xref: /openbmc/linux/include/linux/netdevice.h (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 	unsigned long		tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592 
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	return q->numa_node;
597 #else
598 	return NUMA_NO_NODE;
599 #endif
600 }
601 
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 	q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615 	unsigned int len;
616 	struct rcu_head rcu;
617 	u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627 	u16 cpu;
628 	u16 filter;
629 	unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637 	unsigned int mask;
638 	struct rcu_head rcu;
639 	struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655 	u32	mask;
656 
657 	u32	ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 					u32 hash)
668 {
669 	if (table && hash) {
670 		unsigned int index = hash & table->mask;
671 		u32 val = hash & ~rps_cpu_mask;
672 
673 		/* We only give a hint, preemption can change cpu under us */
674 		val |= raw_smp_processor_id();
675 
676 		if (table->ents[index] != val)
677 			table->ents[index] = val;
678 	}
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 			 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 	struct rps_map __rcu		*rps_map;
691 	struct rps_dev_flow_table __rcu	*rps_flow_table;
692 #endif
693 	struct kobject			kobj;
694 	struct net_device		*dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701 	struct attribute attr;
702 	ssize_t (*show)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, char *buf);
704 	ssize_t (*store)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714 	unsigned int len;
715 	unsigned int alloc_len;
716 	struct rcu_head rcu;
717 	u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727 	struct rcu_head rcu;
728 	struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE	16
735 #define TC_BITMASK	15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 	u16 count;
739 	u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748 	char	manufacturer[64];
749 	char	serial_number[64];
750 	char	hardware_version[64];
751 	char	driver_version[64];
752 	char	optionrom_version[64];
753 	char	firmware_version[64];
754 	char	model[256];
755 	char	model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 	unsigned char id_len;
767 };
768 
769 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
770 					    struct netdev_phys_item_id *b)
771 {
772 	return a->id_len == b->id_len &&
773 	       memcmp(a->id, b->id, a->id_len) == 0;
774 }
775 
776 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
777 				       struct sk_buff *skb);
778 
779 /*
780  * This structure defines the management hooks for network devices.
781  * The following hooks can be defined; unless noted otherwise, they are
782  * optional and can be filled with a null pointer.
783  *
784  * int (*ndo_init)(struct net_device *dev);
785  *     This function is called once when network device is registered.
786  *     The network device can use this to any late stage initializaton
787  *     or semantic validattion. It can fail with an error code which will
788  *     be propogated back to register_netdev
789  *
790  * void (*ndo_uninit)(struct net_device *dev);
791  *     This function is called when device is unregistered or when registration
792  *     fails. It is not called if init fails.
793  *
794  * int (*ndo_open)(struct net_device *dev);
795  *     This function is called when network device transistions to the up
796  *     state.
797  *
798  * int (*ndo_stop)(struct net_device *dev);
799  *     This function is called when network device transistions to the down
800  *     state.
801  *
802  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
803  *                               struct net_device *dev);
804  *	Called when a packet needs to be transmitted.
805  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
806  *	the queue before that can happen; it's for obsolete devices and weird
807  *	corner cases, but the stack really does a non-trivial amount
808  *	of useless work if you return NETDEV_TX_BUSY.
809  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
810  *	Required can not be NULL.
811  *
812  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
813  *                         void *accel_priv, select_queue_fallback_t fallback);
814  *	Called to decide which queue to when device supports multiple
815  *	transmit queues.
816  *
817  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
818  *	This function is called to allow device receiver to make
819  *	changes to configuration when multicast or promiscious is enabled.
820  *
821  * void (*ndo_set_rx_mode)(struct net_device *dev);
822  *	This function is called device changes address list filtering.
823  *	If driver handles unicast address filtering, it should set
824  *	IFF_UNICAST_FLT to its priv_flags.
825  *
826  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
827  *	This function  is called when the Media Access Control address
828  *	needs to be changed. If this interface is not defined, the
829  *	mac address can not be changed.
830  *
831  * int (*ndo_validate_addr)(struct net_device *dev);
832  *	Test if Media Access Control address is valid for the device.
833  *
834  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
835  *	Called when a user request an ioctl which can't be handled by
836  *	the generic interface code. If not defined ioctl's return
837  *	not supported error code.
838  *
839  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
840  *	Used to set network devices bus interface parameters. This interface
841  *	is retained for legacy reason, new devices should use the bus
842  *	interface (PCI) for low level management.
843  *
844  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
845  *	Called when a user wants to change the Maximum Transfer Unit
846  *	of a device. If not defined, any request to change MTU will
847  *	will return an error.
848  *
849  * void (*ndo_tx_timeout)(struct net_device *dev);
850  *	Callback uses when the transmitter has not made any progress
851  *	for dev->watchdog ticks.
852  *
853  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
854  *                      struct rtnl_link_stats64 *storage);
855  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
856  *	Called when a user wants to get the network device usage
857  *	statistics. Drivers must do one of the following:
858  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
859  *	   rtnl_link_stats64 structure passed by the caller.
860  *	2. Define @ndo_get_stats to update a net_device_stats structure
861  *	   (which should normally be dev->stats) and return a pointer to
862  *	   it. The structure may be changed asynchronously only if each
863  *	   field is written atomically.
864  *	3. Update dev->stats asynchronously and atomically, and define
865  *	   neither operation.
866  *
867  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
868  *	If device support VLAN filtering this function is called when a
869  *	VLAN id is registered.
870  *
871  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
872  *	If device support VLAN filtering this function is called when a
873  *	VLAN id is unregistered.
874  *
875  * void (*ndo_poll_controller)(struct net_device *dev);
876  *
877  *	SR-IOV management functions.
878  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
879  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
880  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
881  *			  int max_tx_rate);
882  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
883  * int (*ndo_get_vf_config)(struct net_device *dev,
884  *			    int vf, struct ifla_vf_info *ivf);
885  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
886  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
887  *			  struct nlattr *port[]);
888  *
889  *      Enable or disable the VF ability to query its RSS Redirection Table and
890  *      Hash Key. This is needed since on some devices VF share this information
891  *      with PF and querying it may adduce a theoretical security risk.
892  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
893  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
894  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
895  * 	Called to setup 'tc' number of traffic classes in the net device. This
896  * 	is always called from the stack with the rtnl lock held and netif tx
897  * 	queues stopped. This allows the netdevice to perform queue management
898  * 	safely.
899  *
900  *	Fiber Channel over Ethernet (FCoE) offload functions.
901  * int (*ndo_fcoe_enable)(struct net_device *dev);
902  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
903  *	so the underlying device can perform whatever needed configuration or
904  *	initialization to support acceleration of FCoE traffic.
905  *
906  * int (*ndo_fcoe_disable)(struct net_device *dev);
907  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
908  *	so the underlying device can perform whatever needed clean-ups to
909  *	stop supporting acceleration of FCoE traffic.
910  *
911  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
912  *			     struct scatterlist *sgl, unsigned int sgc);
913  *	Called when the FCoE Initiator wants to initialize an I/O that
914  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
915  *	perform necessary setup and returns 1 to indicate the device is set up
916  *	successfully to perform DDP on this I/O, otherwise this returns 0.
917  *
918  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
919  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
920  *	indicated by the FC exchange id 'xid', so the underlying device can
921  *	clean up and reuse resources for later DDP requests.
922  *
923  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
924  *			      struct scatterlist *sgl, unsigned int sgc);
925  *	Called when the FCoE Target wants to initialize an I/O that
926  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
927  *	perform necessary setup and returns 1 to indicate the device is set up
928  *	successfully to perform DDP on this I/O, otherwise this returns 0.
929  *
930  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
931  *			       struct netdev_fcoe_hbainfo *hbainfo);
932  *	Called when the FCoE Protocol stack wants information on the underlying
933  *	device. This information is utilized by the FCoE protocol stack to
934  *	register attributes with Fiber Channel management service as per the
935  *	FC-GS Fabric Device Management Information(FDMI) specification.
936  *
937  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
938  *	Called when the underlying device wants to override default World Wide
939  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
940  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
941  *	protocol stack to use.
942  *
943  *	RFS acceleration.
944  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
945  *			    u16 rxq_index, u32 flow_id);
946  *	Set hardware filter for RFS.  rxq_index is the target queue index;
947  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
948  *	Return the filter ID on success, or a negative error code.
949  *
950  *	Slave management functions (for bridge, bonding, etc).
951  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
952  *	Called to make another netdev an underling.
953  *
954  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
955  *	Called to release previously enslaved netdev.
956  *
957  *      Feature/offload setting functions.
958  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
959  *		netdev_features_t features);
960  *	Adjusts the requested feature flags according to device-specific
961  *	constraints, and returns the resulting flags. Must not modify
962  *	the device state.
963  *
964  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
965  *	Called to update device configuration to new features. Passed
966  *	feature set might be less than what was returned by ndo_fix_features()).
967  *	Must return >0 or -errno if it changed dev->features itself.
968  *
969  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
970  *		      struct net_device *dev,
971  *		      const unsigned char *addr, u16 vid, u16 flags)
972  *	Adds an FDB entry to dev for addr.
973  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
974  *		      struct net_device *dev,
975  *		      const unsigned char *addr, u16 vid)
976  *	Deletes the FDB entry from dev coresponding to addr.
977  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
978  *		       struct net_device *dev, struct net_device *filter_dev,
979  *		       int idx)
980  *	Used to add FDB entries to dump requests. Implementers should add
981  *	entries to skb and update idx with the number of entries.
982  *
983  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
984  *			     u16 flags)
985  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
986  *			     struct net_device *dev, u32 filter_mask,
987  *			     int nlflags)
988  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
989  *			     u16 flags);
990  *
991  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
992  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
993  *	which do not represent real hardware may define this to allow their
994  *	userspace components to manage their virtual carrier state. Devices
995  *	that determine carrier state from physical hardware properties (eg
996  *	network cables) or protocol-dependent mechanisms (eg
997  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
998  *
999  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1000  *			       struct netdev_phys_item_id *ppid);
1001  *	Called to get ID of physical port of this device. If driver does
1002  *	not implement this, it is assumed that the hw is not able to have
1003  *	multiple net devices on single physical port.
1004  *
1005  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1006  *			      sa_family_t sa_family, __be16 port);
1007  *	Called by vxlan to notiy a driver about the UDP port and socket
1008  *	address family that vxlan is listnening to. It is called only when
1009  *	a new port starts listening. The operation is protected by the
1010  *	vxlan_net->sock_lock.
1011  *
1012  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1013  *			      sa_family_t sa_family, __be16 port);
1014  *	Called by vxlan to notify the driver about a UDP port and socket
1015  *	address family that vxlan is not listening to anymore. The operation
1016  *	is protected by the vxlan_net->sock_lock.
1017  *
1018  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1019  *				 struct net_device *dev)
1020  *	Called by upper layer devices to accelerate switching or other
1021  *	station functionality into hardware. 'pdev is the lowerdev
1022  *	to use for the offload and 'dev' is the net device that will
1023  *	back the offload. Returns a pointer to the private structure
1024  *	the upper layer will maintain.
1025  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1026  *	Called by upper layer device to delete the station created
1027  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1028  *	the station and priv is the structure returned by the add
1029  *	operation.
1030  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1031  *				      struct net_device *dev,
1032  *				      void *priv);
1033  *	Callback to use for xmit over the accelerated station. This
1034  *	is used in place of ndo_start_xmit on accelerated net
1035  *	devices.
1036  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1037  *					    struct net_device *dev
1038  *					    netdev_features_t features);
1039  *	Called by core transmit path to determine if device is capable of
1040  *	performing offload operations on a given packet. This is to give
1041  *	the device an opportunity to implement any restrictions that cannot
1042  *	be otherwise expressed by feature flags. The check is called with
1043  *	the set of features that the stack has calculated and it returns
1044  *	those the driver believes to be appropriate.
1045  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1046  *			     int queue_index, u32 maxrate);
1047  *	Called when a user wants to set a max-rate limitation of specific
1048  *	TX queue.
1049  * int (*ndo_get_iflink)(const struct net_device *dev);
1050  *	Called to get the iflink value of this device.
1051  * void (*ndo_change_proto_down)(struct net_device *dev,
1052  *				  bool proto_down);
1053  *	This function is used to pass protocol port error state information
1054  *	to the switch driver. The switch driver can react to the proto_down
1055  *      by doing a phys down on the associated switch port.
1056  *
1057  */
1058 struct net_device_ops {
1059 	int			(*ndo_init)(struct net_device *dev);
1060 	void			(*ndo_uninit)(struct net_device *dev);
1061 	int			(*ndo_open)(struct net_device *dev);
1062 	int			(*ndo_stop)(struct net_device *dev);
1063 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1064 						   struct net_device *dev);
1065 	u16			(*ndo_select_queue)(struct net_device *dev,
1066 						    struct sk_buff *skb,
1067 						    void *accel_priv,
1068 						    select_queue_fallback_t fallback);
1069 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1070 						       int flags);
1071 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1072 	int			(*ndo_set_mac_address)(struct net_device *dev,
1073 						       void *addr);
1074 	int			(*ndo_validate_addr)(struct net_device *dev);
1075 	int			(*ndo_do_ioctl)(struct net_device *dev,
1076 					        struct ifreq *ifr, int cmd);
1077 	int			(*ndo_set_config)(struct net_device *dev,
1078 					          struct ifmap *map);
1079 	int			(*ndo_change_mtu)(struct net_device *dev,
1080 						  int new_mtu);
1081 	int			(*ndo_neigh_setup)(struct net_device *dev,
1082 						   struct neigh_parms *);
1083 	void			(*ndo_tx_timeout) (struct net_device *dev);
1084 
1085 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1086 						     struct rtnl_link_stats64 *storage);
1087 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1088 
1089 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1090 						       __be16 proto, u16 vid);
1091 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1092 						        __be16 proto, u16 vid);
1093 #ifdef CONFIG_NET_POLL_CONTROLLER
1094 	void                    (*ndo_poll_controller)(struct net_device *dev);
1095 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1096 						     struct netpoll_info *info);
1097 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1098 #endif
1099 #ifdef CONFIG_NET_RX_BUSY_POLL
1100 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1101 #endif
1102 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1103 						  int queue, u8 *mac);
1104 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1105 						   int queue, u16 vlan, u8 qos);
1106 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1107 						   int vf, int min_tx_rate,
1108 						   int max_tx_rate);
1109 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1110 						       int vf, bool setting);
1111 	int			(*ndo_get_vf_config)(struct net_device *dev,
1112 						     int vf,
1113 						     struct ifla_vf_info *ivf);
1114 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1115 							 int vf, int link_state);
1116 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1117 						    int vf,
1118 						    struct ifla_vf_stats
1119 						    *vf_stats);
1120 	int			(*ndo_set_vf_port)(struct net_device *dev,
1121 						   int vf,
1122 						   struct nlattr *port[]);
1123 	int			(*ndo_get_vf_port)(struct net_device *dev,
1124 						   int vf, struct sk_buff *skb);
1125 	int			(*ndo_set_vf_rss_query_en)(
1126 						   struct net_device *dev,
1127 						   int vf, bool setting);
1128 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1129 #if IS_ENABLED(CONFIG_FCOE)
1130 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1131 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1132 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1133 						      u16 xid,
1134 						      struct scatterlist *sgl,
1135 						      unsigned int sgc);
1136 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1137 						     u16 xid);
1138 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1139 						       u16 xid,
1140 						       struct scatterlist *sgl,
1141 						       unsigned int sgc);
1142 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1143 							struct netdev_fcoe_hbainfo *hbainfo);
1144 #endif
1145 
1146 #if IS_ENABLED(CONFIG_LIBFCOE)
1147 #define NETDEV_FCOE_WWNN 0
1148 #define NETDEV_FCOE_WWPN 1
1149 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1150 						    u64 *wwn, int type);
1151 #endif
1152 
1153 #ifdef CONFIG_RFS_ACCEL
1154 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1155 						     const struct sk_buff *skb,
1156 						     u16 rxq_index,
1157 						     u32 flow_id);
1158 #endif
1159 	int			(*ndo_add_slave)(struct net_device *dev,
1160 						 struct net_device *slave_dev);
1161 	int			(*ndo_del_slave)(struct net_device *dev,
1162 						 struct net_device *slave_dev);
1163 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1164 						    netdev_features_t features);
1165 	int			(*ndo_set_features)(struct net_device *dev,
1166 						    netdev_features_t features);
1167 	int			(*ndo_neigh_construct)(struct neighbour *n);
1168 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1169 
1170 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1171 					       struct nlattr *tb[],
1172 					       struct net_device *dev,
1173 					       const unsigned char *addr,
1174 					       u16 vid,
1175 					       u16 flags);
1176 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1177 					       struct nlattr *tb[],
1178 					       struct net_device *dev,
1179 					       const unsigned char *addr,
1180 					       u16 vid);
1181 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1182 						struct netlink_callback *cb,
1183 						struct net_device *dev,
1184 						struct net_device *filter_dev,
1185 						int idx);
1186 
1187 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1188 						      struct nlmsghdr *nlh,
1189 						      u16 flags);
1190 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1191 						      u32 pid, u32 seq,
1192 						      struct net_device *dev,
1193 						      u32 filter_mask,
1194 						      int nlflags);
1195 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1196 						      struct nlmsghdr *nlh,
1197 						      u16 flags);
1198 	int			(*ndo_change_carrier)(struct net_device *dev,
1199 						      bool new_carrier);
1200 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1201 							struct netdev_phys_item_id *ppid);
1202 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1203 							  char *name, size_t len);
1204 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1205 						      sa_family_t sa_family,
1206 						      __be16 port);
1207 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1208 						      sa_family_t sa_family,
1209 						      __be16 port);
1210 
1211 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1212 							struct net_device *dev);
1213 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1214 							void *priv);
1215 
1216 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1217 							struct net_device *dev,
1218 							void *priv);
1219 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1220 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1221 						       struct net_device *dev,
1222 						       netdev_features_t features);
1223 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1224 						      int queue_index,
1225 						      u32 maxrate);
1226 	int			(*ndo_get_iflink)(const struct net_device *dev);
1227 	int			(*ndo_change_proto_down)(struct net_device *dev,
1228 							 bool proto_down);
1229 };
1230 
1231 /**
1232  * enum net_device_priv_flags - &struct net_device priv_flags
1233  *
1234  * These are the &struct net_device, they are only set internally
1235  * by drivers and used in the kernel. These flags are invisible to
1236  * userspace, this means that the order of these flags can change
1237  * during any kernel release.
1238  *
1239  * You should have a pretty good reason to be extending these flags.
1240  *
1241  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1242  * @IFF_EBRIDGE: Ethernet bridging device
1243  * @IFF_BONDING: bonding master or slave
1244  * @IFF_ISATAP: ISATAP interface (RFC4214)
1245  * @IFF_WAN_HDLC: WAN HDLC device
1246  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1247  *	release skb->dst
1248  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1249  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1250  * @IFF_MACVLAN_PORT: device used as macvlan port
1251  * @IFF_BRIDGE_PORT: device used as bridge port
1252  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1253  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1254  * @IFF_UNICAST_FLT: Supports unicast filtering
1255  * @IFF_TEAM_PORT: device used as team port
1256  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1257  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1258  *	change when it's running
1259  * @IFF_MACVLAN: Macvlan device
1260  * @IFF_VRF_MASTER: device is a VRF master
1261  * @IFF_NO_QUEUE: device can run without qdisc attached
1262  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1263  */
1264 enum netdev_priv_flags {
1265 	IFF_802_1Q_VLAN			= 1<<0,
1266 	IFF_EBRIDGE			= 1<<1,
1267 	IFF_BONDING			= 1<<2,
1268 	IFF_ISATAP			= 1<<3,
1269 	IFF_WAN_HDLC			= 1<<4,
1270 	IFF_XMIT_DST_RELEASE		= 1<<5,
1271 	IFF_DONT_BRIDGE			= 1<<6,
1272 	IFF_DISABLE_NETPOLL		= 1<<7,
1273 	IFF_MACVLAN_PORT		= 1<<8,
1274 	IFF_BRIDGE_PORT			= 1<<9,
1275 	IFF_OVS_DATAPATH		= 1<<10,
1276 	IFF_TX_SKB_SHARING		= 1<<11,
1277 	IFF_UNICAST_FLT			= 1<<12,
1278 	IFF_TEAM_PORT			= 1<<13,
1279 	IFF_SUPP_NOFCS			= 1<<14,
1280 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1281 	IFF_MACVLAN			= 1<<16,
1282 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1283 	IFF_IPVLAN_MASTER		= 1<<18,
1284 	IFF_IPVLAN_SLAVE		= 1<<19,
1285 	IFF_VRF_MASTER			= 1<<20,
1286 	IFF_NO_QUEUE			= 1<<21,
1287 	IFF_OPENVSWITCH			= 1<<22,
1288 };
1289 
1290 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1291 #define IFF_EBRIDGE			IFF_EBRIDGE
1292 #define IFF_BONDING			IFF_BONDING
1293 #define IFF_ISATAP			IFF_ISATAP
1294 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1295 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1296 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1297 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1298 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1299 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1300 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1301 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1302 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1303 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1304 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1305 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1306 #define IFF_MACVLAN			IFF_MACVLAN
1307 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1308 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1309 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1310 #define IFF_VRF_MASTER			IFF_VRF_MASTER
1311 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1312 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1313 
1314 /**
1315  *	struct net_device - The DEVICE structure.
1316  *		Actually, this whole structure is a big mistake.  It mixes I/O
1317  *		data with strictly "high-level" data, and it has to know about
1318  *		almost every data structure used in the INET module.
1319  *
1320  *	@name:	This is the first field of the "visible" part of this structure
1321  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1322  *	 	of the interface.
1323  *
1324  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1325  *	@ifalias:	SNMP alias
1326  *	@mem_end:	Shared memory end
1327  *	@mem_start:	Shared memory start
1328  *	@base_addr:	Device I/O address
1329  *	@irq:		Device IRQ number
1330  *
1331  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1332  *
1333  *	@state:		Generic network queuing layer state, see netdev_state_t
1334  *	@dev_list:	The global list of network devices
1335  *	@napi_list:	List entry, that is used for polling napi devices
1336  *	@unreg_list:	List entry, that is used, when we are unregistering the
1337  *			device, see the function unregister_netdev
1338  *	@close_list:	List entry, that is used, when we are closing the device
1339  *
1340  *	@adj_list:	Directly linked devices, like slaves for bonding
1341  *	@all_adj_list:	All linked devices, *including* neighbours
1342  *	@features:	Currently active device features
1343  *	@hw_features:	User-changeable features
1344  *
1345  *	@wanted_features:	User-requested features
1346  *	@vlan_features:		Mask of features inheritable by VLAN devices
1347  *
1348  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1349  *				This field indicates what encapsulation
1350  *				offloads the hardware is capable of doing,
1351  *				and drivers will need to set them appropriately.
1352  *
1353  *	@mpls_features:	Mask of features inheritable by MPLS
1354  *
1355  *	@ifindex:	interface index
1356  *	@group:		The group, that the device belongs to
1357  *
1358  *	@stats:		Statistics struct, which was left as a legacy, use
1359  *			rtnl_link_stats64 instead
1360  *
1361  *	@rx_dropped:	Dropped packets by core network,
1362  *			do not use this in drivers
1363  *	@tx_dropped:	Dropped packets by core network,
1364  *			do not use this in drivers
1365  *
1366  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1367  *				instead of ioctl,
1368  *				see <net/iw_handler.h> for details.
1369  *	@wireless_data:	Instance data managed by the core of wireless extensions
1370  *
1371  *	@netdev_ops:	Includes several pointers to callbacks,
1372  *			if one wants to override the ndo_*() functions
1373  *	@ethtool_ops:	Management operations
1374  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1375  *			of Layer 2 headers.
1376  *
1377  *	@flags:		Interface flags (a la BSD)
1378  *	@priv_flags:	Like 'flags' but invisible to userspace,
1379  *			see if.h for the definitions
1380  *	@gflags:	Global flags ( kept as legacy )
1381  *	@padded:	How much padding added by alloc_netdev()
1382  *	@operstate:	RFC2863 operstate
1383  *	@link_mode:	Mapping policy to operstate
1384  *	@if_port:	Selectable AUI, TP, ...
1385  *	@dma:		DMA channel
1386  *	@mtu:		Interface MTU value
1387  *	@type:		Interface hardware type
1388  *	@hard_header_len: Hardware header length
1389  *
1390  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1391  *			  cases can this be guaranteed
1392  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1393  *			  cases can this be guaranteed. Some cases also use
1394  *			  LL_MAX_HEADER instead to allocate the skb
1395  *
1396  *	interface address info:
1397  *
1398  * 	@perm_addr:		Permanent hw address
1399  * 	@addr_assign_type:	Hw address assignment type
1400  * 	@addr_len:		Hardware address length
1401  * 	@neigh_priv_len;	Used in neigh_alloc(),
1402  * 				initialized only in atm/clip.c
1403  * 	@dev_id:		Used to differentiate devices that share
1404  * 				the same link layer address
1405  * 	@dev_port:		Used to differentiate devices that share
1406  * 				the same function
1407  *	@addr_list_lock:	XXX: need comments on this one
1408  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1409  *				has been enabled due to the need to listen to
1410  *				additional unicast addresses in a device that
1411  *				does not implement ndo_set_rx_mode()
1412  *	@uc:			unicast mac addresses
1413  *	@mc:			multicast mac addresses
1414  *	@dev_addrs:		list of device hw addresses
1415  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1416  *	@promiscuity:		Number of times, the NIC is told to work in
1417  *				Promiscuous mode, if it becomes 0 the NIC will
1418  *				exit from working in Promiscuous mode
1419  *	@allmulti:		Counter, enables or disables allmulticast mode
1420  *
1421  *	@vlan_info:	VLAN info
1422  *	@dsa_ptr:	dsa specific data
1423  *	@tipc_ptr:	TIPC specific data
1424  *	@atalk_ptr:	AppleTalk link
1425  *	@ip_ptr:	IPv4 specific data
1426  *	@dn_ptr:	DECnet specific data
1427  *	@ip6_ptr:	IPv6 specific data
1428  *	@ax25_ptr:	AX.25 specific data
1429  *	@vrf_ptr:	VRF specific data
1430  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1431  *
1432  *	@last_rx:	Time of last Rx
1433  *	@dev_addr:	Hw address (before bcast,
1434  *			because most packets are unicast)
1435  *
1436  *	@_rx:			Array of RX queues
1437  *	@num_rx_queues:		Number of RX queues
1438  *				allocated at register_netdev() time
1439  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1440  *
1441  *	@rx_handler:		handler for received packets
1442  *	@rx_handler_data: 	XXX: need comments on this one
1443  *	@ingress_queue:		XXX: need comments on this one
1444  *	@broadcast:		hw bcast address
1445  *
1446  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1447  *			indexed by RX queue number. Assigned by driver.
1448  *			This must only be set if the ndo_rx_flow_steer
1449  *			operation is defined
1450  *	@index_hlist:		Device index hash chain
1451  *
1452  *	@_tx:			Array of TX queues
1453  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1454  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1455  *	@qdisc:			Root qdisc from userspace point of view
1456  *	@tx_queue_len:		Max frames per queue allowed
1457  *	@tx_global_lock: 	XXX: need comments on this one
1458  *
1459  *	@xps_maps:	XXX: need comments on this one
1460  *
1461  *	@offload_fwd_mark:	Offload device fwding mark
1462  *
1463  *	@trans_start:		Time (in jiffies) of last Tx
1464  *	@watchdog_timeo:	Represents the timeout that is used by
1465  *				the watchdog ( see dev_watchdog() )
1466  *	@watchdog_timer:	List of timers
1467  *
1468  *	@pcpu_refcnt:		Number of references to this device
1469  *	@todo_list:		Delayed register/unregister
1470  *	@link_watch_list:	XXX: need comments on this one
1471  *
1472  *	@reg_state:		Register/unregister state machine
1473  *	@dismantle:		Device is going to be freed
1474  *	@rtnl_link_state:	This enum represents the phases of creating
1475  *				a new link
1476  *
1477  *	@destructor:		Called from unregister,
1478  *				can be used to call free_netdev
1479  *	@npinfo:		XXX: need comments on this one
1480  * 	@nd_net:		Network namespace this network device is inside
1481  *
1482  * 	@ml_priv:	Mid-layer private
1483  * 	@lstats:	Loopback statistics
1484  * 	@tstats:	Tunnel statistics
1485  * 	@dstats:	Dummy statistics
1486  * 	@vstats:	Virtual ethernet statistics
1487  *
1488  *	@garp_port:	GARP
1489  *	@mrp_port:	MRP
1490  *
1491  *	@dev:		Class/net/name entry
1492  *	@sysfs_groups:	Space for optional device, statistics and wireless
1493  *			sysfs groups
1494  *
1495  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1496  *	@rtnl_link_ops:	Rtnl_link_ops
1497  *
1498  *	@gso_max_size:	Maximum size of generic segmentation offload
1499  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1500  *			NIC for GSO
1501  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1502  *			NIC for GSO
1503  *
1504  *	@dcbnl_ops:	Data Center Bridging netlink ops
1505  *	@num_tc:	Number of traffic classes in the net device
1506  *	@tc_to_txq:	XXX: need comments on this one
1507  *	@prio_tc_map	XXX: need comments on this one
1508  *
1509  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1510  *
1511  *	@priomap:	XXX: need comments on this one
1512  *	@phydev:	Physical device may attach itself
1513  *			for hardware timestamping
1514  *
1515  *	@qdisc_tx_busylock:	XXX: need comments on this one
1516  *
1517  *	@proto_down:	protocol port state information can be sent to the
1518  *			switch driver and used to set the phys state of the
1519  *			switch port.
1520  *
1521  *	FIXME: cleanup struct net_device such that network protocol info
1522  *	moves out.
1523  */
1524 
1525 struct net_device {
1526 	char			name[IFNAMSIZ];
1527 	struct hlist_node	name_hlist;
1528 	char 			*ifalias;
1529 	/*
1530 	 *	I/O specific fields
1531 	 *	FIXME: Merge these and struct ifmap into one
1532 	 */
1533 	unsigned long		mem_end;
1534 	unsigned long		mem_start;
1535 	unsigned long		base_addr;
1536 	int			irq;
1537 
1538 	atomic_t		carrier_changes;
1539 
1540 	/*
1541 	 *	Some hardware also needs these fields (state,dev_list,
1542 	 *	napi_list,unreg_list,close_list) but they are not
1543 	 *	part of the usual set specified in Space.c.
1544 	 */
1545 
1546 	unsigned long		state;
1547 
1548 	struct list_head	dev_list;
1549 	struct list_head	napi_list;
1550 	struct list_head	unreg_list;
1551 	struct list_head	close_list;
1552 	struct list_head	ptype_all;
1553 	struct list_head	ptype_specific;
1554 
1555 	struct {
1556 		struct list_head upper;
1557 		struct list_head lower;
1558 	} adj_list;
1559 
1560 	struct {
1561 		struct list_head upper;
1562 		struct list_head lower;
1563 	} all_adj_list;
1564 
1565 	netdev_features_t	features;
1566 	netdev_features_t	hw_features;
1567 	netdev_features_t	wanted_features;
1568 	netdev_features_t	vlan_features;
1569 	netdev_features_t	hw_enc_features;
1570 	netdev_features_t	mpls_features;
1571 
1572 	int			ifindex;
1573 	int			group;
1574 
1575 	struct net_device_stats	stats;
1576 
1577 	atomic_long_t		rx_dropped;
1578 	atomic_long_t		tx_dropped;
1579 
1580 #ifdef CONFIG_WIRELESS_EXT
1581 	const struct iw_handler_def *	wireless_handlers;
1582 	struct iw_public_data *	wireless_data;
1583 #endif
1584 	const struct net_device_ops *netdev_ops;
1585 	const struct ethtool_ops *ethtool_ops;
1586 #ifdef CONFIG_NET_SWITCHDEV
1587 	const struct switchdev_ops *switchdev_ops;
1588 #endif
1589 
1590 	const struct header_ops *header_ops;
1591 
1592 	unsigned int		flags;
1593 	unsigned int		priv_flags;
1594 
1595 	unsigned short		gflags;
1596 	unsigned short		padded;
1597 
1598 	unsigned char		operstate;
1599 	unsigned char		link_mode;
1600 
1601 	unsigned char		if_port;
1602 	unsigned char		dma;
1603 
1604 	unsigned int		mtu;
1605 	unsigned short		type;
1606 	unsigned short		hard_header_len;
1607 
1608 	unsigned short		needed_headroom;
1609 	unsigned short		needed_tailroom;
1610 
1611 	/* Interface address info. */
1612 	unsigned char		perm_addr[MAX_ADDR_LEN];
1613 	unsigned char		addr_assign_type;
1614 	unsigned char		addr_len;
1615 	unsigned short		neigh_priv_len;
1616 	unsigned short          dev_id;
1617 	unsigned short          dev_port;
1618 	spinlock_t		addr_list_lock;
1619 	unsigned char		name_assign_type;
1620 	bool			uc_promisc;
1621 	struct netdev_hw_addr_list	uc;
1622 	struct netdev_hw_addr_list	mc;
1623 	struct netdev_hw_addr_list	dev_addrs;
1624 
1625 #ifdef CONFIG_SYSFS
1626 	struct kset		*queues_kset;
1627 #endif
1628 	unsigned int		promiscuity;
1629 	unsigned int		allmulti;
1630 
1631 
1632 	/* Protocol specific pointers */
1633 
1634 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1635 	struct vlan_info __rcu	*vlan_info;
1636 #endif
1637 #if IS_ENABLED(CONFIG_NET_DSA)
1638 	struct dsa_switch_tree	*dsa_ptr;
1639 #endif
1640 #if IS_ENABLED(CONFIG_TIPC)
1641 	struct tipc_bearer __rcu *tipc_ptr;
1642 #endif
1643 	void 			*atalk_ptr;
1644 	struct in_device __rcu	*ip_ptr;
1645 	struct dn_dev __rcu     *dn_ptr;
1646 	struct inet6_dev __rcu	*ip6_ptr;
1647 	void			*ax25_ptr;
1648 	struct net_vrf_dev __rcu *vrf_ptr;
1649 	struct wireless_dev	*ieee80211_ptr;
1650 	struct wpan_dev		*ieee802154_ptr;
1651 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1652 	struct mpls_dev __rcu	*mpls_ptr;
1653 #endif
1654 
1655 /*
1656  * Cache lines mostly used on receive path (including eth_type_trans())
1657  */
1658 	unsigned long		last_rx;
1659 
1660 	/* Interface address info used in eth_type_trans() */
1661 	unsigned char		*dev_addr;
1662 
1663 
1664 #ifdef CONFIG_SYSFS
1665 	struct netdev_rx_queue	*_rx;
1666 
1667 	unsigned int		num_rx_queues;
1668 	unsigned int		real_num_rx_queues;
1669 
1670 #endif
1671 
1672 	unsigned long		gro_flush_timeout;
1673 	rx_handler_func_t __rcu	*rx_handler;
1674 	void __rcu		*rx_handler_data;
1675 
1676 #ifdef CONFIG_NET_CLS_ACT
1677 	struct tcf_proto __rcu  *ingress_cl_list;
1678 #endif
1679 	struct netdev_queue __rcu *ingress_queue;
1680 #ifdef CONFIG_NETFILTER_INGRESS
1681 	struct list_head	nf_hooks_ingress;
1682 #endif
1683 
1684 	unsigned char		broadcast[MAX_ADDR_LEN];
1685 #ifdef CONFIG_RFS_ACCEL
1686 	struct cpu_rmap		*rx_cpu_rmap;
1687 #endif
1688 	struct hlist_node	index_hlist;
1689 
1690 /*
1691  * Cache lines mostly used on transmit path
1692  */
1693 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1694 	unsigned int		num_tx_queues;
1695 	unsigned int		real_num_tx_queues;
1696 	struct Qdisc		*qdisc;
1697 	unsigned long		tx_queue_len;
1698 	spinlock_t		tx_global_lock;
1699 	int			watchdog_timeo;
1700 
1701 #ifdef CONFIG_XPS
1702 	struct xps_dev_maps __rcu *xps_maps;
1703 #endif
1704 
1705 #ifdef CONFIG_NET_SWITCHDEV
1706 	u32			offload_fwd_mark;
1707 #endif
1708 
1709 	/* These may be needed for future network-power-down code. */
1710 
1711 	/*
1712 	 * trans_start here is expensive for high speed devices on SMP,
1713 	 * please use netdev_queue->trans_start instead.
1714 	 */
1715 	unsigned long		trans_start;
1716 
1717 	struct timer_list	watchdog_timer;
1718 
1719 	int __percpu		*pcpu_refcnt;
1720 	struct list_head	todo_list;
1721 
1722 	struct list_head	link_watch_list;
1723 
1724 	enum { NETREG_UNINITIALIZED=0,
1725 	       NETREG_REGISTERED,	/* completed register_netdevice */
1726 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1727 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1728 	       NETREG_RELEASED,		/* called free_netdev */
1729 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1730 	} reg_state:8;
1731 
1732 	bool dismantle;
1733 
1734 	enum {
1735 		RTNL_LINK_INITIALIZED,
1736 		RTNL_LINK_INITIALIZING,
1737 	} rtnl_link_state:16;
1738 
1739 	void (*destructor)(struct net_device *dev);
1740 
1741 #ifdef CONFIG_NETPOLL
1742 	struct netpoll_info __rcu	*npinfo;
1743 #endif
1744 
1745 	possible_net_t			nd_net;
1746 
1747 	/* mid-layer private */
1748 	union {
1749 		void					*ml_priv;
1750 		struct pcpu_lstats __percpu		*lstats;
1751 		struct pcpu_sw_netstats __percpu	*tstats;
1752 		struct pcpu_dstats __percpu		*dstats;
1753 		struct pcpu_vstats __percpu		*vstats;
1754 	};
1755 
1756 	struct garp_port __rcu	*garp_port;
1757 	struct mrp_port __rcu	*mrp_port;
1758 
1759 	struct device	dev;
1760 	const struct attribute_group *sysfs_groups[4];
1761 	const struct attribute_group *sysfs_rx_queue_group;
1762 
1763 	const struct rtnl_link_ops *rtnl_link_ops;
1764 
1765 	/* for setting kernel sock attribute on TCP connection setup */
1766 #define GSO_MAX_SIZE		65536
1767 	unsigned int		gso_max_size;
1768 #define GSO_MAX_SEGS		65535
1769 	u16			gso_max_segs;
1770 	u16			gso_min_segs;
1771 #ifdef CONFIG_DCB
1772 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1773 #endif
1774 	u8 num_tc;
1775 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1776 	u8 prio_tc_map[TC_BITMASK + 1];
1777 
1778 #if IS_ENABLED(CONFIG_FCOE)
1779 	unsigned int		fcoe_ddp_xid;
1780 #endif
1781 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1782 	struct netprio_map __rcu *priomap;
1783 #endif
1784 	struct phy_device *phydev;
1785 	struct lock_class_key *qdisc_tx_busylock;
1786 	bool proto_down;
1787 };
1788 #define to_net_dev(d) container_of(d, struct net_device, dev)
1789 
1790 #define	NETDEV_ALIGN		32
1791 
1792 static inline
1793 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1794 {
1795 	return dev->prio_tc_map[prio & TC_BITMASK];
1796 }
1797 
1798 static inline
1799 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1800 {
1801 	if (tc >= dev->num_tc)
1802 		return -EINVAL;
1803 
1804 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1805 	return 0;
1806 }
1807 
1808 static inline
1809 void netdev_reset_tc(struct net_device *dev)
1810 {
1811 	dev->num_tc = 0;
1812 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1813 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1814 }
1815 
1816 static inline
1817 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1818 {
1819 	if (tc >= dev->num_tc)
1820 		return -EINVAL;
1821 
1822 	dev->tc_to_txq[tc].count = count;
1823 	dev->tc_to_txq[tc].offset = offset;
1824 	return 0;
1825 }
1826 
1827 static inline
1828 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1829 {
1830 	if (num_tc > TC_MAX_QUEUE)
1831 		return -EINVAL;
1832 
1833 	dev->num_tc = num_tc;
1834 	return 0;
1835 }
1836 
1837 static inline
1838 int netdev_get_num_tc(struct net_device *dev)
1839 {
1840 	return dev->num_tc;
1841 }
1842 
1843 static inline
1844 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1845 					 unsigned int index)
1846 {
1847 	return &dev->_tx[index];
1848 }
1849 
1850 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1851 						    const struct sk_buff *skb)
1852 {
1853 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1854 }
1855 
1856 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1857 					    void (*f)(struct net_device *,
1858 						      struct netdev_queue *,
1859 						      void *),
1860 					    void *arg)
1861 {
1862 	unsigned int i;
1863 
1864 	for (i = 0; i < dev->num_tx_queues; i++)
1865 		f(dev, &dev->_tx[i], arg);
1866 }
1867 
1868 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1869 				    struct sk_buff *skb,
1870 				    void *accel_priv);
1871 
1872 /*
1873  * Net namespace inlines
1874  */
1875 static inline
1876 struct net *dev_net(const struct net_device *dev)
1877 {
1878 	return read_pnet(&dev->nd_net);
1879 }
1880 
1881 static inline
1882 void dev_net_set(struct net_device *dev, struct net *net)
1883 {
1884 	write_pnet(&dev->nd_net, net);
1885 }
1886 
1887 static inline bool netdev_uses_dsa(struct net_device *dev)
1888 {
1889 #if IS_ENABLED(CONFIG_NET_DSA)
1890 	if (dev->dsa_ptr != NULL)
1891 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1892 #endif
1893 	return false;
1894 }
1895 
1896 /**
1897  *	netdev_priv - access network device private data
1898  *	@dev: network device
1899  *
1900  * Get network device private data
1901  */
1902 static inline void *netdev_priv(const struct net_device *dev)
1903 {
1904 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1905 }
1906 
1907 /* Set the sysfs physical device reference for the network logical device
1908  * if set prior to registration will cause a symlink during initialization.
1909  */
1910 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1911 
1912 /* Set the sysfs device type for the network logical device to allow
1913  * fine-grained identification of different network device types. For
1914  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1915  */
1916 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1917 
1918 /* Default NAPI poll() weight
1919  * Device drivers are strongly advised to not use bigger value
1920  */
1921 #define NAPI_POLL_WEIGHT 64
1922 
1923 /**
1924  *	netif_napi_add - initialize a napi context
1925  *	@dev:  network device
1926  *	@napi: napi context
1927  *	@poll: polling function
1928  *	@weight: default weight
1929  *
1930  * netif_napi_add() must be used to initialize a napi context prior to calling
1931  * *any* of the other napi related functions.
1932  */
1933 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1934 		    int (*poll)(struct napi_struct *, int), int weight);
1935 
1936 /**
1937  *  netif_napi_del - remove a napi context
1938  *  @napi: napi context
1939  *
1940  *  netif_napi_del() removes a napi context from the network device napi list
1941  */
1942 void netif_napi_del(struct napi_struct *napi);
1943 
1944 struct napi_gro_cb {
1945 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1946 	void *frag0;
1947 
1948 	/* Length of frag0. */
1949 	unsigned int frag0_len;
1950 
1951 	/* This indicates where we are processing relative to skb->data. */
1952 	int data_offset;
1953 
1954 	/* This is non-zero if the packet cannot be merged with the new skb. */
1955 	u16	flush;
1956 
1957 	/* Save the IP ID here and check when we get to the transport layer */
1958 	u16	flush_id;
1959 
1960 	/* Number of segments aggregated. */
1961 	u16	count;
1962 
1963 	/* Start offset for remote checksum offload */
1964 	u16	gro_remcsum_start;
1965 
1966 	/* jiffies when first packet was created/queued */
1967 	unsigned long age;
1968 
1969 	/* Used in ipv6_gro_receive() and foo-over-udp */
1970 	u16	proto;
1971 
1972 	/* This is non-zero if the packet may be of the same flow. */
1973 	u8	same_flow:1;
1974 
1975 	/* Used in udp_gro_receive */
1976 	u8	udp_mark:1;
1977 
1978 	/* GRO checksum is valid */
1979 	u8	csum_valid:1;
1980 
1981 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1982 	u8	csum_cnt:3;
1983 
1984 	/* Free the skb? */
1985 	u8	free:2;
1986 #define NAPI_GRO_FREE		  1
1987 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1988 
1989 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1990 	u8	is_ipv6:1;
1991 
1992 	/* 7 bit hole */
1993 
1994 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1995 	__wsum	csum;
1996 
1997 	/* used in skb_gro_receive() slow path */
1998 	struct sk_buff *last;
1999 };
2000 
2001 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2002 
2003 struct packet_type {
2004 	__be16			type;	/* This is really htons(ether_type). */
2005 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2006 	int			(*func) (struct sk_buff *,
2007 					 struct net_device *,
2008 					 struct packet_type *,
2009 					 struct net_device *);
2010 	bool			(*id_match)(struct packet_type *ptype,
2011 					    struct sock *sk);
2012 	void			*af_packet_priv;
2013 	struct list_head	list;
2014 };
2015 
2016 struct offload_callbacks {
2017 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2018 						netdev_features_t features);
2019 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2020 						 struct sk_buff *skb);
2021 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2022 };
2023 
2024 struct packet_offload {
2025 	__be16			 type;	/* This is really htons(ether_type). */
2026 	u16			 priority;
2027 	struct offload_callbacks callbacks;
2028 	struct list_head	 list;
2029 };
2030 
2031 struct udp_offload;
2032 
2033 struct udp_offload_callbacks {
2034 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2035 						 struct sk_buff *skb,
2036 						 struct udp_offload *uoff);
2037 	int			(*gro_complete)(struct sk_buff *skb,
2038 						int nhoff,
2039 						struct udp_offload *uoff);
2040 };
2041 
2042 struct udp_offload {
2043 	__be16			 port;
2044 	u8			 ipproto;
2045 	struct udp_offload_callbacks callbacks;
2046 };
2047 
2048 /* often modified stats are per cpu, other are shared (netdev->stats) */
2049 struct pcpu_sw_netstats {
2050 	u64     rx_packets;
2051 	u64     rx_bytes;
2052 	u64     tx_packets;
2053 	u64     tx_bytes;
2054 	struct u64_stats_sync   syncp;
2055 };
2056 
2057 #define netdev_alloc_pcpu_stats(type)				\
2058 ({								\
2059 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2060 	if (pcpu_stats)	{					\
2061 		int __cpu;					\
2062 		for_each_possible_cpu(__cpu) {			\
2063 			typeof(type) *stat;			\
2064 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2065 			u64_stats_init(&stat->syncp);		\
2066 		}						\
2067 	}							\
2068 	pcpu_stats;						\
2069 })
2070 
2071 #include <linux/notifier.h>
2072 
2073 /* netdevice notifier chain. Please remember to update the rtnetlink
2074  * notification exclusion list in rtnetlink_event() when adding new
2075  * types.
2076  */
2077 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2078 #define NETDEV_DOWN	0x0002
2079 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2080 				   detected a hardware crash and restarted
2081 				   - we can use this eg to kick tcp sessions
2082 				   once done */
2083 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2084 #define NETDEV_REGISTER 0x0005
2085 #define NETDEV_UNREGISTER	0x0006
2086 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2087 #define NETDEV_CHANGEADDR	0x0008
2088 #define NETDEV_GOING_DOWN	0x0009
2089 #define NETDEV_CHANGENAME	0x000A
2090 #define NETDEV_FEAT_CHANGE	0x000B
2091 #define NETDEV_BONDING_FAILOVER 0x000C
2092 #define NETDEV_PRE_UP		0x000D
2093 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2094 #define NETDEV_POST_TYPE_CHANGE	0x000F
2095 #define NETDEV_POST_INIT	0x0010
2096 #define NETDEV_UNREGISTER_FINAL 0x0011
2097 #define NETDEV_RELEASE		0x0012
2098 #define NETDEV_NOTIFY_PEERS	0x0013
2099 #define NETDEV_JOIN		0x0014
2100 #define NETDEV_CHANGEUPPER	0x0015
2101 #define NETDEV_RESEND_IGMP	0x0016
2102 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2103 #define NETDEV_CHANGEINFODATA	0x0018
2104 #define NETDEV_BONDING_INFO	0x0019
2105 
2106 int register_netdevice_notifier(struct notifier_block *nb);
2107 int unregister_netdevice_notifier(struct notifier_block *nb);
2108 
2109 struct netdev_notifier_info {
2110 	struct net_device *dev;
2111 };
2112 
2113 struct netdev_notifier_change_info {
2114 	struct netdev_notifier_info info; /* must be first */
2115 	unsigned int flags_changed;
2116 };
2117 
2118 struct netdev_notifier_changeupper_info {
2119 	struct netdev_notifier_info info; /* must be first */
2120 	struct net_device *upper_dev; /* new upper dev */
2121 	bool master; /* is upper dev master */
2122 	bool linking; /* is the nofication for link or unlink */
2123 };
2124 
2125 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2126 					     struct net_device *dev)
2127 {
2128 	info->dev = dev;
2129 }
2130 
2131 static inline struct net_device *
2132 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2133 {
2134 	return info->dev;
2135 }
2136 
2137 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2138 
2139 
2140 extern rwlock_t				dev_base_lock;		/* Device list lock */
2141 
2142 #define for_each_netdev(net, d)		\
2143 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2144 #define for_each_netdev_reverse(net, d)	\
2145 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2146 #define for_each_netdev_rcu(net, d)		\
2147 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2148 #define for_each_netdev_safe(net, d, n)	\
2149 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2150 #define for_each_netdev_continue(net, d)		\
2151 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2152 #define for_each_netdev_continue_rcu(net, d)		\
2153 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2154 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2155 		for_each_netdev_rcu(&init_net, slave)	\
2156 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2157 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2158 
2159 static inline struct net_device *next_net_device(struct net_device *dev)
2160 {
2161 	struct list_head *lh;
2162 	struct net *net;
2163 
2164 	net = dev_net(dev);
2165 	lh = dev->dev_list.next;
2166 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2167 }
2168 
2169 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2170 {
2171 	struct list_head *lh;
2172 	struct net *net;
2173 
2174 	net = dev_net(dev);
2175 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2176 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2177 }
2178 
2179 static inline struct net_device *first_net_device(struct net *net)
2180 {
2181 	return list_empty(&net->dev_base_head) ? NULL :
2182 		net_device_entry(net->dev_base_head.next);
2183 }
2184 
2185 static inline struct net_device *first_net_device_rcu(struct net *net)
2186 {
2187 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2188 
2189 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2190 }
2191 
2192 int netdev_boot_setup_check(struct net_device *dev);
2193 unsigned long netdev_boot_base(const char *prefix, int unit);
2194 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2195 				       const char *hwaddr);
2196 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2197 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2198 void dev_add_pack(struct packet_type *pt);
2199 void dev_remove_pack(struct packet_type *pt);
2200 void __dev_remove_pack(struct packet_type *pt);
2201 void dev_add_offload(struct packet_offload *po);
2202 void dev_remove_offload(struct packet_offload *po);
2203 
2204 int dev_get_iflink(const struct net_device *dev);
2205 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2206 				      unsigned short mask);
2207 struct net_device *dev_get_by_name(struct net *net, const char *name);
2208 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2209 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2210 int dev_alloc_name(struct net_device *dev, const char *name);
2211 int dev_open(struct net_device *dev);
2212 int dev_close(struct net_device *dev);
2213 int dev_close_many(struct list_head *head, bool unlink);
2214 void dev_disable_lro(struct net_device *dev);
2215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2216 int dev_queue_xmit(struct sk_buff *skb);
2217 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2218 int register_netdevice(struct net_device *dev);
2219 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2220 void unregister_netdevice_many(struct list_head *head);
2221 static inline void unregister_netdevice(struct net_device *dev)
2222 {
2223 	unregister_netdevice_queue(dev, NULL);
2224 }
2225 
2226 int netdev_refcnt_read(const struct net_device *dev);
2227 void free_netdev(struct net_device *dev);
2228 void netdev_freemem(struct net_device *dev);
2229 void synchronize_net(void);
2230 int init_dummy_netdev(struct net_device *dev);
2231 
2232 DECLARE_PER_CPU(int, xmit_recursion);
2233 static inline int dev_recursion_level(void)
2234 {
2235 	return this_cpu_read(xmit_recursion);
2236 }
2237 
2238 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2239 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2240 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2241 int netdev_get_name(struct net *net, char *name, int ifindex);
2242 int dev_restart(struct net_device *dev);
2243 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2244 
2245 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2246 {
2247 	return NAPI_GRO_CB(skb)->data_offset;
2248 }
2249 
2250 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2251 {
2252 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2253 }
2254 
2255 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2256 {
2257 	NAPI_GRO_CB(skb)->data_offset += len;
2258 }
2259 
2260 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2261 					unsigned int offset)
2262 {
2263 	return NAPI_GRO_CB(skb)->frag0 + offset;
2264 }
2265 
2266 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2267 {
2268 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2269 }
2270 
2271 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2272 					unsigned int offset)
2273 {
2274 	if (!pskb_may_pull(skb, hlen))
2275 		return NULL;
2276 
2277 	NAPI_GRO_CB(skb)->frag0 = NULL;
2278 	NAPI_GRO_CB(skb)->frag0_len = 0;
2279 	return skb->data + offset;
2280 }
2281 
2282 static inline void *skb_gro_network_header(struct sk_buff *skb)
2283 {
2284 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2285 	       skb_network_offset(skb);
2286 }
2287 
2288 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2289 					const void *start, unsigned int len)
2290 {
2291 	if (NAPI_GRO_CB(skb)->csum_valid)
2292 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2293 						  csum_partial(start, len, 0));
2294 }
2295 
2296 /* GRO checksum functions. These are logical equivalents of the normal
2297  * checksum functions (in skbuff.h) except that they operate on the GRO
2298  * offsets and fields in sk_buff.
2299  */
2300 
2301 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2302 
2303 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2304 {
2305 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2306 }
2307 
2308 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2309 						      bool zero_okay,
2310 						      __sum16 check)
2311 {
2312 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2313 		skb_checksum_start_offset(skb) <
2314 		 skb_gro_offset(skb)) &&
2315 		!skb_at_gro_remcsum_start(skb) &&
2316 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2317 		(!zero_okay || check));
2318 }
2319 
2320 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2321 							   __wsum psum)
2322 {
2323 	if (NAPI_GRO_CB(skb)->csum_valid &&
2324 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2325 		return 0;
2326 
2327 	NAPI_GRO_CB(skb)->csum = psum;
2328 
2329 	return __skb_gro_checksum_complete(skb);
2330 }
2331 
2332 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2333 {
2334 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2335 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2336 		NAPI_GRO_CB(skb)->csum_cnt--;
2337 	} else {
2338 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2339 		 * verified a new top level checksum or an encapsulated one
2340 		 * during GRO. This saves work if we fallback to normal path.
2341 		 */
2342 		__skb_incr_checksum_unnecessary(skb);
2343 	}
2344 }
2345 
2346 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2347 				    compute_pseudo)			\
2348 ({									\
2349 	__sum16 __ret = 0;						\
2350 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2351 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2352 				compute_pseudo(skb, proto));		\
2353 	if (__ret)							\
2354 		__skb_mark_checksum_bad(skb);				\
2355 	else								\
2356 		skb_gro_incr_csum_unnecessary(skb);			\
2357 	__ret;								\
2358 })
2359 
2360 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2361 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2362 
2363 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2364 					     compute_pseudo)		\
2365 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2366 
2367 #define skb_gro_checksum_simple_validate(skb)				\
2368 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2369 
2370 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2371 {
2372 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2373 		!NAPI_GRO_CB(skb)->csum_valid);
2374 }
2375 
2376 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2377 					      __sum16 check, __wsum pseudo)
2378 {
2379 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2380 	NAPI_GRO_CB(skb)->csum_valid = 1;
2381 }
2382 
2383 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2384 do {									\
2385 	if (__skb_gro_checksum_convert_check(skb))			\
2386 		__skb_gro_checksum_convert(skb, check,			\
2387 					   compute_pseudo(skb, proto));	\
2388 } while (0)
2389 
2390 struct gro_remcsum {
2391 	int offset;
2392 	__wsum delta;
2393 };
2394 
2395 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2396 {
2397 	grc->offset = 0;
2398 	grc->delta = 0;
2399 }
2400 
2401 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2402 					    unsigned int off, size_t hdrlen,
2403 					    int start, int offset,
2404 					    struct gro_remcsum *grc,
2405 					    bool nopartial)
2406 {
2407 	__wsum delta;
2408 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2409 
2410 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2411 
2412 	if (!nopartial) {
2413 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2414 		return ptr;
2415 	}
2416 
2417 	ptr = skb_gro_header_fast(skb, off);
2418 	if (skb_gro_header_hard(skb, off + plen)) {
2419 		ptr = skb_gro_header_slow(skb, off + plen, off);
2420 		if (!ptr)
2421 			return NULL;
2422 	}
2423 
2424 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2425 			       start, offset);
2426 
2427 	/* Adjust skb->csum since we changed the packet */
2428 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2429 
2430 	grc->offset = off + hdrlen + offset;
2431 	grc->delta = delta;
2432 
2433 	return ptr;
2434 }
2435 
2436 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2437 					   struct gro_remcsum *grc)
2438 {
2439 	void *ptr;
2440 	size_t plen = grc->offset + sizeof(u16);
2441 
2442 	if (!grc->delta)
2443 		return;
2444 
2445 	ptr = skb_gro_header_fast(skb, grc->offset);
2446 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2447 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2448 		if (!ptr)
2449 			return;
2450 	}
2451 
2452 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2453 }
2454 
2455 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2456 				  unsigned short type,
2457 				  const void *daddr, const void *saddr,
2458 				  unsigned int len)
2459 {
2460 	if (!dev->header_ops || !dev->header_ops->create)
2461 		return 0;
2462 
2463 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2464 }
2465 
2466 static inline int dev_parse_header(const struct sk_buff *skb,
2467 				   unsigned char *haddr)
2468 {
2469 	const struct net_device *dev = skb->dev;
2470 
2471 	if (!dev->header_ops || !dev->header_ops->parse)
2472 		return 0;
2473 	return dev->header_ops->parse(skb, haddr);
2474 }
2475 
2476 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2477 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2478 static inline int unregister_gifconf(unsigned int family)
2479 {
2480 	return register_gifconf(family, NULL);
2481 }
2482 
2483 #ifdef CONFIG_NET_FLOW_LIMIT
2484 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2485 struct sd_flow_limit {
2486 	u64			count;
2487 	unsigned int		num_buckets;
2488 	unsigned int		history_head;
2489 	u16			history[FLOW_LIMIT_HISTORY];
2490 	u8			buckets[];
2491 };
2492 
2493 extern int netdev_flow_limit_table_len;
2494 #endif /* CONFIG_NET_FLOW_LIMIT */
2495 
2496 /*
2497  * Incoming packets are placed on per-cpu queues
2498  */
2499 struct softnet_data {
2500 	struct list_head	poll_list;
2501 	struct sk_buff_head	process_queue;
2502 
2503 	/* stats */
2504 	unsigned int		processed;
2505 	unsigned int		time_squeeze;
2506 	unsigned int		cpu_collision;
2507 	unsigned int		received_rps;
2508 #ifdef CONFIG_RPS
2509 	struct softnet_data	*rps_ipi_list;
2510 #endif
2511 #ifdef CONFIG_NET_FLOW_LIMIT
2512 	struct sd_flow_limit __rcu *flow_limit;
2513 #endif
2514 	struct Qdisc		*output_queue;
2515 	struct Qdisc		**output_queue_tailp;
2516 	struct sk_buff		*completion_queue;
2517 
2518 #ifdef CONFIG_RPS
2519 	/* Elements below can be accessed between CPUs for RPS */
2520 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2521 	struct softnet_data	*rps_ipi_next;
2522 	unsigned int		cpu;
2523 	unsigned int		input_queue_head;
2524 	unsigned int		input_queue_tail;
2525 #endif
2526 	unsigned int		dropped;
2527 	struct sk_buff_head	input_pkt_queue;
2528 	struct napi_struct	backlog;
2529 
2530 };
2531 
2532 static inline void input_queue_head_incr(struct softnet_data *sd)
2533 {
2534 #ifdef CONFIG_RPS
2535 	sd->input_queue_head++;
2536 #endif
2537 }
2538 
2539 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2540 					      unsigned int *qtail)
2541 {
2542 #ifdef CONFIG_RPS
2543 	*qtail = ++sd->input_queue_tail;
2544 #endif
2545 }
2546 
2547 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2548 
2549 void __netif_schedule(struct Qdisc *q);
2550 void netif_schedule_queue(struct netdev_queue *txq);
2551 
2552 static inline void netif_tx_schedule_all(struct net_device *dev)
2553 {
2554 	unsigned int i;
2555 
2556 	for (i = 0; i < dev->num_tx_queues; i++)
2557 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2558 }
2559 
2560 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2561 {
2562 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2563 }
2564 
2565 /**
2566  *	netif_start_queue - allow transmit
2567  *	@dev: network device
2568  *
2569  *	Allow upper layers to call the device hard_start_xmit routine.
2570  */
2571 static inline void netif_start_queue(struct net_device *dev)
2572 {
2573 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2574 }
2575 
2576 static inline void netif_tx_start_all_queues(struct net_device *dev)
2577 {
2578 	unsigned int i;
2579 
2580 	for (i = 0; i < dev->num_tx_queues; i++) {
2581 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2582 		netif_tx_start_queue(txq);
2583 	}
2584 }
2585 
2586 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2587 
2588 /**
2589  *	netif_wake_queue - restart transmit
2590  *	@dev: network device
2591  *
2592  *	Allow upper layers to call the device hard_start_xmit routine.
2593  *	Used for flow control when transmit resources are available.
2594  */
2595 static inline void netif_wake_queue(struct net_device *dev)
2596 {
2597 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2598 }
2599 
2600 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2601 {
2602 	unsigned int i;
2603 
2604 	for (i = 0; i < dev->num_tx_queues; i++) {
2605 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2606 		netif_tx_wake_queue(txq);
2607 	}
2608 }
2609 
2610 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2611 {
2612 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2613 }
2614 
2615 /**
2616  *	netif_stop_queue - stop transmitted packets
2617  *	@dev: network device
2618  *
2619  *	Stop upper layers calling the device hard_start_xmit routine.
2620  *	Used for flow control when transmit resources are unavailable.
2621  */
2622 static inline void netif_stop_queue(struct net_device *dev)
2623 {
2624 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2625 }
2626 
2627 void netif_tx_stop_all_queues(struct net_device *dev);
2628 
2629 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2630 {
2631 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2632 }
2633 
2634 /**
2635  *	netif_queue_stopped - test if transmit queue is flowblocked
2636  *	@dev: network device
2637  *
2638  *	Test if transmit queue on device is currently unable to send.
2639  */
2640 static inline bool netif_queue_stopped(const struct net_device *dev)
2641 {
2642 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2643 }
2644 
2645 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2646 {
2647 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2648 }
2649 
2650 static inline bool
2651 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2652 {
2653 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2654 }
2655 
2656 static inline bool
2657 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2658 {
2659 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2660 }
2661 
2662 /**
2663  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2664  *	@dev_queue: pointer to transmit queue
2665  *
2666  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2667  * to give appropriate hint to the cpu.
2668  */
2669 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2670 {
2671 #ifdef CONFIG_BQL
2672 	prefetchw(&dev_queue->dql.num_queued);
2673 #endif
2674 }
2675 
2676 /**
2677  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2678  *	@dev_queue: pointer to transmit queue
2679  *
2680  * BQL enabled drivers might use this helper in their TX completion path,
2681  * to give appropriate hint to the cpu.
2682  */
2683 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2684 {
2685 #ifdef CONFIG_BQL
2686 	prefetchw(&dev_queue->dql.limit);
2687 #endif
2688 }
2689 
2690 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2691 					unsigned int bytes)
2692 {
2693 #ifdef CONFIG_BQL
2694 	dql_queued(&dev_queue->dql, bytes);
2695 
2696 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2697 		return;
2698 
2699 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2700 
2701 	/*
2702 	 * The XOFF flag must be set before checking the dql_avail below,
2703 	 * because in netdev_tx_completed_queue we update the dql_completed
2704 	 * before checking the XOFF flag.
2705 	 */
2706 	smp_mb();
2707 
2708 	/* check again in case another CPU has just made room avail */
2709 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2710 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2711 #endif
2712 }
2713 
2714 /**
2715  * 	netdev_sent_queue - report the number of bytes queued to hardware
2716  * 	@dev: network device
2717  * 	@bytes: number of bytes queued to the hardware device queue
2718  *
2719  * 	Report the number of bytes queued for sending/completion to the network
2720  * 	device hardware queue. @bytes should be a good approximation and should
2721  * 	exactly match netdev_completed_queue() @bytes
2722  */
2723 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2724 {
2725 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2726 }
2727 
2728 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2729 					     unsigned int pkts, unsigned int bytes)
2730 {
2731 #ifdef CONFIG_BQL
2732 	if (unlikely(!bytes))
2733 		return;
2734 
2735 	dql_completed(&dev_queue->dql, bytes);
2736 
2737 	/*
2738 	 * Without the memory barrier there is a small possiblity that
2739 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2740 	 * be stopped forever
2741 	 */
2742 	smp_mb();
2743 
2744 	if (dql_avail(&dev_queue->dql) < 0)
2745 		return;
2746 
2747 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2748 		netif_schedule_queue(dev_queue);
2749 #endif
2750 }
2751 
2752 /**
2753  * 	netdev_completed_queue - report bytes and packets completed by device
2754  * 	@dev: network device
2755  * 	@pkts: actual number of packets sent over the medium
2756  * 	@bytes: actual number of bytes sent over the medium
2757  *
2758  * 	Report the number of bytes and packets transmitted by the network device
2759  * 	hardware queue over the physical medium, @bytes must exactly match the
2760  * 	@bytes amount passed to netdev_sent_queue()
2761  */
2762 static inline void netdev_completed_queue(struct net_device *dev,
2763 					  unsigned int pkts, unsigned int bytes)
2764 {
2765 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2766 }
2767 
2768 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2769 {
2770 #ifdef CONFIG_BQL
2771 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2772 	dql_reset(&q->dql);
2773 #endif
2774 }
2775 
2776 /**
2777  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2778  * 	@dev_queue: network device
2779  *
2780  * 	Reset the bytes and packet count of a network device and clear the
2781  * 	software flow control OFF bit for this network device
2782  */
2783 static inline void netdev_reset_queue(struct net_device *dev_queue)
2784 {
2785 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2786 }
2787 
2788 /**
2789  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2790  * 	@dev: network device
2791  * 	@queue_index: given tx queue index
2792  *
2793  * 	Returns 0 if given tx queue index >= number of device tx queues,
2794  * 	otherwise returns the originally passed tx queue index.
2795  */
2796 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2797 {
2798 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2799 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2800 				     dev->name, queue_index,
2801 				     dev->real_num_tx_queues);
2802 		return 0;
2803 	}
2804 
2805 	return queue_index;
2806 }
2807 
2808 /**
2809  *	netif_running - test if up
2810  *	@dev: network device
2811  *
2812  *	Test if the device has been brought up.
2813  */
2814 static inline bool netif_running(const struct net_device *dev)
2815 {
2816 	return test_bit(__LINK_STATE_START, &dev->state);
2817 }
2818 
2819 /*
2820  * Routines to manage the subqueues on a device.  We only need start
2821  * stop, and a check if it's stopped.  All other device management is
2822  * done at the overall netdevice level.
2823  * Also test the device if we're multiqueue.
2824  */
2825 
2826 /**
2827  *	netif_start_subqueue - allow sending packets on subqueue
2828  *	@dev: network device
2829  *	@queue_index: sub queue index
2830  *
2831  * Start individual transmit queue of a device with multiple transmit queues.
2832  */
2833 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2834 {
2835 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2836 
2837 	netif_tx_start_queue(txq);
2838 }
2839 
2840 /**
2841  *	netif_stop_subqueue - stop sending packets on subqueue
2842  *	@dev: network device
2843  *	@queue_index: sub queue index
2844  *
2845  * Stop individual transmit queue of a device with multiple transmit queues.
2846  */
2847 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2848 {
2849 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2850 	netif_tx_stop_queue(txq);
2851 }
2852 
2853 /**
2854  *	netif_subqueue_stopped - test status of subqueue
2855  *	@dev: network device
2856  *	@queue_index: sub queue index
2857  *
2858  * Check individual transmit queue of a device with multiple transmit queues.
2859  */
2860 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2861 					    u16 queue_index)
2862 {
2863 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2864 
2865 	return netif_tx_queue_stopped(txq);
2866 }
2867 
2868 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2869 					  struct sk_buff *skb)
2870 {
2871 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2872 }
2873 
2874 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2875 
2876 #ifdef CONFIG_XPS
2877 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2878 			u16 index);
2879 #else
2880 static inline int netif_set_xps_queue(struct net_device *dev,
2881 				      const struct cpumask *mask,
2882 				      u16 index)
2883 {
2884 	return 0;
2885 }
2886 #endif
2887 
2888 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2889 		  unsigned int num_tx_queues);
2890 
2891 /*
2892  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2893  * as a distribution range limit for the returned value.
2894  */
2895 static inline u16 skb_tx_hash(const struct net_device *dev,
2896 			      struct sk_buff *skb)
2897 {
2898 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2899 }
2900 
2901 /**
2902  *	netif_is_multiqueue - test if device has multiple transmit queues
2903  *	@dev: network device
2904  *
2905  * Check if device has multiple transmit queues
2906  */
2907 static inline bool netif_is_multiqueue(const struct net_device *dev)
2908 {
2909 	return dev->num_tx_queues > 1;
2910 }
2911 
2912 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2913 
2914 #ifdef CONFIG_SYSFS
2915 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2916 #else
2917 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2918 						unsigned int rxq)
2919 {
2920 	return 0;
2921 }
2922 #endif
2923 
2924 #ifdef CONFIG_SYSFS
2925 static inline unsigned int get_netdev_rx_queue_index(
2926 		struct netdev_rx_queue *queue)
2927 {
2928 	struct net_device *dev = queue->dev;
2929 	int index = queue - dev->_rx;
2930 
2931 	BUG_ON(index >= dev->num_rx_queues);
2932 	return index;
2933 }
2934 #endif
2935 
2936 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2937 int netif_get_num_default_rss_queues(void);
2938 
2939 enum skb_free_reason {
2940 	SKB_REASON_CONSUMED,
2941 	SKB_REASON_DROPPED,
2942 };
2943 
2944 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2945 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2946 
2947 /*
2948  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2949  * interrupt context or with hardware interrupts being disabled.
2950  * (in_irq() || irqs_disabled())
2951  *
2952  * We provide four helpers that can be used in following contexts :
2953  *
2954  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2955  *  replacing kfree_skb(skb)
2956  *
2957  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2958  *  Typically used in place of consume_skb(skb) in TX completion path
2959  *
2960  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2961  *  replacing kfree_skb(skb)
2962  *
2963  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2964  *  and consumed a packet. Used in place of consume_skb(skb)
2965  */
2966 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2967 {
2968 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2969 }
2970 
2971 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2972 {
2973 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2974 }
2975 
2976 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2977 {
2978 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2979 }
2980 
2981 static inline void dev_consume_skb_any(struct sk_buff *skb)
2982 {
2983 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2984 }
2985 
2986 int netif_rx(struct sk_buff *skb);
2987 int netif_rx_ni(struct sk_buff *skb);
2988 int netif_receive_skb(struct sk_buff *skb);
2989 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2990 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2991 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2992 gro_result_t napi_gro_frags(struct napi_struct *napi);
2993 struct packet_offload *gro_find_receive_by_type(__be16 type);
2994 struct packet_offload *gro_find_complete_by_type(__be16 type);
2995 
2996 static inline void napi_free_frags(struct napi_struct *napi)
2997 {
2998 	kfree_skb(napi->skb);
2999 	napi->skb = NULL;
3000 }
3001 
3002 int netdev_rx_handler_register(struct net_device *dev,
3003 			       rx_handler_func_t *rx_handler,
3004 			       void *rx_handler_data);
3005 void netdev_rx_handler_unregister(struct net_device *dev);
3006 
3007 bool dev_valid_name(const char *name);
3008 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3009 int dev_ethtool(struct net *net, struct ifreq *);
3010 unsigned int dev_get_flags(const struct net_device *);
3011 int __dev_change_flags(struct net_device *, unsigned int flags);
3012 int dev_change_flags(struct net_device *, unsigned int);
3013 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3014 			unsigned int gchanges);
3015 int dev_change_name(struct net_device *, const char *);
3016 int dev_set_alias(struct net_device *, const char *, size_t);
3017 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3018 int dev_set_mtu(struct net_device *, int);
3019 void dev_set_group(struct net_device *, int);
3020 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3021 int dev_change_carrier(struct net_device *, bool new_carrier);
3022 int dev_get_phys_port_id(struct net_device *dev,
3023 			 struct netdev_phys_item_id *ppid);
3024 int dev_get_phys_port_name(struct net_device *dev,
3025 			   char *name, size_t len);
3026 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3027 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3028 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3029 				    struct netdev_queue *txq, int *ret);
3030 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3031 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3032 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3033 
3034 extern int		netdev_budget;
3035 
3036 /* Called by rtnetlink.c:rtnl_unlock() */
3037 void netdev_run_todo(void);
3038 
3039 /**
3040  *	dev_put - release reference to device
3041  *	@dev: network device
3042  *
3043  * Release reference to device to allow it to be freed.
3044  */
3045 static inline void dev_put(struct net_device *dev)
3046 {
3047 	this_cpu_dec(*dev->pcpu_refcnt);
3048 }
3049 
3050 /**
3051  *	dev_hold - get reference to device
3052  *	@dev: network device
3053  *
3054  * Hold reference to device to keep it from being freed.
3055  */
3056 static inline void dev_hold(struct net_device *dev)
3057 {
3058 	this_cpu_inc(*dev->pcpu_refcnt);
3059 }
3060 
3061 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3062  * and _off may be called from IRQ context, but it is caller
3063  * who is responsible for serialization of these calls.
3064  *
3065  * The name carrier is inappropriate, these functions should really be
3066  * called netif_lowerlayer_*() because they represent the state of any
3067  * kind of lower layer not just hardware media.
3068  */
3069 
3070 void linkwatch_init_dev(struct net_device *dev);
3071 void linkwatch_fire_event(struct net_device *dev);
3072 void linkwatch_forget_dev(struct net_device *dev);
3073 
3074 /**
3075  *	netif_carrier_ok - test if carrier present
3076  *	@dev: network device
3077  *
3078  * Check if carrier is present on device
3079  */
3080 static inline bool netif_carrier_ok(const struct net_device *dev)
3081 {
3082 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3083 }
3084 
3085 unsigned long dev_trans_start(struct net_device *dev);
3086 
3087 void __netdev_watchdog_up(struct net_device *dev);
3088 
3089 void netif_carrier_on(struct net_device *dev);
3090 
3091 void netif_carrier_off(struct net_device *dev);
3092 
3093 /**
3094  *	netif_dormant_on - mark device as dormant.
3095  *	@dev: network device
3096  *
3097  * Mark device as dormant (as per RFC2863).
3098  *
3099  * The dormant state indicates that the relevant interface is not
3100  * actually in a condition to pass packets (i.e., it is not 'up') but is
3101  * in a "pending" state, waiting for some external event.  For "on-
3102  * demand" interfaces, this new state identifies the situation where the
3103  * interface is waiting for events to place it in the up state.
3104  *
3105  */
3106 static inline void netif_dormant_on(struct net_device *dev)
3107 {
3108 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3109 		linkwatch_fire_event(dev);
3110 }
3111 
3112 /**
3113  *	netif_dormant_off - set device as not dormant.
3114  *	@dev: network device
3115  *
3116  * Device is not in dormant state.
3117  */
3118 static inline void netif_dormant_off(struct net_device *dev)
3119 {
3120 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3121 		linkwatch_fire_event(dev);
3122 }
3123 
3124 /**
3125  *	netif_dormant - test if carrier present
3126  *	@dev: network device
3127  *
3128  * Check if carrier is present on device
3129  */
3130 static inline bool netif_dormant(const struct net_device *dev)
3131 {
3132 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3133 }
3134 
3135 
3136 /**
3137  *	netif_oper_up - test if device is operational
3138  *	@dev: network device
3139  *
3140  * Check if carrier is operational
3141  */
3142 static inline bool netif_oper_up(const struct net_device *dev)
3143 {
3144 	return (dev->operstate == IF_OPER_UP ||
3145 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3146 }
3147 
3148 /**
3149  *	netif_device_present - is device available or removed
3150  *	@dev: network device
3151  *
3152  * Check if device has not been removed from system.
3153  */
3154 static inline bool netif_device_present(struct net_device *dev)
3155 {
3156 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3157 }
3158 
3159 void netif_device_detach(struct net_device *dev);
3160 
3161 void netif_device_attach(struct net_device *dev);
3162 
3163 /*
3164  * Network interface message level settings
3165  */
3166 
3167 enum {
3168 	NETIF_MSG_DRV		= 0x0001,
3169 	NETIF_MSG_PROBE		= 0x0002,
3170 	NETIF_MSG_LINK		= 0x0004,
3171 	NETIF_MSG_TIMER		= 0x0008,
3172 	NETIF_MSG_IFDOWN	= 0x0010,
3173 	NETIF_MSG_IFUP		= 0x0020,
3174 	NETIF_MSG_RX_ERR	= 0x0040,
3175 	NETIF_MSG_TX_ERR	= 0x0080,
3176 	NETIF_MSG_TX_QUEUED	= 0x0100,
3177 	NETIF_MSG_INTR		= 0x0200,
3178 	NETIF_MSG_TX_DONE	= 0x0400,
3179 	NETIF_MSG_RX_STATUS	= 0x0800,
3180 	NETIF_MSG_PKTDATA	= 0x1000,
3181 	NETIF_MSG_HW		= 0x2000,
3182 	NETIF_MSG_WOL		= 0x4000,
3183 };
3184 
3185 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3186 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3187 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3188 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3189 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3190 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3191 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3192 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3193 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3194 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3195 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3196 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3197 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3198 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3199 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3200 
3201 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3202 {
3203 	/* use default */
3204 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3205 		return default_msg_enable_bits;
3206 	if (debug_value == 0)	/* no output */
3207 		return 0;
3208 	/* set low N bits */
3209 	return (1 << debug_value) - 1;
3210 }
3211 
3212 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3213 {
3214 	spin_lock(&txq->_xmit_lock);
3215 	txq->xmit_lock_owner = cpu;
3216 }
3217 
3218 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3219 {
3220 	spin_lock_bh(&txq->_xmit_lock);
3221 	txq->xmit_lock_owner = smp_processor_id();
3222 }
3223 
3224 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3225 {
3226 	bool ok = spin_trylock(&txq->_xmit_lock);
3227 	if (likely(ok))
3228 		txq->xmit_lock_owner = smp_processor_id();
3229 	return ok;
3230 }
3231 
3232 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3233 {
3234 	txq->xmit_lock_owner = -1;
3235 	spin_unlock(&txq->_xmit_lock);
3236 }
3237 
3238 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3239 {
3240 	txq->xmit_lock_owner = -1;
3241 	spin_unlock_bh(&txq->_xmit_lock);
3242 }
3243 
3244 static inline void txq_trans_update(struct netdev_queue *txq)
3245 {
3246 	if (txq->xmit_lock_owner != -1)
3247 		txq->trans_start = jiffies;
3248 }
3249 
3250 /**
3251  *	netif_tx_lock - grab network device transmit lock
3252  *	@dev: network device
3253  *
3254  * Get network device transmit lock
3255  */
3256 static inline void netif_tx_lock(struct net_device *dev)
3257 {
3258 	unsigned int i;
3259 	int cpu;
3260 
3261 	spin_lock(&dev->tx_global_lock);
3262 	cpu = smp_processor_id();
3263 	for (i = 0; i < dev->num_tx_queues; i++) {
3264 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3265 
3266 		/* We are the only thread of execution doing a
3267 		 * freeze, but we have to grab the _xmit_lock in
3268 		 * order to synchronize with threads which are in
3269 		 * the ->hard_start_xmit() handler and already
3270 		 * checked the frozen bit.
3271 		 */
3272 		__netif_tx_lock(txq, cpu);
3273 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3274 		__netif_tx_unlock(txq);
3275 	}
3276 }
3277 
3278 static inline void netif_tx_lock_bh(struct net_device *dev)
3279 {
3280 	local_bh_disable();
3281 	netif_tx_lock(dev);
3282 }
3283 
3284 static inline void netif_tx_unlock(struct net_device *dev)
3285 {
3286 	unsigned int i;
3287 
3288 	for (i = 0; i < dev->num_tx_queues; i++) {
3289 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3290 
3291 		/* No need to grab the _xmit_lock here.  If the
3292 		 * queue is not stopped for another reason, we
3293 		 * force a schedule.
3294 		 */
3295 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3296 		netif_schedule_queue(txq);
3297 	}
3298 	spin_unlock(&dev->tx_global_lock);
3299 }
3300 
3301 static inline void netif_tx_unlock_bh(struct net_device *dev)
3302 {
3303 	netif_tx_unlock(dev);
3304 	local_bh_enable();
3305 }
3306 
3307 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3308 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3309 		__netif_tx_lock(txq, cpu);		\
3310 	}						\
3311 }
3312 
3313 #define HARD_TX_TRYLOCK(dev, txq)			\
3314 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3315 		__netif_tx_trylock(txq) :		\
3316 		true )
3317 
3318 #define HARD_TX_UNLOCK(dev, txq) {			\
3319 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3320 		__netif_tx_unlock(txq);			\
3321 	}						\
3322 }
3323 
3324 static inline void netif_tx_disable(struct net_device *dev)
3325 {
3326 	unsigned int i;
3327 	int cpu;
3328 
3329 	local_bh_disable();
3330 	cpu = smp_processor_id();
3331 	for (i = 0; i < dev->num_tx_queues; i++) {
3332 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3333 
3334 		__netif_tx_lock(txq, cpu);
3335 		netif_tx_stop_queue(txq);
3336 		__netif_tx_unlock(txq);
3337 	}
3338 	local_bh_enable();
3339 }
3340 
3341 static inline void netif_addr_lock(struct net_device *dev)
3342 {
3343 	spin_lock(&dev->addr_list_lock);
3344 }
3345 
3346 static inline void netif_addr_lock_nested(struct net_device *dev)
3347 {
3348 	int subclass = SINGLE_DEPTH_NESTING;
3349 
3350 	if (dev->netdev_ops->ndo_get_lock_subclass)
3351 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3352 
3353 	spin_lock_nested(&dev->addr_list_lock, subclass);
3354 }
3355 
3356 static inline void netif_addr_lock_bh(struct net_device *dev)
3357 {
3358 	spin_lock_bh(&dev->addr_list_lock);
3359 }
3360 
3361 static inline void netif_addr_unlock(struct net_device *dev)
3362 {
3363 	spin_unlock(&dev->addr_list_lock);
3364 }
3365 
3366 static inline void netif_addr_unlock_bh(struct net_device *dev)
3367 {
3368 	spin_unlock_bh(&dev->addr_list_lock);
3369 }
3370 
3371 /*
3372  * dev_addrs walker. Should be used only for read access. Call with
3373  * rcu_read_lock held.
3374  */
3375 #define for_each_dev_addr(dev, ha) \
3376 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3377 
3378 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3379 
3380 void ether_setup(struct net_device *dev);
3381 
3382 /* Support for loadable net-drivers */
3383 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3384 				    unsigned char name_assign_type,
3385 				    void (*setup)(struct net_device *),
3386 				    unsigned int txqs, unsigned int rxqs);
3387 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3388 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3389 
3390 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3391 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3392 			 count)
3393 
3394 int register_netdev(struct net_device *dev);
3395 void unregister_netdev(struct net_device *dev);
3396 
3397 /* General hardware address lists handling functions */
3398 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3399 		   struct netdev_hw_addr_list *from_list, int addr_len);
3400 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3401 		      struct netdev_hw_addr_list *from_list, int addr_len);
3402 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3403 		       struct net_device *dev,
3404 		       int (*sync)(struct net_device *, const unsigned char *),
3405 		       int (*unsync)(struct net_device *,
3406 				     const unsigned char *));
3407 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3408 			  struct net_device *dev,
3409 			  int (*unsync)(struct net_device *,
3410 					const unsigned char *));
3411 void __hw_addr_init(struct netdev_hw_addr_list *list);
3412 
3413 /* Functions used for device addresses handling */
3414 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3415 		 unsigned char addr_type);
3416 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3417 		 unsigned char addr_type);
3418 void dev_addr_flush(struct net_device *dev);
3419 int dev_addr_init(struct net_device *dev);
3420 
3421 /* Functions used for unicast addresses handling */
3422 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3423 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3424 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3425 int dev_uc_sync(struct net_device *to, struct net_device *from);
3426 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3427 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3428 void dev_uc_flush(struct net_device *dev);
3429 void dev_uc_init(struct net_device *dev);
3430 
3431 /**
3432  *  __dev_uc_sync - Synchonize device's unicast list
3433  *  @dev:  device to sync
3434  *  @sync: function to call if address should be added
3435  *  @unsync: function to call if address should be removed
3436  *
3437  *  Add newly added addresses to the interface, and release
3438  *  addresses that have been deleted.
3439  **/
3440 static inline int __dev_uc_sync(struct net_device *dev,
3441 				int (*sync)(struct net_device *,
3442 					    const unsigned char *),
3443 				int (*unsync)(struct net_device *,
3444 					      const unsigned char *))
3445 {
3446 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3447 }
3448 
3449 /**
3450  *  __dev_uc_unsync - Remove synchronized addresses from device
3451  *  @dev:  device to sync
3452  *  @unsync: function to call if address should be removed
3453  *
3454  *  Remove all addresses that were added to the device by dev_uc_sync().
3455  **/
3456 static inline void __dev_uc_unsync(struct net_device *dev,
3457 				   int (*unsync)(struct net_device *,
3458 						 const unsigned char *))
3459 {
3460 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3461 }
3462 
3463 /* Functions used for multicast addresses handling */
3464 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3465 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3466 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3467 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3468 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3469 int dev_mc_sync(struct net_device *to, struct net_device *from);
3470 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3471 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3472 void dev_mc_flush(struct net_device *dev);
3473 void dev_mc_init(struct net_device *dev);
3474 
3475 /**
3476  *  __dev_mc_sync - Synchonize device's multicast list
3477  *  @dev:  device to sync
3478  *  @sync: function to call if address should be added
3479  *  @unsync: function to call if address should be removed
3480  *
3481  *  Add newly added addresses to the interface, and release
3482  *  addresses that have been deleted.
3483  **/
3484 static inline int __dev_mc_sync(struct net_device *dev,
3485 				int (*sync)(struct net_device *,
3486 					    const unsigned char *),
3487 				int (*unsync)(struct net_device *,
3488 					      const unsigned char *))
3489 {
3490 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3491 }
3492 
3493 /**
3494  *  __dev_mc_unsync - Remove synchronized addresses from device
3495  *  @dev:  device to sync
3496  *  @unsync: function to call if address should be removed
3497  *
3498  *  Remove all addresses that were added to the device by dev_mc_sync().
3499  **/
3500 static inline void __dev_mc_unsync(struct net_device *dev,
3501 				   int (*unsync)(struct net_device *,
3502 						 const unsigned char *))
3503 {
3504 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3505 }
3506 
3507 /* Functions used for secondary unicast and multicast support */
3508 void dev_set_rx_mode(struct net_device *dev);
3509 void __dev_set_rx_mode(struct net_device *dev);
3510 int dev_set_promiscuity(struct net_device *dev, int inc);
3511 int dev_set_allmulti(struct net_device *dev, int inc);
3512 void netdev_state_change(struct net_device *dev);
3513 void netdev_notify_peers(struct net_device *dev);
3514 void netdev_features_change(struct net_device *dev);
3515 /* Load a device via the kmod */
3516 void dev_load(struct net *net, const char *name);
3517 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3518 					struct rtnl_link_stats64 *storage);
3519 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3520 			     const struct net_device_stats *netdev_stats);
3521 
3522 extern int		netdev_max_backlog;
3523 extern int		netdev_tstamp_prequeue;
3524 extern int		weight_p;
3525 extern int		bpf_jit_enable;
3526 
3527 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3528 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3529 						     struct list_head **iter);
3530 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3531 						     struct list_head **iter);
3532 
3533 /* iterate through upper list, must be called under RCU read lock */
3534 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3535 	for (iter = &(dev)->adj_list.upper, \
3536 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3537 	     updev; \
3538 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3539 
3540 /* iterate through upper list, must be called under RCU read lock */
3541 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3542 	for (iter = &(dev)->all_adj_list.upper, \
3543 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3544 	     updev; \
3545 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3546 
3547 void *netdev_lower_get_next_private(struct net_device *dev,
3548 				    struct list_head **iter);
3549 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3550 					struct list_head **iter);
3551 
3552 #define netdev_for_each_lower_private(dev, priv, iter) \
3553 	for (iter = (dev)->adj_list.lower.next, \
3554 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3555 	     priv; \
3556 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3557 
3558 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3559 	for (iter = &(dev)->adj_list.lower, \
3560 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3561 	     priv; \
3562 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3563 
3564 void *netdev_lower_get_next(struct net_device *dev,
3565 				struct list_head **iter);
3566 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3567 	for (iter = &(dev)->adj_list.lower, \
3568 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3569 	     ldev; \
3570 	     ldev = netdev_lower_get_next(dev, &(iter)))
3571 
3572 void *netdev_adjacent_get_private(struct list_head *adj_list);
3573 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3574 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3575 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3576 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3577 int netdev_master_upper_dev_link(struct net_device *dev,
3578 				 struct net_device *upper_dev);
3579 int netdev_master_upper_dev_link_private(struct net_device *dev,
3580 					 struct net_device *upper_dev,
3581 					 void *private);
3582 void netdev_upper_dev_unlink(struct net_device *dev,
3583 			     struct net_device *upper_dev);
3584 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3585 void *netdev_lower_dev_get_private(struct net_device *dev,
3586 				   struct net_device *lower_dev);
3587 
3588 /* RSS keys are 40 or 52 bytes long */
3589 #define NETDEV_RSS_KEY_LEN 52
3590 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3591 void netdev_rss_key_fill(void *buffer, size_t len);
3592 
3593 int dev_get_nest_level(struct net_device *dev,
3594 		       bool (*type_check)(struct net_device *dev));
3595 int skb_checksum_help(struct sk_buff *skb);
3596 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3597 				  netdev_features_t features, bool tx_path);
3598 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3599 				    netdev_features_t features);
3600 
3601 struct netdev_bonding_info {
3602 	ifslave	slave;
3603 	ifbond	master;
3604 };
3605 
3606 struct netdev_notifier_bonding_info {
3607 	struct netdev_notifier_info info; /* must be first */
3608 	struct netdev_bonding_info  bonding_info;
3609 };
3610 
3611 void netdev_bonding_info_change(struct net_device *dev,
3612 				struct netdev_bonding_info *bonding_info);
3613 
3614 static inline
3615 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3616 {
3617 	return __skb_gso_segment(skb, features, true);
3618 }
3619 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3620 
3621 static inline bool can_checksum_protocol(netdev_features_t features,
3622 					 __be16 protocol)
3623 {
3624 	return ((features & NETIF_F_GEN_CSUM) ||
3625 		((features & NETIF_F_V4_CSUM) &&
3626 		 protocol == htons(ETH_P_IP)) ||
3627 		((features & NETIF_F_V6_CSUM) &&
3628 		 protocol == htons(ETH_P_IPV6)) ||
3629 		((features & NETIF_F_FCOE_CRC) &&
3630 		 protocol == htons(ETH_P_FCOE)));
3631 }
3632 
3633 #ifdef CONFIG_BUG
3634 void netdev_rx_csum_fault(struct net_device *dev);
3635 #else
3636 static inline void netdev_rx_csum_fault(struct net_device *dev)
3637 {
3638 }
3639 #endif
3640 /* rx skb timestamps */
3641 void net_enable_timestamp(void);
3642 void net_disable_timestamp(void);
3643 
3644 #ifdef CONFIG_PROC_FS
3645 int __init dev_proc_init(void);
3646 #else
3647 #define dev_proc_init() 0
3648 #endif
3649 
3650 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3651 					      struct sk_buff *skb, struct net_device *dev,
3652 					      bool more)
3653 {
3654 	skb->xmit_more = more ? 1 : 0;
3655 	return ops->ndo_start_xmit(skb, dev);
3656 }
3657 
3658 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3659 					    struct netdev_queue *txq, bool more)
3660 {
3661 	const struct net_device_ops *ops = dev->netdev_ops;
3662 	int rc;
3663 
3664 	rc = __netdev_start_xmit(ops, skb, dev, more);
3665 	if (rc == NETDEV_TX_OK)
3666 		txq_trans_update(txq);
3667 
3668 	return rc;
3669 }
3670 
3671 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3672 				const void *ns);
3673 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3674 				 const void *ns);
3675 
3676 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3677 {
3678 	return netdev_class_create_file_ns(class_attr, NULL);
3679 }
3680 
3681 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3682 {
3683 	netdev_class_remove_file_ns(class_attr, NULL);
3684 }
3685 
3686 extern struct kobj_ns_type_operations net_ns_type_operations;
3687 
3688 const char *netdev_drivername(const struct net_device *dev);
3689 
3690 void linkwatch_run_queue(void);
3691 
3692 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3693 							  netdev_features_t f2)
3694 {
3695 	if (f1 & NETIF_F_GEN_CSUM)
3696 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3697 	if (f2 & NETIF_F_GEN_CSUM)
3698 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3699 	f1 &= f2;
3700 	if (f1 & NETIF_F_GEN_CSUM)
3701 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3702 
3703 	return f1;
3704 }
3705 
3706 static inline netdev_features_t netdev_get_wanted_features(
3707 	struct net_device *dev)
3708 {
3709 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3710 }
3711 netdev_features_t netdev_increment_features(netdev_features_t all,
3712 	netdev_features_t one, netdev_features_t mask);
3713 
3714 /* Allow TSO being used on stacked device :
3715  * Performing the GSO segmentation before last device
3716  * is a performance improvement.
3717  */
3718 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3719 							netdev_features_t mask)
3720 {
3721 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3722 }
3723 
3724 int __netdev_update_features(struct net_device *dev);
3725 void netdev_update_features(struct net_device *dev);
3726 void netdev_change_features(struct net_device *dev);
3727 
3728 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3729 					struct net_device *dev);
3730 
3731 netdev_features_t passthru_features_check(struct sk_buff *skb,
3732 					  struct net_device *dev,
3733 					  netdev_features_t features);
3734 netdev_features_t netif_skb_features(struct sk_buff *skb);
3735 
3736 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3737 {
3738 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3739 
3740 	/* check flags correspondence */
3741 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3742 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3743 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3744 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3745 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3746 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3747 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3748 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3749 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3750 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3751 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3752 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3753 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3754 
3755 	return (features & feature) == feature;
3756 }
3757 
3758 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3759 {
3760 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3761 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3762 }
3763 
3764 static inline bool netif_needs_gso(struct sk_buff *skb,
3765 				   netdev_features_t features)
3766 {
3767 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3768 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3769 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3770 }
3771 
3772 static inline void netif_set_gso_max_size(struct net_device *dev,
3773 					  unsigned int size)
3774 {
3775 	dev->gso_max_size = size;
3776 }
3777 
3778 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3779 					int pulled_hlen, u16 mac_offset,
3780 					int mac_len)
3781 {
3782 	skb->protocol = protocol;
3783 	skb->encapsulation = 1;
3784 	skb_push(skb, pulled_hlen);
3785 	skb_reset_transport_header(skb);
3786 	skb->mac_header = mac_offset;
3787 	skb->network_header = skb->mac_header + mac_len;
3788 	skb->mac_len = mac_len;
3789 }
3790 
3791 static inline bool netif_is_macvlan(struct net_device *dev)
3792 {
3793 	return dev->priv_flags & IFF_MACVLAN;
3794 }
3795 
3796 static inline bool netif_is_macvlan_port(struct net_device *dev)
3797 {
3798 	return dev->priv_flags & IFF_MACVLAN_PORT;
3799 }
3800 
3801 static inline bool netif_is_ipvlan(struct net_device *dev)
3802 {
3803 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3804 }
3805 
3806 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3807 {
3808 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3809 }
3810 
3811 static inline bool netif_is_bond_master(struct net_device *dev)
3812 {
3813 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3814 }
3815 
3816 static inline bool netif_is_bond_slave(struct net_device *dev)
3817 {
3818 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3819 }
3820 
3821 static inline bool netif_supports_nofcs(struct net_device *dev)
3822 {
3823 	return dev->priv_flags & IFF_SUPP_NOFCS;
3824 }
3825 
3826 static inline bool netif_is_vrf(const struct net_device *dev)
3827 {
3828 	return dev->priv_flags & IFF_VRF_MASTER;
3829 }
3830 
3831 static inline bool netif_is_bridge_master(const struct net_device *dev)
3832 {
3833 	return dev->priv_flags & IFF_EBRIDGE;
3834 }
3835 
3836 static inline bool netif_is_ovs_master(const struct net_device *dev)
3837 {
3838 	return dev->priv_flags & IFF_OPENVSWITCH;
3839 }
3840 
3841 static inline bool netif_index_is_vrf(struct net *net, int ifindex)
3842 {
3843 	bool rc = false;
3844 
3845 #if IS_ENABLED(CONFIG_NET_VRF)
3846 	struct net_device *dev;
3847 
3848 	if (ifindex == 0)
3849 		return false;
3850 
3851 	rcu_read_lock();
3852 
3853 	dev = dev_get_by_index_rcu(net, ifindex);
3854 	if (dev)
3855 		rc = netif_is_vrf(dev);
3856 
3857 	rcu_read_unlock();
3858 #endif
3859 	return rc;
3860 }
3861 
3862 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3863 static inline void netif_keep_dst(struct net_device *dev)
3864 {
3865 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3866 }
3867 
3868 extern struct pernet_operations __net_initdata loopback_net_ops;
3869 
3870 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3871 
3872 /* netdev_printk helpers, similar to dev_printk */
3873 
3874 static inline const char *netdev_name(const struct net_device *dev)
3875 {
3876 	if (!dev->name[0] || strchr(dev->name, '%'))
3877 		return "(unnamed net_device)";
3878 	return dev->name;
3879 }
3880 
3881 static inline const char *netdev_reg_state(const struct net_device *dev)
3882 {
3883 	switch (dev->reg_state) {
3884 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3885 	case NETREG_REGISTERED: return "";
3886 	case NETREG_UNREGISTERING: return " (unregistering)";
3887 	case NETREG_UNREGISTERED: return " (unregistered)";
3888 	case NETREG_RELEASED: return " (released)";
3889 	case NETREG_DUMMY: return " (dummy)";
3890 	}
3891 
3892 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3893 	return " (unknown)";
3894 }
3895 
3896 __printf(3, 4)
3897 void netdev_printk(const char *level, const struct net_device *dev,
3898 		   const char *format, ...);
3899 __printf(2, 3)
3900 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3901 __printf(2, 3)
3902 void netdev_alert(const struct net_device *dev, const char *format, ...);
3903 __printf(2, 3)
3904 void netdev_crit(const struct net_device *dev, const char *format, ...);
3905 __printf(2, 3)
3906 void netdev_err(const struct net_device *dev, const char *format, ...);
3907 __printf(2, 3)
3908 void netdev_warn(const struct net_device *dev, const char *format, ...);
3909 __printf(2, 3)
3910 void netdev_notice(const struct net_device *dev, const char *format, ...);
3911 __printf(2, 3)
3912 void netdev_info(const struct net_device *dev, const char *format, ...);
3913 
3914 #define MODULE_ALIAS_NETDEV(device) \
3915 	MODULE_ALIAS("netdev-" device)
3916 
3917 #if defined(CONFIG_DYNAMIC_DEBUG)
3918 #define netdev_dbg(__dev, format, args...)			\
3919 do {								\
3920 	dynamic_netdev_dbg(__dev, format, ##args);		\
3921 } while (0)
3922 #elif defined(DEBUG)
3923 #define netdev_dbg(__dev, format, args...)			\
3924 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3925 #else
3926 #define netdev_dbg(__dev, format, args...)			\
3927 ({								\
3928 	if (0)							\
3929 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3930 })
3931 #endif
3932 
3933 #if defined(VERBOSE_DEBUG)
3934 #define netdev_vdbg	netdev_dbg
3935 #else
3936 
3937 #define netdev_vdbg(dev, format, args...)			\
3938 ({								\
3939 	if (0)							\
3940 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3941 	0;							\
3942 })
3943 #endif
3944 
3945 /*
3946  * netdev_WARN() acts like dev_printk(), but with the key difference
3947  * of using a WARN/WARN_ON to get the message out, including the
3948  * file/line information and a backtrace.
3949  */
3950 #define netdev_WARN(dev, format, args...)			\
3951 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3952 	     netdev_reg_state(dev), ##args)
3953 
3954 /* netif printk helpers, similar to netdev_printk */
3955 
3956 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3957 do {					  			\
3958 	if (netif_msg_##type(priv))				\
3959 		netdev_printk(level, (dev), fmt, ##args);	\
3960 } while (0)
3961 
3962 #define netif_level(level, priv, type, dev, fmt, args...)	\
3963 do {								\
3964 	if (netif_msg_##type(priv))				\
3965 		netdev_##level(dev, fmt, ##args);		\
3966 } while (0)
3967 
3968 #define netif_emerg(priv, type, dev, fmt, args...)		\
3969 	netif_level(emerg, priv, type, dev, fmt, ##args)
3970 #define netif_alert(priv, type, dev, fmt, args...)		\
3971 	netif_level(alert, priv, type, dev, fmt, ##args)
3972 #define netif_crit(priv, type, dev, fmt, args...)		\
3973 	netif_level(crit, priv, type, dev, fmt, ##args)
3974 #define netif_err(priv, type, dev, fmt, args...)		\
3975 	netif_level(err, priv, type, dev, fmt, ##args)
3976 #define netif_warn(priv, type, dev, fmt, args...)		\
3977 	netif_level(warn, priv, type, dev, fmt, ##args)
3978 #define netif_notice(priv, type, dev, fmt, args...)		\
3979 	netif_level(notice, priv, type, dev, fmt, ##args)
3980 #define netif_info(priv, type, dev, fmt, args...)		\
3981 	netif_level(info, priv, type, dev, fmt, ##args)
3982 
3983 #if defined(CONFIG_DYNAMIC_DEBUG)
3984 #define netif_dbg(priv, type, netdev, format, args...)		\
3985 do {								\
3986 	if (netif_msg_##type(priv))				\
3987 		dynamic_netdev_dbg(netdev, format, ##args);	\
3988 } while (0)
3989 #elif defined(DEBUG)
3990 #define netif_dbg(priv, type, dev, format, args...)		\
3991 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3992 #else
3993 #define netif_dbg(priv, type, dev, format, args...)			\
3994 ({									\
3995 	if (0)								\
3996 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3997 	0;								\
3998 })
3999 #endif
4000 
4001 #if defined(VERBOSE_DEBUG)
4002 #define netif_vdbg	netif_dbg
4003 #else
4004 #define netif_vdbg(priv, type, dev, format, args...)		\
4005 ({								\
4006 	if (0)							\
4007 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4008 	0;							\
4009 })
4010 #endif
4011 
4012 /*
4013  *	The list of packet types we will receive (as opposed to discard)
4014  *	and the routines to invoke.
4015  *
4016  *	Why 16. Because with 16 the only overlap we get on a hash of the
4017  *	low nibble of the protocol value is RARP/SNAP/X.25.
4018  *
4019  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4020  *             sure which should go first, but I bet it won't make much
4021  *             difference if we are running VLANs.  The good news is that
4022  *             this protocol won't be in the list unless compiled in, so
4023  *             the average user (w/out VLANs) will not be adversely affected.
4024  *             --BLG
4025  *
4026  *		0800	IP
4027  *		8100    802.1Q VLAN
4028  *		0001	802.3
4029  *		0002	AX.25
4030  *		0004	802.2
4031  *		8035	RARP
4032  *		0005	SNAP
4033  *		0805	X.25
4034  *		0806	ARP
4035  *		8137	IPX
4036  *		0009	Localtalk
4037  *		86DD	IPv6
4038  */
4039 #define PTYPE_HASH_SIZE	(16)
4040 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4041 
4042 #endif	/* _LINUX_NETDEVICE_H */
4043