xref: /openbmc/linux/include/linux/netdevice.h (revision 24b1944f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 					   const struct ethtool_ops *ops);
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 #define NET_ADDR_SET		3	/* address is set using
71 					 * dev_set_mac_address() */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*rebuild)(struct sk_buff *skb);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 extern int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-cpu poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	spinlock_t		poll_lock;
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct list_head	dev_list;
327 };
328 
329 enum {
330 	NAPI_STATE_SCHED,	/* Poll is scheduled */
331 	NAPI_STATE_DISABLE,	/* Disable pending */
332 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
333 };
334 
335 enum gro_result {
336 	GRO_MERGED,
337 	GRO_MERGED_FREE,
338 	GRO_HELD,
339 	GRO_NORMAL,
340 	GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343 
344 /*
345  * enum rx_handler_result - Possible return values for rx_handlers.
346  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347  * further.
348  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349  * case skb->dev was changed by rx_handler.
350  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352  *
353  * rx_handlers are functions called from inside __netif_receive_skb(), to do
354  * special processing of the skb, prior to delivery to protocol handlers.
355  *
356  * Currently, a net_device can only have a single rx_handler registered. Trying
357  * to register a second rx_handler will return -EBUSY.
358  *
359  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360  * To unregister a rx_handler on a net_device, use
361  * netdev_rx_handler_unregister().
362  *
363  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364  * do with the skb.
365  *
366  * If the rx_handler consumed to skb in some way, it should return
367  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368  * the skb to be delivered in some other ways.
369  *
370  * If the rx_handler changed skb->dev, to divert the skb to another
371  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372  * new device will be called if it exists.
373  *
374  * If the rx_handler consider the skb should be ignored, it should return
375  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376  * are registered on exact device (ptype->dev == skb->dev).
377  *
378  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379  * delivered, it should return RX_HANDLER_PASS.
380  *
381  * A device without a registered rx_handler will behave as if rx_handler
382  * returned RX_HANDLER_PASS.
383  */
384 
385 enum rx_handler_result {
386 	RX_HANDLER_CONSUMED,
387 	RX_HANDLER_ANOTHER,
388 	RX_HANDLER_EXACT,
389 	RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393 
394 extern void __napi_schedule(struct napi_struct *n);
395 
396 static inline bool napi_disable_pending(struct napi_struct *n)
397 {
398 	return test_bit(NAPI_STATE_DISABLE, &n->state);
399 }
400 
401 /**
402  *	napi_schedule_prep - check if napi can be scheduled
403  *	@n: napi context
404  *
405  * Test if NAPI routine is already running, and if not mark
406  * it as running.  This is used as a condition variable
407  * insure only one NAPI poll instance runs.  We also make
408  * sure there is no pending NAPI disable.
409  */
410 static inline bool napi_schedule_prep(struct napi_struct *n)
411 {
412 	return !napi_disable_pending(n) &&
413 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
414 }
415 
416 /**
417  *	napi_schedule - schedule NAPI poll
418  *	@n: napi context
419  *
420  * Schedule NAPI poll routine to be called if it is not already
421  * running.
422  */
423 static inline void napi_schedule(struct napi_struct *n)
424 {
425 	if (napi_schedule_prep(n))
426 		__napi_schedule(n);
427 }
428 
429 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
430 static inline bool napi_reschedule(struct napi_struct *napi)
431 {
432 	if (napi_schedule_prep(napi)) {
433 		__napi_schedule(napi);
434 		return true;
435 	}
436 	return false;
437 }
438 
439 /**
440  *	napi_complete - NAPI processing complete
441  *	@n: napi context
442  *
443  * Mark NAPI processing as complete.
444  */
445 extern void __napi_complete(struct napi_struct *n);
446 extern void napi_complete(struct napi_struct *n);
447 
448 /**
449  *	napi_disable - prevent NAPI from scheduling
450  *	@n: napi context
451  *
452  * Stop NAPI from being scheduled on this context.
453  * Waits till any outstanding processing completes.
454  */
455 static inline void napi_disable(struct napi_struct *n)
456 {
457 	set_bit(NAPI_STATE_DISABLE, &n->state);
458 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
459 		msleep(1);
460 	clear_bit(NAPI_STATE_DISABLE, &n->state);
461 }
462 
463 /**
464  *	napi_enable - enable NAPI scheduling
465  *	@n: napi context
466  *
467  * Resume NAPI from being scheduled on this context.
468  * Must be paired with napi_disable.
469  */
470 static inline void napi_enable(struct napi_struct *n)
471 {
472 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
473 	smp_mb__before_clear_bit();
474 	clear_bit(NAPI_STATE_SCHED, &n->state);
475 }
476 
477 #ifdef CONFIG_SMP
478 /**
479  *	napi_synchronize - wait until NAPI is not running
480  *	@n: napi context
481  *
482  * Wait until NAPI is done being scheduled on this context.
483  * Waits till any outstanding processing completes but
484  * does not disable future activations.
485  */
486 static inline void napi_synchronize(const struct napi_struct *n)
487 {
488 	while (test_bit(NAPI_STATE_SCHED, &n->state))
489 		msleep(1);
490 }
491 #else
492 # define napi_synchronize(n)	barrier()
493 #endif
494 
495 enum netdev_queue_state_t {
496 	__QUEUE_STATE_DRV_XOFF,
497 	__QUEUE_STATE_STACK_XOFF,
498 	__QUEUE_STATE_FROZEN,
499 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
500 			      (1 << __QUEUE_STATE_STACK_XOFF))
501 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
502 					(1 << __QUEUE_STATE_FROZEN))
503 };
504 /*
505  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
506  * netif_tx_* functions below are used to manipulate this flag.  The
507  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
508  * queue independently.  The netif_xmit_*stopped functions below are called
509  * to check if the queue has been stopped by the driver or stack (either
510  * of the XOFF bits are set in the state).  Drivers should not need to call
511  * netif_xmit*stopped functions, they should only be using netif_tx_*.
512  */
513 
514 struct netdev_queue {
515 /*
516  * read mostly part
517  */
518 	struct net_device	*dev;
519 	struct Qdisc		*qdisc;
520 	struct Qdisc		*qdisc_sleeping;
521 #ifdef CONFIG_SYSFS
522 	struct kobject		kobj;
523 #endif
524 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
525 	int			numa_node;
526 #endif
527 /*
528  * write mostly part
529  */
530 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
531 	int			xmit_lock_owner;
532 	/*
533 	 * please use this field instead of dev->trans_start
534 	 */
535 	unsigned long		trans_start;
536 
537 	/*
538 	 * Number of TX timeouts for this queue
539 	 * (/sys/class/net/DEV/Q/trans_timeout)
540 	 */
541 	unsigned long		trans_timeout;
542 
543 	unsigned long		state;
544 
545 #ifdef CONFIG_BQL
546 	struct dql		dql;
547 #endif
548 } ____cacheline_aligned_in_smp;
549 
550 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
551 {
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 	return q->numa_node;
554 #else
555 	return NUMA_NO_NODE;
556 #endif
557 }
558 
559 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
560 {
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 	q->numa_node = node;
563 #endif
564 }
565 
566 #ifdef CONFIG_RPS
567 /*
568  * This structure holds an RPS map which can be of variable length.  The
569  * map is an array of CPUs.
570  */
571 struct rps_map {
572 	unsigned int len;
573 	struct rcu_head rcu;
574 	u16 cpus[0];
575 };
576 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
577 
578 /*
579  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
580  * tail pointer for that CPU's input queue at the time of last enqueue, and
581  * a hardware filter index.
582  */
583 struct rps_dev_flow {
584 	u16 cpu;
585 	u16 filter;
586 	unsigned int last_qtail;
587 };
588 #define RPS_NO_FILTER 0xffff
589 
590 /*
591  * The rps_dev_flow_table structure contains a table of flow mappings.
592  */
593 struct rps_dev_flow_table {
594 	unsigned int mask;
595 	struct rcu_head rcu;
596 	struct rps_dev_flow flows[0];
597 };
598 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
599     ((_num) * sizeof(struct rps_dev_flow)))
600 
601 /*
602  * The rps_sock_flow_table contains mappings of flows to the last CPU
603  * on which they were processed by the application (set in recvmsg).
604  */
605 struct rps_sock_flow_table {
606 	unsigned int mask;
607 	u16 ents[0];
608 };
609 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
610     ((_num) * sizeof(u16)))
611 
612 #define RPS_NO_CPU 0xffff
613 
614 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
615 					u32 hash)
616 {
617 	if (table && hash) {
618 		unsigned int cpu, index = hash & table->mask;
619 
620 		/* We only give a hint, preemption can change cpu under us */
621 		cpu = raw_smp_processor_id();
622 
623 		if (table->ents[index] != cpu)
624 			table->ents[index] = cpu;
625 	}
626 }
627 
628 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
629 				       u32 hash)
630 {
631 	if (table && hash)
632 		table->ents[hash & table->mask] = RPS_NO_CPU;
633 }
634 
635 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
636 
637 #ifdef CONFIG_RFS_ACCEL
638 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
639 				u32 flow_id, u16 filter_id);
640 #endif
641 
642 /* This structure contains an instance of an RX queue. */
643 struct netdev_rx_queue {
644 	struct rps_map __rcu		*rps_map;
645 	struct rps_dev_flow_table __rcu	*rps_flow_table;
646 	struct kobject			kobj;
647 	struct net_device		*dev;
648 } ____cacheline_aligned_in_smp;
649 #endif /* CONFIG_RPS */
650 
651 #ifdef CONFIG_XPS
652 /*
653  * This structure holds an XPS map which can be of variable length.  The
654  * map is an array of queues.
655  */
656 struct xps_map {
657 	unsigned int len;
658 	unsigned int alloc_len;
659 	struct rcu_head rcu;
660 	u16 queues[0];
661 };
662 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
663 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
664     / sizeof(u16))
665 
666 /*
667  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
668  */
669 struct xps_dev_maps {
670 	struct rcu_head rcu;
671 	struct xps_map __rcu *cpu_map[0];
672 };
673 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
674     (nr_cpu_ids * sizeof(struct xps_map *)))
675 #endif /* CONFIG_XPS */
676 
677 #define TC_MAX_QUEUE	16
678 #define TC_BITMASK	15
679 /* HW offloaded queuing disciplines txq count and offset maps */
680 struct netdev_tc_txq {
681 	u16 count;
682 	u16 offset;
683 };
684 
685 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
686 /*
687  * This structure is to hold information about the device
688  * configured to run FCoE protocol stack.
689  */
690 struct netdev_fcoe_hbainfo {
691 	char	manufacturer[64];
692 	char	serial_number[64];
693 	char	hardware_version[64];
694 	char	driver_version[64];
695 	char	optionrom_version[64];
696 	char	firmware_version[64];
697 	char	model[256];
698 	char	model_description[256];
699 };
700 #endif
701 
702 /*
703  * This structure defines the management hooks for network devices.
704  * The following hooks can be defined; unless noted otherwise, they are
705  * optional and can be filled with a null pointer.
706  *
707  * int (*ndo_init)(struct net_device *dev);
708  *     This function is called once when network device is registered.
709  *     The network device can use this to any late stage initializaton
710  *     or semantic validattion. It can fail with an error code which will
711  *     be propogated back to register_netdev
712  *
713  * void (*ndo_uninit)(struct net_device *dev);
714  *     This function is called when device is unregistered or when registration
715  *     fails. It is not called if init fails.
716  *
717  * int (*ndo_open)(struct net_device *dev);
718  *     This function is called when network device transistions to the up
719  *     state.
720  *
721  * int (*ndo_stop)(struct net_device *dev);
722  *     This function is called when network device transistions to the down
723  *     state.
724  *
725  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
726  *                               struct net_device *dev);
727  *	Called when a packet needs to be transmitted.
728  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
729  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
730  *	Required can not be NULL.
731  *
732  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
733  *	Called to decide which queue to when device supports multiple
734  *	transmit queues.
735  *
736  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
737  *	This function is called to allow device receiver to make
738  *	changes to configuration when multicast or promiscious is enabled.
739  *
740  * void (*ndo_set_rx_mode)(struct net_device *dev);
741  *	This function is called device changes address list filtering.
742  *	If driver handles unicast address filtering, it should set
743  *	IFF_UNICAST_FLT to its priv_flags.
744  *
745  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
746  *	This function  is called when the Media Access Control address
747  *	needs to be changed. If this interface is not defined, the
748  *	mac address can not be changed.
749  *
750  * int (*ndo_validate_addr)(struct net_device *dev);
751  *	Test if Media Access Control address is valid for the device.
752  *
753  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
754  *	Called when a user request an ioctl which can't be handled by
755  *	the generic interface code. If not defined ioctl's return
756  *	not supported error code.
757  *
758  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
759  *	Used to set network devices bus interface parameters. This interface
760  *	is retained for legacy reason, new devices should use the bus
761  *	interface (PCI) for low level management.
762  *
763  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
764  *	Called when a user wants to change the Maximum Transfer Unit
765  *	of a device. If not defined, any request to change MTU will
766  *	will return an error.
767  *
768  * void (*ndo_tx_timeout)(struct net_device *dev);
769  *	Callback uses when the transmitter has not made any progress
770  *	for dev->watchdog ticks.
771  *
772  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
773  *                      struct rtnl_link_stats64 *storage);
774  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
775  *	Called when a user wants to get the network device usage
776  *	statistics. Drivers must do one of the following:
777  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
778  *	   rtnl_link_stats64 structure passed by the caller.
779  *	2. Define @ndo_get_stats to update a net_device_stats structure
780  *	   (which should normally be dev->stats) and return a pointer to
781  *	   it. The structure may be changed asynchronously only if each
782  *	   field is written atomically.
783  *	3. Update dev->stats asynchronously and atomically, and define
784  *	   neither operation.
785  *
786  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
787  *	If device support VLAN filtering this function is called when a
788  *	VLAN id is registered.
789  *
790  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
791  *	If device support VLAN filtering this function is called when a
792  *	VLAN id is unregistered.
793  *
794  * void (*ndo_poll_controller)(struct net_device *dev);
795  *
796  *	SR-IOV management functions.
797  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
798  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
799  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
800  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
801  * int (*ndo_get_vf_config)(struct net_device *dev,
802  *			    int vf, struct ifla_vf_info *ivf);
803  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
804  *			  struct nlattr *port[]);
805  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
806  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
807  * 	Called to setup 'tc' number of traffic classes in the net device. This
808  * 	is always called from the stack with the rtnl lock held and netif tx
809  * 	queues stopped. This allows the netdevice to perform queue management
810  * 	safely.
811  *
812  *	Fiber Channel over Ethernet (FCoE) offload functions.
813  * int (*ndo_fcoe_enable)(struct net_device *dev);
814  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
815  *	so the underlying device can perform whatever needed configuration or
816  *	initialization to support acceleration of FCoE traffic.
817  *
818  * int (*ndo_fcoe_disable)(struct net_device *dev);
819  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
820  *	so the underlying device can perform whatever needed clean-ups to
821  *	stop supporting acceleration of FCoE traffic.
822  *
823  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
824  *			     struct scatterlist *sgl, unsigned int sgc);
825  *	Called when the FCoE Initiator wants to initialize an I/O that
826  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
827  *	perform necessary setup and returns 1 to indicate the device is set up
828  *	successfully to perform DDP on this I/O, otherwise this returns 0.
829  *
830  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
831  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
832  *	indicated by the FC exchange id 'xid', so the underlying device can
833  *	clean up and reuse resources for later DDP requests.
834  *
835  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
836  *			      struct scatterlist *sgl, unsigned int sgc);
837  *	Called when the FCoE Target wants to initialize an I/O that
838  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
839  *	perform necessary setup and returns 1 to indicate the device is set up
840  *	successfully to perform DDP on this I/O, otherwise this returns 0.
841  *
842  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
843  *			       struct netdev_fcoe_hbainfo *hbainfo);
844  *	Called when the FCoE Protocol stack wants information on the underlying
845  *	device. This information is utilized by the FCoE protocol stack to
846  *	register attributes with Fiber Channel management service as per the
847  *	FC-GS Fabric Device Management Information(FDMI) specification.
848  *
849  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
850  *	Called when the underlying device wants to override default World Wide
851  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
852  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
853  *	protocol stack to use.
854  *
855  *	RFS acceleration.
856  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
857  *			    u16 rxq_index, u32 flow_id);
858  *	Set hardware filter for RFS.  rxq_index is the target queue index;
859  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
860  *	Return the filter ID on success, or a negative error code.
861  *
862  *	Slave management functions (for bridge, bonding, etc).
863  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
864  *	Called to make another netdev an underling.
865  *
866  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
867  *	Called to release previously enslaved netdev.
868  *
869  *      Feature/offload setting functions.
870  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
871  *		netdev_features_t features);
872  *	Adjusts the requested feature flags according to device-specific
873  *	constraints, and returns the resulting flags. Must not modify
874  *	the device state.
875  *
876  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
877  *	Called to update device configuration to new features. Passed
878  *	feature set might be less than what was returned by ndo_fix_features()).
879  *	Must return >0 or -errno if it changed dev->features itself.
880  *
881  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
882  *		      struct net_device *dev,
883  *		      const unsigned char *addr, u16 flags)
884  *	Adds an FDB entry to dev for addr.
885  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
886  *		      struct net_device *dev,
887  *		      const unsigned char *addr)
888  *	Deletes the FDB entry from dev coresponding to addr.
889  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
890  *		       struct net_device *dev, int idx)
891  *	Used to add FDB entries to dump requests. Implementers should add
892  *	entries to skb and update idx with the number of entries.
893  *
894  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
895  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
896  *			     struct net_device *dev, u32 filter_mask)
897  *
898  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
899  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
900  *	which do not represent real hardware may define this to allow their
901  *	userspace components to manage their virtual carrier state. Devices
902  *	that determine carrier state from physical hardware properties (eg
903  *	network cables) or protocol-dependent mechanisms (eg
904  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
905  */
906 struct net_device_ops {
907 	int			(*ndo_init)(struct net_device *dev);
908 	void			(*ndo_uninit)(struct net_device *dev);
909 	int			(*ndo_open)(struct net_device *dev);
910 	int			(*ndo_stop)(struct net_device *dev);
911 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
912 						   struct net_device *dev);
913 	u16			(*ndo_select_queue)(struct net_device *dev,
914 						    struct sk_buff *skb);
915 	void			(*ndo_change_rx_flags)(struct net_device *dev,
916 						       int flags);
917 	void			(*ndo_set_rx_mode)(struct net_device *dev);
918 	int			(*ndo_set_mac_address)(struct net_device *dev,
919 						       void *addr);
920 	int			(*ndo_validate_addr)(struct net_device *dev);
921 	int			(*ndo_do_ioctl)(struct net_device *dev,
922 					        struct ifreq *ifr, int cmd);
923 	int			(*ndo_set_config)(struct net_device *dev,
924 					          struct ifmap *map);
925 	int			(*ndo_change_mtu)(struct net_device *dev,
926 						  int new_mtu);
927 	int			(*ndo_neigh_setup)(struct net_device *dev,
928 						   struct neigh_parms *);
929 	void			(*ndo_tx_timeout) (struct net_device *dev);
930 
931 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
932 						     struct rtnl_link_stats64 *storage);
933 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
934 
935 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
936 						       __be16 proto, u16 vid);
937 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
938 						        __be16 proto, u16 vid);
939 #ifdef CONFIG_NET_POLL_CONTROLLER
940 	void                    (*ndo_poll_controller)(struct net_device *dev);
941 	int			(*ndo_netpoll_setup)(struct net_device *dev,
942 						     struct netpoll_info *info,
943 						     gfp_t gfp);
944 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
945 #endif
946 	int			(*ndo_set_vf_mac)(struct net_device *dev,
947 						  int queue, u8 *mac);
948 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
949 						   int queue, u16 vlan, u8 qos);
950 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
951 						      int vf, int rate);
952 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
953 						       int vf, bool setting);
954 	int			(*ndo_get_vf_config)(struct net_device *dev,
955 						     int vf,
956 						     struct ifla_vf_info *ivf);
957 	int			(*ndo_set_vf_port)(struct net_device *dev,
958 						   int vf,
959 						   struct nlattr *port[]);
960 	int			(*ndo_get_vf_port)(struct net_device *dev,
961 						   int vf, struct sk_buff *skb);
962 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
963 #if IS_ENABLED(CONFIG_FCOE)
964 	int			(*ndo_fcoe_enable)(struct net_device *dev);
965 	int			(*ndo_fcoe_disable)(struct net_device *dev);
966 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
967 						      u16 xid,
968 						      struct scatterlist *sgl,
969 						      unsigned int sgc);
970 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
971 						     u16 xid);
972 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
973 						       u16 xid,
974 						       struct scatterlist *sgl,
975 						       unsigned int sgc);
976 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
977 							struct netdev_fcoe_hbainfo *hbainfo);
978 #endif
979 
980 #if IS_ENABLED(CONFIG_LIBFCOE)
981 #define NETDEV_FCOE_WWNN 0
982 #define NETDEV_FCOE_WWPN 1
983 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
984 						    u64 *wwn, int type);
985 #endif
986 
987 #ifdef CONFIG_RFS_ACCEL
988 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
989 						     const struct sk_buff *skb,
990 						     u16 rxq_index,
991 						     u32 flow_id);
992 #endif
993 	int			(*ndo_add_slave)(struct net_device *dev,
994 						 struct net_device *slave_dev);
995 	int			(*ndo_del_slave)(struct net_device *dev,
996 						 struct net_device *slave_dev);
997 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
998 						    netdev_features_t features);
999 	int			(*ndo_set_features)(struct net_device *dev,
1000 						    netdev_features_t features);
1001 	int			(*ndo_neigh_construct)(struct neighbour *n);
1002 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1003 
1004 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1005 					       struct nlattr *tb[],
1006 					       struct net_device *dev,
1007 					       const unsigned char *addr,
1008 					       u16 flags);
1009 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1010 					       struct nlattr *tb[],
1011 					       struct net_device *dev,
1012 					       const unsigned char *addr);
1013 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1014 						struct netlink_callback *cb,
1015 						struct net_device *dev,
1016 						int idx);
1017 
1018 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1019 						      struct nlmsghdr *nlh);
1020 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1021 						      u32 pid, u32 seq,
1022 						      struct net_device *dev,
1023 						      u32 filter_mask);
1024 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1025 						      struct nlmsghdr *nlh);
1026 	int			(*ndo_change_carrier)(struct net_device *dev,
1027 						      bool new_carrier);
1028 };
1029 
1030 /*
1031  *	The DEVICE structure.
1032  *	Actually, this whole structure is a big mistake.  It mixes I/O
1033  *	data with strictly "high-level" data, and it has to know about
1034  *	almost every data structure used in the INET module.
1035  *
1036  *	FIXME: cleanup struct net_device such that network protocol info
1037  *	moves out.
1038  */
1039 
1040 struct net_device {
1041 
1042 	/*
1043 	 * This is the first field of the "visible" part of this structure
1044 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1045 	 * of the interface.
1046 	 */
1047 	char			name[IFNAMSIZ];
1048 
1049 	/* device name hash chain, please keep it close to name[] */
1050 	struct hlist_node	name_hlist;
1051 
1052 	/* snmp alias */
1053 	char 			*ifalias;
1054 
1055 	/*
1056 	 *	I/O specific fields
1057 	 *	FIXME: Merge these and struct ifmap into one
1058 	 */
1059 	unsigned long		mem_end;	/* shared mem end	*/
1060 	unsigned long		mem_start;	/* shared mem start	*/
1061 	unsigned long		base_addr;	/* device I/O address	*/
1062 	unsigned int		irq;		/* device IRQ number	*/
1063 
1064 	/*
1065 	 *	Some hardware also needs these fields, but they are not
1066 	 *	part of the usual set specified in Space.c.
1067 	 */
1068 
1069 	unsigned long		state;
1070 
1071 	struct list_head	dev_list;
1072 	struct list_head	napi_list;
1073 	struct list_head	unreg_list;
1074 	struct list_head	upper_dev_list; /* List of upper devices */
1075 
1076 
1077 	/* currently active device features */
1078 	netdev_features_t	features;
1079 	/* user-changeable features */
1080 	netdev_features_t	hw_features;
1081 	/* user-requested features */
1082 	netdev_features_t	wanted_features;
1083 	/* mask of features inheritable by VLAN devices */
1084 	netdev_features_t	vlan_features;
1085 	/* mask of features inherited by encapsulating devices
1086 	 * This field indicates what encapsulation offloads
1087 	 * the hardware is capable of doing, and drivers will
1088 	 * need to set them appropriately.
1089 	 */
1090 	netdev_features_t	hw_enc_features;
1091 
1092 	/* Interface index. Unique device identifier	*/
1093 	int			ifindex;
1094 	int			iflink;
1095 
1096 	struct net_device_stats	stats;
1097 	atomic_long_t		rx_dropped; /* dropped packets by core network
1098 					     * Do not use this in drivers.
1099 					     */
1100 
1101 #ifdef CONFIG_WIRELESS_EXT
1102 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1103 	 * See <net/iw_handler.h> for details. Jean II */
1104 	const struct iw_handler_def *	wireless_handlers;
1105 	/* Instance data managed by the core of Wireless Extensions. */
1106 	struct iw_public_data *	wireless_data;
1107 #endif
1108 	/* Management operations */
1109 	const struct net_device_ops *netdev_ops;
1110 	const struct ethtool_ops *ethtool_ops;
1111 
1112 	/* Hardware header description */
1113 	const struct header_ops *header_ops;
1114 
1115 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1116 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1117 					     * See if.h for definitions. */
1118 	unsigned short		gflags;
1119 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1120 
1121 	unsigned char		operstate; /* RFC2863 operstate */
1122 	unsigned char		link_mode; /* mapping policy to operstate */
1123 
1124 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1125 	unsigned char		dma;		/* DMA channel		*/
1126 
1127 	unsigned int		mtu;	/* interface MTU value		*/
1128 	unsigned short		type;	/* interface hardware type	*/
1129 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1130 
1131 	/* extra head- and tailroom the hardware may need, but not in all cases
1132 	 * can this be guaranteed, especially tailroom. Some cases also use
1133 	 * LL_MAX_HEADER instead to allocate the skb.
1134 	 */
1135 	unsigned short		needed_headroom;
1136 	unsigned short		needed_tailroom;
1137 
1138 	/* Interface address info. */
1139 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1140 	unsigned char		addr_assign_type; /* hw address assignment type */
1141 	unsigned char		addr_len;	/* hardware address length	*/
1142 	unsigned char		neigh_priv_len;
1143 	unsigned short          dev_id;		/* for shared network cards */
1144 
1145 	spinlock_t		addr_list_lock;
1146 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1147 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1148 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1149 						    * hw addresses
1150 						    */
1151 #ifdef CONFIG_SYSFS
1152 	struct kset		*queues_kset;
1153 #endif
1154 
1155 	bool			uc_promisc;
1156 	unsigned int		promiscuity;
1157 	unsigned int		allmulti;
1158 
1159 
1160 	/* Protocol specific pointers */
1161 
1162 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1163 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1164 #endif
1165 #if IS_ENABLED(CONFIG_NET_DSA)
1166 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1167 #endif
1168 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1169 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1170 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1171 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1172 	void			*ax25_ptr;	/* AX.25 specific data */
1173 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1174 						   assign before registering */
1175 
1176 /*
1177  * Cache lines mostly used on receive path (including eth_type_trans())
1178  */
1179 	unsigned long		last_rx;	/* Time of last Rx
1180 						 * This should not be set in
1181 						 * drivers, unless really needed,
1182 						 * because network stack (bonding)
1183 						 * use it if/when necessary, to
1184 						 * avoid dirtying this cache line.
1185 						 */
1186 
1187 	/* Interface address info used in eth_type_trans() */
1188 	unsigned char		*dev_addr;	/* hw address, (before bcast
1189 						   because most packets are
1190 						   unicast) */
1191 
1192 
1193 #ifdef CONFIG_RPS
1194 	struct netdev_rx_queue	*_rx;
1195 
1196 	/* Number of RX queues allocated at register_netdev() time */
1197 	unsigned int		num_rx_queues;
1198 
1199 	/* Number of RX queues currently active in device */
1200 	unsigned int		real_num_rx_queues;
1201 
1202 #endif
1203 
1204 	rx_handler_func_t __rcu	*rx_handler;
1205 	void __rcu		*rx_handler_data;
1206 
1207 	struct netdev_queue __rcu *ingress_queue;
1208 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1209 
1210 
1211 /*
1212  * Cache lines mostly used on transmit path
1213  */
1214 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1215 
1216 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1217 	unsigned int		num_tx_queues;
1218 
1219 	/* Number of TX queues currently active in device  */
1220 	unsigned int		real_num_tx_queues;
1221 
1222 	/* root qdisc from userspace point of view */
1223 	struct Qdisc		*qdisc;
1224 
1225 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1226 	spinlock_t		tx_global_lock;
1227 
1228 #ifdef CONFIG_XPS
1229 	struct xps_dev_maps __rcu *xps_maps;
1230 #endif
1231 #ifdef CONFIG_RFS_ACCEL
1232 	/* CPU reverse-mapping for RX completion interrupts, indexed
1233 	 * by RX queue number.  Assigned by driver.  This must only be
1234 	 * set if the ndo_rx_flow_steer operation is defined. */
1235 	struct cpu_rmap		*rx_cpu_rmap;
1236 #endif
1237 
1238 	/* These may be needed for future network-power-down code. */
1239 
1240 	/*
1241 	 * trans_start here is expensive for high speed devices on SMP,
1242 	 * please use netdev_queue->trans_start instead.
1243 	 */
1244 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1245 
1246 	int			watchdog_timeo; /* used by dev_watchdog() */
1247 	struct timer_list	watchdog_timer;
1248 
1249 	/* Number of references to this device */
1250 	int __percpu		*pcpu_refcnt;
1251 
1252 	/* delayed register/unregister */
1253 	struct list_head	todo_list;
1254 	/* device index hash chain */
1255 	struct hlist_node	index_hlist;
1256 
1257 	struct list_head	link_watch_list;
1258 
1259 	/* register/unregister state machine */
1260 	enum { NETREG_UNINITIALIZED=0,
1261 	       NETREG_REGISTERED,	/* completed register_netdevice */
1262 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1263 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1264 	       NETREG_RELEASED,		/* called free_netdev */
1265 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1266 	} reg_state:8;
1267 
1268 	bool dismantle; /* device is going do be freed */
1269 
1270 	enum {
1271 		RTNL_LINK_INITIALIZED,
1272 		RTNL_LINK_INITIALIZING,
1273 	} rtnl_link_state:16;
1274 
1275 	/* Called from unregister, can be used to call free_netdev */
1276 	void (*destructor)(struct net_device *dev);
1277 
1278 #ifdef CONFIG_NETPOLL
1279 	struct netpoll_info __rcu	*npinfo;
1280 #endif
1281 
1282 #ifdef CONFIG_NET_NS
1283 	/* Network namespace this network device is inside */
1284 	struct net		*nd_net;
1285 #endif
1286 
1287 	/* mid-layer private */
1288 	union {
1289 		void				*ml_priv;
1290 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1291 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1292 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1293 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1294 	};
1295 	/* GARP */
1296 	struct garp_port __rcu	*garp_port;
1297 	/* MRP */
1298 	struct mrp_port __rcu	*mrp_port;
1299 
1300 	/* class/net/name entry */
1301 	struct device		dev;
1302 	/* space for optional device, statistics, and wireless sysfs groups */
1303 	const struct attribute_group *sysfs_groups[4];
1304 
1305 	/* rtnetlink link ops */
1306 	const struct rtnl_link_ops *rtnl_link_ops;
1307 
1308 	/* for setting kernel sock attribute on TCP connection setup */
1309 #define GSO_MAX_SIZE		65536
1310 	unsigned int		gso_max_size;
1311 #define GSO_MAX_SEGS		65535
1312 	u16			gso_max_segs;
1313 
1314 #ifdef CONFIG_DCB
1315 	/* Data Center Bridging netlink ops */
1316 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1317 #endif
1318 	u8 num_tc;
1319 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1320 	u8 prio_tc_map[TC_BITMASK + 1];
1321 
1322 #if IS_ENABLED(CONFIG_FCOE)
1323 	/* max exchange id for FCoE LRO by ddp */
1324 	unsigned int		fcoe_ddp_xid;
1325 #endif
1326 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1327 	struct netprio_map __rcu *priomap;
1328 #endif
1329 	/* phy device may attach itself for hardware timestamping */
1330 	struct phy_device *phydev;
1331 
1332 	struct lock_class_key *qdisc_tx_busylock;
1333 
1334 	/* group the device belongs to */
1335 	int group;
1336 
1337 	struct pm_qos_request	pm_qos_req;
1338 };
1339 #define to_net_dev(d) container_of(d, struct net_device, dev)
1340 
1341 #define	NETDEV_ALIGN		32
1342 
1343 static inline
1344 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1345 {
1346 	return dev->prio_tc_map[prio & TC_BITMASK];
1347 }
1348 
1349 static inline
1350 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1351 {
1352 	if (tc >= dev->num_tc)
1353 		return -EINVAL;
1354 
1355 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1356 	return 0;
1357 }
1358 
1359 static inline
1360 void netdev_reset_tc(struct net_device *dev)
1361 {
1362 	dev->num_tc = 0;
1363 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1364 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1365 }
1366 
1367 static inline
1368 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1369 {
1370 	if (tc >= dev->num_tc)
1371 		return -EINVAL;
1372 
1373 	dev->tc_to_txq[tc].count = count;
1374 	dev->tc_to_txq[tc].offset = offset;
1375 	return 0;
1376 }
1377 
1378 static inline
1379 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1380 {
1381 	if (num_tc > TC_MAX_QUEUE)
1382 		return -EINVAL;
1383 
1384 	dev->num_tc = num_tc;
1385 	return 0;
1386 }
1387 
1388 static inline
1389 int netdev_get_num_tc(struct net_device *dev)
1390 {
1391 	return dev->num_tc;
1392 }
1393 
1394 static inline
1395 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1396 					 unsigned int index)
1397 {
1398 	return &dev->_tx[index];
1399 }
1400 
1401 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1402 					    void (*f)(struct net_device *,
1403 						      struct netdev_queue *,
1404 						      void *),
1405 					    void *arg)
1406 {
1407 	unsigned int i;
1408 
1409 	for (i = 0; i < dev->num_tx_queues; i++)
1410 		f(dev, &dev->_tx[i], arg);
1411 }
1412 
1413 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1414 					   struct sk_buff *skb);
1415 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1416 
1417 /*
1418  * Net namespace inlines
1419  */
1420 static inline
1421 struct net *dev_net(const struct net_device *dev)
1422 {
1423 	return read_pnet(&dev->nd_net);
1424 }
1425 
1426 static inline
1427 void dev_net_set(struct net_device *dev, struct net *net)
1428 {
1429 #ifdef CONFIG_NET_NS
1430 	release_net(dev->nd_net);
1431 	dev->nd_net = hold_net(net);
1432 #endif
1433 }
1434 
1435 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1436 {
1437 #ifdef CONFIG_NET_DSA_TAG_DSA
1438 	if (dev->dsa_ptr != NULL)
1439 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1440 #endif
1441 
1442 	return 0;
1443 }
1444 
1445 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1446 {
1447 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1448 	if (dev->dsa_ptr != NULL)
1449 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1450 #endif
1451 
1452 	return 0;
1453 }
1454 
1455 /**
1456  *	netdev_priv - access network device private data
1457  *	@dev: network device
1458  *
1459  * Get network device private data
1460  */
1461 static inline void *netdev_priv(const struct net_device *dev)
1462 {
1463 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1464 }
1465 
1466 /* Set the sysfs physical device reference for the network logical device
1467  * if set prior to registration will cause a symlink during initialization.
1468  */
1469 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1470 
1471 /* Set the sysfs device type for the network logical device to allow
1472  * fin grained indentification of different network device types. For
1473  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1474  */
1475 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1476 
1477 /* Default NAPI poll() weight
1478  * Device drivers are strongly advised to not use bigger value
1479  */
1480 #define NAPI_POLL_WEIGHT 64
1481 
1482 /**
1483  *	netif_napi_add - initialize a napi context
1484  *	@dev:  network device
1485  *	@napi: napi context
1486  *	@poll: polling function
1487  *	@weight: default weight
1488  *
1489  * netif_napi_add() must be used to initialize a napi context prior to calling
1490  * *any* of the other napi related functions.
1491  */
1492 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1493 		    int (*poll)(struct napi_struct *, int), int weight);
1494 
1495 /**
1496  *  netif_napi_del - remove a napi context
1497  *  @napi: napi context
1498  *
1499  *  netif_napi_del() removes a napi context from the network device napi list
1500  */
1501 void netif_napi_del(struct napi_struct *napi);
1502 
1503 struct napi_gro_cb {
1504 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1505 	void *frag0;
1506 
1507 	/* Length of frag0. */
1508 	unsigned int frag0_len;
1509 
1510 	/* This indicates where we are processing relative to skb->data. */
1511 	int data_offset;
1512 
1513 	/* This is non-zero if the packet cannot be merged with the new skb. */
1514 	int flush;
1515 
1516 	/* Number of segments aggregated. */
1517 	u16	count;
1518 
1519 	/* This is non-zero if the packet may be of the same flow. */
1520 	u8	same_flow;
1521 
1522 	/* Free the skb? */
1523 	u8	free;
1524 #define NAPI_GRO_FREE		  1
1525 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1526 
1527 	/* jiffies when first packet was created/queued */
1528 	unsigned long age;
1529 
1530 	/* Used in ipv6_gro_receive() */
1531 	int	proto;
1532 
1533 	/* used in skb_gro_receive() slow path */
1534 	struct sk_buff *last;
1535 };
1536 
1537 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1538 
1539 struct packet_type {
1540 	__be16			type;	/* This is really htons(ether_type). */
1541 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1542 	int			(*func) (struct sk_buff *,
1543 					 struct net_device *,
1544 					 struct packet_type *,
1545 					 struct net_device *);
1546 	bool			(*id_match)(struct packet_type *ptype,
1547 					    struct sock *sk);
1548 	void			*af_packet_priv;
1549 	struct list_head	list;
1550 };
1551 
1552 struct offload_callbacks {
1553 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1554 						netdev_features_t features);
1555 	int			(*gso_send_check)(struct sk_buff *skb);
1556 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1557 					       struct sk_buff *skb);
1558 	int			(*gro_complete)(struct sk_buff *skb);
1559 };
1560 
1561 struct packet_offload {
1562 	__be16			 type;	/* This is really htons(ether_type). */
1563 	struct offload_callbacks callbacks;
1564 	struct list_head	 list;
1565 };
1566 
1567 #include <linux/notifier.h>
1568 
1569 /* netdevice notifier chain. Please remember to update the rtnetlink
1570  * notification exclusion list in rtnetlink_event() when adding new
1571  * types.
1572  */
1573 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1574 #define NETDEV_DOWN	0x0002
1575 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1576 				   detected a hardware crash and restarted
1577 				   - we can use this eg to kick tcp sessions
1578 				   once done */
1579 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1580 #define NETDEV_REGISTER 0x0005
1581 #define NETDEV_UNREGISTER	0x0006
1582 #define NETDEV_CHANGEMTU	0x0007
1583 #define NETDEV_CHANGEADDR	0x0008
1584 #define NETDEV_GOING_DOWN	0x0009
1585 #define NETDEV_CHANGENAME	0x000A
1586 #define NETDEV_FEAT_CHANGE	0x000B
1587 #define NETDEV_BONDING_FAILOVER 0x000C
1588 #define NETDEV_PRE_UP		0x000D
1589 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1590 #define NETDEV_POST_TYPE_CHANGE	0x000F
1591 #define NETDEV_POST_INIT	0x0010
1592 #define NETDEV_UNREGISTER_FINAL 0x0011
1593 #define NETDEV_RELEASE		0x0012
1594 #define NETDEV_NOTIFY_PEERS	0x0013
1595 #define NETDEV_JOIN		0x0014
1596 
1597 extern int register_netdevice_notifier(struct notifier_block *nb);
1598 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1599 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1600 
1601 
1602 extern rwlock_t				dev_base_lock;		/* Device list lock */
1603 
1604 extern seqcount_t	devnet_rename_seq;	/* Device rename seq */
1605 
1606 
1607 #define for_each_netdev(net, d)		\
1608 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1609 #define for_each_netdev_reverse(net, d)	\
1610 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1611 #define for_each_netdev_rcu(net, d)		\
1612 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1613 #define for_each_netdev_safe(net, d, n)	\
1614 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1615 #define for_each_netdev_continue(net, d)		\
1616 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1617 #define for_each_netdev_continue_rcu(net, d)		\
1618 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1619 #define for_each_netdev_in_bond_rcu(bond, slave)	\
1620 		for_each_netdev_rcu(&init_net, slave)	\
1621 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
1622 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1623 
1624 static inline struct net_device *next_net_device(struct net_device *dev)
1625 {
1626 	struct list_head *lh;
1627 	struct net *net;
1628 
1629 	net = dev_net(dev);
1630 	lh = dev->dev_list.next;
1631 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1632 }
1633 
1634 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1635 {
1636 	struct list_head *lh;
1637 	struct net *net;
1638 
1639 	net = dev_net(dev);
1640 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1641 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1642 }
1643 
1644 static inline struct net_device *first_net_device(struct net *net)
1645 {
1646 	return list_empty(&net->dev_base_head) ? NULL :
1647 		net_device_entry(net->dev_base_head.next);
1648 }
1649 
1650 static inline struct net_device *first_net_device_rcu(struct net *net)
1651 {
1652 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1653 
1654 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1655 }
1656 
1657 extern int 			netdev_boot_setup_check(struct net_device *dev);
1658 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1659 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1660 					      const char *hwaddr);
1661 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1662 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1663 extern void		dev_add_pack(struct packet_type *pt);
1664 extern void		dev_remove_pack(struct packet_type *pt);
1665 extern void		__dev_remove_pack(struct packet_type *pt);
1666 extern void		dev_add_offload(struct packet_offload *po);
1667 extern void		dev_remove_offload(struct packet_offload *po);
1668 extern void		__dev_remove_offload(struct packet_offload *po);
1669 
1670 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1671 						      unsigned short mask);
1672 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1673 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1674 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1675 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1676 extern int		dev_open(struct net_device *dev);
1677 extern int		dev_close(struct net_device *dev);
1678 extern void		dev_disable_lro(struct net_device *dev);
1679 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1680 extern int		dev_queue_xmit(struct sk_buff *skb);
1681 extern int		register_netdevice(struct net_device *dev);
1682 extern void		unregister_netdevice_queue(struct net_device *dev,
1683 						   struct list_head *head);
1684 extern void		unregister_netdevice_many(struct list_head *head);
1685 static inline void unregister_netdevice(struct net_device *dev)
1686 {
1687 	unregister_netdevice_queue(dev, NULL);
1688 }
1689 
1690 extern int 		netdev_refcnt_read(const struct net_device *dev);
1691 extern void		free_netdev(struct net_device *dev);
1692 extern void		synchronize_net(void);
1693 extern int		init_dummy_netdev(struct net_device *dev);
1694 
1695 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1696 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1697 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1698 extern int		dev_restart(struct net_device *dev);
1699 #ifdef CONFIG_NETPOLL_TRAP
1700 extern int		netpoll_trap(void);
1701 #endif
1702 extern int	       skb_gro_receive(struct sk_buff **head,
1703 				       struct sk_buff *skb);
1704 
1705 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1706 {
1707 	return NAPI_GRO_CB(skb)->data_offset;
1708 }
1709 
1710 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1711 {
1712 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1713 }
1714 
1715 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1716 {
1717 	NAPI_GRO_CB(skb)->data_offset += len;
1718 }
1719 
1720 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1721 					unsigned int offset)
1722 {
1723 	return NAPI_GRO_CB(skb)->frag0 + offset;
1724 }
1725 
1726 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1727 {
1728 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1729 }
1730 
1731 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1732 					unsigned int offset)
1733 {
1734 	if (!pskb_may_pull(skb, hlen))
1735 		return NULL;
1736 
1737 	NAPI_GRO_CB(skb)->frag0 = NULL;
1738 	NAPI_GRO_CB(skb)->frag0_len = 0;
1739 	return skb->data + offset;
1740 }
1741 
1742 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1743 {
1744 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1745 }
1746 
1747 static inline void *skb_gro_network_header(struct sk_buff *skb)
1748 {
1749 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1750 	       skb_network_offset(skb);
1751 }
1752 
1753 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1754 				  unsigned short type,
1755 				  const void *daddr, const void *saddr,
1756 				  unsigned int len)
1757 {
1758 	if (!dev->header_ops || !dev->header_ops->create)
1759 		return 0;
1760 
1761 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1762 }
1763 
1764 static inline int dev_parse_header(const struct sk_buff *skb,
1765 				   unsigned char *haddr)
1766 {
1767 	const struct net_device *dev = skb->dev;
1768 
1769 	if (!dev->header_ops || !dev->header_ops->parse)
1770 		return 0;
1771 	return dev->header_ops->parse(skb, haddr);
1772 }
1773 
1774 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1775 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1776 static inline int unregister_gifconf(unsigned int family)
1777 {
1778 	return register_gifconf(family, NULL);
1779 }
1780 
1781 /*
1782  * Incoming packets are placed on per-cpu queues
1783  */
1784 struct softnet_data {
1785 	struct Qdisc		*output_queue;
1786 	struct Qdisc		**output_queue_tailp;
1787 	struct list_head	poll_list;
1788 	struct sk_buff		*completion_queue;
1789 	struct sk_buff_head	process_queue;
1790 
1791 	/* stats */
1792 	unsigned int		processed;
1793 	unsigned int		time_squeeze;
1794 	unsigned int		cpu_collision;
1795 	unsigned int		received_rps;
1796 
1797 #ifdef CONFIG_RPS
1798 	struct softnet_data	*rps_ipi_list;
1799 
1800 	/* Elements below can be accessed between CPUs for RPS */
1801 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1802 	struct softnet_data	*rps_ipi_next;
1803 	unsigned int		cpu;
1804 	unsigned int		input_queue_head;
1805 	unsigned int		input_queue_tail;
1806 #endif
1807 	unsigned int		dropped;
1808 	struct sk_buff_head	input_pkt_queue;
1809 	struct napi_struct	backlog;
1810 };
1811 
1812 static inline void input_queue_head_incr(struct softnet_data *sd)
1813 {
1814 #ifdef CONFIG_RPS
1815 	sd->input_queue_head++;
1816 #endif
1817 }
1818 
1819 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1820 					      unsigned int *qtail)
1821 {
1822 #ifdef CONFIG_RPS
1823 	*qtail = ++sd->input_queue_tail;
1824 #endif
1825 }
1826 
1827 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1828 
1829 extern void __netif_schedule(struct Qdisc *q);
1830 
1831 static inline void netif_schedule_queue(struct netdev_queue *txq)
1832 {
1833 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1834 		__netif_schedule(txq->qdisc);
1835 }
1836 
1837 static inline void netif_tx_schedule_all(struct net_device *dev)
1838 {
1839 	unsigned int i;
1840 
1841 	for (i = 0; i < dev->num_tx_queues; i++)
1842 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1843 }
1844 
1845 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1846 {
1847 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1848 }
1849 
1850 /**
1851  *	netif_start_queue - allow transmit
1852  *	@dev: network device
1853  *
1854  *	Allow upper layers to call the device hard_start_xmit routine.
1855  */
1856 static inline void netif_start_queue(struct net_device *dev)
1857 {
1858 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1859 }
1860 
1861 static inline void netif_tx_start_all_queues(struct net_device *dev)
1862 {
1863 	unsigned int i;
1864 
1865 	for (i = 0; i < dev->num_tx_queues; i++) {
1866 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1867 		netif_tx_start_queue(txq);
1868 	}
1869 }
1870 
1871 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1872 {
1873 #ifdef CONFIG_NETPOLL_TRAP
1874 	if (netpoll_trap()) {
1875 		netif_tx_start_queue(dev_queue);
1876 		return;
1877 	}
1878 #endif
1879 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1880 		__netif_schedule(dev_queue->qdisc);
1881 }
1882 
1883 /**
1884  *	netif_wake_queue - restart transmit
1885  *	@dev: network device
1886  *
1887  *	Allow upper layers to call the device hard_start_xmit routine.
1888  *	Used for flow control when transmit resources are available.
1889  */
1890 static inline void netif_wake_queue(struct net_device *dev)
1891 {
1892 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1893 }
1894 
1895 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1896 {
1897 	unsigned int i;
1898 
1899 	for (i = 0; i < dev->num_tx_queues; i++) {
1900 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1901 		netif_tx_wake_queue(txq);
1902 	}
1903 }
1904 
1905 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1906 {
1907 	if (WARN_ON(!dev_queue)) {
1908 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1909 		return;
1910 	}
1911 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1912 }
1913 
1914 /**
1915  *	netif_stop_queue - stop transmitted packets
1916  *	@dev: network device
1917  *
1918  *	Stop upper layers calling the device hard_start_xmit routine.
1919  *	Used for flow control when transmit resources are unavailable.
1920  */
1921 static inline void netif_stop_queue(struct net_device *dev)
1922 {
1923 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1924 }
1925 
1926 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1927 {
1928 	unsigned int i;
1929 
1930 	for (i = 0; i < dev->num_tx_queues; i++) {
1931 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1932 		netif_tx_stop_queue(txq);
1933 	}
1934 }
1935 
1936 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1937 {
1938 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1939 }
1940 
1941 /**
1942  *	netif_queue_stopped - test if transmit queue is flowblocked
1943  *	@dev: network device
1944  *
1945  *	Test if transmit queue on device is currently unable to send.
1946  */
1947 static inline bool netif_queue_stopped(const struct net_device *dev)
1948 {
1949 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1950 }
1951 
1952 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1953 {
1954 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1955 }
1956 
1957 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1958 {
1959 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1960 }
1961 
1962 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1963 					unsigned int bytes)
1964 {
1965 #ifdef CONFIG_BQL
1966 	dql_queued(&dev_queue->dql, bytes);
1967 
1968 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1969 		return;
1970 
1971 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1972 
1973 	/*
1974 	 * The XOFF flag must be set before checking the dql_avail below,
1975 	 * because in netdev_tx_completed_queue we update the dql_completed
1976 	 * before checking the XOFF flag.
1977 	 */
1978 	smp_mb();
1979 
1980 	/* check again in case another CPU has just made room avail */
1981 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1982 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1983 #endif
1984 }
1985 
1986 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1987 {
1988 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1989 }
1990 
1991 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1992 					     unsigned int pkts, unsigned int bytes)
1993 {
1994 #ifdef CONFIG_BQL
1995 	if (unlikely(!bytes))
1996 		return;
1997 
1998 	dql_completed(&dev_queue->dql, bytes);
1999 
2000 	/*
2001 	 * Without the memory barrier there is a small possiblity that
2002 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2003 	 * be stopped forever
2004 	 */
2005 	smp_mb();
2006 
2007 	if (dql_avail(&dev_queue->dql) < 0)
2008 		return;
2009 
2010 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2011 		netif_schedule_queue(dev_queue);
2012 #endif
2013 }
2014 
2015 static inline void netdev_completed_queue(struct net_device *dev,
2016 					  unsigned int pkts, unsigned int bytes)
2017 {
2018 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2019 }
2020 
2021 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2022 {
2023 #ifdef CONFIG_BQL
2024 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2025 	dql_reset(&q->dql);
2026 #endif
2027 }
2028 
2029 static inline void netdev_reset_queue(struct net_device *dev_queue)
2030 {
2031 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2032 }
2033 
2034 /**
2035  *	netif_running - test if up
2036  *	@dev: network device
2037  *
2038  *	Test if the device has been brought up.
2039  */
2040 static inline bool netif_running(const struct net_device *dev)
2041 {
2042 	return test_bit(__LINK_STATE_START, &dev->state);
2043 }
2044 
2045 /*
2046  * Routines to manage the subqueues on a device.  We only need start
2047  * stop, and a check if it's stopped.  All other device management is
2048  * done at the overall netdevice level.
2049  * Also test the device if we're multiqueue.
2050  */
2051 
2052 /**
2053  *	netif_start_subqueue - allow sending packets on subqueue
2054  *	@dev: network device
2055  *	@queue_index: sub queue index
2056  *
2057  * Start individual transmit queue of a device with multiple transmit queues.
2058  */
2059 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2060 {
2061 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2062 
2063 	netif_tx_start_queue(txq);
2064 }
2065 
2066 /**
2067  *	netif_stop_subqueue - stop sending packets on subqueue
2068  *	@dev: network device
2069  *	@queue_index: sub queue index
2070  *
2071  * Stop individual transmit queue of a device with multiple transmit queues.
2072  */
2073 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2074 {
2075 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2076 #ifdef CONFIG_NETPOLL_TRAP
2077 	if (netpoll_trap())
2078 		return;
2079 #endif
2080 	netif_tx_stop_queue(txq);
2081 }
2082 
2083 /**
2084  *	netif_subqueue_stopped - test status of subqueue
2085  *	@dev: network device
2086  *	@queue_index: sub queue index
2087  *
2088  * Check individual transmit queue of a device with multiple transmit queues.
2089  */
2090 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2091 					    u16 queue_index)
2092 {
2093 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2094 
2095 	return netif_tx_queue_stopped(txq);
2096 }
2097 
2098 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2099 					  struct sk_buff *skb)
2100 {
2101 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2102 }
2103 
2104 /**
2105  *	netif_wake_subqueue - allow sending packets on subqueue
2106  *	@dev: network device
2107  *	@queue_index: sub queue index
2108  *
2109  * Resume individual transmit queue of a device with multiple transmit queues.
2110  */
2111 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2112 {
2113 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2114 #ifdef CONFIG_NETPOLL_TRAP
2115 	if (netpoll_trap())
2116 		return;
2117 #endif
2118 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2119 		__netif_schedule(txq->qdisc);
2120 }
2121 
2122 #ifdef CONFIG_XPS
2123 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2124 			       u16 index);
2125 #else
2126 static inline int netif_set_xps_queue(struct net_device *dev,
2127 				      struct cpumask *mask,
2128 				      u16 index)
2129 {
2130 	return 0;
2131 }
2132 #endif
2133 
2134 /*
2135  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2136  * as a distribution range limit for the returned value.
2137  */
2138 static inline u16 skb_tx_hash(const struct net_device *dev,
2139 			      const struct sk_buff *skb)
2140 {
2141 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2142 }
2143 
2144 /**
2145  *	netif_is_multiqueue - test if device has multiple transmit queues
2146  *	@dev: network device
2147  *
2148  * Check if device has multiple transmit queues
2149  */
2150 static inline bool netif_is_multiqueue(const struct net_device *dev)
2151 {
2152 	return dev->num_tx_queues > 1;
2153 }
2154 
2155 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2156 					unsigned int txq);
2157 
2158 #ifdef CONFIG_RPS
2159 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2160 					unsigned int rxq);
2161 #else
2162 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2163 						unsigned int rxq)
2164 {
2165 	return 0;
2166 }
2167 #endif
2168 
2169 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2170 					     const struct net_device *from_dev)
2171 {
2172 	int err;
2173 
2174 	err = netif_set_real_num_tx_queues(to_dev,
2175 					   from_dev->real_num_tx_queues);
2176 	if (err)
2177 		return err;
2178 #ifdef CONFIG_RPS
2179 	return netif_set_real_num_rx_queues(to_dev,
2180 					    from_dev->real_num_rx_queues);
2181 #else
2182 	return 0;
2183 #endif
2184 }
2185 
2186 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2187 extern int netif_get_num_default_rss_queues(void);
2188 
2189 /* Use this variant when it is known for sure that it
2190  * is executing from hardware interrupt context or with hardware interrupts
2191  * disabled.
2192  */
2193 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2194 
2195 /* Use this variant in places where it could be invoked
2196  * from either hardware interrupt or other context, with hardware interrupts
2197  * either disabled or enabled.
2198  */
2199 extern void dev_kfree_skb_any(struct sk_buff *skb);
2200 
2201 extern int		netif_rx(struct sk_buff *skb);
2202 extern int		netif_rx_ni(struct sk_buff *skb);
2203 extern int		netif_receive_skb(struct sk_buff *skb);
2204 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2205 					 struct sk_buff *skb);
2206 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2207 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2208 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2209 
2210 static inline void napi_free_frags(struct napi_struct *napi)
2211 {
2212 	kfree_skb(napi->skb);
2213 	napi->skb = NULL;
2214 }
2215 
2216 extern int netdev_rx_handler_register(struct net_device *dev,
2217 				      rx_handler_func_t *rx_handler,
2218 				      void *rx_handler_data);
2219 extern void netdev_rx_handler_unregister(struct net_device *dev);
2220 
2221 extern bool		dev_valid_name(const char *name);
2222 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2223 extern int		dev_ethtool(struct net *net, struct ifreq *);
2224 extern unsigned int	dev_get_flags(const struct net_device *);
2225 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2226 extern int		dev_change_flags(struct net_device *, unsigned int);
2227 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2228 extern int		dev_change_name(struct net_device *, const char *);
2229 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2230 extern int		dev_change_net_namespace(struct net_device *,
2231 						 struct net *, const char *);
2232 extern int		dev_set_mtu(struct net_device *, int);
2233 extern void		dev_set_group(struct net_device *, int);
2234 extern int		dev_set_mac_address(struct net_device *,
2235 					    struct sockaddr *);
2236 extern int		dev_change_carrier(struct net_device *,
2237 					   bool new_carrier);
2238 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2239 					    struct net_device *dev,
2240 					    struct netdev_queue *txq);
2241 extern int		dev_forward_skb(struct net_device *dev,
2242 					struct sk_buff *skb);
2243 
2244 extern int		netdev_budget;
2245 
2246 /* Called by rtnetlink.c:rtnl_unlock() */
2247 extern void netdev_run_todo(void);
2248 
2249 /**
2250  *	dev_put - release reference to device
2251  *	@dev: network device
2252  *
2253  * Release reference to device to allow it to be freed.
2254  */
2255 static inline void dev_put(struct net_device *dev)
2256 {
2257 	this_cpu_dec(*dev->pcpu_refcnt);
2258 }
2259 
2260 /**
2261  *	dev_hold - get reference to device
2262  *	@dev: network device
2263  *
2264  * Hold reference to device to keep it from being freed.
2265  */
2266 static inline void dev_hold(struct net_device *dev)
2267 {
2268 	this_cpu_inc(*dev->pcpu_refcnt);
2269 }
2270 
2271 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2272  * and _off may be called from IRQ context, but it is caller
2273  * who is responsible for serialization of these calls.
2274  *
2275  * The name carrier is inappropriate, these functions should really be
2276  * called netif_lowerlayer_*() because they represent the state of any
2277  * kind of lower layer not just hardware media.
2278  */
2279 
2280 extern void linkwatch_init_dev(struct net_device *dev);
2281 extern void linkwatch_fire_event(struct net_device *dev);
2282 extern void linkwatch_forget_dev(struct net_device *dev);
2283 
2284 /**
2285  *	netif_carrier_ok - test if carrier present
2286  *	@dev: network device
2287  *
2288  * Check if carrier is present on device
2289  */
2290 static inline bool netif_carrier_ok(const struct net_device *dev)
2291 {
2292 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2293 }
2294 
2295 extern unsigned long dev_trans_start(struct net_device *dev);
2296 
2297 extern void __netdev_watchdog_up(struct net_device *dev);
2298 
2299 extern void netif_carrier_on(struct net_device *dev);
2300 
2301 extern void netif_carrier_off(struct net_device *dev);
2302 
2303 /**
2304  *	netif_dormant_on - mark device as dormant.
2305  *	@dev: network device
2306  *
2307  * Mark device as dormant (as per RFC2863).
2308  *
2309  * The dormant state indicates that the relevant interface is not
2310  * actually in a condition to pass packets (i.e., it is not 'up') but is
2311  * in a "pending" state, waiting for some external event.  For "on-
2312  * demand" interfaces, this new state identifies the situation where the
2313  * interface is waiting for events to place it in the up state.
2314  *
2315  */
2316 static inline void netif_dormant_on(struct net_device *dev)
2317 {
2318 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2319 		linkwatch_fire_event(dev);
2320 }
2321 
2322 /**
2323  *	netif_dormant_off - set device as not dormant.
2324  *	@dev: network device
2325  *
2326  * Device is not in dormant state.
2327  */
2328 static inline void netif_dormant_off(struct net_device *dev)
2329 {
2330 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2331 		linkwatch_fire_event(dev);
2332 }
2333 
2334 /**
2335  *	netif_dormant - test if carrier present
2336  *	@dev: network device
2337  *
2338  * Check if carrier is present on device
2339  */
2340 static inline bool netif_dormant(const struct net_device *dev)
2341 {
2342 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2343 }
2344 
2345 
2346 /**
2347  *	netif_oper_up - test if device is operational
2348  *	@dev: network device
2349  *
2350  * Check if carrier is operational
2351  */
2352 static inline bool netif_oper_up(const struct net_device *dev)
2353 {
2354 	return (dev->operstate == IF_OPER_UP ||
2355 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2356 }
2357 
2358 /**
2359  *	netif_device_present - is device available or removed
2360  *	@dev: network device
2361  *
2362  * Check if device has not been removed from system.
2363  */
2364 static inline bool netif_device_present(struct net_device *dev)
2365 {
2366 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2367 }
2368 
2369 extern void netif_device_detach(struct net_device *dev);
2370 
2371 extern void netif_device_attach(struct net_device *dev);
2372 
2373 /*
2374  * Network interface message level settings
2375  */
2376 
2377 enum {
2378 	NETIF_MSG_DRV		= 0x0001,
2379 	NETIF_MSG_PROBE		= 0x0002,
2380 	NETIF_MSG_LINK		= 0x0004,
2381 	NETIF_MSG_TIMER		= 0x0008,
2382 	NETIF_MSG_IFDOWN	= 0x0010,
2383 	NETIF_MSG_IFUP		= 0x0020,
2384 	NETIF_MSG_RX_ERR	= 0x0040,
2385 	NETIF_MSG_TX_ERR	= 0x0080,
2386 	NETIF_MSG_TX_QUEUED	= 0x0100,
2387 	NETIF_MSG_INTR		= 0x0200,
2388 	NETIF_MSG_TX_DONE	= 0x0400,
2389 	NETIF_MSG_RX_STATUS	= 0x0800,
2390 	NETIF_MSG_PKTDATA	= 0x1000,
2391 	NETIF_MSG_HW		= 0x2000,
2392 	NETIF_MSG_WOL		= 0x4000,
2393 };
2394 
2395 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2396 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2397 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2398 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2399 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2400 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2401 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2402 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2403 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2404 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2405 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2406 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2407 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2408 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2409 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2410 
2411 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2412 {
2413 	/* use default */
2414 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2415 		return default_msg_enable_bits;
2416 	if (debug_value == 0)	/* no output */
2417 		return 0;
2418 	/* set low N bits */
2419 	return (1 << debug_value) - 1;
2420 }
2421 
2422 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2423 {
2424 	spin_lock(&txq->_xmit_lock);
2425 	txq->xmit_lock_owner = cpu;
2426 }
2427 
2428 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2429 {
2430 	spin_lock_bh(&txq->_xmit_lock);
2431 	txq->xmit_lock_owner = smp_processor_id();
2432 }
2433 
2434 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2435 {
2436 	bool ok = spin_trylock(&txq->_xmit_lock);
2437 	if (likely(ok))
2438 		txq->xmit_lock_owner = smp_processor_id();
2439 	return ok;
2440 }
2441 
2442 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2443 {
2444 	txq->xmit_lock_owner = -1;
2445 	spin_unlock(&txq->_xmit_lock);
2446 }
2447 
2448 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2449 {
2450 	txq->xmit_lock_owner = -1;
2451 	spin_unlock_bh(&txq->_xmit_lock);
2452 }
2453 
2454 static inline void txq_trans_update(struct netdev_queue *txq)
2455 {
2456 	if (txq->xmit_lock_owner != -1)
2457 		txq->trans_start = jiffies;
2458 }
2459 
2460 /**
2461  *	netif_tx_lock - grab network device transmit lock
2462  *	@dev: network device
2463  *
2464  * Get network device transmit lock
2465  */
2466 static inline void netif_tx_lock(struct net_device *dev)
2467 {
2468 	unsigned int i;
2469 	int cpu;
2470 
2471 	spin_lock(&dev->tx_global_lock);
2472 	cpu = smp_processor_id();
2473 	for (i = 0; i < dev->num_tx_queues; i++) {
2474 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2475 
2476 		/* We are the only thread of execution doing a
2477 		 * freeze, but we have to grab the _xmit_lock in
2478 		 * order to synchronize with threads which are in
2479 		 * the ->hard_start_xmit() handler and already
2480 		 * checked the frozen bit.
2481 		 */
2482 		__netif_tx_lock(txq, cpu);
2483 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2484 		__netif_tx_unlock(txq);
2485 	}
2486 }
2487 
2488 static inline void netif_tx_lock_bh(struct net_device *dev)
2489 {
2490 	local_bh_disable();
2491 	netif_tx_lock(dev);
2492 }
2493 
2494 static inline void netif_tx_unlock(struct net_device *dev)
2495 {
2496 	unsigned int i;
2497 
2498 	for (i = 0; i < dev->num_tx_queues; i++) {
2499 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2500 
2501 		/* No need to grab the _xmit_lock here.  If the
2502 		 * queue is not stopped for another reason, we
2503 		 * force a schedule.
2504 		 */
2505 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2506 		netif_schedule_queue(txq);
2507 	}
2508 	spin_unlock(&dev->tx_global_lock);
2509 }
2510 
2511 static inline void netif_tx_unlock_bh(struct net_device *dev)
2512 {
2513 	netif_tx_unlock(dev);
2514 	local_bh_enable();
2515 }
2516 
2517 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2518 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2519 		__netif_tx_lock(txq, cpu);		\
2520 	}						\
2521 }
2522 
2523 #define HARD_TX_UNLOCK(dev, txq) {			\
2524 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2525 		__netif_tx_unlock(txq);			\
2526 	}						\
2527 }
2528 
2529 static inline void netif_tx_disable(struct net_device *dev)
2530 {
2531 	unsigned int i;
2532 	int cpu;
2533 
2534 	local_bh_disable();
2535 	cpu = smp_processor_id();
2536 	for (i = 0; i < dev->num_tx_queues; i++) {
2537 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2538 
2539 		__netif_tx_lock(txq, cpu);
2540 		netif_tx_stop_queue(txq);
2541 		__netif_tx_unlock(txq);
2542 	}
2543 	local_bh_enable();
2544 }
2545 
2546 static inline void netif_addr_lock(struct net_device *dev)
2547 {
2548 	spin_lock(&dev->addr_list_lock);
2549 }
2550 
2551 static inline void netif_addr_lock_nested(struct net_device *dev)
2552 {
2553 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2554 }
2555 
2556 static inline void netif_addr_lock_bh(struct net_device *dev)
2557 {
2558 	spin_lock_bh(&dev->addr_list_lock);
2559 }
2560 
2561 static inline void netif_addr_unlock(struct net_device *dev)
2562 {
2563 	spin_unlock(&dev->addr_list_lock);
2564 }
2565 
2566 static inline void netif_addr_unlock_bh(struct net_device *dev)
2567 {
2568 	spin_unlock_bh(&dev->addr_list_lock);
2569 }
2570 
2571 /*
2572  * dev_addrs walker. Should be used only for read access. Call with
2573  * rcu_read_lock held.
2574  */
2575 #define for_each_dev_addr(dev, ha) \
2576 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2577 
2578 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2579 
2580 extern void		ether_setup(struct net_device *dev);
2581 
2582 /* Support for loadable net-drivers */
2583 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2584 				       void (*setup)(struct net_device *),
2585 				       unsigned int txqs, unsigned int rxqs);
2586 #define alloc_netdev(sizeof_priv, name, setup) \
2587 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2588 
2589 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2590 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2591 
2592 extern int		register_netdev(struct net_device *dev);
2593 extern void		unregister_netdev(struct net_device *dev);
2594 
2595 /* General hardware address lists handling functions */
2596 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2597 				  struct netdev_hw_addr_list *from_list,
2598 				  int addr_len, unsigned char addr_type);
2599 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2600 				   struct netdev_hw_addr_list *from_list,
2601 				   int addr_len, unsigned char addr_type);
2602 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2603 			  struct netdev_hw_addr_list *from_list,
2604 			  int addr_len);
2605 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2606 			     struct netdev_hw_addr_list *from_list,
2607 			     int addr_len);
2608 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2609 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2610 
2611 /* Functions used for device addresses handling */
2612 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2613 			unsigned char addr_type);
2614 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2615 			unsigned char addr_type);
2616 extern int dev_addr_add_multiple(struct net_device *to_dev,
2617 				 struct net_device *from_dev,
2618 				 unsigned char addr_type);
2619 extern int dev_addr_del_multiple(struct net_device *to_dev,
2620 				 struct net_device *from_dev,
2621 				 unsigned char addr_type);
2622 extern void dev_addr_flush(struct net_device *dev);
2623 extern int dev_addr_init(struct net_device *dev);
2624 
2625 /* Functions used for unicast addresses handling */
2626 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2627 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2628 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2629 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2630 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2631 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2632 extern void dev_uc_flush(struct net_device *dev);
2633 extern void dev_uc_init(struct net_device *dev);
2634 
2635 /* Functions used for multicast addresses handling */
2636 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2637 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2638 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2639 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2640 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2641 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2642 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2643 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2644 extern void dev_mc_flush(struct net_device *dev);
2645 extern void dev_mc_init(struct net_device *dev);
2646 
2647 /* Functions used for secondary unicast and multicast support */
2648 extern void		dev_set_rx_mode(struct net_device *dev);
2649 extern void		__dev_set_rx_mode(struct net_device *dev);
2650 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2651 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2652 extern void		netdev_state_change(struct net_device *dev);
2653 extern void		netdev_notify_peers(struct net_device *dev);
2654 extern void		netdev_features_change(struct net_device *dev);
2655 /* Load a device via the kmod */
2656 extern void		dev_load(struct net *net, const char *name);
2657 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2658 					       struct rtnl_link_stats64 *storage);
2659 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2660 				    const struct net_device_stats *netdev_stats);
2661 
2662 extern int		netdev_max_backlog;
2663 extern int		netdev_tstamp_prequeue;
2664 extern int		weight_p;
2665 extern int		bpf_jit_enable;
2666 
2667 extern bool netdev_has_upper_dev(struct net_device *dev,
2668 				 struct net_device *upper_dev);
2669 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2670 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2671 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2672 extern int netdev_upper_dev_link(struct net_device *dev,
2673 				 struct net_device *upper_dev);
2674 extern int netdev_master_upper_dev_link(struct net_device *dev,
2675 					struct net_device *upper_dev);
2676 extern void netdev_upper_dev_unlink(struct net_device *dev,
2677 				    struct net_device *upper_dev);
2678 extern int skb_checksum_help(struct sk_buff *skb);
2679 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2680 	netdev_features_t features, bool tx_path);
2681 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2682 					  netdev_features_t features);
2683 
2684 static inline
2685 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2686 {
2687 	return __skb_gso_segment(skb, features, true);
2688 }
2689 __be16 skb_network_protocol(struct sk_buff *skb);
2690 
2691 static inline bool can_checksum_protocol(netdev_features_t features,
2692 					 __be16 protocol)
2693 {
2694 	return ((features & NETIF_F_GEN_CSUM) ||
2695 		((features & NETIF_F_V4_CSUM) &&
2696 		 protocol == htons(ETH_P_IP)) ||
2697 		((features & NETIF_F_V6_CSUM) &&
2698 		 protocol == htons(ETH_P_IPV6)) ||
2699 		((features & NETIF_F_FCOE_CRC) &&
2700 		 protocol == htons(ETH_P_FCOE)));
2701 }
2702 
2703 #ifdef CONFIG_BUG
2704 extern void netdev_rx_csum_fault(struct net_device *dev);
2705 #else
2706 static inline void netdev_rx_csum_fault(struct net_device *dev)
2707 {
2708 }
2709 #endif
2710 /* rx skb timestamps */
2711 extern void		net_enable_timestamp(void);
2712 extern void		net_disable_timestamp(void);
2713 
2714 #ifdef CONFIG_PROC_FS
2715 extern int __init dev_proc_init(void);
2716 #else
2717 #define dev_proc_init() 0
2718 #endif
2719 
2720 extern int netdev_class_create_file(struct class_attribute *class_attr);
2721 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2722 
2723 extern struct kobj_ns_type_operations net_ns_type_operations;
2724 
2725 extern const char *netdev_drivername(const struct net_device *dev);
2726 
2727 extern void linkwatch_run_queue(void);
2728 
2729 static inline netdev_features_t netdev_get_wanted_features(
2730 	struct net_device *dev)
2731 {
2732 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2733 }
2734 netdev_features_t netdev_increment_features(netdev_features_t all,
2735 	netdev_features_t one, netdev_features_t mask);
2736 
2737 /* Allow TSO being used on stacked device :
2738  * Performing the GSO segmentation before last device
2739  * is a performance improvement.
2740  */
2741 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2742 							netdev_features_t mask)
2743 {
2744 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2745 }
2746 
2747 int __netdev_update_features(struct net_device *dev);
2748 void netdev_update_features(struct net_device *dev);
2749 void netdev_change_features(struct net_device *dev);
2750 
2751 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2752 					struct net_device *dev);
2753 
2754 netdev_features_t netif_skb_features(struct sk_buff *skb);
2755 
2756 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2757 {
2758 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2759 
2760 	/* check flags correspondence */
2761 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2762 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2763 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2764 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2765 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2766 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2767 
2768 	return (features & feature) == feature;
2769 }
2770 
2771 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2772 {
2773 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2774 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2775 }
2776 
2777 static inline bool netif_needs_gso(struct sk_buff *skb,
2778 				   netdev_features_t features)
2779 {
2780 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2781 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2782 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2783 }
2784 
2785 static inline void netif_set_gso_max_size(struct net_device *dev,
2786 					  unsigned int size)
2787 {
2788 	dev->gso_max_size = size;
2789 }
2790 
2791 static inline bool netif_is_bond_master(struct net_device *dev)
2792 {
2793 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2794 }
2795 
2796 static inline bool netif_is_bond_slave(struct net_device *dev)
2797 {
2798 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2799 }
2800 
2801 static inline bool netif_supports_nofcs(struct net_device *dev)
2802 {
2803 	return dev->priv_flags & IFF_SUPP_NOFCS;
2804 }
2805 
2806 extern struct pernet_operations __net_initdata loopback_net_ops;
2807 
2808 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2809 
2810 /* netdev_printk helpers, similar to dev_printk */
2811 
2812 static inline const char *netdev_name(const struct net_device *dev)
2813 {
2814 	if (dev->reg_state != NETREG_REGISTERED)
2815 		return "(unregistered net_device)";
2816 	return dev->name;
2817 }
2818 
2819 extern __printf(3, 4)
2820 int netdev_printk(const char *level, const struct net_device *dev,
2821 		  const char *format, ...);
2822 extern __printf(2, 3)
2823 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2824 extern __printf(2, 3)
2825 int netdev_alert(const struct net_device *dev, const char *format, ...);
2826 extern __printf(2, 3)
2827 int netdev_crit(const struct net_device *dev, const char *format, ...);
2828 extern __printf(2, 3)
2829 int netdev_err(const struct net_device *dev, const char *format, ...);
2830 extern __printf(2, 3)
2831 int netdev_warn(const struct net_device *dev, const char *format, ...);
2832 extern __printf(2, 3)
2833 int netdev_notice(const struct net_device *dev, const char *format, ...);
2834 extern __printf(2, 3)
2835 int netdev_info(const struct net_device *dev, const char *format, ...);
2836 
2837 #define MODULE_ALIAS_NETDEV(device) \
2838 	MODULE_ALIAS("netdev-" device)
2839 
2840 #if defined(CONFIG_DYNAMIC_DEBUG)
2841 #define netdev_dbg(__dev, format, args...)			\
2842 do {								\
2843 	dynamic_netdev_dbg(__dev, format, ##args);		\
2844 } while (0)
2845 #elif defined(DEBUG)
2846 #define netdev_dbg(__dev, format, args...)			\
2847 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2848 #else
2849 #define netdev_dbg(__dev, format, args...)			\
2850 ({								\
2851 	if (0)							\
2852 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2853 	0;							\
2854 })
2855 #endif
2856 
2857 #if defined(VERBOSE_DEBUG)
2858 #define netdev_vdbg	netdev_dbg
2859 #else
2860 
2861 #define netdev_vdbg(dev, format, args...)			\
2862 ({								\
2863 	if (0)							\
2864 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2865 	0;							\
2866 })
2867 #endif
2868 
2869 /*
2870  * netdev_WARN() acts like dev_printk(), but with the key difference
2871  * of using a WARN/WARN_ON to get the message out, including the
2872  * file/line information and a backtrace.
2873  */
2874 #define netdev_WARN(dev, format, args...)			\
2875 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2876 
2877 /* netif printk helpers, similar to netdev_printk */
2878 
2879 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2880 do {					  			\
2881 	if (netif_msg_##type(priv))				\
2882 		netdev_printk(level, (dev), fmt, ##args);	\
2883 } while (0)
2884 
2885 #define netif_level(level, priv, type, dev, fmt, args...)	\
2886 do {								\
2887 	if (netif_msg_##type(priv))				\
2888 		netdev_##level(dev, fmt, ##args);		\
2889 } while (0)
2890 
2891 #define netif_emerg(priv, type, dev, fmt, args...)		\
2892 	netif_level(emerg, priv, type, dev, fmt, ##args)
2893 #define netif_alert(priv, type, dev, fmt, args...)		\
2894 	netif_level(alert, priv, type, dev, fmt, ##args)
2895 #define netif_crit(priv, type, dev, fmt, args...)		\
2896 	netif_level(crit, priv, type, dev, fmt, ##args)
2897 #define netif_err(priv, type, dev, fmt, args...)		\
2898 	netif_level(err, priv, type, dev, fmt, ##args)
2899 #define netif_warn(priv, type, dev, fmt, args...)		\
2900 	netif_level(warn, priv, type, dev, fmt, ##args)
2901 #define netif_notice(priv, type, dev, fmt, args...)		\
2902 	netif_level(notice, priv, type, dev, fmt, ##args)
2903 #define netif_info(priv, type, dev, fmt, args...)		\
2904 	netif_level(info, priv, type, dev, fmt, ##args)
2905 
2906 #if defined(CONFIG_DYNAMIC_DEBUG)
2907 #define netif_dbg(priv, type, netdev, format, args...)		\
2908 do {								\
2909 	if (netif_msg_##type(priv))				\
2910 		dynamic_netdev_dbg(netdev, format, ##args);	\
2911 } while (0)
2912 #elif defined(DEBUG)
2913 #define netif_dbg(priv, type, dev, format, args...)		\
2914 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2915 #else
2916 #define netif_dbg(priv, type, dev, format, args...)			\
2917 ({									\
2918 	if (0)								\
2919 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2920 	0;								\
2921 })
2922 #endif
2923 
2924 #if defined(VERBOSE_DEBUG)
2925 #define netif_vdbg	netif_dbg
2926 #else
2927 #define netif_vdbg(priv, type, dev, format, args...)		\
2928 ({								\
2929 	if (0)							\
2930 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2931 	0;							\
2932 })
2933 #endif
2934 
2935 /*
2936  *	The list of packet types we will receive (as opposed to discard)
2937  *	and the routines to invoke.
2938  *
2939  *	Why 16. Because with 16 the only overlap we get on a hash of the
2940  *	low nibble of the protocol value is RARP/SNAP/X.25.
2941  *
2942  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
2943  *             sure which should go first, but I bet it won't make much
2944  *             difference if we are running VLANs.  The good news is that
2945  *             this protocol won't be in the list unless compiled in, so
2946  *             the average user (w/out VLANs) will not be adversely affected.
2947  *             --BLG
2948  *
2949  *		0800	IP
2950  *		8100    802.1Q VLAN
2951  *		0001	802.3
2952  *		0002	AX.25
2953  *		0004	802.2
2954  *		8035	RARP
2955  *		0005	SNAP
2956  *		0805	X.25
2957  *		0806	ARP
2958  *		8137	IPX
2959  *		0009	Localtalk
2960  *		86DD	IPv6
2961  */
2962 #define PTYPE_HASH_SIZE	(16)
2963 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
2964 
2965 #endif	/* _LINUX_NETDEVICE_H */
2966