1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <uapi/linux/netdev.h> 51 #include <linux/hashtable.h> 52 #include <linux/rbtree.h> 53 #include <net/net_trackers.h> 54 #include <net/net_debug.h> 55 #include <net/dropreason.h> 56 57 struct netpoll_info; 58 struct device; 59 struct ethtool_ops; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_md; 80 81 void synchronize_net(void); 82 void netdev_set_default_ethtool_ops(struct net_device *dev, 83 const struct ethtool_ops *ops); 84 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 85 86 /* Backlog congestion levels */ 87 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 88 #define NET_RX_DROP 1 /* packet dropped */ 89 90 #define MAX_NEST_DEV 8 91 92 /* 93 * Transmit return codes: transmit return codes originate from three different 94 * namespaces: 95 * 96 * - qdisc return codes 97 * - driver transmit return codes 98 * - errno values 99 * 100 * Drivers are allowed to return any one of those in their hard_start_xmit() 101 * function. Real network devices commonly used with qdiscs should only return 102 * the driver transmit return codes though - when qdiscs are used, the actual 103 * transmission happens asynchronously, so the value is not propagated to 104 * higher layers. Virtual network devices transmit synchronously; in this case 105 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 106 * others are propagated to higher layers. 107 */ 108 109 /* qdisc ->enqueue() return codes. */ 110 #define NET_XMIT_SUCCESS 0x00 111 #define NET_XMIT_DROP 0x01 /* skb dropped */ 112 #define NET_XMIT_CN 0x02 /* congestion notification */ 113 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 114 115 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 116 * indicates that the device will soon be dropping packets, or already drops 117 * some packets of the same priority; prompting us to send less aggressively. */ 118 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 119 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 120 121 /* Driver transmit return codes */ 122 #define NETDEV_TX_MASK 0xf0 123 124 enum netdev_tx { 125 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 126 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 127 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 128 }; 129 typedef enum netdev_tx netdev_tx_t; 130 131 /* 132 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 133 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 134 */ 135 static inline bool dev_xmit_complete(int rc) 136 { 137 /* 138 * Positive cases with an skb consumed by a driver: 139 * - successful transmission (rc == NETDEV_TX_OK) 140 * - error while transmitting (rc < 0) 141 * - error while queueing to a different device (rc & NET_XMIT_MASK) 142 */ 143 if (likely(rc < NET_XMIT_MASK)) 144 return true; 145 146 return false; 147 } 148 149 /* 150 * Compute the worst-case header length according to the protocols 151 * used. 152 */ 153 154 #if defined(CONFIG_HYPERV_NET) 155 # define LL_MAX_HEADER 128 156 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 157 # if defined(CONFIG_MAC80211_MESH) 158 # define LL_MAX_HEADER 128 159 # else 160 # define LL_MAX_HEADER 96 161 # endif 162 #else 163 # define LL_MAX_HEADER 32 164 #endif 165 166 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 167 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 168 #define MAX_HEADER LL_MAX_HEADER 169 #else 170 #define MAX_HEADER (LL_MAX_HEADER + 48) 171 #endif 172 173 /* 174 * Old network device statistics. Fields are native words 175 * (unsigned long) so they can be read and written atomically. 176 */ 177 178 #define NET_DEV_STAT(FIELD) \ 179 union { \ 180 unsigned long FIELD; \ 181 atomic_long_t __##FIELD; \ 182 } 183 184 struct net_device_stats { 185 NET_DEV_STAT(rx_packets); 186 NET_DEV_STAT(tx_packets); 187 NET_DEV_STAT(rx_bytes); 188 NET_DEV_STAT(tx_bytes); 189 NET_DEV_STAT(rx_errors); 190 NET_DEV_STAT(tx_errors); 191 NET_DEV_STAT(rx_dropped); 192 NET_DEV_STAT(tx_dropped); 193 NET_DEV_STAT(multicast); 194 NET_DEV_STAT(collisions); 195 NET_DEV_STAT(rx_length_errors); 196 NET_DEV_STAT(rx_over_errors); 197 NET_DEV_STAT(rx_crc_errors); 198 NET_DEV_STAT(rx_frame_errors); 199 NET_DEV_STAT(rx_fifo_errors); 200 NET_DEV_STAT(rx_missed_errors); 201 NET_DEV_STAT(tx_aborted_errors); 202 NET_DEV_STAT(tx_carrier_errors); 203 NET_DEV_STAT(tx_fifo_errors); 204 NET_DEV_STAT(tx_heartbeat_errors); 205 NET_DEV_STAT(tx_window_errors); 206 NET_DEV_STAT(rx_compressed); 207 NET_DEV_STAT(tx_compressed); 208 }; 209 #undef NET_DEV_STAT 210 211 /* per-cpu stats, allocated on demand. 212 * Try to fit them in a single cache line, for dev_get_stats() sake. 213 */ 214 struct net_device_core_stats { 215 unsigned long rx_dropped; 216 unsigned long tx_dropped; 217 unsigned long rx_nohandler; 218 unsigned long rx_otherhost_dropped; 219 } __aligned(4 * sizeof(unsigned long)); 220 221 #include <linux/cache.h> 222 #include <linux/skbuff.h> 223 224 #ifdef CONFIG_RPS 225 #include <linux/static_key.h> 226 extern struct static_key_false rps_needed; 227 extern struct static_key_false rfs_needed; 228 #endif 229 230 struct neighbour; 231 struct neigh_parms; 232 struct sk_buff; 233 234 struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239 #define NETDEV_HW_ADDR_T_LAN 1 240 #define NETDEV_HW_ADDR_T_SAN 2 241 #define NETDEV_HW_ADDR_T_UNICAST 3 242 #define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248 }; 249 250 struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256 }; 257 258 #define netdev_hw_addr_list_count(l) ((l)->count) 259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260 #define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265 #define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273 #define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279 struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284 #define HH_DATA_MOD 16 285 #define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287 #define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290 }; 291 292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300 #define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 302 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 303 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 304 305 struct header_ops { 306 int (*create) (struct sk_buff *skb, struct net_device *dev, 307 unsigned short type, const void *daddr, 308 const void *saddr, unsigned int len); 309 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 310 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 311 void (*cache_update)(struct hh_cache *hh, 312 const struct net_device *dev, 313 const unsigned char *haddr); 314 bool (*validate)(const char *ll_header, unsigned int len); 315 __be16 (*parse_protocol)(const struct sk_buff *skb); 316 }; 317 318 /* These flag bits are private to the generic network queueing 319 * layer; they may not be explicitly referenced by any other 320 * code. 321 */ 322 323 enum netdev_state_t { 324 __LINK_STATE_START, 325 __LINK_STATE_PRESENT, 326 __LINK_STATE_NOCARRIER, 327 __LINK_STATE_LINKWATCH_PENDING, 328 __LINK_STATE_DORMANT, 329 __LINK_STATE_TESTING, 330 }; 331 332 struct gro_list { 333 struct list_head list; 334 int count; 335 }; 336 337 /* 338 * size of gro hash buckets, must less than bit number of 339 * napi_struct::gro_bitmask 340 */ 341 #define GRO_HASH_BUCKETS 8 342 343 /* 344 * Structure for NAPI scheduling similar to tasklet but with weighting 345 */ 346 struct napi_struct { 347 /* The poll_list must only be managed by the entity which 348 * changes the state of the NAPI_STATE_SCHED bit. This means 349 * whoever atomically sets that bit can add this napi_struct 350 * to the per-CPU poll_list, and whoever clears that bit 351 * can remove from the list right before clearing the bit. 352 */ 353 struct list_head poll_list; 354 355 unsigned long state; 356 int weight; 357 int defer_hard_irqs_count; 358 unsigned long gro_bitmask; 359 int (*poll)(struct napi_struct *, int); 360 #ifdef CONFIG_NETPOLL 361 int poll_owner; 362 #endif 363 struct net_device *dev; 364 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 365 struct sk_buff *skb; 366 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 367 int rx_count; /* length of rx_list */ 368 struct hrtimer timer; 369 struct list_head dev_list; 370 struct hlist_node napi_hash_node; 371 unsigned int napi_id; 372 struct task_struct *thread; 373 }; 374 375 enum { 376 NAPI_STATE_SCHED, /* Poll is scheduled */ 377 NAPI_STATE_MISSED, /* reschedule a napi */ 378 NAPI_STATE_DISABLE, /* Disable pending */ 379 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 380 NAPI_STATE_LISTED, /* NAPI added to system lists */ 381 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 382 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 383 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 384 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 385 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 386 }; 387 388 enum { 389 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 390 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 391 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 392 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 393 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 394 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 395 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 396 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 397 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 398 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 399 }; 400 401 enum gro_result { 402 GRO_MERGED, 403 GRO_MERGED_FREE, 404 GRO_HELD, 405 GRO_NORMAL, 406 GRO_CONSUMED, 407 }; 408 typedef enum gro_result gro_result_t; 409 410 /* 411 * enum rx_handler_result - Possible return values for rx_handlers. 412 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 413 * further. 414 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 415 * case skb->dev was changed by rx_handler. 416 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 417 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 418 * 419 * rx_handlers are functions called from inside __netif_receive_skb(), to do 420 * special processing of the skb, prior to delivery to protocol handlers. 421 * 422 * Currently, a net_device can only have a single rx_handler registered. Trying 423 * to register a second rx_handler will return -EBUSY. 424 * 425 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 426 * To unregister a rx_handler on a net_device, use 427 * netdev_rx_handler_unregister(). 428 * 429 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 430 * do with the skb. 431 * 432 * If the rx_handler consumed the skb in some way, it should return 433 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 434 * the skb to be delivered in some other way. 435 * 436 * If the rx_handler changed skb->dev, to divert the skb to another 437 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 438 * new device will be called if it exists. 439 * 440 * If the rx_handler decides the skb should be ignored, it should return 441 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 442 * are registered on exact device (ptype->dev == skb->dev). 443 * 444 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 445 * delivered, it should return RX_HANDLER_PASS. 446 * 447 * A device without a registered rx_handler will behave as if rx_handler 448 * returned RX_HANDLER_PASS. 449 */ 450 451 enum rx_handler_result { 452 RX_HANDLER_CONSUMED, 453 RX_HANDLER_ANOTHER, 454 RX_HANDLER_EXACT, 455 RX_HANDLER_PASS, 456 }; 457 typedef enum rx_handler_result rx_handler_result_t; 458 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 459 460 void __napi_schedule(struct napi_struct *n); 461 void __napi_schedule_irqoff(struct napi_struct *n); 462 463 static inline bool napi_disable_pending(struct napi_struct *n) 464 { 465 return test_bit(NAPI_STATE_DISABLE, &n->state); 466 } 467 468 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 469 { 470 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 471 } 472 473 bool napi_schedule_prep(struct napi_struct *n); 474 475 /** 476 * napi_schedule - schedule NAPI poll 477 * @n: NAPI context 478 * 479 * Schedule NAPI poll routine to be called if it is not already 480 * running. 481 */ 482 static inline void napi_schedule(struct napi_struct *n) 483 { 484 if (napi_schedule_prep(n)) 485 __napi_schedule(n); 486 } 487 488 /** 489 * napi_schedule_irqoff - schedule NAPI poll 490 * @n: NAPI context 491 * 492 * Variant of napi_schedule(), assuming hard irqs are masked. 493 */ 494 static inline void napi_schedule_irqoff(struct napi_struct *n) 495 { 496 if (napi_schedule_prep(n)) 497 __napi_schedule_irqoff(n); 498 } 499 500 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 501 static inline bool napi_reschedule(struct napi_struct *napi) 502 { 503 if (napi_schedule_prep(napi)) { 504 __napi_schedule(napi); 505 return true; 506 } 507 return false; 508 } 509 510 bool napi_complete_done(struct napi_struct *n, int work_done); 511 /** 512 * napi_complete - NAPI processing complete 513 * @n: NAPI context 514 * 515 * Mark NAPI processing as complete. 516 * Consider using napi_complete_done() instead. 517 * Return false if device should avoid rearming interrupts. 518 */ 519 static inline bool napi_complete(struct napi_struct *n) 520 { 521 return napi_complete_done(n, 0); 522 } 523 524 int dev_set_threaded(struct net_device *dev, bool threaded); 525 526 /** 527 * napi_disable - prevent NAPI from scheduling 528 * @n: NAPI context 529 * 530 * Stop NAPI from being scheduled on this context. 531 * Waits till any outstanding processing completes. 532 */ 533 void napi_disable(struct napi_struct *n); 534 535 void napi_enable(struct napi_struct *n); 536 537 /** 538 * napi_synchronize - wait until NAPI is not running 539 * @n: NAPI context 540 * 541 * Wait until NAPI is done being scheduled on this context. 542 * Waits till any outstanding processing completes but 543 * does not disable future activations. 544 */ 545 static inline void napi_synchronize(const struct napi_struct *n) 546 { 547 if (IS_ENABLED(CONFIG_SMP)) 548 while (test_bit(NAPI_STATE_SCHED, &n->state)) 549 msleep(1); 550 else 551 barrier(); 552 } 553 554 /** 555 * napi_if_scheduled_mark_missed - if napi is running, set the 556 * NAPIF_STATE_MISSED 557 * @n: NAPI context 558 * 559 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 560 * NAPI is scheduled. 561 **/ 562 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 563 { 564 unsigned long val, new; 565 566 val = READ_ONCE(n->state); 567 do { 568 if (val & NAPIF_STATE_DISABLE) 569 return true; 570 571 if (!(val & NAPIF_STATE_SCHED)) 572 return false; 573 574 new = val | NAPIF_STATE_MISSED; 575 } while (!try_cmpxchg(&n->state, &val, new)); 576 577 return true; 578 } 579 580 enum netdev_queue_state_t { 581 __QUEUE_STATE_DRV_XOFF, 582 __QUEUE_STATE_STACK_XOFF, 583 __QUEUE_STATE_FROZEN, 584 }; 585 586 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 587 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 588 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 589 590 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 591 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 592 QUEUE_STATE_FROZEN) 593 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 594 QUEUE_STATE_FROZEN) 595 596 /* 597 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 598 * netif_tx_* functions below are used to manipulate this flag. The 599 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 600 * queue independently. The netif_xmit_*stopped functions below are called 601 * to check if the queue has been stopped by the driver or stack (either 602 * of the XOFF bits are set in the state). Drivers should not need to call 603 * netif_xmit*stopped functions, they should only be using netif_tx_*. 604 */ 605 606 struct netdev_queue { 607 /* 608 * read-mostly part 609 */ 610 struct net_device *dev; 611 netdevice_tracker dev_tracker; 612 613 struct Qdisc __rcu *qdisc; 614 struct Qdisc *qdisc_sleeping; 615 #ifdef CONFIG_SYSFS 616 struct kobject kobj; 617 #endif 618 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 619 int numa_node; 620 #endif 621 unsigned long tx_maxrate; 622 /* 623 * Number of TX timeouts for this queue 624 * (/sys/class/net/DEV/Q/trans_timeout) 625 */ 626 atomic_long_t trans_timeout; 627 628 /* Subordinate device that the queue has been assigned to */ 629 struct net_device *sb_dev; 630 #ifdef CONFIG_XDP_SOCKETS 631 struct xsk_buff_pool *pool; 632 #endif 633 /* 634 * write-mostly part 635 */ 636 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 637 int xmit_lock_owner; 638 /* 639 * Time (in jiffies) of last Tx 640 */ 641 unsigned long trans_start; 642 643 unsigned long state; 644 645 #ifdef CONFIG_BQL 646 struct dql dql; 647 #endif 648 } ____cacheline_aligned_in_smp; 649 650 extern int sysctl_fb_tunnels_only_for_init_net; 651 extern int sysctl_devconf_inherit_init_net; 652 653 /* 654 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 655 * == 1 : For initns only 656 * == 2 : For none. 657 */ 658 static inline bool net_has_fallback_tunnels(const struct net *net) 659 { 660 #if IS_ENABLED(CONFIG_SYSCTL) 661 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 662 663 return !fb_tunnels_only_for_init_net || 664 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 665 #else 666 return true; 667 #endif 668 } 669 670 static inline int net_inherit_devconf(void) 671 { 672 #if IS_ENABLED(CONFIG_SYSCTL) 673 return READ_ONCE(sysctl_devconf_inherit_init_net); 674 #else 675 return 0; 676 #endif 677 } 678 679 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 680 { 681 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 682 return q->numa_node; 683 #else 684 return NUMA_NO_NODE; 685 #endif 686 } 687 688 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 689 { 690 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 691 q->numa_node = node; 692 #endif 693 } 694 695 #ifdef CONFIG_RPS 696 /* 697 * This structure holds an RPS map which can be of variable length. The 698 * map is an array of CPUs. 699 */ 700 struct rps_map { 701 unsigned int len; 702 struct rcu_head rcu; 703 u16 cpus[]; 704 }; 705 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 706 707 /* 708 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 709 * tail pointer for that CPU's input queue at the time of last enqueue, and 710 * a hardware filter index. 711 */ 712 struct rps_dev_flow { 713 u16 cpu; 714 u16 filter; 715 unsigned int last_qtail; 716 }; 717 #define RPS_NO_FILTER 0xffff 718 719 /* 720 * The rps_dev_flow_table structure contains a table of flow mappings. 721 */ 722 struct rps_dev_flow_table { 723 unsigned int mask; 724 struct rcu_head rcu; 725 struct rps_dev_flow flows[]; 726 }; 727 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 728 ((_num) * sizeof(struct rps_dev_flow))) 729 730 /* 731 * The rps_sock_flow_table contains mappings of flows to the last CPU 732 * on which they were processed by the application (set in recvmsg). 733 * Each entry is a 32bit value. Upper part is the high-order bits 734 * of flow hash, lower part is CPU number. 735 * rps_cpu_mask is used to partition the space, depending on number of 736 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 737 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 738 * meaning we use 32-6=26 bits for the hash. 739 */ 740 struct rps_sock_flow_table { 741 u32 mask; 742 743 u32 ents[] ____cacheline_aligned_in_smp; 744 }; 745 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 746 747 #define RPS_NO_CPU 0xffff 748 749 extern u32 rps_cpu_mask; 750 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 751 752 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 753 u32 hash) 754 { 755 if (table && hash) { 756 unsigned int index = hash & table->mask; 757 u32 val = hash & ~rps_cpu_mask; 758 759 /* We only give a hint, preemption can change CPU under us */ 760 val |= raw_smp_processor_id(); 761 762 if (table->ents[index] != val) 763 table->ents[index] = val; 764 } 765 } 766 767 #ifdef CONFIG_RFS_ACCEL 768 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 769 u16 filter_id); 770 #endif 771 #endif /* CONFIG_RPS */ 772 773 /* This structure contains an instance of an RX queue. */ 774 struct netdev_rx_queue { 775 struct xdp_rxq_info xdp_rxq; 776 #ifdef CONFIG_RPS 777 struct rps_map __rcu *rps_map; 778 struct rps_dev_flow_table __rcu *rps_flow_table; 779 #endif 780 struct kobject kobj; 781 struct net_device *dev; 782 netdevice_tracker dev_tracker; 783 784 #ifdef CONFIG_XDP_SOCKETS 785 struct xsk_buff_pool *pool; 786 #endif 787 } ____cacheline_aligned_in_smp; 788 789 /* 790 * RX queue sysfs structures and functions. 791 */ 792 struct rx_queue_attribute { 793 struct attribute attr; 794 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 795 ssize_t (*store)(struct netdev_rx_queue *queue, 796 const char *buf, size_t len); 797 }; 798 799 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 800 enum xps_map_type { 801 XPS_CPUS = 0, 802 XPS_RXQS, 803 XPS_MAPS_MAX, 804 }; 805 806 #ifdef CONFIG_XPS 807 /* 808 * This structure holds an XPS map which can be of variable length. The 809 * map is an array of queues. 810 */ 811 struct xps_map { 812 unsigned int len; 813 unsigned int alloc_len; 814 struct rcu_head rcu; 815 u16 queues[]; 816 }; 817 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 818 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 819 - sizeof(struct xps_map)) / sizeof(u16)) 820 821 /* 822 * This structure holds all XPS maps for device. Maps are indexed by CPU. 823 * 824 * We keep track of the number of cpus/rxqs used when the struct is allocated, 825 * in nr_ids. This will help not accessing out-of-bound memory. 826 * 827 * We keep track of the number of traffic classes used when the struct is 828 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 829 * not crossing its upper bound, as the original dev->num_tc can be updated in 830 * the meantime. 831 */ 832 struct xps_dev_maps { 833 struct rcu_head rcu; 834 unsigned int nr_ids; 835 s16 num_tc; 836 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 837 }; 838 839 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 840 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 841 842 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 843 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 844 845 #endif /* CONFIG_XPS */ 846 847 #define TC_MAX_QUEUE 16 848 #define TC_BITMASK 15 849 /* HW offloaded queuing disciplines txq count and offset maps */ 850 struct netdev_tc_txq { 851 u16 count; 852 u16 offset; 853 }; 854 855 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 856 /* 857 * This structure is to hold information about the device 858 * configured to run FCoE protocol stack. 859 */ 860 struct netdev_fcoe_hbainfo { 861 char manufacturer[64]; 862 char serial_number[64]; 863 char hardware_version[64]; 864 char driver_version[64]; 865 char optionrom_version[64]; 866 char firmware_version[64]; 867 char model[256]; 868 char model_description[256]; 869 }; 870 #endif 871 872 #define MAX_PHYS_ITEM_ID_LEN 32 873 874 /* This structure holds a unique identifier to identify some 875 * physical item (port for example) used by a netdevice. 876 */ 877 struct netdev_phys_item_id { 878 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 879 unsigned char id_len; 880 }; 881 882 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 883 struct netdev_phys_item_id *b) 884 { 885 return a->id_len == b->id_len && 886 memcmp(a->id, b->id, a->id_len) == 0; 887 } 888 889 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 890 struct sk_buff *skb, 891 struct net_device *sb_dev); 892 893 enum net_device_path_type { 894 DEV_PATH_ETHERNET = 0, 895 DEV_PATH_VLAN, 896 DEV_PATH_BRIDGE, 897 DEV_PATH_PPPOE, 898 DEV_PATH_DSA, 899 DEV_PATH_MTK_WDMA, 900 }; 901 902 struct net_device_path { 903 enum net_device_path_type type; 904 const struct net_device *dev; 905 union { 906 struct { 907 u16 id; 908 __be16 proto; 909 u8 h_dest[ETH_ALEN]; 910 } encap; 911 struct { 912 enum { 913 DEV_PATH_BR_VLAN_KEEP, 914 DEV_PATH_BR_VLAN_TAG, 915 DEV_PATH_BR_VLAN_UNTAG, 916 DEV_PATH_BR_VLAN_UNTAG_HW, 917 } vlan_mode; 918 u16 vlan_id; 919 __be16 vlan_proto; 920 } bridge; 921 struct { 922 int port; 923 u16 proto; 924 } dsa; 925 struct { 926 u8 wdma_idx; 927 u8 queue; 928 u16 wcid; 929 u8 bss; 930 } mtk_wdma; 931 }; 932 }; 933 934 #define NET_DEVICE_PATH_STACK_MAX 5 935 #define NET_DEVICE_PATH_VLAN_MAX 2 936 937 struct net_device_path_stack { 938 int num_paths; 939 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 940 }; 941 942 struct net_device_path_ctx { 943 const struct net_device *dev; 944 u8 daddr[ETH_ALEN]; 945 946 int num_vlans; 947 struct { 948 u16 id; 949 __be16 proto; 950 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 951 }; 952 953 enum tc_setup_type { 954 TC_QUERY_CAPS, 955 TC_SETUP_QDISC_MQPRIO, 956 TC_SETUP_CLSU32, 957 TC_SETUP_CLSFLOWER, 958 TC_SETUP_CLSMATCHALL, 959 TC_SETUP_CLSBPF, 960 TC_SETUP_BLOCK, 961 TC_SETUP_QDISC_CBS, 962 TC_SETUP_QDISC_RED, 963 TC_SETUP_QDISC_PRIO, 964 TC_SETUP_QDISC_MQ, 965 TC_SETUP_QDISC_ETF, 966 TC_SETUP_ROOT_QDISC, 967 TC_SETUP_QDISC_GRED, 968 TC_SETUP_QDISC_TAPRIO, 969 TC_SETUP_FT, 970 TC_SETUP_QDISC_ETS, 971 TC_SETUP_QDISC_TBF, 972 TC_SETUP_QDISC_FIFO, 973 TC_SETUP_QDISC_HTB, 974 TC_SETUP_ACT, 975 }; 976 977 /* These structures hold the attributes of bpf state that are being passed 978 * to the netdevice through the bpf op. 979 */ 980 enum bpf_netdev_command { 981 /* Set or clear a bpf program used in the earliest stages of packet 982 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 983 * is responsible for calling bpf_prog_put on any old progs that are 984 * stored. In case of error, the callee need not release the new prog 985 * reference, but on success it takes ownership and must bpf_prog_put 986 * when it is no longer used. 987 */ 988 XDP_SETUP_PROG, 989 XDP_SETUP_PROG_HW, 990 /* BPF program for offload callbacks, invoked at program load time. */ 991 BPF_OFFLOAD_MAP_ALLOC, 992 BPF_OFFLOAD_MAP_FREE, 993 XDP_SETUP_XSK_POOL, 994 }; 995 996 struct bpf_prog_offload_ops; 997 struct netlink_ext_ack; 998 struct xdp_umem; 999 struct xdp_dev_bulk_queue; 1000 struct bpf_xdp_link; 1001 1002 enum bpf_xdp_mode { 1003 XDP_MODE_SKB = 0, 1004 XDP_MODE_DRV = 1, 1005 XDP_MODE_HW = 2, 1006 __MAX_XDP_MODE 1007 }; 1008 1009 struct bpf_xdp_entity { 1010 struct bpf_prog *prog; 1011 struct bpf_xdp_link *link; 1012 }; 1013 1014 struct netdev_bpf { 1015 enum bpf_netdev_command command; 1016 union { 1017 /* XDP_SETUP_PROG */ 1018 struct { 1019 u32 flags; 1020 struct bpf_prog *prog; 1021 struct netlink_ext_ack *extack; 1022 }; 1023 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1024 struct { 1025 struct bpf_offloaded_map *offmap; 1026 }; 1027 /* XDP_SETUP_XSK_POOL */ 1028 struct { 1029 struct xsk_buff_pool *pool; 1030 u16 queue_id; 1031 } xsk; 1032 }; 1033 }; 1034 1035 /* Flags for ndo_xsk_wakeup. */ 1036 #define XDP_WAKEUP_RX (1 << 0) 1037 #define XDP_WAKEUP_TX (1 << 1) 1038 1039 #ifdef CONFIG_XFRM_OFFLOAD 1040 struct xfrmdev_ops { 1041 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1042 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1043 void (*xdo_dev_state_free) (struct xfrm_state *x); 1044 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1045 struct xfrm_state *x); 1046 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1047 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1048 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1049 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1050 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1051 }; 1052 #endif 1053 1054 struct dev_ifalias { 1055 struct rcu_head rcuhead; 1056 char ifalias[]; 1057 }; 1058 1059 struct devlink; 1060 struct tlsdev_ops; 1061 1062 struct netdev_net_notifier { 1063 struct list_head list; 1064 struct notifier_block *nb; 1065 }; 1066 1067 /* 1068 * This structure defines the management hooks for network devices. 1069 * The following hooks can be defined; unless noted otherwise, they are 1070 * optional and can be filled with a null pointer. 1071 * 1072 * int (*ndo_init)(struct net_device *dev); 1073 * This function is called once when a network device is registered. 1074 * The network device can use this for any late stage initialization 1075 * or semantic validation. It can fail with an error code which will 1076 * be propagated back to register_netdev. 1077 * 1078 * void (*ndo_uninit)(struct net_device *dev); 1079 * This function is called when device is unregistered or when registration 1080 * fails. It is not called if init fails. 1081 * 1082 * int (*ndo_open)(struct net_device *dev); 1083 * This function is called when a network device transitions to the up 1084 * state. 1085 * 1086 * int (*ndo_stop)(struct net_device *dev); 1087 * This function is called when a network device transitions to the down 1088 * state. 1089 * 1090 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1091 * struct net_device *dev); 1092 * Called when a packet needs to be transmitted. 1093 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1094 * the queue before that can happen; it's for obsolete devices and weird 1095 * corner cases, but the stack really does a non-trivial amount 1096 * of useless work if you return NETDEV_TX_BUSY. 1097 * Required; cannot be NULL. 1098 * 1099 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1100 * struct net_device *dev 1101 * netdev_features_t features); 1102 * Called by core transmit path to determine if device is capable of 1103 * performing offload operations on a given packet. This is to give 1104 * the device an opportunity to implement any restrictions that cannot 1105 * be otherwise expressed by feature flags. The check is called with 1106 * the set of features that the stack has calculated and it returns 1107 * those the driver believes to be appropriate. 1108 * 1109 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1110 * struct net_device *sb_dev); 1111 * Called to decide which queue to use when device supports multiple 1112 * transmit queues. 1113 * 1114 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1115 * This function is called to allow device receiver to make 1116 * changes to configuration when multicast or promiscuous is enabled. 1117 * 1118 * void (*ndo_set_rx_mode)(struct net_device *dev); 1119 * This function is called device changes address list filtering. 1120 * If driver handles unicast address filtering, it should set 1121 * IFF_UNICAST_FLT in its priv_flags. 1122 * 1123 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1124 * This function is called when the Media Access Control address 1125 * needs to be changed. If this interface is not defined, the 1126 * MAC address can not be changed. 1127 * 1128 * int (*ndo_validate_addr)(struct net_device *dev); 1129 * Test if Media Access Control address is valid for the device. 1130 * 1131 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1132 * Old-style ioctl entry point. This is used internally by the 1133 * appletalk and ieee802154 subsystems but is no longer called by 1134 * the device ioctl handler. 1135 * 1136 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1137 * Used by the bonding driver for its device specific ioctls: 1138 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1139 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1140 * 1141 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1142 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1143 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1144 * 1145 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1146 * Used to set network devices bus interface parameters. This interface 1147 * is retained for legacy reasons; new devices should use the bus 1148 * interface (PCI) for low level management. 1149 * 1150 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1151 * Called when a user wants to change the Maximum Transfer Unit 1152 * of a device. 1153 * 1154 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1155 * Callback used when the transmitter has not made any progress 1156 * for dev->watchdog ticks. 1157 * 1158 * void (*ndo_get_stats64)(struct net_device *dev, 1159 * struct rtnl_link_stats64 *storage); 1160 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1161 * Called when a user wants to get the network device usage 1162 * statistics. Drivers must do one of the following: 1163 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1164 * rtnl_link_stats64 structure passed by the caller. 1165 * 2. Define @ndo_get_stats to update a net_device_stats structure 1166 * (which should normally be dev->stats) and return a pointer to 1167 * it. The structure may be changed asynchronously only if each 1168 * field is written atomically. 1169 * 3. Update dev->stats asynchronously and atomically, and define 1170 * neither operation. 1171 * 1172 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1173 * Return true if this device supports offload stats of this attr_id. 1174 * 1175 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1176 * void *attr_data) 1177 * Get statistics for offload operations by attr_id. Write it into the 1178 * attr_data pointer. 1179 * 1180 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1181 * If device supports VLAN filtering this function is called when a 1182 * VLAN id is registered. 1183 * 1184 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1185 * If device supports VLAN filtering this function is called when a 1186 * VLAN id is unregistered. 1187 * 1188 * void (*ndo_poll_controller)(struct net_device *dev); 1189 * 1190 * SR-IOV management functions. 1191 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1192 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1193 * u8 qos, __be16 proto); 1194 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1195 * int max_tx_rate); 1196 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1197 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1198 * int (*ndo_get_vf_config)(struct net_device *dev, 1199 * int vf, struct ifla_vf_info *ivf); 1200 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1201 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1202 * struct nlattr *port[]); 1203 * 1204 * Enable or disable the VF ability to query its RSS Redirection Table and 1205 * Hash Key. This is needed since on some devices VF share this information 1206 * with PF and querying it may introduce a theoretical security risk. 1207 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1208 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1209 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1210 * void *type_data); 1211 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1212 * This is always called from the stack with the rtnl lock held and netif 1213 * tx queues stopped. This allows the netdevice to perform queue 1214 * management safely. 1215 * 1216 * Fiber Channel over Ethernet (FCoE) offload functions. 1217 * int (*ndo_fcoe_enable)(struct net_device *dev); 1218 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1219 * so the underlying device can perform whatever needed configuration or 1220 * initialization to support acceleration of FCoE traffic. 1221 * 1222 * int (*ndo_fcoe_disable)(struct net_device *dev); 1223 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1224 * so the underlying device can perform whatever needed clean-ups to 1225 * stop supporting acceleration of FCoE traffic. 1226 * 1227 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1228 * struct scatterlist *sgl, unsigned int sgc); 1229 * Called when the FCoE Initiator wants to initialize an I/O that 1230 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1231 * perform necessary setup and returns 1 to indicate the device is set up 1232 * successfully to perform DDP on this I/O, otherwise this returns 0. 1233 * 1234 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1235 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1236 * indicated by the FC exchange id 'xid', so the underlying device can 1237 * clean up and reuse resources for later DDP requests. 1238 * 1239 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1240 * struct scatterlist *sgl, unsigned int sgc); 1241 * Called when the FCoE Target wants to initialize an I/O that 1242 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1243 * perform necessary setup and returns 1 to indicate the device is set up 1244 * successfully to perform DDP on this I/O, otherwise this returns 0. 1245 * 1246 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1247 * struct netdev_fcoe_hbainfo *hbainfo); 1248 * Called when the FCoE Protocol stack wants information on the underlying 1249 * device. This information is utilized by the FCoE protocol stack to 1250 * register attributes with Fiber Channel management service as per the 1251 * FC-GS Fabric Device Management Information(FDMI) specification. 1252 * 1253 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1254 * Called when the underlying device wants to override default World Wide 1255 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1256 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1257 * protocol stack to use. 1258 * 1259 * RFS acceleration. 1260 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1261 * u16 rxq_index, u32 flow_id); 1262 * Set hardware filter for RFS. rxq_index is the target queue index; 1263 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1264 * Return the filter ID on success, or a negative error code. 1265 * 1266 * Slave management functions (for bridge, bonding, etc). 1267 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1268 * Called to make another netdev an underling. 1269 * 1270 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1271 * Called to release previously enslaved netdev. 1272 * 1273 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1274 * struct sk_buff *skb, 1275 * bool all_slaves); 1276 * Get the xmit slave of master device. If all_slaves is true, function 1277 * assume all the slaves can transmit. 1278 * 1279 * Feature/offload setting functions. 1280 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1281 * netdev_features_t features); 1282 * Adjusts the requested feature flags according to device-specific 1283 * constraints, and returns the resulting flags. Must not modify 1284 * the device state. 1285 * 1286 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1287 * Called to update device configuration to new features. Passed 1288 * feature set might be less than what was returned by ndo_fix_features()). 1289 * Must return >0 or -errno if it changed dev->features itself. 1290 * 1291 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1292 * struct net_device *dev, 1293 * const unsigned char *addr, u16 vid, u16 flags, 1294 * struct netlink_ext_ack *extack); 1295 * Adds an FDB entry to dev for addr. 1296 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1297 * struct net_device *dev, 1298 * const unsigned char *addr, u16 vid) 1299 * Deletes the FDB entry from dev coresponding to addr. 1300 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1301 * struct net_device *dev, 1302 * u16 vid, 1303 * struct netlink_ext_ack *extack); 1304 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1305 * struct net_device *dev, struct net_device *filter_dev, 1306 * int *idx) 1307 * Used to add FDB entries to dump requests. Implementers should add 1308 * entries to skb and update idx with the number of entries. 1309 * 1310 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1311 * u16 flags, struct netlink_ext_ack *extack) 1312 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1313 * struct net_device *dev, u32 filter_mask, 1314 * int nlflags) 1315 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1316 * u16 flags); 1317 * 1318 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1319 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1320 * which do not represent real hardware may define this to allow their 1321 * userspace components to manage their virtual carrier state. Devices 1322 * that determine carrier state from physical hardware properties (eg 1323 * network cables) or protocol-dependent mechanisms (eg 1324 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1325 * 1326 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1327 * struct netdev_phys_item_id *ppid); 1328 * Called to get ID of physical port of this device. If driver does 1329 * not implement this, it is assumed that the hw is not able to have 1330 * multiple net devices on single physical port. 1331 * 1332 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1333 * struct netdev_phys_item_id *ppid) 1334 * Called to get the parent ID of the physical port of this device. 1335 * 1336 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1337 * struct net_device *dev) 1338 * Called by upper layer devices to accelerate switching or other 1339 * station functionality into hardware. 'pdev is the lowerdev 1340 * to use for the offload and 'dev' is the net device that will 1341 * back the offload. Returns a pointer to the private structure 1342 * the upper layer will maintain. 1343 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1344 * Called by upper layer device to delete the station created 1345 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1346 * the station and priv is the structure returned by the add 1347 * operation. 1348 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1349 * int queue_index, u32 maxrate); 1350 * Called when a user wants to set a max-rate limitation of specific 1351 * TX queue. 1352 * int (*ndo_get_iflink)(const struct net_device *dev); 1353 * Called to get the iflink value of this device. 1354 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1355 * This function is used to get egress tunnel information for given skb. 1356 * This is useful for retrieving outer tunnel header parameters while 1357 * sampling packet. 1358 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1359 * This function is used to specify the headroom that the skb must 1360 * consider when allocation skb during packet reception. Setting 1361 * appropriate rx headroom value allows avoiding skb head copy on 1362 * forward. Setting a negative value resets the rx headroom to the 1363 * default value. 1364 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1365 * This function is used to set or query state related to XDP on the 1366 * netdevice and manage BPF offload. See definition of 1367 * enum bpf_netdev_command for details. 1368 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1369 * u32 flags); 1370 * This function is used to submit @n XDP packets for transmit on a 1371 * netdevice. Returns number of frames successfully transmitted, frames 1372 * that got dropped are freed/returned via xdp_return_frame(). 1373 * Returns negative number, means general error invoking ndo, meaning 1374 * no frames were xmit'ed and core-caller will free all frames. 1375 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1376 * struct xdp_buff *xdp); 1377 * Get the xmit slave of master device based on the xdp_buff. 1378 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1379 * This function is used to wake up the softirq, ksoftirqd or kthread 1380 * responsible for sending and/or receiving packets on a specific 1381 * queue id bound to an AF_XDP socket. The flags field specifies if 1382 * only RX, only Tx, or both should be woken up using the flags 1383 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1384 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1385 * int cmd); 1386 * Add, change, delete or get information on an IPv4 tunnel. 1387 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1388 * If a device is paired with a peer device, return the peer instance. 1389 * The caller must be under RCU read context. 1390 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1391 * Get the forwarding path to reach the real device from the HW destination address 1392 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1393 * const struct skb_shared_hwtstamps *hwtstamps, 1394 * bool cycles); 1395 * Get hardware timestamp based on normal/adjustable time or free running 1396 * cycle counter. This function is required if physical clock supports a 1397 * free running cycle counter. 1398 */ 1399 struct net_device_ops { 1400 int (*ndo_init)(struct net_device *dev); 1401 void (*ndo_uninit)(struct net_device *dev); 1402 int (*ndo_open)(struct net_device *dev); 1403 int (*ndo_stop)(struct net_device *dev); 1404 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1405 struct net_device *dev); 1406 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1407 struct net_device *dev, 1408 netdev_features_t features); 1409 u16 (*ndo_select_queue)(struct net_device *dev, 1410 struct sk_buff *skb, 1411 struct net_device *sb_dev); 1412 void (*ndo_change_rx_flags)(struct net_device *dev, 1413 int flags); 1414 void (*ndo_set_rx_mode)(struct net_device *dev); 1415 int (*ndo_set_mac_address)(struct net_device *dev, 1416 void *addr); 1417 int (*ndo_validate_addr)(struct net_device *dev); 1418 int (*ndo_do_ioctl)(struct net_device *dev, 1419 struct ifreq *ifr, int cmd); 1420 int (*ndo_eth_ioctl)(struct net_device *dev, 1421 struct ifreq *ifr, int cmd); 1422 int (*ndo_siocbond)(struct net_device *dev, 1423 struct ifreq *ifr, int cmd); 1424 int (*ndo_siocwandev)(struct net_device *dev, 1425 struct if_settings *ifs); 1426 int (*ndo_siocdevprivate)(struct net_device *dev, 1427 struct ifreq *ifr, 1428 void __user *data, int cmd); 1429 int (*ndo_set_config)(struct net_device *dev, 1430 struct ifmap *map); 1431 int (*ndo_change_mtu)(struct net_device *dev, 1432 int new_mtu); 1433 int (*ndo_neigh_setup)(struct net_device *dev, 1434 struct neigh_parms *); 1435 void (*ndo_tx_timeout) (struct net_device *dev, 1436 unsigned int txqueue); 1437 1438 void (*ndo_get_stats64)(struct net_device *dev, 1439 struct rtnl_link_stats64 *storage); 1440 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1441 int (*ndo_get_offload_stats)(int attr_id, 1442 const struct net_device *dev, 1443 void *attr_data); 1444 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1445 1446 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1447 __be16 proto, u16 vid); 1448 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1449 __be16 proto, u16 vid); 1450 #ifdef CONFIG_NET_POLL_CONTROLLER 1451 void (*ndo_poll_controller)(struct net_device *dev); 1452 int (*ndo_netpoll_setup)(struct net_device *dev, 1453 struct netpoll_info *info); 1454 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1455 #endif 1456 int (*ndo_set_vf_mac)(struct net_device *dev, 1457 int queue, u8 *mac); 1458 int (*ndo_set_vf_vlan)(struct net_device *dev, 1459 int queue, u16 vlan, 1460 u8 qos, __be16 proto); 1461 int (*ndo_set_vf_rate)(struct net_device *dev, 1462 int vf, int min_tx_rate, 1463 int max_tx_rate); 1464 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1465 int vf, bool setting); 1466 int (*ndo_set_vf_trust)(struct net_device *dev, 1467 int vf, bool setting); 1468 int (*ndo_get_vf_config)(struct net_device *dev, 1469 int vf, 1470 struct ifla_vf_info *ivf); 1471 int (*ndo_set_vf_link_state)(struct net_device *dev, 1472 int vf, int link_state); 1473 int (*ndo_get_vf_stats)(struct net_device *dev, 1474 int vf, 1475 struct ifla_vf_stats 1476 *vf_stats); 1477 int (*ndo_set_vf_port)(struct net_device *dev, 1478 int vf, 1479 struct nlattr *port[]); 1480 int (*ndo_get_vf_port)(struct net_device *dev, 1481 int vf, struct sk_buff *skb); 1482 int (*ndo_get_vf_guid)(struct net_device *dev, 1483 int vf, 1484 struct ifla_vf_guid *node_guid, 1485 struct ifla_vf_guid *port_guid); 1486 int (*ndo_set_vf_guid)(struct net_device *dev, 1487 int vf, u64 guid, 1488 int guid_type); 1489 int (*ndo_set_vf_rss_query_en)( 1490 struct net_device *dev, 1491 int vf, bool setting); 1492 int (*ndo_setup_tc)(struct net_device *dev, 1493 enum tc_setup_type type, 1494 void *type_data); 1495 #if IS_ENABLED(CONFIG_FCOE) 1496 int (*ndo_fcoe_enable)(struct net_device *dev); 1497 int (*ndo_fcoe_disable)(struct net_device *dev); 1498 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1499 u16 xid, 1500 struct scatterlist *sgl, 1501 unsigned int sgc); 1502 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1503 u16 xid); 1504 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1505 u16 xid, 1506 struct scatterlist *sgl, 1507 unsigned int sgc); 1508 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1509 struct netdev_fcoe_hbainfo *hbainfo); 1510 #endif 1511 1512 #if IS_ENABLED(CONFIG_LIBFCOE) 1513 #define NETDEV_FCOE_WWNN 0 1514 #define NETDEV_FCOE_WWPN 1 1515 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1516 u64 *wwn, int type); 1517 #endif 1518 1519 #ifdef CONFIG_RFS_ACCEL 1520 int (*ndo_rx_flow_steer)(struct net_device *dev, 1521 const struct sk_buff *skb, 1522 u16 rxq_index, 1523 u32 flow_id); 1524 #endif 1525 int (*ndo_add_slave)(struct net_device *dev, 1526 struct net_device *slave_dev, 1527 struct netlink_ext_ack *extack); 1528 int (*ndo_del_slave)(struct net_device *dev, 1529 struct net_device *slave_dev); 1530 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1531 struct sk_buff *skb, 1532 bool all_slaves); 1533 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1534 struct sock *sk); 1535 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1536 netdev_features_t features); 1537 int (*ndo_set_features)(struct net_device *dev, 1538 netdev_features_t features); 1539 int (*ndo_neigh_construct)(struct net_device *dev, 1540 struct neighbour *n); 1541 void (*ndo_neigh_destroy)(struct net_device *dev, 1542 struct neighbour *n); 1543 1544 int (*ndo_fdb_add)(struct ndmsg *ndm, 1545 struct nlattr *tb[], 1546 struct net_device *dev, 1547 const unsigned char *addr, 1548 u16 vid, 1549 u16 flags, 1550 struct netlink_ext_ack *extack); 1551 int (*ndo_fdb_del)(struct ndmsg *ndm, 1552 struct nlattr *tb[], 1553 struct net_device *dev, 1554 const unsigned char *addr, 1555 u16 vid, struct netlink_ext_ack *extack); 1556 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1557 struct nlattr *tb[], 1558 struct net_device *dev, 1559 u16 vid, 1560 struct netlink_ext_ack *extack); 1561 int (*ndo_fdb_dump)(struct sk_buff *skb, 1562 struct netlink_callback *cb, 1563 struct net_device *dev, 1564 struct net_device *filter_dev, 1565 int *idx); 1566 int (*ndo_fdb_get)(struct sk_buff *skb, 1567 struct nlattr *tb[], 1568 struct net_device *dev, 1569 const unsigned char *addr, 1570 u16 vid, u32 portid, u32 seq, 1571 struct netlink_ext_ack *extack); 1572 int (*ndo_bridge_setlink)(struct net_device *dev, 1573 struct nlmsghdr *nlh, 1574 u16 flags, 1575 struct netlink_ext_ack *extack); 1576 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1577 u32 pid, u32 seq, 1578 struct net_device *dev, 1579 u32 filter_mask, 1580 int nlflags); 1581 int (*ndo_bridge_dellink)(struct net_device *dev, 1582 struct nlmsghdr *nlh, 1583 u16 flags); 1584 int (*ndo_change_carrier)(struct net_device *dev, 1585 bool new_carrier); 1586 int (*ndo_get_phys_port_id)(struct net_device *dev, 1587 struct netdev_phys_item_id *ppid); 1588 int (*ndo_get_port_parent_id)(struct net_device *dev, 1589 struct netdev_phys_item_id *ppid); 1590 int (*ndo_get_phys_port_name)(struct net_device *dev, 1591 char *name, size_t len); 1592 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1593 struct net_device *dev); 1594 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1595 void *priv); 1596 1597 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1598 int queue_index, 1599 u32 maxrate); 1600 int (*ndo_get_iflink)(const struct net_device *dev); 1601 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1602 struct sk_buff *skb); 1603 void (*ndo_set_rx_headroom)(struct net_device *dev, 1604 int needed_headroom); 1605 int (*ndo_bpf)(struct net_device *dev, 1606 struct netdev_bpf *bpf); 1607 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1608 struct xdp_frame **xdp, 1609 u32 flags); 1610 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1611 struct xdp_buff *xdp); 1612 int (*ndo_xsk_wakeup)(struct net_device *dev, 1613 u32 queue_id, u32 flags); 1614 int (*ndo_tunnel_ctl)(struct net_device *dev, 1615 struct ip_tunnel_parm *p, int cmd); 1616 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1617 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1618 struct net_device_path *path); 1619 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1620 const struct skb_shared_hwtstamps *hwtstamps, 1621 bool cycles); 1622 }; 1623 1624 struct xdp_metadata_ops { 1625 int (*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp); 1626 int (*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash); 1627 }; 1628 1629 /** 1630 * enum netdev_priv_flags - &struct net_device priv_flags 1631 * 1632 * These are the &struct net_device, they are only set internally 1633 * by drivers and used in the kernel. These flags are invisible to 1634 * userspace; this means that the order of these flags can change 1635 * during any kernel release. 1636 * 1637 * You should have a pretty good reason to be extending these flags. 1638 * 1639 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1640 * @IFF_EBRIDGE: Ethernet bridging device 1641 * @IFF_BONDING: bonding master or slave 1642 * @IFF_ISATAP: ISATAP interface (RFC4214) 1643 * @IFF_WAN_HDLC: WAN HDLC device 1644 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1645 * release skb->dst 1646 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1647 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1648 * @IFF_MACVLAN_PORT: device used as macvlan port 1649 * @IFF_BRIDGE_PORT: device used as bridge port 1650 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1651 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1652 * @IFF_UNICAST_FLT: Supports unicast filtering 1653 * @IFF_TEAM_PORT: device used as team port 1654 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1655 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1656 * change when it's running 1657 * @IFF_MACVLAN: Macvlan device 1658 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1659 * underlying stacked devices 1660 * @IFF_L3MDEV_MASTER: device is an L3 master device 1661 * @IFF_NO_QUEUE: device can run without qdisc attached 1662 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1663 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1664 * @IFF_TEAM: device is a team device 1665 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1666 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1667 * entity (i.e. the master device for bridged veth) 1668 * @IFF_MACSEC: device is a MACsec device 1669 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1670 * @IFF_FAILOVER: device is a failover master device 1671 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1672 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1673 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1674 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1675 * skb_headlen(skb) == 0 (data starts from frag0) 1676 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1677 */ 1678 enum netdev_priv_flags { 1679 IFF_802_1Q_VLAN = 1<<0, 1680 IFF_EBRIDGE = 1<<1, 1681 IFF_BONDING = 1<<2, 1682 IFF_ISATAP = 1<<3, 1683 IFF_WAN_HDLC = 1<<4, 1684 IFF_XMIT_DST_RELEASE = 1<<5, 1685 IFF_DONT_BRIDGE = 1<<6, 1686 IFF_DISABLE_NETPOLL = 1<<7, 1687 IFF_MACVLAN_PORT = 1<<8, 1688 IFF_BRIDGE_PORT = 1<<9, 1689 IFF_OVS_DATAPATH = 1<<10, 1690 IFF_TX_SKB_SHARING = 1<<11, 1691 IFF_UNICAST_FLT = 1<<12, 1692 IFF_TEAM_PORT = 1<<13, 1693 IFF_SUPP_NOFCS = 1<<14, 1694 IFF_LIVE_ADDR_CHANGE = 1<<15, 1695 IFF_MACVLAN = 1<<16, 1696 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1697 IFF_L3MDEV_MASTER = 1<<18, 1698 IFF_NO_QUEUE = 1<<19, 1699 IFF_OPENVSWITCH = 1<<20, 1700 IFF_L3MDEV_SLAVE = 1<<21, 1701 IFF_TEAM = 1<<22, 1702 IFF_RXFH_CONFIGURED = 1<<23, 1703 IFF_PHONY_HEADROOM = 1<<24, 1704 IFF_MACSEC = 1<<25, 1705 IFF_NO_RX_HANDLER = 1<<26, 1706 IFF_FAILOVER = 1<<27, 1707 IFF_FAILOVER_SLAVE = 1<<28, 1708 IFF_L3MDEV_RX_HANDLER = 1<<29, 1709 IFF_NO_ADDRCONF = BIT_ULL(30), 1710 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1711 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1712 }; 1713 1714 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1715 #define IFF_EBRIDGE IFF_EBRIDGE 1716 #define IFF_BONDING IFF_BONDING 1717 #define IFF_ISATAP IFF_ISATAP 1718 #define IFF_WAN_HDLC IFF_WAN_HDLC 1719 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1720 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1721 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1722 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1723 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1724 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1725 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1726 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1727 #define IFF_TEAM_PORT IFF_TEAM_PORT 1728 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1729 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1730 #define IFF_MACVLAN IFF_MACVLAN 1731 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1732 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1733 #define IFF_NO_QUEUE IFF_NO_QUEUE 1734 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1735 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1736 #define IFF_TEAM IFF_TEAM 1737 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1738 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1739 #define IFF_MACSEC IFF_MACSEC 1740 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1741 #define IFF_FAILOVER IFF_FAILOVER 1742 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1743 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1744 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1745 1746 /* Specifies the type of the struct net_device::ml_priv pointer */ 1747 enum netdev_ml_priv_type { 1748 ML_PRIV_NONE, 1749 ML_PRIV_CAN, 1750 }; 1751 1752 /** 1753 * struct net_device - The DEVICE structure. 1754 * 1755 * Actually, this whole structure is a big mistake. It mixes I/O 1756 * data with strictly "high-level" data, and it has to know about 1757 * almost every data structure used in the INET module. 1758 * 1759 * @name: This is the first field of the "visible" part of this structure 1760 * (i.e. as seen by users in the "Space.c" file). It is the name 1761 * of the interface. 1762 * 1763 * @name_node: Name hashlist node 1764 * @ifalias: SNMP alias 1765 * @mem_end: Shared memory end 1766 * @mem_start: Shared memory start 1767 * @base_addr: Device I/O address 1768 * @irq: Device IRQ number 1769 * 1770 * @state: Generic network queuing layer state, see netdev_state_t 1771 * @dev_list: The global list of network devices 1772 * @napi_list: List entry used for polling NAPI devices 1773 * @unreg_list: List entry when we are unregistering the 1774 * device; see the function unregister_netdev 1775 * @close_list: List entry used when we are closing the device 1776 * @ptype_all: Device-specific packet handlers for all protocols 1777 * @ptype_specific: Device-specific, protocol-specific packet handlers 1778 * 1779 * @adj_list: Directly linked devices, like slaves for bonding 1780 * @features: Currently active device features 1781 * @hw_features: User-changeable features 1782 * 1783 * @wanted_features: User-requested features 1784 * @vlan_features: Mask of features inheritable by VLAN devices 1785 * 1786 * @hw_enc_features: Mask of features inherited by encapsulating devices 1787 * This field indicates what encapsulation 1788 * offloads the hardware is capable of doing, 1789 * and drivers will need to set them appropriately. 1790 * 1791 * @mpls_features: Mask of features inheritable by MPLS 1792 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1793 * 1794 * @ifindex: interface index 1795 * @group: The group the device belongs to 1796 * 1797 * @stats: Statistics struct, which was left as a legacy, use 1798 * rtnl_link_stats64 instead 1799 * 1800 * @core_stats: core networking counters, 1801 * do not use this in drivers 1802 * @carrier_up_count: Number of times the carrier has been up 1803 * @carrier_down_count: Number of times the carrier has been down 1804 * 1805 * @wireless_handlers: List of functions to handle Wireless Extensions, 1806 * instead of ioctl, 1807 * see <net/iw_handler.h> for details. 1808 * @wireless_data: Instance data managed by the core of wireless extensions 1809 * 1810 * @netdev_ops: Includes several pointers to callbacks, 1811 * if one wants to override the ndo_*() functions 1812 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1813 * @ethtool_ops: Management operations 1814 * @l3mdev_ops: Layer 3 master device operations 1815 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1816 * discovery handling. Necessary for e.g. 6LoWPAN. 1817 * @xfrmdev_ops: Transformation offload operations 1818 * @tlsdev_ops: Transport Layer Security offload operations 1819 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1820 * of Layer 2 headers. 1821 * 1822 * @flags: Interface flags (a la BSD) 1823 * @xdp_features: XDP capability supported by the device 1824 * @priv_flags: Like 'flags' but invisible to userspace, 1825 * see if.h for the definitions 1826 * @gflags: Global flags ( kept as legacy ) 1827 * @padded: How much padding added by alloc_netdev() 1828 * @operstate: RFC2863 operstate 1829 * @link_mode: Mapping policy to operstate 1830 * @if_port: Selectable AUI, TP, ... 1831 * @dma: DMA channel 1832 * @mtu: Interface MTU value 1833 * @min_mtu: Interface Minimum MTU value 1834 * @max_mtu: Interface Maximum MTU value 1835 * @type: Interface hardware type 1836 * @hard_header_len: Maximum hardware header length. 1837 * @min_header_len: Minimum hardware header length 1838 * 1839 * @needed_headroom: Extra headroom the hardware may need, but not in all 1840 * cases can this be guaranteed 1841 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1842 * cases can this be guaranteed. Some cases also use 1843 * LL_MAX_HEADER instead to allocate the skb 1844 * 1845 * interface address info: 1846 * 1847 * @perm_addr: Permanent hw address 1848 * @addr_assign_type: Hw address assignment type 1849 * @addr_len: Hardware address length 1850 * @upper_level: Maximum depth level of upper devices. 1851 * @lower_level: Maximum depth level of lower devices. 1852 * @neigh_priv_len: Used in neigh_alloc() 1853 * @dev_id: Used to differentiate devices that share 1854 * the same link layer address 1855 * @dev_port: Used to differentiate devices that share 1856 * the same function 1857 * @addr_list_lock: XXX: need comments on this one 1858 * @name_assign_type: network interface name assignment type 1859 * @uc_promisc: Counter that indicates promiscuous mode 1860 * has been enabled due to the need to listen to 1861 * additional unicast addresses in a device that 1862 * does not implement ndo_set_rx_mode() 1863 * @uc: unicast mac addresses 1864 * @mc: multicast mac addresses 1865 * @dev_addrs: list of device hw addresses 1866 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1867 * @promiscuity: Number of times the NIC is told to work in 1868 * promiscuous mode; if it becomes 0 the NIC will 1869 * exit promiscuous mode 1870 * @allmulti: Counter, enables or disables allmulticast mode 1871 * 1872 * @vlan_info: VLAN info 1873 * @dsa_ptr: dsa specific data 1874 * @tipc_ptr: TIPC specific data 1875 * @atalk_ptr: AppleTalk link 1876 * @ip_ptr: IPv4 specific data 1877 * @ip6_ptr: IPv6 specific data 1878 * @ax25_ptr: AX.25 specific data 1879 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1880 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1881 * device struct 1882 * @mpls_ptr: mpls_dev struct pointer 1883 * @mctp_ptr: MCTP specific data 1884 * 1885 * @dev_addr: Hw address (before bcast, 1886 * because most packets are unicast) 1887 * 1888 * @_rx: Array of RX queues 1889 * @num_rx_queues: Number of RX queues 1890 * allocated at register_netdev() time 1891 * @real_num_rx_queues: Number of RX queues currently active in device 1892 * @xdp_prog: XDP sockets filter program pointer 1893 * @gro_flush_timeout: timeout for GRO layer in NAPI 1894 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1895 * allow to avoid NIC hard IRQ, on busy queues. 1896 * 1897 * @rx_handler: handler for received packets 1898 * @rx_handler_data: XXX: need comments on this one 1899 * @miniq_ingress: ingress/clsact qdisc specific data for 1900 * ingress processing 1901 * @ingress_queue: XXX: need comments on this one 1902 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1903 * @broadcast: hw bcast address 1904 * 1905 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1906 * indexed by RX queue number. Assigned by driver. 1907 * This must only be set if the ndo_rx_flow_steer 1908 * operation is defined 1909 * @index_hlist: Device index hash chain 1910 * 1911 * @_tx: Array of TX queues 1912 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1913 * @real_num_tx_queues: Number of TX queues currently active in device 1914 * @qdisc: Root qdisc from userspace point of view 1915 * @tx_queue_len: Max frames per queue allowed 1916 * @tx_global_lock: XXX: need comments on this one 1917 * @xdp_bulkq: XDP device bulk queue 1918 * @xps_maps: all CPUs/RXQs maps for XPS device 1919 * 1920 * @xps_maps: XXX: need comments on this one 1921 * @miniq_egress: clsact qdisc specific data for 1922 * egress processing 1923 * @nf_hooks_egress: netfilter hooks executed for egress packets 1924 * @qdisc_hash: qdisc hash table 1925 * @watchdog_timeo: Represents the timeout that is used by 1926 * the watchdog (see dev_watchdog()) 1927 * @watchdog_timer: List of timers 1928 * 1929 * @proto_down_reason: reason a netdev interface is held down 1930 * @pcpu_refcnt: Number of references to this device 1931 * @dev_refcnt: Number of references to this device 1932 * @refcnt_tracker: Tracker directory for tracked references to this device 1933 * @todo_list: Delayed register/unregister 1934 * @link_watch_list: XXX: need comments on this one 1935 * 1936 * @reg_state: Register/unregister state machine 1937 * @dismantle: Device is going to be freed 1938 * @rtnl_link_state: This enum represents the phases of creating 1939 * a new link 1940 * 1941 * @needs_free_netdev: Should unregister perform free_netdev? 1942 * @priv_destructor: Called from unregister 1943 * @npinfo: XXX: need comments on this one 1944 * @nd_net: Network namespace this network device is inside 1945 * 1946 * @ml_priv: Mid-layer private 1947 * @ml_priv_type: Mid-layer private type 1948 * @lstats: Loopback statistics 1949 * @tstats: Tunnel statistics 1950 * @dstats: Dummy statistics 1951 * @vstats: Virtual ethernet statistics 1952 * 1953 * @garp_port: GARP 1954 * @mrp_port: MRP 1955 * 1956 * @dm_private: Drop monitor private 1957 * 1958 * @dev: Class/net/name entry 1959 * @sysfs_groups: Space for optional device, statistics and wireless 1960 * sysfs groups 1961 * 1962 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1963 * @rtnl_link_ops: Rtnl_link_ops 1964 * 1965 * @gso_max_size: Maximum size of generic segmentation offload 1966 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1967 * @gso_max_segs: Maximum number of segments that can be passed to the 1968 * NIC for GSO 1969 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1970 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1971 * for IPv4. 1972 * 1973 * @dcbnl_ops: Data Center Bridging netlink ops 1974 * @num_tc: Number of traffic classes in the net device 1975 * @tc_to_txq: XXX: need comments on this one 1976 * @prio_tc_map: XXX: need comments on this one 1977 * 1978 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1979 * 1980 * @priomap: XXX: need comments on this one 1981 * @phydev: Physical device may attach itself 1982 * for hardware timestamping 1983 * @sfp_bus: attached &struct sfp_bus structure. 1984 * 1985 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1986 * 1987 * @proto_down: protocol port state information can be sent to the 1988 * switch driver and used to set the phys state of the 1989 * switch port. 1990 * 1991 * @wol_enabled: Wake-on-LAN is enabled 1992 * 1993 * @threaded: napi threaded mode is enabled 1994 * 1995 * @net_notifier_list: List of per-net netdev notifier block 1996 * that follow this device when it is moved 1997 * to another network namespace. 1998 * 1999 * @macsec_ops: MACsec offloading ops 2000 * 2001 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2002 * offload capabilities of the device 2003 * @udp_tunnel_nic: UDP tunnel offload state 2004 * @xdp_state: stores info on attached XDP BPF programs 2005 * 2006 * @nested_level: Used as a parameter of spin_lock_nested() of 2007 * dev->addr_list_lock. 2008 * @unlink_list: As netif_addr_lock() can be called recursively, 2009 * keep a list of interfaces to be deleted. 2010 * @gro_max_size: Maximum size of aggregated packet in generic 2011 * receive offload (GRO) 2012 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2013 * receive offload (GRO), for IPv4. 2014 * 2015 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2016 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2017 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2018 * @dev_registered_tracker: tracker for reference held while 2019 * registered 2020 * @offload_xstats_l3: L3 HW stats for this netdevice. 2021 * 2022 * @devlink_port: Pointer to related devlink port structure. 2023 * Assigned by a driver before netdev registration using 2024 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2025 * during the time netdevice is registered. 2026 * 2027 * FIXME: cleanup struct net_device such that network protocol info 2028 * moves out. 2029 */ 2030 2031 struct net_device { 2032 char name[IFNAMSIZ]; 2033 struct netdev_name_node *name_node; 2034 struct dev_ifalias __rcu *ifalias; 2035 /* 2036 * I/O specific fields 2037 * FIXME: Merge these and struct ifmap into one 2038 */ 2039 unsigned long mem_end; 2040 unsigned long mem_start; 2041 unsigned long base_addr; 2042 2043 /* 2044 * Some hardware also needs these fields (state,dev_list, 2045 * napi_list,unreg_list,close_list) but they are not 2046 * part of the usual set specified in Space.c. 2047 */ 2048 2049 unsigned long state; 2050 2051 struct list_head dev_list; 2052 struct list_head napi_list; 2053 struct list_head unreg_list; 2054 struct list_head close_list; 2055 struct list_head ptype_all; 2056 struct list_head ptype_specific; 2057 2058 struct { 2059 struct list_head upper; 2060 struct list_head lower; 2061 } adj_list; 2062 2063 /* Read-mostly cache-line for fast-path access */ 2064 unsigned int flags; 2065 xdp_features_t xdp_features; 2066 unsigned long long priv_flags; 2067 const struct net_device_ops *netdev_ops; 2068 const struct xdp_metadata_ops *xdp_metadata_ops; 2069 int ifindex; 2070 unsigned short gflags; 2071 unsigned short hard_header_len; 2072 2073 /* Note : dev->mtu is often read without holding a lock. 2074 * Writers usually hold RTNL. 2075 * It is recommended to use READ_ONCE() to annotate the reads, 2076 * and to use WRITE_ONCE() to annotate the writes. 2077 */ 2078 unsigned int mtu; 2079 unsigned short needed_headroom; 2080 unsigned short needed_tailroom; 2081 2082 netdev_features_t features; 2083 netdev_features_t hw_features; 2084 netdev_features_t wanted_features; 2085 netdev_features_t vlan_features; 2086 netdev_features_t hw_enc_features; 2087 netdev_features_t mpls_features; 2088 netdev_features_t gso_partial_features; 2089 2090 unsigned int min_mtu; 2091 unsigned int max_mtu; 2092 unsigned short type; 2093 unsigned char min_header_len; 2094 unsigned char name_assign_type; 2095 2096 int group; 2097 2098 struct net_device_stats stats; /* not used by modern drivers */ 2099 2100 struct net_device_core_stats __percpu *core_stats; 2101 2102 /* Stats to monitor link on/off, flapping */ 2103 atomic_t carrier_up_count; 2104 atomic_t carrier_down_count; 2105 2106 #ifdef CONFIG_WIRELESS_EXT 2107 const struct iw_handler_def *wireless_handlers; 2108 struct iw_public_data *wireless_data; 2109 #endif 2110 const struct ethtool_ops *ethtool_ops; 2111 #ifdef CONFIG_NET_L3_MASTER_DEV 2112 const struct l3mdev_ops *l3mdev_ops; 2113 #endif 2114 #if IS_ENABLED(CONFIG_IPV6) 2115 const struct ndisc_ops *ndisc_ops; 2116 #endif 2117 2118 #ifdef CONFIG_XFRM_OFFLOAD 2119 const struct xfrmdev_ops *xfrmdev_ops; 2120 #endif 2121 2122 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2123 const struct tlsdev_ops *tlsdev_ops; 2124 #endif 2125 2126 const struct header_ops *header_ops; 2127 2128 unsigned char operstate; 2129 unsigned char link_mode; 2130 2131 unsigned char if_port; 2132 unsigned char dma; 2133 2134 /* Interface address info. */ 2135 unsigned char perm_addr[MAX_ADDR_LEN]; 2136 unsigned char addr_assign_type; 2137 unsigned char addr_len; 2138 unsigned char upper_level; 2139 unsigned char lower_level; 2140 2141 unsigned short neigh_priv_len; 2142 unsigned short dev_id; 2143 unsigned short dev_port; 2144 unsigned short padded; 2145 2146 spinlock_t addr_list_lock; 2147 int irq; 2148 2149 struct netdev_hw_addr_list uc; 2150 struct netdev_hw_addr_list mc; 2151 struct netdev_hw_addr_list dev_addrs; 2152 2153 #ifdef CONFIG_SYSFS 2154 struct kset *queues_kset; 2155 #endif 2156 #ifdef CONFIG_LOCKDEP 2157 struct list_head unlink_list; 2158 #endif 2159 unsigned int promiscuity; 2160 unsigned int allmulti; 2161 bool uc_promisc; 2162 #ifdef CONFIG_LOCKDEP 2163 unsigned char nested_level; 2164 #endif 2165 2166 2167 /* Protocol-specific pointers */ 2168 2169 struct in_device __rcu *ip_ptr; 2170 struct inet6_dev __rcu *ip6_ptr; 2171 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2172 struct vlan_info __rcu *vlan_info; 2173 #endif 2174 #if IS_ENABLED(CONFIG_NET_DSA) 2175 struct dsa_port *dsa_ptr; 2176 #endif 2177 #if IS_ENABLED(CONFIG_TIPC) 2178 struct tipc_bearer __rcu *tipc_ptr; 2179 #endif 2180 #if IS_ENABLED(CONFIG_ATALK) 2181 void *atalk_ptr; 2182 #endif 2183 #if IS_ENABLED(CONFIG_AX25) 2184 void *ax25_ptr; 2185 #endif 2186 #if IS_ENABLED(CONFIG_CFG80211) 2187 struct wireless_dev *ieee80211_ptr; 2188 #endif 2189 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2190 struct wpan_dev *ieee802154_ptr; 2191 #endif 2192 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2193 struct mpls_dev __rcu *mpls_ptr; 2194 #endif 2195 #if IS_ENABLED(CONFIG_MCTP) 2196 struct mctp_dev __rcu *mctp_ptr; 2197 #endif 2198 2199 /* 2200 * Cache lines mostly used on receive path (including eth_type_trans()) 2201 */ 2202 /* Interface address info used in eth_type_trans() */ 2203 const unsigned char *dev_addr; 2204 2205 struct netdev_rx_queue *_rx; 2206 unsigned int num_rx_queues; 2207 unsigned int real_num_rx_queues; 2208 2209 struct bpf_prog __rcu *xdp_prog; 2210 unsigned long gro_flush_timeout; 2211 int napi_defer_hard_irqs; 2212 #define GRO_LEGACY_MAX_SIZE 65536u 2213 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2214 * and shinfo->gso_segs is a 16bit field. 2215 */ 2216 #define GRO_MAX_SIZE (8 * 65535u) 2217 unsigned int gro_max_size; 2218 unsigned int gro_ipv4_max_size; 2219 rx_handler_func_t __rcu *rx_handler; 2220 void __rcu *rx_handler_data; 2221 2222 #ifdef CONFIG_NET_CLS_ACT 2223 struct mini_Qdisc __rcu *miniq_ingress; 2224 #endif 2225 struct netdev_queue __rcu *ingress_queue; 2226 #ifdef CONFIG_NETFILTER_INGRESS 2227 struct nf_hook_entries __rcu *nf_hooks_ingress; 2228 #endif 2229 2230 unsigned char broadcast[MAX_ADDR_LEN]; 2231 #ifdef CONFIG_RFS_ACCEL 2232 struct cpu_rmap *rx_cpu_rmap; 2233 #endif 2234 struct hlist_node index_hlist; 2235 2236 /* 2237 * Cache lines mostly used on transmit path 2238 */ 2239 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2240 unsigned int num_tx_queues; 2241 unsigned int real_num_tx_queues; 2242 struct Qdisc __rcu *qdisc; 2243 unsigned int tx_queue_len; 2244 spinlock_t tx_global_lock; 2245 2246 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2247 2248 #ifdef CONFIG_XPS 2249 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2250 #endif 2251 #ifdef CONFIG_NET_CLS_ACT 2252 struct mini_Qdisc __rcu *miniq_egress; 2253 #endif 2254 #ifdef CONFIG_NETFILTER_EGRESS 2255 struct nf_hook_entries __rcu *nf_hooks_egress; 2256 #endif 2257 2258 #ifdef CONFIG_NET_SCHED 2259 DECLARE_HASHTABLE (qdisc_hash, 4); 2260 #endif 2261 /* These may be needed for future network-power-down code. */ 2262 struct timer_list watchdog_timer; 2263 int watchdog_timeo; 2264 2265 u32 proto_down_reason; 2266 2267 struct list_head todo_list; 2268 2269 #ifdef CONFIG_PCPU_DEV_REFCNT 2270 int __percpu *pcpu_refcnt; 2271 #else 2272 refcount_t dev_refcnt; 2273 #endif 2274 struct ref_tracker_dir refcnt_tracker; 2275 2276 struct list_head link_watch_list; 2277 2278 enum { NETREG_UNINITIALIZED=0, 2279 NETREG_REGISTERED, /* completed register_netdevice */ 2280 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2281 NETREG_UNREGISTERED, /* completed unregister todo */ 2282 NETREG_RELEASED, /* called free_netdev */ 2283 NETREG_DUMMY, /* dummy device for NAPI poll */ 2284 } reg_state:8; 2285 2286 bool dismantle; 2287 2288 enum { 2289 RTNL_LINK_INITIALIZED, 2290 RTNL_LINK_INITIALIZING, 2291 } rtnl_link_state:16; 2292 2293 bool needs_free_netdev; 2294 void (*priv_destructor)(struct net_device *dev); 2295 2296 #ifdef CONFIG_NETPOLL 2297 struct netpoll_info __rcu *npinfo; 2298 #endif 2299 2300 possible_net_t nd_net; 2301 2302 /* mid-layer private */ 2303 void *ml_priv; 2304 enum netdev_ml_priv_type ml_priv_type; 2305 2306 union { 2307 struct pcpu_lstats __percpu *lstats; 2308 struct pcpu_sw_netstats __percpu *tstats; 2309 struct pcpu_dstats __percpu *dstats; 2310 }; 2311 2312 #if IS_ENABLED(CONFIG_GARP) 2313 struct garp_port __rcu *garp_port; 2314 #endif 2315 #if IS_ENABLED(CONFIG_MRP) 2316 struct mrp_port __rcu *mrp_port; 2317 #endif 2318 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2319 struct dm_hw_stat_delta __rcu *dm_private; 2320 #endif 2321 struct device dev; 2322 const struct attribute_group *sysfs_groups[4]; 2323 const struct attribute_group *sysfs_rx_queue_group; 2324 2325 const struct rtnl_link_ops *rtnl_link_ops; 2326 2327 /* for setting kernel sock attribute on TCP connection setup */ 2328 #define GSO_MAX_SEGS 65535u 2329 #define GSO_LEGACY_MAX_SIZE 65536u 2330 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2331 * and shinfo->gso_segs is a 16bit field. 2332 */ 2333 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2334 2335 unsigned int gso_max_size; 2336 #define TSO_LEGACY_MAX_SIZE 65536 2337 #define TSO_MAX_SIZE UINT_MAX 2338 unsigned int tso_max_size; 2339 u16 gso_max_segs; 2340 #define TSO_MAX_SEGS U16_MAX 2341 u16 tso_max_segs; 2342 unsigned int gso_ipv4_max_size; 2343 2344 #ifdef CONFIG_DCB 2345 const struct dcbnl_rtnl_ops *dcbnl_ops; 2346 #endif 2347 s16 num_tc; 2348 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2349 u8 prio_tc_map[TC_BITMASK + 1]; 2350 2351 #if IS_ENABLED(CONFIG_FCOE) 2352 unsigned int fcoe_ddp_xid; 2353 #endif 2354 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2355 struct netprio_map __rcu *priomap; 2356 #endif 2357 struct phy_device *phydev; 2358 struct sfp_bus *sfp_bus; 2359 struct lock_class_key *qdisc_tx_busylock; 2360 bool proto_down; 2361 unsigned wol_enabled:1; 2362 unsigned threaded:1; 2363 2364 struct list_head net_notifier_list; 2365 2366 #if IS_ENABLED(CONFIG_MACSEC) 2367 /* MACsec management functions */ 2368 const struct macsec_ops *macsec_ops; 2369 #endif 2370 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2371 struct udp_tunnel_nic *udp_tunnel_nic; 2372 2373 /* protected by rtnl_lock */ 2374 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2375 2376 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2377 netdevice_tracker linkwatch_dev_tracker; 2378 netdevice_tracker watchdog_dev_tracker; 2379 netdevice_tracker dev_registered_tracker; 2380 struct rtnl_hw_stats64 *offload_xstats_l3; 2381 2382 struct devlink_port *devlink_port; 2383 }; 2384 #define to_net_dev(d) container_of(d, struct net_device, dev) 2385 2386 /* 2387 * Driver should use this to assign devlink port instance to a netdevice 2388 * before it registers the netdevice. Therefore devlink_port is static 2389 * during the netdev lifetime after it is registered. 2390 */ 2391 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2392 ({ \ 2393 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2394 ((dev)->devlink_port = (port)); \ 2395 }) 2396 2397 static inline bool netif_elide_gro(const struct net_device *dev) 2398 { 2399 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2400 return true; 2401 return false; 2402 } 2403 2404 #define NETDEV_ALIGN 32 2405 2406 static inline 2407 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2408 { 2409 return dev->prio_tc_map[prio & TC_BITMASK]; 2410 } 2411 2412 static inline 2413 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2414 { 2415 if (tc >= dev->num_tc) 2416 return -EINVAL; 2417 2418 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2419 return 0; 2420 } 2421 2422 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2423 void netdev_reset_tc(struct net_device *dev); 2424 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2425 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2426 2427 static inline 2428 int netdev_get_num_tc(struct net_device *dev) 2429 { 2430 return dev->num_tc; 2431 } 2432 2433 static inline void net_prefetch(void *p) 2434 { 2435 prefetch(p); 2436 #if L1_CACHE_BYTES < 128 2437 prefetch((u8 *)p + L1_CACHE_BYTES); 2438 #endif 2439 } 2440 2441 static inline void net_prefetchw(void *p) 2442 { 2443 prefetchw(p); 2444 #if L1_CACHE_BYTES < 128 2445 prefetchw((u8 *)p + L1_CACHE_BYTES); 2446 #endif 2447 } 2448 2449 void netdev_unbind_sb_channel(struct net_device *dev, 2450 struct net_device *sb_dev); 2451 int netdev_bind_sb_channel_queue(struct net_device *dev, 2452 struct net_device *sb_dev, 2453 u8 tc, u16 count, u16 offset); 2454 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2455 static inline int netdev_get_sb_channel(struct net_device *dev) 2456 { 2457 return max_t(int, -dev->num_tc, 0); 2458 } 2459 2460 static inline 2461 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2462 unsigned int index) 2463 { 2464 return &dev->_tx[index]; 2465 } 2466 2467 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2468 const struct sk_buff *skb) 2469 { 2470 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2471 } 2472 2473 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2474 void (*f)(struct net_device *, 2475 struct netdev_queue *, 2476 void *), 2477 void *arg) 2478 { 2479 unsigned int i; 2480 2481 for (i = 0; i < dev->num_tx_queues; i++) 2482 f(dev, &dev->_tx[i], arg); 2483 } 2484 2485 #define netdev_lockdep_set_classes(dev) \ 2486 { \ 2487 static struct lock_class_key qdisc_tx_busylock_key; \ 2488 static struct lock_class_key qdisc_xmit_lock_key; \ 2489 static struct lock_class_key dev_addr_list_lock_key; \ 2490 unsigned int i; \ 2491 \ 2492 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2493 lockdep_set_class(&(dev)->addr_list_lock, \ 2494 &dev_addr_list_lock_key); \ 2495 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2496 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2497 &qdisc_xmit_lock_key); \ 2498 } 2499 2500 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2501 struct net_device *sb_dev); 2502 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2503 struct sk_buff *skb, 2504 struct net_device *sb_dev); 2505 2506 /* returns the headroom that the master device needs to take in account 2507 * when forwarding to this dev 2508 */ 2509 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2510 { 2511 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2512 } 2513 2514 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2515 { 2516 if (dev->netdev_ops->ndo_set_rx_headroom) 2517 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2518 } 2519 2520 /* set the device rx headroom to the dev's default */ 2521 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2522 { 2523 netdev_set_rx_headroom(dev, -1); 2524 } 2525 2526 static inline void *netdev_get_ml_priv(struct net_device *dev, 2527 enum netdev_ml_priv_type type) 2528 { 2529 if (dev->ml_priv_type != type) 2530 return NULL; 2531 2532 return dev->ml_priv; 2533 } 2534 2535 static inline void netdev_set_ml_priv(struct net_device *dev, 2536 void *ml_priv, 2537 enum netdev_ml_priv_type type) 2538 { 2539 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2540 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2541 dev->ml_priv_type, type); 2542 WARN(!dev->ml_priv_type && dev->ml_priv, 2543 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2544 2545 dev->ml_priv = ml_priv; 2546 dev->ml_priv_type = type; 2547 } 2548 2549 /* 2550 * Net namespace inlines 2551 */ 2552 static inline 2553 struct net *dev_net(const struct net_device *dev) 2554 { 2555 return read_pnet(&dev->nd_net); 2556 } 2557 2558 static inline 2559 void dev_net_set(struct net_device *dev, struct net *net) 2560 { 2561 write_pnet(&dev->nd_net, net); 2562 } 2563 2564 /** 2565 * netdev_priv - access network device private data 2566 * @dev: network device 2567 * 2568 * Get network device private data 2569 */ 2570 static inline void *netdev_priv(const struct net_device *dev) 2571 { 2572 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2573 } 2574 2575 /* Set the sysfs physical device reference for the network logical device 2576 * if set prior to registration will cause a symlink during initialization. 2577 */ 2578 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2579 2580 /* Set the sysfs device type for the network logical device to allow 2581 * fine-grained identification of different network device types. For 2582 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2583 */ 2584 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2585 2586 /* Default NAPI poll() weight 2587 * Device drivers are strongly advised to not use bigger value 2588 */ 2589 #define NAPI_POLL_WEIGHT 64 2590 2591 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2592 int (*poll)(struct napi_struct *, int), int weight); 2593 2594 /** 2595 * netif_napi_add() - initialize a NAPI context 2596 * @dev: network device 2597 * @napi: NAPI context 2598 * @poll: polling function 2599 * 2600 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2601 * *any* of the other NAPI-related functions. 2602 */ 2603 static inline void 2604 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2605 int (*poll)(struct napi_struct *, int)) 2606 { 2607 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2608 } 2609 2610 static inline void 2611 netif_napi_add_tx_weight(struct net_device *dev, 2612 struct napi_struct *napi, 2613 int (*poll)(struct napi_struct *, int), 2614 int weight) 2615 { 2616 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2617 netif_napi_add_weight(dev, napi, poll, weight); 2618 } 2619 2620 /** 2621 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2622 * @dev: network device 2623 * @napi: NAPI context 2624 * @poll: polling function 2625 * 2626 * This variant of netif_napi_add() should be used from drivers using NAPI 2627 * to exclusively poll a TX queue. 2628 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2629 */ 2630 static inline void netif_napi_add_tx(struct net_device *dev, 2631 struct napi_struct *napi, 2632 int (*poll)(struct napi_struct *, int)) 2633 { 2634 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2635 } 2636 2637 /** 2638 * __netif_napi_del - remove a NAPI context 2639 * @napi: NAPI context 2640 * 2641 * Warning: caller must observe RCU grace period before freeing memory 2642 * containing @napi. Drivers might want to call this helper to combine 2643 * all the needed RCU grace periods into a single one. 2644 */ 2645 void __netif_napi_del(struct napi_struct *napi); 2646 2647 /** 2648 * netif_napi_del - remove a NAPI context 2649 * @napi: NAPI context 2650 * 2651 * netif_napi_del() removes a NAPI context from the network device NAPI list 2652 */ 2653 static inline void netif_napi_del(struct napi_struct *napi) 2654 { 2655 __netif_napi_del(napi); 2656 synchronize_net(); 2657 } 2658 2659 struct packet_type { 2660 __be16 type; /* This is really htons(ether_type). */ 2661 bool ignore_outgoing; 2662 struct net_device *dev; /* NULL is wildcarded here */ 2663 netdevice_tracker dev_tracker; 2664 int (*func) (struct sk_buff *, 2665 struct net_device *, 2666 struct packet_type *, 2667 struct net_device *); 2668 void (*list_func) (struct list_head *, 2669 struct packet_type *, 2670 struct net_device *); 2671 bool (*id_match)(struct packet_type *ptype, 2672 struct sock *sk); 2673 struct net *af_packet_net; 2674 void *af_packet_priv; 2675 struct list_head list; 2676 }; 2677 2678 struct offload_callbacks { 2679 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2680 netdev_features_t features); 2681 struct sk_buff *(*gro_receive)(struct list_head *head, 2682 struct sk_buff *skb); 2683 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2684 }; 2685 2686 struct packet_offload { 2687 __be16 type; /* This is really htons(ether_type). */ 2688 u16 priority; 2689 struct offload_callbacks callbacks; 2690 struct list_head list; 2691 }; 2692 2693 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2694 struct pcpu_sw_netstats { 2695 u64_stats_t rx_packets; 2696 u64_stats_t rx_bytes; 2697 u64_stats_t tx_packets; 2698 u64_stats_t tx_bytes; 2699 struct u64_stats_sync syncp; 2700 } __aligned(4 * sizeof(u64)); 2701 2702 struct pcpu_lstats { 2703 u64_stats_t packets; 2704 u64_stats_t bytes; 2705 struct u64_stats_sync syncp; 2706 } __aligned(2 * sizeof(u64)); 2707 2708 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2709 2710 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2711 { 2712 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2713 2714 u64_stats_update_begin(&tstats->syncp); 2715 u64_stats_add(&tstats->rx_bytes, len); 2716 u64_stats_inc(&tstats->rx_packets); 2717 u64_stats_update_end(&tstats->syncp); 2718 } 2719 2720 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2721 unsigned int packets, 2722 unsigned int len) 2723 { 2724 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2725 2726 u64_stats_update_begin(&tstats->syncp); 2727 u64_stats_add(&tstats->tx_bytes, len); 2728 u64_stats_add(&tstats->tx_packets, packets); 2729 u64_stats_update_end(&tstats->syncp); 2730 } 2731 2732 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2733 { 2734 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2735 2736 u64_stats_update_begin(&lstats->syncp); 2737 u64_stats_add(&lstats->bytes, len); 2738 u64_stats_inc(&lstats->packets); 2739 u64_stats_update_end(&lstats->syncp); 2740 } 2741 2742 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2743 ({ \ 2744 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2745 if (pcpu_stats) { \ 2746 int __cpu; \ 2747 for_each_possible_cpu(__cpu) { \ 2748 typeof(type) *stat; \ 2749 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2750 u64_stats_init(&stat->syncp); \ 2751 } \ 2752 } \ 2753 pcpu_stats; \ 2754 }) 2755 2756 #define netdev_alloc_pcpu_stats(type) \ 2757 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2758 2759 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2760 ({ \ 2761 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2762 if (pcpu_stats) { \ 2763 int __cpu; \ 2764 for_each_possible_cpu(__cpu) { \ 2765 typeof(type) *stat; \ 2766 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2767 u64_stats_init(&stat->syncp); \ 2768 } \ 2769 } \ 2770 pcpu_stats; \ 2771 }) 2772 2773 enum netdev_lag_tx_type { 2774 NETDEV_LAG_TX_TYPE_UNKNOWN, 2775 NETDEV_LAG_TX_TYPE_RANDOM, 2776 NETDEV_LAG_TX_TYPE_BROADCAST, 2777 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2778 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2779 NETDEV_LAG_TX_TYPE_HASH, 2780 }; 2781 2782 enum netdev_lag_hash { 2783 NETDEV_LAG_HASH_NONE, 2784 NETDEV_LAG_HASH_L2, 2785 NETDEV_LAG_HASH_L34, 2786 NETDEV_LAG_HASH_L23, 2787 NETDEV_LAG_HASH_E23, 2788 NETDEV_LAG_HASH_E34, 2789 NETDEV_LAG_HASH_VLAN_SRCMAC, 2790 NETDEV_LAG_HASH_UNKNOWN, 2791 }; 2792 2793 struct netdev_lag_upper_info { 2794 enum netdev_lag_tx_type tx_type; 2795 enum netdev_lag_hash hash_type; 2796 }; 2797 2798 struct netdev_lag_lower_state_info { 2799 u8 link_up : 1, 2800 tx_enabled : 1; 2801 }; 2802 2803 #include <linux/notifier.h> 2804 2805 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2806 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2807 * adding new types. 2808 */ 2809 enum netdev_cmd { 2810 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2811 NETDEV_DOWN, 2812 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2813 detected a hardware crash and restarted 2814 - we can use this eg to kick tcp sessions 2815 once done */ 2816 NETDEV_CHANGE, /* Notify device state change */ 2817 NETDEV_REGISTER, 2818 NETDEV_UNREGISTER, 2819 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2820 NETDEV_CHANGEADDR, /* notify after the address change */ 2821 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2822 NETDEV_GOING_DOWN, 2823 NETDEV_CHANGENAME, 2824 NETDEV_FEAT_CHANGE, 2825 NETDEV_BONDING_FAILOVER, 2826 NETDEV_PRE_UP, 2827 NETDEV_PRE_TYPE_CHANGE, 2828 NETDEV_POST_TYPE_CHANGE, 2829 NETDEV_POST_INIT, 2830 NETDEV_PRE_UNINIT, 2831 NETDEV_RELEASE, 2832 NETDEV_NOTIFY_PEERS, 2833 NETDEV_JOIN, 2834 NETDEV_CHANGEUPPER, 2835 NETDEV_RESEND_IGMP, 2836 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2837 NETDEV_CHANGEINFODATA, 2838 NETDEV_BONDING_INFO, 2839 NETDEV_PRECHANGEUPPER, 2840 NETDEV_CHANGELOWERSTATE, 2841 NETDEV_UDP_TUNNEL_PUSH_INFO, 2842 NETDEV_UDP_TUNNEL_DROP_INFO, 2843 NETDEV_CHANGE_TX_QUEUE_LEN, 2844 NETDEV_CVLAN_FILTER_PUSH_INFO, 2845 NETDEV_CVLAN_FILTER_DROP_INFO, 2846 NETDEV_SVLAN_FILTER_PUSH_INFO, 2847 NETDEV_SVLAN_FILTER_DROP_INFO, 2848 NETDEV_OFFLOAD_XSTATS_ENABLE, 2849 NETDEV_OFFLOAD_XSTATS_DISABLE, 2850 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2851 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2852 NETDEV_XDP_FEAT_CHANGE, 2853 }; 2854 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2855 2856 int register_netdevice_notifier(struct notifier_block *nb); 2857 int unregister_netdevice_notifier(struct notifier_block *nb); 2858 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2859 int unregister_netdevice_notifier_net(struct net *net, 2860 struct notifier_block *nb); 2861 int register_netdevice_notifier_dev_net(struct net_device *dev, 2862 struct notifier_block *nb, 2863 struct netdev_net_notifier *nn); 2864 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2865 struct notifier_block *nb, 2866 struct netdev_net_notifier *nn); 2867 2868 struct netdev_notifier_info { 2869 struct net_device *dev; 2870 struct netlink_ext_ack *extack; 2871 }; 2872 2873 struct netdev_notifier_info_ext { 2874 struct netdev_notifier_info info; /* must be first */ 2875 union { 2876 u32 mtu; 2877 } ext; 2878 }; 2879 2880 struct netdev_notifier_change_info { 2881 struct netdev_notifier_info info; /* must be first */ 2882 unsigned int flags_changed; 2883 }; 2884 2885 struct netdev_notifier_changeupper_info { 2886 struct netdev_notifier_info info; /* must be first */ 2887 struct net_device *upper_dev; /* new upper dev */ 2888 bool master; /* is upper dev master */ 2889 bool linking; /* is the notification for link or unlink */ 2890 void *upper_info; /* upper dev info */ 2891 }; 2892 2893 struct netdev_notifier_changelowerstate_info { 2894 struct netdev_notifier_info info; /* must be first */ 2895 void *lower_state_info; /* is lower dev state */ 2896 }; 2897 2898 struct netdev_notifier_pre_changeaddr_info { 2899 struct netdev_notifier_info info; /* must be first */ 2900 const unsigned char *dev_addr; 2901 }; 2902 2903 enum netdev_offload_xstats_type { 2904 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2905 }; 2906 2907 struct netdev_notifier_offload_xstats_info { 2908 struct netdev_notifier_info info; /* must be first */ 2909 enum netdev_offload_xstats_type type; 2910 2911 union { 2912 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2913 struct netdev_notifier_offload_xstats_rd *report_delta; 2914 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2915 struct netdev_notifier_offload_xstats_ru *report_used; 2916 }; 2917 }; 2918 2919 int netdev_offload_xstats_enable(struct net_device *dev, 2920 enum netdev_offload_xstats_type type, 2921 struct netlink_ext_ack *extack); 2922 int netdev_offload_xstats_disable(struct net_device *dev, 2923 enum netdev_offload_xstats_type type); 2924 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2925 enum netdev_offload_xstats_type type); 2926 int netdev_offload_xstats_get(struct net_device *dev, 2927 enum netdev_offload_xstats_type type, 2928 struct rtnl_hw_stats64 *stats, bool *used, 2929 struct netlink_ext_ack *extack); 2930 void 2931 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2932 const struct rtnl_hw_stats64 *stats); 2933 void 2934 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2935 void netdev_offload_xstats_push_delta(struct net_device *dev, 2936 enum netdev_offload_xstats_type type, 2937 const struct rtnl_hw_stats64 *stats); 2938 2939 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2940 struct net_device *dev) 2941 { 2942 info->dev = dev; 2943 info->extack = NULL; 2944 } 2945 2946 static inline struct net_device * 2947 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2948 { 2949 return info->dev; 2950 } 2951 2952 static inline struct netlink_ext_ack * 2953 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2954 { 2955 return info->extack; 2956 } 2957 2958 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2959 2960 2961 extern rwlock_t dev_base_lock; /* Device list lock */ 2962 2963 #define for_each_netdev(net, d) \ 2964 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2965 #define for_each_netdev_reverse(net, d) \ 2966 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2967 #define for_each_netdev_rcu(net, d) \ 2968 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2969 #define for_each_netdev_safe(net, d, n) \ 2970 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2971 #define for_each_netdev_continue(net, d) \ 2972 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2973 #define for_each_netdev_continue_reverse(net, d) \ 2974 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2975 dev_list) 2976 #define for_each_netdev_continue_rcu(net, d) \ 2977 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2978 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2979 for_each_netdev_rcu(&init_net, slave) \ 2980 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2981 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2982 2983 static inline struct net_device *next_net_device(struct net_device *dev) 2984 { 2985 struct list_head *lh; 2986 struct net *net; 2987 2988 net = dev_net(dev); 2989 lh = dev->dev_list.next; 2990 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2991 } 2992 2993 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2994 { 2995 struct list_head *lh; 2996 struct net *net; 2997 2998 net = dev_net(dev); 2999 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3000 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3001 } 3002 3003 static inline struct net_device *first_net_device(struct net *net) 3004 { 3005 return list_empty(&net->dev_base_head) ? NULL : 3006 net_device_entry(net->dev_base_head.next); 3007 } 3008 3009 static inline struct net_device *first_net_device_rcu(struct net *net) 3010 { 3011 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3012 3013 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3014 } 3015 3016 int netdev_boot_setup_check(struct net_device *dev); 3017 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3018 const char *hwaddr); 3019 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3020 void dev_add_pack(struct packet_type *pt); 3021 void dev_remove_pack(struct packet_type *pt); 3022 void __dev_remove_pack(struct packet_type *pt); 3023 void dev_add_offload(struct packet_offload *po); 3024 void dev_remove_offload(struct packet_offload *po); 3025 3026 int dev_get_iflink(const struct net_device *dev); 3027 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3028 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3029 struct net_device_path_stack *stack); 3030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3031 unsigned short mask); 3032 struct net_device *dev_get_by_name(struct net *net, const char *name); 3033 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3034 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3035 bool netdev_name_in_use(struct net *net, const char *name); 3036 int dev_alloc_name(struct net_device *dev, const char *name); 3037 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3038 void dev_close(struct net_device *dev); 3039 void dev_close_many(struct list_head *head, bool unlink); 3040 void dev_disable_lro(struct net_device *dev); 3041 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3042 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3043 struct net_device *sb_dev); 3044 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3045 struct net_device *sb_dev); 3046 3047 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3048 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3049 3050 static inline int dev_queue_xmit(struct sk_buff *skb) 3051 { 3052 return __dev_queue_xmit(skb, NULL); 3053 } 3054 3055 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3056 struct net_device *sb_dev) 3057 { 3058 return __dev_queue_xmit(skb, sb_dev); 3059 } 3060 3061 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3062 { 3063 int ret; 3064 3065 ret = __dev_direct_xmit(skb, queue_id); 3066 if (!dev_xmit_complete(ret)) 3067 kfree_skb(skb); 3068 return ret; 3069 } 3070 3071 int register_netdevice(struct net_device *dev); 3072 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3073 void unregister_netdevice_many(struct list_head *head); 3074 static inline void unregister_netdevice(struct net_device *dev) 3075 { 3076 unregister_netdevice_queue(dev, NULL); 3077 } 3078 3079 int netdev_refcnt_read(const struct net_device *dev); 3080 void free_netdev(struct net_device *dev); 3081 void netdev_freemem(struct net_device *dev); 3082 int init_dummy_netdev(struct net_device *dev); 3083 3084 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3085 struct sk_buff *skb, 3086 bool all_slaves); 3087 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3088 struct sock *sk); 3089 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3090 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3091 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3092 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3093 int dev_restart(struct net_device *dev); 3094 3095 3096 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3097 unsigned short type, 3098 const void *daddr, const void *saddr, 3099 unsigned int len) 3100 { 3101 if (!dev->header_ops || !dev->header_ops->create) 3102 return 0; 3103 3104 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3105 } 3106 3107 static inline int dev_parse_header(const struct sk_buff *skb, 3108 unsigned char *haddr) 3109 { 3110 const struct net_device *dev = skb->dev; 3111 3112 if (!dev->header_ops || !dev->header_ops->parse) 3113 return 0; 3114 return dev->header_ops->parse(skb, haddr); 3115 } 3116 3117 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3118 { 3119 const struct net_device *dev = skb->dev; 3120 3121 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3122 return 0; 3123 return dev->header_ops->parse_protocol(skb); 3124 } 3125 3126 /* ll_header must have at least hard_header_len allocated */ 3127 static inline bool dev_validate_header(const struct net_device *dev, 3128 char *ll_header, int len) 3129 { 3130 if (likely(len >= dev->hard_header_len)) 3131 return true; 3132 if (len < dev->min_header_len) 3133 return false; 3134 3135 if (capable(CAP_SYS_RAWIO)) { 3136 memset(ll_header + len, 0, dev->hard_header_len - len); 3137 return true; 3138 } 3139 3140 if (dev->header_ops && dev->header_ops->validate) 3141 return dev->header_ops->validate(ll_header, len); 3142 3143 return false; 3144 } 3145 3146 static inline bool dev_has_header(const struct net_device *dev) 3147 { 3148 return dev->header_ops && dev->header_ops->create; 3149 } 3150 3151 /* 3152 * Incoming packets are placed on per-CPU queues 3153 */ 3154 struct softnet_data { 3155 struct list_head poll_list; 3156 struct sk_buff_head process_queue; 3157 3158 /* stats */ 3159 unsigned int processed; 3160 unsigned int time_squeeze; 3161 #ifdef CONFIG_RPS 3162 struct softnet_data *rps_ipi_list; 3163 #endif 3164 #ifdef CONFIG_NET_FLOW_LIMIT 3165 struct sd_flow_limit __rcu *flow_limit; 3166 #endif 3167 struct Qdisc *output_queue; 3168 struct Qdisc **output_queue_tailp; 3169 struct sk_buff *completion_queue; 3170 #ifdef CONFIG_XFRM_OFFLOAD 3171 struct sk_buff_head xfrm_backlog; 3172 #endif 3173 /* written and read only by owning cpu: */ 3174 struct { 3175 u16 recursion; 3176 u8 more; 3177 #ifdef CONFIG_NET_EGRESS 3178 u8 skip_txqueue; 3179 #endif 3180 } xmit; 3181 #ifdef CONFIG_RPS 3182 /* input_queue_head should be written by cpu owning this struct, 3183 * and only read by other cpus. Worth using a cache line. 3184 */ 3185 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3186 3187 /* Elements below can be accessed between CPUs for RPS/RFS */ 3188 call_single_data_t csd ____cacheline_aligned_in_smp; 3189 struct softnet_data *rps_ipi_next; 3190 unsigned int cpu; 3191 unsigned int input_queue_tail; 3192 #endif 3193 unsigned int received_rps; 3194 unsigned int dropped; 3195 struct sk_buff_head input_pkt_queue; 3196 struct napi_struct backlog; 3197 3198 /* Another possibly contended cache line */ 3199 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3200 int defer_count; 3201 int defer_ipi_scheduled; 3202 struct sk_buff *defer_list; 3203 call_single_data_t defer_csd; 3204 }; 3205 3206 static inline void input_queue_head_incr(struct softnet_data *sd) 3207 { 3208 #ifdef CONFIG_RPS 3209 sd->input_queue_head++; 3210 #endif 3211 } 3212 3213 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3214 unsigned int *qtail) 3215 { 3216 #ifdef CONFIG_RPS 3217 *qtail = ++sd->input_queue_tail; 3218 #endif 3219 } 3220 3221 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3222 3223 static inline int dev_recursion_level(void) 3224 { 3225 return this_cpu_read(softnet_data.xmit.recursion); 3226 } 3227 3228 #define XMIT_RECURSION_LIMIT 8 3229 static inline bool dev_xmit_recursion(void) 3230 { 3231 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3232 XMIT_RECURSION_LIMIT); 3233 } 3234 3235 static inline void dev_xmit_recursion_inc(void) 3236 { 3237 __this_cpu_inc(softnet_data.xmit.recursion); 3238 } 3239 3240 static inline void dev_xmit_recursion_dec(void) 3241 { 3242 __this_cpu_dec(softnet_data.xmit.recursion); 3243 } 3244 3245 void __netif_schedule(struct Qdisc *q); 3246 void netif_schedule_queue(struct netdev_queue *txq); 3247 3248 static inline void netif_tx_schedule_all(struct net_device *dev) 3249 { 3250 unsigned int i; 3251 3252 for (i = 0; i < dev->num_tx_queues; i++) 3253 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3254 } 3255 3256 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3257 { 3258 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3259 } 3260 3261 /** 3262 * netif_start_queue - allow transmit 3263 * @dev: network device 3264 * 3265 * Allow upper layers to call the device hard_start_xmit routine. 3266 */ 3267 static inline void netif_start_queue(struct net_device *dev) 3268 { 3269 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3270 } 3271 3272 static inline void netif_tx_start_all_queues(struct net_device *dev) 3273 { 3274 unsigned int i; 3275 3276 for (i = 0; i < dev->num_tx_queues; i++) { 3277 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3278 netif_tx_start_queue(txq); 3279 } 3280 } 3281 3282 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3283 3284 /** 3285 * netif_wake_queue - restart transmit 3286 * @dev: network device 3287 * 3288 * Allow upper layers to call the device hard_start_xmit routine. 3289 * Used for flow control when transmit resources are available. 3290 */ 3291 static inline void netif_wake_queue(struct net_device *dev) 3292 { 3293 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3294 } 3295 3296 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3297 { 3298 unsigned int i; 3299 3300 for (i = 0; i < dev->num_tx_queues; i++) { 3301 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3302 netif_tx_wake_queue(txq); 3303 } 3304 } 3305 3306 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3307 { 3308 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3309 } 3310 3311 /** 3312 * netif_stop_queue - stop transmitted packets 3313 * @dev: network device 3314 * 3315 * Stop upper layers calling the device hard_start_xmit routine. 3316 * Used for flow control when transmit resources are unavailable. 3317 */ 3318 static inline void netif_stop_queue(struct net_device *dev) 3319 { 3320 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3321 } 3322 3323 void netif_tx_stop_all_queues(struct net_device *dev); 3324 3325 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3326 { 3327 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3328 } 3329 3330 /** 3331 * netif_queue_stopped - test if transmit queue is flowblocked 3332 * @dev: network device 3333 * 3334 * Test if transmit queue on device is currently unable to send. 3335 */ 3336 static inline bool netif_queue_stopped(const struct net_device *dev) 3337 { 3338 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3339 } 3340 3341 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3342 { 3343 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3344 } 3345 3346 static inline bool 3347 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3348 { 3349 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3350 } 3351 3352 static inline bool 3353 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3354 { 3355 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3356 } 3357 3358 /** 3359 * netdev_queue_set_dql_min_limit - set dql minimum limit 3360 * @dev_queue: pointer to transmit queue 3361 * @min_limit: dql minimum limit 3362 * 3363 * Forces xmit_more() to return true until the minimum threshold 3364 * defined by @min_limit is reached (or until the tx queue is 3365 * empty). Warning: to be use with care, misuse will impact the 3366 * latency. 3367 */ 3368 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3369 unsigned int min_limit) 3370 { 3371 #ifdef CONFIG_BQL 3372 dev_queue->dql.min_limit = min_limit; 3373 #endif 3374 } 3375 3376 /** 3377 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3378 * @dev_queue: pointer to transmit queue 3379 * 3380 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3381 * to give appropriate hint to the CPU. 3382 */ 3383 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3384 { 3385 #ifdef CONFIG_BQL 3386 prefetchw(&dev_queue->dql.num_queued); 3387 #endif 3388 } 3389 3390 /** 3391 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3392 * @dev_queue: pointer to transmit queue 3393 * 3394 * BQL enabled drivers might use this helper in their TX completion path, 3395 * to give appropriate hint to the CPU. 3396 */ 3397 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3398 { 3399 #ifdef CONFIG_BQL 3400 prefetchw(&dev_queue->dql.limit); 3401 #endif 3402 } 3403 3404 /** 3405 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3406 * @dev_queue: network device queue 3407 * @bytes: number of bytes queued to the device queue 3408 * 3409 * Report the number of bytes queued for sending/completion to the network 3410 * device hardware queue. @bytes should be a good approximation and should 3411 * exactly match netdev_completed_queue() @bytes. 3412 * This is typically called once per packet, from ndo_start_xmit(). 3413 */ 3414 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3415 unsigned int bytes) 3416 { 3417 #ifdef CONFIG_BQL 3418 dql_queued(&dev_queue->dql, bytes); 3419 3420 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3421 return; 3422 3423 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3424 3425 /* 3426 * The XOFF flag must be set before checking the dql_avail below, 3427 * because in netdev_tx_completed_queue we update the dql_completed 3428 * before checking the XOFF flag. 3429 */ 3430 smp_mb(); 3431 3432 /* check again in case another CPU has just made room avail */ 3433 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3434 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3435 #endif 3436 } 3437 3438 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3439 * that they should not test BQL status themselves. 3440 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3441 * skb of a batch. 3442 * Returns true if the doorbell must be used to kick the NIC. 3443 */ 3444 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3445 unsigned int bytes, 3446 bool xmit_more) 3447 { 3448 if (xmit_more) { 3449 #ifdef CONFIG_BQL 3450 dql_queued(&dev_queue->dql, bytes); 3451 #endif 3452 return netif_tx_queue_stopped(dev_queue); 3453 } 3454 netdev_tx_sent_queue(dev_queue, bytes); 3455 return true; 3456 } 3457 3458 /** 3459 * netdev_sent_queue - report the number of bytes queued to hardware 3460 * @dev: network device 3461 * @bytes: number of bytes queued to the hardware device queue 3462 * 3463 * Report the number of bytes queued for sending/completion to the network 3464 * device hardware queue#0. @bytes should be a good approximation and should 3465 * exactly match netdev_completed_queue() @bytes. 3466 * This is typically called once per packet, from ndo_start_xmit(). 3467 */ 3468 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3469 { 3470 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3471 } 3472 3473 static inline bool __netdev_sent_queue(struct net_device *dev, 3474 unsigned int bytes, 3475 bool xmit_more) 3476 { 3477 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3478 xmit_more); 3479 } 3480 3481 /** 3482 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3483 * @dev_queue: network device queue 3484 * @pkts: number of packets (currently ignored) 3485 * @bytes: number of bytes dequeued from the device queue 3486 * 3487 * Must be called at most once per TX completion round (and not per 3488 * individual packet), so that BQL can adjust its limits appropriately. 3489 */ 3490 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3491 unsigned int pkts, unsigned int bytes) 3492 { 3493 #ifdef CONFIG_BQL 3494 if (unlikely(!bytes)) 3495 return; 3496 3497 dql_completed(&dev_queue->dql, bytes); 3498 3499 /* 3500 * Without the memory barrier there is a small possiblity that 3501 * netdev_tx_sent_queue will miss the update and cause the queue to 3502 * be stopped forever 3503 */ 3504 smp_mb(); 3505 3506 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3507 return; 3508 3509 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3510 netif_schedule_queue(dev_queue); 3511 #endif 3512 } 3513 3514 /** 3515 * netdev_completed_queue - report bytes and packets completed by device 3516 * @dev: network device 3517 * @pkts: actual number of packets sent over the medium 3518 * @bytes: actual number of bytes sent over the medium 3519 * 3520 * Report the number of bytes and packets transmitted by the network device 3521 * hardware queue over the physical medium, @bytes must exactly match the 3522 * @bytes amount passed to netdev_sent_queue() 3523 */ 3524 static inline void netdev_completed_queue(struct net_device *dev, 3525 unsigned int pkts, unsigned int bytes) 3526 { 3527 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3528 } 3529 3530 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3531 { 3532 #ifdef CONFIG_BQL 3533 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3534 dql_reset(&q->dql); 3535 #endif 3536 } 3537 3538 /** 3539 * netdev_reset_queue - reset the packets and bytes count of a network device 3540 * @dev_queue: network device 3541 * 3542 * Reset the bytes and packet count of a network device and clear the 3543 * software flow control OFF bit for this network device 3544 */ 3545 static inline void netdev_reset_queue(struct net_device *dev_queue) 3546 { 3547 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3548 } 3549 3550 /** 3551 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3552 * @dev: network device 3553 * @queue_index: given tx queue index 3554 * 3555 * Returns 0 if given tx queue index >= number of device tx queues, 3556 * otherwise returns the originally passed tx queue index. 3557 */ 3558 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3559 { 3560 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3561 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3562 dev->name, queue_index, 3563 dev->real_num_tx_queues); 3564 return 0; 3565 } 3566 3567 return queue_index; 3568 } 3569 3570 /** 3571 * netif_running - test if up 3572 * @dev: network device 3573 * 3574 * Test if the device has been brought up. 3575 */ 3576 static inline bool netif_running(const struct net_device *dev) 3577 { 3578 return test_bit(__LINK_STATE_START, &dev->state); 3579 } 3580 3581 /* 3582 * Routines to manage the subqueues on a device. We only need start, 3583 * stop, and a check if it's stopped. All other device management is 3584 * done at the overall netdevice level. 3585 * Also test the device if we're multiqueue. 3586 */ 3587 3588 /** 3589 * netif_start_subqueue - allow sending packets on subqueue 3590 * @dev: network device 3591 * @queue_index: sub queue index 3592 * 3593 * Start individual transmit queue of a device with multiple transmit queues. 3594 */ 3595 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3596 { 3597 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3598 3599 netif_tx_start_queue(txq); 3600 } 3601 3602 /** 3603 * netif_stop_subqueue - stop sending packets on subqueue 3604 * @dev: network device 3605 * @queue_index: sub queue index 3606 * 3607 * Stop individual transmit queue of a device with multiple transmit queues. 3608 */ 3609 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3610 { 3611 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3612 netif_tx_stop_queue(txq); 3613 } 3614 3615 /** 3616 * __netif_subqueue_stopped - test status of subqueue 3617 * @dev: network device 3618 * @queue_index: sub queue index 3619 * 3620 * Check individual transmit queue of a device with multiple transmit queues. 3621 */ 3622 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3623 u16 queue_index) 3624 { 3625 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3626 3627 return netif_tx_queue_stopped(txq); 3628 } 3629 3630 /** 3631 * netif_subqueue_stopped - test status of subqueue 3632 * @dev: network device 3633 * @skb: sub queue buffer pointer 3634 * 3635 * Check individual transmit queue of a device with multiple transmit queues. 3636 */ 3637 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3638 struct sk_buff *skb) 3639 { 3640 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3641 } 3642 3643 /** 3644 * netif_wake_subqueue - allow sending packets on subqueue 3645 * @dev: network device 3646 * @queue_index: sub queue index 3647 * 3648 * Resume individual transmit queue of a device with multiple transmit queues. 3649 */ 3650 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3651 { 3652 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3653 3654 netif_tx_wake_queue(txq); 3655 } 3656 3657 #ifdef CONFIG_XPS 3658 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3659 u16 index); 3660 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3661 u16 index, enum xps_map_type type); 3662 3663 /** 3664 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3665 * @j: CPU/Rx queue index 3666 * @mask: bitmask of all cpus/rx queues 3667 * @nr_bits: number of bits in the bitmask 3668 * 3669 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3670 */ 3671 static inline bool netif_attr_test_mask(unsigned long j, 3672 const unsigned long *mask, 3673 unsigned int nr_bits) 3674 { 3675 cpu_max_bits_warn(j, nr_bits); 3676 return test_bit(j, mask); 3677 } 3678 3679 /** 3680 * netif_attr_test_online - Test for online CPU/Rx queue 3681 * @j: CPU/Rx queue index 3682 * @online_mask: bitmask for CPUs/Rx queues that are online 3683 * @nr_bits: number of bits in the bitmask 3684 * 3685 * Returns true if a CPU/Rx queue is online. 3686 */ 3687 static inline bool netif_attr_test_online(unsigned long j, 3688 const unsigned long *online_mask, 3689 unsigned int nr_bits) 3690 { 3691 cpu_max_bits_warn(j, nr_bits); 3692 3693 if (online_mask) 3694 return test_bit(j, online_mask); 3695 3696 return (j < nr_bits); 3697 } 3698 3699 /** 3700 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3701 * @n: CPU/Rx queue index 3702 * @srcp: the cpumask/Rx queue mask pointer 3703 * @nr_bits: number of bits in the bitmask 3704 * 3705 * Returns >= nr_bits if no further CPUs/Rx queues set. 3706 */ 3707 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3708 unsigned int nr_bits) 3709 { 3710 /* -1 is a legal arg here. */ 3711 if (n != -1) 3712 cpu_max_bits_warn(n, nr_bits); 3713 3714 if (srcp) 3715 return find_next_bit(srcp, nr_bits, n + 1); 3716 3717 return n + 1; 3718 } 3719 3720 /** 3721 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3722 * @n: CPU/Rx queue index 3723 * @src1p: the first CPUs/Rx queues mask pointer 3724 * @src2p: the second CPUs/Rx queues mask pointer 3725 * @nr_bits: number of bits in the bitmask 3726 * 3727 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3728 */ 3729 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3730 const unsigned long *src2p, 3731 unsigned int nr_bits) 3732 { 3733 /* -1 is a legal arg here. */ 3734 if (n != -1) 3735 cpu_max_bits_warn(n, nr_bits); 3736 3737 if (src1p && src2p) 3738 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3739 else if (src1p) 3740 return find_next_bit(src1p, nr_bits, n + 1); 3741 else if (src2p) 3742 return find_next_bit(src2p, nr_bits, n + 1); 3743 3744 return n + 1; 3745 } 3746 #else 3747 static inline int netif_set_xps_queue(struct net_device *dev, 3748 const struct cpumask *mask, 3749 u16 index) 3750 { 3751 return 0; 3752 } 3753 3754 static inline int __netif_set_xps_queue(struct net_device *dev, 3755 const unsigned long *mask, 3756 u16 index, enum xps_map_type type) 3757 { 3758 return 0; 3759 } 3760 #endif 3761 3762 /** 3763 * netif_is_multiqueue - test if device has multiple transmit queues 3764 * @dev: network device 3765 * 3766 * Check if device has multiple transmit queues 3767 */ 3768 static inline bool netif_is_multiqueue(const struct net_device *dev) 3769 { 3770 return dev->num_tx_queues > 1; 3771 } 3772 3773 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3774 3775 #ifdef CONFIG_SYSFS 3776 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3777 #else 3778 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3779 unsigned int rxqs) 3780 { 3781 dev->real_num_rx_queues = rxqs; 3782 return 0; 3783 } 3784 #endif 3785 int netif_set_real_num_queues(struct net_device *dev, 3786 unsigned int txq, unsigned int rxq); 3787 3788 static inline struct netdev_rx_queue * 3789 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3790 { 3791 return dev->_rx + rxq; 3792 } 3793 3794 #ifdef CONFIG_SYSFS 3795 static inline unsigned int get_netdev_rx_queue_index( 3796 struct netdev_rx_queue *queue) 3797 { 3798 struct net_device *dev = queue->dev; 3799 int index = queue - dev->_rx; 3800 3801 BUG_ON(index >= dev->num_rx_queues); 3802 return index; 3803 } 3804 #endif 3805 3806 int netif_get_num_default_rss_queues(void); 3807 3808 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3809 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3810 3811 /* 3812 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3813 * interrupt context or with hardware interrupts being disabled. 3814 * (in_hardirq() || irqs_disabled()) 3815 * 3816 * We provide four helpers that can be used in following contexts : 3817 * 3818 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3819 * replacing kfree_skb(skb) 3820 * 3821 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3822 * Typically used in place of consume_skb(skb) in TX completion path 3823 * 3824 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3825 * replacing kfree_skb(skb) 3826 * 3827 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3828 * and consumed a packet. Used in place of consume_skb(skb) 3829 */ 3830 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3831 { 3832 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3833 } 3834 3835 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3836 { 3837 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3838 } 3839 3840 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3841 { 3842 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3843 } 3844 3845 static inline void dev_consume_skb_any(struct sk_buff *skb) 3846 { 3847 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3848 } 3849 3850 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3851 struct bpf_prog *xdp_prog); 3852 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3853 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3854 int netif_rx(struct sk_buff *skb); 3855 int __netif_rx(struct sk_buff *skb); 3856 3857 int netif_receive_skb(struct sk_buff *skb); 3858 int netif_receive_skb_core(struct sk_buff *skb); 3859 void netif_receive_skb_list_internal(struct list_head *head); 3860 void netif_receive_skb_list(struct list_head *head); 3861 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3862 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3863 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3864 void napi_get_frags_check(struct napi_struct *napi); 3865 gro_result_t napi_gro_frags(struct napi_struct *napi); 3866 struct packet_offload *gro_find_receive_by_type(__be16 type); 3867 struct packet_offload *gro_find_complete_by_type(__be16 type); 3868 3869 static inline void napi_free_frags(struct napi_struct *napi) 3870 { 3871 kfree_skb(napi->skb); 3872 napi->skb = NULL; 3873 } 3874 3875 bool netdev_is_rx_handler_busy(struct net_device *dev); 3876 int netdev_rx_handler_register(struct net_device *dev, 3877 rx_handler_func_t *rx_handler, 3878 void *rx_handler_data); 3879 void netdev_rx_handler_unregister(struct net_device *dev); 3880 3881 bool dev_valid_name(const char *name); 3882 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3883 { 3884 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3885 } 3886 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3887 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3888 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3889 void __user *data, bool *need_copyout); 3890 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3891 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3892 unsigned int dev_get_flags(const struct net_device *); 3893 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3894 struct netlink_ext_ack *extack); 3895 int dev_change_flags(struct net_device *dev, unsigned int flags, 3896 struct netlink_ext_ack *extack); 3897 int dev_set_alias(struct net_device *, const char *, size_t); 3898 int dev_get_alias(const struct net_device *, char *, size_t); 3899 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3900 const char *pat, int new_ifindex); 3901 static inline 3902 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3903 const char *pat) 3904 { 3905 return __dev_change_net_namespace(dev, net, pat, 0); 3906 } 3907 int __dev_set_mtu(struct net_device *, int); 3908 int dev_set_mtu(struct net_device *, int); 3909 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3910 struct netlink_ext_ack *extack); 3911 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3912 struct netlink_ext_ack *extack); 3913 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3914 struct netlink_ext_ack *extack); 3915 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3916 int dev_get_port_parent_id(struct net_device *dev, 3917 struct netdev_phys_item_id *ppid, bool recurse); 3918 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3919 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3921 struct netdev_queue *txq, int *ret); 3922 3923 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3924 u8 dev_xdp_prog_count(struct net_device *dev); 3925 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3926 3927 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3928 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3929 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3930 bool is_skb_forwardable(const struct net_device *dev, 3931 const struct sk_buff *skb); 3932 3933 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3934 const struct sk_buff *skb, 3935 const bool check_mtu) 3936 { 3937 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3938 unsigned int len; 3939 3940 if (!(dev->flags & IFF_UP)) 3941 return false; 3942 3943 if (!check_mtu) 3944 return true; 3945 3946 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3947 if (skb->len <= len) 3948 return true; 3949 3950 /* if TSO is enabled, we don't care about the length as the packet 3951 * could be forwarded without being segmented before 3952 */ 3953 if (skb_is_gso(skb)) 3954 return true; 3955 3956 return false; 3957 } 3958 3959 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3960 3961 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 3962 { 3963 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 3964 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 3965 3966 if (likely(p)) 3967 return p; 3968 3969 return netdev_core_stats_alloc(dev); 3970 } 3971 3972 #define DEV_CORE_STATS_INC(FIELD) \ 3973 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3974 { \ 3975 struct net_device_core_stats __percpu *p; \ 3976 \ 3977 p = dev_core_stats(dev); \ 3978 if (p) \ 3979 this_cpu_inc(p->FIELD); \ 3980 } 3981 DEV_CORE_STATS_INC(rx_dropped) 3982 DEV_CORE_STATS_INC(tx_dropped) 3983 DEV_CORE_STATS_INC(rx_nohandler) 3984 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3985 3986 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3987 struct sk_buff *skb, 3988 const bool check_mtu) 3989 { 3990 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3991 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 3992 dev_core_stats_rx_dropped_inc(dev); 3993 kfree_skb(skb); 3994 return NET_RX_DROP; 3995 } 3996 3997 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 3998 skb->priority = 0; 3999 return 0; 4000 } 4001 4002 bool dev_nit_active(struct net_device *dev); 4003 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4004 4005 static inline void __dev_put(struct net_device *dev) 4006 { 4007 if (dev) { 4008 #ifdef CONFIG_PCPU_DEV_REFCNT 4009 this_cpu_dec(*dev->pcpu_refcnt); 4010 #else 4011 refcount_dec(&dev->dev_refcnt); 4012 #endif 4013 } 4014 } 4015 4016 static inline void __dev_hold(struct net_device *dev) 4017 { 4018 if (dev) { 4019 #ifdef CONFIG_PCPU_DEV_REFCNT 4020 this_cpu_inc(*dev->pcpu_refcnt); 4021 #else 4022 refcount_inc(&dev->dev_refcnt); 4023 #endif 4024 } 4025 } 4026 4027 static inline void __netdev_tracker_alloc(struct net_device *dev, 4028 netdevice_tracker *tracker, 4029 gfp_t gfp) 4030 { 4031 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4032 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4033 #endif 4034 } 4035 4036 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4037 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4038 */ 4039 static inline void netdev_tracker_alloc(struct net_device *dev, 4040 netdevice_tracker *tracker, gfp_t gfp) 4041 { 4042 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4043 refcount_dec(&dev->refcnt_tracker.no_tracker); 4044 __netdev_tracker_alloc(dev, tracker, gfp); 4045 #endif 4046 } 4047 4048 static inline void netdev_tracker_free(struct net_device *dev, 4049 netdevice_tracker *tracker) 4050 { 4051 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4052 ref_tracker_free(&dev->refcnt_tracker, tracker); 4053 #endif 4054 } 4055 4056 static inline void netdev_hold(struct net_device *dev, 4057 netdevice_tracker *tracker, gfp_t gfp) 4058 { 4059 if (dev) { 4060 __dev_hold(dev); 4061 __netdev_tracker_alloc(dev, tracker, gfp); 4062 } 4063 } 4064 4065 static inline void netdev_put(struct net_device *dev, 4066 netdevice_tracker *tracker) 4067 { 4068 if (dev) { 4069 netdev_tracker_free(dev, tracker); 4070 __dev_put(dev); 4071 } 4072 } 4073 4074 /** 4075 * dev_hold - get reference to device 4076 * @dev: network device 4077 * 4078 * Hold reference to device to keep it from being freed. 4079 * Try using netdev_hold() instead. 4080 */ 4081 static inline void dev_hold(struct net_device *dev) 4082 { 4083 netdev_hold(dev, NULL, GFP_ATOMIC); 4084 } 4085 4086 /** 4087 * dev_put - release reference to device 4088 * @dev: network device 4089 * 4090 * Release reference to device to allow it to be freed. 4091 * Try using netdev_put() instead. 4092 */ 4093 static inline void dev_put(struct net_device *dev) 4094 { 4095 netdev_put(dev, NULL); 4096 } 4097 4098 static inline void netdev_ref_replace(struct net_device *odev, 4099 struct net_device *ndev, 4100 netdevice_tracker *tracker, 4101 gfp_t gfp) 4102 { 4103 if (odev) 4104 netdev_tracker_free(odev, tracker); 4105 4106 __dev_hold(ndev); 4107 __dev_put(odev); 4108 4109 if (ndev) 4110 __netdev_tracker_alloc(ndev, tracker, gfp); 4111 } 4112 4113 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4114 * and _off may be called from IRQ context, but it is caller 4115 * who is responsible for serialization of these calls. 4116 * 4117 * The name carrier is inappropriate, these functions should really be 4118 * called netif_lowerlayer_*() because they represent the state of any 4119 * kind of lower layer not just hardware media. 4120 */ 4121 void linkwatch_fire_event(struct net_device *dev); 4122 4123 /** 4124 * netif_carrier_ok - test if carrier present 4125 * @dev: network device 4126 * 4127 * Check if carrier is present on device 4128 */ 4129 static inline bool netif_carrier_ok(const struct net_device *dev) 4130 { 4131 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4132 } 4133 4134 unsigned long dev_trans_start(struct net_device *dev); 4135 4136 void __netdev_watchdog_up(struct net_device *dev); 4137 4138 void netif_carrier_on(struct net_device *dev); 4139 void netif_carrier_off(struct net_device *dev); 4140 void netif_carrier_event(struct net_device *dev); 4141 4142 /** 4143 * netif_dormant_on - mark device as dormant. 4144 * @dev: network device 4145 * 4146 * Mark device as dormant (as per RFC2863). 4147 * 4148 * The dormant state indicates that the relevant interface is not 4149 * actually in a condition to pass packets (i.e., it is not 'up') but is 4150 * in a "pending" state, waiting for some external event. For "on- 4151 * demand" interfaces, this new state identifies the situation where the 4152 * interface is waiting for events to place it in the up state. 4153 */ 4154 static inline void netif_dormant_on(struct net_device *dev) 4155 { 4156 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4157 linkwatch_fire_event(dev); 4158 } 4159 4160 /** 4161 * netif_dormant_off - set device as not dormant. 4162 * @dev: network device 4163 * 4164 * Device is not in dormant state. 4165 */ 4166 static inline void netif_dormant_off(struct net_device *dev) 4167 { 4168 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4169 linkwatch_fire_event(dev); 4170 } 4171 4172 /** 4173 * netif_dormant - test if device is dormant 4174 * @dev: network device 4175 * 4176 * Check if device is dormant. 4177 */ 4178 static inline bool netif_dormant(const struct net_device *dev) 4179 { 4180 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4181 } 4182 4183 4184 /** 4185 * netif_testing_on - mark device as under test. 4186 * @dev: network device 4187 * 4188 * Mark device as under test (as per RFC2863). 4189 * 4190 * The testing state indicates that some test(s) must be performed on 4191 * the interface. After completion, of the test, the interface state 4192 * will change to up, dormant, or down, as appropriate. 4193 */ 4194 static inline void netif_testing_on(struct net_device *dev) 4195 { 4196 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4197 linkwatch_fire_event(dev); 4198 } 4199 4200 /** 4201 * netif_testing_off - set device as not under test. 4202 * @dev: network device 4203 * 4204 * Device is not in testing state. 4205 */ 4206 static inline void netif_testing_off(struct net_device *dev) 4207 { 4208 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4209 linkwatch_fire_event(dev); 4210 } 4211 4212 /** 4213 * netif_testing - test if device is under test 4214 * @dev: network device 4215 * 4216 * Check if device is under test 4217 */ 4218 static inline bool netif_testing(const struct net_device *dev) 4219 { 4220 return test_bit(__LINK_STATE_TESTING, &dev->state); 4221 } 4222 4223 4224 /** 4225 * netif_oper_up - test if device is operational 4226 * @dev: network device 4227 * 4228 * Check if carrier is operational 4229 */ 4230 static inline bool netif_oper_up(const struct net_device *dev) 4231 { 4232 return (dev->operstate == IF_OPER_UP || 4233 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4234 } 4235 4236 /** 4237 * netif_device_present - is device available or removed 4238 * @dev: network device 4239 * 4240 * Check if device has not been removed from system. 4241 */ 4242 static inline bool netif_device_present(const struct net_device *dev) 4243 { 4244 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4245 } 4246 4247 void netif_device_detach(struct net_device *dev); 4248 4249 void netif_device_attach(struct net_device *dev); 4250 4251 /* 4252 * Network interface message level settings 4253 */ 4254 4255 enum { 4256 NETIF_MSG_DRV_BIT, 4257 NETIF_MSG_PROBE_BIT, 4258 NETIF_MSG_LINK_BIT, 4259 NETIF_MSG_TIMER_BIT, 4260 NETIF_MSG_IFDOWN_BIT, 4261 NETIF_MSG_IFUP_BIT, 4262 NETIF_MSG_RX_ERR_BIT, 4263 NETIF_MSG_TX_ERR_BIT, 4264 NETIF_MSG_TX_QUEUED_BIT, 4265 NETIF_MSG_INTR_BIT, 4266 NETIF_MSG_TX_DONE_BIT, 4267 NETIF_MSG_RX_STATUS_BIT, 4268 NETIF_MSG_PKTDATA_BIT, 4269 NETIF_MSG_HW_BIT, 4270 NETIF_MSG_WOL_BIT, 4271 4272 /* When you add a new bit above, update netif_msg_class_names array 4273 * in net/ethtool/common.c 4274 */ 4275 NETIF_MSG_CLASS_COUNT, 4276 }; 4277 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4278 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4279 4280 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4281 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4282 4283 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4284 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4285 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4286 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4287 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4288 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4289 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4290 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4291 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4292 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4293 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4294 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4295 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4296 #define NETIF_MSG_HW __NETIF_MSG(HW) 4297 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4298 4299 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4300 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4301 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4302 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4303 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4304 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4305 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4306 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4307 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4308 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4309 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4310 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4311 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4312 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4313 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4314 4315 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4316 { 4317 /* use default */ 4318 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4319 return default_msg_enable_bits; 4320 if (debug_value == 0) /* no output */ 4321 return 0; 4322 /* set low N bits */ 4323 return (1U << debug_value) - 1; 4324 } 4325 4326 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4327 { 4328 spin_lock(&txq->_xmit_lock); 4329 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4330 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4331 } 4332 4333 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4334 { 4335 __acquire(&txq->_xmit_lock); 4336 return true; 4337 } 4338 4339 static inline void __netif_tx_release(struct netdev_queue *txq) 4340 { 4341 __release(&txq->_xmit_lock); 4342 } 4343 4344 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4345 { 4346 spin_lock_bh(&txq->_xmit_lock); 4347 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4348 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4349 } 4350 4351 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4352 { 4353 bool ok = spin_trylock(&txq->_xmit_lock); 4354 4355 if (likely(ok)) { 4356 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4357 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4358 } 4359 return ok; 4360 } 4361 4362 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4363 { 4364 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4365 WRITE_ONCE(txq->xmit_lock_owner, -1); 4366 spin_unlock(&txq->_xmit_lock); 4367 } 4368 4369 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4370 { 4371 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4372 WRITE_ONCE(txq->xmit_lock_owner, -1); 4373 spin_unlock_bh(&txq->_xmit_lock); 4374 } 4375 4376 /* 4377 * txq->trans_start can be read locklessly from dev_watchdog() 4378 */ 4379 static inline void txq_trans_update(struct netdev_queue *txq) 4380 { 4381 if (txq->xmit_lock_owner != -1) 4382 WRITE_ONCE(txq->trans_start, jiffies); 4383 } 4384 4385 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4386 { 4387 unsigned long now = jiffies; 4388 4389 if (READ_ONCE(txq->trans_start) != now) 4390 WRITE_ONCE(txq->trans_start, now); 4391 } 4392 4393 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4394 static inline void netif_trans_update(struct net_device *dev) 4395 { 4396 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4397 4398 txq_trans_cond_update(txq); 4399 } 4400 4401 /** 4402 * netif_tx_lock - grab network device transmit lock 4403 * @dev: network device 4404 * 4405 * Get network device transmit lock 4406 */ 4407 void netif_tx_lock(struct net_device *dev); 4408 4409 static inline void netif_tx_lock_bh(struct net_device *dev) 4410 { 4411 local_bh_disable(); 4412 netif_tx_lock(dev); 4413 } 4414 4415 void netif_tx_unlock(struct net_device *dev); 4416 4417 static inline void netif_tx_unlock_bh(struct net_device *dev) 4418 { 4419 netif_tx_unlock(dev); 4420 local_bh_enable(); 4421 } 4422 4423 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4424 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4425 __netif_tx_lock(txq, cpu); \ 4426 } else { \ 4427 __netif_tx_acquire(txq); \ 4428 } \ 4429 } 4430 4431 #define HARD_TX_TRYLOCK(dev, txq) \ 4432 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4433 __netif_tx_trylock(txq) : \ 4434 __netif_tx_acquire(txq)) 4435 4436 #define HARD_TX_UNLOCK(dev, txq) { \ 4437 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4438 __netif_tx_unlock(txq); \ 4439 } else { \ 4440 __netif_tx_release(txq); \ 4441 } \ 4442 } 4443 4444 static inline void netif_tx_disable(struct net_device *dev) 4445 { 4446 unsigned int i; 4447 int cpu; 4448 4449 local_bh_disable(); 4450 cpu = smp_processor_id(); 4451 spin_lock(&dev->tx_global_lock); 4452 for (i = 0; i < dev->num_tx_queues; i++) { 4453 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4454 4455 __netif_tx_lock(txq, cpu); 4456 netif_tx_stop_queue(txq); 4457 __netif_tx_unlock(txq); 4458 } 4459 spin_unlock(&dev->tx_global_lock); 4460 local_bh_enable(); 4461 } 4462 4463 static inline void netif_addr_lock(struct net_device *dev) 4464 { 4465 unsigned char nest_level = 0; 4466 4467 #ifdef CONFIG_LOCKDEP 4468 nest_level = dev->nested_level; 4469 #endif 4470 spin_lock_nested(&dev->addr_list_lock, nest_level); 4471 } 4472 4473 static inline void netif_addr_lock_bh(struct net_device *dev) 4474 { 4475 unsigned char nest_level = 0; 4476 4477 #ifdef CONFIG_LOCKDEP 4478 nest_level = dev->nested_level; 4479 #endif 4480 local_bh_disable(); 4481 spin_lock_nested(&dev->addr_list_lock, nest_level); 4482 } 4483 4484 static inline void netif_addr_unlock(struct net_device *dev) 4485 { 4486 spin_unlock(&dev->addr_list_lock); 4487 } 4488 4489 static inline void netif_addr_unlock_bh(struct net_device *dev) 4490 { 4491 spin_unlock_bh(&dev->addr_list_lock); 4492 } 4493 4494 /* 4495 * dev_addrs walker. Should be used only for read access. Call with 4496 * rcu_read_lock held. 4497 */ 4498 #define for_each_dev_addr(dev, ha) \ 4499 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4500 4501 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4502 4503 void ether_setup(struct net_device *dev); 4504 4505 /* Support for loadable net-drivers */ 4506 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4507 unsigned char name_assign_type, 4508 void (*setup)(struct net_device *), 4509 unsigned int txqs, unsigned int rxqs); 4510 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4511 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4512 4513 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4514 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4515 count) 4516 4517 int register_netdev(struct net_device *dev); 4518 void unregister_netdev(struct net_device *dev); 4519 4520 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4521 4522 /* General hardware address lists handling functions */ 4523 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4524 struct netdev_hw_addr_list *from_list, int addr_len); 4525 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4526 struct netdev_hw_addr_list *from_list, int addr_len); 4527 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4528 struct net_device *dev, 4529 int (*sync)(struct net_device *, const unsigned char *), 4530 int (*unsync)(struct net_device *, 4531 const unsigned char *)); 4532 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4533 struct net_device *dev, 4534 int (*sync)(struct net_device *, 4535 const unsigned char *, int), 4536 int (*unsync)(struct net_device *, 4537 const unsigned char *, int)); 4538 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4539 struct net_device *dev, 4540 int (*unsync)(struct net_device *, 4541 const unsigned char *, int)); 4542 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4543 struct net_device *dev, 4544 int (*unsync)(struct net_device *, 4545 const unsigned char *)); 4546 void __hw_addr_init(struct netdev_hw_addr_list *list); 4547 4548 /* Functions used for device addresses handling */ 4549 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4550 const void *addr, size_t len); 4551 4552 static inline void 4553 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4554 { 4555 dev_addr_mod(dev, 0, addr, len); 4556 } 4557 4558 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4559 { 4560 __dev_addr_set(dev, addr, dev->addr_len); 4561 } 4562 4563 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4564 unsigned char addr_type); 4565 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4566 unsigned char addr_type); 4567 4568 /* Functions used for unicast addresses handling */ 4569 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4570 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4571 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4572 int dev_uc_sync(struct net_device *to, struct net_device *from); 4573 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4574 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4575 void dev_uc_flush(struct net_device *dev); 4576 void dev_uc_init(struct net_device *dev); 4577 4578 /** 4579 * __dev_uc_sync - Synchonize device's unicast list 4580 * @dev: device to sync 4581 * @sync: function to call if address should be added 4582 * @unsync: function to call if address should be removed 4583 * 4584 * Add newly added addresses to the interface, and release 4585 * addresses that have been deleted. 4586 */ 4587 static inline int __dev_uc_sync(struct net_device *dev, 4588 int (*sync)(struct net_device *, 4589 const unsigned char *), 4590 int (*unsync)(struct net_device *, 4591 const unsigned char *)) 4592 { 4593 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4594 } 4595 4596 /** 4597 * __dev_uc_unsync - Remove synchronized addresses from device 4598 * @dev: device to sync 4599 * @unsync: function to call if address should be removed 4600 * 4601 * Remove all addresses that were added to the device by dev_uc_sync(). 4602 */ 4603 static inline void __dev_uc_unsync(struct net_device *dev, 4604 int (*unsync)(struct net_device *, 4605 const unsigned char *)) 4606 { 4607 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4608 } 4609 4610 /* Functions used for multicast addresses handling */ 4611 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4612 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4613 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4614 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4615 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4616 int dev_mc_sync(struct net_device *to, struct net_device *from); 4617 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4618 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4619 void dev_mc_flush(struct net_device *dev); 4620 void dev_mc_init(struct net_device *dev); 4621 4622 /** 4623 * __dev_mc_sync - Synchonize device's multicast list 4624 * @dev: device to sync 4625 * @sync: function to call if address should be added 4626 * @unsync: function to call if address should be removed 4627 * 4628 * Add newly added addresses to the interface, and release 4629 * addresses that have been deleted. 4630 */ 4631 static inline int __dev_mc_sync(struct net_device *dev, 4632 int (*sync)(struct net_device *, 4633 const unsigned char *), 4634 int (*unsync)(struct net_device *, 4635 const unsigned char *)) 4636 { 4637 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4638 } 4639 4640 /** 4641 * __dev_mc_unsync - Remove synchronized addresses from device 4642 * @dev: device to sync 4643 * @unsync: function to call if address should be removed 4644 * 4645 * Remove all addresses that were added to the device by dev_mc_sync(). 4646 */ 4647 static inline void __dev_mc_unsync(struct net_device *dev, 4648 int (*unsync)(struct net_device *, 4649 const unsigned char *)) 4650 { 4651 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4652 } 4653 4654 /* Functions used for secondary unicast and multicast support */ 4655 void dev_set_rx_mode(struct net_device *dev); 4656 int dev_set_promiscuity(struct net_device *dev, int inc); 4657 int dev_set_allmulti(struct net_device *dev, int inc); 4658 void netdev_state_change(struct net_device *dev); 4659 void __netdev_notify_peers(struct net_device *dev); 4660 void netdev_notify_peers(struct net_device *dev); 4661 void netdev_features_change(struct net_device *dev); 4662 /* Load a device via the kmod */ 4663 void dev_load(struct net *net, const char *name); 4664 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4665 struct rtnl_link_stats64 *storage); 4666 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4667 const struct net_device_stats *netdev_stats); 4668 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4669 const struct pcpu_sw_netstats __percpu *netstats); 4670 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4671 4672 extern int netdev_max_backlog; 4673 extern int dev_rx_weight; 4674 extern int dev_tx_weight; 4675 extern int gro_normal_batch; 4676 4677 enum { 4678 NESTED_SYNC_IMM_BIT, 4679 NESTED_SYNC_TODO_BIT, 4680 }; 4681 4682 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4683 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4684 4685 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4686 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4687 4688 struct netdev_nested_priv { 4689 unsigned char flags; 4690 void *data; 4691 }; 4692 4693 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4694 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4695 struct list_head **iter); 4696 4697 /* iterate through upper list, must be called under RCU read lock */ 4698 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4699 for (iter = &(dev)->adj_list.upper, \ 4700 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4701 updev; \ 4702 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4703 4704 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4705 int (*fn)(struct net_device *upper_dev, 4706 struct netdev_nested_priv *priv), 4707 struct netdev_nested_priv *priv); 4708 4709 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4710 struct net_device *upper_dev); 4711 4712 bool netdev_has_any_upper_dev(struct net_device *dev); 4713 4714 void *netdev_lower_get_next_private(struct net_device *dev, 4715 struct list_head **iter); 4716 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4717 struct list_head **iter); 4718 4719 #define netdev_for_each_lower_private(dev, priv, iter) \ 4720 for (iter = (dev)->adj_list.lower.next, \ 4721 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4722 priv; \ 4723 priv = netdev_lower_get_next_private(dev, &(iter))) 4724 4725 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4726 for (iter = &(dev)->adj_list.lower, \ 4727 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4728 priv; \ 4729 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4730 4731 void *netdev_lower_get_next(struct net_device *dev, 4732 struct list_head **iter); 4733 4734 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4735 for (iter = (dev)->adj_list.lower.next, \ 4736 ldev = netdev_lower_get_next(dev, &(iter)); \ 4737 ldev; \ 4738 ldev = netdev_lower_get_next(dev, &(iter))) 4739 4740 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4741 struct list_head **iter); 4742 int netdev_walk_all_lower_dev(struct net_device *dev, 4743 int (*fn)(struct net_device *lower_dev, 4744 struct netdev_nested_priv *priv), 4745 struct netdev_nested_priv *priv); 4746 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4747 int (*fn)(struct net_device *lower_dev, 4748 struct netdev_nested_priv *priv), 4749 struct netdev_nested_priv *priv); 4750 4751 void *netdev_adjacent_get_private(struct list_head *adj_list); 4752 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4753 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4754 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4755 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4756 struct netlink_ext_ack *extack); 4757 int netdev_master_upper_dev_link(struct net_device *dev, 4758 struct net_device *upper_dev, 4759 void *upper_priv, void *upper_info, 4760 struct netlink_ext_ack *extack); 4761 void netdev_upper_dev_unlink(struct net_device *dev, 4762 struct net_device *upper_dev); 4763 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4764 struct net_device *new_dev, 4765 struct net_device *dev, 4766 struct netlink_ext_ack *extack); 4767 void netdev_adjacent_change_commit(struct net_device *old_dev, 4768 struct net_device *new_dev, 4769 struct net_device *dev); 4770 void netdev_adjacent_change_abort(struct net_device *old_dev, 4771 struct net_device *new_dev, 4772 struct net_device *dev); 4773 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4774 void *netdev_lower_dev_get_private(struct net_device *dev, 4775 struct net_device *lower_dev); 4776 void netdev_lower_state_changed(struct net_device *lower_dev, 4777 void *lower_state_info); 4778 4779 /* RSS keys are 40 or 52 bytes long */ 4780 #define NETDEV_RSS_KEY_LEN 52 4781 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4782 void netdev_rss_key_fill(void *buffer, size_t len); 4783 4784 int skb_checksum_help(struct sk_buff *skb); 4785 int skb_crc32c_csum_help(struct sk_buff *skb); 4786 int skb_csum_hwoffload_help(struct sk_buff *skb, 4787 const netdev_features_t features); 4788 4789 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4790 netdev_features_t features, bool tx_path); 4791 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4792 netdev_features_t features, __be16 type); 4793 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4794 netdev_features_t features); 4795 4796 struct netdev_bonding_info { 4797 ifslave slave; 4798 ifbond master; 4799 }; 4800 4801 struct netdev_notifier_bonding_info { 4802 struct netdev_notifier_info info; /* must be first */ 4803 struct netdev_bonding_info bonding_info; 4804 }; 4805 4806 void netdev_bonding_info_change(struct net_device *dev, 4807 struct netdev_bonding_info *bonding_info); 4808 4809 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4810 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4811 #else 4812 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4813 const void *data) 4814 { 4815 } 4816 #endif 4817 4818 static inline 4819 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4820 { 4821 return __skb_gso_segment(skb, features, true); 4822 } 4823 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4824 4825 static inline bool can_checksum_protocol(netdev_features_t features, 4826 __be16 protocol) 4827 { 4828 if (protocol == htons(ETH_P_FCOE)) 4829 return !!(features & NETIF_F_FCOE_CRC); 4830 4831 /* Assume this is an IP checksum (not SCTP CRC) */ 4832 4833 if (features & NETIF_F_HW_CSUM) { 4834 /* Can checksum everything */ 4835 return true; 4836 } 4837 4838 switch (protocol) { 4839 case htons(ETH_P_IP): 4840 return !!(features & NETIF_F_IP_CSUM); 4841 case htons(ETH_P_IPV6): 4842 return !!(features & NETIF_F_IPV6_CSUM); 4843 default: 4844 return false; 4845 } 4846 } 4847 4848 #ifdef CONFIG_BUG 4849 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4850 #else 4851 static inline void netdev_rx_csum_fault(struct net_device *dev, 4852 struct sk_buff *skb) 4853 { 4854 } 4855 #endif 4856 /* rx skb timestamps */ 4857 void net_enable_timestamp(void); 4858 void net_disable_timestamp(void); 4859 4860 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4861 const struct skb_shared_hwtstamps *hwtstamps, 4862 bool cycles) 4863 { 4864 const struct net_device_ops *ops = dev->netdev_ops; 4865 4866 if (ops->ndo_get_tstamp) 4867 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4868 4869 return hwtstamps->hwtstamp; 4870 } 4871 4872 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4873 struct sk_buff *skb, struct net_device *dev, 4874 bool more) 4875 { 4876 __this_cpu_write(softnet_data.xmit.more, more); 4877 return ops->ndo_start_xmit(skb, dev); 4878 } 4879 4880 static inline bool netdev_xmit_more(void) 4881 { 4882 return __this_cpu_read(softnet_data.xmit.more); 4883 } 4884 4885 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4886 struct netdev_queue *txq, bool more) 4887 { 4888 const struct net_device_ops *ops = dev->netdev_ops; 4889 netdev_tx_t rc; 4890 4891 rc = __netdev_start_xmit(ops, skb, dev, more); 4892 if (rc == NETDEV_TX_OK) 4893 txq_trans_update(txq); 4894 4895 return rc; 4896 } 4897 4898 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4899 const void *ns); 4900 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4901 const void *ns); 4902 4903 extern const struct kobj_ns_type_operations net_ns_type_operations; 4904 4905 const char *netdev_drivername(const struct net_device *dev); 4906 4907 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4908 netdev_features_t f2) 4909 { 4910 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4911 if (f1 & NETIF_F_HW_CSUM) 4912 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4913 else 4914 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4915 } 4916 4917 return f1 & f2; 4918 } 4919 4920 static inline netdev_features_t netdev_get_wanted_features( 4921 struct net_device *dev) 4922 { 4923 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4924 } 4925 netdev_features_t netdev_increment_features(netdev_features_t all, 4926 netdev_features_t one, netdev_features_t mask); 4927 4928 /* Allow TSO being used on stacked device : 4929 * Performing the GSO segmentation before last device 4930 * is a performance improvement. 4931 */ 4932 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4933 netdev_features_t mask) 4934 { 4935 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4936 } 4937 4938 int __netdev_update_features(struct net_device *dev); 4939 void netdev_update_features(struct net_device *dev); 4940 void netdev_change_features(struct net_device *dev); 4941 4942 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4943 struct net_device *dev); 4944 4945 netdev_features_t passthru_features_check(struct sk_buff *skb, 4946 struct net_device *dev, 4947 netdev_features_t features); 4948 netdev_features_t netif_skb_features(struct sk_buff *skb); 4949 4950 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4951 { 4952 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4953 4954 /* check flags correspondence */ 4955 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4956 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4957 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4958 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4959 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4960 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4961 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4962 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4963 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4964 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4965 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4966 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4967 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4968 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4969 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4970 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4971 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4972 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4973 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4974 4975 return (features & feature) == feature; 4976 } 4977 4978 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4979 { 4980 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4981 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4982 } 4983 4984 static inline bool netif_needs_gso(struct sk_buff *skb, 4985 netdev_features_t features) 4986 { 4987 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4988 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4989 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4990 } 4991 4992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 4993 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 4994 void netif_inherit_tso_max(struct net_device *to, 4995 const struct net_device *from); 4996 4997 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4998 int pulled_hlen, u16 mac_offset, 4999 int mac_len) 5000 { 5001 skb->protocol = protocol; 5002 skb->encapsulation = 1; 5003 skb_push(skb, pulled_hlen); 5004 skb_reset_transport_header(skb); 5005 skb->mac_header = mac_offset; 5006 skb->network_header = skb->mac_header + mac_len; 5007 skb->mac_len = mac_len; 5008 } 5009 5010 static inline bool netif_is_macsec(const struct net_device *dev) 5011 { 5012 return dev->priv_flags & IFF_MACSEC; 5013 } 5014 5015 static inline bool netif_is_macvlan(const struct net_device *dev) 5016 { 5017 return dev->priv_flags & IFF_MACVLAN; 5018 } 5019 5020 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5021 { 5022 return dev->priv_flags & IFF_MACVLAN_PORT; 5023 } 5024 5025 static inline bool netif_is_bond_master(const struct net_device *dev) 5026 { 5027 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5028 } 5029 5030 static inline bool netif_is_bond_slave(const struct net_device *dev) 5031 { 5032 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5033 } 5034 5035 static inline bool netif_supports_nofcs(struct net_device *dev) 5036 { 5037 return dev->priv_flags & IFF_SUPP_NOFCS; 5038 } 5039 5040 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5041 { 5042 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5043 } 5044 5045 static inline bool netif_is_l3_master(const struct net_device *dev) 5046 { 5047 return dev->priv_flags & IFF_L3MDEV_MASTER; 5048 } 5049 5050 static inline bool netif_is_l3_slave(const struct net_device *dev) 5051 { 5052 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5053 } 5054 5055 static inline bool netif_is_bridge_master(const struct net_device *dev) 5056 { 5057 return dev->priv_flags & IFF_EBRIDGE; 5058 } 5059 5060 static inline bool netif_is_bridge_port(const struct net_device *dev) 5061 { 5062 return dev->priv_flags & IFF_BRIDGE_PORT; 5063 } 5064 5065 static inline bool netif_is_ovs_master(const struct net_device *dev) 5066 { 5067 return dev->priv_flags & IFF_OPENVSWITCH; 5068 } 5069 5070 static inline bool netif_is_ovs_port(const struct net_device *dev) 5071 { 5072 return dev->priv_flags & IFF_OVS_DATAPATH; 5073 } 5074 5075 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5076 { 5077 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5078 } 5079 5080 static inline bool netif_is_team_master(const struct net_device *dev) 5081 { 5082 return dev->priv_flags & IFF_TEAM; 5083 } 5084 5085 static inline bool netif_is_team_port(const struct net_device *dev) 5086 { 5087 return dev->priv_flags & IFF_TEAM_PORT; 5088 } 5089 5090 static inline bool netif_is_lag_master(const struct net_device *dev) 5091 { 5092 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5093 } 5094 5095 static inline bool netif_is_lag_port(const struct net_device *dev) 5096 { 5097 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5098 } 5099 5100 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5101 { 5102 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5103 } 5104 5105 static inline bool netif_is_failover(const struct net_device *dev) 5106 { 5107 return dev->priv_flags & IFF_FAILOVER; 5108 } 5109 5110 static inline bool netif_is_failover_slave(const struct net_device *dev) 5111 { 5112 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5113 } 5114 5115 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5116 static inline void netif_keep_dst(struct net_device *dev) 5117 { 5118 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5119 } 5120 5121 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5122 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5123 { 5124 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5125 return netif_is_macsec(dev); 5126 } 5127 5128 extern struct pernet_operations __net_initdata loopback_net_ops; 5129 5130 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5131 5132 /* netdev_printk helpers, similar to dev_printk */ 5133 5134 static inline const char *netdev_name(const struct net_device *dev) 5135 { 5136 if (!dev->name[0] || strchr(dev->name, '%')) 5137 return "(unnamed net_device)"; 5138 return dev->name; 5139 } 5140 5141 static inline const char *netdev_reg_state(const struct net_device *dev) 5142 { 5143 switch (dev->reg_state) { 5144 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5145 case NETREG_REGISTERED: return ""; 5146 case NETREG_UNREGISTERING: return " (unregistering)"; 5147 case NETREG_UNREGISTERED: return " (unregistered)"; 5148 case NETREG_RELEASED: return " (released)"; 5149 case NETREG_DUMMY: return " (dummy)"; 5150 } 5151 5152 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5153 return " (unknown)"; 5154 } 5155 5156 #define MODULE_ALIAS_NETDEV(device) \ 5157 MODULE_ALIAS("netdev-" device) 5158 5159 /* 5160 * netdev_WARN() acts like dev_printk(), but with the key difference 5161 * of using a WARN/WARN_ON to get the message out, including the 5162 * file/line information and a backtrace. 5163 */ 5164 #define netdev_WARN(dev, format, args...) \ 5165 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5166 netdev_reg_state(dev), ##args) 5167 5168 #define netdev_WARN_ONCE(dev, format, args...) \ 5169 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5170 netdev_reg_state(dev), ##args) 5171 5172 /* 5173 * The list of packet types we will receive (as opposed to discard) 5174 * and the routines to invoke. 5175 * 5176 * Why 16. Because with 16 the only overlap we get on a hash of the 5177 * low nibble of the protocol value is RARP/SNAP/X.25. 5178 * 5179 * 0800 IP 5180 * 0001 802.3 5181 * 0002 AX.25 5182 * 0004 802.2 5183 * 8035 RARP 5184 * 0005 SNAP 5185 * 0805 X.25 5186 * 0806 ARP 5187 * 8137 IPX 5188 * 0009 Localtalk 5189 * 86DD IPv6 5190 */ 5191 #define PTYPE_HASH_SIZE (16) 5192 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5193 5194 extern struct list_head ptype_all __read_mostly; 5195 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5196 5197 extern struct net_device *blackhole_netdev; 5198 5199 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5200 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5201 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5202 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5203 5204 #endif /* _LINUX_NETDEVICE_H */ 5205