xref: /openbmc/linux/include/linux/netdevice.h (revision 1bffcea42926b26e092045ac398850e80d950bb2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <uapi/linux/netdev.h>
51 #include <linux/hashtable.h>
52 #include <linux/rbtree.h>
53 #include <net/net_trackers.h>
54 #include <net/net_debug.h>
55 #include <net/dropreason.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct phy_device;
61 struct dsa_port;
62 struct ip_tunnel_parm;
63 struct macsec_context;
64 struct macsec_ops;
65 struct netdev_name_node;
66 struct sd_flow_limit;
67 struct sfp_bus;
68 /* 802.11 specific */
69 struct wireless_dev;
70 /* 802.15.4 specific */
71 struct wpan_dev;
72 struct mpls_dev;
73 /* UDP Tunnel offloads */
74 struct udp_tunnel_info;
75 struct udp_tunnel_nic_info;
76 struct udp_tunnel_nic;
77 struct bpf_prog;
78 struct xdp_buff;
79 struct xdp_md;
80 
81 void synchronize_net(void);
82 void netdev_set_default_ethtool_ops(struct net_device *dev,
83 				    const struct ethtool_ops *ops);
84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
85 
86 /* Backlog congestion levels */
87 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
88 #define NET_RX_DROP		1	/* packet dropped */
89 
90 #define MAX_NEST_DEV 8
91 
92 /*
93  * Transmit return codes: transmit return codes originate from three different
94  * namespaces:
95  *
96  * - qdisc return codes
97  * - driver transmit return codes
98  * - errno values
99  *
100  * Drivers are allowed to return any one of those in their hard_start_xmit()
101  * function. Real network devices commonly used with qdiscs should only return
102  * the driver transmit return codes though - when qdiscs are used, the actual
103  * transmission happens asynchronously, so the value is not propagated to
104  * higher layers. Virtual network devices transmit synchronously; in this case
105  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
106  * others are propagated to higher layers.
107  */
108 
109 /* qdisc ->enqueue() return codes. */
110 #define NET_XMIT_SUCCESS	0x00
111 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
112 #define NET_XMIT_CN		0x02	/* congestion notification	*/
113 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
114 
115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
116  * indicates that the device will soon be dropping packets, or already drops
117  * some packets of the same priority; prompting us to send less aggressively. */
118 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
119 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
120 
121 /* Driver transmit return codes */
122 #define NETDEV_TX_MASK		0xf0
123 
124 enum netdev_tx {
125 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
126 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
127 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
128 };
129 typedef enum netdev_tx netdev_tx_t;
130 
131 /*
132  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
133  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
134  */
135 static inline bool dev_xmit_complete(int rc)
136 {
137 	/*
138 	 * Positive cases with an skb consumed by a driver:
139 	 * - successful transmission (rc == NETDEV_TX_OK)
140 	 * - error while transmitting (rc < 0)
141 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
142 	 */
143 	if (likely(rc < NET_XMIT_MASK))
144 		return true;
145 
146 	return false;
147 }
148 
149 /*
150  *	Compute the worst-case header length according to the protocols
151  *	used.
152  */
153 
154 #if defined(CONFIG_HYPERV_NET)
155 # define LL_MAX_HEADER 128
156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
157 # if defined(CONFIG_MAC80211_MESH)
158 #  define LL_MAX_HEADER 128
159 # else
160 #  define LL_MAX_HEADER 96
161 # endif
162 #else
163 # define LL_MAX_HEADER 32
164 #endif
165 
166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
167     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
168 #define MAX_HEADER LL_MAX_HEADER
169 #else
170 #define MAX_HEADER (LL_MAX_HEADER + 48)
171 #endif
172 
173 /*
174  *	Old network device statistics. Fields are native words
175  *	(unsigned long) so they can be read and written atomically.
176  */
177 
178 #define NET_DEV_STAT(FIELD)			\
179 	union {					\
180 		unsigned long FIELD;		\
181 		atomic_long_t __##FIELD;	\
182 	}
183 
184 struct net_device_stats {
185 	NET_DEV_STAT(rx_packets);
186 	NET_DEV_STAT(tx_packets);
187 	NET_DEV_STAT(rx_bytes);
188 	NET_DEV_STAT(tx_bytes);
189 	NET_DEV_STAT(rx_errors);
190 	NET_DEV_STAT(tx_errors);
191 	NET_DEV_STAT(rx_dropped);
192 	NET_DEV_STAT(tx_dropped);
193 	NET_DEV_STAT(multicast);
194 	NET_DEV_STAT(collisions);
195 	NET_DEV_STAT(rx_length_errors);
196 	NET_DEV_STAT(rx_over_errors);
197 	NET_DEV_STAT(rx_crc_errors);
198 	NET_DEV_STAT(rx_frame_errors);
199 	NET_DEV_STAT(rx_fifo_errors);
200 	NET_DEV_STAT(rx_missed_errors);
201 	NET_DEV_STAT(tx_aborted_errors);
202 	NET_DEV_STAT(tx_carrier_errors);
203 	NET_DEV_STAT(tx_fifo_errors);
204 	NET_DEV_STAT(tx_heartbeat_errors);
205 	NET_DEV_STAT(tx_window_errors);
206 	NET_DEV_STAT(rx_compressed);
207 	NET_DEV_STAT(tx_compressed);
208 };
209 #undef NET_DEV_STAT
210 
211 /* per-cpu stats, allocated on demand.
212  * Try to fit them in a single cache line, for dev_get_stats() sake.
213  */
214 struct net_device_core_stats {
215 	unsigned long	rx_dropped;
216 	unsigned long	tx_dropped;
217 	unsigned long	rx_nohandler;
218 	unsigned long	rx_otherhost_dropped;
219 } __aligned(4 * sizeof(unsigned long));
220 
221 #include <linux/cache.h>
222 #include <linux/skbuff.h>
223 
224 #ifdef CONFIG_RPS
225 #include <linux/static_key.h>
226 extern struct static_key_false rps_needed;
227 extern struct static_key_false rfs_needed;
228 #endif
229 
230 struct neighbour;
231 struct neigh_parms;
232 struct sk_buff;
233 
234 struct netdev_hw_addr {
235 	struct list_head	list;
236 	struct rb_node		node;
237 	unsigned char		addr[MAX_ADDR_LEN];
238 	unsigned char		type;
239 #define NETDEV_HW_ADDR_T_LAN		1
240 #define NETDEV_HW_ADDR_T_SAN		2
241 #define NETDEV_HW_ADDR_T_UNICAST	3
242 #define NETDEV_HW_ADDR_T_MULTICAST	4
243 	bool			global_use;
244 	int			sync_cnt;
245 	int			refcount;
246 	int			synced;
247 	struct rcu_head		rcu_head;
248 };
249 
250 struct netdev_hw_addr_list {
251 	struct list_head	list;
252 	int			count;
253 
254 	/* Auxiliary tree for faster lookup on addition and deletion */
255 	struct rb_root		tree;
256 };
257 
258 #define netdev_hw_addr_list_count(l) ((l)->count)
259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
260 #define netdev_hw_addr_list_for_each(ha, l) \
261 	list_for_each_entry(ha, &(l)->list, list)
262 
263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
265 #define netdev_for_each_uc_addr(ha, dev) \
266 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
268 	netdev_for_each_uc_addr((_ha), (_dev)) \
269 		if ((_ha)->sync_cnt)
270 
271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
273 #define netdev_for_each_mc_addr(ha, dev) \
274 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
276 	netdev_for_each_mc_addr((_ha), (_dev)) \
277 		if ((_ha)->sync_cnt)
278 
279 struct hh_cache {
280 	unsigned int	hh_len;
281 	seqlock_t	hh_lock;
282 
283 	/* cached hardware header; allow for machine alignment needs.        */
284 #define HH_DATA_MOD	16
285 #define HH_DATA_OFF(__len) \
286 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
287 #define HH_DATA_ALIGN(__len) \
288 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
289 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
290 };
291 
292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
293  * Alternative is:
294  *   dev->hard_header_len ? (dev->hard_header_len +
295  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296  *
297  * We could use other alignment values, but we must maintain the
298  * relationship HH alignment <= LL alignment.
299  */
300 #define LL_RESERVED_SPACE(dev) \
301 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
302 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
303 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
304 
305 struct header_ops {
306 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
307 			   unsigned short type, const void *daddr,
308 			   const void *saddr, unsigned int len);
309 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
310 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
311 	void	(*cache_update)(struct hh_cache *hh,
312 				const struct net_device *dev,
313 				const unsigned char *haddr);
314 	bool	(*validate)(const char *ll_header, unsigned int len);
315 	__be16	(*parse_protocol)(const struct sk_buff *skb);
316 };
317 
318 /* These flag bits are private to the generic network queueing
319  * layer; they may not be explicitly referenced by any other
320  * code.
321  */
322 
323 enum netdev_state_t {
324 	__LINK_STATE_START,
325 	__LINK_STATE_PRESENT,
326 	__LINK_STATE_NOCARRIER,
327 	__LINK_STATE_LINKWATCH_PENDING,
328 	__LINK_STATE_DORMANT,
329 	__LINK_STATE_TESTING,
330 };
331 
332 struct gro_list {
333 	struct list_head	list;
334 	int			count;
335 };
336 
337 /*
338  * size of gro hash buckets, must less than bit number of
339  * napi_struct::gro_bitmask
340  */
341 #define GRO_HASH_BUCKETS	8
342 
343 /*
344  * Structure for NAPI scheduling similar to tasklet but with weighting
345  */
346 struct napi_struct {
347 	/* The poll_list must only be managed by the entity which
348 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
349 	 * whoever atomically sets that bit can add this napi_struct
350 	 * to the per-CPU poll_list, and whoever clears that bit
351 	 * can remove from the list right before clearing the bit.
352 	 */
353 	struct list_head	poll_list;
354 
355 	unsigned long		state;
356 	int			weight;
357 	int			defer_hard_irqs_count;
358 	unsigned long		gro_bitmask;
359 	int			(*poll)(struct napi_struct *, int);
360 #ifdef CONFIG_NETPOLL
361 	int			poll_owner;
362 #endif
363 	struct net_device	*dev;
364 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
365 	struct sk_buff		*skb;
366 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
367 	int			rx_count; /* length of rx_list */
368 	struct hrtimer		timer;
369 	struct list_head	dev_list;
370 	struct hlist_node	napi_hash_node;
371 	unsigned int		napi_id;
372 	struct task_struct	*thread;
373 };
374 
375 enum {
376 	NAPI_STATE_SCHED,		/* Poll is scheduled */
377 	NAPI_STATE_MISSED,		/* reschedule a napi */
378 	NAPI_STATE_DISABLE,		/* Disable pending */
379 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
380 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
381 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
382 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
383 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
384 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
385 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
386 };
387 
388 enum {
389 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
390 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
391 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
392 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
393 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
394 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
395 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
396 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
397 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
398 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
399 };
400 
401 enum gro_result {
402 	GRO_MERGED,
403 	GRO_MERGED_FREE,
404 	GRO_HELD,
405 	GRO_NORMAL,
406 	GRO_CONSUMED,
407 };
408 typedef enum gro_result gro_result_t;
409 
410 /*
411  * enum rx_handler_result - Possible return values for rx_handlers.
412  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
413  * further.
414  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
415  * case skb->dev was changed by rx_handler.
416  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
417  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
418  *
419  * rx_handlers are functions called from inside __netif_receive_skb(), to do
420  * special processing of the skb, prior to delivery to protocol handlers.
421  *
422  * Currently, a net_device can only have a single rx_handler registered. Trying
423  * to register a second rx_handler will return -EBUSY.
424  *
425  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
426  * To unregister a rx_handler on a net_device, use
427  * netdev_rx_handler_unregister().
428  *
429  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
430  * do with the skb.
431  *
432  * If the rx_handler consumed the skb in some way, it should return
433  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
434  * the skb to be delivered in some other way.
435  *
436  * If the rx_handler changed skb->dev, to divert the skb to another
437  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
438  * new device will be called if it exists.
439  *
440  * If the rx_handler decides the skb should be ignored, it should return
441  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
442  * are registered on exact device (ptype->dev == skb->dev).
443  *
444  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
445  * delivered, it should return RX_HANDLER_PASS.
446  *
447  * A device without a registered rx_handler will behave as if rx_handler
448  * returned RX_HANDLER_PASS.
449  */
450 
451 enum rx_handler_result {
452 	RX_HANDLER_CONSUMED,
453 	RX_HANDLER_ANOTHER,
454 	RX_HANDLER_EXACT,
455 	RX_HANDLER_PASS,
456 };
457 typedef enum rx_handler_result rx_handler_result_t;
458 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
459 
460 void __napi_schedule(struct napi_struct *n);
461 void __napi_schedule_irqoff(struct napi_struct *n);
462 
463 static inline bool napi_disable_pending(struct napi_struct *n)
464 {
465 	return test_bit(NAPI_STATE_DISABLE, &n->state);
466 }
467 
468 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
469 {
470 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
471 }
472 
473 bool napi_schedule_prep(struct napi_struct *n);
474 
475 /**
476  *	napi_schedule - schedule NAPI poll
477  *	@n: NAPI context
478  *
479  * Schedule NAPI poll routine to be called if it is not already
480  * running.
481  */
482 static inline void napi_schedule(struct napi_struct *n)
483 {
484 	if (napi_schedule_prep(n))
485 		__napi_schedule(n);
486 }
487 
488 /**
489  *	napi_schedule_irqoff - schedule NAPI poll
490  *	@n: NAPI context
491  *
492  * Variant of napi_schedule(), assuming hard irqs are masked.
493  */
494 static inline void napi_schedule_irqoff(struct napi_struct *n)
495 {
496 	if (napi_schedule_prep(n))
497 		__napi_schedule_irqoff(n);
498 }
499 
500 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
501 static inline bool napi_reschedule(struct napi_struct *napi)
502 {
503 	if (napi_schedule_prep(napi)) {
504 		__napi_schedule(napi);
505 		return true;
506 	}
507 	return false;
508 }
509 
510 bool napi_complete_done(struct napi_struct *n, int work_done);
511 /**
512  *	napi_complete - NAPI processing complete
513  *	@n: NAPI context
514  *
515  * Mark NAPI processing as complete.
516  * Consider using napi_complete_done() instead.
517  * Return false if device should avoid rearming interrupts.
518  */
519 static inline bool napi_complete(struct napi_struct *n)
520 {
521 	return napi_complete_done(n, 0);
522 }
523 
524 int dev_set_threaded(struct net_device *dev, bool threaded);
525 
526 /**
527  *	napi_disable - prevent NAPI from scheduling
528  *	@n: NAPI context
529  *
530  * Stop NAPI from being scheduled on this context.
531  * Waits till any outstanding processing completes.
532  */
533 void napi_disable(struct napi_struct *n);
534 
535 void napi_enable(struct napi_struct *n);
536 
537 /**
538  *	napi_synchronize - wait until NAPI is not running
539  *	@n: NAPI context
540  *
541  * Wait until NAPI is done being scheduled on this context.
542  * Waits till any outstanding processing completes but
543  * does not disable future activations.
544  */
545 static inline void napi_synchronize(const struct napi_struct *n)
546 {
547 	if (IS_ENABLED(CONFIG_SMP))
548 		while (test_bit(NAPI_STATE_SCHED, &n->state))
549 			msleep(1);
550 	else
551 		barrier();
552 }
553 
554 /**
555  *	napi_if_scheduled_mark_missed - if napi is running, set the
556  *	NAPIF_STATE_MISSED
557  *	@n: NAPI context
558  *
559  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
560  * NAPI is scheduled.
561  **/
562 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
563 {
564 	unsigned long val, new;
565 
566 	val = READ_ONCE(n->state);
567 	do {
568 		if (val & NAPIF_STATE_DISABLE)
569 			return true;
570 
571 		if (!(val & NAPIF_STATE_SCHED))
572 			return false;
573 
574 		new = val | NAPIF_STATE_MISSED;
575 	} while (!try_cmpxchg(&n->state, &val, new));
576 
577 	return true;
578 }
579 
580 enum netdev_queue_state_t {
581 	__QUEUE_STATE_DRV_XOFF,
582 	__QUEUE_STATE_STACK_XOFF,
583 	__QUEUE_STATE_FROZEN,
584 };
585 
586 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
587 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
588 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
589 
590 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
591 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
592 					QUEUE_STATE_FROZEN)
593 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
594 					QUEUE_STATE_FROZEN)
595 
596 /*
597  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
598  * netif_tx_* functions below are used to manipulate this flag.  The
599  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
600  * queue independently.  The netif_xmit_*stopped functions below are called
601  * to check if the queue has been stopped by the driver or stack (either
602  * of the XOFF bits are set in the state).  Drivers should not need to call
603  * netif_xmit*stopped functions, they should only be using netif_tx_*.
604  */
605 
606 struct netdev_queue {
607 /*
608  * read-mostly part
609  */
610 	struct net_device	*dev;
611 	netdevice_tracker	dev_tracker;
612 
613 	struct Qdisc __rcu	*qdisc;
614 	struct Qdisc		*qdisc_sleeping;
615 #ifdef CONFIG_SYSFS
616 	struct kobject		kobj;
617 #endif
618 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
619 	int			numa_node;
620 #endif
621 	unsigned long		tx_maxrate;
622 	/*
623 	 * Number of TX timeouts for this queue
624 	 * (/sys/class/net/DEV/Q/trans_timeout)
625 	 */
626 	atomic_long_t		trans_timeout;
627 
628 	/* Subordinate device that the queue has been assigned to */
629 	struct net_device	*sb_dev;
630 #ifdef CONFIG_XDP_SOCKETS
631 	struct xsk_buff_pool    *pool;
632 #endif
633 /*
634  * write-mostly part
635  */
636 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
637 	int			xmit_lock_owner;
638 	/*
639 	 * Time (in jiffies) of last Tx
640 	 */
641 	unsigned long		trans_start;
642 
643 	unsigned long		state;
644 
645 #ifdef CONFIG_BQL
646 	struct dql		dql;
647 #endif
648 } ____cacheline_aligned_in_smp;
649 
650 extern int sysctl_fb_tunnels_only_for_init_net;
651 extern int sysctl_devconf_inherit_init_net;
652 
653 /*
654  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
655  *                                     == 1 : For initns only
656  *                                     == 2 : For none.
657  */
658 static inline bool net_has_fallback_tunnels(const struct net *net)
659 {
660 #if IS_ENABLED(CONFIG_SYSCTL)
661 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
662 
663 	return !fb_tunnels_only_for_init_net ||
664 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
665 #else
666 	return true;
667 #endif
668 }
669 
670 static inline int net_inherit_devconf(void)
671 {
672 #if IS_ENABLED(CONFIG_SYSCTL)
673 	return READ_ONCE(sysctl_devconf_inherit_init_net);
674 #else
675 	return 0;
676 #endif
677 }
678 
679 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
680 {
681 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
682 	return q->numa_node;
683 #else
684 	return NUMA_NO_NODE;
685 #endif
686 }
687 
688 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
689 {
690 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
691 	q->numa_node = node;
692 #endif
693 }
694 
695 #ifdef CONFIG_RPS
696 /*
697  * This structure holds an RPS map which can be of variable length.  The
698  * map is an array of CPUs.
699  */
700 struct rps_map {
701 	unsigned int len;
702 	struct rcu_head rcu;
703 	u16 cpus[];
704 };
705 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
706 
707 /*
708  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
709  * tail pointer for that CPU's input queue at the time of last enqueue, and
710  * a hardware filter index.
711  */
712 struct rps_dev_flow {
713 	u16 cpu;
714 	u16 filter;
715 	unsigned int last_qtail;
716 };
717 #define RPS_NO_FILTER 0xffff
718 
719 /*
720  * The rps_dev_flow_table structure contains a table of flow mappings.
721  */
722 struct rps_dev_flow_table {
723 	unsigned int mask;
724 	struct rcu_head rcu;
725 	struct rps_dev_flow flows[];
726 };
727 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
728     ((_num) * sizeof(struct rps_dev_flow)))
729 
730 /*
731  * The rps_sock_flow_table contains mappings of flows to the last CPU
732  * on which they were processed by the application (set in recvmsg).
733  * Each entry is a 32bit value. Upper part is the high-order bits
734  * of flow hash, lower part is CPU number.
735  * rps_cpu_mask is used to partition the space, depending on number of
736  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
737  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
738  * meaning we use 32-6=26 bits for the hash.
739  */
740 struct rps_sock_flow_table {
741 	u32	mask;
742 
743 	u32	ents[] ____cacheline_aligned_in_smp;
744 };
745 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
746 
747 #define RPS_NO_CPU 0xffff
748 
749 extern u32 rps_cpu_mask;
750 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
751 
752 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
753 					u32 hash)
754 {
755 	if (table && hash) {
756 		unsigned int index = hash & table->mask;
757 		u32 val = hash & ~rps_cpu_mask;
758 
759 		/* We only give a hint, preemption can change CPU under us */
760 		val |= raw_smp_processor_id();
761 
762 		if (table->ents[index] != val)
763 			table->ents[index] = val;
764 	}
765 }
766 
767 #ifdef CONFIG_RFS_ACCEL
768 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
769 			 u16 filter_id);
770 #endif
771 #endif /* CONFIG_RPS */
772 
773 /* This structure contains an instance of an RX queue. */
774 struct netdev_rx_queue {
775 	struct xdp_rxq_info		xdp_rxq;
776 #ifdef CONFIG_RPS
777 	struct rps_map __rcu		*rps_map;
778 	struct rps_dev_flow_table __rcu	*rps_flow_table;
779 #endif
780 	struct kobject			kobj;
781 	struct net_device		*dev;
782 	netdevice_tracker		dev_tracker;
783 
784 #ifdef CONFIG_XDP_SOCKETS
785 	struct xsk_buff_pool            *pool;
786 #endif
787 } ____cacheline_aligned_in_smp;
788 
789 /*
790  * RX queue sysfs structures and functions.
791  */
792 struct rx_queue_attribute {
793 	struct attribute attr;
794 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
795 	ssize_t (*store)(struct netdev_rx_queue *queue,
796 			 const char *buf, size_t len);
797 };
798 
799 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
800 enum xps_map_type {
801 	XPS_CPUS = 0,
802 	XPS_RXQS,
803 	XPS_MAPS_MAX,
804 };
805 
806 #ifdef CONFIG_XPS
807 /*
808  * This structure holds an XPS map which can be of variable length.  The
809  * map is an array of queues.
810  */
811 struct xps_map {
812 	unsigned int len;
813 	unsigned int alloc_len;
814 	struct rcu_head rcu;
815 	u16 queues[];
816 };
817 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
818 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
819        - sizeof(struct xps_map)) / sizeof(u16))
820 
821 /*
822  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
823  *
824  * We keep track of the number of cpus/rxqs used when the struct is allocated,
825  * in nr_ids. This will help not accessing out-of-bound memory.
826  *
827  * We keep track of the number of traffic classes used when the struct is
828  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
829  * not crossing its upper bound, as the original dev->num_tc can be updated in
830  * the meantime.
831  */
832 struct xps_dev_maps {
833 	struct rcu_head rcu;
834 	unsigned int nr_ids;
835 	s16 num_tc;
836 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
837 };
838 
839 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
840 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
841 
842 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
843 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
844 
845 #endif /* CONFIG_XPS */
846 
847 #define TC_MAX_QUEUE	16
848 #define TC_BITMASK	15
849 /* HW offloaded queuing disciplines txq count and offset maps */
850 struct netdev_tc_txq {
851 	u16 count;
852 	u16 offset;
853 };
854 
855 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
856 /*
857  * This structure is to hold information about the device
858  * configured to run FCoE protocol stack.
859  */
860 struct netdev_fcoe_hbainfo {
861 	char	manufacturer[64];
862 	char	serial_number[64];
863 	char	hardware_version[64];
864 	char	driver_version[64];
865 	char	optionrom_version[64];
866 	char	firmware_version[64];
867 	char	model[256];
868 	char	model_description[256];
869 };
870 #endif
871 
872 #define MAX_PHYS_ITEM_ID_LEN 32
873 
874 /* This structure holds a unique identifier to identify some
875  * physical item (port for example) used by a netdevice.
876  */
877 struct netdev_phys_item_id {
878 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
879 	unsigned char id_len;
880 };
881 
882 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
883 					    struct netdev_phys_item_id *b)
884 {
885 	return a->id_len == b->id_len &&
886 	       memcmp(a->id, b->id, a->id_len) == 0;
887 }
888 
889 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
890 				       struct sk_buff *skb,
891 				       struct net_device *sb_dev);
892 
893 enum net_device_path_type {
894 	DEV_PATH_ETHERNET = 0,
895 	DEV_PATH_VLAN,
896 	DEV_PATH_BRIDGE,
897 	DEV_PATH_PPPOE,
898 	DEV_PATH_DSA,
899 	DEV_PATH_MTK_WDMA,
900 };
901 
902 struct net_device_path {
903 	enum net_device_path_type	type;
904 	const struct net_device		*dev;
905 	union {
906 		struct {
907 			u16		id;
908 			__be16		proto;
909 			u8		h_dest[ETH_ALEN];
910 		} encap;
911 		struct {
912 			enum {
913 				DEV_PATH_BR_VLAN_KEEP,
914 				DEV_PATH_BR_VLAN_TAG,
915 				DEV_PATH_BR_VLAN_UNTAG,
916 				DEV_PATH_BR_VLAN_UNTAG_HW,
917 			}		vlan_mode;
918 			u16		vlan_id;
919 			__be16		vlan_proto;
920 		} bridge;
921 		struct {
922 			int port;
923 			u16 proto;
924 		} dsa;
925 		struct {
926 			u8 wdma_idx;
927 			u8 queue;
928 			u16 wcid;
929 			u8 bss;
930 		} mtk_wdma;
931 	};
932 };
933 
934 #define NET_DEVICE_PATH_STACK_MAX	5
935 #define NET_DEVICE_PATH_VLAN_MAX	2
936 
937 struct net_device_path_stack {
938 	int			num_paths;
939 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
940 };
941 
942 struct net_device_path_ctx {
943 	const struct net_device *dev;
944 	u8			daddr[ETH_ALEN];
945 
946 	int			num_vlans;
947 	struct {
948 		u16		id;
949 		__be16		proto;
950 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
951 };
952 
953 enum tc_setup_type {
954 	TC_QUERY_CAPS,
955 	TC_SETUP_QDISC_MQPRIO,
956 	TC_SETUP_CLSU32,
957 	TC_SETUP_CLSFLOWER,
958 	TC_SETUP_CLSMATCHALL,
959 	TC_SETUP_CLSBPF,
960 	TC_SETUP_BLOCK,
961 	TC_SETUP_QDISC_CBS,
962 	TC_SETUP_QDISC_RED,
963 	TC_SETUP_QDISC_PRIO,
964 	TC_SETUP_QDISC_MQ,
965 	TC_SETUP_QDISC_ETF,
966 	TC_SETUP_ROOT_QDISC,
967 	TC_SETUP_QDISC_GRED,
968 	TC_SETUP_QDISC_TAPRIO,
969 	TC_SETUP_FT,
970 	TC_SETUP_QDISC_ETS,
971 	TC_SETUP_QDISC_TBF,
972 	TC_SETUP_QDISC_FIFO,
973 	TC_SETUP_QDISC_HTB,
974 	TC_SETUP_ACT,
975 };
976 
977 /* These structures hold the attributes of bpf state that are being passed
978  * to the netdevice through the bpf op.
979  */
980 enum bpf_netdev_command {
981 	/* Set or clear a bpf program used in the earliest stages of packet
982 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
983 	 * is responsible for calling bpf_prog_put on any old progs that are
984 	 * stored. In case of error, the callee need not release the new prog
985 	 * reference, but on success it takes ownership and must bpf_prog_put
986 	 * when it is no longer used.
987 	 */
988 	XDP_SETUP_PROG,
989 	XDP_SETUP_PROG_HW,
990 	/* BPF program for offload callbacks, invoked at program load time. */
991 	BPF_OFFLOAD_MAP_ALLOC,
992 	BPF_OFFLOAD_MAP_FREE,
993 	XDP_SETUP_XSK_POOL,
994 };
995 
996 struct bpf_prog_offload_ops;
997 struct netlink_ext_ack;
998 struct xdp_umem;
999 struct xdp_dev_bulk_queue;
1000 struct bpf_xdp_link;
1001 
1002 enum bpf_xdp_mode {
1003 	XDP_MODE_SKB = 0,
1004 	XDP_MODE_DRV = 1,
1005 	XDP_MODE_HW = 2,
1006 	__MAX_XDP_MODE
1007 };
1008 
1009 struct bpf_xdp_entity {
1010 	struct bpf_prog *prog;
1011 	struct bpf_xdp_link *link;
1012 };
1013 
1014 struct netdev_bpf {
1015 	enum bpf_netdev_command command;
1016 	union {
1017 		/* XDP_SETUP_PROG */
1018 		struct {
1019 			u32 flags;
1020 			struct bpf_prog *prog;
1021 			struct netlink_ext_ack *extack;
1022 		};
1023 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1024 		struct {
1025 			struct bpf_offloaded_map *offmap;
1026 		};
1027 		/* XDP_SETUP_XSK_POOL */
1028 		struct {
1029 			struct xsk_buff_pool *pool;
1030 			u16 queue_id;
1031 		} xsk;
1032 	};
1033 };
1034 
1035 /* Flags for ndo_xsk_wakeup. */
1036 #define XDP_WAKEUP_RX (1 << 0)
1037 #define XDP_WAKEUP_TX (1 << 1)
1038 
1039 #ifdef CONFIG_XFRM_OFFLOAD
1040 struct xfrmdev_ops {
1041 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1042 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1043 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1044 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1045 				       struct xfrm_state *x);
1046 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1047 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1048 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1049 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1050 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1051 };
1052 #endif
1053 
1054 struct dev_ifalias {
1055 	struct rcu_head rcuhead;
1056 	char ifalias[];
1057 };
1058 
1059 struct devlink;
1060 struct tlsdev_ops;
1061 
1062 struct netdev_net_notifier {
1063 	struct list_head list;
1064 	struct notifier_block *nb;
1065 };
1066 
1067 /*
1068  * This structure defines the management hooks for network devices.
1069  * The following hooks can be defined; unless noted otherwise, they are
1070  * optional and can be filled with a null pointer.
1071  *
1072  * int (*ndo_init)(struct net_device *dev);
1073  *     This function is called once when a network device is registered.
1074  *     The network device can use this for any late stage initialization
1075  *     or semantic validation. It can fail with an error code which will
1076  *     be propagated back to register_netdev.
1077  *
1078  * void (*ndo_uninit)(struct net_device *dev);
1079  *     This function is called when device is unregistered or when registration
1080  *     fails. It is not called if init fails.
1081  *
1082  * int (*ndo_open)(struct net_device *dev);
1083  *     This function is called when a network device transitions to the up
1084  *     state.
1085  *
1086  * int (*ndo_stop)(struct net_device *dev);
1087  *     This function is called when a network device transitions to the down
1088  *     state.
1089  *
1090  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1091  *                               struct net_device *dev);
1092  *	Called when a packet needs to be transmitted.
1093  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1094  *	the queue before that can happen; it's for obsolete devices and weird
1095  *	corner cases, but the stack really does a non-trivial amount
1096  *	of useless work if you return NETDEV_TX_BUSY.
1097  *	Required; cannot be NULL.
1098  *
1099  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1100  *					   struct net_device *dev
1101  *					   netdev_features_t features);
1102  *	Called by core transmit path to determine if device is capable of
1103  *	performing offload operations on a given packet. This is to give
1104  *	the device an opportunity to implement any restrictions that cannot
1105  *	be otherwise expressed by feature flags. The check is called with
1106  *	the set of features that the stack has calculated and it returns
1107  *	those the driver believes to be appropriate.
1108  *
1109  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1110  *                         struct net_device *sb_dev);
1111  *	Called to decide which queue to use when device supports multiple
1112  *	transmit queues.
1113  *
1114  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1115  *	This function is called to allow device receiver to make
1116  *	changes to configuration when multicast or promiscuous is enabled.
1117  *
1118  * void (*ndo_set_rx_mode)(struct net_device *dev);
1119  *	This function is called device changes address list filtering.
1120  *	If driver handles unicast address filtering, it should set
1121  *	IFF_UNICAST_FLT in its priv_flags.
1122  *
1123  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1124  *	This function  is called when the Media Access Control address
1125  *	needs to be changed. If this interface is not defined, the
1126  *	MAC address can not be changed.
1127  *
1128  * int (*ndo_validate_addr)(struct net_device *dev);
1129  *	Test if Media Access Control address is valid for the device.
1130  *
1131  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1132  *	Old-style ioctl entry point. This is used internally by the
1133  *	appletalk and ieee802154 subsystems but is no longer called by
1134  *	the device ioctl handler.
1135  *
1136  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1137  *	Used by the bonding driver for its device specific ioctls:
1138  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1139  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1140  *
1141  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1142  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1143  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1144  *
1145  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1146  *	Used to set network devices bus interface parameters. This interface
1147  *	is retained for legacy reasons; new devices should use the bus
1148  *	interface (PCI) for low level management.
1149  *
1150  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1151  *	Called when a user wants to change the Maximum Transfer Unit
1152  *	of a device.
1153  *
1154  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1155  *	Callback used when the transmitter has not made any progress
1156  *	for dev->watchdog ticks.
1157  *
1158  * void (*ndo_get_stats64)(struct net_device *dev,
1159  *                         struct rtnl_link_stats64 *storage);
1160  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1161  *	Called when a user wants to get the network device usage
1162  *	statistics. Drivers must do one of the following:
1163  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1164  *	   rtnl_link_stats64 structure passed by the caller.
1165  *	2. Define @ndo_get_stats to update a net_device_stats structure
1166  *	   (which should normally be dev->stats) and return a pointer to
1167  *	   it. The structure may be changed asynchronously only if each
1168  *	   field is written atomically.
1169  *	3. Update dev->stats asynchronously and atomically, and define
1170  *	   neither operation.
1171  *
1172  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1173  *	Return true if this device supports offload stats of this attr_id.
1174  *
1175  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1176  *	void *attr_data)
1177  *	Get statistics for offload operations by attr_id. Write it into the
1178  *	attr_data pointer.
1179  *
1180  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1181  *	If device supports VLAN filtering this function is called when a
1182  *	VLAN id is registered.
1183  *
1184  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1185  *	If device supports VLAN filtering this function is called when a
1186  *	VLAN id is unregistered.
1187  *
1188  * void (*ndo_poll_controller)(struct net_device *dev);
1189  *
1190  *	SR-IOV management functions.
1191  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1192  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1193  *			  u8 qos, __be16 proto);
1194  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1195  *			  int max_tx_rate);
1196  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1197  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1198  * int (*ndo_get_vf_config)(struct net_device *dev,
1199  *			    int vf, struct ifla_vf_info *ivf);
1200  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1201  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1202  *			  struct nlattr *port[]);
1203  *
1204  *      Enable or disable the VF ability to query its RSS Redirection Table and
1205  *      Hash Key. This is needed since on some devices VF share this information
1206  *      with PF and querying it may introduce a theoretical security risk.
1207  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1208  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1209  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1210  *		       void *type_data);
1211  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1212  *	This is always called from the stack with the rtnl lock held and netif
1213  *	tx queues stopped. This allows the netdevice to perform queue
1214  *	management safely.
1215  *
1216  *	Fiber Channel over Ethernet (FCoE) offload functions.
1217  * int (*ndo_fcoe_enable)(struct net_device *dev);
1218  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1219  *	so the underlying device can perform whatever needed configuration or
1220  *	initialization to support acceleration of FCoE traffic.
1221  *
1222  * int (*ndo_fcoe_disable)(struct net_device *dev);
1223  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1224  *	so the underlying device can perform whatever needed clean-ups to
1225  *	stop supporting acceleration of FCoE traffic.
1226  *
1227  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1228  *			     struct scatterlist *sgl, unsigned int sgc);
1229  *	Called when the FCoE Initiator wants to initialize an I/O that
1230  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1231  *	perform necessary setup and returns 1 to indicate the device is set up
1232  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1233  *
1234  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1235  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1236  *	indicated by the FC exchange id 'xid', so the underlying device can
1237  *	clean up and reuse resources for later DDP requests.
1238  *
1239  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1240  *			      struct scatterlist *sgl, unsigned int sgc);
1241  *	Called when the FCoE Target wants to initialize an I/O that
1242  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1243  *	perform necessary setup and returns 1 to indicate the device is set up
1244  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1245  *
1246  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1247  *			       struct netdev_fcoe_hbainfo *hbainfo);
1248  *	Called when the FCoE Protocol stack wants information on the underlying
1249  *	device. This information is utilized by the FCoE protocol stack to
1250  *	register attributes with Fiber Channel management service as per the
1251  *	FC-GS Fabric Device Management Information(FDMI) specification.
1252  *
1253  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1254  *	Called when the underlying device wants to override default World Wide
1255  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1256  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1257  *	protocol stack to use.
1258  *
1259  *	RFS acceleration.
1260  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1261  *			    u16 rxq_index, u32 flow_id);
1262  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1263  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1264  *	Return the filter ID on success, or a negative error code.
1265  *
1266  *	Slave management functions (for bridge, bonding, etc).
1267  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1268  *	Called to make another netdev an underling.
1269  *
1270  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1271  *	Called to release previously enslaved netdev.
1272  *
1273  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1274  *					    struct sk_buff *skb,
1275  *					    bool all_slaves);
1276  *	Get the xmit slave of master device. If all_slaves is true, function
1277  *	assume all the slaves can transmit.
1278  *
1279  *      Feature/offload setting functions.
1280  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1281  *		netdev_features_t features);
1282  *	Adjusts the requested feature flags according to device-specific
1283  *	constraints, and returns the resulting flags. Must not modify
1284  *	the device state.
1285  *
1286  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1287  *	Called to update device configuration to new features. Passed
1288  *	feature set might be less than what was returned by ndo_fix_features()).
1289  *	Must return >0 or -errno if it changed dev->features itself.
1290  *
1291  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1292  *		      struct net_device *dev,
1293  *		      const unsigned char *addr, u16 vid, u16 flags,
1294  *		      struct netlink_ext_ack *extack);
1295  *	Adds an FDB entry to dev for addr.
1296  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1297  *		      struct net_device *dev,
1298  *		      const unsigned char *addr, u16 vid)
1299  *	Deletes the FDB entry from dev coresponding to addr.
1300  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1301  *			   struct net_device *dev,
1302  *			   u16 vid,
1303  *			   struct netlink_ext_ack *extack);
1304  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1305  *		       struct net_device *dev, struct net_device *filter_dev,
1306  *		       int *idx)
1307  *	Used to add FDB entries to dump requests. Implementers should add
1308  *	entries to skb and update idx with the number of entries.
1309  *
1310  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1311  *			     u16 flags, struct netlink_ext_ack *extack)
1312  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1313  *			     struct net_device *dev, u32 filter_mask,
1314  *			     int nlflags)
1315  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1316  *			     u16 flags);
1317  *
1318  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1319  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1320  *	which do not represent real hardware may define this to allow their
1321  *	userspace components to manage their virtual carrier state. Devices
1322  *	that determine carrier state from physical hardware properties (eg
1323  *	network cables) or protocol-dependent mechanisms (eg
1324  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1325  *
1326  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1327  *			       struct netdev_phys_item_id *ppid);
1328  *	Called to get ID of physical port of this device. If driver does
1329  *	not implement this, it is assumed that the hw is not able to have
1330  *	multiple net devices on single physical port.
1331  *
1332  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1333  *				 struct netdev_phys_item_id *ppid)
1334  *	Called to get the parent ID of the physical port of this device.
1335  *
1336  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1337  *				 struct net_device *dev)
1338  *	Called by upper layer devices to accelerate switching or other
1339  *	station functionality into hardware. 'pdev is the lowerdev
1340  *	to use for the offload and 'dev' is the net device that will
1341  *	back the offload. Returns a pointer to the private structure
1342  *	the upper layer will maintain.
1343  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1344  *	Called by upper layer device to delete the station created
1345  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1346  *	the station and priv is the structure returned by the add
1347  *	operation.
1348  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1349  *			     int queue_index, u32 maxrate);
1350  *	Called when a user wants to set a max-rate limitation of specific
1351  *	TX queue.
1352  * int (*ndo_get_iflink)(const struct net_device *dev);
1353  *	Called to get the iflink value of this device.
1354  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1355  *	This function is used to get egress tunnel information for given skb.
1356  *	This is useful for retrieving outer tunnel header parameters while
1357  *	sampling packet.
1358  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1359  *	This function is used to specify the headroom that the skb must
1360  *	consider when allocation skb during packet reception. Setting
1361  *	appropriate rx headroom value allows avoiding skb head copy on
1362  *	forward. Setting a negative value resets the rx headroom to the
1363  *	default value.
1364  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1365  *	This function is used to set or query state related to XDP on the
1366  *	netdevice and manage BPF offload. See definition of
1367  *	enum bpf_netdev_command for details.
1368  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1369  *			u32 flags);
1370  *	This function is used to submit @n XDP packets for transmit on a
1371  *	netdevice. Returns number of frames successfully transmitted, frames
1372  *	that got dropped are freed/returned via xdp_return_frame().
1373  *	Returns negative number, means general error invoking ndo, meaning
1374  *	no frames were xmit'ed and core-caller will free all frames.
1375  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1376  *					        struct xdp_buff *xdp);
1377  *      Get the xmit slave of master device based on the xdp_buff.
1378  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1379  *      This function is used to wake up the softirq, ksoftirqd or kthread
1380  *	responsible for sending and/or receiving packets on a specific
1381  *	queue id bound to an AF_XDP socket. The flags field specifies if
1382  *	only RX, only Tx, or both should be woken up using the flags
1383  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1384  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1385  *			 int cmd);
1386  *	Add, change, delete or get information on an IPv4 tunnel.
1387  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1388  *	If a device is paired with a peer device, return the peer instance.
1389  *	The caller must be under RCU read context.
1390  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1391  *     Get the forwarding path to reach the real device from the HW destination address
1392  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1393  *			     const struct skb_shared_hwtstamps *hwtstamps,
1394  *			     bool cycles);
1395  *	Get hardware timestamp based on normal/adjustable time or free running
1396  *	cycle counter. This function is required if physical clock supports a
1397  *	free running cycle counter.
1398  */
1399 struct net_device_ops {
1400 	int			(*ndo_init)(struct net_device *dev);
1401 	void			(*ndo_uninit)(struct net_device *dev);
1402 	int			(*ndo_open)(struct net_device *dev);
1403 	int			(*ndo_stop)(struct net_device *dev);
1404 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1405 						  struct net_device *dev);
1406 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1407 						      struct net_device *dev,
1408 						      netdev_features_t features);
1409 	u16			(*ndo_select_queue)(struct net_device *dev,
1410 						    struct sk_buff *skb,
1411 						    struct net_device *sb_dev);
1412 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1413 						       int flags);
1414 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1415 	int			(*ndo_set_mac_address)(struct net_device *dev,
1416 						       void *addr);
1417 	int			(*ndo_validate_addr)(struct net_device *dev);
1418 	int			(*ndo_do_ioctl)(struct net_device *dev,
1419 					        struct ifreq *ifr, int cmd);
1420 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1421 						 struct ifreq *ifr, int cmd);
1422 	int			(*ndo_siocbond)(struct net_device *dev,
1423 						struct ifreq *ifr, int cmd);
1424 	int			(*ndo_siocwandev)(struct net_device *dev,
1425 						  struct if_settings *ifs);
1426 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1427 						      struct ifreq *ifr,
1428 						      void __user *data, int cmd);
1429 	int			(*ndo_set_config)(struct net_device *dev,
1430 					          struct ifmap *map);
1431 	int			(*ndo_change_mtu)(struct net_device *dev,
1432 						  int new_mtu);
1433 	int			(*ndo_neigh_setup)(struct net_device *dev,
1434 						   struct neigh_parms *);
1435 	void			(*ndo_tx_timeout) (struct net_device *dev,
1436 						   unsigned int txqueue);
1437 
1438 	void			(*ndo_get_stats64)(struct net_device *dev,
1439 						   struct rtnl_link_stats64 *storage);
1440 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1441 	int			(*ndo_get_offload_stats)(int attr_id,
1442 							 const struct net_device *dev,
1443 							 void *attr_data);
1444 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1445 
1446 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1447 						       __be16 proto, u16 vid);
1448 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1449 						        __be16 proto, u16 vid);
1450 #ifdef CONFIG_NET_POLL_CONTROLLER
1451 	void                    (*ndo_poll_controller)(struct net_device *dev);
1452 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1453 						     struct netpoll_info *info);
1454 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1455 #endif
1456 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1457 						  int queue, u8 *mac);
1458 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1459 						   int queue, u16 vlan,
1460 						   u8 qos, __be16 proto);
1461 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1462 						   int vf, int min_tx_rate,
1463 						   int max_tx_rate);
1464 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1465 						       int vf, bool setting);
1466 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1467 						    int vf, bool setting);
1468 	int			(*ndo_get_vf_config)(struct net_device *dev,
1469 						     int vf,
1470 						     struct ifla_vf_info *ivf);
1471 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1472 							 int vf, int link_state);
1473 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1474 						    int vf,
1475 						    struct ifla_vf_stats
1476 						    *vf_stats);
1477 	int			(*ndo_set_vf_port)(struct net_device *dev,
1478 						   int vf,
1479 						   struct nlattr *port[]);
1480 	int			(*ndo_get_vf_port)(struct net_device *dev,
1481 						   int vf, struct sk_buff *skb);
1482 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1483 						   int vf,
1484 						   struct ifla_vf_guid *node_guid,
1485 						   struct ifla_vf_guid *port_guid);
1486 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1487 						   int vf, u64 guid,
1488 						   int guid_type);
1489 	int			(*ndo_set_vf_rss_query_en)(
1490 						   struct net_device *dev,
1491 						   int vf, bool setting);
1492 	int			(*ndo_setup_tc)(struct net_device *dev,
1493 						enum tc_setup_type type,
1494 						void *type_data);
1495 #if IS_ENABLED(CONFIG_FCOE)
1496 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1497 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1498 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1499 						      u16 xid,
1500 						      struct scatterlist *sgl,
1501 						      unsigned int sgc);
1502 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1503 						     u16 xid);
1504 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1505 						       u16 xid,
1506 						       struct scatterlist *sgl,
1507 						       unsigned int sgc);
1508 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1509 							struct netdev_fcoe_hbainfo *hbainfo);
1510 #endif
1511 
1512 #if IS_ENABLED(CONFIG_LIBFCOE)
1513 #define NETDEV_FCOE_WWNN 0
1514 #define NETDEV_FCOE_WWPN 1
1515 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1516 						    u64 *wwn, int type);
1517 #endif
1518 
1519 #ifdef CONFIG_RFS_ACCEL
1520 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1521 						     const struct sk_buff *skb,
1522 						     u16 rxq_index,
1523 						     u32 flow_id);
1524 #endif
1525 	int			(*ndo_add_slave)(struct net_device *dev,
1526 						 struct net_device *slave_dev,
1527 						 struct netlink_ext_ack *extack);
1528 	int			(*ndo_del_slave)(struct net_device *dev,
1529 						 struct net_device *slave_dev);
1530 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1531 						      struct sk_buff *skb,
1532 						      bool all_slaves);
1533 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1534 							struct sock *sk);
1535 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1536 						    netdev_features_t features);
1537 	int			(*ndo_set_features)(struct net_device *dev,
1538 						    netdev_features_t features);
1539 	int			(*ndo_neigh_construct)(struct net_device *dev,
1540 						       struct neighbour *n);
1541 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1542 						     struct neighbour *n);
1543 
1544 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1545 					       struct nlattr *tb[],
1546 					       struct net_device *dev,
1547 					       const unsigned char *addr,
1548 					       u16 vid,
1549 					       u16 flags,
1550 					       struct netlink_ext_ack *extack);
1551 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1552 					       struct nlattr *tb[],
1553 					       struct net_device *dev,
1554 					       const unsigned char *addr,
1555 					       u16 vid, struct netlink_ext_ack *extack);
1556 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1557 						    struct nlattr *tb[],
1558 						    struct net_device *dev,
1559 						    u16 vid,
1560 						    struct netlink_ext_ack *extack);
1561 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1562 						struct netlink_callback *cb,
1563 						struct net_device *dev,
1564 						struct net_device *filter_dev,
1565 						int *idx);
1566 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1567 					       struct nlattr *tb[],
1568 					       struct net_device *dev,
1569 					       const unsigned char *addr,
1570 					       u16 vid, u32 portid, u32 seq,
1571 					       struct netlink_ext_ack *extack);
1572 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1573 						      struct nlmsghdr *nlh,
1574 						      u16 flags,
1575 						      struct netlink_ext_ack *extack);
1576 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1577 						      u32 pid, u32 seq,
1578 						      struct net_device *dev,
1579 						      u32 filter_mask,
1580 						      int nlflags);
1581 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1582 						      struct nlmsghdr *nlh,
1583 						      u16 flags);
1584 	int			(*ndo_change_carrier)(struct net_device *dev,
1585 						      bool new_carrier);
1586 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1587 							struct netdev_phys_item_id *ppid);
1588 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1589 							  struct netdev_phys_item_id *ppid);
1590 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1591 							  char *name, size_t len);
1592 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1593 							struct net_device *dev);
1594 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1595 							void *priv);
1596 
1597 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1598 						      int queue_index,
1599 						      u32 maxrate);
1600 	int			(*ndo_get_iflink)(const struct net_device *dev);
1601 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1602 						       struct sk_buff *skb);
1603 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1604 						       int needed_headroom);
1605 	int			(*ndo_bpf)(struct net_device *dev,
1606 					   struct netdev_bpf *bpf);
1607 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1608 						struct xdp_frame **xdp,
1609 						u32 flags);
1610 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1611 							  struct xdp_buff *xdp);
1612 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1613 						  u32 queue_id, u32 flags);
1614 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1615 						  struct ip_tunnel_parm *p, int cmd);
1616 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1617 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1618                                                          struct net_device_path *path);
1619 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1620 						  const struct skb_shared_hwtstamps *hwtstamps,
1621 						  bool cycles);
1622 };
1623 
1624 struct xdp_metadata_ops {
1625 	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
1626 	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash);
1627 };
1628 
1629 /**
1630  * enum netdev_priv_flags - &struct net_device priv_flags
1631  *
1632  * These are the &struct net_device, they are only set internally
1633  * by drivers and used in the kernel. These flags are invisible to
1634  * userspace; this means that the order of these flags can change
1635  * during any kernel release.
1636  *
1637  * You should have a pretty good reason to be extending these flags.
1638  *
1639  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1640  * @IFF_EBRIDGE: Ethernet bridging device
1641  * @IFF_BONDING: bonding master or slave
1642  * @IFF_ISATAP: ISATAP interface (RFC4214)
1643  * @IFF_WAN_HDLC: WAN HDLC device
1644  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1645  *	release skb->dst
1646  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1647  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1648  * @IFF_MACVLAN_PORT: device used as macvlan port
1649  * @IFF_BRIDGE_PORT: device used as bridge port
1650  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1651  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1652  * @IFF_UNICAST_FLT: Supports unicast filtering
1653  * @IFF_TEAM_PORT: device used as team port
1654  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1655  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1656  *	change when it's running
1657  * @IFF_MACVLAN: Macvlan device
1658  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1659  *	underlying stacked devices
1660  * @IFF_L3MDEV_MASTER: device is an L3 master device
1661  * @IFF_NO_QUEUE: device can run without qdisc attached
1662  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1663  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1664  * @IFF_TEAM: device is a team device
1665  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1666  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1667  *	entity (i.e. the master device for bridged veth)
1668  * @IFF_MACSEC: device is a MACsec device
1669  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1670  * @IFF_FAILOVER: device is a failover master device
1671  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1672  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1673  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1674  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1675  *	skb_headlen(skb) == 0 (data starts from frag0)
1676  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1677  */
1678 enum netdev_priv_flags {
1679 	IFF_802_1Q_VLAN			= 1<<0,
1680 	IFF_EBRIDGE			= 1<<1,
1681 	IFF_BONDING			= 1<<2,
1682 	IFF_ISATAP			= 1<<3,
1683 	IFF_WAN_HDLC			= 1<<4,
1684 	IFF_XMIT_DST_RELEASE		= 1<<5,
1685 	IFF_DONT_BRIDGE			= 1<<6,
1686 	IFF_DISABLE_NETPOLL		= 1<<7,
1687 	IFF_MACVLAN_PORT		= 1<<8,
1688 	IFF_BRIDGE_PORT			= 1<<9,
1689 	IFF_OVS_DATAPATH		= 1<<10,
1690 	IFF_TX_SKB_SHARING		= 1<<11,
1691 	IFF_UNICAST_FLT			= 1<<12,
1692 	IFF_TEAM_PORT			= 1<<13,
1693 	IFF_SUPP_NOFCS			= 1<<14,
1694 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1695 	IFF_MACVLAN			= 1<<16,
1696 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1697 	IFF_L3MDEV_MASTER		= 1<<18,
1698 	IFF_NO_QUEUE			= 1<<19,
1699 	IFF_OPENVSWITCH			= 1<<20,
1700 	IFF_L3MDEV_SLAVE		= 1<<21,
1701 	IFF_TEAM			= 1<<22,
1702 	IFF_RXFH_CONFIGURED		= 1<<23,
1703 	IFF_PHONY_HEADROOM		= 1<<24,
1704 	IFF_MACSEC			= 1<<25,
1705 	IFF_NO_RX_HANDLER		= 1<<26,
1706 	IFF_FAILOVER			= 1<<27,
1707 	IFF_FAILOVER_SLAVE		= 1<<28,
1708 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1709 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1710 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1711 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1712 };
1713 
1714 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1715 #define IFF_EBRIDGE			IFF_EBRIDGE
1716 #define IFF_BONDING			IFF_BONDING
1717 #define IFF_ISATAP			IFF_ISATAP
1718 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1719 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1720 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1721 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1722 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1723 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1724 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1725 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1726 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1727 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1728 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1729 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1730 #define IFF_MACVLAN			IFF_MACVLAN
1731 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1732 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1733 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1734 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1735 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1736 #define IFF_TEAM			IFF_TEAM
1737 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1738 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1739 #define IFF_MACSEC			IFF_MACSEC
1740 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1741 #define IFF_FAILOVER			IFF_FAILOVER
1742 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1743 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1744 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1745 
1746 /* Specifies the type of the struct net_device::ml_priv pointer */
1747 enum netdev_ml_priv_type {
1748 	ML_PRIV_NONE,
1749 	ML_PRIV_CAN,
1750 };
1751 
1752 /**
1753  *	struct net_device - The DEVICE structure.
1754  *
1755  *	Actually, this whole structure is a big mistake.  It mixes I/O
1756  *	data with strictly "high-level" data, and it has to know about
1757  *	almost every data structure used in the INET module.
1758  *
1759  *	@name:	This is the first field of the "visible" part of this structure
1760  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1761  *		of the interface.
1762  *
1763  *	@name_node:	Name hashlist node
1764  *	@ifalias:	SNMP alias
1765  *	@mem_end:	Shared memory end
1766  *	@mem_start:	Shared memory start
1767  *	@base_addr:	Device I/O address
1768  *	@irq:		Device IRQ number
1769  *
1770  *	@state:		Generic network queuing layer state, see netdev_state_t
1771  *	@dev_list:	The global list of network devices
1772  *	@napi_list:	List entry used for polling NAPI devices
1773  *	@unreg_list:	List entry  when we are unregistering the
1774  *			device; see the function unregister_netdev
1775  *	@close_list:	List entry used when we are closing the device
1776  *	@ptype_all:     Device-specific packet handlers for all protocols
1777  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1778  *
1779  *	@adj_list:	Directly linked devices, like slaves for bonding
1780  *	@features:	Currently active device features
1781  *	@hw_features:	User-changeable features
1782  *
1783  *	@wanted_features:	User-requested features
1784  *	@vlan_features:		Mask of features inheritable by VLAN devices
1785  *
1786  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1787  *				This field indicates what encapsulation
1788  *				offloads the hardware is capable of doing,
1789  *				and drivers will need to set them appropriately.
1790  *
1791  *	@mpls_features:	Mask of features inheritable by MPLS
1792  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1793  *
1794  *	@ifindex:	interface index
1795  *	@group:		The group the device belongs to
1796  *
1797  *	@stats:		Statistics struct, which was left as a legacy, use
1798  *			rtnl_link_stats64 instead
1799  *
1800  *	@core_stats:	core networking counters,
1801  *			do not use this in drivers
1802  *	@carrier_up_count:	Number of times the carrier has been up
1803  *	@carrier_down_count:	Number of times the carrier has been down
1804  *
1805  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1806  *				instead of ioctl,
1807  *				see <net/iw_handler.h> for details.
1808  *	@wireless_data:	Instance data managed by the core of wireless extensions
1809  *
1810  *	@netdev_ops:	Includes several pointers to callbacks,
1811  *			if one wants to override the ndo_*() functions
1812  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1813  *	@ethtool_ops:	Management operations
1814  *	@l3mdev_ops:	Layer 3 master device operations
1815  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1816  *			discovery handling. Necessary for e.g. 6LoWPAN.
1817  *	@xfrmdev_ops:	Transformation offload operations
1818  *	@tlsdev_ops:	Transport Layer Security offload operations
1819  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1820  *			of Layer 2 headers.
1821  *
1822  *	@flags:		Interface flags (a la BSD)
1823  *	@xdp_features:	XDP capability supported by the device
1824  *	@priv_flags:	Like 'flags' but invisible to userspace,
1825  *			see if.h for the definitions
1826  *	@gflags:	Global flags ( kept as legacy )
1827  *	@padded:	How much padding added by alloc_netdev()
1828  *	@operstate:	RFC2863 operstate
1829  *	@link_mode:	Mapping policy to operstate
1830  *	@if_port:	Selectable AUI, TP, ...
1831  *	@dma:		DMA channel
1832  *	@mtu:		Interface MTU value
1833  *	@min_mtu:	Interface Minimum MTU value
1834  *	@max_mtu:	Interface Maximum MTU value
1835  *	@type:		Interface hardware type
1836  *	@hard_header_len: Maximum hardware header length.
1837  *	@min_header_len:  Minimum hardware header length
1838  *
1839  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1840  *			  cases can this be guaranteed
1841  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1842  *			  cases can this be guaranteed. Some cases also use
1843  *			  LL_MAX_HEADER instead to allocate the skb
1844  *
1845  *	interface address info:
1846  *
1847  * 	@perm_addr:		Permanent hw address
1848  * 	@addr_assign_type:	Hw address assignment type
1849  * 	@addr_len:		Hardware address length
1850  *	@upper_level:		Maximum depth level of upper devices.
1851  *	@lower_level:		Maximum depth level of lower devices.
1852  *	@neigh_priv_len:	Used in neigh_alloc()
1853  * 	@dev_id:		Used to differentiate devices that share
1854  * 				the same link layer address
1855  * 	@dev_port:		Used to differentiate devices that share
1856  * 				the same function
1857  *	@addr_list_lock:	XXX: need comments on this one
1858  *	@name_assign_type:	network interface name assignment type
1859  *	@uc_promisc:		Counter that indicates promiscuous mode
1860  *				has been enabled due to the need to listen to
1861  *				additional unicast addresses in a device that
1862  *				does not implement ndo_set_rx_mode()
1863  *	@uc:			unicast mac addresses
1864  *	@mc:			multicast mac addresses
1865  *	@dev_addrs:		list of device hw addresses
1866  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1867  *	@promiscuity:		Number of times the NIC is told to work in
1868  *				promiscuous mode; if it becomes 0 the NIC will
1869  *				exit promiscuous mode
1870  *	@allmulti:		Counter, enables or disables allmulticast mode
1871  *
1872  *	@vlan_info:	VLAN info
1873  *	@dsa_ptr:	dsa specific data
1874  *	@tipc_ptr:	TIPC specific data
1875  *	@atalk_ptr:	AppleTalk link
1876  *	@ip_ptr:	IPv4 specific data
1877  *	@ip6_ptr:	IPv6 specific data
1878  *	@ax25_ptr:	AX.25 specific data
1879  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1880  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1881  *			 device struct
1882  *	@mpls_ptr:	mpls_dev struct pointer
1883  *	@mctp_ptr:	MCTP specific data
1884  *
1885  *	@dev_addr:	Hw address (before bcast,
1886  *			because most packets are unicast)
1887  *
1888  *	@_rx:			Array of RX queues
1889  *	@num_rx_queues:		Number of RX queues
1890  *				allocated at register_netdev() time
1891  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1892  *	@xdp_prog:		XDP sockets filter program pointer
1893  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1894  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1895  *				allow to avoid NIC hard IRQ, on busy queues.
1896  *
1897  *	@rx_handler:		handler for received packets
1898  *	@rx_handler_data: 	XXX: need comments on this one
1899  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1900  *				ingress processing
1901  *	@ingress_queue:		XXX: need comments on this one
1902  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1903  *	@broadcast:		hw bcast address
1904  *
1905  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1906  *			indexed by RX queue number. Assigned by driver.
1907  *			This must only be set if the ndo_rx_flow_steer
1908  *			operation is defined
1909  *	@index_hlist:		Device index hash chain
1910  *
1911  *	@_tx:			Array of TX queues
1912  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1913  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1914  *	@qdisc:			Root qdisc from userspace point of view
1915  *	@tx_queue_len:		Max frames per queue allowed
1916  *	@tx_global_lock: 	XXX: need comments on this one
1917  *	@xdp_bulkq:		XDP device bulk queue
1918  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1919  *
1920  *	@xps_maps:	XXX: need comments on this one
1921  *	@miniq_egress:		clsact qdisc specific data for
1922  *				egress processing
1923  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1924  *	@qdisc_hash:		qdisc hash table
1925  *	@watchdog_timeo:	Represents the timeout that is used by
1926  *				the watchdog (see dev_watchdog())
1927  *	@watchdog_timer:	List of timers
1928  *
1929  *	@proto_down_reason:	reason a netdev interface is held down
1930  *	@pcpu_refcnt:		Number of references to this device
1931  *	@dev_refcnt:		Number of references to this device
1932  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1933  *	@todo_list:		Delayed register/unregister
1934  *	@link_watch_list:	XXX: need comments on this one
1935  *
1936  *	@reg_state:		Register/unregister state machine
1937  *	@dismantle:		Device is going to be freed
1938  *	@rtnl_link_state:	This enum represents the phases of creating
1939  *				a new link
1940  *
1941  *	@needs_free_netdev:	Should unregister perform free_netdev?
1942  *	@priv_destructor:	Called from unregister
1943  *	@npinfo:		XXX: need comments on this one
1944  * 	@nd_net:		Network namespace this network device is inside
1945  *
1946  * 	@ml_priv:	Mid-layer private
1947  *	@ml_priv_type:  Mid-layer private type
1948  * 	@lstats:	Loopback statistics
1949  * 	@tstats:	Tunnel statistics
1950  * 	@dstats:	Dummy statistics
1951  * 	@vstats:	Virtual ethernet statistics
1952  *
1953  *	@garp_port:	GARP
1954  *	@mrp_port:	MRP
1955  *
1956  *	@dm_private:	Drop monitor private
1957  *
1958  *	@dev:		Class/net/name entry
1959  *	@sysfs_groups:	Space for optional device, statistics and wireless
1960  *			sysfs groups
1961  *
1962  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1963  *	@rtnl_link_ops:	Rtnl_link_ops
1964  *
1965  *	@gso_max_size:	Maximum size of generic segmentation offload
1966  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1967  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1968  *			NIC for GSO
1969  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1970  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1971  * 				for IPv4.
1972  *
1973  *	@dcbnl_ops:	Data Center Bridging netlink ops
1974  *	@num_tc:	Number of traffic classes in the net device
1975  *	@tc_to_txq:	XXX: need comments on this one
1976  *	@prio_tc_map:	XXX: need comments on this one
1977  *
1978  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1979  *
1980  *	@priomap:	XXX: need comments on this one
1981  *	@phydev:	Physical device may attach itself
1982  *			for hardware timestamping
1983  *	@sfp_bus:	attached &struct sfp_bus structure.
1984  *
1985  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1986  *
1987  *	@proto_down:	protocol port state information can be sent to the
1988  *			switch driver and used to set the phys state of the
1989  *			switch port.
1990  *
1991  *	@wol_enabled:	Wake-on-LAN is enabled
1992  *
1993  *	@threaded:	napi threaded mode is enabled
1994  *
1995  *	@net_notifier_list:	List of per-net netdev notifier block
1996  *				that follow this device when it is moved
1997  *				to another network namespace.
1998  *
1999  *	@macsec_ops:    MACsec offloading ops
2000  *
2001  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2002  *				offload capabilities of the device
2003  *	@udp_tunnel_nic:	UDP tunnel offload state
2004  *	@xdp_state:		stores info on attached XDP BPF programs
2005  *
2006  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2007  *			dev->addr_list_lock.
2008  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2009  *			keep a list of interfaces to be deleted.
2010  *	@gro_max_size:	Maximum size of aggregated packet in generic
2011  *			receive offload (GRO)
2012  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2013  * 				receive offload (GRO), for IPv4.
2014  *
2015  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2016  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2017  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2018  *	@dev_registered_tracker:	tracker for reference held while
2019  *					registered
2020  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2021  *
2022  *	@devlink_port:	Pointer to related devlink port structure.
2023  *			Assigned by a driver before netdev registration using
2024  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2025  *			during the time netdevice is registered.
2026  *
2027  *	FIXME: cleanup struct net_device such that network protocol info
2028  *	moves out.
2029  */
2030 
2031 struct net_device {
2032 	char			name[IFNAMSIZ];
2033 	struct netdev_name_node	*name_node;
2034 	struct dev_ifalias	__rcu *ifalias;
2035 	/*
2036 	 *	I/O specific fields
2037 	 *	FIXME: Merge these and struct ifmap into one
2038 	 */
2039 	unsigned long		mem_end;
2040 	unsigned long		mem_start;
2041 	unsigned long		base_addr;
2042 
2043 	/*
2044 	 *	Some hardware also needs these fields (state,dev_list,
2045 	 *	napi_list,unreg_list,close_list) but they are not
2046 	 *	part of the usual set specified in Space.c.
2047 	 */
2048 
2049 	unsigned long		state;
2050 
2051 	struct list_head	dev_list;
2052 	struct list_head	napi_list;
2053 	struct list_head	unreg_list;
2054 	struct list_head	close_list;
2055 	struct list_head	ptype_all;
2056 	struct list_head	ptype_specific;
2057 
2058 	struct {
2059 		struct list_head upper;
2060 		struct list_head lower;
2061 	} adj_list;
2062 
2063 	/* Read-mostly cache-line for fast-path access */
2064 	unsigned int		flags;
2065 	xdp_features_t		xdp_features;
2066 	unsigned long long	priv_flags;
2067 	const struct net_device_ops *netdev_ops;
2068 	const struct xdp_metadata_ops *xdp_metadata_ops;
2069 	int			ifindex;
2070 	unsigned short		gflags;
2071 	unsigned short		hard_header_len;
2072 
2073 	/* Note : dev->mtu is often read without holding a lock.
2074 	 * Writers usually hold RTNL.
2075 	 * It is recommended to use READ_ONCE() to annotate the reads,
2076 	 * and to use WRITE_ONCE() to annotate the writes.
2077 	 */
2078 	unsigned int		mtu;
2079 	unsigned short		needed_headroom;
2080 	unsigned short		needed_tailroom;
2081 
2082 	netdev_features_t	features;
2083 	netdev_features_t	hw_features;
2084 	netdev_features_t	wanted_features;
2085 	netdev_features_t	vlan_features;
2086 	netdev_features_t	hw_enc_features;
2087 	netdev_features_t	mpls_features;
2088 	netdev_features_t	gso_partial_features;
2089 
2090 	unsigned int		min_mtu;
2091 	unsigned int		max_mtu;
2092 	unsigned short		type;
2093 	unsigned char		min_header_len;
2094 	unsigned char		name_assign_type;
2095 
2096 	int			group;
2097 
2098 	struct net_device_stats	stats; /* not used by modern drivers */
2099 
2100 	struct net_device_core_stats __percpu *core_stats;
2101 
2102 	/* Stats to monitor link on/off, flapping */
2103 	atomic_t		carrier_up_count;
2104 	atomic_t		carrier_down_count;
2105 
2106 #ifdef CONFIG_WIRELESS_EXT
2107 	const struct iw_handler_def *wireless_handlers;
2108 	struct iw_public_data	*wireless_data;
2109 #endif
2110 	const struct ethtool_ops *ethtool_ops;
2111 #ifdef CONFIG_NET_L3_MASTER_DEV
2112 	const struct l3mdev_ops	*l3mdev_ops;
2113 #endif
2114 #if IS_ENABLED(CONFIG_IPV6)
2115 	const struct ndisc_ops *ndisc_ops;
2116 #endif
2117 
2118 #ifdef CONFIG_XFRM_OFFLOAD
2119 	const struct xfrmdev_ops *xfrmdev_ops;
2120 #endif
2121 
2122 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2123 	const struct tlsdev_ops *tlsdev_ops;
2124 #endif
2125 
2126 	const struct header_ops *header_ops;
2127 
2128 	unsigned char		operstate;
2129 	unsigned char		link_mode;
2130 
2131 	unsigned char		if_port;
2132 	unsigned char		dma;
2133 
2134 	/* Interface address info. */
2135 	unsigned char		perm_addr[MAX_ADDR_LEN];
2136 	unsigned char		addr_assign_type;
2137 	unsigned char		addr_len;
2138 	unsigned char		upper_level;
2139 	unsigned char		lower_level;
2140 
2141 	unsigned short		neigh_priv_len;
2142 	unsigned short          dev_id;
2143 	unsigned short          dev_port;
2144 	unsigned short		padded;
2145 
2146 	spinlock_t		addr_list_lock;
2147 	int			irq;
2148 
2149 	struct netdev_hw_addr_list	uc;
2150 	struct netdev_hw_addr_list	mc;
2151 	struct netdev_hw_addr_list	dev_addrs;
2152 
2153 #ifdef CONFIG_SYSFS
2154 	struct kset		*queues_kset;
2155 #endif
2156 #ifdef CONFIG_LOCKDEP
2157 	struct list_head	unlink_list;
2158 #endif
2159 	unsigned int		promiscuity;
2160 	unsigned int		allmulti;
2161 	bool			uc_promisc;
2162 #ifdef CONFIG_LOCKDEP
2163 	unsigned char		nested_level;
2164 #endif
2165 
2166 
2167 	/* Protocol-specific pointers */
2168 
2169 	struct in_device __rcu	*ip_ptr;
2170 	struct inet6_dev __rcu	*ip6_ptr;
2171 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2172 	struct vlan_info __rcu	*vlan_info;
2173 #endif
2174 #if IS_ENABLED(CONFIG_NET_DSA)
2175 	struct dsa_port		*dsa_ptr;
2176 #endif
2177 #if IS_ENABLED(CONFIG_TIPC)
2178 	struct tipc_bearer __rcu *tipc_ptr;
2179 #endif
2180 #if IS_ENABLED(CONFIG_ATALK)
2181 	void 			*atalk_ptr;
2182 #endif
2183 #if IS_ENABLED(CONFIG_AX25)
2184 	void			*ax25_ptr;
2185 #endif
2186 #if IS_ENABLED(CONFIG_CFG80211)
2187 	struct wireless_dev	*ieee80211_ptr;
2188 #endif
2189 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2190 	struct wpan_dev		*ieee802154_ptr;
2191 #endif
2192 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2193 	struct mpls_dev __rcu	*mpls_ptr;
2194 #endif
2195 #if IS_ENABLED(CONFIG_MCTP)
2196 	struct mctp_dev __rcu	*mctp_ptr;
2197 #endif
2198 
2199 /*
2200  * Cache lines mostly used on receive path (including eth_type_trans())
2201  */
2202 	/* Interface address info used in eth_type_trans() */
2203 	const unsigned char	*dev_addr;
2204 
2205 	struct netdev_rx_queue	*_rx;
2206 	unsigned int		num_rx_queues;
2207 	unsigned int		real_num_rx_queues;
2208 
2209 	struct bpf_prog __rcu	*xdp_prog;
2210 	unsigned long		gro_flush_timeout;
2211 	int			napi_defer_hard_irqs;
2212 #define GRO_LEGACY_MAX_SIZE	65536u
2213 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2214  * and shinfo->gso_segs is a 16bit field.
2215  */
2216 #define GRO_MAX_SIZE		(8 * 65535u)
2217 	unsigned int		gro_max_size;
2218 	unsigned int		gro_ipv4_max_size;
2219 	rx_handler_func_t __rcu	*rx_handler;
2220 	void __rcu		*rx_handler_data;
2221 
2222 #ifdef CONFIG_NET_CLS_ACT
2223 	struct mini_Qdisc __rcu	*miniq_ingress;
2224 #endif
2225 	struct netdev_queue __rcu *ingress_queue;
2226 #ifdef CONFIG_NETFILTER_INGRESS
2227 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2228 #endif
2229 
2230 	unsigned char		broadcast[MAX_ADDR_LEN];
2231 #ifdef CONFIG_RFS_ACCEL
2232 	struct cpu_rmap		*rx_cpu_rmap;
2233 #endif
2234 	struct hlist_node	index_hlist;
2235 
2236 /*
2237  * Cache lines mostly used on transmit path
2238  */
2239 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2240 	unsigned int		num_tx_queues;
2241 	unsigned int		real_num_tx_queues;
2242 	struct Qdisc __rcu	*qdisc;
2243 	unsigned int		tx_queue_len;
2244 	spinlock_t		tx_global_lock;
2245 
2246 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2247 
2248 #ifdef CONFIG_XPS
2249 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2250 #endif
2251 #ifdef CONFIG_NET_CLS_ACT
2252 	struct mini_Qdisc __rcu	*miniq_egress;
2253 #endif
2254 #ifdef CONFIG_NETFILTER_EGRESS
2255 	struct nf_hook_entries __rcu *nf_hooks_egress;
2256 #endif
2257 
2258 #ifdef CONFIG_NET_SCHED
2259 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2260 #endif
2261 	/* These may be needed for future network-power-down code. */
2262 	struct timer_list	watchdog_timer;
2263 	int			watchdog_timeo;
2264 
2265 	u32                     proto_down_reason;
2266 
2267 	struct list_head	todo_list;
2268 
2269 #ifdef CONFIG_PCPU_DEV_REFCNT
2270 	int __percpu		*pcpu_refcnt;
2271 #else
2272 	refcount_t		dev_refcnt;
2273 #endif
2274 	struct ref_tracker_dir	refcnt_tracker;
2275 
2276 	struct list_head	link_watch_list;
2277 
2278 	enum { NETREG_UNINITIALIZED=0,
2279 	       NETREG_REGISTERED,	/* completed register_netdevice */
2280 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2281 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2282 	       NETREG_RELEASED,		/* called free_netdev */
2283 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2284 	} reg_state:8;
2285 
2286 	bool dismantle;
2287 
2288 	enum {
2289 		RTNL_LINK_INITIALIZED,
2290 		RTNL_LINK_INITIALIZING,
2291 	} rtnl_link_state:16;
2292 
2293 	bool needs_free_netdev;
2294 	void (*priv_destructor)(struct net_device *dev);
2295 
2296 #ifdef CONFIG_NETPOLL
2297 	struct netpoll_info __rcu	*npinfo;
2298 #endif
2299 
2300 	possible_net_t			nd_net;
2301 
2302 	/* mid-layer private */
2303 	void				*ml_priv;
2304 	enum netdev_ml_priv_type	ml_priv_type;
2305 
2306 	union {
2307 		struct pcpu_lstats __percpu		*lstats;
2308 		struct pcpu_sw_netstats __percpu	*tstats;
2309 		struct pcpu_dstats __percpu		*dstats;
2310 	};
2311 
2312 #if IS_ENABLED(CONFIG_GARP)
2313 	struct garp_port __rcu	*garp_port;
2314 #endif
2315 #if IS_ENABLED(CONFIG_MRP)
2316 	struct mrp_port __rcu	*mrp_port;
2317 #endif
2318 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2319 	struct dm_hw_stat_delta __rcu *dm_private;
2320 #endif
2321 	struct device		dev;
2322 	const struct attribute_group *sysfs_groups[4];
2323 	const struct attribute_group *sysfs_rx_queue_group;
2324 
2325 	const struct rtnl_link_ops *rtnl_link_ops;
2326 
2327 	/* for setting kernel sock attribute on TCP connection setup */
2328 #define GSO_MAX_SEGS		65535u
2329 #define GSO_LEGACY_MAX_SIZE	65536u
2330 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2331  * and shinfo->gso_segs is a 16bit field.
2332  */
2333 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2334 
2335 	unsigned int		gso_max_size;
2336 #define TSO_LEGACY_MAX_SIZE	65536
2337 #define TSO_MAX_SIZE		UINT_MAX
2338 	unsigned int		tso_max_size;
2339 	u16			gso_max_segs;
2340 #define TSO_MAX_SEGS		U16_MAX
2341 	u16			tso_max_segs;
2342 	unsigned int		gso_ipv4_max_size;
2343 
2344 #ifdef CONFIG_DCB
2345 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2346 #endif
2347 	s16			num_tc;
2348 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2349 	u8			prio_tc_map[TC_BITMASK + 1];
2350 
2351 #if IS_ENABLED(CONFIG_FCOE)
2352 	unsigned int		fcoe_ddp_xid;
2353 #endif
2354 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2355 	struct netprio_map __rcu *priomap;
2356 #endif
2357 	struct phy_device	*phydev;
2358 	struct sfp_bus		*sfp_bus;
2359 	struct lock_class_key	*qdisc_tx_busylock;
2360 	bool			proto_down;
2361 	unsigned		wol_enabled:1;
2362 	unsigned		threaded:1;
2363 
2364 	struct list_head	net_notifier_list;
2365 
2366 #if IS_ENABLED(CONFIG_MACSEC)
2367 	/* MACsec management functions */
2368 	const struct macsec_ops *macsec_ops;
2369 #endif
2370 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2371 	struct udp_tunnel_nic	*udp_tunnel_nic;
2372 
2373 	/* protected by rtnl_lock */
2374 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2375 
2376 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2377 	netdevice_tracker	linkwatch_dev_tracker;
2378 	netdevice_tracker	watchdog_dev_tracker;
2379 	netdevice_tracker	dev_registered_tracker;
2380 	struct rtnl_hw_stats64	*offload_xstats_l3;
2381 
2382 	struct devlink_port	*devlink_port;
2383 };
2384 #define to_net_dev(d) container_of(d, struct net_device, dev)
2385 
2386 /*
2387  * Driver should use this to assign devlink port instance to a netdevice
2388  * before it registers the netdevice. Therefore devlink_port is static
2389  * during the netdev lifetime after it is registered.
2390  */
2391 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2392 ({								\
2393 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2394 	((dev)->devlink_port = (port));				\
2395 })
2396 
2397 static inline bool netif_elide_gro(const struct net_device *dev)
2398 {
2399 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2400 		return true;
2401 	return false;
2402 }
2403 
2404 #define	NETDEV_ALIGN		32
2405 
2406 static inline
2407 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2408 {
2409 	return dev->prio_tc_map[prio & TC_BITMASK];
2410 }
2411 
2412 static inline
2413 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2414 {
2415 	if (tc >= dev->num_tc)
2416 		return -EINVAL;
2417 
2418 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2419 	return 0;
2420 }
2421 
2422 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2423 void netdev_reset_tc(struct net_device *dev);
2424 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2425 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2426 
2427 static inline
2428 int netdev_get_num_tc(struct net_device *dev)
2429 {
2430 	return dev->num_tc;
2431 }
2432 
2433 static inline void net_prefetch(void *p)
2434 {
2435 	prefetch(p);
2436 #if L1_CACHE_BYTES < 128
2437 	prefetch((u8 *)p + L1_CACHE_BYTES);
2438 #endif
2439 }
2440 
2441 static inline void net_prefetchw(void *p)
2442 {
2443 	prefetchw(p);
2444 #if L1_CACHE_BYTES < 128
2445 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2446 #endif
2447 }
2448 
2449 void netdev_unbind_sb_channel(struct net_device *dev,
2450 			      struct net_device *sb_dev);
2451 int netdev_bind_sb_channel_queue(struct net_device *dev,
2452 				 struct net_device *sb_dev,
2453 				 u8 tc, u16 count, u16 offset);
2454 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2455 static inline int netdev_get_sb_channel(struct net_device *dev)
2456 {
2457 	return max_t(int, -dev->num_tc, 0);
2458 }
2459 
2460 static inline
2461 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2462 					 unsigned int index)
2463 {
2464 	return &dev->_tx[index];
2465 }
2466 
2467 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2468 						    const struct sk_buff *skb)
2469 {
2470 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2471 }
2472 
2473 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2474 					    void (*f)(struct net_device *,
2475 						      struct netdev_queue *,
2476 						      void *),
2477 					    void *arg)
2478 {
2479 	unsigned int i;
2480 
2481 	for (i = 0; i < dev->num_tx_queues; i++)
2482 		f(dev, &dev->_tx[i], arg);
2483 }
2484 
2485 #define netdev_lockdep_set_classes(dev)				\
2486 {								\
2487 	static struct lock_class_key qdisc_tx_busylock_key;	\
2488 	static struct lock_class_key qdisc_xmit_lock_key;	\
2489 	static struct lock_class_key dev_addr_list_lock_key;	\
2490 	unsigned int i;						\
2491 								\
2492 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2493 	lockdep_set_class(&(dev)->addr_list_lock,		\
2494 			  &dev_addr_list_lock_key);		\
2495 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2496 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2497 				  &qdisc_xmit_lock_key);	\
2498 }
2499 
2500 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2501 		     struct net_device *sb_dev);
2502 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2503 					 struct sk_buff *skb,
2504 					 struct net_device *sb_dev);
2505 
2506 /* returns the headroom that the master device needs to take in account
2507  * when forwarding to this dev
2508  */
2509 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2510 {
2511 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2512 }
2513 
2514 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2515 {
2516 	if (dev->netdev_ops->ndo_set_rx_headroom)
2517 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2518 }
2519 
2520 /* set the device rx headroom to the dev's default */
2521 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2522 {
2523 	netdev_set_rx_headroom(dev, -1);
2524 }
2525 
2526 static inline void *netdev_get_ml_priv(struct net_device *dev,
2527 				       enum netdev_ml_priv_type type)
2528 {
2529 	if (dev->ml_priv_type != type)
2530 		return NULL;
2531 
2532 	return dev->ml_priv;
2533 }
2534 
2535 static inline void netdev_set_ml_priv(struct net_device *dev,
2536 				      void *ml_priv,
2537 				      enum netdev_ml_priv_type type)
2538 {
2539 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2540 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2541 	     dev->ml_priv_type, type);
2542 	WARN(!dev->ml_priv_type && dev->ml_priv,
2543 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2544 
2545 	dev->ml_priv = ml_priv;
2546 	dev->ml_priv_type = type;
2547 }
2548 
2549 /*
2550  * Net namespace inlines
2551  */
2552 static inline
2553 struct net *dev_net(const struct net_device *dev)
2554 {
2555 	return read_pnet(&dev->nd_net);
2556 }
2557 
2558 static inline
2559 void dev_net_set(struct net_device *dev, struct net *net)
2560 {
2561 	write_pnet(&dev->nd_net, net);
2562 }
2563 
2564 /**
2565  *	netdev_priv - access network device private data
2566  *	@dev: network device
2567  *
2568  * Get network device private data
2569  */
2570 static inline void *netdev_priv(const struct net_device *dev)
2571 {
2572 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2573 }
2574 
2575 /* Set the sysfs physical device reference for the network logical device
2576  * if set prior to registration will cause a symlink during initialization.
2577  */
2578 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2579 
2580 /* Set the sysfs device type for the network logical device to allow
2581  * fine-grained identification of different network device types. For
2582  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2583  */
2584 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2585 
2586 /* Default NAPI poll() weight
2587  * Device drivers are strongly advised to not use bigger value
2588  */
2589 #define NAPI_POLL_WEIGHT 64
2590 
2591 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2592 			   int (*poll)(struct napi_struct *, int), int weight);
2593 
2594 /**
2595  * netif_napi_add() - initialize a NAPI context
2596  * @dev:  network device
2597  * @napi: NAPI context
2598  * @poll: polling function
2599  *
2600  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2601  * *any* of the other NAPI-related functions.
2602  */
2603 static inline void
2604 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2605 	       int (*poll)(struct napi_struct *, int))
2606 {
2607 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2608 }
2609 
2610 static inline void
2611 netif_napi_add_tx_weight(struct net_device *dev,
2612 			 struct napi_struct *napi,
2613 			 int (*poll)(struct napi_struct *, int),
2614 			 int weight)
2615 {
2616 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2617 	netif_napi_add_weight(dev, napi, poll, weight);
2618 }
2619 
2620 /**
2621  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2622  * @dev:  network device
2623  * @napi: NAPI context
2624  * @poll: polling function
2625  *
2626  * This variant of netif_napi_add() should be used from drivers using NAPI
2627  * to exclusively poll a TX queue.
2628  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2629  */
2630 static inline void netif_napi_add_tx(struct net_device *dev,
2631 				     struct napi_struct *napi,
2632 				     int (*poll)(struct napi_struct *, int))
2633 {
2634 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2635 }
2636 
2637 /**
2638  *  __netif_napi_del - remove a NAPI context
2639  *  @napi: NAPI context
2640  *
2641  * Warning: caller must observe RCU grace period before freeing memory
2642  * containing @napi. Drivers might want to call this helper to combine
2643  * all the needed RCU grace periods into a single one.
2644  */
2645 void __netif_napi_del(struct napi_struct *napi);
2646 
2647 /**
2648  *  netif_napi_del - remove a NAPI context
2649  *  @napi: NAPI context
2650  *
2651  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2652  */
2653 static inline void netif_napi_del(struct napi_struct *napi)
2654 {
2655 	__netif_napi_del(napi);
2656 	synchronize_net();
2657 }
2658 
2659 struct packet_type {
2660 	__be16			type;	/* This is really htons(ether_type). */
2661 	bool			ignore_outgoing;
2662 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2663 	netdevice_tracker	dev_tracker;
2664 	int			(*func) (struct sk_buff *,
2665 					 struct net_device *,
2666 					 struct packet_type *,
2667 					 struct net_device *);
2668 	void			(*list_func) (struct list_head *,
2669 					      struct packet_type *,
2670 					      struct net_device *);
2671 	bool			(*id_match)(struct packet_type *ptype,
2672 					    struct sock *sk);
2673 	struct net		*af_packet_net;
2674 	void			*af_packet_priv;
2675 	struct list_head	list;
2676 };
2677 
2678 struct offload_callbacks {
2679 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2680 						netdev_features_t features);
2681 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2682 						struct sk_buff *skb);
2683 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2684 };
2685 
2686 struct packet_offload {
2687 	__be16			 type;	/* This is really htons(ether_type). */
2688 	u16			 priority;
2689 	struct offload_callbacks callbacks;
2690 	struct list_head	 list;
2691 };
2692 
2693 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2694 struct pcpu_sw_netstats {
2695 	u64_stats_t		rx_packets;
2696 	u64_stats_t		rx_bytes;
2697 	u64_stats_t		tx_packets;
2698 	u64_stats_t		tx_bytes;
2699 	struct u64_stats_sync   syncp;
2700 } __aligned(4 * sizeof(u64));
2701 
2702 struct pcpu_lstats {
2703 	u64_stats_t packets;
2704 	u64_stats_t bytes;
2705 	struct u64_stats_sync syncp;
2706 } __aligned(2 * sizeof(u64));
2707 
2708 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2709 
2710 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2711 {
2712 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2713 
2714 	u64_stats_update_begin(&tstats->syncp);
2715 	u64_stats_add(&tstats->rx_bytes, len);
2716 	u64_stats_inc(&tstats->rx_packets);
2717 	u64_stats_update_end(&tstats->syncp);
2718 }
2719 
2720 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2721 					  unsigned int packets,
2722 					  unsigned int len)
2723 {
2724 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2725 
2726 	u64_stats_update_begin(&tstats->syncp);
2727 	u64_stats_add(&tstats->tx_bytes, len);
2728 	u64_stats_add(&tstats->tx_packets, packets);
2729 	u64_stats_update_end(&tstats->syncp);
2730 }
2731 
2732 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2733 {
2734 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2735 
2736 	u64_stats_update_begin(&lstats->syncp);
2737 	u64_stats_add(&lstats->bytes, len);
2738 	u64_stats_inc(&lstats->packets);
2739 	u64_stats_update_end(&lstats->syncp);
2740 }
2741 
2742 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2743 ({									\
2744 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2745 	if (pcpu_stats)	{						\
2746 		int __cpu;						\
2747 		for_each_possible_cpu(__cpu) {				\
2748 			typeof(type) *stat;				\
2749 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2750 			u64_stats_init(&stat->syncp);			\
2751 		}							\
2752 	}								\
2753 	pcpu_stats;							\
2754 })
2755 
2756 #define netdev_alloc_pcpu_stats(type)					\
2757 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2758 
2759 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2760 ({									\
2761 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2762 	if (pcpu_stats) {						\
2763 		int __cpu;						\
2764 		for_each_possible_cpu(__cpu) {				\
2765 			typeof(type) *stat;				\
2766 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2767 			u64_stats_init(&stat->syncp);			\
2768 		}							\
2769 	}								\
2770 	pcpu_stats;							\
2771 })
2772 
2773 enum netdev_lag_tx_type {
2774 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2775 	NETDEV_LAG_TX_TYPE_RANDOM,
2776 	NETDEV_LAG_TX_TYPE_BROADCAST,
2777 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2778 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2779 	NETDEV_LAG_TX_TYPE_HASH,
2780 };
2781 
2782 enum netdev_lag_hash {
2783 	NETDEV_LAG_HASH_NONE,
2784 	NETDEV_LAG_HASH_L2,
2785 	NETDEV_LAG_HASH_L34,
2786 	NETDEV_LAG_HASH_L23,
2787 	NETDEV_LAG_HASH_E23,
2788 	NETDEV_LAG_HASH_E34,
2789 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2790 	NETDEV_LAG_HASH_UNKNOWN,
2791 };
2792 
2793 struct netdev_lag_upper_info {
2794 	enum netdev_lag_tx_type tx_type;
2795 	enum netdev_lag_hash hash_type;
2796 };
2797 
2798 struct netdev_lag_lower_state_info {
2799 	u8 link_up : 1,
2800 	   tx_enabled : 1;
2801 };
2802 
2803 #include <linux/notifier.h>
2804 
2805 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2806  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2807  * adding new types.
2808  */
2809 enum netdev_cmd {
2810 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2811 	NETDEV_DOWN,
2812 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2813 				   detected a hardware crash and restarted
2814 				   - we can use this eg to kick tcp sessions
2815 				   once done */
2816 	NETDEV_CHANGE,		/* Notify device state change */
2817 	NETDEV_REGISTER,
2818 	NETDEV_UNREGISTER,
2819 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2820 	NETDEV_CHANGEADDR,	/* notify after the address change */
2821 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2822 	NETDEV_GOING_DOWN,
2823 	NETDEV_CHANGENAME,
2824 	NETDEV_FEAT_CHANGE,
2825 	NETDEV_BONDING_FAILOVER,
2826 	NETDEV_PRE_UP,
2827 	NETDEV_PRE_TYPE_CHANGE,
2828 	NETDEV_POST_TYPE_CHANGE,
2829 	NETDEV_POST_INIT,
2830 	NETDEV_PRE_UNINIT,
2831 	NETDEV_RELEASE,
2832 	NETDEV_NOTIFY_PEERS,
2833 	NETDEV_JOIN,
2834 	NETDEV_CHANGEUPPER,
2835 	NETDEV_RESEND_IGMP,
2836 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2837 	NETDEV_CHANGEINFODATA,
2838 	NETDEV_BONDING_INFO,
2839 	NETDEV_PRECHANGEUPPER,
2840 	NETDEV_CHANGELOWERSTATE,
2841 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2842 	NETDEV_UDP_TUNNEL_DROP_INFO,
2843 	NETDEV_CHANGE_TX_QUEUE_LEN,
2844 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2845 	NETDEV_CVLAN_FILTER_DROP_INFO,
2846 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2847 	NETDEV_SVLAN_FILTER_DROP_INFO,
2848 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2849 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2850 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2851 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2852 	NETDEV_XDP_FEAT_CHANGE,
2853 };
2854 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2855 
2856 int register_netdevice_notifier(struct notifier_block *nb);
2857 int unregister_netdevice_notifier(struct notifier_block *nb);
2858 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2859 int unregister_netdevice_notifier_net(struct net *net,
2860 				      struct notifier_block *nb);
2861 int register_netdevice_notifier_dev_net(struct net_device *dev,
2862 					struct notifier_block *nb,
2863 					struct netdev_net_notifier *nn);
2864 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2865 					  struct notifier_block *nb,
2866 					  struct netdev_net_notifier *nn);
2867 
2868 struct netdev_notifier_info {
2869 	struct net_device	*dev;
2870 	struct netlink_ext_ack	*extack;
2871 };
2872 
2873 struct netdev_notifier_info_ext {
2874 	struct netdev_notifier_info info; /* must be first */
2875 	union {
2876 		u32 mtu;
2877 	} ext;
2878 };
2879 
2880 struct netdev_notifier_change_info {
2881 	struct netdev_notifier_info info; /* must be first */
2882 	unsigned int flags_changed;
2883 };
2884 
2885 struct netdev_notifier_changeupper_info {
2886 	struct netdev_notifier_info info; /* must be first */
2887 	struct net_device *upper_dev; /* new upper dev */
2888 	bool master; /* is upper dev master */
2889 	bool linking; /* is the notification for link or unlink */
2890 	void *upper_info; /* upper dev info */
2891 };
2892 
2893 struct netdev_notifier_changelowerstate_info {
2894 	struct netdev_notifier_info info; /* must be first */
2895 	void *lower_state_info; /* is lower dev state */
2896 };
2897 
2898 struct netdev_notifier_pre_changeaddr_info {
2899 	struct netdev_notifier_info info; /* must be first */
2900 	const unsigned char *dev_addr;
2901 };
2902 
2903 enum netdev_offload_xstats_type {
2904 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2905 };
2906 
2907 struct netdev_notifier_offload_xstats_info {
2908 	struct netdev_notifier_info info; /* must be first */
2909 	enum netdev_offload_xstats_type type;
2910 
2911 	union {
2912 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2913 		struct netdev_notifier_offload_xstats_rd *report_delta;
2914 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2915 		struct netdev_notifier_offload_xstats_ru *report_used;
2916 	};
2917 };
2918 
2919 int netdev_offload_xstats_enable(struct net_device *dev,
2920 				 enum netdev_offload_xstats_type type,
2921 				 struct netlink_ext_ack *extack);
2922 int netdev_offload_xstats_disable(struct net_device *dev,
2923 				  enum netdev_offload_xstats_type type);
2924 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2925 				   enum netdev_offload_xstats_type type);
2926 int netdev_offload_xstats_get(struct net_device *dev,
2927 			      enum netdev_offload_xstats_type type,
2928 			      struct rtnl_hw_stats64 *stats, bool *used,
2929 			      struct netlink_ext_ack *extack);
2930 void
2931 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2932 				   const struct rtnl_hw_stats64 *stats);
2933 void
2934 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2935 void netdev_offload_xstats_push_delta(struct net_device *dev,
2936 				      enum netdev_offload_xstats_type type,
2937 				      const struct rtnl_hw_stats64 *stats);
2938 
2939 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2940 					     struct net_device *dev)
2941 {
2942 	info->dev = dev;
2943 	info->extack = NULL;
2944 }
2945 
2946 static inline struct net_device *
2947 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2948 {
2949 	return info->dev;
2950 }
2951 
2952 static inline struct netlink_ext_ack *
2953 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2954 {
2955 	return info->extack;
2956 }
2957 
2958 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2959 
2960 
2961 extern rwlock_t				dev_base_lock;		/* Device list lock */
2962 
2963 #define for_each_netdev(net, d)		\
2964 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2965 #define for_each_netdev_reverse(net, d)	\
2966 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2967 #define for_each_netdev_rcu(net, d)		\
2968 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2969 #define for_each_netdev_safe(net, d, n)	\
2970 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2971 #define for_each_netdev_continue(net, d)		\
2972 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2973 #define for_each_netdev_continue_reverse(net, d)		\
2974 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2975 						     dev_list)
2976 #define for_each_netdev_continue_rcu(net, d)		\
2977 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2978 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2979 		for_each_netdev_rcu(&init_net, slave)	\
2980 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2981 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2982 
2983 static inline struct net_device *next_net_device(struct net_device *dev)
2984 {
2985 	struct list_head *lh;
2986 	struct net *net;
2987 
2988 	net = dev_net(dev);
2989 	lh = dev->dev_list.next;
2990 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2991 }
2992 
2993 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2994 {
2995 	struct list_head *lh;
2996 	struct net *net;
2997 
2998 	net = dev_net(dev);
2999 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3000 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3001 }
3002 
3003 static inline struct net_device *first_net_device(struct net *net)
3004 {
3005 	return list_empty(&net->dev_base_head) ? NULL :
3006 		net_device_entry(net->dev_base_head.next);
3007 }
3008 
3009 static inline struct net_device *first_net_device_rcu(struct net *net)
3010 {
3011 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3012 
3013 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3014 }
3015 
3016 int netdev_boot_setup_check(struct net_device *dev);
3017 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3018 				       const char *hwaddr);
3019 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3020 void dev_add_pack(struct packet_type *pt);
3021 void dev_remove_pack(struct packet_type *pt);
3022 void __dev_remove_pack(struct packet_type *pt);
3023 void dev_add_offload(struct packet_offload *po);
3024 void dev_remove_offload(struct packet_offload *po);
3025 
3026 int dev_get_iflink(const struct net_device *dev);
3027 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3028 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3029 			  struct net_device_path_stack *stack);
3030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3031 				      unsigned short mask);
3032 struct net_device *dev_get_by_name(struct net *net, const char *name);
3033 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3034 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3035 bool netdev_name_in_use(struct net *net, const char *name);
3036 int dev_alloc_name(struct net_device *dev, const char *name);
3037 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3038 void dev_close(struct net_device *dev);
3039 void dev_close_many(struct list_head *head, bool unlink);
3040 void dev_disable_lro(struct net_device *dev);
3041 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3042 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3043 		     struct net_device *sb_dev);
3044 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3045 		       struct net_device *sb_dev);
3046 
3047 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3048 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3049 
3050 static inline int dev_queue_xmit(struct sk_buff *skb)
3051 {
3052 	return __dev_queue_xmit(skb, NULL);
3053 }
3054 
3055 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3056 				       struct net_device *sb_dev)
3057 {
3058 	return __dev_queue_xmit(skb, sb_dev);
3059 }
3060 
3061 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3062 {
3063 	int ret;
3064 
3065 	ret = __dev_direct_xmit(skb, queue_id);
3066 	if (!dev_xmit_complete(ret))
3067 		kfree_skb(skb);
3068 	return ret;
3069 }
3070 
3071 int register_netdevice(struct net_device *dev);
3072 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3073 void unregister_netdevice_many(struct list_head *head);
3074 static inline void unregister_netdevice(struct net_device *dev)
3075 {
3076 	unregister_netdevice_queue(dev, NULL);
3077 }
3078 
3079 int netdev_refcnt_read(const struct net_device *dev);
3080 void free_netdev(struct net_device *dev);
3081 void netdev_freemem(struct net_device *dev);
3082 int init_dummy_netdev(struct net_device *dev);
3083 
3084 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3085 					 struct sk_buff *skb,
3086 					 bool all_slaves);
3087 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3088 					    struct sock *sk);
3089 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3090 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3091 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3092 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3093 int dev_restart(struct net_device *dev);
3094 
3095 
3096 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3097 				  unsigned short type,
3098 				  const void *daddr, const void *saddr,
3099 				  unsigned int len)
3100 {
3101 	if (!dev->header_ops || !dev->header_ops->create)
3102 		return 0;
3103 
3104 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3105 }
3106 
3107 static inline int dev_parse_header(const struct sk_buff *skb,
3108 				   unsigned char *haddr)
3109 {
3110 	const struct net_device *dev = skb->dev;
3111 
3112 	if (!dev->header_ops || !dev->header_ops->parse)
3113 		return 0;
3114 	return dev->header_ops->parse(skb, haddr);
3115 }
3116 
3117 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3118 {
3119 	const struct net_device *dev = skb->dev;
3120 
3121 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3122 		return 0;
3123 	return dev->header_ops->parse_protocol(skb);
3124 }
3125 
3126 /* ll_header must have at least hard_header_len allocated */
3127 static inline bool dev_validate_header(const struct net_device *dev,
3128 				       char *ll_header, int len)
3129 {
3130 	if (likely(len >= dev->hard_header_len))
3131 		return true;
3132 	if (len < dev->min_header_len)
3133 		return false;
3134 
3135 	if (capable(CAP_SYS_RAWIO)) {
3136 		memset(ll_header + len, 0, dev->hard_header_len - len);
3137 		return true;
3138 	}
3139 
3140 	if (dev->header_ops && dev->header_ops->validate)
3141 		return dev->header_ops->validate(ll_header, len);
3142 
3143 	return false;
3144 }
3145 
3146 static inline bool dev_has_header(const struct net_device *dev)
3147 {
3148 	return dev->header_ops && dev->header_ops->create;
3149 }
3150 
3151 /*
3152  * Incoming packets are placed on per-CPU queues
3153  */
3154 struct softnet_data {
3155 	struct list_head	poll_list;
3156 	struct sk_buff_head	process_queue;
3157 
3158 	/* stats */
3159 	unsigned int		processed;
3160 	unsigned int		time_squeeze;
3161 #ifdef CONFIG_RPS
3162 	struct softnet_data	*rps_ipi_list;
3163 #endif
3164 #ifdef CONFIG_NET_FLOW_LIMIT
3165 	struct sd_flow_limit __rcu *flow_limit;
3166 #endif
3167 	struct Qdisc		*output_queue;
3168 	struct Qdisc		**output_queue_tailp;
3169 	struct sk_buff		*completion_queue;
3170 #ifdef CONFIG_XFRM_OFFLOAD
3171 	struct sk_buff_head	xfrm_backlog;
3172 #endif
3173 	/* written and read only by owning cpu: */
3174 	struct {
3175 		u16 recursion;
3176 		u8  more;
3177 #ifdef CONFIG_NET_EGRESS
3178 		u8  skip_txqueue;
3179 #endif
3180 	} xmit;
3181 #ifdef CONFIG_RPS
3182 	/* input_queue_head should be written by cpu owning this struct,
3183 	 * and only read by other cpus. Worth using a cache line.
3184 	 */
3185 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3186 
3187 	/* Elements below can be accessed between CPUs for RPS/RFS */
3188 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3189 	struct softnet_data	*rps_ipi_next;
3190 	unsigned int		cpu;
3191 	unsigned int		input_queue_tail;
3192 #endif
3193 	unsigned int		received_rps;
3194 	unsigned int		dropped;
3195 	struct sk_buff_head	input_pkt_queue;
3196 	struct napi_struct	backlog;
3197 
3198 	/* Another possibly contended cache line */
3199 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3200 	int			defer_count;
3201 	int			defer_ipi_scheduled;
3202 	struct sk_buff		*defer_list;
3203 	call_single_data_t	defer_csd;
3204 };
3205 
3206 static inline void input_queue_head_incr(struct softnet_data *sd)
3207 {
3208 #ifdef CONFIG_RPS
3209 	sd->input_queue_head++;
3210 #endif
3211 }
3212 
3213 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3214 					      unsigned int *qtail)
3215 {
3216 #ifdef CONFIG_RPS
3217 	*qtail = ++sd->input_queue_tail;
3218 #endif
3219 }
3220 
3221 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3222 
3223 static inline int dev_recursion_level(void)
3224 {
3225 	return this_cpu_read(softnet_data.xmit.recursion);
3226 }
3227 
3228 #define XMIT_RECURSION_LIMIT	8
3229 static inline bool dev_xmit_recursion(void)
3230 {
3231 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3232 			XMIT_RECURSION_LIMIT);
3233 }
3234 
3235 static inline void dev_xmit_recursion_inc(void)
3236 {
3237 	__this_cpu_inc(softnet_data.xmit.recursion);
3238 }
3239 
3240 static inline void dev_xmit_recursion_dec(void)
3241 {
3242 	__this_cpu_dec(softnet_data.xmit.recursion);
3243 }
3244 
3245 void __netif_schedule(struct Qdisc *q);
3246 void netif_schedule_queue(struct netdev_queue *txq);
3247 
3248 static inline void netif_tx_schedule_all(struct net_device *dev)
3249 {
3250 	unsigned int i;
3251 
3252 	for (i = 0; i < dev->num_tx_queues; i++)
3253 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3254 }
3255 
3256 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3257 {
3258 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3259 }
3260 
3261 /**
3262  *	netif_start_queue - allow transmit
3263  *	@dev: network device
3264  *
3265  *	Allow upper layers to call the device hard_start_xmit routine.
3266  */
3267 static inline void netif_start_queue(struct net_device *dev)
3268 {
3269 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3270 }
3271 
3272 static inline void netif_tx_start_all_queues(struct net_device *dev)
3273 {
3274 	unsigned int i;
3275 
3276 	for (i = 0; i < dev->num_tx_queues; i++) {
3277 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3278 		netif_tx_start_queue(txq);
3279 	}
3280 }
3281 
3282 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3283 
3284 /**
3285  *	netif_wake_queue - restart transmit
3286  *	@dev: network device
3287  *
3288  *	Allow upper layers to call the device hard_start_xmit routine.
3289  *	Used for flow control when transmit resources are available.
3290  */
3291 static inline void netif_wake_queue(struct net_device *dev)
3292 {
3293 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3294 }
3295 
3296 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3297 {
3298 	unsigned int i;
3299 
3300 	for (i = 0; i < dev->num_tx_queues; i++) {
3301 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3302 		netif_tx_wake_queue(txq);
3303 	}
3304 }
3305 
3306 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3307 {
3308 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3309 }
3310 
3311 /**
3312  *	netif_stop_queue - stop transmitted packets
3313  *	@dev: network device
3314  *
3315  *	Stop upper layers calling the device hard_start_xmit routine.
3316  *	Used for flow control when transmit resources are unavailable.
3317  */
3318 static inline void netif_stop_queue(struct net_device *dev)
3319 {
3320 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3321 }
3322 
3323 void netif_tx_stop_all_queues(struct net_device *dev);
3324 
3325 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3326 {
3327 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3328 }
3329 
3330 /**
3331  *	netif_queue_stopped - test if transmit queue is flowblocked
3332  *	@dev: network device
3333  *
3334  *	Test if transmit queue on device is currently unable to send.
3335  */
3336 static inline bool netif_queue_stopped(const struct net_device *dev)
3337 {
3338 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3339 }
3340 
3341 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3342 {
3343 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3344 }
3345 
3346 static inline bool
3347 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3348 {
3349 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3350 }
3351 
3352 static inline bool
3353 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3354 {
3355 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3356 }
3357 
3358 /**
3359  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3360  *	@dev_queue: pointer to transmit queue
3361  *	@min_limit: dql minimum limit
3362  *
3363  * Forces xmit_more() to return true until the minimum threshold
3364  * defined by @min_limit is reached (or until the tx queue is
3365  * empty). Warning: to be use with care, misuse will impact the
3366  * latency.
3367  */
3368 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3369 						  unsigned int min_limit)
3370 {
3371 #ifdef CONFIG_BQL
3372 	dev_queue->dql.min_limit = min_limit;
3373 #endif
3374 }
3375 
3376 /**
3377  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3378  *	@dev_queue: pointer to transmit queue
3379  *
3380  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3381  * to give appropriate hint to the CPU.
3382  */
3383 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3384 {
3385 #ifdef CONFIG_BQL
3386 	prefetchw(&dev_queue->dql.num_queued);
3387 #endif
3388 }
3389 
3390 /**
3391  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3392  *	@dev_queue: pointer to transmit queue
3393  *
3394  * BQL enabled drivers might use this helper in their TX completion path,
3395  * to give appropriate hint to the CPU.
3396  */
3397 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3398 {
3399 #ifdef CONFIG_BQL
3400 	prefetchw(&dev_queue->dql.limit);
3401 #endif
3402 }
3403 
3404 /**
3405  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3406  *	@dev_queue: network device queue
3407  *	@bytes: number of bytes queued to the device queue
3408  *
3409  *	Report the number of bytes queued for sending/completion to the network
3410  *	device hardware queue. @bytes should be a good approximation and should
3411  *	exactly match netdev_completed_queue() @bytes.
3412  *	This is typically called once per packet, from ndo_start_xmit().
3413  */
3414 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3415 					unsigned int bytes)
3416 {
3417 #ifdef CONFIG_BQL
3418 	dql_queued(&dev_queue->dql, bytes);
3419 
3420 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3421 		return;
3422 
3423 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3424 
3425 	/*
3426 	 * The XOFF flag must be set before checking the dql_avail below,
3427 	 * because in netdev_tx_completed_queue we update the dql_completed
3428 	 * before checking the XOFF flag.
3429 	 */
3430 	smp_mb();
3431 
3432 	/* check again in case another CPU has just made room avail */
3433 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3434 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3435 #endif
3436 }
3437 
3438 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3439  * that they should not test BQL status themselves.
3440  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3441  * skb of a batch.
3442  * Returns true if the doorbell must be used to kick the NIC.
3443  */
3444 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3445 					  unsigned int bytes,
3446 					  bool xmit_more)
3447 {
3448 	if (xmit_more) {
3449 #ifdef CONFIG_BQL
3450 		dql_queued(&dev_queue->dql, bytes);
3451 #endif
3452 		return netif_tx_queue_stopped(dev_queue);
3453 	}
3454 	netdev_tx_sent_queue(dev_queue, bytes);
3455 	return true;
3456 }
3457 
3458 /**
3459  *	netdev_sent_queue - report the number of bytes queued to hardware
3460  *	@dev: network device
3461  *	@bytes: number of bytes queued to the hardware device queue
3462  *
3463  *	Report the number of bytes queued for sending/completion to the network
3464  *	device hardware queue#0. @bytes should be a good approximation and should
3465  *	exactly match netdev_completed_queue() @bytes.
3466  *	This is typically called once per packet, from ndo_start_xmit().
3467  */
3468 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3469 {
3470 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3471 }
3472 
3473 static inline bool __netdev_sent_queue(struct net_device *dev,
3474 				       unsigned int bytes,
3475 				       bool xmit_more)
3476 {
3477 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3478 				      xmit_more);
3479 }
3480 
3481 /**
3482  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3483  *	@dev_queue: network device queue
3484  *	@pkts: number of packets (currently ignored)
3485  *	@bytes: number of bytes dequeued from the device queue
3486  *
3487  *	Must be called at most once per TX completion round (and not per
3488  *	individual packet), so that BQL can adjust its limits appropriately.
3489  */
3490 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3491 					     unsigned int pkts, unsigned int bytes)
3492 {
3493 #ifdef CONFIG_BQL
3494 	if (unlikely(!bytes))
3495 		return;
3496 
3497 	dql_completed(&dev_queue->dql, bytes);
3498 
3499 	/*
3500 	 * Without the memory barrier there is a small possiblity that
3501 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3502 	 * be stopped forever
3503 	 */
3504 	smp_mb();
3505 
3506 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3507 		return;
3508 
3509 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3510 		netif_schedule_queue(dev_queue);
3511 #endif
3512 }
3513 
3514 /**
3515  * 	netdev_completed_queue - report bytes and packets completed by device
3516  * 	@dev: network device
3517  * 	@pkts: actual number of packets sent over the medium
3518  * 	@bytes: actual number of bytes sent over the medium
3519  *
3520  * 	Report the number of bytes and packets transmitted by the network device
3521  * 	hardware queue over the physical medium, @bytes must exactly match the
3522  * 	@bytes amount passed to netdev_sent_queue()
3523  */
3524 static inline void netdev_completed_queue(struct net_device *dev,
3525 					  unsigned int pkts, unsigned int bytes)
3526 {
3527 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3528 }
3529 
3530 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3531 {
3532 #ifdef CONFIG_BQL
3533 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3534 	dql_reset(&q->dql);
3535 #endif
3536 }
3537 
3538 /**
3539  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3540  * 	@dev_queue: network device
3541  *
3542  * 	Reset the bytes and packet count of a network device and clear the
3543  * 	software flow control OFF bit for this network device
3544  */
3545 static inline void netdev_reset_queue(struct net_device *dev_queue)
3546 {
3547 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3548 }
3549 
3550 /**
3551  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3552  * 	@dev: network device
3553  * 	@queue_index: given tx queue index
3554  *
3555  * 	Returns 0 if given tx queue index >= number of device tx queues,
3556  * 	otherwise returns the originally passed tx queue index.
3557  */
3558 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3559 {
3560 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3561 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3562 				     dev->name, queue_index,
3563 				     dev->real_num_tx_queues);
3564 		return 0;
3565 	}
3566 
3567 	return queue_index;
3568 }
3569 
3570 /**
3571  *	netif_running - test if up
3572  *	@dev: network device
3573  *
3574  *	Test if the device has been brought up.
3575  */
3576 static inline bool netif_running(const struct net_device *dev)
3577 {
3578 	return test_bit(__LINK_STATE_START, &dev->state);
3579 }
3580 
3581 /*
3582  * Routines to manage the subqueues on a device.  We only need start,
3583  * stop, and a check if it's stopped.  All other device management is
3584  * done at the overall netdevice level.
3585  * Also test the device if we're multiqueue.
3586  */
3587 
3588 /**
3589  *	netif_start_subqueue - allow sending packets on subqueue
3590  *	@dev: network device
3591  *	@queue_index: sub queue index
3592  *
3593  * Start individual transmit queue of a device with multiple transmit queues.
3594  */
3595 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3596 {
3597 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3598 
3599 	netif_tx_start_queue(txq);
3600 }
3601 
3602 /**
3603  *	netif_stop_subqueue - stop sending packets on subqueue
3604  *	@dev: network device
3605  *	@queue_index: sub queue index
3606  *
3607  * Stop individual transmit queue of a device with multiple transmit queues.
3608  */
3609 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3610 {
3611 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3612 	netif_tx_stop_queue(txq);
3613 }
3614 
3615 /**
3616  *	__netif_subqueue_stopped - test status of subqueue
3617  *	@dev: network device
3618  *	@queue_index: sub queue index
3619  *
3620  * Check individual transmit queue of a device with multiple transmit queues.
3621  */
3622 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3623 					    u16 queue_index)
3624 {
3625 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3626 
3627 	return netif_tx_queue_stopped(txq);
3628 }
3629 
3630 /**
3631  *	netif_subqueue_stopped - test status of subqueue
3632  *	@dev: network device
3633  *	@skb: sub queue buffer pointer
3634  *
3635  * Check individual transmit queue of a device with multiple transmit queues.
3636  */
3637 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3638 					  struct sk_buff *skb)
3639 {
3640 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3641 }
3642 
3643 /**
3644  *	netif_wake_subqueue - allow sending packets on subqueue
3645  *	@dev: network device
3646  *	@queue_index: sub queue index
3647  *
3648  * Resume individual transmit queue of a device with multiple transmit queues.
3649  */
3650 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3651 {
3652 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3653 
3654 	netif_tx_wake_queue(txq);
3655 }
3656 
3657 #ifdef CONFIG_XPS
3658 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3659 			u16 index);
3660 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3661 			  u16 index, enum xps_map_type type);
3662 
3663 /**
3664  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3665  *	@j: CPU/Rx queue index
3666  *	@mask: bitmask of all cpus/rx queues
3667  *	@nr_bits: number of bits in the bitmask
3668  *
3669  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3670  */
3671 static inline bool netif_attr_test_mask(unsigned long j,
3672 					const unsigned long *mask,
3673 					unsigned int nr_bits)
3674 {
3675 	cpu_max_bits_warn(j, nr_bits);
3676 	return test_bit(j, mask);
3677 }
3678 
3679 /**
3680  *	netif_attr_test_online - Test for online CPU/Rx queue
3681  *	@j: CPU/Rx queue index
3682  *	@online_mask: bitmask for CPUs/Rx queues that are online
3683  *	@nr_bits: number of bits in the bitmask
3684  *
3685  * Returns true if a CPU/Rx queue is online.
3686  */
3687 static inline bool netif_attr_test_online(unsigned long j,
3688 					  const unsigned long *online_mask,
3689 					  unsigned int nr_bits)
3690 {
3691 	cpu_max_bits_warn(j, nr_bits);
3692 
3693 	if (online_mask)
3694 		return test_bit(j, online_mask);
3695 
3696 	return (j < nr_bits);
3697 }
3698 
3699 /**
3700  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3701  *	@n: CPU/Rx queue index
3702  *	@srcp: the cpumask/Rx queue mask pointer
3703  *	@nr_bits: number of bits in the bitmask
3704  *
3705  * Returns >= nr_bits if no further CPUs/Rx queues set.
3706  */
3707 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3708 					       unsigned int nr_bits)
3709 {
3710 	/* -1 is a legal arg here. */
3711 	if (n != -1)
3712 		cpu_max_bits_warn(n, nr_bits);
3713 
3714 	if (srcp)
3715 		return find_next_bit(srcp, nr_bits, n + 1);
3716 
3717 	return n + 1;
3718 }
3719 
3720 /**
3721  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3722  *	@n: CPU/Rx queue index
3723  *	@src1p: the first CPUs/Rx queues mask pointer
3724  *	@src2p: the second CPUs/Rx queues mask pointer
3725  *	@nr_bits: number of bits in the bitmask
3726  *
3727  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3728  */
3729 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3730 					  const unsigned long *src2p,
3731 					  unsigned int nr_bits)
3732 {
3733 	/* -1 is a legal arg here. */
3734 	if (n != -1)
3735 		cpu_max_bits_warn(n, nr_bits);
3736 
3737 	if (src1p && src2p)
3738 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3739 	else if (src1p)
3740 		return find_next_bit(src1p, nr_bits, n + 1);
3741 	else if (src2p)
3742 		return find_next_bit(src2p, nr_bits, n + 1);
3743 
3744 	return n + 1;
3745 }
3746 #else
3747 static inline int netif_set_xps_queue(struct net_device *dev,
3748 				      const struct cpumask *mask,
3749 				      u16 index)
3750 {
3751 	return 0;
3752 }
3753 
3754 static inline int __netif_set_xps_queue(struct net_device *dev,
3755 					const unsigned long *mask,
3756 					u16 index, enum xps_map_type type)
3757 {
3758 	return 0;
3759 }
3760 #endif
3761 
3762 /**
3763  *	netif_is_multiqueue - test if device has multiple transmit queues
3764  *	@dev: network device
3765  *
3766  * Check if device has multiple transmit queues
3767  */
3768 static inline bool netif_is_multiqueue(const struct net_device *dev)
3769 {
3770 	return dev->num_tx_queues > 1;
3771 }
3772 
3773 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3774 
3775 #ifdef CONFIG_SYSFS
3776 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3777 #else
3778 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3779 						unsigned int rxqs)
3780 {
3781 	dev->real_num_rx_queues = rxqs;
3782 	return 0;
3783 }
3784 #endif
3785 int netif_set_real_num_queues(struct net_device *dev,
3786 			      unsigned int txq, unsigned int rxq);
3787 
3788 static inline struct netdev_rx_queue *
3789 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3790 {
3791 	return dev->_rx + rxq;
3792 }
3793 
3794 #ifdef CONFIG_SYSFS
3795 static inline unsigned int get_netdev_rx_queue_index(
3796 		struct netdev_rx_queue *queue)
3797 {
3798 	struct net_device *dev = queue->dev;
3799 	int index = queue - dev->_rx;
3800 
3801 	BUG_ON(index >= dev->num_rx_queues);
3802 	return index;
3803 }
3804 #endif
3805 
3806 int netif_get_num_default_rss_queues(void);
3807 
3808 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3809 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3810 
3811 /*
3812  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3813  * interrupt context or with hardware interrupts being disabled.
3814  * (in_hardirq() || irqs_disabled())
3815  *
3816  * We provide four helpers that can be used in following contexts :
3817  *
3818  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3819  *  replacing kfree_skb(skb)
3820  *
3821  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3822  *  Typically used in place of consume_skb(skb) in TX completion path
3823  *
3824  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3825  *  replacing kfree_skb(skb)
3826  *
3827  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3828  *  and consumed a packet. Used in place of consume_skb(skb)
3829  */
3830 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3831 {
3832 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3833 }
3834 
3835 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3836 {
3837 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3838 }
3839 
3840 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3841 {
3842 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3843 }
3844 
3845 static inline void dev_consume_skb_any(struct sk_buff *skb)
3846 {
3847 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3848 }
3849 
3850 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3851 			     struct bpf_prog *xdp_prog);
3852 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3853 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3854 int netif_rx(struct sk_buff *skb);
3855 int __netif_rx(struct sk_buff *skb);
3856 
3857 int netif_receive_skb(struct sk_buff *skb);
3858 int netif_receive_skb_core(struct sk_buff *skb);
3859 void netif_receive_skb_list_internal(struct list_head *head);
3860 void netif_receive_skb_list(struct list_head *head);
3861 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3862 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3863 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3864 void napi_get_frags_check(struct napi_struct *napi);
3865 gro_result_t napi_gro_frags(struct napi_struct *napi);
3866 struct packet_offload *gro_find_receive_by_type(__be16 type);
3867 struct packet_offload *gro_find_complete_by_type(__be16 type);
3868 
3869 static inline void napi_free_frags(struct napi_struct *napi)
3870 {
3871 	kfree_skb(napi->skb);
3872 	napi->skb = NULL;
3873 }
3874 
3875 bool netdev_is_rx_handler_busy(struct net_device *dev);
3876 int netdev_rx_handler_register(struct net_device *dev,
3877 			       rx_handler_func_t *rx_handler,
3878 			       void *rx_handler_data);
3879 void netdev_rx_handler_unregister(struct net_device *dev);
3880 
3881 bool dev_valid_name(const char *name);
3882 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3883 {
3884 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3885 }
3886 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3887 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3888 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3889 		void __user *data, bool *need_copyout);
3890 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3891 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3892 unsigned int dev_get_flags(const struct net_device *);
3893 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3894 		       struct netlink_ext_ack *extack);
3895 int dev_change_flags(struct net_device *dev, unsigned int flags,
3896 		     struct netlink_ext_ack *extack);
3897 int dev_set_alias(struct net_device *, const char *, size_t);
3898 int dev_get_alias(const struct net_device *, char *, size_t);
3899 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3900 			       const char *pat, int new_ifindex);
3901 static inline
3902 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3903 			     const char *pat)
3904 {
3905 	return __dev_change_net_namespace(dev, net, pat, 0);
3906 }
3907 int __dev_set_mtu(struct net_device *, int);
3908 int dev_set_mtu(struct net_device *, int);
3909 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3910 			      struct netlink_ext_ack *extack);
3911 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3912 			struct netlink_ext_ack *extack);
3913 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3914 			     struct netlink_ext_ack *extack);
3915 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3916 int dev_get_port_parent_id(struct net_device *dev,
3917 			   struct netdev_phys_item_id *ppid, bool recurse);
3918 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3919 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3921 				    struct netdev_queue *txq, int *ret);
3922 
3923 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3924 u8 dev_xdp_prog_count(struct net_device *dev);
3925 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3926 
3927 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3928 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3929 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3930 bool is_skb_forwardable(const struct net_device *dev,
3931 			const struct sk_buff *skb);
3932 
3933 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3934 						 const struct sk_buff *skb,
3935 						 const bool check_mtu)
3936 {
3937 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3938 	unsigned int len;
3939 
3940 	if (!(dev->flags & IFF_UP))
3941 		return false;
3942 
3943 	if (!check_mtu)
3944 		return true;
3945 
3946 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3947 	if (skb->len <= len)
3948 		return true;
3949 
3950 	/* if TSO is enabled, we don't care about the length as the packet
3951 	 * could be forwarded without being segmented before
3952 	 */
3953 	if (skb_is_gso(skb))
3954 		return true;
3955 
3956 	return false;
3957 }
3958 
3959 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3960 
3961 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3962 {
3963 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3964 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3965 
3966 	if (likely(p))
3967 		return p;
3968 
3969 	return netdev_core_stats_alloc(dev);
3970 }
3971 
3972 #define DEV_CORE_STATS_INC(FIELD)						\
3973 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3974 {										\
3975 	struct net_device_core_stats __percpu *p;				\
3976 										\
3977 	p = dev_core_stats(dev);						\
3978 	if (p)									\
3979 		this_cpu_inc(p->FIELD);						\
3980 }
3981 DEV_CORE_STATS_INC(rx_dropped)
3982 DEV_CORE_STATS_INC(tx_dropped)
3983 DEV_CORE_STATS_INC(rx_nohandler)
3984 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3985 
3986 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3987 					       struct sk_buff *skb,
3988 					       const bool check_mtu)
3989 {
3990 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3991 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3992 		dev_core_stats_rx_dropped_inc(dev);
3993 		kfree_skb(skb);
3994 		return NET_RX_DROP;
3995 	}
3996 
3997 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3998 	skb->priority = 0;
3999 	return 0;
4000 }
4001 
4002 bool dev_nit_active(struct net_device *dev);
4003 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4004 
4005 static inline void __dev_put(struct net_device *dev)
4006 {
4007 	if (dev) {
4008 #ifdef CONFIG_PCPU_DEV_REFCNT
4009 		this_cpu_dec(*dev->pcpu_refcnt);
4010 #else
4011 		refcount_dec(&dev->dev_refcnt);
4012 #endif
4013 	}
4014 }
4015 
4016 static inline void __dev_hold(struct net_device *dev)
4017 {
4018 	if (dev) {
4019 #ifdef CONFIG_PCPU_DEV_REFCNT
4020 		this_cpu_inc(*dev->pcpu_refcnt);
4021 #else
4022 		refcount_inc(&dev->dev_refcnt);
4023 #endif
4024 	}
4025 }
4026 
4027 static inline void __netdev_tracker_alloc(struct net_device *dev,
4028 					  netdevice_tracker *tracker,
4029 					  gfp_t gfp)
4030 {
4031 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4032 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4033 #endif
4034 }
4035 
4036 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4037  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4038  */
4039 static inline void netdev_tracker_alloc(struct net_device *dev,
4040 					netdevice_tracker *tracker, gfp_t gfp)
4041 {
4042 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4043 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4044 	__netdev_tracker_alloc(dev, tracker, gfp);
4045 #endif
4046 }
4047 
4048 static inline void netdev_tracker_free(struct net_device *dev,
4049 				       netdevice_tracker *tracker)
4050 {
4051 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4052 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4053 #endif
4054 }
4055 
4056 static inline void netdev_hold(struct net_device *dev,
4057 			       netdevice_tracker *tracker, gfp_t gfp)
4058 {
4059 	if (dev) {
4060 		__dev_hold(dev);
4061 		__netdev_tracker_alloc(dev, tracker, gfp);
4062 	}
4063 }
4064 
4065 static inline void netdev_put(struct net_device *dev,
4066 			      netdevice_tracker *tracker)
4067 {
4068 	if (dev) {
4069 		netdev_tracker_free(dev, tracker);
4070 		__dev_put(dev);
4071 	}
4072 }
4073 
4074 /**
4075  *	dev_hold - get reference to device
4076  *	@dev: network device
4077  *
4078  * Hold reference to device to keep it from being freed.
4079  * Try using netdev_hold() instead.
4080  */
4081 static inline void dev_hold(struct net_device *dev)
4082 {
4083 	netdev_hold(dev, NULL, GFP_ATOMIC);
4084 }
4085 
4086 /**
4087  *	dev_put - release reference to device
4088  *	@dev: network device
4089  *
4090  * Release reference to device to allow it to be freed.
4091  * Try using netdev_put() instead.
4092  */
4093 static inline void dev_put(struct net_device *dev)
4094 {
4095 	netdev_put(dev, NULL);
4096 }
4097 
4098 static inline void netdev_ref_replace(struct net_device *odev,
4099 				      struct net_device *ndev,
4100 				      netdevice_tracker *tracker,
4101 				      gfp_t gfp)
4102 {
4103 	if (odev)
4104 		netdev_tracker_free(odev, tracker);
4105 
4106 	__dev_hold(ndev);
4107 	__dev_put(odev);
4108 
4109 	if (ndev)
4110 		__netdev_tracker_alloc(ndev, tracker, gfp);
4111 }
4112 
4113 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4114  * and _off may be called from IRQ context, but it is caller
4115  * who is responsible for serialization of these calls.
4116  *
4117  * The name carrier is inappropriate, these functions should really be
4118  * called netif_lowerlayer_*() because they represent the state of any
4119  * kind of lower layer not just hardware media.
4120  */
4121 void linkwatch_fire_event(struct net_device *dev);
4122 
4123 /**
4124  *	netif_carrier_ok - test if carrier present
4125  *	@dev: network device
4126  *
4127  * Check if carrier is present on device
4128  */
4129 static inline bool netif_carrier_ok(const struct net_device *dev)
4130 {
4131 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4132 }
4133 
4134 unsigned long dev_trans_start(struct net_device *dev);
4135 
4136 void __netdev_watchdog_up(struct net_device *dev);
4137 
4138 void netif_carrier_on(struct net_device *dev);
4139 void netif_carrier_off(struct net_device *dev);
4140 void netif_carrier_event(struct net_device *dev);
4141 
4142 /**
4143  *	netif_dormant_on - mark device as dormant.
4144  *	@dev: network device
4145  *
4146  * Mark device as dormant (as per RFC2863).
4147  *
4148  * The dormant state indicates that the relevant interface is not
4149  * actually in a condition to pass packets (i.e., it is not 'up') but is
4150  * in a "pending" state, waiting for some external event.  For "on-
4151  * demand" interfaces, this new state identifies the situation where the
4152  * interface is waiting for events to place it in the up state.
4153  */
4154 static inline void netif_dormant_on(struct net_device *dev)
4155 {
4156 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4157 		linkwatch_fire_event(dev);
4158 }
4159 
4160 /**
4161  *	netif_dormant_off - set device as not dormant.
4162  *	@dev: network device
4163  *
4164  * Device is not in dormant state.
4165  */
4166 static inline void netif_dormant_off(struct net_device *dev)
4167 {
4168 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4169 		linkwatch_fire_event(dev);
4170 }
4171 
4172 /**
4173  *	netif_dormant - test if device is dormant
4174  *	@dev: network device
4175  *
4176  * Check if device is dormant.
4177  */
4178 static inline bool netif_dormant(const struct net_device *dev)
4179 {
4180 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4181 }
4182 
4183 
4184 /**
4185  *	netif_testing_on - mark device as under test.
4186  *	@dev: network device
4187  *
4188  * Mark device as under test (as per RFC2863).
4189  *
4190  * The testing state indicates that some test(s) must be performed on
4191  * the interface. After completion, of the test, the interface state
4192  * will change to up, dormant, or down, as appropriate.
4193  */
4194 static inline void netif_testing_on(struct net_device *dev)
4195 {
4196 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4197 		linkwatch_fire_event(dev);
4198 }
4199 
4200 /**
4201  *	netif_testing_off - set device as not under test.
4202  *	@dev: network device
4203  *
4204  * Device is not in testing state.
4205  */
4206 static inline void netif_testing_off(struct net_device *dev)
4207 {
4208 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4209 		linkwatch_fire_event(dev);
4210 }
4211 
4212 /**
4213  *	netif_testing - test if device is under test
4214  *	@dev: network device
4215  *
4216  * Check if device is under test
4217  */
4218 static inline bool netif_testing(const struct net_device *dev)
4219 {
4220 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4221 }
4222 
4223 
4224 /**
4225  *	netif_oper_up - test if device is operational
4226  *	@dev: network device
4227  *
4228  * Check if carrier is operational
4229  */
4230 static inline bool netif_oper_up(const struct net_device *dev)
4231 {
4232 	return (dev->operstate == IF_OPER_UP ||
4233 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4234 }
4235 
4236 /**
4237  *	netif_device_present - is device available or removed
4238  *	@dev: network device
4239  *
4240  * Check if device has not been removed from system.
4241  */
4242 static inline bool netif_device_present(const struct net_device *dev)
4243 {
4244 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4245 }
4246 
4247 void netif_device_detach(struct net_device *dev);
4248 
4249 void netif_device_attach(struct net_device *dev);
4250 
4251 /*
4252  * Network interface message level settings
4253  */
4254 
4255 enum {
4256 	NETIF_MSG_DRV_BIT,
4257 	NETIF_MSG_PROBE_BIT,
4258 	NETIF_MSG_LINK_BIT,
4259 	NETIF_MSG_TIMER_BIT,
4260 	NETIF_MSG_IFDOWN_BIT,
4261 	NETIF_MSG_IFUP_BIT,
4262 	NETIF_MSG_RX_ERR_BIT,
4263 	NETIF_MSG_TX_ERR_BIT,
4264 	NETIF_MSG_TX_QUEUED_BIT,
4265 	NETIF_MSG_INTR_BIT,
4266 	NETIF_MSG_TX_DONE_BIT,
4267 	NETIF_MSG_RX_STATUS_BIT,
4268 	NETIF_MSG_PKTDATA_BIT,
4269 	NETIF_MSG_HW_BIT,
4270 	NETIF_MSG_WOL_BIT,
4271 
4272 	/* When you add a new bit above, update netif_msg_class_names array
4273 	 * in net/ethtool/common.c
4274 	 */
4275 	NETIF_MSG_CLASS_COUNT,
4276 };
4277 /* Both ethtool_ops interface and internal driver implementation use u32 */
4278 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4279 
4280 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4281 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4282 
4283 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4284 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4285 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4286 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4287 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4288 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4289 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4290 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4291 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4292 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4293 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4294 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4295 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4296 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4297 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4298 
4299 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4300 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4301 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4302 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4303 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4304 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4305 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4306 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4307 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4308 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4309 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4310 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4311 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4312 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4313 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4314 
4315 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4316 {
4317 	/* use default */
4318 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4319 		return default_msg_enable_bits;
4320 	if (debug_value == 0)	/* no output */
4321 		return 0;
4322 	/* set low N bits */
4323 	return (1U << debug_value) - 1;
4324 }
4325 
4326 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4327 {
4328 	spin_lock(&txq->_xmit_lock);
4329 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4330 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4331 }
4332 
4333 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4334 {
4335 	__acquire(&txq->_xmit_lock);
4336 	return true;
4337 }
4338 
4339 static inline void __netif_tx_release(struct netdev_queue *txq)
4340 {
4341 	__release(&txq->_xmit_lock);
4342 }
4343 
4344 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4345 {
4346 	spin_lock_bh(&txq->_xmit_lock);
4347 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4348 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4349 }
4350 
4351 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4352 {
4353 	bool ok = spin_trylock(&txq->_xmit_lock);
4354 
4355 	if (likely(ok)) {
4356 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4357 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4358 	}
4359 	return ok;
4360 }
4361 
4362 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4363 {
4364 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4365 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4366 	spin_unlock(&txq->_xmit_lock);
4367 }
4368 
4369 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4370 {
4371 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4372 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4373 	spin_unlock_bh(&txq->_xmit_lock);
4374 }
4375 
4376 /*
4377  * txq->trans_start can be read locklessly from dev_watchdog()
4378  */
4379 static inline void txq_trans_update(struct netdev_queue *txq)
4380 {
4381 	if (txq->xmit_lock_owner != -1)
4382 		WRITE_ONCE(txq->trans_start, jiffies);
4383 }
4384 
4385 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4386 {
4387 	unsigned long now = jiffies;
4388 
4389 	if (READ_ONCE(txq->trans_start) != now)
4390 		WRITE_ONCE(txq->trans_start, now);
4391 }
4392 
4393 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4394 static inline void netif_trans_update(struct net_device *dev)
4395 {
4396 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4397 
4398 	txq_trans_cond_update(txq);
4399 }
4400 
4401 /**
4402  *	netif_tx_lock - grab network device transmit lock
4403  *	@dev: network device
4404  *
4405  * Get network device transmit lock
4406  */
4407 void netif_tx_lock(struct net_device *dev);
4408 
4409 static inline void netif_tx_lock_bh(struct net_device *dev)
4410 {
4411 	local_bh_disable();
4412 	netif_tx_lock(dev);
4413 }
4414 
4415 void netif_tx_unlock(struct net_device *dev);
4416 
4417 static inline void netif_tx_unlock_bh(struct net_device *dev)
4418 {
4419 	netif_tx_unlock(dev);
4420 	local_bh_enable();
4421 }
4422 
4423 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4424 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4425 		__netif_tx_lock(txq, cpu);		\
4426 	} else {					\
4427 		__netif_tx_acquire(txq);		\
4428 	}						\
4429 }
4430 
4431 #define HARD_TX_TRYLOCK(dev, txq)			\
4432 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4433 		__netif_tx_trylock(txq) :		\
4434 		__netif_tx_acquire(txq))
4435 
4436 #define HARD_TX_UNLOCK(dev, txq) {			\
4437 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4438 		__netif_tx_unlock(txq);			\
4439 	} else {					\
4440 		__netif_tx_release(txq);		\
4441 	}						\
4442 }
4443 
4444 static inline void netif_tx_disable(struct net_device *dev)
4445 {
4446 	unsigned int i;
4447 	int cpu;
4448 
4449 	local_bh_disable();
4450 	cpu = smp_processor_id();
4451 	spin_lock(&dev->tx_global_lock);
4452 	for (i = 0; i < dev->num_tx_queues; i++) {
4453 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4454 
4455 		__netif_tx_lock(txq, cpu);
4456 		netif_tx_stop_queue(txq);
4457 		__netif_tx_unlock(txq);
4458 	}
4459 	spin_unlock(&dev->tx_global_lock);
4460 	local_bh_enable();
4461 }
4462 
4463 static inline void netif_addr_lock(struct net_device *dev)
4464 {
4465 	unsigned char nest_level = 0;
4466 
4467 #ifdef CONFIG_LOCKDEP
4468 	nest_level = dev->nested_level;
4469 #endif
4470 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4471 }
4472 
4473 static inline void netif_addr_lock_bh(struct net_device *dev)
4474 {
4475 	unsigned char nest_level = 0;
4476 
4477 #ifdef CONFIG_LOCKDEP
4478 	nest_level = dev->nested_level;
4479 #endif
4480 	local_bh_disable();
4481 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4482 }
4483 
4484 static inline void netif_addr_unlock(struct net_device *dev)
4485 {
4486 	spin_unlock(&dev->addr_list_lock);
4487 }
4488 
4489 static inline void netif_addr_unlock_bh(struct net_device *dev)
4490 {
4491 	spin_unlock_bh(&dev->addr_list_lock);
4492 }
4493 
4494 /*
4495  * dev_addrs walker. Should be used only for read access. Call with
4496  * rcu_read_lock held.
4497  */
4498 #define for_each_dev_addr(dev, ha) \
4499 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4500 
4501 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4502 
4503 void ether_setup(struct net_device *dev);
4504 
4505 /* Support for loadable net-drivers */
4506 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4507 				    unsigned char name_assign_type,
4508 				    void (*setup)(struct net_device *),
4509 				    unsigned int txqs, unsigned int rxqs);
4510 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4511 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4512 
4513 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4514 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4515 			 count)
4516 
4517 int register_netdev(struct net_device *dev);
4518 void unregister_netdev(struct net_device *dev);
4519 
4520 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4521 
4522 /* General hardware address lists handling functions */
4523 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4524 		   struct netdev_hw_addr_list *from_list, int addr_len);
4525 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4526 		      struct netdev_hw_addr_list *from_list, int addr_len);
4527 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4528 		       struct net_device *dev,
4529 		       int (*sync)(struct net_device *, const unsigned char *),
4530 		       int (*unsync)(struct net_device *,
4531 				     const unsigned char *));
4532 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4533 			   struct net_device *dev,
4534 			   int (*sync)(struct net_device *,
4535 				       const unsigned char *, int),
4536 			   int (*unsync)(struct net_device *,
4537 					 const unsigned char *, int));
4538 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4539 			      struct net_device *dev,
4540 			      int (*unsync)(struct net_device *,
4541 					    const unsigned char *, int));
4542 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4543 			  struct net_device *dev,
4544 			  int (*unsync)(struct net_device *,
4545 					const unsigned char *));
4546 void __hw_addr_init(struct netdev_hw_addr_list *list);
4547 
4548 /* Functions used for device addresses handling */
4549 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4550 		  const void *addr, size_t len);
4551 
4552 static inline void
4553 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4554 {
4555 	dev_addr_mod(dev, 0, addr, len);
4556 }
4557 
4558 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4559 {
4560 	__dev_addr_set(dev, addr, dev->addr_len);
4561 }
4562 
4563 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4564 		 unsigned char addr_type);
4565 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4566 		 unsigned char addr_type);
4567 
4568 /* Functions used for unicast addresses handling */
4569 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4570 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4571 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4572 int dev_uc_sync(struct net_device *to, struct net_device *from);
4573 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4574 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4575 void dev_uc_flush(struct net_device *dev);
4576 void dev_uc_init(struct net_device *dev);
4577 
4578 /**
4579  *  __dev_uc_sync - Synchonize device's unicast list
4580  *  @dev:  device to sync
4581  *  @sync: function to call if address should be added
4582  *  @unsync: function to call if address should be removed
4583  *
4584  *  Add newly added addresses to the interface, and release
4585  *  addresses that have been deleted.
4586  */
4587 static inline int __dev_uc_sync(struct net_device *dev,
4588 				int (*sync)(struct net_device *,
4589 					    const unsigned char *),
4590 				int (*unsync)(struct net_device *,
4591 					      const unsigned char *))
4592 {
4593 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4594 }
4595 
4596 /**
4597  *  __dev_uc_unsync - Remove synchronized addresses from device
4598  *  @dev:  device to sync
4599  *  @unsync: function to call if address should be removed
4600  *
4601  *  Remove all addresses that were added to the device by dev_uc_sync().
4602  */
4603 static inline void __dev_uc_unsync(struct net_device *dev,
4604 				   int (*unsync)(struct net_device *,
4605 						 const unsigned char *))
4606 {
4607 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4608 }
4609 
4610 /* Functions used for multicast addresses handling */
4611 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4612 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4613 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4614 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4615 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4616 int dev_mc_sync(struct net_device *to, struct net_device *from);
4617 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4618 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4619 void dev_mc_flush(struct net_device *dev);
4620 void dev_mc_init(struct net_device *dev);
4621 
4622 /**
4623  *  __dev_mc_sync - Synchonize device's multicast list
4624  *  @dev:  device to sync
4625  *  @sync: function to call if address should be added
4626  *  @unsync: function to call if address should be removed
4627  *
4628  *  Add newly added addresses to the interface, and release
4629  *  addresses that have been deleted.
4630  */
4631 static inline int __dev_mc_sync(struct net_device *dev,
4632 				int (*sync)(struct net_device *,
4633 					    const unsigned char *),
4634 				int (*unsync)(struct net_device *,
4635 					      const unsigned char *))
4636 {
4637 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4638 }
4639 
4640 /**
4641  *  __dev_mc_unsync - Remove synchronized addresses from device
4642  *  @dev:  device to sync
4643  *  @unsync: function to call if address should be removed
4644  *
4645  *  Remove all addresses that were added to the device by dev_mc_sync().
4646  */
4647 static inline void __dev_mc_unsync(struct net_device *dev,
4648 				   int (*unsync)(struct net_device *,
4649 						 const unsigned char *))
4650 {
4651 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4652 }
4653 
4654 /* Functions used for secondary unicast and multicast support */
4655 void dev_set_rx_mode(struct net_device *dev);
4656 int dev_set_promiscuity(struct net_device *dev, int inc);
4657 int dev_set_allmulti(struct net_device *dev, int inc);
4658 void netdev_state_change(struct net_device *dev);
4659 void __netdev_notify_peers(struct net_device *dev);
4660 void netdev_notify_peers(struct net_device *dev);
4661 void netdev_features_change(struct net_device *dev);
4662 /* Load a device via the kmod */
4663 void dev_load(struct net *net, const char *name);
4664 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4665 					struct rtnl_link_stats64 *storage);
4666 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4667 			     const struct net_device_stats *netdev_stats);
4668 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4669 			   const struct pcpu_sw_netstats __percpu *netstats);
4670 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4671 
4672 extern int		netdev_max_backlog;
4673 extern int		dev_rx_weight;
4674 extern int		dev_tx_weight;
4675 extern int		gro_normal_batch;
4676 
4677 enum {
4678 	NESTED_SYNC_IMM_BIT,
4679 	NESTED_SYNC_TODO_BIT,
4680 };
4681 
4682 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4683 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4684 
4685 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4686 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4687 
4688 struct netdev_nested_priv {
4689 	unsigned char flags;
4690 	void *data;
4691 };
4692 
4693 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4694 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4695 						     struct list_head **iter);
4696 
4697 /* iterate through upper list, must be called under RCU read lock */
4698 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4699 	for (iter = &(dev)->adj_list.upper, \
4700 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4701 	     updev; \
4702 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4703 
4704 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4705 				  int (*fn)(struct net_device *upper_dev,
4706 					    struct netdev_nested_priv *priv),
4707 				  struct netdev_nested_priv *priv);
4708 
4709 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4710 				  struct net_device *upper_dev);
4711 
4712 bool netdev_has_any_upper_dev(struct net_device *dev);
4713 
4714 void *netdev_lower_get_next_private(struct net_device *dev,
4715 				    struct list_head **iter);
4716 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4717 					struct list_head **iter);
4718 
4719 #define netdev_for_each_lower_private(dev, priv, iter) \
4720 	for (iter = (dev)->adj_list.lower.next, \
4721 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4722 	     priv; \
4723 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4724 
4725 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4726 	for (iter = &(dev)->adj_list.lower, \
4727 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4728 	     priv; \
4729 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4730 
4731 void *netdev_lower_get_next(struct net_device *dev,
4732 				struct list_head **iter);
4733 
4734 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4735 	for (iter = (dev)->adj_list.lower.next, \
4736 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4737 	     ldev; \
4738 	     ldev = netdev_lower_get_next(dev, &(iter)))
4739 
4740 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4741 					     struct list_head **iter);
4742 int netdev_walk_all_lower_dev(struct net_device *dev,
4743 			      int (*fn)(struct net_device *lower_dev,
4744 					struct netdev_nested_priv *priv),
4745 			      struct netdev_nested_priv *priv);
4746 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4747 				  int (*fn)(struct net_device *lower_dev,
4748 					    struct netdev_nested_priv *priv),
4749 				  struct netdev_nested_priv *priv);
4750 
4751 void *netdev_adjacent_get_private(struct list_head *adj_list);
4752 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4753 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4754 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4755 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4756 			  struct netlink_ext_ack *extack);
4757 int netdev_master_upper_dev_link(struct net_device *dev,
4758 				 struct net_device *upper_dev,
4759 				 void *upper_priv, void *upper_info,
4760 				 struct netlink_ext_ack *extack);
4761 void netdev_upper_dev_unlink(struct net_device *dev,
4762 			     struct net_device *upper_dev);
4763 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4764 				   struct net_device *new_dev,
4765 				   struct net_device *dev,
4766 				   struct netlink_ext_ack *extack);
4767 void netdev_adjacent_change_commit(struct net_device *old_dev,
4768 				   struct net_device *new_dev,
4769 				   struct net_device *dev);
4770 void netdev_adjacent_change_abort(struct net_device *old_dev,
4771 				  struct net_device *new_dev,
4772 				  struct net_device *dev);
4773 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4774 void *netdev_lower_dev_get_private(struct net_device *dev,
4775 				   struct net_device *lower_dev);
4776 void netdev_lower_state_changed(struct net_device *lower_dev,
4777 				void *lower_state_info);
4778 
4779 /* RSS keys are 40 or 52 bytes long */
4780 #define NETDEV_RSS_KEY_LEN 52
4781 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4782 void netdev_rss_key_fill(void *buffer, size_t len);
4783 
4784 int skb_checksum_help(struct sk_buff *skb);
4785 int skb_crc32c_csum_help(struct sk_buff *skb);
4786 int skb_csum_hwoffload_help(struct sk_buff *skb,
4787 			    const netdev_features_t features);
4788 
4789 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4790 				  netdev_features_t features, bool tx_path);
4791 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4792 				    netdev_features_t features, __be16 type);
4793 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4794 				    netdev_features_t features);
4795 
4796 struct netdev_bonding_info {
4797 	ifslave	slave;
4798 	ifbond	master;
4799 };
4800 
4801 struct netdev_notifier_bonding_info {
4802 	struct netdev_notifier_info info; /* must be first */
4803 	struct netdev_bonding_info  bonding_info;
4804 };
4805 
4806 void netdev_bonding_info_change(struct net_device *dev,
4807 				struct netdev_bonding_info *bonding_info);
4808 
4809 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4810 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4811 #else
4812 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4813 				  const void *data)
4814 {
4815 }
4816 #endif
4817 
4818 static inline
4819 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4820 {
4821 	return __skb_gso_segment(skb, features, true);
4822 }
4823 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4824 
4825 static inline bool can_checksum_protocol(netdev_features_t features,
4826 					 __be16 protocol)
4827 {
4828 	if (protocol == htons(ETH_P_FCOE))
4829 		return !!(features & NETIF_F_FCOE_CRC);
4830 
4831 	/* Assume this is an IP checksum (not SCTP CRC) */
4832 
4833 	if (features & NETIF_F_HW_CSUM) {
4834 		/* Can checksum everything */
4835 		return true;
4836 	}
4837 
4838 	switch (protocol) {
4839 	case htons(ETH_P_IP):
4840 		return !!(features & NETIF_F_IP_CSUM);
4841 	case htons(ETH_P_IPV6):
4842 		return !!(features & NETIF_F_IPV6_CSUM);
4843 	default:
4844 		return false;
4845 	}
4846 }
4847 
4848 #ifdef CONFIG_BUG
4849 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4850 #else
4851 static inline void netdev_rx_csum_fault(struct net_device *dev,
4852 					struct sk_buff *skb)
4853 {
4854 }
4855 #endif
4856 /* rx skb timestamps */
4857 void net_enable_timestamp(void);
4858 void net_disable_timestamp(void);
4859 
4860 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4861 					const struct skb_shared_hwtstamps *hwtstamps,
4862 					bool cycles)
4863 {
4864 	const struct net_device_ops *ops = dev->netdev_ops;
4865 
4866 	if (ops->ndo_get_tstamp)
4867 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4868 
4869 	return hwtstamps->hwtstamp;
4870 }
4871 
4872 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4873 					      struct sk_buff *skb, struct net_device *dev,
4874 					      bool more)
4875 {
4876 	__this_cpu_write(softnet_data.xmit.more, more);
4877 	return ops->ndo_start_xmit(skb, dev);
4878 }
4879 
4880 static inline bool netdev_xmit_more(void)
4881 {
4882 	return __this_cpu_read(softnet_data.xmit.more);
4883 }
4884 
4885 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4886 					    struct netdev_queue *txq, bool more)
4887 {
4888 	const struct net_device_ops *ops = dev->netdev_ops;
4889 	netdev_tx_t rc;
4890 
4891 	rc = __netdev_start_xmit(ops, skb, dev, more);
4892 	if (rc == NETDEV_TX_OK)
4893 		txq_trans_update(txq);
4894 
4895 	return rc;
4896 }
4897 
4898 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4899 				const void *ns);
4900 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4901 				 const void *ns);
4902 
4903 extern const struct kobj_ns_type_operations net_ns_type_operations;
4904 
4905 const char *netdev_drivername(const struct net_device *dev);
4906 
4907 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4908 							  netdev_features_t f2)
4909 {
4910 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4911 		if (f1 & NETIF_F_HW_CSUM)
4912 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4913 		else
4914 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4915 	}
4916 
4917 	return f1 & f2;
4918 }
4919 
4920 static inline netdev_features_t netdev_get_wanted_features(
4921 	struct net_device *dev)
4922 {
4923 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4924 }
4925 netdev_features_t netdev_increment_features(netdev_features_t all,
4926 	netdev_features_t one, netdev_features_t mask);
4927 
4928 /* Allow TSO being used on stacked device :
4929  * Performing the GSO segmentation before last device
4930  * is a performance improvement.
4931  */
4932 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4933 							netdev_features_t mask)
4934 {
4935 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4936 }
4937 
4938 int __netdev_update_features(struct net_device *dev);
4939 void netdev_update_features(struct net_device *dev);
4940 void netdev_change_features(struct net_device *dev);
4941 
4942 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4943 					struct net_device *dev);
4944 
4945 netdev_features_t passthru_features_check(struct sk_buff *skb,
4946 					  struct net_device *dev,
4947 					  netdev_features_t features);
4948 netdev_features_t netif_skb_features(struct sk_buff *skb);
4949 
4950 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4951 {
4952 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4953 
4954 	/* check flags correspondence */
4955 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4956 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4957 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4958 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4959 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4960 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4961 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4962 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4963 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4964 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4965 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4966 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4967 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4968 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4969 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4970 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4971 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4972 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4973 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4974 
4975 	return (features & feature) == feature;
4976 }
4977 
4978 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4979 {
4980 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4981 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4982 }
4983 
4984 static inline bool netif_needs_gso(struct sk_buff *skb,
4985 				   netdev_features_t features)
4986 {
4987 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4988 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4989 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4990 }
4991 
4992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4993 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4994 void netif_inherit_tso_max(struct net_device *to,
4995 			   const struct net_device *from);
4996 
4997 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4998 					int pulled_hlen, u16 mac_offset,
4999 					int mac_len)
5000 {
5001 	skb->protocol = protocol;
5002 	skb->encapsulation = 1;
5003 	skb_push(skb, pulled_hlen);
5004 	skb_reset_transport_header(skb);
5005 	skb->mac_header = mac_offset;
5006 	skb->network_header = skb->mac_header + mac_len;
5007 	skb->mac_len = mac_len;
5008 }
5009 
5010 static inline bool netif_is_macsec(const struct net_device *dev)
5011 {
5012 	return dev->priv_flags & IFF_MACSEC;
5013 }
5014 
5015 static inline bool netif_is_macvlan(const struct net_device *dev)
5016 {
5017 	return dev->priv_flags & IFF_MACVLAN;
5018 }
5019 
5020 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5021 {
5022 	return dev->priv_flags & IFF_MACVLAN_PORT;
5023 }
5024 
5025 static inline bool netif_is_bond_master(const struct net_device *dev)
5026 {
5027 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5028 }
5029 
5030 static inline bool netif_is_bond_slave(const struct net_device *dev)
5031 {
5032 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5033 }
5034 
5035 static inline bool netif_supports_nofcs(struct net_device *dev)
5036 {
5037 	return dev->priv_flags & IFF_SUPP_NOFCS;
5038 }
5039 
5040 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5041 {
5042 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5043 }
5044 
5045 static inline bool netif_is_l3_master(const struct net_device *dev)
5046 {
5047 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5048 }
5049 
5050 static inline bool netif_is_l3_slave(const struct net_device *dev)
5051 {
5052 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5053 }
5054 
5055 static inline bool netif_is_bridge_master(const struct net_device *dev)
5056 {
5057 	return dev->priv_flags & IFF_EBRIDGE;
5058 }
5059 
5060 static inline bool netif_is_bridge_port(const struct net_device *dev)
5061 {
5062 	return dev->priv_flags & IFF_BRIDGE_PORT;
5063 }
5064 
5065 static inline bool netif_is_ovs_master(const struct net_device *dev)
5066 {
5067 	return dev->priv_flags & IFF_OPENVSWITCH;
5068 }
5069 
5070 static inline bool netif_is_ovs_port(const struct net_device *dev)
5071 {
5072 	return dev->priv_flags & IFF_OVS_DATAPATH;
5073 }
5074 
5075 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5076 {
5077 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5078 }
5079 
5080 static inline bool netif_is_team_master(const struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_TEAM;
5083 }
5084 
5085 static inline bool netif_is_team_port(const struct net_device *dev)
5086 {
5087 	return dev->priv_flags & IFF_TEAM_PORT;
5088 }
5089 
5090 static inline bool netif_is_lag_master(const struct net_device *dev)
5091 {
5092 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5093 }
5094 
5095 static inline bool netif_is_lag_port(const struct net_device *dev)
5096 {
5097 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5098 }
5099 
5100 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5101 {
5102 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5103 }
5104 
5105 static inline bool netif_is_failover(const struct net_device *dev)
5106 {
5107 	return dev->priv_flags & IFF_FAILOVER;
5108 }
5109 
5110 static inline bool netif_is_failover_slave(const struct net_device *dev)
5111 {
5112 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5113 }
5114 
5115 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5116 static inline void netif_keep_dst(struct net_device *dev)
5117 {
5118 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5119 }
5120 
5121 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5122 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5123 {
5124 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5125 	return netif_is_macsec(dev);
5126 }
5127 
5128 extern struct pernet_operations __net_initdata loopback_net_ops;
5129 
5130 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5131 
5132 /* netdev_printk helpers, similar to dev_printk */
5133 
5134 static inline const char *netdev_name(const struct net_device *dev)
5135 {
5136 	if (!dev->name[0] || strchr(dev->name, '%'))
5137 		return "(unnamed net_device)";
5138 	return dev->name;
5139 }
5140 
5141 static inline const char *netdev_reg_state(const struct net_device *dev)
5142 {
5143 	switch (dev->reg_state) {
5144 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5145 	case NETREG_REGISTERED: return "";
5146 	case NETREG_UNREGISTERING: return " (unregistering)";
5147 	case NETREG_UNREGISTERED: return " (unregistered)";
5148 	case NETREG_RELEASED: return " (released)";
5149 	case NETREG_DUMMY: return " (dummy)";
5150 	}
5151 
5152 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5153 	return " (unknown)";
5154 }
5155 
5156 #define MODULE_ALIAS_NETDEV(device) \
5157 	MODULE_ALIAS("netdev-" device)
5158 
5159 /*
5160  * netdev_WARN() acts like dev_printk(), but with the key difference
5161  * of using a WARN/WARN_ON to get the message out, including the
5162  * file/line information and a backtrace.
5163  */
5164 #define netdev_WARN(dev, format, args...)			\
5165 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5166 	     netdev_reg_state(dev), ##args)
5167 
5168 #define netdev_WARN_ONCE(dev, format, args...)				\
5169 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5170 		  netdev_reg_state(dev), ##args)
5171 
5172 /*
5173  *	The list of packet types we will receive (as opposed to discard)
5174  *	and the routines to invoke.
5175  *
5176  *	Why 16. Because with 16 the only overlap we get on a hash of the
5177  *	low nibble of the protocol value is RARP/SNAP/X.25.
5178  *
5179  *		0800	IP
5180  *		0001	802.3
5181  *		0002	AX.25
5182  *		0004	802.2
5183  *		8035	RARP
5184  *		0005	SNAP
5185  *		0805	X.25
5186  *		0806	ARP
5187  *		8137	IPX
5188  *		0009	Localtalk
5189  *		86DD	IPv6
5190  */
5191 #define PTYPE_HASH_SIZE	(16)
5192 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5193 
5194 extern struct list_head ptype_all __read_mostly;
5195 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5196 
5197 extern struct net_device *blackhole_netdev;
5198 
5199 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5200 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5201 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5202 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5203 
5204 #endif	/* _LINUX_NETDEVICE_H */
5205