struct net_device_stats *netdev_stats); 3250 3251 extern int netdev_max_backlog; 3252 extern int netdev_tstamp_prequeue; 3253 extern int weight_p; 3254 extern int bpf_jit_enable; 3255 3256 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3257 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3258 struct list_head **iter); 3259 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3260 struct list_head **iter); 3261 3262 /* iterate through upper list, must be called under RCU read lock */ 3263 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3264 for (iter = &(dev)->adj_list.upper, \ 3265 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3266 updev; \ 3267 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3268 3269 /* iterate through upper list, must be called under RCU read lock */ 3270 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3271 for (iter = &(dev)->all_adj_list.upper, \ 3272 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3273 updev; \ 3274 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3275 3276 void *netdev_lower_get_next_private(struct net_device *dev, 3277 struct list_head **iter); 3278 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3279 struct list_head **iter); 3280 3281 #define netdev_for_each_lower_private(dev, priv, iter) \ 3282 for (iter = (dev)->adj_list.lower.next, \ 3283 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3284 priv; \ 3285 priv = netdev_lower_get_next_private(dev, &(iter))) 3286 3287 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3288 for (iter = &(dev)->adj_list.lower, \ 3289 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3290 priv; \ 3291 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3292 3293 void *netdev_lower_get_next(struct net_device *dev, 3294 struct list_head **iter); 3295 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 3296 for (iter = &(dev)->adj_list.lower, \ 3297 ldev = netdev_lower_get_next(dev, &(iter)); \ 3298 ldev; \ 3299 ldev = netdev_lower_get_next(dev, &(iter))) 3300 3301 void *netdev_adjacent_get_private(struct list_head *adj_list); 3302 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3303 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3304 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3305 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3306 int netdev_master_upper_dev_link(struct net_device *dev, 3307 struct net_device *upper_dev); 3308 int netdev_master_upper_dev_link_private(struct net_device *dev, 3309 struct net_device *upper_dev, 3310 void *private); 3311 void netdev_upper_dev_unlink(struct net_device *dev, 3312 struct net_device *upper_dev); 3313 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3314 void *netdev_lower_dev_get_private(struct net_device *dev, 3315 struct net_device *lower_dev); 3316 int dev_get_nest_level(struct net_device *dev, 3317 bool (*type_check)(struct net_device *dev)); 3318 int skb_checksum_help(struct sk_buff *skb); 3319 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3320 netdev_features_t features, bool tx_path); 3321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3322 netdev_features_t features); 3323 3324 static inline 3325 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3326 { 3327 return __skb_gso_segment(skb, features, true); 3328 } 3329 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3330 3331 static inline bool can_checksum_protocol(netdev_features_t features, 3332 __be16 protocol) 3333 { 3334 return ((features & NETIF_F_GEN_CSUM) || 3335 ((features & NETIF_F_V4_CSUM) && 3336 protocol == htons(ETH_P_IP)) || 3337 ((features & NETIF_F_V6_CSUM) && 3338 protocol == htons(ETH_P_IPV6)) || 3339 ((features & NETIF_F_FCOE_CRC) && 3340 protocol == htons(ETH_P_FCOE))); 3341 } 3342 3343 #ifdef CONFIG_BUG 3344 void netdev_rx_csum_fault(struct net_device *dev); 3345 #else 3346 static inline void netdev_rx_csum_fault(struct net_device *dev) 3347 { 3348 } 3349 #endif 3350 /* rx skb timestamps */ 3351 void net_enable_timestamp(void); 3352 void net_disable_timestamp(void); 3353 3354 #ifdef CONFIG_PROC_FS 3355 int __init dev_proc_init(void); 3356 #else 3357 #define dev_proc_init() 0 3358 #endif 3359 3360 int netdev_class_create_file_ns(struct class_attribute *class_attr, 3361 const void *ns); 3362 void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3363 const void *ns); 3364 3365 static inline int netdev_class_create_file(struct class_attribute *class_attr) 3366 { 3367 return netdev_class_create_file_ns(class_attr, NULL); 3368 } 3369 3370 static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3371 { 3372 netdev_class_remove_file_ns(class_attr, NULL); 3373 } 3374 3375 extern struct kobj_ns_type_operations net_ns_type_operations; 3376 3377 const char *netdev_drivername(const struct net_device *dev); 3378 3379 void linkwatch_run_queue(void); 3380 3381 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3382 netdev_features_t f2) 3383 { 3384 if (f1 & NETIF_F_GEN_CSUM) 3385 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3386 if (f2 & NETIF_F_GEN_CSUM) 3387 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3388 f1 &= f2; 3389 if (f1 & NETIF_F_GEN_CSUM) 3390 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3391 3392 return f1; 3393 } 3394 3395 static inline netdev_features_t netdev_get_wanted_features( 3396 struct net_device *dev) 3397 { 3398 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3399 } 3400 netdev_features_t netdev_increment_features(netdev_features_t all, 3401 netdev_features_t one, netdev_features_t mask); 3402 3403 /* Allow TSO being used on stacked device : 3404 * Performing the GSO segmentation before last device 3405 * is a performance improvement. 3406 */ 3407 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3408 netdev_features_t mask) 3409 { 3410 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3411 } 3412 3413 int __netdev_update_features(struct net_device *dev); 3414 void netdev_update_features(struct net_device *dev); 3415 void netdev_change_features(struct net_device *dev); 3416 3417 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3418 struct net_device *dev); 3419 3420 netdev_features_t netif_skb_features(struct sk_buff *skb); 3421 3422 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3423 { 3424 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3425 3426 /* check flags correspondence */ 3427 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3428 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3429 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3430 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3431 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3432 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3433 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3434 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3435 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3436 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3437 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3438 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3439 BUILD_BUG_ON(SKB_GSO_MPLS != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT)); 3440 3441 return (features & feature) == feature; 3442 } 3443 3444 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3445 { 3446 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3447 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3448 } 3449 3450 static inline bool netif_needs_gso(struct sk_buff *skb, 3451 netdev_features_t features) 3452 { 3453 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3454 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3455 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3456 } 3457 3458 static inline void netif_set_gso_max_size(struct net_device *dev, 3459 unsigned int size) 3460 { 3461 dev->gso_max_size = size; 3462 } 3463 3464 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3465 int pulled_hlen, u16 mac_offset, 3466 int mac_len) 3467 { 3468 skb->protocol = protocol; 3469 skb->encapsulation = 1; 3470 skb_push(skb, pulled_hlen); 3471 skb_reset_transport_header(skb); 3472 skb->mac_header = mac_offset; 3473 skb->network_header = skb->mac_header + mac_len; 3474 skb->mac_len = mac_len; 3475 } 3476 3477 static inline bool netif_is_macvlan(struct net_device *dev) 3478 { 3479 return dev->priv_flags & IFF_MACVLAN; 3480 } 3481 3482 static inline bool netif_is_bond_master(struct net_device *dev) 3483 { 3484 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3485 } 3486 3487 static inline bool netif_is_bond_slave(struct net_device *dev) 3488 { 3489 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3490 } 3491 3492 static inline bool netif_supports_nofcs(struct net_device *dev) 3493 { 3494 return dev->priv_flags & IFF_SUPP_NOFCS; 3495 } 3496 3497 extern struct pernet_operations __net_initdata loopback_net_ops; 3498 3499 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 3500 3501 /* netdev_printk helpers, similar to dev_printk */ 3502 3503 static inline const char *netdev_name(const struct net_device *dev) 3504 { 3505 if (!dev->name[0] || strchr(dev->name, '%')) 3506 return "(unnamed net_device)"; 3507 return dev->name; 3508 } 3509 3510 static inline const char *netdev_reg_state(const struct net_device *dev) 3511 { 3512 switch (dev->reg_state) { 3513 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3514 case NETREG_REGISTERED: return ""; 3515 case NETREG_UNREGISTERING: return " (unregistering)"; 3516 case NETREG_UNREGISTERED: return " (unregistered)"; 3517 case NETREG_RELEASED: return " (released)"; 3518 case NETREG_DUMMY: return " (dummy)"; 3519 } 3520 3521 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3522 return " (unknown)"; 3523 } 3524 3525 __printf(3, 4) 3526 int netdev_printk(const char *level, const struct net_device *dev, 3527 const char *format, ...); 3528 __printf(2, 3) 3529 int netdev_emerg(const struct net_device *dev, const char *format, ...); 3530 __printf(2, 3) 3531 int netdev_alert(const struct net_device *dev, const char *format, ...); 3532 __printf(2, 3) 3533 int netdev_crit(const struct net_device *dev, const char *format, ...); 3534 __printf(2, 3) 3535 int netdev_err(const struct net_device *dev, const char *format, ...); 3536 __printf(2, 3) 3537 int netdev_warn(const struct net_device *dev, const char *format, ...); 3538 __printf(2, 3) 3539 int netdev_notice(const struct net_device *dev, const char *format, ...); 3540 __printf(2, 3) 3541 int netdev_info(const struct net_device *dev, const char *format, ...); 3542 3543 #define MODULE_ALIAS_NETDEV(device) \ 3544 MODULE_ALIAS("netdev-" device) 3545 3546 #if defined(CONFIG_DYNAMIC_DEBUG) 3547 #define netdev_dbg(__dev, format, args...) \ 3548 do { \ 3549 dynamic_netdev_dbg(__dev, format, ##args); \ 3550 } while (0) 3551 #elif defined(DEBUG) 3552 #define netdev_dbg(__dev, format, args...) \ 3553 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3554 #else 3555 #define netdev_dbg(__dev, format, args...) \ 3556 ({ \ 3557 if (0) \ 3558 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3559 0; \ 3560 }) 3561 #endif 3562 3563 #if defined(VERBOSE_DEBUG) 3564 #define netdev_vdbg netdev_dbg 3565 #else 3566 3567 #define netdev_vdbg(dev, format, args...) \ 3568 ({ \ 3569 if (0) \ 3570 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3571 0; \ 3572 }) 3573 #endif 3574 3575 /* 3576 * netdev_WARN() acts like dev_printk(), but with the key difference 3577 * of using a WARN/WARN_ON to get the message out, including the 3578 * file/line information and a backtrace. 3579 */ 3580 #define netdev_WARN(dev, format, args...) \ 3581 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3582 netdev_reg_state(dev), ##args) 3583 3584 /* netif printk helpers, similar to netdev_printk */ 3585 3586 #define netif_printk(priv, type, level, dev, fmt, args...) \ 3587 do { \ 3588 if (netif_msg_##type(priv)) \ 3589 netdev_printk(level, (dev), fmt, ##args); \ 3590 } while (0) 3591 3592 #define netif_level(level, priv, type, dev, fmt, args...) \ 3593 do { \ 3594 if (netif_msg_##type(priv)) \ 3595 netdev_##level(dev, fmt, ##args); \ 3596 } while (0) 3597 3598 #define netif_emerg(priv, type, dev, fmt, args...) \ 3599 netif_level(emerg, priv, type, dev, fmt, ##args) 3600 #define netif_alert(priv, type, dev, fmt, args...) \ 3601 netif_level(alert, priv, type, dev, fmt, ##args) 3602 #define netif_crit(priv, type, dev, fmt, args...) \ 3603 netif_level(crit, priv, type, dev, fmt, ##args) 3604 #define netif_err(priv, type, dev, fmt, args...) \ 3605 netif_level(err, priv, type, dev, fmt, ##args) 3606 #define netif_warn(priv, type, dev, fmt, args...) \ 3607 netif_level(warn, priv, type, dev, fmt, ##args) 3608 #define netif_notice(priv, type, dev, fmt, args...) \ 3609 netif_level(notice, priv, type, dev, fmt, ##args) 3610 #define netif_info(priv, type, dev, fmt, args...) \ 3611 netif_level(info, priv, type, dev, fmt, ##args) 3612 3613 #if defined(CONFIG_DYNAMIC_DEBUG) 3614 #define netif_dbg(priv, type, netdev, format, args...) \ 3615 do { \ 3616 if (netif_msg_##type(priv)) \ 3617 dynamic_netdev_dbg(netdev, format, ##args); \ 3618 } while (0) 3619 #elif defined(DEBUG) 3620 #define netif_dbg(priv, type, dev, format, args...) \ 3621 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3622 #else 3623 #define netif_dbg(priv, type, dev, format, args...) \ 3624 ({ \ 3625 if (0) \ 3626 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3627 0; \ 3628 }) 3629 #endif 3630 3631 #if defined(VERBOSE_DEBUG) 3632 #define netif_vdbg netif_dbg 3633 #else 3634 #define netif_vdbg(priv, type, dev, format, args...) \ 3635 ({ \ 3636 if (0) \ 3637 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3638 0; \ 3639 }) 3640 #endif 3641 3642 /* 3643 * The list of packet types we will receive (as opposed to discard) 3644 * and the routines to invoke. 3645 * 3646 * Why 16. Because with 16 the only overlap we get on a hash of the 3647 * low nibble of the protocol value is RARP/SNAP/X.25. 3648 * 3649 * NOTE: That is no longer true with the addition of VLAN tags. Not 3650 * sure which should go first, but I bet it won't make much 3651 * difference if we are running VLANs. The good news is that 3652 * this protocol won't be in the list unless compiled in, so 3653 * the average user (w/out VLANs) will not be adversely affected. 3654 * --BLG 3655 * 3656 * 0800 IP 3657 * 8100 802.1Q VLAN 3658 * 0001 802.3 3659 * 0002 AX.25 3660 * 0004 802.2 3661 * 8035 RARP 3662 * 0005 SNAP 3663 * 0805 X.25 3664 * 0806 ARP 3665 * 8137 IPX 3666 * 0009 Localtalk 3667 * 86DD IPv6 3668 */ 3669 #define PTYPE_HASH_SIZE (16) 3670 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3671 3672 #endif /* _LINUX_NETDEVICE_H */ 3673