xref: /openbmc/linux/include/linux/netdevice.h (revision 275876e2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 
60 void netdev_set_default_ethtool_ops(struct net_device *dev,
61 				    const struct ethtool_ops *ops);
62 
63 /* Backlog congestion levels */
64 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
65 #define NET_RX_DROP		1	/* packet dropped */
66 
67 /*
68  * Transmit return codes: transmit return codes originate from three different
69  * namespaces:
70  *
71  * - qdisc return codes
72  * - driver transmit return codes
73  * - errno values
74  *
75  * Drivers are allowed to return any one of those in their hard_start_xmit()
76  * function. Real network devices commonly used with qdiscs should only return
77  * the driver transmit return codes though - when qdiscs are used, the actual
78  * transmission happens asynchronously, so the value is not propagated to
79  * higher layers. Virtual network devices transmit synchronously, in this case
80  * the driver transmit return codes are consumed by dev_queue_xmit(), all
81  * others are propagated to higher layers.
82  */
83 
84 /* qdisc ->enqueue() return codes. */
85 #define NET_XMIT_SUCCESS	0x00
86 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
87 #define NET_XMIT_CN		0x02	/* congestion notification	*/
88 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
89 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
90 
91 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
92  * indicates that the device will soon be dropping packets, or already drops
93  * some packets of the same priority; prompting us to send less aggressively. */
94 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
95 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
96 
97 /* Driver transmit return codes */
98 #define NETDEV_TX_MASK		0xf0
99 
100 enum netdev_tx {
101 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
102 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
103 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
104 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
105 };
106 typedef enum netdev_tx netdev_tx_t;
107 
108 /*
109  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
110  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
111  */
112 static inline bool dev_xmit_complete(int rc)
113 {
114 	/*
115 	 * Positive cases with an skb consumed by a driver:
116 	 * - successful transmission (rc == NETDEV_TX_OK)
117 	 * - error while transmitting (rc < 0)
118 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
119 	 */
120 	if (likely(rc < NET_XMIT_MASK))
121 		return true;
122 
123 	return false;
124 }
125 
126 /*
127  *	Compute the worst case header length according to the protocols
128  *	used.
129  */
130 
131 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
132 # if defined(CONFIG_MAC80211_MESH)
133 #  define LL_MAX_HEADER 128
134 # else
135 #  define LL_MAX_HEADER 96
136 # endif
137 #else
138 # define LL_MAX_HEADER 32
139 #endif
140 
141 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
142     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
143 #define MAX_HEADER LL_MAX_HEADER
144 #else
145 #define MAX_HEADER (LL_MAX_HEADER + 48)
146 #endif
147 
148 /*
149  *	Old network device statistics. Fields are native words
150  *	(unsigned long) so they can be read and written atomically.
151  */
152 
153 struct net_device_stats {
154 	unsigned long	rx_packets;
155 	unsigned long	tx_packets;
156 	unsigned long	rx_bytes;
157 	unsigned long	tx_bytes;
158 	unsigned long	rx_errors;
159 	unsigned long	tx_errors;
160 	unsigned long	rx_dropped;
161 	unsigned long	tx_dropped;
162 	unsigned long	multicast;
163 	unsigned long	collisions;
164 	unsigned long	rx_length_errors;
165 	unsigned long	rx_over_errors;
166 	unsigned long	rx_crc_errors;
167 	unsigned long	rx_frame_errors;
168 	unsigned long	rx_fifo_errors;
169 	unsigned long	rx_missed_errors;
170 	unsigned long	tx_aborted_errors;
171 	unsigned long	tx_carrier_errors;
172 	unsigned long	tx_fifo_errors;
173 	unsigned long	tx_heartbeat_errors;
174 	unsigned long	tx_window_errors;
175 	unsigned long	rx_compressed;
176 	unsigned long	tx_compressed;
177 };
178 
179 
180 #include <linux/cache.h>
181 #include <linux/skbuff.h>
182 
183 #ifdef CONFIG_RPS
184 #include <linux/static_key.h>
185 extern struct static_key rps_needed;
186 #endif
187 
188 struct neighbour;
189 struct neigh_parms;
190 struct sk_buff;
191 
192 struct netdev_hw_addr {
193 	struct list_head	list;
194 	unsigned char		addr[MAX_ADDR_LEN];
195 	unsigned char		type;
196 #define NETDEV_HW_ADDR_T_LAN		1
197 #define NETDEV_HW_ADDR_T_SAN		2
198 #define NETDEV_HW_ADDR_T_SLAVE		3
199 #define NETDEV_HW_ADDR_T_UNICAST	4
200 #define NETDEV_HW_ADDR_T_MULTICAST	5
201 	bool			global_use;
202 	int			sync_cnt;
203 	int			refcount;
204 	int			synced;
205 	struct rcu_head		rcu_head;
206 };
207 
208 struct netdev_hw_addr_list {
209 	struct list_head	list;
210 	int			count;
211 };
212 
213 #define netdev_hw_addr_list_count(l) ((l)->count)
214 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
215 #define netdev_hw_addr_list_for_each(ha, l) \
216 	list_for_each_entry(ha, &(l)->list, list)
217 
218 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
219 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
220 #define netdev_for_each_uc_addr(ha, dev) \
221 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
222 
223 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
224 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
225 #define netdev_for_each_mc_addr(ha, dev) \
226 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
227 
228 struct hh_cache {
229 	u16		hh_len;
230 	u16		__pad;
231 	seqlock_t	hh_lock;
232 
233 	/* cached hardware header; allow for machine alignment needs.        */
234 #define HH_DATA_MOD	16
235 #define HH_DATA_OFF(__len) \
236 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
237 #define HH_DATA_ALIGN(__len) \
238 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
239 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
240 };
241 
242 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
243  * Alternative is:
244  *   dev->hard_header_len ? (dev->hard_header_len +
245  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
246  *
247  * We could use other alignment values, but we must maintain the
248  * relationship HH alignment <= LL alignment.
249  */
250 #define LL_RESERVED_SPACE(dev) \
251 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
252 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
253 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
254 
255 struct header_ops {
256 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
257 			   unsigned short type, const void *daddr,
258 			   const void *saddr, unsigned int len);
259 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
260 	int	(*rebuild)(struct sk_buff *skb);
261 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
262 	void	(*cache_update)(struct hh_cache *hh,
263 				const struct net_device *dev,
264 				const unsigned char *haddr);
265 };
266 
267 /* These flag bits are private to the generic network queueing
268  * layer, they may not be explicitly referenced by any other
269  * code.
270  */
271 
272 enum netdev_state_t {
273 	__LINK_STATE_START,
274 	__LINK_STATE_PRESENT,
275 	__LINK_STATE_NOCARRIER,
276 	__LINK_STATE_LINKWATCH_PENDING,
277 	__LINK_STATE_DORMANT,
278 };
279 
280 
281 /*
282  * This structure holds at boot time configured netdevice settings. They
283  * are then used in the device probing.
284  */
285 struct netdev_boot_setup {
286 	char name[IFNAMSIZ];
287 	struct ifmap map;
288 };
289 #define NETDEV_BOOT_SETUP_MAX 8
290 
291 int __init netdev_boot_setup(char *str);
292 
293 /*
294  * Structure for NAPI scheduling similar to tasklet but with weighting
295  */
296 struct napi_struct {
297 	/* The poll_list must only be managed by the entity which
298 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
299 	 * whoever atomically sets that bit can add this napi_struct
300 	 * to the per-cpu poll_list, and whoever clears that bit
301 	 * can remove from the list right before clearing the bit.
302 	 */
303 	struct list_head	poll_list;
304 
305 	unsigned long		state;
306 	int			weight;
307 	unsigned int		gro_count;
308 	int			(*poll)(struct napi_struct *, int);
309 #ifdef CONFIG_NETPOLL
310 	spinlock_t		poll_lock;
311 	int			poll_owner;
312 #endif
313 	struct net_device	*dev;
314 	struct sk_buff		*gro_list;
315 	struct sk_buff		*skb;
316 	struct list_head	dev_list;
317 	struct hlist_node	napi_hash_node;
318 	unsigned int		napi_id;
319 };
320 
321 enum {
322 	NAPI_STATE_SCHED,	/* Poll is scheduled */
323 	NAPI_STATE_DISABLE,	/* Disable pending */
324 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
325 	NAPI_STATE_HASHED,	/* In NAPI hash */
326 };
327 
328 enum gro_result {
329 	GRO_MERGED,
330 	GRO_MERGED_FREE,
331 	GRO_HELD,
332 	GRO_NORMAL,
333 	GRO_DROP,
334 };
335 typedef enum gro_result gro_result_t;
336 
337 /*
338  * enum rx_handler_result - Possible return values for rx_handlers.
339  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
340  * further.
341  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
342  * case skb->dev was changed by rx_handler.
343  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
344  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
345  *
346  * rx_handlers are functions called from inside __netif_receive_skb(), to do
347  * special processing of the skb, prior to delivery to protocol handlers.
348  *
349  * Currently, a net_device can only have a single rx_handler registered. Trying
350  * to register a second rx_handler will return -EBUSY.
351  *
352  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
353  * To unregister a rx_handler on a net_device, use
354  * netdev_rx_handler_unregister().
355  *
356  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
357  * do with the skb.
358  *
359  * If the rx_handler consumed to skb in some way, it should return
360  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
361  * the skb to be delivered in some other ways.
362  *
363  * If the rx_handler changed skb->dev, to divert the skb to another
364  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
365  * new device will be called if it exists.
366  *
367  * If the rx_handler consider the skb should be ignored, it should return
368  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
369  * are registered on exact device (ptype->dev == skb->dev).
370  *
371  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
372  * delivered, it should return RX_HANDLER_PASS.
373  *
374  * A device without a registered rx_handler will behave as if rx_handler
375  * returned RX_HANDLER_PASS.
376  */
377 
378 enum rx_handler_result {
379 	RX_HANDLER_CONSUMED,
380 	RX_HANDLER_ANOTHER,
381 	RX_HANDLER_EXACT,
382 	RX_HANDLER_PASS,
383 };
384 typedef enum rx_handler_result rx_handler_result_t;
385 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
386 
387 void __napi_schedule(struct napi_struct *n);
388 
389 static inline bool napi_disable_pending(struct napi_struct *n)
390 {
391 	return test_bit(NAPI_STATE_DISABLE, &n->state);
392 }
393 
394 /**
395  *	napi_schedule_prep - check if napi can be scheduled
396  *	@n: napi context
397  *
398  * Test if NAPI routine is already running, and if not mark
399  * it as running.  This is used as a condition variable
400  * insure only one NAPI poll instance runs.  We also make
401  * sure there is no pending NAPI disable.
402  */
403 static inline bool napi_schedule_prep(struct napi_struct *n)
404 {
405 	return !napi_disable_pending(n) &&
406 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
407 }
408 
409 /**
410  *	napi_schedule - schedule NAPI poll
411  *	@n: napi context
412  *
413  * Schedule NAPI poll routine to be called if it is not already
414  * running.
415  */
416 static inline void napi_schedule(struct napi_struct *n)
417 {
418 	if (napi_schedule_prep(n))
419 		__napi_schedule(n);
420 }
421 
422 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
423 static inline bool napi_reschedule(struct napi_struct *napi)
424 {
425 	if (napi_schedule_prep(napi)) {
426 		__napi_schedule(napi);
427 		return true;
428 	}
429 	return false;
430 }
431 
432 /**
433  *	napi_complete - NAPI processing complete
434  *	@n: napi context
435  *
436  * Mark NAPI processing as complete.
437  */
438 void __napi_complete(struct napi_struct *n);
439 void napi_complete(struct napi_struct *n);
440 
441 /**
442  *	napi_by_id - lookup a NAPI by napi_id
443  *	@napi_id: hashed napi_id
444  *
445  * lookup @napi_id in napi_hash table
446  * must be called under rcu_read_lock()
447  */
448 struct napi_struct *napi_by_id(unsigned int napi_id);
449 
450 /**
451  *	napi_hash_add - add a NAPI to global hashtable
452  *	@napi: napi context
453  *
454  * generate a new napi_id and store a @napi under it in napi_hash
455  */
456 void napi_hash_add(struct napi_struct *napi);
457 
458 /**
459  *	napi_hash_del - remove a NAPI from global table
460  *	@napi: napi context
461  *
462  * Warning: caller must observe rcu grace period
463  * before freeing memory containing @napi
464  */
465 void napi_hash_del(struct napi_struct *napi);
466 
467 /**
468  *	napi_disable - prevent NAPI from scheduling
469  *	@n: napi context
470  *
471  * Stop NAPI from being scheduled on this context.
472  * Waits till any outstanding processing completes.
473  */
474 static inline void napi_disable(struct napi_struct *n)
475 {
476 	might_sleep();
477 	set_bit(NAPI_STATE_DISABLE, &n->state);
478 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
479 		msleep(1);
480 	clear_bit(NAPI_STATE_DISABLE, &n->state);
481 }
482 
483 /**
484  *	napi_enable - enable NAPI scheduling
485  *	@n: napi context
486  *
487  * Resume NAPI from being scheduled on this context.
488  * Must be paired with napi_disable.
489  */
490 static inline void napi_enable(struct napi_struct *n)
491 {
492 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
493 	smp_mb__before_atomic();
494 	clear_bit(NAPI_STATE_SCHED, &n->state);
495 }
496 
497 #ifdef CONFIG_SMP
498 /**
499  *	napi_synchronize - wait until NAPI is not running
500  *	@n: napi context
501  *
502  * Wait until NAPI is done being scheduled on this context.
503  * Waits till any outstanding processing completes but
504  * does not disable future activations.
505  */
506 static inline void napi_synchronize(const struct napi_struct *n)
507 {
508 	while (test_bit(NAPI_STATE_SCHED, &n->state))
509 		msleep(1);
510 }
511 #else
512 # define napi_synchronize(n)	barrier()
513 #endif
514 
515 enum netdev_queue_state_t {
516 	__QUEUE_STATE_DRV_XOFF,
517 	__QUEUE_STATE_STACK_XOFF,
518 	__QUEUE_STATE_FROZEN,
519 };
520 
521 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
522 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
523 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
524 
525 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
526 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
527 					QUEUE_STATE_FROZEN)
528 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
529 					QUEUE_STATE_FROZEN)
530 
531 /*
532  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
533  * netif_tx_* functions below are used to manipulate this flag.  The
534  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
535  * queue independently.  The netif_xmit_*stopped functions below are called
536  * to check if the queue has been stopped by the driver or stack (either
537  * of the XOFF bits are set in the state).  Drivers should not need to call
538  * netif_xmit*stopped functions, they should only be using netif_tx_*.
539  */
540 
541 struct netdev_queue {
542 /*
543  * read mostly part
544  */
545 	struct net_device	*dev;
546 	struct Qdisc		*qdisc;
547 	struct Qdisc		*qdisc_sleeping;
548 #ifdef CONFIG_SYSFS
549 	struct kobject		kobj;
550 #endif
551 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
552 	int			numa_node;
553 #endif
554 /*
555  * write mostly part
556  */
557 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
558 	int			xmit_lock_owner;
559 	/*
560 	 * please use this field instead of dev->trans_start
561 	 */
562 	unsigned long		trans_start;
563 
564 	/*
565 	 * Number of TX timeouts for this queue
566 	 * (/sys/class/net/DEV/Q/trans_timeout)
567 	 */
568 	unsigned long		trans_timeout;
569 
570 	unsigned long		state;
571 
572 #ifdef CONFIG_BQL
573 	struct dql		dql;
574 #endif
575 } ____cacheline_aligned_in_smp;
576 
577 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
578 {
579 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
580 	return q->numa_node;
581 #else
582 	return NUMA_NO_NODE;
583 #endif
584 }
585 
586 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
587 {
588 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
589 	q->numa_node = node;
590 #endif
591 }
592 
593 #ifdef CONFIG_RPS
594 /*
595  * This structure holds an RPS map which can be of variable length.  The
596  * map is an array of CPUs.
597  */
598 struct rps_map {
599 	unsigned int len;
600 	struct rcu_head rcu;
601 	u16 cpus[0];
602 };
603 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
604 
605 /*
606  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
607  * tail pointer for that CPU's input queue at the time of last enqueue, and
608  * a hardware filter index.
609  */
610 struct rps_dev_flow {
611 	u16 cpu;
612 	u16 filter;
613 	unsigned int last_qtail;
614 };
615 #define RPS_NO_FILTER 0xffff
616 
617 /*
618  * The rps_dev_flow_table structure contains a table of flow mappings.
619  */
620 struct rps_dev_flow_table {
621 	unsigned int mask;
622 	struct rcu_head rcu;
623 	struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626     ((_num) * sizeof(struct rps_dev_flow)))
627 
628 /*
629  * The rps_sock_flow_table contains mappings of flows to the last CPU
630  * on which they were processed by the application (set in recvmsg).
631  */
632 struct rps_sock_flow_table {
633 	unsigned int mask;
634 	u16 ents[0];
635 };
636 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637     ((_num) * sizeof(u16)))
638 
639 #define RPS_NO_CPU 0xffff
640 
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 					u32 hash)
643 {
644 	if (table && hash) {
645 		unsigned int cpu, index = hash & table->mask;
646 
647 		/* We only give a hint, preemption can change cpu under us */
648 		cpu = raw_smp_processor_id();
649 
650 		if (table->ents[index] != cpu)
651 			table->ents[index] = cpu;
652 	}
653 }
654 
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 				       u32 hash)
657 {
658 	if (table && hash)
659 		table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661 
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663 
664 #ifdef CONFIG_RFS_ACCEL
665 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
666 			 u16 filter_id);
667 #endif
668 #endif /* CONFIG_RPS */
669 
670 /* This structure contains an instance of an RX queue. */
671 struct netdev_rx_queue {
672 #ifdef CONFIG_RPS
673 	struct rps_map __rcu		*rps_map;
674 	struct rps_dev_flow_table __rcu	*rps_flow_table;
675 #endif
676 	struct kobject			kobj;
677 	struct net_device		*dev;
678 } ____cacheline_aligned_in_smp;
679 
680 /*
681  * RX queue sysfs structures and functions.
682  */
683 struct rx_queue_attribute {
684 	struct attribute attr;
685 	ssize_t (*show)(struct netdev_rx_queue *queue,
686 	    struct rx_queue_attribute *attr, char *buf);
687 	ssize_t (*store)(struct netdev_rx_queue *queue,
688 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
689 };
690 
691 #ifdef CONFIG_XPS
692 /*
693  * This structure holds an XPS map which can be of variable length.  The
694  * map is an array of queues.
695  */
696 struct xps_map {
697 	unsigned int len;
698 	unsigned int alloc_len;
699 	struct rcu_head rcu;
700 	u16 queues[0];
701 };
702 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
703 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
704     / sizeof(u16))
705 
706 /*
707  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
708  */
709 struct xps_dev_maps {
710 	struct rcu_head rcu;
711 	struct xps_map __rcu *cpu_map[0];
712 };
713 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
714     (nr_cpu_ids * sizeof(struct xps_map *)))
715 #endif /* CONFIG_XPS */
716 
717 #define TC_MAX_QUEUE	16
718 #define TC_BITMASK	15
719 /* HW offloaded queuing disciplines txq count and offset maps */
720 struct netdev_tc_txq {
721 	u16 count;
722 	u16 offset;
723 };
724 
725 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
726 /*
727  * This structure is to hold information about the device
728  * configured to run FCoE protocol stack.
729  */
730 struct netdev_fcoe_hbainfo {
731 	char	manufacturer[64];
732 	char	serial_number[64];
733 	char	hardware_version[64];
734 	char	driver_version[64];
735 	char	optionrom_version[64];
736 	char	firmware_version[64];
737 	char	model[256];
738 	char	model_description[256];
739 };
740 #endif
741 
742 #define MAX_PHYS_PORT_ID_LEN 32
743 
744 /* This structure holds a unique identifier to identify the
745  * physical port used by a netdevice.
746  */
747 struct netdev_phys_port_id {
748 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
749 	unsigned char id_len;
750 };
751 
752 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
753 				       struct sk_buff *skb);
754 
755 /*
756  * This structure defines the management hooks for network devices.
757  * The following hooks can be defined; unless noted otherwise, they are
758  * optional and can be filled with a null pointer.
759  *
760  * int (*ndo_init)(struct net_device *dev);
761  *     This function is called once when network device is registered.
762  *     The network device can use this to any late stage initializaton
763  *     or semantic validattion. It can fail with an error code which will
764  *     be propogated back to register_netdev
765  *
766  * void (*ndo_uninit)(struct net_device *dev);
767  *     This function is called when device is unregistered or when registration
768  *     fails. It is not called if init fails.
769  *
770  * int (*ndo_open)(struct net_device *dev);
771  *     This function is called when network device transistions to the up
772  *     state.
773  *
774  * int (*ndo_stop)(struct net_device *dev);
775  *     This function is called when network device transistions to the down
776  *     state.
777  *
778  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
779  *                               struct net_device *dev);
780  *	Called when a packet needs to be transmitted.
781  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
782  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
783  *	Required can not be NULL.
784  *
785  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
786  *                         void *accel_priv, select_queue_fallback_t fallback);
787  *	Called to decide which queue to when device supports multiple
788  *	transmit queues.
789  *
790  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
791  *	This function is called to allow device receiver to make
792  *	changes to configuration when multicast or promiscious is enabled.
793  *
794  * void (*ndo_set_rx_mode)(struct net_device *dev);
795  *	This function is called device changes address list filtering.
796  *	If driver handles unicast address filtering, it should set
797  *	IFF_UNICAST_FLT to its priv_flags.
798  *
799  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
800  *	This function  is called when the Media Access Control address
801  *	needs to be changed. If this interface is not defined, the
802  *	mac address can not be changed.
803  *
804  * int (*ndo_validate_addr)(struct net_device *dev);
805  *	Test if Media Access Control address is valid for the device.
806  *
807  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
808  *	Called when a user request an ioctl which can't be handled by
809  *	the generic interface code. If not defined ioctl's return
810  *	not supported error code.
811  *
812  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
813  *	Used to set network devices bus interface parameters. This interface
814  *	is retained for legacy reason, new devices should use the bus
815  *	interface (PCI) for low level management.
816  *
817  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
818  *	Called when a user wants to change the Maximum Transfer Unit
819  *	of a device. If not defined, any request to change MTU will
820  *	will return an error.
821  *
822  * void (*ndo_tx_timeout)(struct net_device *dev);
823  *	Callback uses when the transmitter has not made any progress
824  *	for dev->watchdog ticks.
825  *
826  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
827  *                      struct rtnl_link_stats64 *storage);
828  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
829  *	Called when a user wants to get the network device usage
830  *	statistics. Drivers must do one of the following:
831  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
832  *	   rtnl_link_stats64 structure passed by the caller.
833  *	2. Define @ndo_get_stats to update a net_device_stats structure
834  *	   (which should normally be dev->stats) and return a pointer to
835  *	   it. The structure may be changed asynchronously only if each
836  *	   field is written atomically.
837  *	3. Update dev->stats asynchronously and atomically, and define
838  *	   neither operation.
839  *
840  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
841  *	If device support VLAN filtering this function is called when a
842  *	VLAN id is registered.
843  *
844  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
845  *	If device support VLAN filtering this function is called when a
846  *	VLAN id is unregistered.
847  *
848  * void (*ndo_poll_controller)(struct net_device *dev);
849  *
850  *	SR-IOV management functions.
851  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
852  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
853  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
854  *			  int max_tx_rate);
855  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
856  * int (*ndo_get_vf_config)(struct net_device *dev,
857  *			    int vf, struct ifla_vf_info *ivf);
858  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
859  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
860  *			  struct nlattr *port[]);
861  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
862  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
863  * 	Called to setup 'tc' number of traffic classes in the net device. This
864  * 	is always called from the stack with the rtnl lock held and netif tx
865  * 	queues stopped. This allows the netdevice to perform queue management
866  * 	safely.
867  *
868  *	Fiber Channel over Ethernet (FCoE) offload functions.
869  * int (*ndo_fcoe_enable)(struct net_device *dev);
870  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
871  *	so the underlying device can perform whatever needed configuration or
872  *	initialization to support acceleration of FCoE traffic.
873  *
874  * int (*ndo_fcoe_disable)(struct net_device *dev);
875  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
876  *	so the underlying device can perform whatever needed clean-ups to
877  *	stop supporting acceleration of FCoE traffic.
878  *
879  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
880  *			     struct scatterlist *sgl, unsigned int sgc);
881  *	Called when the FCoE Initiator wants to initialize an I/O that
882  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
883  *	perform necessary setup and returns 1 to indicate the device is set up
884  *	successfully to perform DDP on this I/O, otherwise this returns 0.
885  *
886  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
887  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
888  *	indicated by the FC exchange id 'xid', so the underlying device can
889  *	clean up and reuse resources for later DDP requests.
890  *
891  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
892  *			      struct scatterlist *sgl, unsigned int sgc);
893  *	Called when the FCoE Target wants to initialize an I/O that
894  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
895  *	perform necessary setup and returns 1 to indicate the device is set up
896  *	successfully to perform DDP on this I/O, otherwise this returns 0.
897  *
898  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
899  *			       struct netdev_fcoe_hbainfo *hbainfo);
900  *	Called when the FCoE Protocol stack wants information on the underlying
901  *	device. This information is utilized by the FCoE protocol stack to
902  *	register attributes with Fiber Channel management service as per the
903  *	FC-GS Fabric Device Management Information(FDMI) specification.
904  *
905  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
906  *	Called when the underlying device wants to override default World Wide
907  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
908  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
909  *	protocol stack to use.
910  *
911  *	RFS acceleration.
912  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
913  *			    u16 rxq_index, u32 flow_id);
914  *	Set hardware filter for RFS.  rxq_index is the target queue index;
915  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
916  *	Return the filter ID on success, or a negative error code.
917  *
918  *	Slave management functions (for bridge, bonding, etc).
919  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
920  *	Called to make another netdev an underling.
921  *
922  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
923  *	Called to release previously enslaved netdev.
924  *
925  *      Feature/offload setting functions.
926  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
927  *		netdev_features_t features);
928  *	Adjusts the requested feature flags according to device-specific
929  *	constraints, and returns the resulting flags. Must not modify
930  *	the device state.
931  *
932  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
933  *	Called to update device configuration to new features. Passed
934  *	feature set might be less than what was returned by ndo_fix_features()).
935  *	Must return >0 or -errno if it changed dev->features itself.
936  *
937  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
938  *		      struct net_device *dev,
939  *		      const unsigned char *addr, u16 flags)
940  *	Adds an FDB entry to dev for addr.
941  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
942  *		      struct net_device *dev,
943  *		      const unsigned char *addr)
944  *	Deletes the FDB entry from dev coresponding to addr.
945  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
946  *		       struct net_device *dev, struct net_device *filter_dev,
947  *		       int idx)
948  *	Used to add FDB entries to dump requests. Implementers should add
949  *	entries to skb and update idx with the number of entries.
950  *
951  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
952  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
953  *			     struct net_device *dev, u32 filter_mask)
954  *
955  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
956  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
957  *	which do not represent real hardware may define this to allow their
958  *	userspace components to manage their virtual carrier state. Devices
959  *	that determine carrier state from physical hardware properties (eg
960  *	network cables) or protocol-dependent mechanisms (eg
961  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
962  *
963  * int (*ndo_get_phys_port_id)(struct net_device *dev,
964  *			       struct netdev_phys_port_id *ppid);
965  *	Called to get ID of physical port of this device. If driver does
966  *	not implement this, it is assumed that the hw is not able to have
967  *	multiple net devices on single physical port.
968  *
969  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
970  *			      sa_family_t sa_family, __be16 port);
971  *	Called by vxlan to notiy a driver about the UDP port and socket
972  *	address family that vxlan is listnening to. It is called only when
973  *	a new port starts listening. The operation is protected by the
974  *	vxlan_net->sock_lock.
975  *
976  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
977  *			      sa_family_t sa_family, __be16 port);
978  *	Called by vxlan to notify the driver about a UDP port and socket
979  *	address family that vxlan is not listening to anymore. The operation
980  *	is protected by the vxlan_net->sock_lock.
981  *
982  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
983  *				 struct net_device *dev)
984  *	Called by upper layer devices to accelerate switching or other
985  *	station functionality into hardware. 'pdev is the lowerdev
986  *	to use for the offload and 'dev' is the net device that will
987  *	back the offload. Returns a pointer to the private structure
988  *	the upper layer will maintain.
989  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
990  *	Called by upper layer device to delete the station created
991  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
992  *	the station and priv is the structure returned by the add
993  *	operation.
994  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
995  *				      struct net_device *dev,
996  *				      void *priv);
997  *	Callback to use for xmit over the accelerated station. This
998  *	is used in place of ndo_start_xmit on accelerated net
999  *	devices.
1000  */
1001 struct net_device_ops {
1002 	int			(*ndo_init)(struct net_device *dev);
1003 	void			(*ndo_uninit)(struct net_device *dev);
1004 	int			(*ndo_open)(struct net_device *dev);
1005 	int			(*ndo_stop)(struct net_device *dev);
1006 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1007 						   struct net_device *dev);
1008 	u16			(*ndo_select_queue)(struct net_device *dev,
1009 						    struct sk_buff *skb,
1010 						    void *accel_priv,
1011 						    select_queue_fallback_t fallback);
1012 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1013 						       int flags);
1014 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1015 	int			(*ndo_set_mac_address)(struct net_device *dev,
1016 						       void *addr);
1017 	int			(*ndo_validate_addr)(struct net_device *dev);
1018 	int			(*ndo_do_ioctl)(struct net_device *dev,
1019 					        struct ifreq *ifr, int cmd);
1020 	int			(*ndo_set_config)(struct net_device *dev,
1021 					          struct ifmap *map);
1022 	int			(*ndo_change_mtu)(struct net_device *dev,
1023 						  int new_mtu);
1024 	int			(*ndo_neigh_setup)(struct net_device *dev,
1025 						   struct neigh_parms *);
1026 	void			(*ndo_tx_timeout) (struct net_device *dev);
1027 
1028 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1029 						     struct rtnl_link_stats64 *storage);
1030 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1031 
1032 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1033 						       __be16 proto, u16 vid);
1034 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1035 						        __be16 proto, u16 vid);
1036 #ifdef CONFIG_NET_POLL_CONTROLLER
1037 	void                    (*ndo_poll_controller)(struct net_device *dev);
1038 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1039 						     struct netpoll_info *info);
1040 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1041 #endif
1042 #ifdef CONFIG_NET_RX_BUSY_POLL
1043 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1044 #endif
1045 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1046 						  int queue, u8 *mac);
1047 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1048 						   int queue, u16 vlan, u8 qos);
1049 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1050 						   int vf, int min_tx_rate,
1051 						   int max_tx_rate);
1052 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1053 						       int vf, bool setting);
1054 	int			(*ndo_get_vf_config)(struct net_device *dev,
1055 						     int vf,
1056 						     struct ifla_vf_info *ivf);
1057 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1058 							 int vf, int link_state);
1059 	int			(*ndo_set_vf_port)(struct net_device *dev,
1060 						   int vf,
1061 						   struct nlattr *port[]);
1062 	int			(*ndo_get_vf_port)(struct net_device *dev,
1063 						   int vf, struct sk_buff *skb);
1064 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1065 #if IS_ENABLED(CONFIG_FCOE)
1066 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1067 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1068 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1069 						      u16 xid,
1070 						      struct scatterlist *sgl,
1071 						      unsigned int sgc);
1072 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1073 						     u16 xid);
1074 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1075 						       u16 xid,
1076 						       struct scatterlist *sgl,
1077 						       unsigned int sgc);
1078 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1079 							struct netdev_fcoe_hbainfo *hbainfo);
1080 #endif
1081 
1082 #if IS_ENABLED(CONFIG_LIBFCOE)
1083 #define NETDEV_FCOE_WWNN 0
1084 #define NETDEV_FCOE_WWPN 1
1085 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1086 						    u64 *wwn, int type);
1087 #endif
1088 
1089 #ifdef CONFIG_RFS_ACCEL
1090 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1091 						     const struct sk_buff *skb,
1092 						     u16 rxq_index,
1093 						     u32 flow_id);
1094 #endif
1095 	int			(*ndo_add_slave)(struct net_device *dev,
1096 						 struct net_device *slave_dev);
1097 	int			(*ndo_del_slave)(struct net_device *dev,
1098 						 struct net_device *slave_dev);
1099 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1100 						    netdev_features_t features);
1101 	int			(*ndo_set_features)(struct net_device *dev,
1102 						    netdev_features_t features);
1103 	int			(*ndo_neigh_construct)(struct neighbour *n);
1104 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1105 
1106 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1107 					       struct nlattr *tb[],
1108 					       struct net_device *dev,
1109 					       const unsigned char *addr,
1110 					       u16 flags);
1111 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1112 					       struct nlattr *tb[],
1113 					       struct net_device *dev,
1114 					       const unsigned char *addr);
1115 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1116 						struct netlink_callback *cb,
1117 						struct net_device *dev,
1118 						struct net_device *filter_dev,
1119 						int idx);
1120 
1121 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1122 						      struct nlmsghdr *nlh);
1123 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1124 						      u32 pid, u32 seq,
1125 						      struct net_device *dev,
1126 						      u32 filter_mask);
1127 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1128 						      struct nlmsghdr *nlh);
1129 	int			(*ndo_change_carrier)(struct net_device *dev,
1130 						      bool new_carrier);
1131 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1132 							struct netdev_phys_port_id *ppid);
1133 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1134 						      sa_family_t sa_family,
1135 						      __be16 port);
1136 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1137 						      sa_family_t sa_family,
1138 						      __be16 port);
1139 
1140 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1141 							struct net_device *dev);
1142 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1143 							void *priv);
1144 
1145 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1146 							struct net_device *dev,
1147 							void *priv);
1148 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1149 };
1150 
1151 /**
1152  * enum net_device_priv_flags - &struct net_device priv_flags
1153  *
1154  * These are the &struct net_device, they are only set internally
1155  * by drivers and used in the kernel. These flags are invisible to
1156  * userspace, this means that the order of these flags can change
1157  * during any kernel release.
1158  *
1159  * You should have a pretty good reason to be extending these flags.
1160  *
1161  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1162  * @IFF_EBRIDGE: Ethernet bridging device
1163  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1164  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1165  * @IFF_MASTER_ALB: bonding master, balance-alb
1166  * @IFF_BONDING: bonding master or slave
1167  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1168  * @IFF_ISATAP: ISATAP interface (RFC4214)
1169  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1170  * @IFF_WAN_HDLC: WAN HDLC device
1171  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1172  *	release skb->dst
1173  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1174  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1175  * @IFF_MACVLAN_PORT: device used as macvlan port
1176  * @IFF_BRIDGE_PORT: device used as bridge port
1177  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1178  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1179  * @IFF_UNICAST_FLT: Supports unicast filtering
1180  * @IFF_TEAM_PORT: device used as team port
1181  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1182  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1183  *	change when it's running
1184  * @IFF_MACVLAN: Macvlan device
1185  */
1186 enum netdev_priv_flags {
1187 	IFF_802_1Q_VLAN			= 1<<0,
1188 	IFF_EBRIDGE			= 1<<1,
1189 	IFF_SLAVE_INACTIVE		= 1<<2,
1190 	IFF_MASTER_8023AD		= 1<<3,
1191 	IFF_MASTER_ALB			= 1<<4,
1192 	IFF_BONDING			= 1<<5,
1193 	IFF_SLAVE_NEEDARP		= 1<<6,
1194 	IFF_ISATAP			= 1<<7,
1195 	IFF_MASTER_ARPMON		= 1<<8,
1196 	IFF_WAN_HDLC			= 1<<9,
1197 	IFF_XMIT_DST_RELEASE		= 1<<10,
1198 	IFF_DONT_BRIDGE			= 1<<11,
1199 	IFF_DISABLE_NETPOLL		= 1<<12,
1200 	IFF_MACVLAN_PORT		= 1<<13,
1201 	IFF_BRIDGE_PORT			= 1<<14,
1202 	IFF_OVS_DATAPATH		= 1<<15,
1203 	IFF_TX_SKB_SHARING		= 1<<16,
1204 	IFF_UNICAST_FLT			= 1<<17,
1205 	IFF_TEAM_PORT			= 1<<18,
1206 	IFF_SUPP_NOFCS			= 1<<19,
1207 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1208 	IFF_MACVLAN			= 1<<21,
1209 };
1210 
1211 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1212 #define IFF_EBRIDGE			IFF_EBRIDGE
1213 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1214 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1215 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1216 #define IFF_BONDING			IFF_BONDING
1217 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1218 #define IFF_ISATAP			IFF_ISATAP
1219 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1220 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1221 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1222 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1223 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1224 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1225 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1226 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1227 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1228 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1229 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1230 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1231 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1232 #define IFF_MACVLAN			IFF_MACVLAN
1233 
1234 /**
1235  *	struct net_device - The DEVICE structure.
1236  *		Actually, this whole structure is a big mistake.  It mixes I/O
1237  *		data with strictly "high-level" data, and it has to know about
1238  *		almost every data structure used in the INET module.
1239  *
1240  *	@name:	This is the first field of the "visible" part of this structure
1241  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1242  *	 	of the interface.
1243  *
1244  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1245  *	@ifalias:	SNMP alias
1246  *	@mem_end:	Shared memory end
1247  *	@mem_start:	Shared memory start
1248  *	@base_addr:	Device I/O address
1249  *	@irq:		Device IRQ number
1250  *
1251  *	@state:		Generic network queuing layer state, see netdev_state_t
1252  *	@dev_list:	The global list of network devices
1253  *	@napi_list:	List entry, that is used for polling napi devices
1254  *	@unreg_list:	List entry, that is used, when we are unregistering the
1255  *			device, see the function unregister_netdev
1256  *	@close_list:	List entry, that is used, when we are closing the device
1257  *
1258  *	@adj_list:	Directly linked devices, like slaves for bonding
1259  *	@all_adj_list:	All linked devices, *including* neighbours
1260  *	@features:	Currently active device features
1261  *	@hw_features:	User-changeable features
1262  *
1263  *	@wanted_features:	User-requested features
1264  *	@vlan_features:		Mask of features inheritable by VLAN devices
1265  *
1266  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1267  *				This field indicates what encapsulation
1268  *				offloads the hardware is capable of doing,
1269  *				and drivers will need to set them appropriately.
1270  *
1271  *	@mpls_features:	Mask of features inheritable by MPLS
1272  *
1273  *	@ifindex:	interface index
1274  *	@iflink:	unique device identifier
1275  *
1276  *	@stats:		Statistics struct, which was left as a legacy, use
1277  *			rtnl_link_stats64 instead
1278  *
1279  *	@rx_dropped:	Dropped packets by core network,
1280  *			do not use this in drivers
1281  *	@tx_dropped:	Dropped packets by core network,
1282  *			do not use this in drivers
1283  *
1284  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1285  *
1286  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1287  *				instead of ioctl,
1288  *				see <net/iw_handler.h> for details.
1289  *	@wireless_data:	Instance data managed by the core of wireless extensions
1290  *
1291  *	@netdev_ops:	Includes several pointers to callbacks,
1292  *			if one wants to override the ndo_*() functions
1293  *	@ethtool_ops:	Management operations
1294  *	@fwd_ops:	Management operations
1295  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1296  *			of Layer 2 headers.
1297  *
1298  *	@flags:		Interface flags (a la BSD)
1299  *	@priv_flags:	Like 'flags' but invisible to userspace,
1300  *			see if.h for the definitions
1301  *	@gflags:	Global flags ( kept as legacy )
1302  *	@padded:	How much padding added by alloc_netdev()
1303  *	@operstate:	RFC2863 operstate
1304  *	@link_mode:	Mapping policy to operstate
1305  *	@if_port:	Selectable AUI, TP, ...
1306  *	@dma:		DMA channel
1307  *	@mtu:		Interface MTU value
1308  *	@type:		Interface hardware type
1309  *	@hard_header_len: Hardware header length
1310  *
1311  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1312  *			  cases can this be guaranteed
1313  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1314  *			  cases can this be guaranteed. Some cases also use
1315  *			  LL_MAX_HEADER instead to allocate the skb
1316  *
1317  *	interface address info:
1318  *
1319  * 	@perm_addr:		Permanent hw address
1320  * 	@addr_assign_type:	Hw address assignment type
1321  * 	@addr_len:		Hardware address length
1322  * 	@neigh_priv_len;	Used in neigh_alloc(),
1323  * 				initialized only in atm/clip.c
1324  * 	@dev_id:		Used to differentiate devices that share
1325  * 				the same link layer address
1326  * 	@dev_port:		Used to differentiate devices that share
1327  * 				the same function
1328  *	@addr_list_lock:	XXX: need comments on this one
1329  *	@uc:			unicast mac addresses
1330  *	@mc:			multicast mac addresses
1331  *	@dev_addrs:		list of device hw addresses
1332  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1333  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1334  *				has been enabled due to the need to listen to
1335  *				additional unicast addresses in a device that
1336  *				does not implement ndo_set_rx_mode()
1337  *	@promiscuity:		Number of times, the NIC is told to work in
1338  *				Promiscuous mode, if it becomes 0 the NIC will
1339  *				exit from working in Promiscuous mode
1340  *	@allmulti:		Counter, enables or disables allmulticast mode
1341  *
1342  *	@vlan_info:	VLAN info
1343  *	@dsa_ptr:	dsa specific data
1344  *	@tipc_ptr:	TIPC specific data
1345  *	@atalk_ptr:	AppleTalk link
1346  *	@ip_ptr:	IPv4 specific data
1347  *	@dn_ptr:	DECnet specific data
1348  *	@ip6_ptr:	IPv6 specific data
1349  *	@ax25_ptr:	AX.25 specific data
1350  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1351  *
1352  *	@last_rx:	Time of last Rx
1353  *	@dev_addr:	Hw address (before bcast,
1354  *			because most packets are unicast)
1355  *
1356  *	@_rx:			Array of RX queues
1357  *	@num_rx_queues:		Number of RX queues
1358  *				allocated at register_netdev() time
1359  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1360  *
1361  *	@rx_handler:		handler for received packets
1362  *	@rx_handler_data: 	XXX: need comments on this one
1363  *	@ingress_queue:		XXX: need comments on this one
1364  *	@broadcast:		hw bcast address
1365  *
1366  *	@_tx:			Array of TX queues
1367  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1368  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1369  *	@qdisc:			Root qdisc from userspace point of view
1370  *	@tx_queue_len:		Max frames per queue allowed
1371  *	@tx_global_lock: 	XXX: need comments on this one
1372  *
1373  *	@xps_maps:	XXX: need comments on this one
1374  *
1375  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1376  *			indexed by RX queue number. Assigned by driver.
1377  *			This must only be set if the ndo_rx_flow_steer
1378  *			operation is defined
1379  *
1380  *	@trans_start:		Time (in jiffies) of last Tx
1381  *	@watchdog_timeo:	Represents the timeout that is used by
1382  *				the watchdog ( see dev_watchdog() )
1383  *	@watchdog_timer:	List of timers
1384  *
1385  *	@pcpu_refcnt:		Number of references to this device
1386  *	@todo_list:		Delayed register/unregister
1387  *	@index_hlist:		Device index hash chain
1388  *	@link_watch_list:	XXX: need comments on this one
1389  *
1390  *	@reg_state:		Register/unregister state machine
1391  *	@dismantle:		Device is going to be freed
1392  *	@rtnl_link_state:	This enum represents the phases of creating
1393  *				a new link
1394  *
1395  *	@destructor:		Called from unregister,
1396  *				can be used to call free_netdev
1397  *	@npinfo:		XXX: need comments on this one
1398  * 	@nd_net:		Network namespace this network device is inside
1399  *
1400  * 	@ml_priv:	Mid-layer private
1401  * 	@lstats:	Loopback statistics
1402  * 	@tstats:	Tunnel statistics
1403  * 	@dstats:	Dummy statistics
1404  * 	@vstats:	Virtual ethernet statistics
1405  *
1406  *	@garp_port:	GARP
1407  *	@mrp_port:	MRP
1408  *
1409  *	@dev:		Class/net/name entry
1410  *	@sysfs_groups:	Space for optional device, statistics and wireless
1411  *			sysfs groups
1412  *
1413  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1414  *	@rtnl_link_ops:	Rtnl_link_ops
1415  *
1416  *	@gso_max_size:	Maximum size of generic segmentation offload
1417  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1418  *			NIC for GSO
1419  *
1420  *	@dcbnl_ops:	Data Center Bridging netlink ops
1421  *	@num_tc:	Number of traffic classes in the net device
1422  *	@tc_to_txq:	XXX: need comments on this one
1423  *	@prio_tc_map	XXX: need comments on this one
1424  *
1425  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1426  *
1427  *	@priomap:	XXX: need comments on this one
1428  *	@phydev:	Physical device may attach itself
1429  *			for hardware timestamping
1430  *
1431  *	@qdisc_tx_busylock:	XXX: need comments on this one
1432  *
1433  *	@group:		The group, that the device belongs to
1434  *	@pm_qos_req:	Power Management QoS object
1435  *
1436  *	FIXME: cleanup struct net_device such that network protocol info
1437  *	moves out.
1438  */
1439 
1440 struct net_device {
1441 	char			name[IFNAMSIZ];
1442 	struct hlist_node	name_hlist;
1443 	char 			*ifalias;
1444 	/*
1445 	 *	I/O specific fields
1446 	 *	FIXME: Merge these and struct ifmap into one
1447 	 */
1448 	unsigned long		mem_end;
1449 	unsigned long		mem_start;
1450 	unsigned long		base_addr;
1451 	int			irq;
1452 
1453 	/*
1454 	 *	Some hardware also needs these fields (state,dev_list,
1455 	 *	napi_list,unreg_list,close_list) but they are not
1456 	 *	part of the usual set specified in Space.c.
1457 	 */
1458 
1459 	unsigned long		state;
1460 
1461 	struct list_head	dev_list;
1462 	struct list_head	napi_list;
1463 	struct list_head	unreg_list;
1464 	struct list_head	close_list;
1465 
1466 	struct {
1467 		struct list_head upper;
1468 		struct list_head lower;
1469 	} adj_list;
1470 
1471 	struct {
1472 		struct list_head upper;
1473 		struct list_head lower;
1474 	} all_adj_list;
1475 
1476 	netdev_features_t	features;
1477 	netdev_features_t	hw_features;
1478 	netdev_features_t	wanted_features;
1479 	netdev_features_t	vlan_features;
1480 	netdev_features_t	hw_enc_features;
1481 	netdev_features_t	mpls_features;
1482 
1483 	int			ifindex;
1484 	int			iflink;
1485 
1486 	struct net_device_stats	stats;
1487 
1488 	atomic_long_t		rx_dropped;
1489 	atomic_long_t		tx_dropped;
1490 
1491 	atomic_t		carrier_changes;
1492 
1493 #ifdef CONFIG_WIRELESS_EXT
1494 	const struct iw_handler_def *	wireless_handlers;
1495 	struct iw_public_data *	wireless_data;
1496 #endif
1497 	const struct net_device_ops *netdev_ops;
1498 	const struct ethtool_ops *ethtool_ops;
1499 	const struct forwarding_accel_ops *fwd_ops;
1500 
1501 	const struct header_ops *header_ops;
1502 
1503 	unsigned int		flags;
1504 	unsigned int		priv_flags;
1505 
1506 	unsigned short		gflags;
1507 	unsigned short		padded;
1508 
1509 	unsigned char		operstate;
1510 	unsigned char		link_mode;
1511 
1512 	unsigned char		if_port;
1513 	unsigned char		dma;
1514 
1515 	unsigned int		mtu;
1516 	unsigned short		type;
1517 	unsigned short		hard_header_len;
1518 
1519 	unsigned short		needed_headroom;
1520 	unsigned short		needed_tailroom;
1521 
1522 	/* Interface address info. */
1523 	unsigned char		perm_addr[MAX_ADDR_LEN];
1524 	unsigned char		addr_assign_type;
1525 	unsigned char		addr_len;
1526 	unsigned short		neigh_priv_len;
1527 	unsigned short          dev_id;
1528 	unsigned short          dev_port;
1529 	spinlock_t		addr_list_lock;
1530 	struct netdev_hw_addr_list	uc;
1531 	struct netdev_hw_addr_list	mc;
1532 	struct netdev_hw_addr_list	dev_addrs;
1533 
1534 #ifdef CONFIG_SYSFS
1535 	struct kset		*queues_kset;
1536 #endif
1537 
1538 	unsigned char		name_assign_type;
1539 
1540 	bool			uc_promisc;
1541 	unsigned int		promiscuity;
1542 	unsigned int		allmulti;
1543 
1544 
1545 	/* Protocol specific pointers */
1546 
1547 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1548 	struct vlan_info __rcu	*vlan_info;
1549 #endif
1550 #if IS_ENABLED(CONFIG_NET_DSA)
1551 	struct dsa_switch_tree	*dsa_ptr;
1552 #endif
1553 #if IS_ENABLED(CONFIG_TIPC)
1554 	struct tipc_bearer __rcu *tipc_ptr;
1555 #endif
1556 	void 			*atalk_ptr;
1557 	struct in_device __rcu	*ip_ptr;
1558 	struct dn_dev __rcu     *dn_ptr;
1559 	struct inet6_dev __rcu	*ip6_ptr;
1560 	void			*ax25_ptr;
1561 	struct wireless_dev	*ieee80211_ptr;
1562 
1563 /*
1564  * Cache lines mostly used on receive path (including eth_type_trans())
1565  */
1566 	unsigned long		last_rx;
1567 
1568 	/* Interface address info used in eth_type_trans() */
1569 	unsigned char		*dev_addr;
1570 
1571 
1572 #ifdef CONFIG_SYSFS
1573 	struct netdev_rx_queue	*_rx;
1574 
1575 	unsigned int		num_rx_queues;
1576 	unsigned int		real_num_rx_queues;
1577 
1578 #endif
1579 
1580 	rx_handler_func_t __rcu	*rx_handler;
1581 	void __rcu		*rx_handler_data;
1582 
1583 	struct netdev_queue __rcu *ingress_queue;
1584 	unsigned char		broadcast[MAX_ADDR_LEN];
1585 
1586 
1587 /*
1588  * Cache lines mostly used on transmit path
1589  */
1590 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1591 	unsigned int		num_tx_queues;
1592 	unsigned int		real_num_tx_queues;
1593 	struct Qdisc		*qdisc;
1594 	unsigned long		tx_queue_len;
1595 	spinlock_t		tx_global_lock;
1596 
1597 #ifdef CONFIG_XPS
1598 	struct xps_dev_maps __rcu *xps_maps;
1599 #endif
1600 #ifdef CONFIG_RFS_ACCEL
1601 	struct cpu_rmap		*rx_cpu_rmap;
1602 #endif
1603 
1604 	/* These may be needed for future network-power-down code. */
1605 
1606 	/*
1607 	 * trans_start here is expensive for high speed devices on SMP,
1608 	 * please use netdev_queue->trans_start instead.
1609 	 */
1610 	unsigned long		trans_start;
1611 
1612 	int			watchdog_timeo;
1613 	struct timer_list	watchdog_timer;
1614 
1615 	int __percpu		*pcpu_refcnt;
1616 	struct list_head	todo_list;
1617 
1618 	struct hlist_node	index_hlist;
1619 	struct list_head	link_watch_list;
1620 
1621 	enum { NETREG_UNINITIALIZED=0,
1622 	       NETREG_REGISTERED,	/* completed register_netdevice */
1623 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1624 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1625 	       NETREG_RELEASED,		/* called free_netdev */
1626 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1627 	} reg_state:8;
1628 
1629 	bool dismantle;
1630 
1631 	enum {
1632 		RTNL_LINK_INITIALIZED,
1633 		RTNL_LINK_INITIALIZING,
1634 	} rtnl_link_state:16;
1635 
1636 	void (*destructor)(struct net_device *dev);
1637 
1638 #ifdef CONFIG_NETPOLL
1639 	struct netpoll_info __rcu	*npinfo;
1640 #endif
1641 
1642 #ifdef CONFIG_NET_NS
1643 	struct net		*nd_net;
1644 #endif
1645 
1646 	/* mid-layer private */
1647 	union {
1648 		void					*ml_priv;
1649 		struct pcpu_lstats __percpu		*lstats;
1650 		struct pcpu_sw_netstats __percpu	*tstats;
1651 		struct pcpu_dstats __percpu		*dstats;
1652 		struct pcpu_vstats __percpu		*vstats;
1653 	};
1654 
1655 	struct garp_port __rcu	*garp_port;
1656 	struct mrp_port __rcu	*mrp_port;
1657 
1658 	struct device	dev;
1659 	const struct attribute_group *sysfs_groups[4];
1660 	const struct attribute_group *sysfs_rx_queue_group;
1661 
1662 	const struct rtnl_link_ops *rtnl_link_ops;
1663 
1664 	/* for setting kernel sock attribute on TCP connection setup */
1665 #define GSO_MAX_SIZE		65536
1666 	unsigned int		gso_max_size;
1667 #define GSO_MAX_SEGS		65535
1668 	u16			gso_max_segs;
1669 
1670 #ifdef CONFIG_DCB
1671 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1672 #endif
1673 	u8 num_tc;
1674 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1675 	u8 prio_tc_map[TC_BITMASK + 1];
1676 
1677 #if IS_ENABLED(CONFIG_FCOE)
1678 	unsigned int		fcoe_ddp_xid;
1679 #endif
1680 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1681 	struct netprio_map __rcu *priomap;
1682 #endif
1683 	struct phy_device *phydev;
1684 	struct lock_class_key *qdisc_tx_busylock;
1685 	int group;
1686 	struct pm_qos_request	pm_qos_req;
1687 };
1688 #define to_net_dev(d) container_of(d, struct net_device, dev)
1689 
1690 #define	NETDEV_ALIGN		32
1691 
1692 static inline
1693 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1694 {
1695 	return dev->prio_tc_map[prio & TC_BITMASK];
1696 }
1697 
1698 static inline
1699 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1700 {
1701 	if (tc >= dev->num_tc)
1702 		return -EINVAL;
1703 
1704 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1705 	return 0;
1706 }
1707 
1708 static inline
1709 void netdev_reset_tc(struct net_device *dev)
1710 {
1711 	dev->num_tc = 0;
1712 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1713 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1714 }
1715 
1716 static inline
1717 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1718 {
1719 	if (tc >= dev->num_tc)
1720 		return -EINVAL;
1721 
1722 	dev->tc_to_txq[tc].count = count;
1723 	dev->tc_to_txq[tc].offset = offset;
1724 	return 0;
1725 }
1726 
1727 static inline
1728 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1729 {
1730 	if (num_tc > TC_MAX_QUEUE)
1731 		return -EINVAL;
1732 
1733 	dev->num_tc = num_tc;
1734 	return 0;
1735 }
1736 
1737 static inline
1738 int netdev_get_num_tc(struct net_device *dev)
1739 {
1740 	return dev->num_tc;
1741 }
1742 
1743 static inline
1744 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1745 					 unsigned int index)
1746 {
1747 	return &dev->_tx[index];
1748 }
1749 
1750 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1751 					    void (*f)(struct net_device *,
1752 						      struct netdev_queue *,
1753 						      void *),
1754 					    void *arg)
1755 {
1756 	unsigned int i;
1757 
1758 	for (i = 0; i < dev->num_tx_queues; i++)
1759 		f(dev, &dev->_tx[i], arg);
1760 }
1761 
1762 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1763 				    struct sk_buff *skb,
1764 				    void *accel_priv);
1765 
1766 /*
1767  * Net namespace inlines
1768  */
1769 static inline
1770 struct net *dev_net(const struct net_device *dev)
1771 {
1772 	return read_pnet(&dev->nd_net);
1773 }
1774 
1775 static inline
1776 void dev_net_set(struct net_device *dev, struct net *net)
1777 {
1778 #ifdef CONFIG_NET_NS
1779 	release_net(dev->nd_net);
1780 	dev->nd_net = hold_net(net);
1781 #endif
1782 }
1783 
1784 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1785 {
1786 #ifdef CONFIG_NET_DSA_TAG_DSA
1787 	if (dev->dsa_ptr != NULL)
1788 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1789 #endif
1790 
1791 	return 0;
1792 }
1793 
1794 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1795 {
1796 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1797 	if (dev->dsa_ptr != NULL)
1798 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1799 #endif
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  *	netdev_priv - access network device private data
1806  *	@dev: network device
1807  *
1808  * Get network device private data
1809  */
1810 static inline void *netdev_priv(const struct net_device *dev)
1811 {
1812 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1813 }
1814 
1815 /* Set the sysfs physical device reference for the network logical device
1816  * if set prior to registration will cause a symlink during initialization.
1817  */
1818 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1819 
1820 /* Set the sysfs device type for the network logical device to allow
1821  * fine-grained identification of different network device types. For
1822  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1823  */
1824 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1825 
1826 /* Default NAPI poll() weight
1827  * Device drivers are strongly advised to not use bigger value
1828  */
1829 #define NAPI_POLL_WEIGHT 64
1830 
1831 /**
1832  *	netif_napi_add - initialize a napi context
1833  *	@dev:  network device
1834  *	@napi: napi context
1835  *	@poll: polling function
1836  *	@weight: default weight
1837  *
1838  * netif_napi_add() must be used to initialize a napi context prior to calling
1839  * *any* of the other napi related functions.
1840  */
1841 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1842 		    int (*poll)(struct napi_struct *, int), int weight);
1843 
1844 /**
1845  *  netif_napi_del - remove a napi context
1846  *  @napi: napi context
1847  *
1848  *  netif_napi_del() removes a napi context from the network device napi list
1849  */
1850 void netif_napi_del(struct napi_struct *napi);
1851 
1852 struct napi_gro_cb {
1853 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1854 	void *frag0;
1855 
1856 	/* Length of frag0. */
1857 	unsigned int frag0_len;
1858 
1859 	/* This indicates where we are processing relative to skb->data. */
1860 	int data_offset;
1861 
1862 	/* This is non-zero if the packet cannot be merged with the new skb. */
1863 	u16	flush;
1864 
1865 	/* Save the IP ID here and check when we get to the transport layer */
1866 	u16	flush_id;
1867 
1868 	/* Number of segments aggregated. */
1869 	u16	count;
1870 
1871 	/* This is non-zero if the packet may be of the same flow. */
1872 	u8	same_flow;
1873 
1874 	/* Free the skb? */
1875 	u8	free;
1876 #define NAPI_GRO_FREE		  1
1877 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1878 
1879 	/* jiffies when first packet was created/queued */
1880 	unsigned long age;
1881 
1882 	/* Used in ipv6_gro_receive() */
1883 	u16	proto;
1884 
1885 	/* Used in udp_gro_receive */
1886 	u16	udp_mark;
1887 
1888 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1889 	__wsum	csum;
1890 
1891 	/* used in skb_gro_receive() slow path */
1892 	struct sk_buff *last;
1893 };
1894 
1895 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1896 
1897 struct packet_type {
1898 	__be16			type;	/* This is really htons(ether_type). */
1899 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1900 	int			(*func) (struct sk_buff *,
1901 					 struct net_device *,
1902 					 struct packet_type *,
1903 					 struct net_device *);
1904 	bool			(*id_match)(struct packet_type *ptype,
1905 					    struct sock *sk);
1906 	void			*af_packet_priv;
1907 	struct list_head	list;
1908 };
1909 
1910 struct offload_callbacks {
1911 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1912 						netdev_features_t features);
1913 	int			(*gso_send_check)(struct sk_buff *skb);
1914 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1915 					       struct sk_buff *skb);
1916 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1917 };
1918 
1919 struct packet_offload {
1920 	__be16			 type;	/* This is really htons(ether_type). */
1921 	struct offload_callbacks callbacks;
1922 	struct list_head	 list;
1923 };
1924 
1925 struct udp_offload {
1926 	__be16			 port;
1927 	struct offload_callbacks callbacks;
1928 };
1929 
1930 /* often modified stats are per cpu, other are shared (netdev->stats) */
1931 struct pcpu_sw_netstats {
1932 	u64     rx_packets;
1933 	u64     rx_bytes;
1934 	u64     tx_packets;
1935 	u64     tx_bytes;
1936 	struct u64_stats_sync   syncp;
1937 };
1938 
1939 #define netdev_alloc_pcpu_stats(type)				\
1940 ({								\
1941 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1942 	if (pcpu_stats)	{					\
1943 		int i;						\
1944 		for_each_possible_cpu(i) {			\
1945 			typeof(type) *stat;			\
1946 			stat = per_cpu_ptr(pcpu_stats, i);	\
1947 			u64_stats_init(&stat->syncp);		\
1948 		}						\
1949 	}							\
1950 	pcpu_stats;						\
1951 })
1952 
1953 #include <linux/notifier.h>
1954 
1955 /* netdevice notifier chain. Please remember to update the rtnetlink
1956  * notification exclusion list in rtnetlink_event() when adding new
1957  * types.
1958  */
1959 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1960 #define NETDEV_DOWN	0x0002
1961 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1962 				   detected a hardware crash and restarted
1963 				   - we can use this eg to kick tcp sessions
1964 				   once done */
1965 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1966 #define NETDEV_REGISTER 0x0005
1967 #define NETDEV_UNREGISTER	0x0006
1968 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
1969 #define NETDEV_CHANGEADDR	0x0008
1970 #define NETDEV_GOING_DOWN	0x0009
1971 #define NETDEV_CHANGENAME	0x000A
1972 #define NETDEV_FEAT_CHANGE	0x000B
1973 #define NETDEV_BONDING_FAILOVER 0x000C
1974 #define NETDEV_PRE_UP		0x000D
1975 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1976 #define NETDEV_POST_TYPE_CHANGE	0x000F
1977 #define NETDEV_POST_INIT	0x0010
1978 #define NETDEV_UNREGISTER_FINAL 0x0011
1979 #define NETDEV_RELEASE		0x0012
1980 #define NETDEV_NOTIFY_PEERS	0x0013
1981 #define NETDEV_JOIN		0x0014
1982 #define NETDEV_CHANGEUPPER	0x0015
1983 #define NETDEV_RESEND_IGMP	0x0016
1984 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
1985 
1986 int register_netdevice_notifier(struct notifier_block *nb);
1987 int unregister_netdevice_notifier(struct notifier_block *nb);
1988 
1989 struct netdev_notifier_info {
1990 	struct net_device *dev;
1991 };
1992 
1993 struct netdev_notifier_change_info {
1994 	struct netdev_notifier_info info; /* must be first */
1995 	unsigned int flags_changed;
1996 };
1997 
1998 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1999 					     struct net_device *dev)
2000 {
2001 	info->dev = dev;
2002 }
2003 
2004 static inline struct net_device *
2005 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2006 {
2007 	return info->dev;
2008 }
2009 
2010 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2011 
2012 
2013 extern rwlock_t				dev_base_lock;		/* Device list lock */
2014 
2015 #define for_each_netdev(net, d)		\
2016 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2017 #define for_each_netdev_reverse(net, d)	\
2018 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2019 #define for_each_netdev_rcu(net, d)		\
2020 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2021 #define for_each_netdev_safe(net, d, n)	\
2022 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2023 #define for_each_netdev_continue(net, d)		\
2024 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2025 #define for_each_netdev_continue_rcu(net, d)		\
2026 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2027 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2028 		for_each_netdev_rcu(&init_net, slave)	\
2029 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
2030 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2031 
2032 static inline struct net_device *next_net_device(struct net_device *dev)
2033 {
2034 	struct list_head *lh;
2035 	struct net *net;
2036 
2037 	net = dev_net(dev);
2038 	lh = dev->dev_list.next;
2039 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2040 }
2041 
2042 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2043 {
2044 	struct list_head *lh;
2045 	struct net *net;
2046 
2047 	net = dev_net(dev);
2048 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2049 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2050 }
2051 
2052 static inline struct net_device *first_net_device(struct net *net)
2053 {
2054 	return list_empty(&net->dev_base_head) ? NULL :
2055 		net_device_entry(net->dev_base_head.next);
2056 }
2057 
2058 static inline struct net_device *first_net_device_rcu(struct net *net)
2059 {
2060 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2061 
2062 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2063 }
2064 
2065 int netdev_boot_setup_check(struct net_device *dev);
2066 unsigned long netdev_boot_base(const char *prefix, int unit);
2067 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2068 				       const char *hwaddr);
2069 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2071 void dev_add_pack(struct packet_type *pt);
2072 void dev_remove_pack(struct packet_type *pt);
2073 void __dev_remove_pack(struct packet_type *pt);
2074 void dev_add_offload(struct packet_offload *po);
2075 void dev_remove_offload(struct packet_offload *po);
2076 
2077 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
2078 					unsigned short mask);
2079 struct net_device *dev_get_by_name(struct net *net, const char *name);
2080 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2081 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2082 int dev_alloc_name(struct net_device *dev, const char *name);
2083 int dev_open(struct net_device *dev);
2084 int dev_close(struct net_device *dev);
2085 void dev_disable_lro(struct net_device *dev);
2086 int dev_loopback_xmit(struct sk_buff *newskb);
2087 int dev_queue_xmit(struct sk_buff *skb);
2088 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2089 int register_netdevice(struct net_device *dev);
2090 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2091 void unregister_netdevice_many(struct list_head *head);
2092 static inline void unregister_netdevice(struct net_device *dev)
2093 {
2094 	unregister_netdevice_queue(dev, NULL);
2095 }
2096 
2097 int netdev_refcnt_read(const struct net_device *dev);
2098 void free_netdev(struct net_device *dev);
2099 void netdev_freemem(struct net_device *dev);
2100 void synchronize_net(void);
2101 int init_dummy_netdev(struct net_device *dev);
2102 
2103 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2104 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2105 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2106 int netdev_get_name(struct net *net, char *name, int ifindex);
2107 int dev_restart(struct net_device *dev);
2108 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2109 
2110 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2111 {
2112 	return NAPI_GRO_CB(skb)->data_offset;
2113 }
2114 
2115 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2116 {
2117 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2118 }
2119 
2120 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2121 {
2122 	NAPI_GRO_CB(skb)->data_offset += len;
2123 }
2124 
2125 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2126 					unsigned int offset)
2127 {
2128 	return NAPI_GRO_CB(skb)->frag0 + offset;
2129 }
2130 
2131 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2132 {
2133 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2134 }
2135 
2136 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2137 					unsigned int offset)
2138 {
2139 	if (!pskb_may_pull(skb, hlen))
2140 		return NULL;
2141 
2142 	NAPI_GRO_CB(skb)->frag0 = NULL;
2143 	NAPI_GRO_CB(skb)->frag0_len = 0;
2144 	return skb->data + offset;
2145 }
2146 
2147 static inline void *skb_gro_network_header(struct sk_buff *skb)
2148 {
2149 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2150 	       skb_network_offset(skb);
2151 }
2152 
2153 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2154 					const void *start, unsigned int len)
2155 {
2156 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2157 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2158 						  csum_partial(start, len, 0));
2159 }
2160 
2161 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2162 				  unsigned short type,
2163 				  const void *daddr, const void *saddr,
2164 				  unsigned int len)
2165 {
2166 	if (!dev->header_ops || !dev->header_ops->create)
2167 		return 0;
2168 
2169 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2170 }
2171 
2172 static inline int dev_parse_header(const struct sk_buff *skb,
2173 				   unsigned char *haddr)
2174 {
2175 	const struct net_device *dev = skb->dev;
2176 
2177 	if (!dev->header_ops || !dev->header_ops->parse)
2178 		return 0;
2179 	return dev->header_ops->parse(skb, haddr);
2180 }
2181 
2182 static inline int dev_rebuild_header(struct sk_buff *skb)
2183 {
2184 	const struct net_device *dev = skb->dev;
2185 
2186 	if (!dev->header_ops || !dev->header_ops->rebuild)
2187 		return 0;
2188 	return dev->header_ops->rebuild(skb);
2189 }
2190 
2191 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2192 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2193 static inline int unregister_gifconf(unsigned int family)
2194 {
2195 	return register_gifconf(family, NULL);
2196 }
2197 
2198 #ifdef CONFIG_NET_FLOW_LIMIT
2199 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2200 struct sd_flow_limit {
2201 	u64			count;
2202 	unsigned int		num_buckets;
2203 	unsigned int		history_head;
2204 	u16			history[FLOW_LIMIT_HISTORY];
2205 	u8			buckets[];
2206 };
2207 
2208 extern int netdev_flow_limit_table_len;
2209 #endif /* CONFIG_NET_FLOW_LIMIT */
2210 
2211 /*
2212  * Incoming packets are placed on per-cpu queues
2213  */
2214 struct softnet_data {
2215 	struct Qdisc		*output_queue;
2216 	struct Qdisc		**output_queue_tailp;
2217 	struct list_head	poll_list;
2218 	struct sk_buff		*completion_queue;
2219 	struct sk_buff_head	process_queue;
2220 
2221 	/* stats */
2222 	unsigned int		processed;
2223 	unsigned int		time_squeeze;
2224 	unsigned int		cpu_collision;
2225 	unsigned int		received_rps;
2226 
2227 #ifdef CONFIG_RPS
2228 	struct softnet_data	*rps_ipi_list;
2229 
2230 	/* Elements below can be accessed between CPUs for RPS */
2231 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2232 	struct softnet_data	*rps_ipi_next;
2233 	unsigned int		cpu;
2234 	unsigned int		input_queue_head;
2235 	unsigned int		input_queue_tail;
2236 #endif
2237 	unsigned int		dropped;
2238 	struct sk_buff_head	input_pkt_queue;
2239 	struct napi_struct	backlog;
2240 
2241 #ifdef CONFIG_NET_FLOW_LIMIT
2242 	struct sd_flow_limit __rcu *flow_limit;
2243 #endif
2244 };
2245 
2246 static inline void input_queue_head_incr(struct softnet_data *sd)
2247 {
2248 #ifdef CONFIG_RPS
2249 	sd->input_queue_head++;
2250 #endif
2251 }
2252 
2253 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2254 					      unsigned int *qtail)
2255 {
2256 #ifdef CONFIG_RPS
2257 	*qtail = ++sd->input_queue_tail;
2258 #endif
2259 }
2260 
2261 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2262 
2263 void __netif_schedule(struct Qdisc *q);
2264 
2265 static inline void netif_schedule_queue(struct netdev_queue *txq)
2266 {
2267 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2268 		__netif_schedule(txq->qdisc);
2269 }
2270 
2271 static inline void netif_tx_schedule_all(struct net_device *dev)
2272 {
2273 	unsigned int i;
2274 
2275 	for (i = 0; i < dev->num_tx_queues; i++)
2276 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2277 }
2278 
2279 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2280 {
2281 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2282 }
2283 
2284 /**
2285  *	netif_start_queue - allow transmit
2286  *	@dev: network device
2287  *
2288  *	Allow upper layers to call the device hard_start_xmit routine.
2289  */
2290 static inline void netif_start_queue(struct net_device *dev)
2291 {
2292 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2293 }
2294 
2295 static inline void netif_tx_start_all_queues(struct net_device *dev)
2296 {
2297 	unsigned int i;
2298 
2299 	for (i = 0; i < dev->num_tx_queues; i++) {
2300 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2301 		netif_tx_start_queue(txq);
2302 	}
2303 }
2304 
2305 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2306 {
2307 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2308 		__netif_schedule(dev_queue->qdisc);
2309 }
2310 
2311 /**
2312  *	netif_wake_queue - restart transmit
2313  *	@dev: network device
2314  *
2315  *	Allow upper layers to call the device hard_start_xmit routine.
2316  *	Used for flow control when transmit resources are available.
2317  */
2318 static inline void netif_wake_queue(struct net_device *dev)
2319 {
2320 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2321 }
2322 
2323 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2324 {
2325 	unsigned int i;
2326 
2327 	for (i = 0; i < dev->num_tx_queues; i++) {
2328 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2329 		netif_tx_wake_queue(txq);
2330 	}
2331 }
2332 
2333 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2334 {
2335 	if (WARN_ON(!dev_queue)) {
2336 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2337 		return;
2338 	}
2339 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2340 }
2341 
2342 /**
2343  *	netif_stop_queue - stop transmitted packets
2344  *	@dev: network device
2345  *
2346  *	Stop upper layers calling the device hard_start_xmit routine.
2347  *	Used for flow control when transmit resources are unavailable.
2348  */
2349 static inline void netif_stop_queue(struct net_device *dev)
2350 {
2351 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2352 }
2353 
2354 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2355 {
2356 	unsigned int i;
2357 
2358 	for (i = 0; i < dev->num_tx_queues; i++) {
2359 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2360 		netif_tx_stop_queue(txq);
2361 	}
2362 }
2363 
2364 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2365 {
2366 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2367 }
2368 
2369 /**
2370  *	netif_queue_stopped - test if transmit queue is flowblocked
2371  *	@dev: network device
2372  *
2373  *	Test if transmit queue on device is currently unable to send.
2374  */
2375 static inline bool netif_queue_stopped(const struct net_device *dev)
2376 {
2377 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2378 }
2379 
2380 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2381 {
2382 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2383 }
2384 
2385 static inline bool
2386 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2387 {
2388 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2389 }
2390 
2391 static inline bool
2392 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2393 {
2394 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2395 }
2396 
2397 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2398 					unsigned int bytes)
2399 {
2400 #ifdef CONFIG_BQL
2401 	dql_queued(&dev_queue->dql, bytes);
2402 
2403 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2404 		return;
2405 
2406 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2407 
2408 	/*
2409 	 * The XOFF flag must be set before checking the dql_avail below,
2410 	 * because in netdev_tx_completed_queue we update the dql_completed
2411 	 * before checking the XOFF flag.
2412 	 */
2413 	smp_mb();
2414 
2415 	/* check again in case another CPU has just made room avail */
2416 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2417 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2418 #endif
2419 }
2420 
2421 /**
2422  * 	netdev_sent_queue - report the number of bytes queued to hardware
2423  * 	@dev: network device
2424  * 	@bytes: number of bytes queued to the hardware device queue
2425  *
2426  * 	Report the number of bytes queued for sending/completion to the network
2427  * 	device hardware queue. @bytes should be a good approximation and should
2428  * 	exactly match netdev_completed_queue() @bytes
2429  */
2430 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2431 {
2432 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2433 }
2434 
2435 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2436 					     unsigned int pkts, unsigned int bytes)
2437 {
2438 #ifdef CONFIG_BQL
2439 	if (unlikely(!bytes))
2440 		return;
2441 
2442 	dql_completed(&dev_queue->dql, bytes);
2443 
2444 	/*
2445 	 * Without the memory barrier there is a small possiblity that
2446 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2447 	 * be stopped forever
2448 	 */
2449 	smp_mb();
2450 
2451 	if (dql_avail(&dev_queue->dql) < 0)
2452 		return;
2453 
2454 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2455 		netif_schedule_queue(dev_queue);
2456 #endif
2457 }
2458 
2459 /**
2460  * 	netdev_completed_queue - report bytes and packets completed by device
2461  * 	@dev: network device
2462  * 	@pkts: actual number of packets sent over the medium
2463  * 	@bytes: actual number of bytes sent over the medium
2464  *
2465  * 	Report the number of bytes and packets transmitted by the network device
2466  * 	hardware queue over the physical medium, @bytes must exactly match the
2467  * 	@bytes amount passed to netdev_sent_queue()
2468  */
2469 static inline void netdev_completed_queue(struct net_device *dev,
2470 					  unsigned int pkts, unsigned int bytes)
2471 {
2472 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2473 }
2474 
2475 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2476 {
2477 #ifdef CONFIG_BQL
2478 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2479 	dql_reset(&q->dql);
2480 #endif
2481 }
2482 
2483 /**
2484  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2485  * 	@dev_queue: network device
2486  *
2487  * 	Reset the bytes and packet count of a network device and clear the
2488  * 	software flow control OFF bit for this network device
2489  */
2490 static inline void netdev_reset_queue(struct net_device *dev_queue)
2491 {
2492 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2493 }
2494 
2495 /**
2496  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2497  * 	@dev: network device
2498  * 	@queue_index: given tx queue index
2499  *
2500  * 	Returns 0 if given tx queue index >= number of device tx queues,
2501  * 	otherwise returns the originally passed tx queue index.
2502  */
2503 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2504 {
2505 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2506 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2507 				     dev->name, queue_index,
2508 				     dev->real_num_tx_queues);
2509 		return 0;
2510 	}
2511 
2512 	return queue_index;
2513 }
2514 
2515 /**
2516  *	netif_running - test if up
2517  *	@dev: network device
2518  *
2519  *	Test if the device has been brought up.
2520  */
2521 static inline bool netif_running(const struct net_device *dev)
2522 {
2523 	return test_bit(__LINK_STATE_START, &dev->state);
2524 }
2525 
2526 /*
2527  * Routines to manage the subqueues on a device.  We only need start
2528  * stop, and a check if it's stopped.  All other device management is
2529  * done at the overall netdevice level.
2530  * Also test the device if we're multiqueue.
2531  */
2532 
2533 /**
2534  *	netif_start_subqueue - allow sending packets on subqueue
2535  *	@dev: network device
2536  *	@queue_index: sub queue index
2537  *
2538  * Start individual transmit queue of a device with multiple transmit queues.
2539  */
2540 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2541 {
2542 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2543 
2544 	netif_tx_start_queue(txq);
2545 }
2546 
2547 /**
2548  *	netif_stop_subqueue - stop sending packets on subqueue
2549  *	@dev: network device
2550  *	@queue_index: sub queue index
2551  *
2552  * Stop individual transmit queue of a device with multiple transmit queues.
2553  */
2554 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2555 {
2556 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2557 	netif_tx_stop_queue(txq);
2558 }
2559 
2560 /**
2561  *	netif_subqueue_stopped - test status of subqueue
2562  *	@dev: network device
2563  *	@queue_index: sub queue index
2564  *
2565  * Check individual transmit queue of a device with multiple transmit queues.
2566  */
2567 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2568 					    u16 queue_index)
2569 {
2570 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2571 
2572 	return netif_tx_queue_stopped(txq);
2573 }
2574 
2575 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2576 					  struct sk_buff *skb)
2577 {
2578 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2579 }
2580 
2581 /**
2582  *	netif_wake_subqueue - allow sending packets on subqueue
2583  *	@dev: network device
2584  *	@queue_index: sub queue index
2585  *
2586  * Resume individual transmit queue of a device with multiple transmit queues.
2587  */
2588 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2589 {
2590 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2591 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2592 		__netif_schedule(txq->qdisc);
2593 }
2594 
2595 #ifdef CONFIG_XPS
2596 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2597 			u16 index);
2598 #else
2599 static inline int netif_set_xps_queue(struct net_device *dev,
2600 				      const struct cpumask *mask,
2601 				      u16 index)
2602 {
2603 	return 0;
2604 }
2605 #endif
2606 
2607 /*
2608  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2609  * as a distribution range limit for the returned value.
2610  */
2611 static inline u16 skb_tx_hash(const struct net_device *dev,
2612 			      struct sk_buff *skb)
2613 {
2614 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2615 }
2616 
2617 /**
2618  *	netif_is_multiqueue - test if device has multiple transmit queues
2619  *	@dev: network device
2620  *
2621  * Check if device has multiple transmit queues
2622  */
2623 static inline bool netif_is_multiqueue(const struct net_device *dev)
2624 {
2625 	return dev->num_tx_queues > 1;
2626 }
2627 
2628 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2629 
2630 #ifdef CONFIG_SYSFS
2631 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2632 #else
2633 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2634 						unsigned int rxq)
2635 {
2636 	return 0;
2637 }
2638 #endif
2639 
2640 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2641 					     const struct net_device *from_dev)
2642 {
2643 	int err;
2644 
2645 	err = netif_set_real_num_tx_queues(to_dev,
2646 					   from_dev->real_num_tx_queues);
2647 	if (err)
2648 		return err;
2649 #ifdef CONFIG_SYSFS
2650 	return netif_set_real_num_rx_queues(to_dev,
2651 					    from_dev->real_num_rx_queues);
2652 #else
2653 	return 0;
2654 #endif
2655 }
2656 
2657 #ifdef CONFIG_SYSFS
2658 static inline unsigned int get_netdev_rx_queue_index(
2659 		struct netdev_rx_queue *queue)
2660 {
2661 	struct net_device *dev = queue->dev;
2662 	int index = queue - dev->_rx;
2663 
2664 	BUG_ON(index >= dev->num_rx_queues);
2665 	return index;
2666 }
2667 #endif
2668 
2669 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2670 int netif_get_num_default_rss_queues(void);
2671 
2672 enum skb_free_reason {
2673 	SKB_REASON_CONSUMED,
2674 	SKB_REASON_DROPPED,
2675 };
2676 
2677 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2678 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2679 
2680 /*
2681  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2682  * interrupt context or with hardware interrupts being disabled.
2683  * (in_irq() || irqs_disabled())
2684  *
2685  * We provide four helpers that can be used in following contexts :
2686  *
2687  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2688  *  replacing kfree_skb(skb)
2689  *
2690  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2691  *  Typically used in place of consume_skb(skb) in TX completion path
2692  *
2693  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2694  *  replacing kfree_skb(skb)
2695  *
2696  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2697  *  and consumed a packet. Used in place of consume_skb(skb)
2698  */
2699 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2700 {
2701 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2702 }
2703 
2704 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2705 {
2706 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2707 }
2708 
2709 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2710 {
2711 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2712 }
2713 
2714 static inline void dev_consume_skb_any(struct sk_buff *skb)
2715 {
2716 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2717 }
2718 
2719 int netif_rx(struct sk_buff *skb);
2720 int netif_rx_ni(struct sk_buff *skb);
2721 int netif_receive_skb(struct sk_buff *skb);
2722 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2723 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2724 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2725 gro_result_t napi_gro_frags(struct napi_struct *napi);
2726 struct packet_offload *gro_find_receive_by_type(__be16 type);
2727 struct packet_offload *gro_find_complete_by_type(__be16 type);
2728 
2729 static inline void napi_free_frags(struct napi_struct *napi)
2730 {
2731 	kfree_skb(napi->skb);
2732 	napi->skb = NULL;
2733 }
2734 
2735 int netdev_rx_handler_register(struct net_device *dev,
2736 			       rx_handler_func_t *rx_handler,
2737 			       void *rx_handler_data);
2738 void netdev_rx_handler_unregister(struct net_device *dev);
2739 
2740 bool dev_valid_name(const char *name);
2741 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2742 int dev_ethtool(struct net *net, struct ifreq *);
2743 unsigned int dev_get_flags(const struct net_device *);
2744 int __dev_change_flags(struct net_device *, unsigned int flags);
2745 int dev_change_flags(struct net_device *, unsigned int);
2746 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2747 			unsigned int gchanges);
2748 int dev_change_name(struct net_device *, const char *);
2749 int dev_set_alias(struct net_device *, const char *, size_t);
2750 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2751 int dev_set_mtu(struct net_device *, int);
2752 void dev_set_group(struct net_device *, int);
2753 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2754 int dev_change_carrier(struct net_device *, bool new_carrier);
2755 int dev_get_phys_port_id(struct net_device *dev,
2756 			 struct netdev_phys_port_id *ppid);
2757 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2758 			struct netdev_queue *txq);
2759 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2760 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2761 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2762 
2763 extern int		netdev_budget;
2764 
2765 /* Called by rtnetlink.c:rtnl_unlock() */
2766 void netdev_run_todo(void);
2767 
2768 /**
2769  *	dev_put - release reference to device
2770  *	@dev: network device
2771  *
2772  * Release reference to device to allow it to be freed.
2773  */
2774 static inline void dev_put(struct net_device *dev)
2775 {
2776 	this_cpu_dec(*dev->pcpu_refcnt);
2777 }
2778 
2779 /**
2780  *	dev_hold - get reference to device
2781  *	@dev: network device
2782  *
2783  * Hold reference to device to keep it from being freed.
2784  */
2785 static inline void dev_hold(struct net_device *dev)
2786 {
2787 	this_cpu_inc(*dev->pcpu_refcnt);
2788 }
2789 
2790 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2791  * and _off may be called from IRQ context, but it is caller
2792  * who is responsible for serialization of these calls.
2793  *
2794  * The name carrier is inappropriate, these functions should really be
2795  * called netif_lowerlayer_*() because they represent the state of any
2796  * kind of lower layer not just hardware media.
2797  */
2798 
2799 void linkwatch_init_dev(struct net_device *dev);
2800 void linkwatch_fire_event(struct net_device *dev);
2801 void linkwatch_forget_dev(struct net_device *dev);
2802 
2803 /**
2804  *	netif_carrier_ok - test if carrier present
2805  *	@dev: network device
2806  *
2807  * Check if carrier is present on device
2808  */
2809 static inline bool netif_carrier_ok(const struct net_device *dev)
2810 {
2811 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2812 }
2813 
2814 unsigned long dev_trans_start(struct net_device *dev);
2815 
2816 void __netdev_watchdog_up(struct net_device *dev);
2817 
2818 void netif_carrier_on(struct net_device *dev);
2819 
2820 void netif_carrier_off(struct net_device *dev);
2821 
2822 /**
2823  *	netif_dormant_on - mark device as dormant.
2824  *	@dev: network device
2825  *
2826  * Mark device as dormant (as per RFC2863).
2827  *
2828  * The dormant state indicates that the relevant interface is not
2829  * actually in a condition to pass packets (i.e., it is not 'up') but is
2830  * in a "pending" state, waiting for some external event.  For "on-
2831  * demand" interfaces, this new state identifies the situation where the
2832  * interface is waiting for events to place it in the up state.
2833  *
2834  */
2835 static inline void netif_dormant_on(struct net_device *dev)
2836 {
2837 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2838 		linkwatch_fire_event(dev);
2839 }
2840 
2841 /**
2842  *	netif_dormant_off - set device as not dormant.
2843  *	@dev: network device
2844  *
2845  * Device is not in dormant state.
2846  */
2847 static inline void netif_dormant_off(struct net_device *dev)
2848 {
2849 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2850 		linkwatch_fire_event(dev);
2851 }
2852 
2853 /**
2854  *	netif_dormant - test if carrier present
2855  *	@dev: network device
2856  *
2857  * Check if carrier is present on device
2858  */
2859 static inline bool netif_dormant(const struct net_device *dev)
2860 {
2861 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2862 }
2863 
2864 
2865 /**
2866  *	netif_oper_up - test if device is operational
2867  *	@dev: network device
2868  *
2869  * Check if carrier is operational
2870  */
2871 static inline bool netif_oper_up(const struct net_device *dev)
2872 {
2873 	return (dev->operstate == IF_OPER_UP ||
2874 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2875 }
2876 
2877 /**
2878  *	netif_device_present - is device available or removed
2879  *	@dev: network device
2880  *
2881  * Check if device has not been removed from system.
2882  */
2883 static inline bool netif_device_present(struct net_device *dev)
2884 {
2885 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2886 }
2887 
2888 void netif_device_detach(struct net_device *dev);
2889 
2890 void netif_device_attach(struct net_device *dev);
2891 
2892 /*
2893  * Network interface message level settings
2894  */
2895 
2896 enum {
2897 	NETIF_MSG_DRV		= 0x0001,
2898 	NETIF_MSG_PROBE		= 0x0002,
2899 	NETIF_MSG_LINK		= 0x0004,
2900 	NETIF_MSG_TIMER		= 0x0008,
2901 	NETIF_MSG_IFDOWN	= 0x0010,
2902 	NETIF_MSG_IFUP		= 0x0020,
2903 	NETIF_MSG_RX_ERR	= 0x0040,
2904 	NETIF_MSG_TX_ERR	= 0x0080,
2905 	NETIF_MSG_TX_QUEUED	= 0x0100,
2906 	NETIF_MSG_INTR		= 0x0200,
2907 	NETIF_MSG_TX_DONE	= 0x0400,
2908 	NETIF_MSG_RX_STATUS	= 0x0800,
2909 	NETIF_MSG_PKTDATA	= 0x1000,
2910 	NETIF_MSG_HW		= 0x2000,
2911 	NETIF_MSG_WOL		= 0x4000,
2912 };
2913 
2914 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2915 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2916 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2917 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2918 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2919 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2920 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2921 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2922 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2923 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2924 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2925 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2926 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2927 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2928 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2929 
2930 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2931 {
2932 	/* use default */
2933 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2934 		return default_msg_enable_bits;
2935 	if (debug_value == 0)	/* no output */
2936 		return 0;
2937 	/* set low N bits */
2938 	return (1 << debug_value) - 1;
2939 }
2940 
2941 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2942 {
2943 	spin_lock(&txq->_xmit_lock);
2944 	txq->xmit_lock_owner = cpu;
2945 }
2946 
2947 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2948 {
2949 	spin_lock_bh(&txq->_xmit_lock);
2950 	txq->xmit_lock_owner = smp_processor_id();
2951 }
2952 
2953 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2954 {
2955 	bool ok = spin_trylock(&txq->_xmit_lock);
2956 	if (likely(ok))
2957 		txq->xmit_lock_owner = smp_processor_id();
2958 	return ok;
2959 }
2960 
2961 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2962 {
2963 	txq->xmit_lock_owner = -1;
2964 	spin_unlock(&txq->_xmit_lock);
2965 }
2966 
2967 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2968 {
2969 	txq->xmit_lock_owner = -1;
2970 	spin_unlock_bh(&txq->_xmit_lock);
2971 }
2972 
2973 static inline void txq_trans_update(struct netdev_queue *txq)
2974 {
2975 	if (txq->xmit_lock_owner != -1)
2976 		txq->trans_start = jiffies;
2977 }
2978 
2979 /**
2980  *	netif_tx_lock - grab network device transmit lock
2981  *	@dev: network device
2982  *
2983  * Get network device transmit lock
2984  */
2985 static inline void netif_tx_lock(struct net_device *dev)
2986 {
2987 	unsigned int i;
2988 	int cpu;
2989 
2990 	spin_lock(&dev->tx_global_lock);
2991 	cpu = smp_processor_id();
2992 	for (i = 0; i < dev->num_tx_queues; i++) {
2993 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2994 
2995 		/* We are the only thread of execution doing a
2996 		 * freeze, but we have to grab the _xmit_lock in
2997 		 * order to synchronize with threads which are in
2998 		 * the ->hard_start_xmit() handler and already
2999 		 * checked the frozen bit.
3000 		 */
3001 		__netif_tx_lock(txq, cpu);
3002 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3003 		__netif_tx_unlock(txq);
3004 	}
3005 }
3006 
3007 static inline void netif_tx_lock_bh(struct net_device *dev)
3008 {
3009 	local_bh_disable();
3010 	netif_tx_lock(dev);
3011 }
3012 
3013 static inline void netif_tx_unlock(struct net_device *dev)
3014 {
3015 	unsigned int i;
3016 
3017 	for (i = 0; i < dev->num_tx_queues; i++) {
3018 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3019 
3020 		/* No need to grab the _xmit_lock here.  If the
3021 		 * queue is not stopped for another reason, we
3022 		 * force a schedule.
3023 		 */
3024 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3025 		netif_schedule_queue(txq);
3026 	}
3027 	spin_unlock(&dev->tx_global_lock);
3028 }
3029 
3030 static inline void netif_tx_unlock_bh(struct net_device *dev)
3031 {
3032 	netif_tx_unlock(dev);
3033 	local_bh_enable();
3034 }
3035 
3036 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3037 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3038 		__netif_tx_lock(txq, cpu);		\
3039 	}						\
3040 }
3041 
3042 #define HARD_TX_TRYLOCK(dev, txq)			\
3043 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3044 		__netif_tx_trylock(txq) :		\
3045 		true )
3046 
3047 #define HARD_TX_UNLOCK(dev, txq) {			\
3048 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3049 		__netif_tx_unlock(txq);			\
3050 	}						\
3051 }
3052 
3053 static inline void netif_tx_disable(struct net_device *dev)
3054 {
3055 	unsigned int i;
3056 	int cpu;
3057 
3058 	local_bh_disable();
3059 	cpu = smp_processor_id();
3060 	for (i = 0; i < dev->num_tx_queues; i++) {
3061 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3062 
3063 		__netif_tx_lock(txq, cpu);
3064 		netif_tx_stop_queue(txq);
3065 		__netif_tx_unlock(txq);
3066 	}
3067 	local_bh_enable();
3068 }
3069 
3070 static inline void netif_addr_lock(struct net_device *dev)
3071 {
3072 	spin_lock(&dev->addr_list_lock);
3073 }
3074 
3075 static inline void netif_addr_lock_nested(struct net_device *dev)
3076 {
3077 	int subclass = SINGLE_DEPTH_NESTING;
3078 
3079 	if (dev->netdev_ops->ndo_get_lock_subclass)
3080 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3081 
3082 	spin_lock_nested(&dev->addr_list_lock, subclass);
3083 }
3084 
3085 static inline void netif_addr_lock_bh(struct net_device *dev)
3086 {
3087 	spin_lock_bh(&dev->addr_list_lock);
3088 }
3089 
3090 static inline void netif_addr_unlock(struct net_device *dev)
3091 {
3092 	spin_unlock(&dev->addr_list_lock);
3093 }
3094 
3095 static inline void netif_addr_unlock_bh(struct net_device *dev)
3096 {
3097 	spin_unlock_bh(&dev->addr_list_lock);
3098 }
3099 
3100 /*
3101  * dev_addrs walker. Should be used only for read access. Call with
3102  * rcu_read_lock held.
3103  */
3104 #define for_each_dev_addr(dev, ha) \
3105 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3106 
3107 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3108 
3109 void ether_setup(struct net_device *dev);
3110 
3111 /* Support for loadable net-drivers */
3112 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3113 				    unsigned char name_assign_type,
3114 				    void (*setup)(struct net_device *),
3115 				    unsigned int txqs, unsigned int rxqs);
3116 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3117 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3118 
3119 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3120 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3121 			 count)
3122 
3123 int register_netdev(struct net_device *dev);
3124 void unregister_netdev(struct net_device *dev);
3125 
3126 /* General hardware address lists handling functions */
3127 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3128 		   struct netdev_hw_addr_list *from_list, int addr_len);
3129 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3130 		      struct netdev_hw_addr_list *from_list, int addr_len);
3131 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3132 		       struct net_device *dev,
3133 		       int (*sync)(struct net_device *, const unsigned char *),
3134 		       int (*unsync)(struct net_device *,
3135 				     const unsigned char *));
3136 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3137 			  struct net_device *dev,
3138 			  int (*unsync)(struct net_device *,
3139 					const unsigned char *));
3140 void __hw_addr_init(struct netdev_hw_addr_list *list);
3141 
3142 /* Functions used for device addresses handling */
3143 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3144 		 unsigned char addr_type);
3145 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3146 		 unsigned char addr_type);
3147 void dev_addr_flush(struct net_device *dev);
3148 int dev_addr_init(struct net_device *dev);
3149 
3150 /* Functions used for unicast addresses handling */
3151 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3152 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3153 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3154 int dev_uc_sync(struct net_device *to, struct net_device *from);
3155 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3156 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3157 void dev_uc_flush(struct net_device *dev);
3158 void dev_uc_init(struct net_device *dev);
3159 
3160 /**
3161  *  __dev_uc_sync - Synchonize device's unicast list
3162  *  @dev:  device to sync
3163  *  @sync: function to call if address should be added
3164  *  @unsync: function to call if address should be removed
3165  *
3166  *  Add newly added addresses to the interface, and release
3167  *  addresses that have been deleted.
3168  **/
3169 static inline int __dev_uc_sync(struct net_device *dev,
3170 				int (*sync)(struct net_device *,
3171 					    const unsigned char *),
3172 				int (*unsync)(struct net_device *,
3173 					      const unsigned char *))
3174 {
3175 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3176 }
3177 
3178 /**
3179  *  __dev_uc_unsync - Remove synchonized addresses from device
3180  *  @dev:  device to sync
3181  *  @unsync: function to call if address should be removed
3182  *
3183  *  Remove all addresses that were added to the device by dev_uc_sync().
3184  **/
3185 static inline void __dev_uc_unsync(struct net_device *dev,
3186 				   int (*unsync)(struct net_device *,
3187 						 const unsigned char *))
3188 {
3189 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3190 }
3191 
3192 /* Functions used for multicast addresses handling */
3193 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3194 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3195 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3196 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3197 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3198 int dev_mc_sync(struct net_device *to, struct net_device *from);
3199 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3200 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3201 void dev_mc_flush(struct net_device *dev);
3202 void dev_mc_init(struct net_device *dev);
3203 
3204 /**
3205  *  __dev_mc_sync - Synchonize device's multicast list
3206  *  @dev:  device to sync
3207  *  @sync: function to call if address should be added
3208  *  @unsync: function to call if address should be removed
3209  *
3210  *  Add newly added addresses to the interface, and release
3211  *  addresses that have been deleted.
3212  **/
3213 static inline int __dev_mc_sync(struct net_device *dev,
3214 				int (*sync)(struct net_device *,
3215 					    const unsigned char *),
3216 				int (*unsync)(struct net_device *,
3217 					      const unsigned char *))
3218 {
3219 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3220 }
3221 
3222 /**
3223  *  __dev_mc_unsync - Remove synchonized addresses from device
3224  *  @dev:  device to sync
3225  *  @unsync: function to call if address should be removed
3226  *
3227  *  Remove all addresses that were added to the device by dev_mc_sync().
3228  **/
3229 static inline void __dev_mc_unsync(struct net_device *dev,
3230 				   int (*unsync)(struct net_device *,
3231 						 const unsigned char *))
3232 {
3233 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3234 }
3235 
3236 /* Functions used for secondary unicast and multicast support */
3237 void dev_set_rx_mode(struct net_device *dev);
3238 void __dev_set_rx_mode(struct net_device *dev);
3239 int dev_set_promiscuity(struct net_device *dev, int inc);
3240 int dev_set_allmulti(struct net_device *dev, int inc);
3241 void netdev_state_change(struct net_device *dev);
3242 void netdev_notify_peers(struct net_device *dev);
3243 void netdev_features_change(struct net_device *dev);
3244 /* Load a device via the kmod */
3245 void dev_load(struct net *net, const char *name);
3246 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3247 					struct rtnl_link_stats64 *storage);
3248 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3249 			     const struct net_device_stats *netdev_stats);
3250 
3251 extern int		netdev_max_backlog;
3252 extern int		netdev_tstamp_prequeue;
3253 extern int		weight_p;
3254 extern int		bpf_jit_enable;
3255 
3256 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3257 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3258 						     struct list_head **iter);
3259 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3260 						     struct list_head **iter);
3261 
3262 /* iterate through upper list, must be called under RCU read lock */
3263 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3264 	for (iter = &(dev)->adj_list.upper, \
3265 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3266 	     updev; \
3267 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3268 
3269 /* iterate through upper list, must be called under RCU read lock */
3270 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3271 	for (iter = &(dev)->all_adj_list.upper, \
3272 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3273 	     updev; \
3274 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3275 
3276 void *netdev_lower_get_next_private(struct net_device *dev,
3277 				    struct list_head **iter);
3278 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3279 					struct list_head **iter);
3280 
3281 #define netdev_for_each_lower_private(dev, priv, iter) \
3282 	for (iter = (dev)->adj_list.lower.next, \
3283 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3284 	     priv; \
3285 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3286 
3287 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3288 	for (iter = &(dev)->adj_list.lower, \
3289 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3290 	     priv; \
3291 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3292 
3293 void *netdev_lower_get_next(struct net_device *dev,
3294 				struct list_head **iter);
3295 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3296 	for (iter = &(dev)->adj_list.lower, \
3297 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3298 	     ldev; \
3299 	     ldev = netdev_lower_get_next(dev, &(iter)))
3300 
3301 void *netdev_adjacent_get_private(struct list_head *adj_list);
3302 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3303 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3304 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3305 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3306 int netdev_master_upper_dev_link(struct net_device *dev,
3307 				 struct net_device *upper_dev);
3308 int netdev_master_upper_dev_link_private(struct net_device *dev,
3309 					 struct net_device *upper_dev,
3310 					 void *private);
3311 void netdev_upper_dev_unlink(struct net_device *dev,
3312 			     struct net_device *upper_dev);
3313 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3314 void *netdev_lower_dev_get_private(struct net_device *dev,
3315 				   struct net_device *lower_dev);
3316 int dev_get_nest_level(struct net_device *dev,
3317 		       bool (*type_check)(struct net_device *dev));
3318 int skb_checksum_help(struct sk_buff *skb);
3319 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3320 				  netdev_features_t features, bool tx_path);
3321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3322 				    netdev_features_t features);
3323 
3324 static inline
3325 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3326 {
3327 	return __skb_gso_segment(skb, features, true);
3328 }
3329 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3330 
3331 static inline bool can_checksum_protocol(netdev_features_t features,
3332 					 __be16 protocol)
3333 {
3334 	return ((features & NETIF_F_GEN_CSUM) ||
3335 		((features & NETIF_F_V4_CSUM) &&
3336 		 protocol == htons(ETH_P_IP)) ||
3337 		((features & NETIF_F_V6_CSUM) &&
3338 		 protocol == htons(ETH_P_IPV6)) ||
3339 		((features & NETIF_F_FCOE_CRC) &&
3340 		 protocol == htons(ETH_P_FCOE)));
3341 }
3342 
3343 #ifdef CONFIG_BUG
3344 void netdev_rx_csum_fault(struct net_device *dev);
3345 #else
3346 static inline void netdev_rx_csum_fault(struct net_device *dev)
3347 {
3348 }
3349 #endif
3350 /* rx skb timestamps */
3351 void net_enable_timestamp(void);
3352 void net_disable_timestamp(void);
3353 
3354 #ifdef CONFIG_PROC_FS
3355 int __init dev_proc_init(void);
3356 #else
3357 #define dev_proc_init() 0
3358 #endif
3359 
3360 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3361 				const void *ns);
3362 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3363 				 const void *ns);
3364 
3365 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3366 {
3367 	return netdev_class_create_file_ns(class_attr, NULL);
3368 }
3369 
3370 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3371 {
3372 	netdev_class_remove_file_ns(class_attr, NULL);
3373 }
3374 
3375 extern struct kobj_ns_type_operations net_ns_type_operations;
3376 
3377 const char *netdev_drivername(const struct net_device *dev);
3378 
3379 void linkwatch_run_queue(void);
3380 
3381 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3382 							  netdev_features_t f2)
3383 {
3384 	if (f1 & NETIF_F_GEN_CSUM)
3385 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3386 	if (f2 & NETIF_F_GEN_CSUM)
3387 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3388 	f1 &= f2;
3389 	if (f1 & NETIF_F_GEN_CSUM)
3390 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3391 
3392 	return f1;
3393 }
3394 
3395 static inline netdev_features_t netdev_get_wanted_features(
3396 	struct net_device *dev)
3397 {
3398 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3399 }
3400 netdev_features_t netdev_increment_features(netdev_features_t all,
3401 	netdev_features_t one, netdev_features_t mask);
3402 
3403 /* Allow TSO being used on stacked device :
3404  * Performing the GSO segmentation before last device
3405  * is a performance improvement.
3406  */
3407 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3408 							netdev_features_t mask)
3409 {
3410 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3411 }
3412 
3413 int __netdev_update_features(struct net_device *dev);
3414 void netdev_update_features(struct net_device *dev);
3415 void netdev_change_features(struct net_device *dev);
3416 
3417 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3418 					struct net_device *dev);
3419 
3420 netdev_features_t netif_skb_features(struct sk_buff *skb);
3421 
3422 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3423 {
3424 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3425 
3426 	/* check flags correspondence */
3427 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3428 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3429 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3430 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3431 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3432 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3433 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3434 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3435 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3436 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3437 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3438 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3439 	BUILD_BUG_ON(SKB_GSO_MPLS    != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3440 
3441 	return (features & feature) == feature;
3442 }
3443 
3444 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3445 {
3446 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3447 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3448 }
3449 
3450 static inline bool netif_needs_gso(struct sk_buff *skb,
3451 				   netdev_features_t features)
3452 {
3453 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3454 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3455 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3456 }
3457 
3458 static inline void netif_set_gso_max_size(struct net_device *dev,
3459 					  unsigned int size)
3460 {
3461 	dev->gso_max_size = size;
3462 }
3463 
3464 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3465 					int pulled_hlen, u16 mac_offset,
3466 					int mac_len)
3467 {
3468 	skb->protocol = protocol;
3469 	skb->encapsulation = 1;
3470 	skb_push(skb, pulled_hlen);
3471 	skb_reset_transport_header(skb);
3472 	skb->mac_header = mac_offset;
3473 	skb->network_header = skb->mac_header + mac_len;
3474 	skb->mac_len = mac_len;
3475 }
3476 
3477 static inline bool netif_is_macvlan(struct net_device *dev)
3478 {
3479 	return dev->priv_flags & IFF_MACVLAN;
3480 }
3481 
3482 static inline bool netif_is_bond_master(struct net_device *dev)
3483 {
3484 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3485 }
3486 
3487 static inline bool netif_is_bond_slave(struct net_device *dev)
3488 {
3489 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3490 }
3491 
3492 static inline bool netif_supports_nofcs(struct net_device *dev)
3493 {
3494 	return dev->priv_flags & IFF_SUPP_NOFCS;
3495 }
3496 
3497 extern struct pernet_operations __net_initdata loopback_net_ops;
3498 
3499 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3500 
3501 /* netdev_printk helpers, similar to dev_printk */
3502 
3503 static inline const char *netdev_name(const struct net_device *dev)
3504 {
3505 	if (!dev->name[0] || strchr(dev->name, '%'))
3506 		return "(unnamed net_device)";
3507 	return dev->name;
3508 }
3509 
3510 static inline const char *netdev_reg_state(const struct net_device *dev)
3511 {
3512 	switch (dev->reg_state) {
3513 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3514 	case NETREG_REGISTERED: return "";
3515 	case NETREG_UNREGISTERING: return " (unregistering)";
3516 	case NETREG_UNREGISTERED: return " (unregistered)";
3517 	case NETREG_RELEASED: return " (released)";
3518 	case NETREG_DUMMY: return " (dummy)";
3519 	}
3520 
3521 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3522 	return " (unknown)";
3523 }
3524 
3525 __printf(3, 4)
3526 int netdev_printk(const char *level, const struct net_device *dev,
3527 		  const char *format, ...);
3528 __printf(2, 3)
3529 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3530 __printf(2, 3)
3531 int netdev_alert(const struct net_device *dev, const char *format, ...);
3532 __printf(2, 3)
3533 int netdev_crit(const struct net_device *dev, const char *format, ...);
3534 __printf(2, 3)
3535 int netdev_err(const struct net_device *dev, const char *format, ...);
3536 __printf(2, 3)
3537 int netdev_warn(const struct net_device *dev, const char *format, ...);
3538 __printf(2, 3)
3539 int netdev_notice(const struct net_device *dev, const char *format, ...);
3540 __printf(2, 3)
3541 int netdev_info(const struct net_device *dev, const char *format, ...);
3542 
3543 #define MODULE_ALIAS_NETDEV(device) \
3544 	MODULE_ALIAS("netdev-" device)
3545 
3546 #if defined(CONFIG_DYNAMIC_DEBUG)
3547 #define netdev_dbg(__dev, format, args...)			\
3548 do {								\
3549 	dynamic_netdev_dbg(__dev, format, ##args);		\
3550 } while (0)
3551 #elif defined(DEBUG)
3552 #define netdev_dbg(__dev, format, args...)			\
3553 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3554 #else
3555 #define netdev_dbg(__dev, format, args...)			\
3556 ({								\
3557 	if (0)							\
3558 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3559 	0;							\
3560 })
3561 #endif
3562 
3563 #if defined(VERBOSE_DEBUG)
3564 #define netdev_vdbg	netdev_dbg
3565 #else
3566 
3567 #define netdev_vdbg(dev, format, args...)			\
3568 ({								\
3569 	if (0)							\
3570 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3571 	0;							\
3572 })
3573 #endif
3574 
3575 /*
3576  * netdev_WARN() acts like dev_printk(), but with the key difference
3577  * of using a WARN/WARN_ON to get the message out, including the
3578  * file/line information and a backtrace.
3579  */
3580 #define netdev_WARN(dev, format, args...)			\
3581 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3582 	     netdev_reg_state(dev), ##args)
3583 
3584 /* netif printk helpers, similar to netdev_printk */
3585 
3586 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3587 do {					  			\
3588 	if (netif_msg_##type(priv))				\
3589 		netdev_printk(level, (dev), fmt, ##args);	\
3590 } while (0)
3591 
3592 #define netif_level(level, priv, type, dev, fmt, args...)	\
3593 do {								\
3594 	if (netif_msg_##type(priv))				\
3595 		netdev_##level(dev, fmt, ##args);		\
3596 } while (0)
3597 
3598 #define netif_emerg(priv, type, dev, fmt, args...)		\
3599 	netif_level(emerg, priv, type, dev, fmt, ##args)
3600 #define netif_alert(priv, type, dev, fmt, args...)		\
3601 	netif_level(alert, priv, type, dev, fmt, ##args)
3602 #define netif_crit(priv, type, dev, fmt, args...)		\
3603 	netif_level(crit, priv, type, dev, fmt, ##args)
3604 #define netif_err(priv, type, dev, fmt, args...)		\
3605 	netif_level(err, priv, type, dev, fmt, ##args)
3606 #define netif_warn(priv, type, dev, fmt, args...)		\
3607 	netif_level(warn, priv, type, dev, fmt, ##args)
3608 #define netif_notice(priv, type, dev, fmt, args...)		\
3609 	netif_level(notice, priv, type, dev, fmt, ##args)
3610 #define netif_info(priv, type, dev, fmt, args...)		\
3611 	netif_level(info, priv, type, dev, fmt, ##args)
3612 
3613 #if defined(CONFIG_DYNAMIC_DEBUG)
3614 #define netif_dbg(priv, type, netdev, format, args...)		\
3615 do {								\
3616 	if (netif_msg_##type(priv))				\
3617 		dynamic_netdev_dbg(netdev, format, ##args);	\
3618 } while (0)
3619 #elif defined(DEBUG)
3620 #define netif_dbg(priv, type, dev, format, args...)		\
3621 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3622 #else
3623 #define netif_dbg(priv, type, dev, format, args...)			\
3624 ({									\
3625 	if (0)								\
3626 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3627 	0;								\
3628 })
3629 #endif
3630 
3631 #if defined(VERBOSE_DEBUG)
3632 #define netif_vdbg	netif_dbg
3633 #else
3634 #define netif_vdbg(priv, type, dev, format, args...)		\
3635 ({								\
3636 	if (0)							\
3637 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3638 	0;							\
3639 })
3640 #endif
3641 
3642 /*
3643  *	The list of packet types we will receive (as opposed to discard)
3644  *	and the routines to invoke.
3645  *
3646  *	Why 16. Because with 16 the only overlap we get on a hash of the
3647  *	low nibble of the protocol value is RARP/SNAP/X.25.
3648  *
3649  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3650  *             sure which should go first, but I bet it won't make much
3651  *             difference if we are running VLANs.  The good news is that
3652  *             this protocol won't be in the list unless compiled in, so
3653  *             the average user (w/out VLANs) will not be adversely affected.
3654  *             --BLG
3655  *
3656  *		0800	IP
3657  *		8100    802.1Q VLAN
3658  *		0001	802.3
3659  *		0002	AX.25
3660  *		0004	802.2
3661  *		8035	RARP
3662  *		0005	SNAP
3663  *		0805	X.25
3664  *		0806	ARP
3665  *		8137	IPX
3666  *		0009	Localtalk
3667  *		86DD	IPv6
3668  */
3669 #define PTYPE_HASH_SIZE	(16)
3670 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3671 
3672 #endif	/* _LINUX_NETDEVICE_H */
3673