1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/pm_qos.h> 29 #include <linux/timer.h> 30 #include <linux/bug.h> 31 #include <linux/delay.h> 32 #include <linux/atomic.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/dmaengine.h> 39 #include <linux/workqueue.h> 40 #include <linux/dynamic_queue_limits.h> 41 42 #include <linux/ethtool.h> 43 #include <net/net_namespace.h> 44 #include <net/dsa.h> 45 #ifdef CONFIG_DCB 46 #include <net/dcbnl.h> 47 #endif 48 #include <net/netprio_cgroup.h> 49 50 #include <linux/netdev_features.h> 51 #include <linux/neighbour.h> 52 #include <uapi/linux/netdevice.h> 53 54 struct netpoll_info; 55 struct device; 56 struct phy_device; 57 /* 802.11 specific */ 58 struct wireless_dev; 59 /* source back-compat hooks */ 60 #define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63 extern void netdev_set_default_ethtool_ops(struct net_device *dev, 64 const struct ethtool_ops *ops); 65 66 /* hardware address assignment types */ 67 #define NET_ADDR_PERM 0 /* address is permanent (default) */ 68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70 #define NET_ADDR_SET 3 /* address is set using 71 * dev_set_mac_address() */ 72 73 /* Backlog congestion levels */ 74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75 #define NET_RX_DROP 1 /* packet dropped */ 76 77 /* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously, in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), all 91 * others are propagated to higher layers. 92 */ 93 94 /* qdisc ->enqueue() return codes. */ 95 #define NET_XMIT_SUCCESS 0x00 96 #define NET_XMIT_DROP 0x01 /* skb dropped */ 97 #define NET_XMIT_CN 0x02 /* congestion notification */ 98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107 /* Driver transmit return codes */ 108 #define NETDEV_TX_MASK 0xf0 109 110 enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142 # if defined(CONFIG_MAC80211_MESH) 143 # define LL_MAX_HEADER 128 144 # else 145 # define LL_MAX_HEADER 96 146 # endif 147 #else 148 # define LL_MAX_HEADER 32 149 #endif 150 151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153 #define MAX_HEADER LL_MAX_HEADER 154 #else 155 #define MAX_HEADER (LL_MAX_HEADER + 48) 156 #endif 157 158 /* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163 struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187 }; 188 189 190 #include <linux/cache.h> 191 #include <linux/skbuff.h> 192 193 #ifdef CONFIG_RPS 194 #include <linux/static_key.h> 195 extern struct static_key rps_needed; 196 #endif 197 198 struct neighbour; 199 struct neigh_parms; 200 struct sk_buff; 201 202 struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206 #define NETDEV_HW_ADDR_T_LAN 1 207 #define NETDEV_HW_ADDR_T_SAN 2 208 #define NETDEV_HW_ADDR_T_SLAVE 3 209 #define NETDEV_HW_ADDR_T_UNICAST 4 210 #define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216 }; 217 218 struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221 }; 222 223 #define netdev_hw_addr_list_count(l) ((l)->count) 224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225 #define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230 #define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235 #define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238 struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244 #define HH_DATA_MOD 16 245 #define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247 #define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250 }; 251 252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260 #define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265 struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*rebuild)(struct sk_buff *skb); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 }; 276 277 /* These flag bits are private to the generic network queueing 278 * layer, they may not be explicitly referenced by any other 279 * code. 280 */ 281 282 enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288 }; 289 290 291 /* 292 * This structure holds at boot time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295 struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298 }; 299 #define NETDEV_BOOT_SETUP_MAX 8 300 301 extern int __init netdev_boot_setup(char *str); 302 303 /* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306 struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-cpu poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320 spinlock_t poll_lock; 321 int poll_owner; 322 #endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct list_head dev_list; 327 }; 328 329 enum { 330 NAPI_STATE_SCHED, /* Poll is scheduled */ 331 NAPI_STATE_DISABLE, /* Disable pending */ 332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 333 }; 334 335 enum gro_result { 336 GRO_MERGED, 337 GRO_MERGED_FREE, 338 GRO_HELD, 339 GRO_NORMAL, 340 GRO_DROP, 341 }; 342 typedef enum gro_result gro_result_t; 343 344 /* 345 * enum rx_handler_result - Possible return values for rx_handlers. 346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 347 * further. 348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 349 * case skb->dev was changed by rx_handler. 350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 352 * 353 * rx_handlers are functions called from inside __netif_receive_skb(), to do 354 * special processing of the skb, prior to delivery to protocol handlers. 355 * 356 * Currently, a net_device can only have a single rx_handler registered. Trying 357 * to register a second rx_handler will return -EBUSY. 358 * 359 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 360 * To unregister a rx_handler on a net_device, use 361 * netdev_rx_handler_unregister(). 362 * 363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 364 * do with the skb. 365 * 366 * If the rx_handler consumed to skb in some way, it should return 367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 368 * the skb to be delivered in some other ways. 369 * 370 * If the rx_handler changed skb->dev, to divert the skb to another 371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 372 * new device will be called if it exists. 373 * 374 * If the rx_handler consider the skb should be ignored, it should return 375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 376 * are registered on exact device (ptype->dev == skb->dev). 377 * 378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 379 * delivered, it should return RX_HANDLER_PASS. 380 * 381 * A device without a registered rx_handler will behave as if rx_handler 382 * returned RX_HANDLER_PASS. 383 */ 384 385 enum rx_handler_result { 386 RX_HANDLER_CONSUMED, 387 RX_HANDLER_ANOTHER, 388 RX_HANDLER_EXACT, 389 RX_HANDLER_PASS, 390 }; 391 typedef enum rx_handler_result rx_handler_result_t; 392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 393 394 extern void __napi_schedule(struct napi_struct *n); 395 396 static inline bool napi_disable_pending(struct napi_struct *n) 397 { 398 return test_bit(NAPI_STATE_DISABLE, &n->state); 399 } 400 401 /** 402 * napi_schedule_prep - check if napi can be scheduled 403 * @n: napi context 404 * 405 * Test if NAPI routine is already running, and if not mark 406 * it as running. This is used as a condition variable 407 * insure only one NAPI poll instance runs. We also make 408 * sure there is no pending NAPI disable. 409 */ 410 static inline bool napi_schedule_prep(struct napi_struct *n) 411 { 412 return !napi_disable_pending(n) && 413 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 414 } 415 416 /** 417 * napi_schedule - schedule NAPI poll 418 * @n: napi context 419 * 420 * Schedule NAPI poll routine to be called if it is not already 421 * running. 422 */ 423 static inline void napi_schedule(struct napi_struct *n) 424 { 425 if (napi_schedule_prep(n)) 426 __napi_schedule(n); 427 } 428 429 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 430 static inline bool napi_reschedule(struct napi_struct *napi) 431 { 432 if (napi_schedule_prep(napi)) { 433 __napi_schedule(napi); 434 return true; 435 } 436 return false; 437 } 438 439 /** 440 * napi_complete - NAPI processing complete 441 * @n: napi context 442 * 443 * Mark NAPI processing as complete. 444 */ 445 extern void __napi_complete(struct napi_struct *n); 446 extern void napi_complete(struct napi_struct *n); 447 448 /** 449 * napi_disable - prevent NAPI from scheduling 450 * @n: napi context 451 * 452 * Stop NAPI from being scheduled on this context. 453 * Waits till any outstanding processing completes. 454 */ 455 static inline void napi_disable(struct napi_struct *n) 456 { 457 set_bit(NAPI_STATE_DISABLE, &n->state); 458 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 459 msleep(1); 460 clear_bit(NAPI_STATE_DISABLE, &n->state); 461 } 462 463 /** 464 * napi_enable - enable NAPI scheduling 465 * @n: napi context 466 * 467 * Resume NAPI from being scheduled on this context. 468 * Must be paired with napi_disable. 469 */ 470 static inline void napi_enable(struct napi_struct *n) 471 { 472 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 473 smp_mb__before_clear_bit(); 474 clear_bit(NAPI_STATE_SCHED, &n->state); 475 } 476 477 #ifdef CONFIG_SMP 478 /** 479 * napi_synchronize - wait until NAPI is not running 480 * @n: napi context 481 * 482 * Wait until NAPI is done being scheduled on this context. 483 * Waits till any outstanding processing completes but 484 * does not disable future activations. 485 */ 486 static inline void napi_synchronize(const struct napi_struct *n) 487 { 488 while (test_bit(NAPI_STATE_SCHED, &n->state)) 489 msleep(1); 490 } 491 #else 492 # define napi_synchronize(n) barrier() 493 #endif 494 495 enum netdev_queue_state_t { 496 __QUEUE_STATE_DRV_XOFF, 497 __QUEUE_STATE_STACK_XOFF, 498 __QUEUE_STATE_FROZEN, 499 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 500 (1 << __QUEUE_STATE_STACK_XOFF)) 501 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 502 (1 << __QUEUE_STATE_FROZEN)) 503 }; 504 /* 505 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 506 * netif_tx_* functions below are used to manipulate this flag. The 507 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 508 * queue independently. The netif_xmit_*stopped functions below are called 509 * to check if the queue has been stopped by the driver or stack (either 510 * of the XOFF bits are set in the state). Drivers should not need to call 511 * netif_xmit*stopped functions, they should only be using netif_tx_*. 512 */ 513 514 struct netdev_queue { 515 /* 516 * read mostly part 517 */ 518 struct net_device *dev; 519 struct Qdisc *qdisc; 520 struct Qdisc *qdisc_sleeping; 521 #ifdef CONFIG_SYSFS 522 struct kobject kobj; 523 #endif 524 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 525 int numa_node; 526 #endif 527 /* 528 * write mostly part 529 */ 530 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 531 int xmit_lock_owner; 532 /* 533 * please use this field instead of dev->trans_start 534 */ 535 unsigned long trans_start; 536 537 /* 538 * Number of TX timeouts for this queue 539 * (/sys/class/net/DEV/Q/trans_timeout) 540 */ 541 unsigned long trans_timeout; 542 543 unsigned long state; 544 545 #ifdef CONFIG_BQL 546 struct dql dql; 547 #endif 548 } ____cacheline_aligned_in_smp; 549 550 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 551 { 552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 553 return q->numa_node; 554 #else 555 return NUMA_NO_NODE; 556 #endif 557 } 558 559 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 560 { 561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 q->numa_node = node; 563 #endif 564 } 565 566 #ifdef CONFIG_RPS 567 /* 568 * This structure holds an RPS map which can be of variable length. The 569 * map is an array of CPUs. 570 */ 571 struct rps_map { 572 unsigned int len; 573 struct rcu_head rcu; 574 u16 cpus[0]; 575 }; 576 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 577 578 /* 579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 580 * tail pointer for that CPU's input queue at the time of last enqueue, and 581 * a hardware filter index. 582 */ 583 struct rps_dev_flow { 584 u16 cpu; 585 u16 filter; 586 unsigned int last_qtail; 587 }; 588 #define RPS_NO_FILTER 0xffff 589 590 /* 591 * The rps_dev_flow_table structure contains a table of flow mappings. 592 */ 593 struct rps_dev_flow_table { 594 unsigned int mask; 595 struct rcu_head rcu; 596 struct rps_dev_flow flows[0]; 597 }; 598 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 599 ((_num) * sizeof(struct rps_dev_flow))) 600 601 /* 602 * The rps_sock_flow_table contains mappings of flows to the last CPU 603 * on which they were processed by the application (set in recvmsg). 604 */ 605 struct rps_sock_flow_table { 606 unsigned int mask; 607 u16 ents[0]; 608 }; 609 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 610 ((_num) * sizeof(u16))) 611 612 #define RPS_NO_CPU 0xffff 613 614 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 615 u32 hash) 616 { 617 if (table && hash) { 618 unsigned int cpu, index = hash & table->mask; 619 620 /* We only give a hint, preemption can change cpu under us */ 621 cpu = raw_smp_processor_id(); 622 623 if (table->ents[index] != cpu) 624 table->ents[index] = cpu; 625 } 626 } 627 628 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 629 u32 hash) 630 { 631 if (table && hash) 632 table->ents[hash & table->mask] = RPS_NO_CPU; 633 } 634 635 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 636 637 #ifdef CONFIG_RFS_ACCEL 638 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 639 u32 flow_id, u16 filter_id); 640 #endif 641 642 /* This structure contains an instance of an RX queue. */ 643 struct netdev_rx_queue { 644 struct rps_map __rcu *rps_map; 645 struct rps_dev_flow_table __rcu *rps_flow_table; 646 struct kobject kobj; 647 struct net_device *dev; 648 } ____cacheline_aligned_in_smp; 649 #endif /* CONFIG_RPS */ 650 651 #ifdef CONFIG_XPS 652 /* 653 * This structure holds an XPS map which can be of variable length. The 654 * map is an array of queues. 655 */ 656 struct xps_map { 657 unsigned int len; 658 unsigned int alloc_len; 659 struct rcu_head rcu; 660 u16 queues[0]; 661 }; 662 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 663 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 664 / sizeof(u16)) 665 666 /* 667 * This structure holds all XPS maps for device. Maps are indexed by CPU. 668 */ 669 struct xps_dev_maps { 670 struct rcu_head rcu; 671 struct xps_map __rcu *cpu_map[0]; 672 }; 673 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 674 (nr_cpu_ids * sizeof(struct xps_map *))) 675 #endif /* CONFIG_XPS */ 676 677 #define TC_MAX_QUEUE 16 678 #define TC_BITMASK 15 679 /* HW offloaded queuing disciplines txq count and offset maps */ 680 struct netdev_tc_txq { 681 u16 count; 682 u16 offset; 683 }; 684 685 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 686 /* 687 * This structure is to hold information about the device 688 * configured to run FCoE protocol stack. 689 */ 690 struct netdev_fcoe_hbainfo { 691 char manufacturer[64]; 692 char serial_number[64]; 693 char hardware_version[64]; 694 char driver_version[64]; 695 char optionrom_version[64]; 696 char firmware_version[64]; 697 char model[256]; 698 char model_description[256]; 699 }; 700 #endif 701 702 /* 703 * This structure defines the management hooks for network devices. 704 * The following hooks can be defined; unless noted otherwise, they are 705 * optional and can be filled with a null pointer. 706 * 707 * int (*ndo_init)(struct net_device *dev); 708 * This function is called once when network device is registered. 709 * The network device can use this to any late stage initializaton 710 * or semantic validattion. It can fail with an error code which will 711 * be propogated back to register_netdev 712 * 713 * void (*ndo_uninit)(struct net_device *dev); 714 * This function is called when device is unregistered or when registration 715 * fails. It is not called if init fails. 716 * 717 * int (*ndo_open)(struct net_device *dev); 718 * This function is called when network device transistions to the up 719 * state. 720 * 721 * int (*ndo_stop)(struct net_device *dev); 722 * This function is called when network device transistions to the down 723 * state. 724 * 725 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 726 * struct net_device *dev); 727 * Called when a packet needs to be transmitted. 728 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 729 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 730 * Required can not be NULL. 731 * 732 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 733 * Called to decide which queue to when device supports multiple 734 * transmit queues. 735 * 736 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 737 * This function is called to allow device receiver to make 738 * changes to configuration when multicast or promiscious is enabled. 739 * 740 * void (*ndo_set_rx_mode)(struct net_device *dev); 741 * This function is called device changes address list filtering. 742 * If driver handles unicast address filtering, it should set 743 * IFF_UNICAST_FLT to its priv_flags. 744 * 745 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 746 * This function is called when the Media Access Control address 747 * needs to be changed. If this interface is not defined, the 748 * mac address can not be changed. 749 * 750 * int (*ndo_validate_addr)(struct net_device *dev); 751 * Test if Media Access Control address is valid for the device. 752 * 753 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 754 * Called when a user request an ioctl which can't be handled by 755 * the generic interface code. If not defined ioctl's return 756 * not supported error code. 757 * 758 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 759 * Used to set network devices bus interface parameters. This interface 760 * is retained for legacy reason, new devices should use the bus 761 * interface (PCI) for low level management. 762 * 763 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 764 * Called when a user wants to change the Maximum Transfer Unit 765 * of a device. If not defined, any request to change MTU will 766 * will return an error. 767 * 768 * void (*ndo_tx_timeout)(struct net_device *dev); 769 * Callback uses when the transmitter has not made any progress 770 * for dev->watchdog ticks. 771 * 772 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 773 * struct rtnl_link_stats64 *storage); 774 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 775 * Called when a user wants to get the network device usage 776 * statistics. Drivers must do one of the following: 777 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 778 * rtnl_link_stats64 structure passed by the caller. 779 * 2. Define @ndo_get_stats to update a net_device_stats structure 780 * (which should normally be dev->stats) and return a pointer to 781 * it. The structure may be changed asynchronously only if each 782 * field is written atomically. 783 * 3. Update dev->stats asynchronously and atomically, and define 784 * neither operation. 785 * 786 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid); 787 * If device support VLAN filtering this function is called when a 788 * VLAN id is registered. 789 * 790 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 791 * If device support VLAN filtering this function is called when a 792 * VLAN id is unregistered. 793 * 794 * void (*ndo_poll_controller)(struct net_device *dev); 795 * 796 * SR-IOV management functions. 797 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 798 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 799 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 800 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 801 * int (*ndo_get_vf_config)(struct net_device *dev, 802 * int vf, struct ifla_vf_info *ivf); 803 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 804 * struct nlattr *port[]); 805 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 806 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 807 * Called to setup 'tc' number of traffic classes in the net device. This 808 * is always called from the stack with the rtnl lock held and netif tx 809 * queues stopped. This allows the netdevice to perform queue management 810 * safely. 811 * 812 * Fiber Channel over Ethernet (FCoE) offload functions. 813 * int (*ndo_fcoe_enable)(struct net_device *dev); 814 * Called when the FCoE protocol stack wants to start using LLD for FCoE 815 * so the underlying device can perform whatever needed configuration or 816 * initialization to support acceleration of FCoE traffic. 817 * 818 * int (*ndo_fcoe_disable)(struct net_device *dev); 819 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 820 * so the underlying device can perform whatever needed clean-ups to 821 * stop supporting acceleration of FCoE traffic. 822 * 823 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 824 * struct scatterlist *sgl, unsigned int sgc); 825 * Called when the FCoE Initiator wants to initialize an I/O that 826 * is a possible candidate for Direct Data Placement (DDP). The LLD can 827 * perform necessary setup and returns 1 to indicate the device is set up 828 * successfully to perform DDP on this I/O, otherwise this returns 0. 829 * 830 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 831 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 832 * indicated by the FC exchange id 'xid', so the underlying device can 833 * clean up and reuse resources for later DDP requests. 834 * 835 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 836 * struct scatterlist *sgl, unsigned int sgc); 837 * Called when the FCoE Target wants to initialize an I/O that 838 * is a possible candidate for Direct Data Placement (DDP). The LLD can 839 * perform necessary setup and returns 1 to indicate the device is set up 840 * successfully to perform DDP on this I/O, otherwise this returns 0. 841 * 842 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 843 * struct netdev_fcoe_hbainfo *hbainfo); 844 * Called when the FCoE Protocol stack wants information on the underlying 845 * device. This information is utilized by the FCoE protocol stack to 846 * register attributes with Fiber Channel management service as per the 847 * FC-GS Fabric Device Management Information(FDMI) specification. 848 * 849 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 850 * Called when the underlying device wants to override default World Wide 851 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 852 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 853 * protocol stack to use. 854 * 855 * RFS acceleration. 856 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 857 * u16 rxq_index, u32 flow_id); 858 * Set hardware filter for RFS. rxq_index is the target queue index; 859 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 860 * Return the filter ID on success, or a negative error code. 861 * 862 * Slave management functions (for bridge, bonding, etc). 863 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 864 * Called to make another netdev an underling. 865 * 866 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 867 * Called to release previously enslaved netdev. 868 * 869 * Feature/offload setting functions. 870 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 871 * netdev_features_t features); 872 * Adjusts the requested feature flags according to device-specific 873 * constraints, and returns the resulting flags. Must not modify 874 * the device state. 875 * 876 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 877 * Called to update device configuration to new features. Passed 878 * feature set might be less than what was returned by ndo_fix_features()). 879 * Must return >0 or -errno if it changed dev->features itself. 880 * 881 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 882 * struct net_device *dev, 883 * const unsigned char *addr, u16 flags) 884 * Adds an FDB entry to dev for addr. 885 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 886 * struct net_device *dev, 887 * const unsigned char *addr) 888 * Deletes the FDB entry from dev coresponding to addr. 889 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 890 * struct net_device *dev, int idx) 891 * Used to add FDB entries to dump requests. Implementers should add 892 * entries to skb and update idx with the number of entries. 893 * 894 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 895 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 896 * struct net_device *dev, u32 filter_mask) 897 * 898 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 899 * Called to change device carrier. Soft-devices (like dummy, team, etc) 900 * which do not represent real hardware may define this to allow their 901 * userspace components to manage their virtual carrier state. Devices 902 * that determine carrier state from physical hardware properties (eg 903 * network cables) or protocol-dependent mechanisms (eg 904 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 905 */ 906 struct net_device_ops { 907 int (*ndo_init)(struct net_device *dev); 908 void (*ndo_uninit)(struct net_device *dev); 909 int (*ndo_open)(struct net_device *dev); 910 int (*ndo_stop)(struct net_device *dev); 911 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 912 struct net_device *dev); 913 u16 (*ndo_select_queue)(struct net_device *dev, 914 struct sk_buff *skb); 915 void (*ndo_change_rx_flags)(struct net_device *dev, 916 int flags); 917 void (*ndo_set_rx_mode)(struct net_device *dev); 918 int (*ndo_set_mac_address)(struct net_device *dev, 919 void *addr); 920 int (*ndo_validate_addr)(struct net_device *dev); 921 int (*ndo_do_ioctl)(struct net_device *dev, 922 struct ifreq *ifr, int cmd); 923 int (*ndo_set_config)(struct net_device *dev, 924 struct ifmap *map); 925 int (*ndo_change_mtu)(struct net_device *dev, 926 int new_mtu); 927 int (*ndo_neigh_setup)(struct net_device *dev, 928 struct neigh_parms *); 929 void (*ndo_tx_timeout) (struct net_device *dev); 930 931 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 932 struct rtnl_link_stats64 *storage); 933 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 934 935 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 936 __be16 proto, u16 vid); 937 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 938 __be16 proto, u16 vid); 939 #ifdef CONFIG_NET_POLL_CONTROLLER 940 void (*ndo_poll_controller)(struct net_device *dev); 941 int (*ndo_netpoll_setup)(struct net_device *dev, 942 struct netpoll_info *info, 943 gfp_t gfp); 944 void (*ndo_netpoll_cleanup)(struct net_device *dev); 945 #endif 946 int (*ndo_set_vf_mac)(struct net_device *dev, 947 int queue, u8 *mac); 948 int (*ndo_set_vf_vlan)(struct net_device *dev, 949 int queue, u16 vlan, u8 qos); 950 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 951 int vf, int rate); 952 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 953 int vf, bool setting); 954 int (*ndo_get_vf_config)(struct net_device *dev, 955 int vf, 956 struct ifla_vf_info *ivf); 957 int (*ndo_set_vf_port)(struct net_device *dev, 958 int vf, 959 struct nlattr *port[]); 960 int (*ndo_get_vf_port)(struct net_device *dev, 961 int vf, struct sk_buff *skb); 962 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 963 #if IS_ENABLED(CONFIG_FCOE) 964 int (*ndo_fcoe_enable)(struct net_device *dev); 965 int (*ndo_fcoe_disable)(struct net_device *dev); 966 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 967 u16 xid, 968 struct scatterlist *sgl, 969 unsigned int sgc); 970 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 971 u16 xid); 972 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 973 u16 xid, 974 struct scatterlist *sgl, 975 unsigned int sgc); 976 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 977 struct netdev_fcoe_hbainfo *hbainfo); 978 #endif 979 980 #if IS_ENABLED(CONFIG_LIBFCOE) 981 #define NETDEV_FCOE_WWNN 0 982 #define NETDEV_FCOE_WWPN 1 983 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 984 u64 *wwn, int type); 985 #endif 986 987 #ifdef CONFIG_RFS_ACCEL 988 int (*ndo_rx_flow_steer)(struct net_device *dev, 989 const struct sk_buff *skb, 990 u16 rxq_index, 991 u32 flow_id); 992 #endif 993 int (*ndo_add_slave)(struct net_device *dev, 994 struct net_device *slave_dev); 995 int (*ndo_del_slave)(struct net_device *dev, 996 struct net_device *slave_dev); 997 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 998 netdev_features_t features); 999 int (*ndo_set_features)(struct net_device *dev, 1000 netdev_features_t features); 1001 int (*ndo_neigh_construct)(struct neighbour *n); 1002 void (*ndo_neigh_destroy)(struct neighbour *n); 1003 1004 int (*ndo_fdb_add)(struct ndmsg *ndm, 1005 struct nlattr *tb[], 1006 struct net_device *dev, 1007 const unsigned char *addr, 1008 u16 flags); 1009 int (*ndo_fdb_del)(struct ndmsg *ndm, 1010 struct nlattr *tb[], 1011 struct net_device *dev, 1012 const unsigned char *addr); 1013 int (*ndo_fdb_dump)(struct sk_buff *skb, 1014 struct netlink_callback *cb, 1015 struct net_device *dev, 1016 int idx); 1017 1018 int (*ndo_bridge_setlink)(struct net_device *dev, 1019 struct nlmsghdr *nlh); 1020 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1021 u32 pid, u32 seq, 1022 struct net_device *dev, 1023 u32 filter_mask); 1024 int (*ndo_bridge_dellink)(struct net_device *dev, 1025 struct nlmsghdr *nlh); 1026 int (*ndo_change_carrier)(struct net_device *dev, 1027 bool new_carrier); 1028 }; 1029 1030 /* 1031 * The DEVICE structure. 1032 * Actually, this whole structure is a big mistake. It mixes I/O 1033 * data with strictly "high-level" data, and it has to know about 1034 * almost every data structure used in the INET module. 1035 * 1036 * FIXME: cleanup struct net_device such that network protocol info 1037 * moves out. 1038 */ 1039 1040 struct net_device { 1041 1042 /* 1043 * This is the first field of the "visible" part of this structure 1044 * (i.e. as seen by users in the "Space.c" file). It is the name 1045 * of the interface. 1046 */ 1047 char name[IFNAMSIZ]; 1048 1049 /* device name hash chain, please keep it close to name[] */ 1050 struct hlist_node name_hlist; 1051 1052 /* snmp alias */ 1053 char *ifalias; 1054 1055 /* 1056 * I/O specific fields 1057 * FIXME: Merge these and struct ifmap into one 1058 */ 1059 unsigned long mem_end; /* shared mem end */ 1060 unsigned long mem_start; /* shared mem start */ 1061 unsigned long base_addr; /* device I/O address */ 1062 unsigned int irq; /* device IRQ number */ 1063 1064 /* 1065 * Some hardware also needs these fields, but they are not 1066 * part of the usual set specified in Space.c. 1067 */ 1068 1069 unsigned long state; 1070 1071 struct list_head dev_list; 1072 struct list_head napi_list; 1073 struct list_head unreg_list; 1074 struct list_head upper_dev_list; /* List of upper devices */ 1075 1076 1077 /* currently active device features */ 1078 netdev_features_t features; 1079 /* user-changeable features */ 1080 netdev_features_t hw_features; 1081 /* user-requested features */ 1082 netdev_features_t wanted_features; 1083 /* mask of features inheritable by VLAN devices */ 1084 netdev_features_t vlan_features; 1085 /* mask of features inherited by encapsulating devices 1086 * This field indicates what encapsulation offloads 1087 * the hardware is capable of doing, and drivers will 1088 * need to set them appropriately. 1089 */ 1090 netdev_features_t hw_enc_features; 1091 1092 /* Interface index. Unique device identifier */ 1093 int ifindex; 1094 int iflink; 1095 1096 struct net_device_stats stats; 1097 atomic_long_t rx_dropped; /* dropped packets by core network 1098 * Do not use this in drivers. 1099 */ 1100 1101 #ifdef CONFIG_WIRELESS_EXT 1102 /* List of functions to handle Wireless Extensions (instead of ioctl). 1103 * See <net/iw_handler.h> for details. Jean II */ 1104 const struct iw_handler_def * wireless_handlers; 1105 /* Instance data managed by the core of Wireless Extensions. */ 1106 struct iw_public_data * wireless_data; 1107 #endif 1108 /* Management operations */ 1109 const struct net_device_ops *netdev_ops; 1110 const struct ethtool_ops *ethtool_ops; 1111 1112 /* Hardware header description */ 1113 const struct header_ops *header_ops; 1114 1115 unsigned int flags; /* interface flags (a la BSD) */ 1116 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1117 * See if.h for definitions. */ 1118 unsigned short gflags; 1119 unsigned short padded; /* How much padding added by alloc_netdev() */ 1120 1121 unsigned char operstate; /* RFC2863 operstate */ 1122 unsigned char link_mode; /* mapping policy to operstate */ 1123 1124 unsigned char if_port; /* Selectable AUI, TP,..*/ 1125 unsigned char dma; /* DMA channel */ 1126 1127 unsigned int mtu; /* interface MTU value */ 1128 unsigned short type; /* interface hardware type */ 1129 unsigned short hard_header_len; /* hardware hdr length */ 1130 1131 /* extra head- and tailroom the hardware may need, but not in all cases 1132 * can this be guaranteed, especially tailroom. Some cases also use 1133 * LL_MAX_HEADER instead to allocate the skb. 1134 */ 1135 unsigned short needed_headroom; 1136 unsigned short needed_tailroom; 1137 1138 /* Interface address info. */ 1139 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1140 unsigned char addr_assign_type; /* hw address assignment type */ 1141 unsigned char addr_len; /* hardware address length */ 1142 unsigned char neigh_priv_len; 1143 unsigned short dev_id; /* for shared network cards */ 1144 1145 spinlock_t addr_list_lock; 1146 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1147 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1148 struct netdev_hw_addr_list dev_addrs; /* list of device 1149 * hw addresses 1150 */ 1151 #ifdef CONFIG_SYSFS 1152 struct kset *queues_kset; 1153 #endif 1154 1155 bool uc_promisc; 1156 unsigned int promiscuity; 1157 unsigned int allmulti; 1158 1159 1160 /* Protocol specific pointers */ 1161 1162 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1163 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1164 #endif 1165 #if IS_ENABLED(CONFIG_NET_DSA) 1166 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1167 #endif 1168 void *atalk_ptr; /* AppleTalk link */ 1169 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1170 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1171 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1172 void *ax25_ptr; /* AX.25 specific data */ 1173 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1174 assign before registering */ 1175 1176 /* 1177 * Cache lines mostly used on receive path (including eth_type_trans()) 1178 */ 1179 unsigned long last_rx; /* Time of last Rx 1180 * This should not be set in 1181 * drivers, unless really needed, 1182 * because network stack (bonding) 1183 * use it if/when necessary, to 1184 * avoid dirtying this cache line. 1185 */ 1186 1187 /* Interface address info used in eth_type_trans() */ 1188 unsigned char *dev_addr; /* hw address, (before bcast 1189 because most packets are 1190 unicast) */ 1191 1192 1193 #ifdef CONFIG_RPS 1194 struct netdev_rx_queue *_rx; 1195 1196 /* Number of RX queues allocated at register_netdev() time */ 1197 unsigned int num_rx_queues; 1198 1199 /* Number of RX queues currently active in device */ 1200 unsigned int real_num_rx_queues; 1201 1202 #endif 1203 1204 rx_handler_func_t __rcu *rx_handler; 1205 void __rcu *rx_handler_data; 1206 1207 struct netdev_queue __rcu *ingress_queue; 1208 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1209 1210 1211 /* 1212 * Cache lines mostly used on transmit path 1213 */ 1214 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1215 1216 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1217 unsigned int num_tx_queues; 1218 1219 /* Number of TX queues currently active in device */ 1220 unsigned int real_num_tx_queues; 1221 1222 /* root qdisc from userspace point of view */ 1223 struct Qdisc *qdisc; 1224 1225 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1226 spinlock_t tx_global_lock; 1227 1228 #ifdef CONFIG_XPS 1229 struct xps_dev_maps __rcu *xps_maps; 1230 #endif 1231 #ifdef CONFIG_RFS_ACCEL 1232 /* CPU reverse-mapping for RX completion interrupts, indexed 1233 * by RX queue number. Assigned by driver. This must only be 1234 * set if the ndo_rx_flow_steer operation is defined. */ 1235 struct cpu_rmap *rx_cpu_rmap; 1236 #endif 1237 1238 /* These may be needed for future network-power-down code. */ 1239 1240 /* 1241 * trans_start here is expensive for high speed devices on SMP, 1242 * please use netdev_queue->trans_start instead. 1243 */ 1244 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1245 1246 int watchdog_timeo; /* used by dev_watchdog() */ 1247 struct timer_list watchdog_timer; 1248 1249 /* Number of references to this device */ 1250 int __percpu *pcpu_refcnt; 1251 1252 /* delayed register/unregister */ 1253 struct list_head todo_list; 1254 /* device index hash chain */ 1255 struct hlist_node index_hlist; 1256 1257 struct list_head link_watch_list; 1258 1259 /* register/unregister state machine */ 1260 enum { NETREG_UNINITIALIZED=0, 1261 NETREG_REGISTERED, /* completed register_netdevice */ 1262 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1263 NETREG_UNREGISTERED, /* completed unregister todo */ 1264 NETREG_RELEASED, /* called free_netdev */ 1265 NETREG_DUMMY, /* dummy device for NAPI poll */ 1266 } reg_state:8; 1267 1268 bool dismantle; /* device is going do be freed */ 1269 1270 enum { 1271 RTNL_LINK_INITIALIZED, 1272 RTNL_LINK_INITIALIZING, 1273 } rtnl_link_state:16; 1274 1275 /* Called from unregister, can be used to call free_netdev */ 1276 void (*destructor)(struct net_device *dev); 1277 1278 #ifdef CONFIG_NETPOLL 1279 struct netpoll_info __rcu *npinfo; 1280 #endif 1281 1282 #ifdef CONFIG_NET_NS 1283 /* Network namespace this network device is inside */ 1284 struct net *nd_net; 1285 #endif 1286 1287 /* mid-layer private */ 1288 union { 1289 void *ml_priv; 1290 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1291 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1292 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1293 struct pcpu_vstats __percpu *vstats; /* veth stats */ 1294 }; 1295 /* GARP */ 1296 struct garp_port __rcu *garp_port; 1297 /* MRP */ 1298 struct mrp_port __rcu *mrp_port; 1299 1300 /* class/net/name entry */ 1301 struct device dev; 1302 /* space for optional device, statistics, and wireless sysfs groups */ 1303 const struct attribute_group *sysfs_groups[4]; 1304 1305 /* rtnetlink link ops */ 1306 const struct rtnl_link_ops *rtnl_link_ops; 1307 1308 /* for setting kernel sock attribute on TCP connection setup */ 1309 #define GSO_MAX_SIZE 65536 1310 unsigned int gso_max_size; 1311 #define GSO_MAX_SEGS 65535 1312 u16 gso_max_segs; 1313 1314 #ifdef CONFIG_DCB 1315 /* Data Center Bridging netlink ops */ 1316 const struct dcbnl_rtnl_ops *dcbnl_ops; 1317 #endif 1318 u8 num_tc; 1319 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1320 u8 prio_tc_map[TC_BITMASK + 1]; 1321 1322 #if IS_ENABLED(CONFIG_FCOE) 1323 /* max exchange id for FCoE LRO by ddp */ 1324 unsigned int fcoe_ddp_xid; 1325 #endif 1326 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1327 struct netprio_map __rcu *priomap; 1328 #endif 1329 /* phy device may attach itself for hardware timestamping */ 1330 struct phy_device *phydev; 1331 1332 struct lock_class_key *qdisc_tx_busylock; 1333 1334 /* group the device belongs to */ 1335 int group; 1336 1337 struct pm_qos_request pm_qos_req; 1338 }; 1339 #define to_net_dev(d) container_of(d, struct net_device, dev) 1340 1341 #define NETDEV_ALIGN 32 1342 1343 static inline 1344 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1345 { 1346 return dev->prio_tc_map[prio & TC_BITMASK]; 1347 } 1348 1349 static inline 1350 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1351 { 1352 if (tc >= dev->num_tc) 1353 return -EINVAL; 1354 1355 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1356 return 0; 1357 } 1358 1359 static inline 1360 void netdev_reset_tc(struct net_device *dev) 1361 { 1362 dev->num_tc = 0; 1363 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1364 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1365 } 1366 1367 static inline 1368 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1369 { 1370 if (tc >= dev->num_tc) 1371 return -EINVAL; 1372 1373 dev->tc_to_txq[tc].count = count; 1374 dev->tc_to_txq[tc].offset = offset; 1375 return 0; 1376 } 1377 1378 static inline 1379 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1380 { 1381 if (num_tc > TC_MAX_QUEUE) 1382 return -EINVAL; 1383 1384 dev->num_tc = num_tc; 1385 return 0; 1386 } 1387 1388 static inline 1389 int netdev_get_num_tc(struct net_device *dev) 1390 { 1391 return dev->num_tc; 1392 } 1393 1394 static inline 1395 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1396 unsigned int index) 1397 { 1398 return &dev->_tx[index]; 1399 } 1400 1401 static inline void netdev_for_each_tx_queue(struct net_device *dev, 1402 void (*f)(struct net_device *, 1403 struct netdev_queue *, 1404 void *), 1405 void *arg) 1406 { 1407 unsigned int i; 1408 1409 for (i = 0; i < dev->num_tx_queues; i++) 1410 f(dev, &dev->_tx[i], arg); 1411 } 1412 1413 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1414 struct sk_buff *skb); 1415 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb); 1416 1417 /* 1418 * Net namespace inlines 1419 */ 1420 static inline 1421 struct net *dev_net(const struct net_device *dev) 1422 { 1423 return read_pnet(&dev->nd_net); 1424 } 1425 1426 static inline 1427 void dev_net_set(struct net_device *dev, struct net *net) 1428 { 1429 #ifdef CONFIG_NET_NS 1430 release_net(dev->nd_net); 1431 dev->nd_net = hold_net(net); 1432 #endif 1433 } 1434 1435 static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1436 { 1437 #ifdef CONFIG_NET_DSA_TAG_DSA 1438 if (dev->dsa_ptr != NULL) 1439 return dsa_uses_dsa_tags(dev->dsa_ptr); 1440 #endif 1441 1442 return 0; 1443 } 1444 1445 static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1446 { 1447 #ifdef CONFIG_NET_DSA_TAG_TRAILER 1448 if (dev->dsa_ptr != NULL) 1449 return dsa_uses_trailer_tags(dev->dsa_ptr); 1450 #endif 1451 1452 return 0; 1453 } 1454 1455 /** 1456 * netdev_priv - access network device private data 1457 * @dev: network device 1458 * 1459 * Get network device private data 1460 */ 1461 static inline void *netdev_priv(const struct net_device *dev) 1462 { 1463 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1464 } 1465 1466 /* Set the sysfs physical device reference for the network logical device 1467 * if set prior to registration will cause a symlink during initialization. 1468 */ 1469 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1470 1471 /* Set the sysfs device type for the network logical device to allow 1472 * fin grained indentification of different network device types. For 1473 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1474 */ 1475 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1476 1477 /* Default NAPI poll() weight 1478 * Device drivers are strongly advised to not use bigger value 1479 */ 1480 #define NAPI_POLL_WEIGHT 64 1481 1482 /** 1483 * netif_napi_add - initialize a napi context 1484 * @dev: network device 1485 * @napi: napi context 1486 * @poll: polling function 1487 * @weight: default weight 1488 * 1489 * netif_napi_add() must be used to initialize a napi context prior to calling 1490 * *any* of the other napi related functions. 1491 */ 1492 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1493 int (*poll)(struct napi_struct *, int), int weight); 1494 1495 /** 1496 * netif_napi_del - remove a napi context 1497 * @napi: napi context 1498 * 1499 * netif_napi_del() removes a napi context from the network device napi list 1500 */ 1501 void netif_napi_del(struct napi_struct *napi); 1502 1503 struct napi_gro_cb { 1504 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1505 void *frag0; 1506 1507 /* Length of frag0. */ 1508 unsigned int frag0_len; 1509 1510 /* This indicates where we are processing relative to skb->data. */ 1511 int data_offset; 1512 1513 /* This is non-zero if the packet cannot be merged with the new skb. */ 1514 int flush; 1515 1516 /* Number of segments aggregated. */ 1517 u16 count; 1518 1519 /* This is non-zero if the packet may be of the same flow. */ 1520 u8 same_flow; 1521 1522 /* Free the skb? */ 1523 u8 free; 1524 #define NAPI_GRO_FREE 1 1525 #define NAPI_GRO_FREE_STOLEN_HEAD 2 1526 1527 /* jiffies when first packet was created/queued */ 1528 unsigned long age; 1529 1530 /* Used in ipv6_gro_receive() */ 1531 int proto; 1532 1533 /* used in skb_gro_receive() slow path */ 1534 struct sk_buff *last; 1535 }; 1536 1537 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1538 1539 struct packet_type { 1540 __be16 type; /* This is really htons(ether_type). */ 1541 struct net_device *dev; /* NULL is wildcarded here */ 1542 int (*func) (struct sk_buff *, 1543 struct net_device *, 1544 struct packet_type *, 1545 struct net_device *); 1546 bool (*id_match)(struct packet_type *ptype, 1547 struct sock *sk); 1548 void *af_packet_priv; 1549 struct list_head list; 1550 }; 1551 1552 struct offload_callbacks { 1553 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1554 netdev_features_t features); 1555 int (*gso_send_check)(struct sk_buff *skb); 1556 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1557 struct sk_buff *skb); 1558 int (*gro_complete)(struct sk_buff *skb); 1559 }; 1560 1561 struct packet_offload { 1562 __be16 type; /* This is really htons(ether_type). */ 1563 struct offload_callbacks callbacks; 1564 struct list_head list; 1565 }; 1566 1567 #include <linux/notifier.h> 1568 1569 /* netdevice notifier chain. Please remember to update the rtnetlink 1570 * notification exclusion list in rtnetlink_event() when adding new 1571 * types. 1572 */ 1573 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1574 #define NETDEV_DOWN 0x0002 1575 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1576 detected a hardware crash and restarted 1577 - we can use this eg to kick tcp sessions 1578 once done */ 1579 #define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1580 #define NETDEV_REGISTER 0x0005 1581 #define NETDEV_UNREGISTER 0x0006 1582 #define NETDEV_CHANGEMTU 0x0007 1583 #define NETDEV_CHANGEADDR 0x0008 1584 #define NETDEV_GOING_DOWN 0x0009 1585 #define NETDEV_CHANGENAME 0x000A 1586 #define NETDEV_FEAT_CHANGE 0x000B 1587 #define NETDEV_BONDING_FAILOVER 0x000C 1588 #define NETDEV_PRE_UP 0x000D 1589 #define NETDEV_PRE_TYPE_CHANGE 0x000E 1590 #define NETDEV_POST_TYPE_CHANGE 0x000F 1591 #define NETDEV_POST_INIT 0x0010 1592 #define NETDEV_UNREGISTER_FINAL 0x0011 1593 #define NETDEV_RELEASE 0x0012 1594 #define NETDEV_NOTIFY_PEERS 0x0013 1595 #define NETDEV_JOIN 0x0014 1596 1597 extern int register_netdevice_notifier(struct notifier_block *nb); 1598 extern int unregister_netdevice_notifier(struct notifier_block *nb); 1599 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1600 1601 1602 extern rwlock_t dev_base_lock; /* Device list lock */ 1603 1604 extern seqcount_t devnet_rename_seq; /* Device rename seq */ 1605 1606 1607 #define for_each_netdev(net, d) \ 1608 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1609 #define for_each_netdev_reverse(net, d) \ 1610 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1611 #define for_each_netdev_rcu(net, d) \ 1612 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1613 #define for_each_netdev_safe(net, d, n) \ 1614 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1615 #define for_each_netdev_continue(net, d) \ 1616 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1617 #define for_each_netdev_continue_rcu(net, d) \ 1618 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1619 #define for_each_netdev_in_bond_rcu(bond, slave) \ 1620 for_each_netdev_rcu(&init_net, slave) \ 1621 if (netdev_master_upper_dev_get_rcu(slave) == bond) 1622 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1623 1624 static inline struct net_device *next_net_device(struct net_device *dev) 1625 { 1626 struct list_head *lh; 1627 struct net *net; 1628 1629 net = dev_net(dev); 1630 lh = dev->dev_list.next; 1631 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1632 } 1633 1634 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1635 { 1636 struct list_head *lh; 1637 struct net *net; 1638 1639 net = dev_net(dev); 1640 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1641 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1642 } 1643 1644 static inline struct net_device *first_net_device(struct net *net) 1645 { 1646 return list_empty(&net->dev_base_head) ? NULL : 1647 net_device_entry(net->dev_base_head.next); 1648 } 1649 1650 static inline struct net_device *first_net_device_rcu(struct net *net) 1651 { 1652 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1653 1654 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1655 } 1656 1657 extern int netdev_boot_setup_check(struct net_device *dev); 1658 extern unsigned long netdev_boot_base(const char *prefix, int unit); 1659 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1660 const char *hwaddr); 1661 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1662 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1663 extern void dev_add_pack(struct packet_type *pt); 1664 extern void dev_remove_pack(struct packet_type *pt); 1665 extern void __dev_remove_pack(struct packet_type *pt); 1666 extern void dev_add_offload(struct packet_offload *po); 1667 extern void dev_remove_offload(struct packet_offload *po); 1668 extern void __dev_remove_offload(struct packet_offload *po); 1669 1670 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1671 unsigned short mask); 1672 extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1673 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1674 extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1675 extern int dev_alloc_name(struct net_device *dev, const char *name); 1676 extern int dev_open(struct net_device *dev); 1677 extern int dev_close(struct net_device *dev); 1678 extern void dev_disable_lro(struct net_device *dev); 1679 extern int dev_loopback_xmit(struct sk_buff *newskb); 1680 extern int dev_queue_xmit(struct sk_buff *skb); 1681 extern int register_netdevice(struct net_device *dev); 1682 extern void unregister_netdevice_queue(struct net_device *dev, 1683 struct list_head *head); 1684 extern void unregister_netdevice_many(struct list_head *head); 1685 static inline void unregister_netdevice(struct net_device *dev) 1686 { 1687 unregister_netdevice_queue(dev, NULL); 1688 } 1689 1690 extern int netdev_refcnt_read(const struct net_device *dev); 1691 extern void free_netdev(struct net_device *dev); 1692 extern void synchronize_net(void); 1693 extern int init_dummy_netdev(struct net_device *dev); 1694 1695 extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1696 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1697 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1698 extern int dev_restart(struct net_device *dev); 1699 #ifdef CONFIG_NETPOLL_TRAP 1700 extern int netpoll_trap(void); 1701 #endif 1702 extern int skb_gro_receive(struct sk_buff **head, 1703 struct sk_buff *skb); 1704 1705 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1706 { 1707 return NAPI_GRO_CB(skb)->data_offset; 1708 } 1709 1710 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1711 { 1712 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1713 } 1714 1715 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1716 { 1717 NAPI_GRO_CB(skb)->data_offset += len; 1718 } 1719 1720 static inline void *skb_gro_header_fast(struct sk_buff *skb, 1721 unsigned int offset) 1722 { 1723 return NAPI_GRO_CB(skb)->frag0 + offset; 1724 } 1725 1726 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1727 { 1728 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1729 } 1730 1731 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1732 unsigned int offset) 1733 { 1734 if (!pskb_may_pull(skb, hlen)) 1735 return NULL; 1736 1737 NAPI_GRO_CB(skb)->frag0 = NULL; 1738 NAPI_GRO_CB(skb)->frag0_len = 0; 1739 return skb->data + offset; 1740 } 1741 1742 static inline void *skb_gro_mac_header(struct sk_buff *skb) 1743 { 1744 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1745 } 1746 1747 static inline void *skb_gro_network_header(struct sk_buff *skb) 1748 { 1749 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1750 skb_network_offset(skb); 1751 } 1752 1753 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1754 unsigned short type, 1755 const void *daddr, const void *saddr, 1756 unsigned int len) 1757 { 1758 if (!dev->header_ops || !dev->header_ops->create) 1759 return 0; 1760 1761 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1762 } 1763 1764 static inline int dev_parse_header(const struct sk_buff *skb, 1765 unsigned char *haddr) 1766 { 1767 const struct net_device *dev = skb->dev; 1768 1769 if (!dev->header_ops || !dev->header_ops->parse) 1770 return 0; 1771 return dev->header_ops->parse(skb, haddr); 1772 } 1773 1774 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1775 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1776 static inline int unregister_gifconf(unsigned int family) 1777 { 1778 return register_gifconf(family, NULL); 1779 } 1780 1781 /* 1782 * Incoming packets are placed on per-cpu queues 1783 */ 1784 struct softnet_data { 1785 struct Qdisc *output_queue; 1786 struct Qdisc **output_queue_tailp; 1787 struct list_head poll_list; 1788 struct sk_buff *completion_queue; 1789 struct sk_buff_head process_queue; 1790 1791 /* stats */ 1792 unsigned int processed; 1793 unsigned int time_squeeze; 1794 unsigned int cpu_collision; 1795 unsigned int received_rps; 1796 1797 #ifdef CONFIG_RPS 1798 struct softnet_data *rps_ipi_list; 1799 1800 /* Elements below can be accessed between CPUs for RPS */ 1801 struct call_single_data csd ____cacheline_aligned_in_smp; 1802 struct softnet_data *rps_ipi_next; 1803 unsigned int cpu; 1804 unsigned int input_queue_head; 1805 unsigned int input_queue_tail; 1806 #endif 1807 unsigned int dropped; 1808 struct sk_buff_head input_pkt_queue; 1809 struct napi_struct backlog; 1810 }; 1811 1812 static inline void input_queue_head_incr(struct softnet_data *sd) 1813 { 1814 #ifdef CONFIG_RPS 1815 sd->input_queue_head++; 1816 #endif 1817 } 1818 1819 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1820 unsigned int *qtail) 1821 { 1822 #ifdef CONFIG_RPS 1823 *qtail = ++sd->input_queue_tail; 1824 #endif 1825 } 1826 1827 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1828 1829 extern void __netif_schedule(struct Qdisc *q); 1830 1831 static inline void netif_schedule_queue(struct netdev_queue *txq) 1832 { 1833 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1834 __netif_schedule(txq->qdisc); 1835 } 1836 1837 static inline void netif_tx_schedule_all(struct net_device *dev) 1838 { 1839 unsigned int i; 1840 1841 for (i = 0; i < dev->num_tx_queues; i++) 1842 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1843 } 1844 1845 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1846 { 1847 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1848 } 1849 1850 /** 1851 * netif_start_queue - allow transmit 1852 * @dev: network device 1853 * 1854 * Allow upper layers to call the device hard_start_xmit routine. 1855 */ 1856 static inline void netif_start_queue(struct net_device *dev) 1857 { 1858 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1859 } 1860 1861 static inline void netif_tx_start_all_queues(struct net_device *dev) 1862 { 1863 unsigned int i; 1864 1865 for (i = 0; i < dev->num_tx_queues; i++) { 1866 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1867 netif_tx_start_queue(txq); 1868 } 1869 } 1870 1871 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1872 { 1873 #ifdef CONFIG_NETPOLL_TRAP 1874 if (netpoll_trap()) { 1875 netif_tx_start_queue(dev_queue); 1876 return; 1877 } 1878 #endif 1879 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1880 __netif_schedule(dev_queue->qdisc); 1881 } 1882 1883 /** 1884 * netif_wake_queue - restart transmit 1885 * @dev: network device 1886 * 1887 * Allow upper layers to call the device hard_start_xmit routine. 1888 * Used for flow control when transmit resources are available. 1889 */ 1890 static inline void netif_wake_queue(struct net_device *dev) 1891 { 1892 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1893 } 1894 1895 static inline void netif_tx_wake_all_queues(struct net_device *dev) 1896 { 1897 unsigned int i; 1898 1899 for (i = 0; i < dev->num_tx_queues; i++) { 1900 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1901 netif_tx_wake_queue(txq); 1902 } 1903 } 1904 1905 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1906 { 1907 if (WARN_ON(!dev_queue)) { 1908 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1909 return; 1910 } 1911 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1912 } 1913 1914 /** 1915 * netif_stop_queue - stop transmitted packets 1916 * @dev: network device 1917 * 1918 * Stop upper layers calling the device hard_start_xmit routine. 1919 * Used for flow control when transmit resources are unavailable. 1920 */ 1921 static inline void netif_stop_queue(struct net_device *dev) 1922 { 1923 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1924 } 1925 1926 static inline void netif_tx_stop_all_queues(struct net_device *dev) 1927 { 1928 unsigned int i; 1929 1930 for (i = 0; i < dev->num_tx_queues; i++) { 1931 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1932 netif_tx_stop_queue(txq); 1933 } 1934 } 1935 1936 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1937 { 1938 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1939 } 1940 1941 /** 1942 * netif_queue_stopped - test if transmit queue is flowblocked 1943 * @dev: network device 1944 * 1945 * Test if transmit queue on device is currently unable to send. 1946 */ 1947 static inline bool netif_queue_stopped(const struct net_device *dev) 1948 { 1949 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1950 } 1951 1952 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1953 { 1954 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1955 } 1956 1957 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1958 { 1959 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1960 } 1961 1962 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1963 unsigned int bytes) 1964 { 1965 #ifdef CONFIG_BQL 1966 dql_queued(&dev_queue->dql, bytes); 1967 1968 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1969 return; 1970 1971 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1972 1973 /* 1974 * The XOFF flag must be set before checking the dql_avail below, 1975 * because in netdev_tx_completed_queue we update the dql_completed 1976 * before checking the XOFF flag. 1977 */ 1978 smp_mb(); 1979 1980 /* check again in case another CPU has just made room avail */ 1981 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1982 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1983 #endif 1984 } 1985 1986 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1987 { 1988 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1989 } 1990 1991 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1992 unsigned int pkts, unsigned int bytes) 1993 { 1994 #ifdef CONFIG_BQL 1995 if (unlikely(!bytes)) 1996 return; 1997 1998 dql_completed(&dev_queue->dql, bytes); 1999 2000 /* 2001 * Without the memory barrier there is a small possiblity that 2002 * netdev_tx_sent_queue will miss the update and cause the queue to 2003 * be stopped forever 2004 */ 2005 smp_mb(); 2006 2007 if (dql_avail(&dev_queue->dql) < 0) 2008 return; 2009 2010 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2011 netif_schedule_queue(dev_queue); 2012 #endif 2013 } 2014 2015 static inline void netdev_completed_queue(struct net_device *dev, 2016 unsigned int pkts, unsigned int bytes) 2017 { 2018 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2019 } 2020 2021 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2022 { 2023 #ifdef CONFIG_BQL 2024 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2025 dql_reset(&q->dql); 2026 #endif 2027 } 2028 2029 static inline void netdev_reset_queue(struct net_device *dev_queue) 2030 { 2031 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2032 } 2033 2034 /** 2035 * netif_running - test if up 2036 * @dev: network device 2037 * 2038 * Test if the device has been brought up. 2039 */ 2040 static inline bool netif_running(const struct net_device *dev) 2041 { 2042 return test_bit(__LINK_STATE_START, &dev->state); 2043 } 2044 2045 /* 2046 * Routines to manage the subqueues on a device. We only need start 2047 * stop, and a check if it's stopped. All other device management is 2048 * done at the overall netdevice level. 2049 * Also test the device if we're multiqueue. 2050 */ 2051 2052 /** 2053 * netif_start_subqueue - allow sending packets on subqueue 2054 * @dev: network device 2055 * @queue_index: sub queue index 2056 * 2057 * Start individual transmit queue of a device with multiple transmit queues. 2058 */ 2059 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2060 { 2061 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2062 2063 netif_tx_start_queue(txq); 2064 } 2065 2066 /** 2067 * netif_stop_subqueue - stop sending packets on subqueue 2068 * @dev: network device 2069 * @queue_index: sub queue index 2070 * 2071 * Stop individual transmit queue of a device with multiple transmit queues. 2072 */ 2073 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2074 { 2075 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2076 #ifdef CONFIG_NETPOLL_TRAP 2077 if (netpoll_trap()) 2078 return; 2079 #endif 2080 netif_tx_stop_queue(txq); 2081 } 2082 2083 /** 2084 * netif_subqueue_stopped - test status of subqueue 2085 * @dev: network device 2086 * @queue_index: sub queue index 2087 * 2088 * Check individual transmit queue of a device with multiple transmit queues. 2089 */ 2090 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2091 u16 queue_index) 2092 { 2093 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2094 2095 return netif_tx_queue_stopped(txq); 2096 } 2097 2098 static inline bool netif_subqueue_stopped(const struct net_device *dev, 2099 struct sk_buff *skb) 2100 { 2101 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2102 } 2103 2104 /** 2105 * netif_wake_subqueue - allow sending packets on subqueue 2106 * @dev: network device 2107 * @queue_index: sub queue index 2108 * 2109 * Resume individual transmit queue of a device with multiple transmit queues. 2110 */ 2111 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2112 { 2113 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2114 #ifdef CONFIG_NETPOLL_TRAP 2115 if (netpoll_trap()) 2116 return; 2117 #endif 2118 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2119 __netif_schedule(txq->qdisc); 2120 } 2121 2122 #ifdef CONFIG_XPS 2123 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, 2124 u16 index); 2125 #else 2126 static inline int netif_set_xps_queue(struct net_device *dev, 2127 struct cpumask *mask, 2128 u16 index) 2129 { 2130 return 0; 2131 } 2132 #endif 2133 2134 /* 2135 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2136 * as a distribution range limit for the returned value. 2137 */ 2138 static inline u16 skb_tx_hash(const struct net_device *dev, 2139 const struct sk_buff *skb) 2140 { 2141 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2142 } 2143 2144 /** 2145 * netif_is_multiqueue - test if device has multiple transmit queues 2146 * @dev: network device 2147 * 2148 * Check if device has multiple transmit queues 2149 */ 2150 static inline bool netif_is_multiqueue(const struct net_device *dev) 2151 { 2152 return dev->num_tx_queues > 1; 2153 } 2154 2155 extern int netif_set_real_num_tx_queues(struct net_device *dev, 2156 unsigned int txq); 2157 2158 #ifdef CONFIG_RPS 2159 extern int netif_set_real_num_rx_queues(struct net_device *dev, 2160 unsigned int rxq); 2161 #else 2162 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2163 unsigned int rxq) 2164 { 2165 return 0; 2166 } 2167 #endif 2168 2169 static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2170 const struct net_device *from_dev) 2171 { 2172 int err; 2173 2174 err = netif_set_real_num_tx_queues(to_dev, 2175 from_dev->real_num_tx_queues); 2176 if (err) 2177 return err; 2178 #ifdef CONFIG_RPS 2179 return netif_set_real_num_rx_queues(to_dev, 2180 from_dev->real_num_rx_queues); 2181 #else 2182 return 0; 2183 #endif 2184 } 2185 2186 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2187 extern int netif_get_num_default_rss_queues(void); 2188 2189 /* Use this variant when it is known for sure that it 2190 * is executing from hardware interrupt context or with hardware interrupts 2191 * disabled. 2192 */ 2193 extern void dev_kfree_skb_irq(struct sk_buff *skb); 2194 2195 /* Use this variant in places where it could be invoked 2196 * from either hardware interrupt or other context, with hardware interrupts 2197 * either disabled or enabled. 2198 */ 2199 extern void dev_kfree_skb_any(struct sk_buff *skb); 2200 2201 extern int netif_rx(struct sk_buff *skb); 2202 extern int netif_rx_ni(struct sk_buff *skb); 2203 extern int netif_receive_skb(struct sk_buff *skb); 2204 extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2205 struct sk_buff *skb); 2206 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2207 extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2208 extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2209 2210 static inline void napi_free_frags(struct napi_struct *napi) 2211 { 2212 kfree_skb(napi->skb); 2213 napi->skb = NULL; 2214 } 2215 2216 extern int netdev_rx_handler_register(struct net_device *dev, 2217 rx_handler_func_t *rx_handler, 2218 void *rx_handler_data); 2219 extern void netdev_rx_handler_unregister(struct net_device *dev); 2220 2221 extern bool dev_valid_name(const char *name); 2222 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2223 extern int dev_ethtool(struct net *net, struct ifreq *); 2224 extern unsigned int dev_get_flags(const struct net_device *); 2225 extern int __dev_change_flags(struct net_device *, unsigned int flags); 2226 extern int dev_change_flags(struct net_device *, unsigned int); 2227 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2228 extern int dev_change_name(struct net_device *, const char *); 2229 extern int dev_set_alias(struct net_device *, const char *, size_t); 2230 extern int dev_change_net_namespace(struct net_device *, 2231 struct net *, const char *); 2232 extern int dev_set_mtu(struct net_device *, int); 2233 extern void dev_set_group(struct net_device *, int); 2234 extern int dev_set_mac_address(struct net_device *, 2235 struct sockaddr *); 2236 extern int dev_change_carrier(struct net_device *, 2237 bool new_carrier); 2238 extern int dev_hard_start_xmit(struct sk_buff *skb, 2239 struct net_device *dev, 2240 struct netdev_queue *txq); 2241 extern int dev_forward_skb(struct net_device *dev, 2242 struct sk_buff *skb); 2243 2244 extern int netdev_budget; 2245 2246 /* Called by rtnetlink.c:rtnl_unlock() */ 2247 extern void netdev_run_todo(void); 2248 2249 /** 2250 * dev_put - release reference to device 2251 * @dev: network device 2252 * 2253 * Release reference to device to allow it to be freed. 2254 */ 2255 static inline void dev_put(struct net_device *dev) 2256 { 2257 this_cpu_dec(*dev->pcpu_refcnt); 2258 } 2259 2260 /** 2261 * dev_hold - get reference to device 2262 * @dev: network device 2263 * 2264 * Hold reference to device to keep it from being freed. 2265 */ 2266 static inline void dev_hold(struct net_device *dev) 2267 { 2268 this_cpu_inc(*dev->pcpu_refcnt); 2269 } 2270 2271 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 2272 * and _off may be called from IRQ context, but it is caller 2273 * who is responsible for serialization of these calls. 2274 * 2275 * The name carrier is inappropriate, these functions should really be 2276 * called netif_lowerlayer_*() because they represent the state of any 2277 * kind of lower layer not just hardware media. 2278 */ 2279 2280 extern void linkwatch_init_dev(struct net_device *dev); 2281 extern void linkwatch_fire_event(struct net_device *dev); 2282 extern void linkwatch_forget_dev(struct net_device *dev); 2283 2284 /** 2285 * netif_carrier_ok - test if carrier present 2286 * @dev: network device 2287 * 2288 * Check if carrier is present on device 2289 */ 2290 static inline bool netif_carrier_ok(const struct net_device *dev) 2291 { 2292 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2293 } 2294 2295 extern unsigned long dev_trans_start(struct net_device *dev); 2296 2297 extern void __netdev_watchdog_up(struct net_device *dev); 2298 2299 extern void netif_carrier_on(struct net_device *dev); 2300 2301 extern void netif_carrier_off(struct net_device *dev); 2302 2303 /** 2304 * netif_dormant_on - mark device as dormant. 2305 * @dev: network device 2306 * 2307 * Mark device as dormant (as per RFC2863). 2308 * 2309 * The dormant state indicates that the relevant interface is not 2310 * actually in a condition to pass packets (i.e., it is not 'up') but is 2311 * in a "pending" state, waiting for some external event. For "on- 2312 * demand" interfaces, this new state identifies the situation where the 2313 * interface is waiting for events to place it in the up state. 2314 * 2315 */ 2316 static inline void netif_dormant_on(struct net_device *dev) 2317 { 2318 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2319 linkwatch_fire_event(dev); 2320 } 2321 2322 /** 2323 * netif_dormant_off - set device as not dormant. 2324 * @dev: network device 2325 * 2326 * Device is not in dormant state. 2327 */ 2328 static inline void netif_dormant_off(struct net_device *dev) 2329 { 2330 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2331 linkwatch_fire_event(dev); 2332 } 2333 2334 /** 2335 * netif_dormant - test if carrier present 2336 * @dev: network device 2337 * 2338 * Check if carrier is present on device 2339 */ 2340 static inline bool netif_dormant(const struct net_device *dev) 2341 { 2342 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2343 } 2344 2345 2346 /** 2347 * netif_oper_up - test if device is operational 2348 * @dev: network device 2349 * 2350 * Check if carrier is operational 2351 */ 2352 static inline bool netif_oper_up(const struct net_device *dev) 2353 { 2354 return (dev->operstate == IF_OPER_UP || 2355 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2356 } 2357 2358 /** 2359 * netif_device_present - is device available or removed 2360 * @dev: network device 2361 * 2362 * Check if device has not been removed from system. 2363 */ 2364 static inline bool netif_device_present(struct net_device *dev) 2365 { 2366 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2367 } 2368 2369 extern void netif_device_detach(struct net_device *dev); 2370 2371 extern void netif_device_attach(struct net_device *dev); 2372 2373 /* 2374 * Network interface message level settings 2375 */ 2376 2377 enum { 2378 NETIF_MSG_DRV = 0x0001, 2379 NETIF_MSG_PROBE = 0x0002, 2380 NETIF_MSG_LINK = 0x0004, 2381 NETIF_MSG_TIMER = 0x0008, 2382 NETIF_MSG_IFDOWN = 0x0010, 2383 NETIF_MSG_IFUP = 0x0020, 2384 NETIF_MSG_RX_ERR = 0x0040, 2385 NETIF_MSG_TX_ERR = 0x0080, 2386 NETIF_MSG_TX_QUEUED = 0x0100, 2387 NETIF_MSG_INTR = 0x0200, 2388 NETIF_MSG_TX_DONE = 0x0400, 2389 NETIF_MSG_RX_STATUS = 0x0800, 2390 NETIF_MSG_PKTDATA = 0x1000, 2391 NETIF_MSG_HW = 0x2000, 2392 NETIF_MSG_WOL = 0x4000, 2393 }; 2394 2395 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2396 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2397 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2398 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2399 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2400 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2401 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2402 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2403 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2404 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2405 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2406 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2407 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2408 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2409 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2410 2411 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2412 { 2413 /* use default */ 2414 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2415 return default_msg_enable_bits; 2416 if (debug_value == 0) /* no output */ 2417 return 0; 2418 /* set low N bits */ 2419 return (1 << debug_value) - 1; 2420 } 2421 2422 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2423 { 2424 spin_lock(&txq->_xmit_lock); 2425 txq->xmit_lock_owner = cpu; 2426 } 2427 2428 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2429 { 2430 spin_lock_bh(&txq->_xmit_lock); 2431 txq->xmit_lock_owner = smp_processor_id(); 2432 } 2433 2434 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2435 { 2436 bool ok = spin_trylock(&txq->_xmit_lock); 2437 if (likely(ok)) 2438 txq->xmit_lock_owner = smp_processor_id(); 2439 return ok; 2440 } 2441 2442 static inline void __netif_tx_unlock(struct netdev_queue *txq) 2443 { 2444 txq->xmit_lock_owner = -1; 2445 spin_unlock(&txq->_xmit_lock); 2446 } 2447 2448 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2449 { 2450 txq->xmit_lock_owner = -1; 2451 spin_unlock_bh(&txq->_xmit_lock); 2452 } 2453 2454 static inline void txq_trans_update(struct netdev_queue *txq) 2455 { 2456 if (txq->xmit_lock_owner != -1) 2457 txq->trans_start = jiffies; 2458 } 2459 2460 /** 2461 * netif_tx_lock - grab network device transmit lock 2462 * @dev: network device 2463 * 2464 * Get network device transmit lock 2465 */ 2466 static inline void netif_tx_lock(struct net_device *dev) 2467 { 2468 unsigned int i; 2469 int cpu; 2470 2471 spin_lock(&dev->tx_global_lock); 2472 cpu = smp_processor_id(); 2473 for (i = 0; i < dev->num_tx_queues; i++) { 2474 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2475 2476 /* We are the only thread of execution doing a 2477 * freeze, but we have to grab the _xmit_lock in 2478 * order to synchronize with threads which are in 2479 * the ->hard_start_xmit() handler and already 2480 * checked the frozen bit. 2481 */ 2482 __netif_tx_lock(txq, cpu); 2483 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2484 __netif_tx_unlock(txq); 2485 } 2486 } 2487 2488 static inline void netif_tx_lock_bh(struct net_device *dev) 2489 { 2490 local_bh_disable(); 2491 netif_tx_lock(dev); 2492 } 2493 2494 static inline void netif_tx_unlock(struct net_device *dev) 2495 { 2496 unsigned int i; 2497 2498 for (i = 0; i < dev->num_tx_queues; i++) { 2499 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2500 2501 /* No need to grab the _xmit_lock here. If the 2502 * queue is not stopped for another reason, we 2503 * force a schedule. 2504 */ 2505 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2506 netif_schedule_queue(txq); 2507 } 2508 spin_unlock(&dev->tx_global_lock); 2509 } 2510 2511 static inline void netif_tx_unlock_bh(struct net_device *dev) 2512 { 2513 netif_tx_unlock(dev); 2514 local_bh_enable(); 2515 } 2516 2517 #define HARD_TX_LOCK(dev, txq, cpu) { \ 2518 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2519 __netif_tx_lock(txq, cpu); \ 2520 } \ 2521 } 2522 2523 #define HARD_TX_UNLOCK(dev, txq) { \ 2524 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2525 __netif_tx_unlock(txq); \ 2526 } \ 2527 } 2528 2529 static inline void netif_tx_disable(struct net_device *dev) 2530 { 2531 unsigned int i; 2532 int cpu; 2533 2534 local_bh_disable(); 2535 cpu = smp_processor_id(); 2536 for (i = 0; i < dev->num_tx_queues; i++) { 2537 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2538 2539 __netif_tx_lock(txq, cpu); 2540 netif_tx_stop_queue(txq); 2541 __netif_tx_unlock(txq); 2542 } 2543 local_bh_enable(); 2544 } 2545 2546 static inline void netif_addr_lock(struct net_device *dev) 2547 { 2548 spin_lock(&dev->addr_list_lock); 2549 } 2550 2551 static inline void netif_addr_lock_nested(struct net_device *dev) 2552 { 2553 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2554 } 2555 2556 static inline void netif_addr_lock_bh(struct net_device *dev) 2557 { 2558 spin_lock_bh(&dev->addr_list_lock); 2559 } 2560 2561 static inline void netif_addr_unlock(struct net_device *dev) 2562 { 2563 spin_unlock(&dev->addr_list_lock); 2564 } 2565 2566 static inline void netif_addr_unlock_bh(struct net_device *dev) 2567 { 2568 spin_unlock_bh(&dev->addr_list_lock); 2569 } 2570 2571 /* 2572 * dev_addrs walker. Should be used only for read access. Call with 2573 * rcu_read_lock held. 2574 */ 2575 #define for_each_dev_addr(dev, ha) \ 2576 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2577 2578 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2579 2580 extern void ether_setup(struct net_device *dev); 2581 2582 /* Support for loadable net-drivers */ 2583 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2584 void (*setup)(struct net_device *), 2585 unsigned int txqs, unsigned int rxqs); 2586 #define alloc_netdev(sizeof_priv, name, setup) \ 2587 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2588 2589 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2590 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2591 2592 extern int register_netdev(struct net_device *dev); 2593 extern void unregister_netdev(struct net_device *dev); 2594 2595 /* General hardware address lists handling functions */ 2596 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2597 struct netdev_hw_addr_list *from_list, 2598 int addr_len, unsigned char addr_type); 2599 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2600 struct netdev_hw_addr_list *from_list, 2601 int addr_len, unsigned char addr_type); 2602 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2603 struct netdev_hw_addr_list *from_list, 2604 int addr_len); 2605 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2606 struct netdev_hw_addr_list *from_list, 2607 int addr_len); 2608 extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2609 extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2610 2611 /* Functions used for device addresses handling */ 2612 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2613 unsigned char addr_type); 2614 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2615 unsigned char addr_type); 2616 extern int dev_addr_add_multiple(struct net_device *to_dev, 2617 struct net_device *from_dev, 2618 unsigned char addr_type); 2619 extern int dev_addr_del_multiple(struct net_device *to_dev, 2620 struct net_device *from_dev, 2621 unsigned char addr_type); 2622 extern void dev_addr_flush(struct net_device *dev); 2623 extern int dev_addr_init(struct net_device *dev); 2624 2625 /* Functions used for unicast addresses handling */ 2626 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2627 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2628 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2629 extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2630 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 2631 extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2632 extern void dev_uc_flush(struct net_device *dev); 2633 extern void dev_uc_init(struct net_device *dev); 2634 2635 /* Functions used for multicast addresses handling */ 2636 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2637 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2638 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2639 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2640 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2641 extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2642 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 2643 extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2644 extern void dev_mc_flush(struct net_device *dev); 2645 extern void dev_mc_init(struct net_device *dev); 2646 2647 /* Functions used for secondary unicast and multicast support */ 2648 extern void dev_set_rx_mode(struct net_device *dev); 2649 extern void __dev_set_rx_mode(struct net_device *dev); 2650 extern int dev_set_promiscuity(struct net_device *dev, int inc); 2651 extern int dev_set_allmulti(struct net_device *dev, int inc); 2652 extern void netdev_state_change(struct net_device *dev); 2653 extern void netdev_notify_peers(struct net_device *dev); 2654 extern void netdev_features_change(struct net_device *dev); 2655 /* Load a device via the kmod */ 2656 extern void dev_load(struct net *net, const char *name); 2657 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2658 struct rtnl_link_stats64 *storage); 2659 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2660 const struct net_device_stats *netdev_stats); 2661 2662 extern int netdev_max_backlog; 2663 extern int netdev_tstamp_prequeue; 2664 extern int weight_p; 2665 extern int bpf_jit_enable; 2666 2667 extern bool netdev_has_upper_dev(struct net_device *dev, 2668 struct net_device *upper_dev); 2669 extern bool netdev_has_any_upper_dev(struct net_device *dev); 2670 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 2671 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 2672 extern int netdev_upper_dev_link(struct net_device *dev, 2673 struct net_device *upper_dev); 2674 extern int netdev_master_upper_dev_link(struct net_device *dev, 2675 struct net_device *upper_dev); 2676 extern void netdev_upper_dev_unlink(struct net_device *dev, 2677 struct net_device *upper_dev); 2678 extern int skb_checksum_help(struct sk_buff *skb); 2679 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2680 netdev_features_t features, bool tx_path); 2681 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2682 netdev_features_t features); 2683 2684 static inline 2685 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 2686 { 2687 return __skb_gso_segment(skb, features, true); 2688 } 2689 __be16 skb_network_protocol(struct sk_buff *skb); 2690 2691 static inline bool can_checksum_protocol(netdev_features_t features, 2692 __be16 protocol) 2693 { 2694 return ((features & NETIF_F_GEN_CSUM) || 2695 ((features & NETIF_F_V4_CSUM) && 2696 protocol == htons(ETH_P_IP)) || 2697 ((features & NETIF_F_V6_CSUM) && 2698 protocol == htons(ETH_P_IPV6)) || 2699 ((features & NETIF_F_FCOE_CRC) && 2700 protocol == htons(ETH_P_FCOE))); 2701 } 2702 2703 #ifdef CONFIG_BUG 2704 extern void netdev_rx_csum_fault(struct net_device *dev); 2705 #else 2706 static inline void netdev_rx_csum_fault(struct net_device *dev) 2707 { 2708 } 2709 #endif 2710 /* rx skb timestamps */ 2711 extern void net_enable_timestamp(void); 2712 extern void net_disable_timestamp(void); 2713 2714 #ifdef CONFIG_PROC_FS 2715 extern int __init dev_proc_init(void); 2716 #else 2717 #define dev_proc_init() 0 2718 #endif 2719 2720 extern int netdev_class_create_file(struct class_attribute *class_attr); 2721 extern void netdev_class_remove_file(struct class_attribute *class_attr); 2722 2723 extern struct kobj_ns_type_operations net_ns_type_operations; 2724 2725 extern const char *netdev_drivername(const struct net_device *dev); 2726 2727 extern void linkwatch_run_queue(void); 2728 2729 static inline netdev_features_t netdev_get_wanted_features( 2730 struct net_device *dev) 2731 { 2732 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2733 } 2734 netdev_features_t netdev_increment_features(netdev_features_t all, 2735 netdev_features_t one, netdev_features_t mask); 2736 2737 /* Allow TSO being used on stacked device : 2738 * Performing the GSO segmentation before last device 2739 * is a performance improvement. 2740 */ 2741 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 2742 netdev_features_t mask) 2743 { 2744 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 2745 } 2746 2747 int __netdev_update_features(struct net_device *dev); 2748 void netdev_update_features(struct net_device *dev); 2749 void netdev_change_features(struct net_device *dev); 2750 2751 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2752 struct net_device *dev); 2753 2754 netdev_features_t netif_skb_features(struct sk_buff *skb); 2755 2756 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2757 { 2758 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2759 2760 /* check flags correspondence */ 2761 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2762 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2763 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2764 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2765 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2766 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2767 2768 return (features & feature) == feature; 2769 } 2770 2771 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2772 { 2773 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2774 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2775 } 2776 2777 static inline bool netif_needs_gso(struct sk_buff *skb, 2778 netdev_features_t features) 2779 { 2780 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2781 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2782 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2783 } 2784 2785 static inline void netif_set_gso_max_size(struct net_device *dev, 2786 unsigned int size) 2787 { 2788 dev->gso_max_size = size; 2789 } 2790 2791 static inline bool netif_is_bond_master(struct net_device *dev) 2792 { 2793 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 2794 } 2795 2796 static inline bool netif_is_bond_slave(struct net_device *dev) 2797 { 2798 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2799 } 2800 2801 static inline bool netif_supports_nofcs(struct net_device *dev) 2802 { 2803 return dev->priv_flags & IFF_SUPP_NOFCS; 2804 } 2805 2806 extern struct pernet_operations __net_initdata loopback_net_ops; 2807 2808 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 2809 2810 /* netdev_printk helpers, similar to dev_printk */ 2811 2812 static inline const char *netdev_name(const struct net_device *dev) 2813 { 2814 if (dev->reg_state != NETREG_REGISTERED) 2815 return "(unregistered net_device)"; 2816 return dev->name; 2817 } 2818 2819 extern __printf(3, 4) 2820 int netdev_printk(const char *level, const struct net_device *dev, 2821 const char *format, ...); 2822 extern __printf(2, 3) 2823 int netdev_emerg(const struct net_device *dev, const char *format, ...); 2824 extern __printf(2, 3) 2825 int netdev_alert(const struct net_device *dev, const char *format, ...); 2826 extern __printf(2, 3) 2827 int netdev_crit(const struct net_device *dev, const char *format, ...); 2828 extern __printf(2, 3) 2829 int netdev_err(const struct net_device *dev, const char *format, ...); 2830 extern __printf(2, 3) 2831 int netdev_warn(const struct net_device *dev, const char *format, ...); 2832 extern __printf(2, 3) 2833 int netdev_notice(const struct net_device *dev, const char *format, ...); 2834 extern __printf(2, 3) 2835 int netdev_info(const struct net_device *dev, const char *format, ...); 2836 2837 #define MODULE_ALIAS_NETDEV(device) \ 2838 MODULE_ALIAS("netdev-" device) 2839 2840 #if defined(CONFIG_DYNAMIC_DEBUG) 2841 #define netdev_dbg(__dev, format, args...) \ 2842 do { \ 2843 dynamic_netdev_dbg(__dev, format, ##args); \ 2844 } while (0) 2845 #elif defined(DEBUG) 2846 #define netdev_dbg(__dev, format, args...) \ 2847 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2848 #else 2849 #define netdev_dbg(__dev, format, args...) \ 2850 ({ \ 2851 if (0) \ 2852 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2853 0; \ 2854 }) 2855 #endif 2856 2857 #if defined(VERBOSE_DEBUG) 2858 #define netdev_vdbg netdev_dbg 2859 #else 2860 2861 #define netdev_vdbg(dev, format, args...) \ 2862 ({ \ 2863 if (0) \ 2864 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2865 0; \ 2866 }) 2867 #endif 2868 2869 /* 2870 * netdev_WARN() acts like dev_printk(), but with the key difference 2871 * of using a WARN/WARN_ON to get the message out, including the 2872 * file/line information and a backtrace. 2873 */ 2874 #define netdev_WARN(dev, format, args...) \ 2875 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2876 2877 /* netif printk helpers, similar to netdev_printk */ 2878 2879 #define netif_printk(priv, type, level, dev, fmt, args...) \ 2880 do { \ 2881 if (netif_msg_##type(priv)) \ 2882 netdev_printk(level, (dev), fmt, ##args); \ 2883 } while (0) 2884 2885 #define netif_level(level, priv, type, dev, fmt, args...) \ 2886 do { \ 2887 if (netif_msg_##type(priv)) \ 2888 netdev_##level(dev, fmt, ##args); \ 2889 } while (0) 2890 2891 #define netif_emerg(priv, type, dev, fmt, args...) \ 2892 netif_level(emerg, priv, type, dev, fmt, ##args) 2893 #define netif_alert(priv, type, dev, fmt, args...) \ 2894 netif_level(alert, priv, type, dev, fmt, ##args) 2895 #define netif_crit(priv, type, dev, fmt, args...) \ 2896 netif_level(crit, priv, type, dev, fmt, ##args) 2897 #define netif_err(priv, type, dev, fmt, args...) \ 2898 netif_level(err, priv, type, dev, fmt, ##args) 2899 #define netif_warn(priv, type, dev, fmt, args...) \ 2900 netif_level(warn, priv, type, dev, fmt, ##args) 2901 #define netif_notice(priv, type, dev, fmt, args...) \ 2902 netif_level(notice, priv, type, dev, fmt, ##args) 2903 #define netif_info(priv, type, dev, fmt, args...) \ 2904 netif_level(info, priv, type, dev, fmt, ##args) 2905 2906 #if defined(CONFIG_DYNAMIC_DEBUG) 2907 #define netif_dbg(priv, type, netdev, format, args...) \ 2908 do { \ 2909 if (netif_msg_##type(priv)) \ 2910 dynamic_netdev_dbg(netdev, format, ##args); \ 2911 } while (0) 2912 #elif defined(DEBUG) 2913 #define netif_dbg(priv, type, dev, format, args...) \ 2914 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2915 #else 2916 #define netif_dbg(priv, type, dev, format, args...) \ 2917 ({ \ 2918 if (0) \ 2919 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2920 0; \ 2921 }) 2922 #endif 2923 2924 #if defined(VERBOSE_DEBUG) 2925 #define netif_vdbg netif_dbg 2926 #else 2927 #define netif_vdbg(priv, type, dev, format, args...) \ 2928 ({ \ 2929 if (0) \ 2930 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2931 0; \ 2932 }) 2933 #endif 2934 2935 /* 2936 * The list of packet types we will receive (as opposed to discard) 2937 * and the routines to invoke. 2938 * 2939 * Why 16. Because with 16 the only overlap we get on a hash of the 2940 * low nibble of the protocol value is RARP/SNAP/X.25. 2941 * 2942 * NOTE: That is no longer true with the addition of VLAN tags. Not 2943 * sure which should go first, but I bet it won't make much 2944 * difference if we are running VLANs. The good news is that 2945 * this protocol won't be in the list unless compiled in, so 2946 * the average user (w/out VLANs) will not be adversely affected. 2947 * --BLG 2948 * 2949 * 0800 IP 2950 * 8100 802.1Q VLAN 2951 * 0001 802.3 2952 * 0002 AX.25 2953 * 0004 802.2 2954 * 8035 RARP 2955 * 0005 SNAP 2956 * 0805 X.25 2957 * 0806 ARP 2958 * 8137 IPX 2959 * 0009 Localtalk 2960 * 86DD IPv6 2961 */ 2962 #define PTYPE_HASH_SIZE (16) 2963 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 2964 2965 #endif /* _LINUX_NETDEVICE_H */ 2966