xref: /openbmc/linux/include/linux/netdevice.h (revision 1a18374f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
336 	int			rx_count; /* length of rx_list */
337 	struct hrtimer		timer;
338 	struct list_head	dev_list;
339 	struct hlist_node	napi_hash_node;
340 	unsigned int		napi_id;
341 };
342 
343 enum {
344 	NAPI_STATE_SCHED,	/* Poll is scheduled */
345 	NAPI_STATE_MISSED,	/* reschedule a napi */
346 	NAPI_STATE_DISABLE,	/* Disable pending */
347 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
348 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
349 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352 
353 enum {
354 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
355 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
356 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
357 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
358 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
359 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362 
363 enum gro_result {
364 	GRO_MERGED,
365 	GRO_MERGED_FREE,
366 	GRO_HELD,
367 	GRO_NORMAL,
368 	GRO_DROP,
369 	GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372 
373 /*
374  * enum rx_handler_result - Possible return values for rx_handlers.
375  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376  * further.
377  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378  * case skb->dev was changed by rx_handler.
379  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381  *
382  * rx_handlers are functions called from inside __netif_receive_skb(), to do
383  * special processing of the skb, prior to delivery to protocol handlers.
384  *
385  * Currently, a net_device can only have a single rx_handler registered. Trying
386  * to register a second rx_handler will return -EBUSY.
387  *
388  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389  * To unregister a rx_handler on a net_device, use
390  * netdev_rx_handler_unregister().
391  *
392  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393  * do with the skb.
394  *
395  * If the rx_handler consumed the skb in some way, it should return
396  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397  * the skb to be delivered in some other way.
398  *
399  * If the rx_handler changed skb->dev, to divert the skb to another
400  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401  * new device will be called if it exists.
402  *
403  * If the rx_handler decides the skb should be ignored, it should return
404  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405  * are registered on exact device (ptype->dev == skb->dev).
406  *
407  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408  * delivered, it should return RX_HANDLER_PASS.
409  *
410  * A device without a registered rx_handler will behave as if rx_handler
411  * returned RX_HANDLER_PASS.
412  */
413 
414 enum rx_handler_result {
415 	RX_HANDLER_CONSUMED,
416 	RX_HANDLER_ANOTHER,
417 	RX_HANDLER_EXACT,
418 	RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422 
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425 
426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 	return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430 
431 bool napi_schedule_prep(struct napi_struct *n);
432 
433 /**
434  *	napi_schedule - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Schedule NAPI poll routine to be called if it is not already
438  * running.
439  */
440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule(n);
444 }
445 
446 /**
447  *	napi_schedule_irqoff - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Variant of napi_schedule(), assuming hard irqs are masked.
451  */
452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 	if (napi_schedule_prep(n))
455 		__napi_schedule_irqoff(n);
456 }
457 
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 	if (napi_schedule_prep(napi)) {
462 		__napi_schedule(napi);
463 		return true;
464 	}
465 	return false;
466 }
467 
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470  *	napi_complete - NAPI processing complete
471  *	@n: NAPI context
472  *
473  * Mark NAPI processing as complete.
474  * Consider using napi_complete_done() instead.
475  * Return false if device should avoid rearming interrupts.
476  */
477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 	return napi_complete_done(n, 0);
480 }
481 
482 /**
483  *	napi_hash_del - remove a NAPI from global table
484  *	@napi: NAPI context
485  *
486  * Warning: caller must observe RCU grace period
487  * before freeing memory containing @napi, if
488  * this function returns true.
489  * Note: core networking stack automatically calls it
490  * from netif_napi_del().
491  * Drivers might want to call this helper to combine all
492  * the needed RCU grace periods into a single one.
493  */
494 bool napi_hash_del(struct napi_struct *napi);
495 
496 /**
497  *	napi_disable - prevent NAPI from scheduling
498  *	@n: NAPI context
499  *
500  * Stop NAPI from being scheduled on this context.
501  * Waits till any outstanding processing completes.
502  */
503 void napi_disable(struct napi_struct *n);
504 
505 /**
506  *	napi_enable - enable NAPI scheduling
507  *	@n: NAPI context
508  *
509  * Resume NAPI from being scheduled on this context.
510  * Must be paired with napi_disable.
511  */
512 static inline void napi_enable(struct napi_struct *n)
513 {
514 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 	smp_mb__before_atomic();
516 	clear_bit(NAPI_STATE_SCHED, &n->state);
517 	clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	struct Qdisc __rcu	*qdisc;
595 	struct Qdisc		*qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 	struct kobject		kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	int			numa_node;
601 #endif
602 	unsigned long		tx_maxrate;
603 	/*
604 	 * Number of TX timeouts for this queue
605 	 * (/sys/class/net/DEV/Q/trans_timeout)
606 	 */
607 	unsigned long		trans_timeout;
608 
609 	/* Subordinate device that the queue has been assigned to */
610 	struct net_device	*sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 	struct xdp_umem         *umem;
613 #endif
614 /*
615  * write-mostly part
616  */
617 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
618 	int			xmit_lock_owner;
619 	/*
620 	 * Time (in jiffies) of last Tx
621 	 */
622 	unsigned long		trans_start;
623 
624 	unsigned long		state;
625 
626 #ifdef CONFIG_BQL
627 	struct dql		dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630 
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 };
853 
854 /* These structures hold the attributes of bpf state that are being passed
855  * to the netdevice through the bpf op.
856  */
857 enum bpf_netdev_command {
858 	/* Set or clear a bpf program used in the earliest stages of packet
859 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
860 	 * is responsible for calling bpf_prog_put on any old progs that are
861 	 * stored. In case of error, the callee need not release the new prog
862 	 * reference, but on success it takes ownership and must bpf_prog_put
863 	 * when it is no longer used.
864 	 */
865 	XDP_SETUP_PROG,
866 	XDP_SETUP_PROG_HW,
867 	XDP_QUERY_PROG,
868 	XDP_QUERY_PROG_HW,
869 	/* BPF program for offload callbacks, invoked at program load time. */
870 	BPF_OFFLOAD_MAP_ALLOC,
871 	BPF_OFFLOAD_MAP_FREE,
872 	XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880 	enum bpf_netdev_command command;
881 	union {
882 		/* XDP_SETUP_PROG */
883 		struct {
884 			u32 flags;
885 			struct bpf_prog *prog;
886 			struct netlink_ext_ack *extack;
887 		};
888 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889 		struct {
890 			u32 prog_id;
891 			/* flags with which program was installed */
892 			u32 prog_flags;
893 		};
894 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
895 		struct {
896 			struct bpf_offloaded_map *offmap;
897 		};
898 		/* XDP_SETUP_XSK_UMEM */
899 		struct {
900 			struct xdp_umem *umem;
901 			u16 queue_id;
902 		} xsk;
903 	};
904 };
905 
906 /* Flags for ndo_xsk_wakeup. */
907 #define XDP_WAKEUP_RX (1 << 0)
908 #define XDP_WAKEUP_TX (1 << 1)
909 
910 #ifdef CONFIG_XFRM_OFFLOAD
911 struct xfrmdev_ops {
912 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
913 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
914 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
915 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
916 				       struct xfrm_state *x);
917 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
918 };
919 #endif
920 
921 struct dev_ifalias {
922 	struct rcu_head rcuhead;
923 	char ifalias[];
924 };
925 
926 struct devlink;
927 struct tlsdev_ops;
928 
929 struct netdev_name_node {
930 	struct hlist_node hlist;
931 	struct list_head list;
932 	struct net_device *dev;
933 	const char *name;
934 };
935 
936 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
937 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
938 
939 /*
940  * This structure defines the management hooks for network devices.
941  * The following hooks can be defined; unless noted otherwise, they are
942  * optional and can be filled with a null pointer.
943  *
944  * int (*ndo_init)(struct net_device *dev);
945  *     This function is called once when a network device is registered.
946  *     The network device can use this for any late stage initialization
947  *     or semantic validation. It can fail with an error code which will
948  *     be propagated back to register_netdev.
949  *
950  * void (*ndo_uninit)(struct net_device *dev);
951  *     This function is called when device is unregistered or when registration
952  *     fails. It is not called if init fails.
953  *
954  * int (*ndo_open)(struct net_device *dev);
955  *     This function is called when a network device transitions to the up
956  *     state.
957  *
958  * int (*ndo_stop)(struct net_device *dev);
959  *     This function is called when a network device transitions to the down
960  *     state.
961  *
962  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
963  *                               struct net_device *dev);
964  *	Called when a packet needs to be transmitted.
965  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
966  *	the queue before that can happen; it's for obsolete devices and weird
967  *	corner cases, but the stack really does a non-trivial amount
968  *	of useless work if you return NETDEV_TX_BUSY.
969  *	Required; cannot be NULL.
970  *
971  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
972  *					   struct net_device *dev
973  *					   netdev_features_t features);
974  *	Called by core transmit path to determine if device is capable of
975  *	performing offload operations on a given packet. This is to give
976  *	the device an opportunity to implement any restrictions that cannot
977  *	be otherwise expressed by feature flags. The check is called with
978  *	the set of features that the stack has calculated and it returns
979  *	those the driver believes to be appropriate.
980  *
981  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
982  *                         struct net_device *sb_dev);
983  *	Called to decide which queue to use when device supports multiple
984  *	transmit queues.
985  *
986  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
987  *	This function is called to allow device receiver to make
988  *	changes to configuration when multicast or promiscuous is enabled.
989  *
990  * void (*ndo_set_rx_mode)(struct net_device *dev);
991  *	This function is called device changes address list filtering.
992  *	If driver handles unicast address filtering, it should set
993  *	IFF_UNICAST_FLT in its priv_flags.
994  *
995  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
996  *	This function  is called when the Media Access Control address
997  *	needs to be changed. If this interface is not defined, the
998  *	MAC address can not be changed.
999  *
1000  * int (*ndo_validate_addr)(struct net_device *dev);
1001  *	Test if Media Access Control address is valid for the device.
1002  *
1003  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1004  *	Called when a user requests an ioctl which can't be handled by
1005  *	the generic interface code. If not defined ioctls return
1006  *	not supported error code.
1007  *
1008  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1009  *	Used to set network devices bus interface parameters. This interface
1010  *	is retained for legacy reasons; new devices should use the bus
1011  *	interface (PCI) for low level management.
1012  *
1013  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1014  *	Called when a user wants to change the Maximum Transfer Unit
1015  *	of a device.
1016  *
1017  * void (*ndo_tx_timeout)(struct net_device *dev);
1018  *	Callback used when the transmitter has not made any progress
1019  *	for dev->watchdog ticks.
1020  *
1021  * void (*ndo_get_stats64)(struct net_device *dev,
1022  *                         struct rtnl_link_stats64 *storage);
1023  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1024  *	Called when a user wants to get the network device usage
1025  *	statistics. Drivers must do one of the following:
1026  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1027  *	   rtnl_link_stats64 structure passed by the caller.
1028  *	2. Define @ndo_get_stats to update a net_device_stats structure
1029  *	   (which should normally be dev->stats) and return a pointer to
1030  *	   it. The structure may be changed asynchronously only if each
1031  *	   field is written atomically.
1032  *	3. Update dev->stats asynchronously and atomically, and define
1033  *	   neither operation.
1034  *
1035  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1036  *	Return true if this device supports offload stats of this attr_id.
1037  *
1038  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1039  *	void *attr_data)
1040  *	Get statistics for offload operations by attr_id. Write it into the
1041  *	attr_data pointer.
1042  *
1043  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1044  *	If device supports VLAN filtering this function is called when a
1045  *	VLAN id is registered.
1046  *
1047  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1048  *	If device supports VLAN filtering this function is called when a
1049  *	VLAN id is unregistered.
1050  *
1051  * void (*ndo_poll_controller)(struct net_device *dev);
1052  *
1053  *	SR-IOV management functions.
1054  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1055  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1056  *			  u8 qos, __be16 proto);
1057  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1058  *			  int max_tx_rate);
1059  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1060  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1061  * int (*ndo_get_vf_config)(struct net_device *dev,
1062  *			    int vf, struct ifla_vf_info *ivf);
1063  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1064  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1065  *			  struct nlattr *port[]);
1066  *
1067  *      Enable or disable the VF ability to query its RSS Redirection Table and
1068  *      Hash Key. This is needed since on some devices VF share this information
1069  *      with PF and querying it may introduce a theoretical security risk.
1070  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1071  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1072  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1073  *		       void *type_data);
1074  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1075  *	This is always called from the stack with the rtnl lock held and netif
1076  *	tx queues stopped. This allows the netdevice to perform queue
1077  *	management safely.
1078  *
1079  *	Fiber Channel over Ethernet (FCoE) offload functions.
1080  * int (*ndo_fcoe_enable)(struct net_device *dev);
1081  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1082  *	so the underlying device can perform whatever needed configuration or
1083  *	initialization to support acceleration of FCoE traffic.
1084  *
1085  * int (*ndo_fcoe_disable)(struct net_device *dev);
1086  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1087  *	so the underlying device can perform whatever needed clean-ups to
1088  *	stop supporting acceleration of FCoE traffic.
1089  *
1090  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1091  *			     struct scatterlist *sgl, unsigned int sgc);
1092  *	Called when the FCoE Initiator wants to initialize an I/O that
1093  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1094  *	perform necessary setup and returns 1 to indicate the device is set up
1095  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1096  *
1097  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1098  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1099  *	indicated by the FC exchange id 'xid', so the underlying device can
1100  *	clean up and reuse resources for later DDP requests.
1101  *
1102  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1103  *			      struct scatterlist *sgl, unsigned int sgc);
1104  *	Called when the FCoE Target wants to initialize an I/O that
1105  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1106  *	perform necessary setup and returns 1 to indicate the device is set up
1107  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1108  *
1109  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1110  *			       struct netdev_fcoe_hbainfo *hbainfo);
1111  *	Called when the FCoE Protocol stack wants information on the underlying
1112  *	device. This information is utilized by the FCoE protocol stack to
1113  *	register attributes with Fiber Channel management service as per the
1114  *	FC-GS Fabric Device Management Information(FDMI) specification.
1115  *
1116  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1117  *	Called when the underlying device wants to override default World Wide
1118  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1119  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1120  *	protocol stack to use.
1121  *
1122  *	RFS acceleration.
1123  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1124  *			    u16 rxq_index, u32 flow_id);
1125  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1126  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1127  *	Return the filter ID on success, or a negative error code.
1128  *
1129  *	Slave management functions (for bridge, bonding, etc).
1130  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1131  *	Called to make another netdev an underling.
1132  *
1133  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1134  *	Called to release previously enslaved netdev.
1135  *
1136  *      Feature/offload setting functions.
1137  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1138  *		netdev_features_t features);
1139  *	Adjusts the requested feature flags according to device-specific
1140  *	constraints, and returns the resulting flags. Must not modify
1141  *	the device state.
1142  *
1143  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1144  *	Called to update device configuration to new features. Passed
1145  *	feature set might be less than what was returned by ndo_fix_features()).
1146  *	Must return >0 or -errno if it changed dev->features itself.
1147  *
1148  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1149  *		      struct net_device *dev,
1150  *		      const unsigned char *addr, u16 vid, u16 flags,
1151  *		      struct netlink_ext_ack *extack);
1152  *	Adds an FDB entry to dev for addr.
1153  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1154  *		      struct net_device *dev,
1155  *		      const unsigned char *addr, u16 vid)
1156  *	Deletes the FDB entry from dev coresponding to addr.
1157  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1158  *		       struct net_device *dev, struct net_device *filter_dev,
1159  *		       int *idx)
1160  *	Used to add FDB entries to dump requests. Implementers should add
1161  *	entries to skb and update idx with the number of entries.
1162  *
1163  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1164  *			     u16 flags, struct netlink_ext_ack *extack)
1165  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1166  *			     struct net_device *dev, u32 filter_mask,
1167  *			     int nlflags)
1168  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1169  *			     u16 flags);
1170  *
1171  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1172  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1173  *	which do not represent real hardware may define this to allow their
1174  *	userspace components to manage their virtual carrier state. Devices
1175  *	that determine carrier state from physical hardware properties (eg
1176  *	network cables) or protocol-dependent mechanisms (eg
1177  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1178  *
1179  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1180  *			       struct netdev_phys_item_id *ppid);
1181  *	Called to get ID of physical port of this device. If driver does
1182  *	not implement this, it is assumed that the hw is not able to have
1183  *	multiple net devices on single physical port.
1184  *
1185  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1186  *				 struct netdev_phys_item_id *ppid)
1187  *	Called to get the parent ID of the physical port of this device.
1188  *
1189  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1190  *			      struct udp_tunnel_info *ti);
1191  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1192  *	address family that a UDP tunnel is listnening to. It is called only
1193  *	when a new port starts listening. The operation is protected by the
1194  *	RTNL.
1195  *
1196  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1197  *			      struct udp_tunnel_info *ti);
1198  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1199  *	address family that the UDP tunnel is not listening to anymore. The
1200  *	operation is protected by the RTNL.
1201  *
1202  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1203  *				 struct net_device *dev)
1204  *	Called by upper layer devices to accelerate switching or other
1205  *	station functionality into hardware. 'pdev is the lowerdev
1206  *	to use for the offload and 'dev' is the net device that will
1207  *	back the offload. Returns a pointer to the private structure
1208  *	the upper layer will maintain.
1209  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1210  *	Called by upper layer device to delete the station created
1211  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1212  *	the station and priv is the structure returned by the add
1213  *	operation.
1214  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1215  *			     int queue_index, u32 maxrate);
1216  *	Called when a user wants to set a max-rate limitation of specific
1217  *	TX queue.
1218  * int (*ndo_get_iflink)(const struct net_device *dev);
1219  *	Called to get the iflink value of this device.
1220  * void (*ndo_change_proto_down)(struct net_device *dev,
1221  *				 bool proto_down);
1222  *	This function is used to pass protocol port error state information
1223  *	to the switch driver. The switch driver can react to the proto_down
1224  *      by doing a phys down on the associated switch port.
1225  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1226  *	This function is used to get egress tunnel information for given skb.
1227  *	This is useful for retrieving outer tunnel header parameters while
1228  *	sampling packet.
1229  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1230  *	This function is used to specify the headroom that the skb must
1231  *	consider when allocation skb during packet reception. Setting
1232  *	appropriate rx headroom value allows avoiding skb head copy on
1233  *	forward. Setting a negative value resets the rx headroom to the
1234  *	default value.
1235  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1236  *	This function is used to set or query state related to XDP on the
1237  *	netdevice and manage BPF offload. See definition of
1238  *	enum bpf_netdev_command for details.
1239  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1240  *			u32 flags);
1241  *	This function is used to submit @n XDP packets for transmit on a
1242  *	netdevice. Returns number of frames successfully transmitted, frames
1243  *	that got dropped are freed/returned via xdp_return_frame().
1244  *	Returns negative number, means general error invoking ndo, meaning
1245  *	no frames were xmit'ed and core-caller will free all frames.
1246  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1247  *      This function is used to wake up the softirq, ksoftirqd or kthread
1248  *	responsible for sending and/or receiving packets on a specific
1249  *	queue id bound to an AF_XDP socket. The flags field specifies if
1250  *	only RX, only Tx, or both should be woken up using the flags
1251  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1252  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1253  *	Get devlink port instance associated with a given netdev.
1254  *	Called with a reference on the netdevice and devlink locks only,
1255  *	rtnl_lock is not held.
1256  */
1257 struct net_device_ops {
1258 	int			(*ndo_init)(struct net_device *dev);
1259 	void			(*ndo_uninit)(struct net_device *dev);
1260 	int			(*ndo_open)(struct net_device *dev);
1261 	int			(*ndo_stop)(struct net_device *dev);
1262 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1263 						  struct net_device *dev);
1264 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1265 						      struct net_device *dev,
1266 						      netdev_features_t features);
1267 	u16			(*ndo_select_queue)(struct net_device *dev,
1268 						    struct sk_buff *skb,
1269 						    struct net_device *sb_dev);
1270 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1271 						       int flags);
1272 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1273 	int			(*ndo_set_mac_address)(struct net_device *dev,
1274 						       void *addr);
1275 	int			(*ndo_validate_addr)(struct net_device *dev);
1276 	int			(*ndo_do_ioctl)(struct net_device *dev,
1277 					        struct ifreq *ifr, int cmd);
1278 	int			(*ndo_set_config)(struct net_device *dev,
1279 					          struct ifmap *map);
1280 	int			(*ndo_change_mtu)(struct net_device *dev,
1281 						  int new_mtu);
1282 	int			(*ndo_neigh_setup)(struct net_device *dev,
1283 						   struct neigh_parms *);
1284 	void			(*ndo_tx_timeout) (struct net_device *dev);
1285 
1286 	void			(*ndo_get_stats64)(struct net_device *dev,
1287 						   struct rtnl_link_stats64 *storage);
1288 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1289 	int			(*ndo_get_offload_stats)(int attr_id,
1290 							 const struct net_device *dev,
1291 							 void *attr_data);
1292 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1293 
1294 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1295 						       __be16 proto, u16 vid);
1296 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1297 						        __be16 proto, u16 vid);
1298 #ifdef CONFIG_NET_POLL_CONTROLLER
1299 	void                    (*ndo_poll_controller)(struct net_device *dev);
1300 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1301 						     struct netpoll_info *info);
1302 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1303 #endif
1304 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1305 						  int queue, u8 *mac);
1306 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1307 						   int queue, u16 vlan,
1308 						   u8 qos, __be16 proto);
1309 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1310 						   int vf, int min_tx_rate,
1311 						   int max_tx_rate);
1312 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1313 						       int vf, bool setting);
1314 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1315 						    int vf, bool setting);
1316 	int			(*ndo_get_vf_config)(struct net_device *dev,
1317 						     int vf,
1318 						     struct ifla_vf_info *ivf);
1319 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1320 							 int vf, int link_state);
1321 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1322 						    int vf,
1323 						    struct ifla_vf_stats
1324 						    *vf_stats);
1325 	int			(*ndo_set_vf_port)(struct net_device *dev,
1326 						   int vf,
1327 						   struct nlattr *port[]);
1328 	int			(*ndo_get_vf_port)(struct net_device *dev,
1329 						   int vf, struct sk_buff *skb);
1330 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1331 						   int vf,
1332 						   struct ifla_vf_guid *node_guid,
1333 						   struct ifla_vf_guid *port_guid);
1334 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1335 						   int vf, u64 guid,
1336 						   int guid_type);
1337 	int			(*ndo_set_vf_rss_query_en)(
1338 						   struct net_device *dev,
1339 						   int vf, bool setting);
1340 	int			(*ndo_setup_tc)(struct net_device *dev,
1341 						enum tc_setup_type type,
1342 						void *type_data);
1343 #if IS_ENABLED(CONFIG_FCOE)
1344 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1345 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1346 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1347 						      u16 xid,
1348 						      struct scatterlist *sgl,
1349 						      unsigned int sgc);
1350 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1351 						     u16 xid);
1352 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1353 						       u16 xid,
1354 						       struct scatterlist *sgl,
1355 						       unsigned int sgc);
1356 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1357 							struct netdev_fcoe_hbainfo *hbainfo);
1358 #endif
1359 
1360 #if IS_ENABLED(CONFIG_LIBFCOE)
1361 #define NETDEV_FCOE_WWNN 0
1362 #define NETDEV_FCOE_WWPN 1
1363 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1364 						    u64 *wwn, int type);
1365 #endif
1366 
1367 #ifdef CONFIG_RFS_ACCEL
1368 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1369 						     const struct sk_buff *skb,
1370 						     u16 rxq_index,
1371 						     u32 flow_id);
1372 #endif
1373 	int			(*ndo_add_slave)(struct net_device *dev,
1374 						 struct net_device *slave_dev,
1375 						 struct netlink_ext_ack *extack);
1376 	int			(*ndo_del_slave)(struct net_device *dev,
1377 						 struct net_device *slave_dev);
1378 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1379 						    netdev_features_t features);
1380 	int			(*ndo_set_features)(struct net_device *dev,
1381 						    netdev_features_t features);
1382 	int			(*ndo_neigh_construct)(struct net_device *dev,
1383 						       struct neighbour *n);
1384 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1385 						     struct neighbour *n);
1386 
1387 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1388 					       struct nlattr *tb[],
1389 					       struct net_device *dev,
1390 					       const unsigned char *addr,
1391 					       u16 vid,
1392 					       u16 flags,
1393 					       struct netlink_ext_ack *extack);
1394 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1395 					       struct nlattr *tb[],
1396 					       struct net_device *dev,
1397 					       const unsigned char *addr,
1398 					       u16 vid);
1399 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1400 						struct netlink_callback *cb,
1401 						struct net_device *dev,
1402 						struct net_device *filter_dev,
1403 						int *idx);
1404 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1405 					       struct nlattr *tb[],
1406 					       struct net_device *dev,
1407 					       const unsigned char *addr,
1408 					       u16 vid, u32 portid, u32 seq,
1409 					       struct netlink_ext_ack *extack);
1410 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1411 						      struct nlmsghdr *nlh,
1412 						      u16 flags,
1413 						      struct netlink_ext_ack *extack);
1414 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1415 						      u32 pid, u32 seq,
1416 						      struct net_device *dev,
1417 						      u32 filter_mask,
1418 						      int nlflags);
1419 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1420 						      struct nlmsghdr *nlh,
1421 						      u16 flags);
1422 	int			(*ndo_change_carrier)(struct net_device *dev,
1423 						      bool new_carrier);
1424 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1425 							struct netdev_phys_item_id *ppid);
1426 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1427 							  struct netdev_phys_item_id *ppid);
1428 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1429 							  char *name, size_t len);
1430 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1431 						      struct udp_tunnel_info *ti);
1432 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1433 						      struct udp_tunnel_info *ti);
1434 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1435 							struct net_device *dev);
1436 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1437 							void *priv);
1438 
1439 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1440 						      int queue_index,
1441 						      u32 maxrate);
1442 	int			(*ndo_get_iflink)(const struct net_device *dev);
1443 	int			(*ndo_change_proto_down)(struct net_device *dev,
1444 							 bool proto_down);
1445 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1446 						       struct sk_buff *skb);
1447 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1448 						       int needed_headroom);
1449 	int			(*ndo_bpf)(struct net_device *dev,
1450 					   struct netdev_bpf *bpf);
1451 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1452 						struct xdp_frame **xdp,
1453 						u32 flags);
1454 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1455 						  u32 queue_id, u32 flags);
1456 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1457 };
1458 
1459 /**
1460  * enum net_device_priv_flags - &struct net_device priv_flags
1461  *
1462  * These are the &struct net_device, they are only set internally
1463  * by drivers and used in the kernel. These flags are invisible to
1464  * userspace; this means that the order of these flags can change
1465  * during any kernel release.
1466  *
1467  * You should have a pretty good reason to be extending these flags.
1468  *
1469  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1470  * @IFF_EBRIDGE: Ethernet bridging device
1471  * @IFF_BONDING: bonding master or slave
1472  * @IFF_ISATAP: ISATAP interface (RFC4214)
1473  * @IFF_WAN_HDLC: WAN HDLC device
1474  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1475  *	release skb->dst
1476  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1477  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1478  * @IFF_MACVLAN_PORT: device used as macvlan port
1479  * @IFF_BRIDGE_PORT: device used as bridge port
1480  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1481  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1482  * @IFF_UNICAST_FLT: Supports unicast filtering
1483  * @IFF_TEAM_PORT: device used as team port
1484  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1485  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1486  *	change when it's running
1487  * @IFF_MACVLAN: Macvlan device
1488  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1489  *	underlying stacked devices
1490  * @IFF_L3MDEV_MASTER: device is an L3 master device
1491  * @IFF_NO_QUEUE: device can run without qdisc attached
1492  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1493  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1494  * @IFF_TEAM: device is a team device
1495  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1496  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1497  *	entity (i.e. the master device for bridged veth)
1498  * @IFF_MACSEC: device is a MACsec device
1499  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1500  * @IFF_FAILOVER: device is a failover master device
1501  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1502  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1503  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1504  */
1505 enum netdev_priv_flags {
1506 	IFF_802_1Q_VLAN			= 1<<0,
1507 	IFF_EBRIDGE			= 1<<1,
1508 	IFF_BONDING			= 1<<2,
1509 	IFF_ISATAP			= 1<<3,
1510 	IFF_WAN_HDLC			= 1<<4,
1511 	IFF_XMIT_DST_RELEASE		= 1<<5,
1512 	IFF_DONT_BRIDGE			= 1<<6,
1513 	IFF_DISABLE_NETPOLL		= 1<<7,
1514 	IFF_MACVLAN_PORT		= 1<<8,
1515 	IFF_BRIDGE_PORT			= 1<<9,
1516 	IFF_OVS_DATAPATH		= 1<<10,
1517 	IFF_TX_SKB_SHARING		= 1<<11,
1518 	IFF_UNICAST_FLT			= 1<<12,
1519 	IFF_TEAM_PORT			= 1<<13,
1520 	IFF_SUPP_NOFCS			= 1<<14,
1521 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1522 	IFF_MACVLAN			= 1<<16,
1523 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1524 	IFF_L3MDEV_MASTER		= 1<<18,
1525 	IFF_NO_QUEUE			= 1<<19,
1526 	IFF_OPENVSWITCH			= 1<<20,
1527 	IFF_L3MDEV_SLAVE		= 1<<21,
1528 	IFF_TEAM			= 1<<22,
1529 	IFF_RXFH_CONFIGURED		= 1<<23,
1530 	IFF_PHONY_HEADROOM		= 1<<24,
1531 	IFF_MACSEC			= 1<<25,
1532 	IFF_NO_RX_HANDLER		= 1<<26,
1533 	IFF_FAILOVER			= 1<<27,
1534 	IFF_FAILOVER_SLAVE		= 1<<28,
1535 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1536 	IFF_LIVE_RENAME_OK		= 1<<30,
1537 };
1538 
1539 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1540 #define IFF_EBRIDGE			IFF_EBRIDGE
1541 #define IFF_BONDING			IFF_BONDING
1542 #define IFF_ISATAP			IFF_ISATAP
1543 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1544 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1545 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1546 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1547 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1548 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1549 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1550 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1551 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1552 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1553 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1554 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1555 #define IFF_MACVLAN			IFF_MACVLAN
1556 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1557 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1558 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1559 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1560 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1561 #define IFF_TEAM			IFF_TEAM
1562 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1563 #define IFF_MACSEC			IFF_MACSEC
1564 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1565 #define IFF_FAILOVER			IFF_FAILOVER
1566 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1567 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1568 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1569 
1570 /**
1571  *	struct net_device - The DEVICE structure.
1572  *
1573  *	Actually, this whole structure is a big mistake.  It mixes I/O
1574  *	data with strictly "high-level" data, and it has to know about
1575  *	almost every data structure used in the INET module.
1576  *
1577  *	@name:	This is the first field of the "visible" part of this structure
1578  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1579  *		of the interface.
1580  *
1581  *	@name_node:	Name hashlist node
1582  *	@ifalias:	SNMP alias
1583  *	@mem_end:	Shared memory end
1584  *	@mem_start:	Shared memory start
1585  *	@base_addr:	Device I/O address
1586  *	@irq:		Device IRQ number
1587  *
1588  *	@state:		Generic network queuing layer state, see netdev_state_t
1589  *	@dev_list:	The global list of network devices
1590  *	@napi_list:	List entry used for polling NAPI devices
1591  *	@unreg_list:	List entry  when we are unregistering the
1592  *			device; see the function unregister_netdev
1593  *	@close_list:	List entry used when we are closing the device
1594  *	@ptype_all:     Device-specific packet handlers for all protocols
1595  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1596  *
1597  *	@adj_list:	Directly linked devices, like slaves for bonding
1598  *	@features:	Currently active device features
1599  *	@hw_features:	User-changeable features
1600  *
1601  *	@wanted_features:	User-requested features
1602  *	@vlan_features:		Mask of features inheritable by VLAN devices
1603  *
1604  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1605  *				This field indicates what encapsulation
1606  *				offloads the hardware is capable of doing,
1607  *				and drivers will need to set them appropriately.
1608  *
1609  *	@mpls_features:	Mask of features inheritable by MPLS
1610  *
1611  *	@ifindex:	interface index
1612  *	@group:		The group the device belongs to
1613  *
1614  *	@stats:		Statistics struct, which was left as a legacy, use
1615  *			rtnl_link_stats64 instead
1616  *
1617  *	@rx_dropped:	Dropped packets by core network,
1618  *			do not use this in drivers
1619  *	@tx_dropped:	Dropped packets by core network,
1620  *			do not use this in drivers
1621  *	@rx_nohandler:	nohandler dropped packets by core network on
1622  *			inactive devices, do not use this in drivers
1623  *	@carrier_up_count:	Number of times the carrier has been up
1624  *	@carrier_down_count:	Number of times the carrier has been down
1625  *
1626  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1627  *				instead of ioctl,
1628  *				see <net/iw_handler.h> for details.
1629  *	@wireless_data:	Instance data managed by the core of wireless extensions
1630  *
1631  *	@netdev_ops:	Includes several pointers to callbacks,
1632  *			if one wants to override the ndo_*() functions
1633  *	@ethtool_ops:	Management operations
1634  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1635  *			discovery handling. Necessary for e.g. 6LoWPAN.
1636  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1637  *			of Layer 2 headers.
1638  *
1639  *	@flags:		Interface flags (a la BSD)
1640  *	@priv_flags:	Like 'flags' but invisible to userspace,
1641  *			see if.h for the definitions
1642  *	@gflags:	Global flags ( kept as legacy )
1643  *	@padded:	How much padding added by alloc_netdev()
1644  *	@operstate:	RFC2863 operstate
1645  *	@link_mode:	Mapping policy to operstate
1646  *	@if_port:	Selectable AUI, TP, ...
1647  *	@dma:		DMA channel
1648  *	@mtu:		Interface MTU value
1649  *	@min_mtu:	Interface Minimum MTU value
1650  *	@max_mtu:	Interface Maximum MTU value
1651  *	@type:		Interface hardware type
1652  *	@hard_header_len: Maximum hardware header length.
1653  *	@min_header_len:  Minimum hardware header length
1654  *
1655  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1656  *			  cases can this be guaranteed
1657  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1658  *			  cases can this be guaranteed. Some cases also use
1659  *			  LL_MAX_HEADER instead to allocate the skb
1660  *
1661  *	interface address info:
1662  *
1663  * 	@perm_addr:		Permanent hw address
1664  * 	@addr_assign_type:	Hw address assignment type
1665  * 	@addr_len:		Hardware address length
1666  *	@upper_level:		Maximum depth level of upper devices.
1667  *	@lower_level:		Maximum depth level of lower devices.
1668  *	@neigh_priv_len:	Used in neigh_alloc()
1669  * 	@dev_id:		Used to differentiate devices that share
1670  * 				the same link layer address
1671  * 	@dev_port:		Used to differentiate devices that share
1672  * 				the same function
1673  *	@addr_list_lock:	XXX: need comments on this one
1674  *	@uc_promisc:		Counter that indicates promiscuous mode
1675  *				has been enabled due to the need to listen to
1676  *				additional unicast addresses in a device that
1677  *				does not implement ndo_set_rx_mode()
1678  *	@uc:			unicast mac addresses
1679  *	@mc:			multicast mac addresses
1680  *	@dev_addrs:		list of device hw addresses
1681  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1682  *	@promiscuity:		Number of times the NIC is told to work in
1683  *				promiscuous mode; if it becomes 0 the NIC will
1684  *				exit promiscuous mode
1685  *	@allmulti:		Counter, enables or disables allmulticast mode
1686  *
1687  *	@vlan_info:	VLAN info
1688  *	@dsa_ptr:	dsa specific data
1689  *	@tipc_ptr:	TIPC specific data
1690  *	@atalk_ptr:	AppleTalk link
1691  *	@ip_ptr:	IPv4 specific data
1692  *	@dn_ptr:	DECnet specific data
1693  *	@ip6_ptr:	IPv6 specific data
1694  *	@ax25_ptr:	AX.25 specific data
1695  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1696  *
1697  *	@dev_addr:	Hw address (before bcast,
1698  *			because most packets are unicast)
1699  *
1700  *	@_rx:			Array of RX queues
1701  *	@num_rx_queues:		Number of RX queues
1702  *				allocated at register_netdev() time
1703  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1704  *
1705  *	@rx_handler:		handler for received packets
1706  *	@rx_handler_data: 	XXX: need comments on this one
1707  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1708  *				ingress processing
1709  *	@ingress_queue:		XXX: need comments on this one
1710  *	@broadcast:		hw bcast address
1711  *
1712  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1713  *			indexed by RX queue number. Assigned by driver.
1714  *			This must only be set if the ndo_rx_flow_steer
1715  *			operation is defined
1716  *	@index_hlist:		Device index hash chain
1717  *
1718  *	@_tx:			Array of TX queues
1719  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1720  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1721  *	@qdisc:			Root qdisc from userspace point of view
1722  *	@tx_queue_len:		Max frames per queue allowed
1723  *	@tx_global_lock: 	XXX: need comments on this one
1724  *
1725  *	@xps_maps:	XXX: need comments on this one
1726  *	@miniq_egress:		clsact qdisc specific data for
1727  *				egress processing
1728  *	@watchdog_timeo:	Represents the timeout that is used by
1729  *				the watchdog (see dev_watchdog())
1730  *	@watchdog_timer:	List of timers
1731  *
1732  *	@pcpu_refcnt:		Number of references to this device
1733  *	@todo_list:		Delayed register/unregister
1734  *	@link_watch_list:	XXX: need comments on this one
1735  *
1736  *	@reg_state:		Register/unregister state machine
1737  *	@dismantle:		Device is going to be freed
1738  *	@rtnl_link_state:	This enum represents the phases of creating
1739  *				a new link
1740  *
1741  *	@needs_free_netdev:	Should unregister perform free_netdev?
1742  *	@priv_destructor:	Called from unregister
1743  *	@npinfo:		XXX: need comments on this one
1744  * 	@nd_net:		Network namespace this network device is inside
1745  *
1746  * 	@ml_priv:	Mid-layer private
1747  * 	@lstats:	Loopback statistics
1748  * 	@tstats:	Tunnel statistics
1749  * 	@dstats:	Dummy statistics
1750  * 	@vstats:	Virtual ethernet statistics
1751  *
1752  *	@garp_port:	GARP
1753  *	@mrp_port:	MRP
1754  *
1755  *	@dev:		Class/net/name entry
1756  *	@sysfs_groups:	Space for optional device, statistics and wireless
1757  *			sysfs groups
1758  *
1759  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1760  *	@rtnl_link_ops:	Rtnl_link_ops
1761  *
1762  *	@gso_max_size:	Maximum size of generic segmentation offload
1763  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1764  *			NIC for GSO
1765  *
1766  *	@dcbnl_ops:	Data Center Bridging netlink ops
1767  *	@num_tc:	Number of traffic classes in the net device
1768  *	@tc_to_txq:	XXX: need comments on this one
1769  *	@prio_tc_map:	XXX: need comments on this one
1770  *
1771  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1772  *
1773  *	@priomap:	XXX: need comments on this one
1774  *	@phydev:	Physical device may attach itself
1775  *			for hardware timestamping
1776  *	@sfp_bus:	attached &struct sfp_bus structure.
1777  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1778 				spinlock
1779  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1780  *	@qdisc_xmit_lock_key:	lockdep class annotating
1781  *				netdev_queue->_xmit_lock spinlock
1782  *	@addr_list_lock_key:	lockdep class annotating
1783  *				net_device->addr_list_lock spinlock
1784  *
1785  *	@proto_down:	protocol port state information can be sent to the
1786  *			switch driver and used to set the phys state of the
1787  *			switch port.
1788  *
1789  *	@wol_enabled:	Wake-on-LAN is enabled
1790  *
1791  *	FIXME: cleanup struct net_device such that network protocol info
1792  *	moves out.
1793  */
1794 
1795 struct net_device {
1796 	char			name[IFNAMSIZ];
1797 	struct netdev_name_node	*name_node;
1798 	struct dev_ifalias	__rcu *ifalias;
1799 	/*
1800 	 *	I/O specific fields
1801 	 *	FIXME: Merge these and struct ifmap into one
1802 	 */
1803 	unsigned long		mem_end;
1804 	unsigned long		mem_start;
1805 	unsigned long		base_addr;
1806 	int			irq;
1807 
1808 	/*
1809 	 *	Some hardware also needs these fields (state,dev_list,
1810 	 *	napi_list,unreg_list,close_list) but they are not
1811 	 *	part of the usual set specified in Space.c.
1812 	 */
1813 
1814 	unsigned long		state;
1815 
1816 	struct list_head	dev_list;
1817 	struct list_head	napi_list;
1818 	struct list_head	unreg_list;
1819 	struct list_head	close_list;
1820 	struct list_head	ptype_all;
1821 	struct list_head	ptype_specific;
1822 
1823 	struct {
1824 		struct list_head upper;
1825 		struct list_head lower;
1826 	} adj_list;
1827 
1828 	netdev_features_t	features;
1829 	netdev_features_t	hw_features;
1830 	netdev_features_t	wanted_features;
1831 	netdev_features_t	vlan_features;
1832 	netdev_features_t	hw_enc_features;
1833 	netdev_features_t	mpls_features;
1834 	netdev_features_t	gso_partial_features;
1835 
1836 	int			ifindex;
1837 	int			group;
1838 
1839 	struct net_device_stats	stats;
1840 
1841 	atomic_long_t		rx_dropped;
1842 	atomic_long_t		tx_dropped;
1843 	atomic_long_t		rx_nohandler;
1844 
1845 	/* Stats to monitor link on/off, flapping */
1846 	atomic_t		carrier_up_count;
1847 	atomic_t		carrier_down_count;
1848 
1849 #ifdef CONFIG_WIRELESS_EXT
1850 	const struct iw_handler_def *wireless_handlers;
1851 	struct iw_public_data	*wireless_data;
1852 #endif
1853 	const struct net_device_ops *netdev_ops;
1854 	const struct ethtool_ops *ethtool_ops;
1855 #ifdef CONFIG_NET_L3_MASTER_DEV
1856 	const struct l3mdev_ops	*l3mdev_ops;
1857 #endif
1858 #if IS_ENABLED(CONFIG_IPV6)
1859 	const struct ndisc_ops *ndisc_ops;
1860 #endif
1861 
1862 #ifdef CONFIG_XFRM_OFFLOAD
1863 	const struct xfrmdev_ops *xfrmdev_ops;
1864 #endif
1865 
1866 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1867 	const struct tlsdev_ops *tlsdev_ops;
1868 #endif
1869 
1870 	const struct header_ops *header_ops;
1871 
1872 	unsigned int		flags;
1873 	unsigned int		priv_flags;
1874 
1875 	unsigned short		gflags;
1876 	unsigned short		padded;
1877 
1878 	unsigned char		operstate;
1879 	unsigned char		link_mode;
1880 
1881 	unsigned char		if_port;
1882 	unsigned char		dma;
1883 
1884 	unsigned int		mtu;
1885 	unsigned int		min_mtu;
1886 	unsigned int		max_mtu;
1887 	unsigned short		type;
1888 	unsigned short		hard_header_len;
1889 	unsigned char		min_header_len;
1890 
1891 	unsigned short		needed_headroom;
1892 	unsigned short		needed_tailroom;
1893 
1894 	/* Interface address info. */
1895 	unsigned char		perm_addr[MAX_ADDR_LEN];
1896 	unsigned char		addr_assign_type;
1897 	unsigned char		addr_len;
1898 	unsigned char		upper_level;
1899 	unsigned char		lower_level;
1900 	unsigned short		neigh_priv_len;
1901 	unsigned short          dev_id;
1902 	unsigned short          dev_port;
1903 	spinlock_t		addr_list_lock;
1904 	unsigned char		name_assign_type;
1905 	bool			uc_promisc;
1906 	struct netdev_hw_addr_list	uc;
1907 	struct netdev_hw_addr_list	mc;
1908 	struct netdev_hw_addr_list	dev_addrs;
1909 
1910 #ifdef CONFIG_SYSFS
1911 	struct kset		*queues_kset;
1912 #endif
1913 	unsigned int		promiscuity;
1914 	unsigned int		allmulti;
1915 
1916 
1917 	/* Protocol-specific pointers */
1918 
1919 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1920 	struct vlan_info __rcu	*vlan_info;
1921 #endif
1922 #if IS_ENABLED(CONFIG_NET_DSA)
1923 	struct dsa_port		*dsa_ptr;
1924 #endif
1925 #if IS_ENABLED(CONFIG_TIPC)
1926 	struct tipc_bearer __rcu *tipc_ptr;
1927 #endif
1928 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1929 	void 			*atalk_ptr;
1930 #endif
1931 	struct in_device __rcu	*ip_ptr;
1932 #if IS_ENABLED(CONFIG_DECNET)
1933 	struct dn_dev __rcu     *dn_ptr;
1934 #endif
1935 	struct inet6_dev __rcu	*ip6_ptr;
1936 #if IS_ENABLED(CONFIG_AX25)
1937 	void			*ax25_ptr;
1938 #endif
1939 	struct wireless_dev	*ieee80211_ptr;
1940 	struct wpan_dev		*ieee802154_ptr;
1941 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1942 	struct mpls_dev __rcu	*mpls_ptr;
1943 #endif
1944 
1945 /*
1946  * Cache lines mostly used on receive path (including eth_type_trans())
1947  */
1948 	/* Interface address info used in eth_type_trans() */
1949 	unsigned char		*dev_addr;
1950 
1951 	struct netdev_rx_queue	*_rx;
1952 	unsigned int		num_rx_queues;
1953 	unsigned int		real_num_rx_queues;
1954 
1955 	struct bpf_prog __rcu	*xdp_prog;
1956 	unsigned long		gro_flush_timeout;
1957 	rx_handler_func_t __rcu	*rx_handler;
1958 	void __rcu		*rx_handler_data;
1959 
1960 #ifdef CONFIG_NET_CLS_ACT
1961 	struct mini_Qdisc __rcu	*miniq_ingress;
1962 #endif
1963 	struct netdev_queue __rcu *ingress_queue;
1964 #ifdef CONFIG_NETFILTER_INGRESS
1965 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1966 #endif
1967 
1968 	unsigned char		broadcast[MAX_ADDR_LEN];
1969 #ifdef CONFIG_RFS_ACCEL
1970 	struct cpu_rmap		*rx_cpu_rmap;
1971 #endif
1972 	struct hlist_node	index_hlist;
1973 
1974 /*
1975  * Cache lines mostly used on transmit path
1976  */
1977 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1978 	unsigned int		num_tx_queues;
1979 	unsigned int		real_num_tx_queues;
1980 	struct Qdisc		*qdisc;
1981 #ifdef CONFIG_NET_SCHED
1982 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1983 #endif
1984 	unsigned int		tx_queue_len;
1985 	spinlock_t		tx_global_lock;
1986 	int			watchdog_timeo;
1987 
1988 #ifdef CONFIG_XPS
1989 	struct xps_dev_maps __rcu *xps_cpus_map;
1990 	struct xps_dev_maps __rcu *xps_rxqs_map;
1991 #endif
1992 #ifdef CONFIG_NET_CLS_ACT
1993 	struct mini_Qdisc __rcu	*miniq_egress;
1994 #endif
1995 
1996 	/* These may be needed for future network-power-down code. */
1997 	struct timer_list	watchdog_timer;
1998 
1999 	int __percpu		*pcpu_refcnt;
2000 	struct list_head	todo_list;
2001 
2002 	struct list_head	link_watch_list;
2003 
2004 	enum { NETREG_UNINITIALIZED=0,
2005 	       NETREG_REGISTERED,	/* completed register_netdevice */
2006 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2007 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2008 	       NETREG_RELEASED,		/* called free_netdev */
2009 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2010 	} reg_state:8;
2011 
2012 	bool dismantle;
2013 
2014 	enum {
2015 		RTNL_LINK_INITIALIZED,
2016 		RTNL_LINK_INITIALIZING,
2017 	} rtnl_link_state:16;
2018 
2019 	bool needs_free_netdev;
2020 	void (*priv_destructor)(struct net_device *dev);
2021 
2022 #ifdef CONFIG_NETPOLL
2023 	struct netpoll_info __rcu	*npinfo;
2024 #endif
2025 
2026 	possible_net_t			nd_net;
2027 
2028 	/* mid-layer private */
2029 	union {
2030 		void					*ml_priv;
2031 		struct pcpu_lstats __percpu		*lstats;
2032 		struct pcpu_sw_netstats __percpu	*tstats;
2033 		struct pcpu_dstats __percpu		*dstats;
2034 	};
2035 
2036 #if IS_ENABLED(CONFIG_GARP)
2037 	struct garp_port __rcu	*garp_port;
2038 #endif
2039 #if IS_ENABLED(CONFIG_MRP)
2040 	struct mrp_port __rcu	*mrp_port;
2041 #endif
2042 
2043 	struct device		dev;
2044 	const struct attribute_group *sysfs_groups[4];
2045 	const struct attribute_group *sysfs_rx_queue_group;
2046 
2047 	const struct rtnl_link_ops *rtnl_link_ops;
2048 
2049 	/* for setting kernel sock attribute on TCP connection setup */
2050 #define GSO_MAX_SIZE		65536
2051 	unsigned int		gso_max_size;
2052 #define GSO_MAX_SEGS		65535
2053 	u16			gso_max_segs;
2054 
2055 #ifdef CONFIG_DCB
2056 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2057 #endif
2058 	s16			num_tc;
2059 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2060 	u8			prio_tc_map[TC_BITMASK + 1];
2061 
2062 #if IS_ENABLED(CONFIG_FCOE)
2063 	unsigned int		fcoe_ddp_xid;
2064 #endif
2065 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2066 	struct netprio_map __rcu *priomap;
2067 #endif
2068 	struct phy_device	*phydev;
2069 	struct sfp_bus		*sfp_bus;
2070 	struct lock_class_key	qdisc_tx_busylock_key;
2071 	struct lock_class_key	qdisc_running_key;
2072 	struct lock_class_key	qdisc_xmit_lock_key;
2073 	struct lock_class_key	addr_list_lock_key;
2074 	bool			proto_down;
2075 	unsigned		wol_enabled:1;
2076 };
2077 #define to_net_dev(d) container_of(d, struct net_device, dev)
2078 
2079 static inline bool netif_elide_gro(const struct net_device *dev)
2080 {
2081 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2082 		return true;
2083 	return false;
2084 }
2085 
2086 #define	NETDEV_ALIGN		32
2087 
2088 static inline
2089 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2090 {
2091 	return dev->prio_tc_map[prio & TC_BITMASK];
2092 }
2093 
2094 static inline
2095 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2096 {
2097 	if (tc >= dev->num_tc)
2098 		return -EINVAL;
2099 
2100 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2101 	return 0;
2102 }
2103 
2104 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2105 void netdev_reset_tc(struct net_device *dev);
2106 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2107 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2108 
2109 static inline
2110 int netdev_get_num_tc(struct net_device *dev)
2111 {
2112 	return dev->num_tc;
2113 }
2114 
2115 void netdev_unbind_sb_channel(struct net_device *dev,
2116 			      struct net_device *sb_dev);
2117 int netdev_bind_sb_channel_queue(struct net_device *dev,
2118 				 struct net_device *sb_dev,
2119 				 u8 tc, u16 count, u16 offset);
2120 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2121 static inline int netdev_get_sb_channel(struct net_device *dev)
2122 {
2123 	return max_t(int, -dev->num_tc, 0);
2124 }
2125 
2126 static inline
2127 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2128 					 unsigned int index)
2129 {
2130 	return &dev->_tx[index];
2131 }
2132 
2133 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2134 						    const struct sk_buff *skb)
2135 {
2136 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2137 }
2138 
2139 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2140 					    void (*f)(struct net_device *,
2141 						      struct netdev_queue *,
2142 						      void *),
2143 					    void *arg)
2144 {
2145 	unsigned int i;
2146 
2147 	for (i = 0; i < dev->num_tx_queues; i++)
2148 		f(dev, &dev->_tx[i], arg);
2149 }
2150 
2151 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2152 		     struct net_device *sb_dev);
2153 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2154 					 struct sk_buff *skb,
2155 					 struct net_device *sb_dev);
2156 
2157 /* returns the headroom that the master device needs to take in account
2158  * when forwarding to this dev
2159  */
2160 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2161 {
2162 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2163 }
2164 
2165 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2166 {
2167 	if (dev->netdev_ops->ndo_set_rx_headroom)
2168 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2169 }
2170 
2171 /* set the device rx headroom to the dev's default */
2172 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2173 {
2174 	netdev_set_rx_headroom(dev, -1);
2175 }
2176 
2177 /*
2178  * Net namespace inlines
2179  */
2180 static inline
2181 struct net *dev_net(const struct net_device *dev)
2182 {
2183 	return read_pnet(&dev->nd_net);
2184 }
2185 
2186 static inline
2187 void dev_net_set(struct net_device *dev, struct net *net)
2188 {
2189 	write_pnet(&dev->nd_net, net);
2190 }
2191 
2192 /**
2193  *	netdev_priv - access network device private data
2194  *	@dev: network device
2195  *
2196  * Get network device private data
2197  */
2198 static inline void *netdev_priv(const struct net_device *dev)
2199 {
2200 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2201 }
2202 
2203 /* Set the sysfs physical device reference for the network logical device
2204  * if set prior to registration will cause a symlink during initialization.
2205  */
2206 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2207 
2208 /* Set the sysfs device type for the network logical device to allow
2209  * fine-grained identification of different network device types. For
2210  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2211  */
2212 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2213 
2214 /* Default NAPI poll() weight
2215  * Device drivers are strongly advised to not use bigger value
2216  */
2217 #define NAPI_POLL_WEIGHT 64
2218 
2219 /**
2220  *	netif_napi_add - initialize a NAPI context
2221  *	@dev:  network device
2222  *	@napi: NAPI context
2223  *	@poll: polling function
2224  *	@weight: default weight
2225  *
2226  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2227  * *any* of the other NAPI-related functions.
2228  */
2229 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2230 		    int (*poll)(struct napi_struct *, int), int weight);
2231 
2232 /**
2233  *	netif_tx_napi_add - initialize a NAPI context
2234  *	@dev:  network device
2235  *	@napi: NAPI context
2236  *	@poll: polling function
2237  *	@weight: default weight
2238  *
2239  * This variant of netif_napi_add() should be used from drivers using NAPI
2240  * to exclusively poll a TX queue.
2241  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2242  */
2243 static inline void netif_tx_napi_add(struct net_device *dev,
2244 				     struct napi_struct *napi,
2245 				     int (*poll)(struct napi_struct *, int),
2246 				     int weight)
2247 {
2248 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2249 	netif_napi_add(dev, napi, poll, weight);
2250 }
2251 
2252 /**
2253  *  netif_napi_del - remove a NAPI context
2254  *  @napi: NAPI context
2255  *
2256  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2257  */
2258 void netif_napi_del(struct napi_struct *napi);
2259 
2260 struct napi_gro_cb {
2261 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2262 	void	*frag0;
2263 
2264 	/* Length of frag0. */
2265 	unsigned int frag0_len;
2266 
2267 	/* This indicates where we are processing relative to skb->data. */
2268 	int	data_offset;
2269 
2270 	/* This is non-zero if the packet cannot be merged with the new skb. */
2271 	u16	flush;
2272 
2273 	/* Save the IP ID here and check when we get to the transport layer */
2274 	u16	flush_id;
2275 
2276 	/* Number of segments aggregated. */
2277 	u16	count;
2278 
2279 	/* Start offset for remote checksum offload */
2280 	u16	gro_remcsum_start;
2281 
2282 	/* jiffies when first packet was created/queued */
2283 	unsigned long age;
2284 
2285 	/* Used in ipv6_gro_receive() and foo-over-udp */
2286 	u16	proto;
2287 
2288 	/* This is non-zero if the packet may be of the same flow. */
2289 	u8	same_flow:1;
2290 
2291 	/* Used in tunnel GRO receive */
2292 	u8	encap_mark:1;
2293 
2294 	/* GRO checksum is valid */
2295 	u8	csum_valid:1;
2296 
2297 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2298 	u8	csum_cnt:3;
2299 
2300 	/* Free the skb? */
2301 	u8	free:2;
2302 #define NAPI_GRO_FREE		  1
2303 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2304 
2305 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2306 	u8	is_ipv6:1;
2307 
2308 	/* Used in GRE, set in fou/gue_gro_receive */
2309 	u8	is_fou:1;
2310 
2311 	/* Used to determine if flush_id can be ignored */
2312 	u8	is_atomic:1;
2313 
2314 	/* Number of gro_receive callbacks this packet already went through */
2315 	u8 recursion_counter:4;
2316 
2317 	/* 1 bit hole */
2318 
2319 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2320 	__wsum	csum;
2321 
2322 	/* used in skb_gro_receive() slow path */
2323 	struct sk_buff *last;
2324 };
2325 
2326 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2327 
2328 #define GRO_RECURSION_LIMIT 15
2329 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2330 {
2331 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2332 }
2333 
2334 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2335 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2336 					       struct list_head *head,
2337 					       struct sk_buff *skb)
2338 {
2339 	if (unlikely(gro_recursion_inc_test(skb))) {
2340 		NAPI_GRO_CB(skb)->flush |= 1;
2341 		return NULL;
2342 	}
2343 
2344 	return cb(head, skb);
2345 }
2346 
2347 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2348 					    struct sk_buff *);
2349 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2350 						  struct sock *sk,
2351 						  struct list_head *head,
2352 						  struct sk_buff *skb)
2353 {
2354 	if (unlikely(gro_recursion_inc_test(skb))) {
2355 		NAPI_GRO_CB(skb)->flush |= 1;
2356 		return NULL;
2357 	}
2358 
2359 	return cb(sk, head, skb);
2360 }
2361 
2362 struct packet_type {
2363 	__be16			type;	/* This is really htons(ether_type). */
2364 	bool			ignore_outgoing;
2365 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2366 	int			(*func) (struct sk_buff *,
2367 					 struct net_device *,
2368 					 struct packet_type *,
2369 					 struct net_device *);
2370 	void			(*list_func) (struct list_head *,
2371 					      struct packet_type *,
2372 					      struct net_device *);
2373 	bool			(*id_match)(struct packet_type *ptype,
2374 					    struct sock *sk);
2375 	void			*af_packet_priv;
2376 	struct list_head	list;
2377 };
2378 
2379 struct offload_callbacks {
2380 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2381 						netdev_features_t features);
2382 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2383 						struct sk_buff *skb);
2384 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2385 };
2386 
2387 struct packet_offload {
2388 	__be16			 type;	/* This is really htons(ether_type). */
2389 	u16			 priority;
2390 	struct offload_callbacks callbacks;
2391 	struct list_head	 list;
2392 };
2393 
2394 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2395 struct pcpu_sw_netstats {
2396 	u64     rx_packets;
2397 	u64     rx_bytes;
2398 	u64     tx_packets;
2399 	u64     tx_bytes;
2400 	struct u64_stats_sync   syncp;
2401 } __aligned(4 * sizeof(u64));
2402 
2403 struct pcpu_lstats {
2404 	u64_stats_t packets;
2405 	u64_stats_t bytes;
2406 	struct u64_stats_sync syncp;
2407 } __aligned(2 * sizeof(u64));
2408 
2409 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2410 
2411 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2412 {
2413 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2414 
2415 	u64_stats_update_begin(&lstats->syncp);
2416 	u64_stats_add(&lstats->bytes, len);
2417 	u64_stats_inc(&lstats->packets);
2418 	u64_stats_update_end(&lstats->syncp);
2419 }
2420 
2421 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2422 ({									\
2423 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2424 	if (pcpu_stats)	{						\
2425 		int __cpu;						\
2426 		for_each_possible_cpu(__cpu) {				\
2427 			typeof(type) *stat;				\
2428 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2429 			u64_stats_init(&stat->syncp);			\
2430 		}							\
2431 	}								\
2432 	pcpu_stats;							\
2433 })
2434 
2435 #define netdev_alloc_pcpu_stats(type)					\
2436 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2437 
2438 enum netdev_lag_tx_type {
2439 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2440 	NETDEV_LAG_TX_TYPE_RANDOM,
2441 	NETDEV_LAG_TX_TYPE_BROADCAST,
2442 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2443 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2444 	NETDEV_LAG_TX_TYPE_HASH,
2445 };
2446 
2447 enum netdev_lag_hash {
2448 	NETDEV_LAG_HASH_NONE,
2449 	NETDEV_LAG_HASH_L2,
2450 	NETDEV_LAG_HASH_L34,
2451 	NETDEV_LAG_HASH_L23,
2452 	NETDEV_LAG_HASH_E23,
2453 	NETDEV_LAG_HASH_E34,
2454 	NETDEV_LAG_HASH_UNKNOWN,
2455 };
2456 
2457 struct netdev_lag_upper_info {
2458 	enum netdev_lag_tx_type tx_type;
2459 	enum netdev_lag_hash hash_type;
2460 };
2461 
2462 struct netdev_lag_lower_state_info {
2463 	u8 link_up : 1,
2464 	   tx_enabled : 1;
2465 };
2466 
2467 #include <linux/notifier.h>
2468 
2469 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2470  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2471  * adding new types.
2472  */
2473 enum netdev_cmd {
2474 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2475 	NETDEV_DOWN,
2476 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2477 				   detected a hardware crash and restarted
2478 				   - we can use this eg to kick tcp sessions
2479 				   once done */
2480 	NETDEV_CHANGE,		/* Notify device state change */
2481 	NETDEV_REGISTER,
2482 	NETDEV_UNREGISTER,
2483 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2484 	NETDEV_CHANGEADDR,	/* notify after the address change */
2485 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2486 	NETDEV_GOING_DOWN,
2487 	NETDEV_CHANGENAME,
2488 	NETDEV_FEAT_CHANGE,
2489 	NETDEV_BONDING_FAILOVER,
2490 	NETDEV_PRE_UP,
2491 	NETDEV_PRE_TYPE_CHANGE,
2492 	NETDEV_POST_TYPE_CHANGE,
2493 	NETDEV_POST_INIT,
2494 	NETDEV_RELEASE,
2495 	NETDEV_NOTIFY_PEERS,
2496 	NETDEV_JOIN,
2497 	NETDEV_CHANGEUPPER,
2498 	NETDEV_RESEND_IGMP,
2499 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2500 	NETDEV_CHANGEINFODATA,
2501 	NETDEV_BONDING_INFO,
2502 	NETDEV_PRECHANGEUPPER,
2503 	NETDEV_CHANGELOWERSTATE,
2504 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2505 	NETDEV_UDP_TUNNEL_DROP_INFO,
2506 	NETDEV_CHANGE_TX_QUEUE_LEN,
2507 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2508 	NETDEV_CVLAN_FILTER_DROP_INFO,
2509 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2510 	NETDEV_SVLAN_FILTER_DROP_INFO,
2511 };
2512 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2513 
2514 int register_netdevice_notifier(struct notifier_block *nb);
2515 int unregister_netdevice_notifier(struct notifier_block *nb);
2516 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2517 int unregister_netdevice_notifier_net(struct net *net,
2518 				      struct notifier_block *nb);
2519 
2520 struct netdev_notifier_info {
2521 	struct net_device	*dev;
2522 	struct netlink_ext_ack	*extack;
2523 };
2524 
2525 struct netdev_notifier_info_ext {
2526 	struct netdev_notifier_info info; /* must be first */
2527 	union {
2528 		u32 mtu;
2529 	} ext;
2530 };
2531 
2532 struct netdev_notifier_change_info {
2533 	struct netdev_notifier_info info; /* must be first */
2534 	unsigned int flags_changed;
2535 };
2536 
2537 struct netdev_notifier_changeupper_info {
2538 	struct netdev_notifier_info info; /* must be first */
2539 	struct net_device *upper_dev; /* new upper dev */
2540 	bool master; /* is upper dev master */
2541 	bool linking; /* is the notification for link or unlink */
2542 	void *upper_info; /* upper dev info */
2543 };
2544 
2545 struct netdev_notifier_changelowerstate_info {
2546 	struct netdev_notifier_info info; /* must be first */
2547 	void *lower_state_info; /* is lower dev state */
2548 };
2549 
2550 struct netdev_notifier_pre_changeaddr_info {
2551 	struct netdev_notifier_info info; /* must be first */
2552 	const unsigned char *dev_addr;
2553 };
2554 
2555 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2556 					     struct net_device *dev)
2557 {
2558 	info->dev = dev;
2559 	info->extack = NULL;
2560 }
2561 
2562 static inline struct net_device *
2563 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2564 {
2565 	return info->dev;
2566 }
2567 
2568 static inline struct netlink_ext_ack *
2569 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2570 {
2571 	return info->extack;
2572 }
2573 
2574 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2575 
2576 
2577 extern rwlock_t				dev_base_lock;		/* Device list lock */
2578 
2579 #define for_each_netdev(net, d)		\
2580 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2581 #define for_each_netdev_reverse(net, d)	\
2582 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2583 #define for_each_netdev_rcu(net, d)		\
2584 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2585 #define for_each_netdev_safe(net, d, n)	\
2586 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2587 #define for_each_netdev_continue(net, d)		\
2588 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2589 #define for_each_netdev_continue_reverse(net, d)		\
2590 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2591 						     dev_list)
2592 #define for_each_netdev_continue_rcu(net, d)		\
2593 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2594 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2595 		for_each_netdev_rcu(&init_net, slave)	\
2596 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2597 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2598 
2599 static inline struct net_device *next_net_device(struct net_device *dev)
2600 {
2601 	struct list_head *lh;
2602 	struct net *net;
2603 
2604 	net = dev_net(dev);
2605 	lh = dev->dev_list.next;
2606 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2607 }
2608 
2609 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2610 {
2611 	struct list_head *lh;
2612 	struct net *net;
2613 
2614 	net = dev_net(dev);
2615 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2616 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2617 }
2618 
2619 static inline struct net_device *first_net_device(struct net *net)
2620 {
2621 	return list_empty(&net->dev_base_head) ? NULL :
2622 		net_device_entry(net->dev_base_head.next);
2623 }
2624 
2625 static inline struct net_device *first_net_device_rcu(struct net *net)
2626 {
2627 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2628 
2629 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2630 }
2631 
2632 int netdev_boot_setup_check(struct net_device *dev);
2633 unsigned long netdev_boot_base(const char *prefix, int unit);
2634 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2635 				       const char *hwaddr);
2636 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2637 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2638 void dev_add_pack(struct packet_type *pt);
2639 void dev_remove_pack(struct packet_type *pt);
2640 void __dev_remove_pack(struct packet_type *pt);
2641 void dev_add_offload(struct packet_offload *po);
2642 void dev_remove_offload(struct packet_offload *po);
2643 
2644 int dev_get_iflink(const struct net_device *dev);
2645 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2646 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2647 				      unsigned short mask);
2648 struct net_device *dev_get_by_name(struct net *net, const char *name);
2649 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2650 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2651 int dev_alloc_name(struct net_device *dev, const char *name);
2652 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2653 void dev_close(struct net_device *dev);
2654 void dev_close_many(struct list_head *head, bool unlink);
2655 void dev_disable_lro(struct net_device *dev);
2656 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2657 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2658 		     struct net_device *sb_dev);
2659 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2660 		       struct net_device *sb_dev);
2661 int dev_queue_xmit(struct sk_buff *skb);
2662 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2663 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2664 int register_netdevice(struct net_device *dev);
2665 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2666 void unregister_netdevice_many(struct list_head *head);
2667 static inline void unregister_netdevice(struct net_device *dev)
2668 {
2669 	unregister_netdevice_queue(dev, NULL);
2670 }
2671 
2672 int netdev_refcnt_read(const struct net_device *dev);
2673 void free_netdev(struct net_device *dev);
2674 void netdev_freemem(struct net_device *dev);
2675 void synchronize_net(void);
2676 int init_dummy_netdev(struct net_device *dev);
2677 
2678 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2679 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2680 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2681 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2682 int netdev_get_name(struct net *net, char *name, int ifindex);
2683 int dev_restart(struct net_device *dev);
2684 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2685 
2686 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2687 {
2688 	return NAPI_GRO_CB(skb)->data_offset;
2689 }
2690 
2691 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2692 {
2693 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2694 }
2695 
2696 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2697 {
2698 	NAPI_GRO_CB(skb)->data_offset += len;
2699 }
2700 
2701 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2702 					unsigned int offset)
2703 {
2704 	return NAPI_GRO_CB(skb)->frag0 + offset;
2705 }
2706 
2707 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2708 {
2709 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2710 }
2711 
2712 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2713 {
2714 	NAPI_GRO_CB(skb)->frag0 = NULL;
2715 	NAPI_GRO_CB(skb)->frag0_len = 0;
2716 }
2717 
2718 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2719 					unsigned int offset)
2720 {
2721 	if (!pskb_may_pull(skb, hlen))
2722 		return NULL;
2723 
2724 	skb_gro_frag0_invalidate(skb);
2725 	return skb->data + offset;
2726 }
2727 
2728 static inline void *skb_gro_network_header(struct sk_buff *skb)
2729 {
2730 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2731 	       skb_network_offset(skb);
2732 }
2733 
2734 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2735 					const void *start, unsigned int len)
2736 {
2737 	if (NAPI_GRO_CB(skb)->csum_valid)
2738 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2739 						  csum_partial(start, len, 0));
2740 }
2741 
2742 /* GRO checksum functions. These are logical equivalents of the normal
2743  * checksum functions (in skbuff.h) except that they operate on the GRO
2744  * offsets and fields in sk_buff.
2745  */
2746 
2747 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2748 
2749 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2750 {
2751 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2752 }
2753 
2754 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2755 						      bool zero_okay,
2756 						      __sum16 check)
2757 {
2758 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2759 		skb_checksum_start_offset(skb) <
2760 		 skb_gro_offset(skb)) &&
2761 		!skb_at_gro_remcsum_start(skb) &&
2762 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2763 		(!zero_okay || check));
2764 }
2765 
2766 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2767 							   __wsum psum)
2768 {
2769 	if (NAPI_GRO_CB(skb)->csum_valid &&
2770 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2771 		return 0;
2772 
2773 	NAPI_GRO_CB(skb)->csum = psum;
2774 
2775 	return __skb_gro_checksum_complete(skb);
2776 }
2777 
2778 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2779 {
2780 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2781 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2782 		NAPI_GRO_CB(skb)->csum_cnt--;
2783 	} else {
2784 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2785 		 * verified a new top level checksum or an encapsulated one
2786 		 * during GRO. This saves work if we fallback to normal path.
2787 		 */
2788 		__skb_incr_checksum_unnecessary(skb);
2789 	}
2790 }
2791 
2792 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2793 				    compute_pseudo)			\
2794 ({									\
2795 	__sum16 __ret = 0;						\
2796 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2797 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2798 				compute_pseudo(skb, proto));		\
2799 	if (!__ret)							\
2800 		skb_gro_incr_csum_unnecessary(skb);			\
2801 	__ret;								\
2802 })
2803 
2804 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2805 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2806 
2807 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2808 					     compute_pseudo)		\
2809 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2810 
2811 #define skb_gro_checksum_simple_validate(skb)				\
2812 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2813 
2814 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2815 {
2816 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2817 		!NAPI_GRO_CB(skb)->csum_valid);
2818 }
2819 
2820 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2821 					      __sum16 check, __wsum pseudo)
2822 {
2823 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2824 	NAPI_GRO_CB(skb)->csum_valid = 1;
2825 }
2826 
2827 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2828 do {									\
2829 	if (__skb_gro_checksum_convert_check(skb))			\
2830 		__skb_gro_checksum_convert(skb, check,			\
2831 					   compute_pseudo(skb, proto));	\
2832 } while (0)
2833 
2834 struct gro_remcsum {
2835 	int offset;
2836 	__wsum delta;
2837 };
2838 
2839 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2840 {
2841 	grc->offset = 0;
2842 	grc->delta = 0;
2843 }
2844 
2845 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2846 					    unsigned int off, size_t hdrlen,
2847 					    int start, int offset,
2848 					    struct gro_remcsum *grc,
2849 					    bool nopartial)
2850 {
2851 	__wsum delta;
2852 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2853 
2854 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2855 
2856 	if (!nopartial) {
2857 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2858 		return ptr;
2859 	}
2860 
2861 	ptr = skb_gro_header_fast(skb, off);
2862 	if (skb_gro_header_hard(skb, off + plen)) {
2863 		ptr = skb_gro_header_slow(skb, off + plen, off);
2864 		if (!ptr)
2865 			return NULL;
2866 	}
2867 
2868 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2869 			       start, offset);
2870 
2871 	/* Adjust skb->csum since we changed the packet */
2872 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2873 
2874 	grc->offset = off + hdrlen + offset;
2875 	grc->delta = delta;
2876 
2877 	return ptr;
2878 }
2879 
2880 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2881 					   struct gro_remcsum *grc)
2882 {
2883 	void *ptr;
2884 	size_t plen = grc->offset + sizeof(u16);
2885 
2886 	if (!grc->delta)
2887 		return;
2888 
2889 	ptr = skb_gro_header_fast(skb, grc->offset);
2890 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2891 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2892 		if (!ptr)
2893 			return;
2894 	}
2895 
2896 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2897 }
2898 
2899 #ifdef CONFIG_XFRM_OFFLOAD
2900 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2901 {
2902 	if (PTR_ERR(pp) != -EINPROGRESS)
2903 		NAPI_GRO_CB(skb)->flush |= flush;
2904 }
2905 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2906 					       struct sk_buff *pp,
2907 					       int flush,
2908 					       struct gro_remcsum *grc)
2909 {
2910 	if (PTR_ERR(pp) != -EINPROGRESS) {
2911 		NAPI_GRO_CB(skb)->flush |= flush;
2912 		skb_gro_remcsum_cleanup(skb, grc);
2913 		skb->remcsum_offload = 0;
2914 	}
2915 }
2916 #else
2917 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2918 {
2919 	NAPI_GRO_CB(skb)->flush |= flush;
2920 }
2921 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2922 					       struct sk_buff *pp,
2923 					       int flush,
2924 					       struct gro_remcsum *grc)
2925 {
2926 	NAPI_GRO_CB(skb)->flush |= flush;
2927 	skb_gro_remcsum_cleanup(skb, grc);
2928 	skb->remcsum_offload = 0;
2929 }
2930 #endif
2931 
2932 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2933 				  unsigned short type,
2934 				  const void *daddr, const void *saddr,
2935 				  unsigned int len)
2936 {
2937 	if (!dev->header_ops || !dev->header_ops->create)
2938 		return 0;
2939 
2940 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2941 }
2942 
2943 static inline int dev_parse_header(const struct sk_buff *skb,
2944 				   unsigned char *haddr)
2945 {
2946 	const struct net_device *dev = skb->dev;
2947 
2948 	if (!dev->header_ops || !dev->header_ops->parse)
2949 		return 0;
2950 	return dev->header_ops->parse(skb, haddr);
2951 }
2952 
2953 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2954 {
2955 	const struct net_device *dev = skb->dev;
2956 
2957 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2958 		return 0;
2959 	return dev->header_ops->parse_protocol(skb);
2960 }
2961 
2962 /* ll_header must have at least hard_header_len allocated */
2963 static inline bool dev_validate_header(const struct net_device *dev,
2964 				       char *ll_header, int len)
2965 {
2966 	if (likely(len >= dev->hard_header_len))
2967 		return true;
2968 	if (len < dev->min_header_len)
2969 		return false;
2970 
2971 	if (capable(CAP_SYS_RAWIO)) {
2972 		memset(ll_header + len, 0, dev->hard_header_len - len);
2973 		return true;
2974 	}
2975 
2976 	if (dev->header_ops && dev->header_ops->validate)
2977 		return dev->header_ops->validate(ll_header, len);
2978 
2979 	return false;
2980 }
2981 
2982 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2983 			   int len, int size);
2984 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2985 static inline int unregister_gifconf(unsigned int family)
2986 {
2987 	return register_gifconf(family, NULL);
2988 }
2989 
2990 #ifdef CONFIG_NET_FLOW_LIMIT
2991 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2992 struct sd_flow_limit {
2993 	u64			count;
2994 	unsigned int		num_buckets;
2995 	unsigned int		history_head;
2996 	u16			history[FLOW_LIMIT_HISTORY];
2997 	u8			buckets[];
2998 };
2999 
3000 extern int netdev_flow_limit_table_len;
3001 #endif /* CONFIG_NET_FLOW_LIMIT */
3002 
3003 /*
3004  * Incoming packets are placed on per-CPU queues
3005  */
3006 struct softnet_data {
3007 	struct list_head	poll_list;
3008 	struct sk_buff_head	process_queue;
3009 
3010 	/* stats */
3011 	unsigned int		processed;
3012 	unsigned int		time_squeeze;
3013 	unsigned int		received_rps;
3014 #ifdef CONFIG_RPS
3015 	struct softnet_data	*rps_ipi_list;
3016 #endif
3017 #ifdef CONFIG_NET_FLOW_LIMIT
3018 	struct sd_flow_limit __rcu *flow_limit;
3019 #endif
3020 	struct Qdisc		*output_queue;
3021 	struct Qdisc		**output_queue_tailp;
3022 	struct sk_buff		*completion_queue;
3023 #ifdef CONFIG_XFRM_OFFLOAD
3024 	struct sk_buff_head	xfrm_backlog;
3025 #endif
3026 	/* written and read only by owning cpu: */
3027 	struct {
3028 		u16 recursion;
3029 		u8  more;
3030 	} xmit;
3031 #ifdef CONFIG_RPS
3032 	/* input_queue_head should be written by cpu owning this struct,
3033 	 * and only read by other cpus. Worth using a cache line.
3034 	 */
3035 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3036 
3037 	/* Elements below can be accessed between CPUs for RPS/RFS */
3038 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3039 	struct softnet_data	*rps_ipi_next;
3040 	unsigned int		cpu;
3041 	unsigned int		input_queue_tail;
3042 #endif
3043 	unsigned int		dropped;
3044 	struct sk_buff_head	input_pkt_queue;
3045 	struct napi_struct	backlog;
3046 
3047 };
3048 
3049 static inline void input_queue_head_incr(struct softnet_data *sd)
3050 {
3051 #ifdef CONFIG_RPS
3052 	sd->input_queue_head++;
3053 #endif
3054 }
3055 
3056 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3057 					      unsigned int *qtail)
3058 {
3059 #ifdef CONFIG_RPS
3060 	*qtail = ++sd->input_queue_tail;
3061 #endif
3062 }
3063 
3064 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3065 
3066 static inline int dev_recursion_level(void)
3067 {
3068 	return this_cpu_read(softnet_data.xmit.recursion);
3069 }
3070 
3071 #define XMIT_RECURSION_LIMIT	10
3072 static inline bool dev_xmit_recursion(void)
3073 {
3074 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3075 			XMIT_RECURSION_LIMIT);
3076 }
3077 
3078 static inline void dev_xmit_recursion_inc(void)
3079 {
3080 	__this_cpu_inc(softnet_data.xmit.recursion);
3081 }
3082 
3083 static inline void dev_xmit_recursion_dec(void)
3084 {
3085 	__this_cpu_dec(softnet_data.xmit.recursion);
3086 }
3087 
3088 void __netif_schedule(struct Qdisc *q);
3089 void netif_schedule_queue(struct netdev_queue *txq);
3090 
3091 static inline void netif_tx_schedule_all(struct net_device *dev)
3092 {
3093 	unsigned int i;
3094 
3095 	for (i = 0; i < dev->num_tx_queues; i++)
3096 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3097 }
3098 
3099 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3100 {
3101 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3102 }
3103 
3104 /**
3105  *	netif_start_queue - allow transmit
3106  *	@dev: network device
3107  *
3108  *	Allow upper layers to call the device hard_start_xmit routine.
3109  */
3110 static inline void netif_start_queue(struct net_device *dev)
3111 {
3112 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3113 }
3114 
3115 static inline void netif_tx_start_all_queues(struct net_device *dev)
3116 {
3117 	unsigned int i;
3118 
3119 	for (i = 0; i < dev->num_tx_queues; i++) {
3120 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3121 		netif_tx_start_queue(txq);
3122 	}
3123 }
3124 
3125 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3126 
3127 /**
3128  *	netif_wake_queue - restart transmit
3129  *	@dev: network device
3130  *
3131  *	Allow upper layers to call the device hard_start_xmit routine.
3132  *	Used for flow control when transmit resources are available.
3133  */
3134 static inline void netif_wake_queue(struct net_device *dev)
3135 {
3136 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3137 }
3138 
3139 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3140 {
3141 	unsigned int i;
3142 
3143 	for (i = 0; i < dev->num_tx_queues; i++) {
3144 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3145 		netif_tx_wake_queue(txq);
3146 	}
3147 }
3148 
3149 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3150 {
3151 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3152 }
3153 
3154 /**
3155  *	netif_stop_queue - stop transmitted packets
3156  *	@dev: network device
3157  *
3158  *	Stop upper layers calling the device hard_start_xmit routine.
3159  *	Used for flow control when transmit resources are unavailable.
3160  */
3161 static inline void netif_stop_queue(struct net_device *dev)
3162 {
3163 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3164 }
3165 
3166 void netif_tx_stop_all_queues(struct net_device *dev);
3167 void netdev_update_lockdep_key(struct net_device *dev);
3168 
3169 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3170 {
3171 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3172 }
3173 
3174 /**
3175  *	netif_queue_stopped - test if transmit queue is flowblocked
3176  *	@dev: network device
3177  *
3178  *	Test if transmit queue on device is currently unable to send.
3179  */
3180 static inline bool netif_queue_stopped(const struct net_device *dev)
3181 {
3182 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3183 }
3184 
3185 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3186 {
3187 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3188 }
3189 
3190 static inline bool
3191 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3192 {
3193 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3194 }
3195 
3196 static inline bool
3197 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3198 {
3199 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3200 }
3201 
3202 /**
3203  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3204  *	@dev_queue: pointer to transmit queue
3205  *
3206  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3207  * to give appropriate hint to the CPU.
3208  */
3209 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3210 {
3211 #ifdef CONFIG_BQL
3212 	prefetchw(&dev_queue->dql.num_queued);
3213 #endif
3214 }
3215 
3216 /**
3217  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3218  *	@dev_queue: pointer to transmit queue
3219  *
3220  * BQL enabled drivers might use this helper in their TX completion path,
3221  * to give appropriate hint to the CPU.
3222  */
3223 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3224 {
3225 #ifdef CONFIG_BQL
3226 	prefetchw(&dev_queue->dql.limit);
3227 #endif
3228 }
3229 
3230 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3231 					unsigned int bytes)
3232 {
3233 #ifdef CONFIG_BQL
3234 	dql_queued(&dev_queue->dql, bytes);
3235 
3236 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3237 		return;
3238 
3239 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3240 
3241 	/*
3242 	 * The XOFF flag must be set before checking the dql_avail below,
3243 	 * because in netdev_tx_completed_queue we update the dql_completed
3244 	 * before checking the XOFF flag.
3245 	 */
3246 	smp_mb();
3247 
3248 	/* check again in case another CPU has just made room avail */
3249 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3250 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3251 #endif
3252 }
3253 
3254 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3255  * that they should not test BQL status themselves.
3256  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3257  * skb of a batch.
3258  * Returns true if the doorbell must be used to kick the NIC.
3259  */
3260 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3261 					  unsigned int bytes,
3262 					  bool xmit_more)
3263 {
3264 	if (xmit_more) {
3265 #ifdef CONFIG_BQL
3266 		dql_queued(&dev_queue->dql, bytes);
3267 #endif
3268 		return netif_tx_queue_stopped(dev_queue);
3269 	}
3270 	netdev_tx_sent_queue(dev_queue, bytes);
3271 	return true;
3272 }
3273 
3274 /**
3275  * 	netdev_sent_queue - report the number of bytes queued to hardware
3276  * 	@dev: network device
3277  * 	@bytes: number of bytes queued to the hardware device queue
3278  *
3279  * 	Report the number of bytes queued for sending/completion to the network
3280  * 	device hardware queue. @bytes should be a good approximation and should
3281  * 	exactly match netdev_completed_queue() @bytes
3282  */
3283 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3284 {
3285 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3286 }
3287 
3288 static inline bool __netdev_sent_queue(struct net_device *dev,
3289 				       unsigned int bytes,
3290 				       bool xmit_more)
3291 {
3292 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3293 				      xmit_more);
3294 }
3295 
3296 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3297 					     unsigned int pkts, unsigned int bytes)
3298 {
3299 #ifdef CONFIG_BQL
3300 	if (unlikely(!bytes))
3301 		return;
3302 
3303 	dql_completed(&dev_queue->dql, bytes);
3304 
3305 	/*
3306 	 * Without the memory barrier there is a small possiblity that
3307 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3308 	 * be stopped forever
3309 	 */
3310 	smp_mb();
3311 
3312 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3313 		return;
3314 
3315 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3316 		netif_schedule_queue(dev_queue);
3317 #endif
3318 }
3319 
3320 /**
3321  * 	netdev_completed_queue - report bytes and packets completed by device
3322  * 	@dev: network device
3323  * 	@pkts: actual number of packets sent over the medium
3324  * 	@bytes: actual number of bytes sent over the medium
3325  *
3326  * 	Report the number of bytes and packets transmitted by the network device
3327  * 	hardware queue over the physical medium, @bytes must exactly match the
3328  * 	@bytes amount passed to netdev_sent_queue()
3329  */
3330 static inline void netdev_completed_queue(struct net_device *dev,
3331 					  unsigned int pkts, unsigned int bytes)
3332 {
3333 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3334 }
3335 
3336 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3337 {
3338 #ifdef CONFIG_BQL
3339 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3340 	dql_reset(&q->dql);
3341 #endif
3342 }
3343 
3344 /**
3345  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3346  * 	@dev_queue: network device
3347  *
3348  * 	Reset the bytes and packet count of a network device and clear the
3349  * 	software flow control OFF bit for this network device
3350  */
3351 static inline void netdev_reset_queue(struct net_device *dev_queue)
3352 {
3353 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3354 }
3355 
3356 /**
3357  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3358  * 	@dev: network device
3359  * 	@queue_index: given tx queue index
3360  *
3361  * 	Returns 0 if given tx queue index >= number of device tx queues,
3362  * 	otherwise returns the originally passed tx queue index.
3363  */
3364 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3365 {
3366 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3367 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3368 				     dev->name, queue_index,
3369 				     dev->real_num_tx_queues);
3370 		return 0;
3371 	}
3372 
3373 	return queue_index;
3374 }
3375 
3376 /**
3377  *	netif_running - test if up
3378  *	@dev: network device
3379  *
3380  *	Test if the device has been brought up.
3381  */
3382 static inline bool netif_running(const struct net_device *dev)
3383 {
3384 	return test_bit(__LINK_STATE_START, &dev->state);
3385 }
3386 
3387 /*
3388  * Routines to manage the subqueues on a device.  We only need start,
3389  * stop, and a check if it's stopped.  All other device management is
3390  * done at the overall netdevice level.
3391  * Also test the device if we're multiqueue.
3392  */
3393 
3394 /**
3395  *	netif_start_subqueue - allow sending packets on subqueue
3396  *	@dev: network device
3397  *	@queue_index: sub queue index
3398  *
3399  * Start individual transmit queue of a device with multiple transmit queues.
3400  */
3401 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3402 {
3403 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3404 
3405 	netif_tx_start_queue(txq);
3406 }
3407 
3408 /**
3409  *	netif_stop_subqueue - stop sending packets on subqueue
3410  *	@dev: network device
3411  *	@queue_index: sub queue index
3412  *
3413  * Stop individual transmit queue of a device with multiple transmit queues.
3414  */
3415 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3416 {
3417 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3418 	netif_tx_stop_queue(txq);
3419 }
3420 
3421 /**
3422  *	netif_subqueue_stopped - test status of subqueue
3423  *	@dev: network device
3424  *	@queue_index: sub queue index
3425  *
3426  * Check individual transmit queue of a device with multiple transmit queues.
3427  */
3428 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3429 					    u16 queue_index)
3430 {
3431 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3432 
3433 	return netif_tx_queue_stopped(txq);
3434 }
3435 
3436 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3437 					  struct sk_buff *skb)
3438 {
3439 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3440 }
3441 
3442 /**
3443  *	netif_wake_subqueue - allow sending packets on subqueue
3444  *	@dev: network device
3445  *	@queue_index: sub queue index
3446  *
3447  * Resume individual transmit queue of a device with multiple transmit queues.
3448  */
3449 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3450 {
3451 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3452 
3453 	netif_tx_wake_queue(txq);
3454 }
3455 
3456 #ifdef CONFIG_XPS
3457 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3458 			u16 index);
3459 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3460 			  u16 index, bool is_rxqs_map);
3461 
3462 /**
3463  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3464  *	@j: CPU/Rx queue index
3465  *	@mask: bitmask of all cpus/rx queues
3466  *	@nr_bits: number of bits in the bitmask
3467  *
3468  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3469  */
3470 static inline bool netif_attr_test_mask(unsigned long j,
3471 					const unsigned long *mask,
3472 					unsigned int nr_bits)
3473 {
3474 	cpu_max_bits_warn(j, nr_bits);
3475 	return test_bit(j, mask);
3476 }
3477 
3478 /**
3479  *	netif_attr_test_online - Test for online CPU/Rx queue
3480  *	@j: CPU/Rx queue index
3481  *	@online_mask: bitmask for CPUs/Rx queues that are online
3482  *	@nr_bits: number of bits in the bitmask
3483  *
3484  * Returns true if a CPU/Rx queue is online.
3485  */
3486 static inline bool netif_attr_test_online(unsigned long j,
3487 					  const unsigned long *online_mask,
3488 					  unsigned int nr_bits)
3489 {
3490 	cpu_max_bits_warn(j, nr_bits);
3491 
3492 	if (online_mask)
3493 		return test_bit(j, online_mask);
3494 
3495 	return (j < nr_bits);
3496 }
3497 
3498 /**
3499  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3500  *	@n: CPU/Rx queue index
3501  *	@srcp: the cpumask/Rx queue mask pointer
3502  *	@nr_bits: number of bits in the bitmask
3503  *
3504  * Returns >= nr_bits if no further CPUs/Rx queues set.
3505  */
3506 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3507 					       unsigned int nr_bits)
3508 {
3509 	/* -1 is a legal arg here. */
3510 	if (n != -1)
3511 		cpu_max_bits_warn(n, nr_bits);
3512 
3513 	if (srcp)
3514 		return find_next_bit(srcp, nr_bits, n + 1);
3515 
3516 	return n + 1;
3517 }
3518 
3519 /**
3520  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3521  *	@n: CPU/Rx queue index
3522  *	@src1p: the first CPUs/Rx queues mask pointer
3523  *	@src2p: the second CPUs/Rx queues mask pointer
3524  *	@nr_bits: number of bits in the bitmask
3525  *
3526  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3527  */
3528 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3529 					  const unsigned long *src2p,
3530 					  unsigned int nr_bits)
3531 {
3532 	/* -1 is a legal arg here. */
3533 	if (n != -1)
3534 		cpu_max_bits_warn(n, nr_bits);
3535 
3536 	if (src1p && src2p)
3537 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3538 	else if (src1p)
3539 		return find_next_bit(src1p, nr_bits, n + 1);
3540 	else if (src2p)
3541 		return find_next_bit(src2p, nr_bits, n + 1);
3542 
3543 	return n + 1;
3544 }
3545 #else
3546 static inline int netif_set_xps_queue(struct net_device *dev,
3547 				      const struct cpumask *mask,
3548 				      u16 index)
3549 {
3550 	return 0;
3551 }
3552 
3553 static inline int __netif_set_xps_queue(struct net_device *dev,
3554 					const unsigned long *mask,
3555 					u16 index, bool is_rxqs_map)
3556 {
3557 	return 0;
3558 }
3559 #endif
3560 
3561 /**
3562  *	netif_is_multiqueue - test if device has multiple transmit queues
3563  *	@dev: network device
3564  *
3565  * Check if device has multiple transmit queues
3566  */
3567 static inline bool netif_is_multiqueue(const struct net_device *dev)
3568 {
3569 	return dev->num_tx_queues > 1;
3570 }
3571 
3572 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3573 
3574 #ifdef CONFIG_SYSFS
3575 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3576 #else
3577 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3578 						unsigned int rxqs)
3579 {
3580 	dev->real_num_rx_queues = rxqs;
3581 	return 0;
3582 }
3583 #endif
3584 
3585 static inline struct netdev_rx_queue *
3586 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3587 {
3588 	return dev->_rx + rxq;
3589 }
3590 
3591 #ifdef CONFIG_SYSFS
3592 static inline unsigned int get_netdev_rx_queue_index(
3593 		struct netdev_rx_queue *queue)
3594 {
3595 	struct net_device *dev = queue->dev;
3596 	int index = queue - dev->_rx;
3597 
3598 	BUG_ON(index >= dev->num_rx_queues);
3599 	return index;
3600 }
3601 #endif
3602 
3603 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3604 int netif_get_num_default_rss_queues(void);
3605 
3606 enum skb_free_reason {
3607 	SKB_REASON_CONSUMED,
3608 	SKB_REASON_DROPPED,
3609 };
3610 
3611 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3612 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3613 
3614 /*
3615  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3616  * interrupt context or with hardware interrupts being disabled.
3617  * (in_irq() || irqs_disabled())
3618  *
3619  * We provide four helpers that can be used in following contexts :
3620  *
3621  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3622  *  replacing kfree_skb(skb)
3623  *
3624  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3625  *  Typically used in place of consume_skb(skb) in TX completion path
3626  *
3627  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3628  *  replacing kfree_skb(skb)
3629  *
3630  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3631  *  and consumed a packet. Used in place of consume_skb(skb)
3632  */
3633 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3634 {
3635 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3636 }
3637 
3638 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3639 {
3640 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3641 }
3642 
3643 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3644 {
3645 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3646 }
3647 
3648 static inline void dev_consume_skb_any(struct sk_buff *skb)
3649 {
3650 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3651 }
3652 
3653 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3654 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3655 int netif_rx(struct sk_buff *skb);
3656 int netif_rx_ni(struct sk_buff *skb);
3657 int netif_receive_skb(struct sk_buff *skb);
3658 int netif_receive_skb_core(struct sk_buff *skb);
3659 void netif_receive_skb_list(struct list_head *head);
3660 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3661 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3662 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3663 gro_result_t napi_gro_frags(struct napi_struct *napi);
3664 struct packet_offload *gro_find_receive_by_type(__be16 type);
3665 struct packet_offload *gro_find_complete_by_type(__be16 type);
3666 
3667 static inline void napi_free_frags(struct napi_struct *napi)
3668 {
3669 	kfree_skb(napi->skb);
3670 	napi->skb = NULL;
3671 }
3672 
3673 bool netdev_is_rx_handler_busy(struct net_device *dev);
3674 int netdev_rx_handler_register(struct net_device *dev,
3675 			       rx_handler_func_t *rx_handler,
3676 			       void *rx_handler_data);
3677 void netdev_rx_handler_unregister(struct net_device *dev);
3678 
3679 bool dev_valid_name(const char *name);
3680 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3681 		bool *need_copyout);
3682 int dev_ifconf(struct net *net, struct ifconf *, int);
3683 int dev_ethtool(struct net *net, struct ifreq *);
3684 unsigned int dev_get_flags(const struct net_device *);
3685 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3686 		       struct netlink_ext_ack *extack);
3687 int dev_change_flags(struct net_device *dev, unsigned int flags,
3688 		     struct netlink_ext_ack *extack);
3689 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3690 			unsigned int gchanges);
3691 int dev_change_name(struct net_device *, const char *);
3692 int dev_set_alias(struct net_device *, const char *, size_t);
3693 int dev_get_alias(const struct net_device *, char *, size_t);
3694 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3695 int __dev_set_mtu(struct net_device *, int);
3696 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3697 		    struct netlink_ext_ack *extack);
3698 int dev_set_mtu(struct net_device *, int);
3699 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3700 void dev_set_group(struct net_device *, int);
3701 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3702 			      struct netlink_ext_ack *extack);
3703 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3704 			struct netlink_ext_ack *extack);
3705 int dev_change_carrier(struct net_device *, bool new_carrier);
3706 int dev_get_phys_port_id(struct net_device *dev,
3707 			 struct netdev_phys_item_id *ppid);
3708 int dev_get_phys_port_name(struct net_device *dev,
3709 			   char *name, size_t len);
3710 int dev_get_port_parent_id(struct net_device *dev,
3711 			   struct netdev_phys_item_id *ppid, bool recurse);
3712 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3713 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3714 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3715 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3716 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3717 				    struct netdev_queue *txq, int *ret);
3718 
3719 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3720 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3721 		      int fd, u32 flags);
3722 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3723 		    enum bpf_netdev_command cmd);
3724 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3725 
3726 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3727 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3728 bool is_skb_forwardable(const struct net_device *dev,
3729 			const struct sk_buff *skb);
3730 
3731 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3732 					       struct sk_buff *skb)
3733 {
3734 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3735 	    unlikely(!is_skb_forwardable(dev, skb))) {
3736 		atomic_long_inc(&dev->rx_dropped);
3737 		kfree_skb(skb);
3738 		return NET_RX_DROP;
3739 	}
3740 
3741 	skb_scrub_packet(skb, true);
3742 	skb->priority = 0;
3743 	return 0;
3744 }
3745 
3746 bool dev_nit_active(struct net_device *dev);
3747 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3748 
3749 extern int		netdev_budget;
3750 extern unsigned int	netdev_budget_usecs;
3751 
3752 /* Called by rtnetlink.c:rtnl_unlock() */
3753 void netdev_run_todo(void);
3754 
3755 /**
3756  *	dev_put - release reference to device
3757  *	@dev: network device
3758  *
3759  * Release reference to device to allow it to be freed.
3760  */
3761 static inline void dev_put(struct net_device *dev)
3762 {
3763 	this_cpu_dec(*dev->pcpu_refcnt);
3764 }
3765 
3766 /**
3767  *	dev_hold - get reference to device
3768  *	@dev: network device
3769  *
3770  * Hold reference to device to keep it from being freed.
3771  */
3772 static inline void dev_hold(struct net_device *dev)
3773 {
3774 	this_cpu_inc(*dev->pcpu_refcnt);
3775 }
3776 
3777 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3778  * and _off may be called from IRQ context, but it is caller
3779  * who is responsible for serialization of these calls.
3780  *
3781  * The name carrier is inappropriate, these functions should really be
3782  * called netif_lowerlayer_*() because they represent the state of any
3783  * kind of lower layer not just hardware media.
3784  */
3785 
3786 void linkwatch_init_dev(struct net_device *dev);
3787 void linkwatch_fire_event(struct net_device *dev);
3788 void linkwatch_forget_dev(struct net_device *dev);
3789 
3790 /**
3791  *	netif_carrier_ok - test if carrier present
3792  *	@dev: network device
3793  *
3794  * Check if carrier is present on device
3795  */
3796 static inline bool netif_carrier_ok(const struct net_device *dev)
3797 {
3798 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3799 }
3800 
3801 unsigned long dev_trans_start(struct net_device *dev);
3802 
3803 void __netdev_watchdog_up(struct net_device *dev);
3804 
3805 void netif_carrier_on(struct net_device *dev);
3806 
3807 void netif_carrier_off(struct net_device *dev);
3808 
3809 /**
3810  *	netif_dormant_on - mark device as dormant.
3811  *	@dev: network device
3812  *
3813  * Mark device as dormant (as per RFC2863).
3814  *
3815  * The dormant state indicates that the relevant interface is not
3816  * actually in a condition to pass packets (i.e., it is not 'up') but is
3817  * in a "pending" state, waiting for some external event.  For "on-
3818  * demand" interfaces, this new state identifies the situation where the
3819  * interface is waiting for events to place it in the up state.
3820  */
3821 static inline void netif_dormant_on(struct net_device *dev)
3822 {
3823 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3824 		linkwatch_fire_event(dev);
3825 }
3826 
3827 /**
3828  *	netif_dormant_off - set device as not dormant.
3829  *	@dev: network device
3830  *
3831  * Device is not in dormant state.
3832  */
3833 static inline void netif_dormant_off(struct net_device *dev)
3834 {
3835 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3836 		linkwatch_fire_event(dev);
3837 }
3838 
3839 /**
3840  *	netif_dormant - test if device is dormant
3841  *	@dev: network device
3842  *
3843  * Check if device is dormant.
3844  */
3845 static inline bool netif_dormant(const struct net_device *dev)
3846 {
3847 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3848 }
3849 
3850 
3851 /**
3852  *	netif_oper_up - test if device is operational
3853  *	@dev: network device
3854  *
3855  * Check if carrier is operational
3856  */
3857 static inline bool netif_oper_up(const struct net_device *dev)
3858 {
3859 	return (dev->operstate == IF_OPER_UP ||
3860 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3861 }
3862 
3863 /**
3864  *	netif_device_present - is device available or removed
3865  *	@dev: network device
3866  *
3867  * Check if device has not been removed from system.
3868  */
3869 static inline bool netif_device_present(struct net_device *dev)
3870 {
3871 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3872 }
3873 
3874 void netif_device_detach(struct net_device *dev);
3875 
3876 void netif_device_attach(struct net_device *dev);
3877 
3878 /*
3879  * Network interface message level settings
3880  */
3881 
3882 enum {
3883 	NETIF_MSG_DRV		= 0x0001,
3884 	NETIF_MSG_PROBE		= 0x0002,
3885 	NETIF_MSG_LINK		= 0x0004,
3886 	NETIF_MSG_TIMER		= 0x0008,
3887 	NETIF_MSG_IFDOWN	= 0x0010,
3888 	NETIF_MSG_IFUP		= 0x0020,
3889 	NETIF_MSG_RX_ERR	= 0x0040,
3890 	NETIF_MSG_TX_ERR	= 0x0080,
3891 	NETIF_MSG_TX_QUEUED	= 0x0100,
3892 	NETIF_MSG_INTR		= 0x0200,
3893 	NETIF_MSG_TX_DONE	= 0x0400,
3894 	NETIF_MSG_RX_STATUS	= 0x0800,
3895 	NETIF_MSG_PKTDATA	= 0x1000,
3896 	NETIF_MSG_HW		= 0x2000,
3897 	NETIF_MSG_WOL		= 0x4000,
3898 };
3899 
3900 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3901 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3902 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3903 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3904 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3905 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3906 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3907 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3908 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3909 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3910 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3911 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3912 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3913 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3914 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3915 
3916 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3917 {
3918 	/* use default */
3919 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3920 		return default_msg_enable_bits;
3921 	if (debug_value == 0)	/* no output */
3922 		return 0;
3923 	/* set low N bits */
3924 	return (1U << debug_value) - 1;
3925 }
3926 
3927 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3928 {
3929 	spin_lock(&txq->_xmit_lock);
3930 	txq->xmit_lock_owner = cpu;
3931 }
3932 
3933 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3934 {
3935 	__acquire(&txq->_xmit_lock);
3936 	return true;
3937 }
3938 
3939 static inline void __netif_tx_release(struct netdev_queue *txq)
3940 {
3941 	__release(&txq->_xmit_lock);
3942 }
3943 
3944 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3945 {
3946 	spin_lock_bh(&txq->_xmit_lock);
3947 	txq->xmit_lock_owner = smp_processor_id();
3948 }
3949 
3950 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3951 {
3952 	bool ok = spin_trylock(&txq->_xmit_lock);
3953 	if (likely(ok))
3954 		txq->xmit_lock_owner = smp_processor_id();
3955 	return ok;
3956 }
3957 
3958 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3959 {
3960 	txq->xmit_lock_owner = -1;
3961 	spin_unlock(&txq->_xmit_lock);
3962 }
3963 
3964 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3965 {
3966 	txq->xmit_lock_owner = -1;
3967 	spin_unlock_bh(&txq->_xmit_lock);
3968 }
3969 
3970 static inline void txq_trans_update(struct netdev_queue *txq)
3971 {
3972 	if (txq->xmit_lock_owner != -1)
3973 		txq->trans_start = jiffies;
3974 }
3975 
3976 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3977 static inline void netif_trans_update(struct net_device *dev)
3978 {
3979 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3980 
3981 	if (txq->trans_start != jiffies)
3982 		txq->trans_start = jiffies;
3983 }
3984 
3985 /**
3986  *	netif_tx_lock - grab network device transmit lock
3987  *	@dev: network device
3988  *
3989  * Get network device transmit lock
3990  */
3991 static inline void netif_tx_lock(struct net_device *dev)
3992 {
3993 	unsigned int i;
3994 	int cpu;
3995 
3996 	spin_lock(&dev->tx_global_lock);
3997 	cpu = smp_processor_id();
3998 	for (i = 0; i < dev->num_tx_queues; i++) {
3999 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4000 
4001 		/* We are the only thread of execution doing a
4002 		 * freeze, but we have to grab the _xmit_lock in
4003 		 * order to synchronize with threads which are in
4004 		 * the ->hard_start_xmit() handler and already
4005 		 * checked the frozen bit.
4006 		 */
4007 		__netif_tx_lock(txq, cpu);
4008 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4009 		__netif_tx_unlock(txq);
4010 	}
4011 }
4012 
4013 static inline void netif_tx_lock_bh(struct net_device *dev)
4014 {
4015 	local_bh_disable();
4016 	netif_tx_lock(dev);
4017 }
4018 
4019 static inline void netif_tx_unlock(struct net_device *dev)
4020 {
4021 	unsigned int i;
4022 
4023 	for (i = 0; i < dev->num_tx_queues; i++) {
4024 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4025 
4026 		/* No need to grab the _xmit_lock here.  If the
4027 		 * queue is not stopped for another reason, we
4028 		 * force a schedule.
4029 		 */
4030 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4031 		netif_schedule_queue(txq);
4032 	}
4033 	spin_unlock(&dev->tx_global_lock);
4034 }
4035 
4036 static inline void netif_tx_unlock_bh(struct net_device *dev)
4037 {
4038 	netif_tx_unlock(dev);
4039 	local_bh_enable();
4040 }
4041 
4042 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4043 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4044 		__netif_tx_lock(txq, cpu);		\
4045 	} else {					\
4046 		__netif_tx_acquire(txq);		\
4047 	}						\
4048 }
4049 
4050 #define HARD_TX_TRYLOCK(dev, txq)			\
4051 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4052 		__netif_tx_trylock(txq) :		\
4053 		__netif_tx_acquire(txq))
4054 
4055 #define HARD_TX_UNLOCK(dev, txq) {			\
4056 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4057 		__netif_tx_unlock(txq);			\
4058 	} else {					\
4059 		__netif_tx_release(txq);		\
4060 	}						\
4061 }
4062 
4063 static inline void netif_tx_disable(struct net_device *dev)
4064 {
4065 	unsigned int i;
4066 	int cpu;
4067 
4068 	local_bh_disable();
4069 	cpu = smp_processor_id();
4070 	for (i = 0; i < dev->num_tx_queues; i++) {
4071 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4072 
4073 		__netif_tx_lock(txq, cpu);
4074 		netif_tx_stop_queue(txq);
4075 		__netif_tx_unlock(txq);
4076 	}
4077 	local_bh_enable();
4078 }
4079 
4080 static inline void netif_addr_lock(struct net_device *dev)
4081 {
4082 	spin_lock(&dev->addr_list_lock);
4083 }
4084 
4085 static inline void netif_addr_lock_bh(struct net_device *dev)
4086 {
4087 	spin_lock_bh(&dev->addr_list_lock);
4088 }
4089 
4090 static inline void netif_addr_unlock(struct net_device *dev)
4091 {
4092 	spin_unlock(&dev->addr_list_lock);
4093 }
4094 
4095 static inline void netif_addr_unlock_bh(struct net_device *dev)
4096 {
4097 	spin_unlock_bh(&dev->addr_list_lock);
4098 }
4099 
4100 /*
4101  * dev_addrs walker. Should be used only for read access. Call with
4102  * rcu_read_lock held.
4103  */
4104 #define for_each_dev_addr(dev, ha) \
4105 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4106 
4107 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4108 
4109 void ether_setup(struct net_device *dev);
4110 
4111 /* Support for loadable net-drivers */
4112 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4113 				    unsigned char name_assign_type,
4114 				    void (*setup)(struct net_device *),
4115 				    unsigned int txqs, unsigned int rxqs);
4116 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4117 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4118 
4119 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4120 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4121 			 count)
4122 
4123 int register_netdev(struct net_device *dev);
4124 void unregister_netdev(struct net_device *dev);
4125 
4126 /* General hardware address lists handling functions */
4127 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4128 		   struct netdev_hw_addr_list *from_list, int addr_len);
4129 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4130 		      struct netdev_hw_addr_list *from_list, int addr_len);
4131 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4132 		       struct net_device *dev,
4133 		       int (*sync)(struct net_device *, const unsigned char *),
4134 		       int (*unsync)(struct net_device *,
4135 				     const unsigned char *));
4136 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4137 			   struct net_device *dev,
4138 			   int (*sync)(struct net_device *,
4139 				       const unsigned char *, int),
4140 			   int (*unsync)(struct net_device *,
4141 					 const unsigned char *, int));
4142 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4143 			      struct net_device *dev,
4144 			      int (*unsync)(struct net_device *,
4145 					    const unsigned char *, int));
4146 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4147 			  struct net_device *dev,
4148 			  int (*unsync)(struct net_device *,
4149 					const unsigned char *));
4150 void __hw_addr_init(struct netdev_hw_addr_list *list);
4151 
4152 /* Functions used for device addresses handling */
4153 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4154 		 unsigned char addr_type);
4155 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4156 		 unsigned char addr_type);
4157 void dev_addr_flush(struct net_device *dev);
4158 int dev_addr_init(struct net_device *dev);
4159 
4160 /* Functions used for unicast addresses handling */
4161 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4162 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4163 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4164 int dev_uc_sync(struct net_device *to, struct net_device *from);
4165 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4166 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4167 void dev_uc_flush(struct net_device *dev);
4168 void dev_uc_init(struct net_device *dev);
4169 
4170 /**
4171  *  __dev_uc_sync - Synchonize device's unicast list
4172  *  @dev:  device to sync
4173  *  @sync: function to call if address should be added
4174  *  @unsync: function to call if address should be removed
4175  *
4176  *  Add newly added addresses to the interface, and release
4177  *  addresses that have been deleted.
4178  */
4179 static inline int __dev_uc_sync(struct net_device *dev,
4180 				int (*sync)(struct net_device *,
4181 					    const unsigned char *),
4182 				int (*unsync)(struct net_device *,
4183 					      const unsigned char *))
4184 {
4185 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4186 }
4187 
4188 /**
4189  *  __dev_uc_unsync - Remove synchronized addresses from device
4190  *  @dev:  device to sync
4191  *  @unsync: function to call if address should be removed
4192  *
4193  *  Remove all addresses that were added to the device by dev_uc_sync().
4194  */
4195 static inline void __dev_uc_unsync(struct net_device *dev,
4196 				   int (*unsync)(struct net_device *,
4197 						 const unsigned char *))
4198 {
4199 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4200 }
4201 
4202 /* Functions used for multicast addresses handling */
4203 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4204 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4205 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4206 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4207 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4208 int dev_mc_sync(struct net_device *to, struct net_device *from);
4209 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4210 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4211 void dev_mc_flush(struct net_device *dev);
4212 void dev_mc_init(struct net_device *dev);
4213 
4214 /**
4215  *  __dev_mc_sync - Synchonize device's multicast list
4216  *  @dev:  device to sync
4217  *  @sync: function to call if address should be added
4218  *  @unsync: function to call if address should be removed
4219  *
4220  *  Add newly added addresses to the interface, and release
4221  *  addresses that have been deleted.
4222  */
4223 static inline int __dev_mc_sync(struct net_device *dev,
4224 				int (*sync)(struct net_device *,
4225 					    const unsigned char *),
4226 				int (*unsync)(struct net_device *,
4227 					      const unsigned char *))
4228 {
4229 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4230 }
4231 
4232 /**
4233  *  __dev_mc_unsync - Remove synchronized addresses from device
4234  *  @dev:  device to sync
4235  *  @unsync: function to call if address should be removed
4236  *
4237  *  Remove all addresses that were added to the device by dev_mc_sync().
4238  */
4239 static inline void __dev_mc_unsync(struct net_device *dev,
4240 				   int (*unsync)(struct net_device *,
4241 						 const unsigned char *))
4242 {
4243 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4244 }
4245 
4246 /* Functions used for secondary unicast and multicast support */
4247 void dev_set_rx_mode(struct net_device *dev);
4248 void __dev_set_rx_mode(struct net_device *dev);
4249 int dev_set_promiscuity(struct net_device *dev, int inc);
4250 int dev_set_allmulti(struct net_device *dev, int inc);
4251 void netdev_state_change(struct net_device *dev);
4252 void netdev_notify_peers(struct net_device *dev);
4253 void netdev_features_change(struct net_device *dev);
4254 /* Load a device via the kmod */
4255 void dev_load(struct net *net, const char *name);
4256 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4257 					struct rtnl_link_stats64 *storage);
4258 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4259 			     const struct net_device_stats *netdev_stats);
4260 
4261 extern int		netdev_max_backlog;
4262 extern int		netdev_tstamp_prequeue;
4263 extern int		weight_p;
4264 extern int		dev_weight_rx_bias;
4265 extern int		dev_weight_tx_bias;
4266 extern int		dev_rx_weight;
4267 extern int		dev_tx_weight;
4268 extern int		gro_normal_batch;
4269 
4270 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4271 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4272 						     struct list_head **iter);
4273 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4274 						     struct list_head **iter);
4275 
4276 /* iterate through upper list, must be called under RCU read lock */
4277 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4278 	for (iter = &(dev)->adj_list.upper, \
4279 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4280 	     updev; \
4281 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4282 
4283 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4284 				  int (*fn)(struct net_device *upper_dev,
4285 					    void *data),
4286 				  void *data);
4287 
4288 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4289 				  struct net_device *upper_dev);
4290 
4291 bool netdev_has_any_upper_dev(struct net_device *dev);
4292 
4293 void *netdev_lower_get_next_private(struct net_device *dev,
4294 				    struct list_head **iter);
4295 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4296 					struct list_head **iter);
4297 
4298 #define netdev_for_each_lower_private(dev, priv, iter) \
4299 	for (iter = (dev)->adj_list.lower.next, \
4300 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4301 	     priv; \
4302 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4303 
4304 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4305 	for (iter = &(dev)->adj_list.lower, \
4306 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4307 	     priv; \
4308 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4309 
4310 void *netdev_lower_get_next(struct net_device *dev,
4311 				struct list_head **iter);
4312 
4313 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4314 	for (iter = (dev)->adj_list.lower.next, \
4315 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4316 	     ldev; \
4317 	     ldev = netdev_lower_get_next(dev, &(iter)))
4318 
4319 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4320 					     struct list_head **iter);
4321 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4322 						 struct list_head **iter);
4323 
4324 int netdev_walk_all_lower_dev(struct net_device *dev,
4325 			      int (*fn)(struct net_device *lower_dev,
4326 					void *data),
4327 			      void *data);
4328 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4329 				  int (*fn)(struct net_device *lower_dev,
4330 					    void *data),
4331 				  void *data);
4332 
4333 void *netdev_adjacent_get_private(struct list_head *adj_list);
4334 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4335 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4336 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4337 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4338 			  struct netlink_ext_ack *extack);
4339 int netdev_master_upper_dev_link(struct net_device *dev,
4340 				 struct net_device *upper_dev,
4341 				 void *upper_priv, void *upper_info,
4342 				 struct netlink_ext_ack *extack);
4343 void netdev_upper_dev_unlink(struct net_device *dev,
4344 			     struct net_device *upper_dev);
4345 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4346 				   struct net_device *new_dev,
4347 				   struct net_device *dev,
4348 				   struct netlink_ext_ack *extack);
4349 void netdev_adjacent_change_commit(struct net_device *old_dev,
4350 				   struct net_device *new_dev,
4351 				   struct net_device *dev);
4352 void netdev_adjacent_change_abort(struct net_device *old_dev,
4353 				  struct net_device *new_dev,
4354 				  struct net_device *dev);
4355 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4356 void *netdev_lower_dev_get_private(struct net_device *dev,
4357 				   struct net_device *lower_dev);
4358 void netdev_lower_state_changed(struct net_device *lower_dev,
4359 				void *lower_state_info);
4360 
4361 /* RSS keys are 40 or 52 bytes long */
4362 #define NETDEV_RSS_KEY_LEN 52
4363 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4364 void netdev_rss_key_fill(void *buffer, size_t len);
4365 
4366 int skb_checksum_help(struct sk_buff *skb);
4367 int skb_crc32c_csum_help(struct sk_buff *skb);
4368 int skb_csum_hwoffload_help(struct sk_buff *skb,
4369 			    const netdev_features_t features);
4370 
4371 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4372 				  netdev_features_t features, bool tx_path);
4373 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4374 				    netdev_features_t features);
4375 
4376 struct netdev_bonding_info {
4377 	ifslave	slave;
4378 	ifbond	master;
4379 };
4380 
4381 struct netdev_notifier_bonding_info {
4382 	struct netdev_notifier_info info; /* must be first */
4383 	struct netdev_bonding_info  bonding_info;
4384 };
4385 
4386 void netdev_bonding_info_change(struct net_device *dev,
4387 				struct netdev_bonding_info *bonding_info);
4388 
4389 static inline
4390 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4391 {
4392 	return __skb_gso_segment(skb, features, true);
4393 }
4394 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4395 
4396 static inline bool can_checksum_protocol(netdev_features_t features,
4397 					 __be16 protocol)
4398 {
4399 	if (protocol == htons(ETH_P_FCOE))
4400 		return !!(features & NETIF_F_FCOE_CRC);
4401 
4402 	/* Assume this is an IP checksum (not SCTP CRC) */
4403 
4404 	if (features & NETIF_F_HW_CSUM) {
4405 		/* Can checksum everything */
4406 		return true;
4407 	}
4408 
4409 	switch (protocol) {
4410 	case htons(ETH_P_IP):
4411 		return !!(features & NETIF_F_IP_CSUM);
4412 	case htons(ETH_P_IPV6):
4413 		return !!(features & NETIF_F_IPV6_CSUM);
4414 	default:
4415 		return false;
4416 	}
4417 }
4418 
4419 #ifdef CONFIG_BUG
4420 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4421 #else
4422 static inline void netdev_rx_csum_fault(struct net_device *dev,
4423 					struct sk_buff *skb)
4424 {
4425 }
4426 #endif
4427 /* rx skb timestamps */
4428 void net_enable_timestamp(void);
4429 void net_disable_timestamp(void);
4430 
4431 #ifdef CONFIG_PROC_FS
4432 int __init dev_proc_init(void);
4433 #else
4434 #define dev_proc_init() 0
4435 #endif
4436 
4437 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4438 					      struct sk_buff *skb, struct net_device *dev,
4439 					      bool more)
4440 {
4441 	__this_cpu_write(softnet_data.xmit.more, more);
4442 	return ops->ndo_start_xmit(skb, dev);
4443 }
4444 
4445 static inline bool netdev_xmit_more(void)
4446 {
4447 	return __this_cpu_read(softnet_data.xmit.more);
4448 }
4449 
4450 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4451 					    struct netdev_queue *txq, bool more)
4452 {
4453 	const struct net_device_ops *ops = dev->netdev_ops;
4454 	netdev_tx_t rc;
4455 
4456 	rc = __netdev_start_xmit(ops, skb, dev, more);
4457 	if (rc == NETDEV_TX_OK)
4458 		txq_trans_update(txq);
4459 
4460 	return rc;
4461 }
4462 
4463 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4464 				const void *ns);
4465 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4466 				 const void *ns);
4467 
4468 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4469 {
4470 	return netdev_class_create_file_ns(class_attr, NULL);
4471 }
4472 
4473 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4474 {
4475 	netdev_class_remove_file_ns(class_attr, NULL);
4476 }
4477 
4478 extern const struct kobj_ns_type_operations net_ns_type_operations;
4479 
4480 const char *netdev_drivername(const struct net_device *dev);
4481 
4482 void linkwatch_run_queue(void);
4483 
4484 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4485 							  netdev_features_t f2)
4486 {
4487 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4488 		if (f1 & NETIF_F_HW_CSUM)
4489 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4490 		else
4491 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4492 	}
4493 
4494 	return f1 & f2;
4495 }
4496 
4497 static inline netdev_features_t netdev_get_wanted_features(
4498 	struct net_device *dev)
4499 {
4500 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4501 }
4502 netdev_features_t netdev_increment_features(netdev_features_t all,
4503 	netdev_features_t one, netdev_features_t mask);
4504 
4505 /* Allow TSO being used on stacked device :
4506  * Performing the GSO segmentation before last device
4507  * is a performance improvement.
4508  */
4509 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4510 							netdev_features_t mask)
4511 {
4512 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4513 }
4514 
4515 int __netdev_update_features(struct net_device *dev);
4516 void netdev_update_features(struct net_device *dev);
4517 void netdev_change_features(struct net_device *dev);
4518 
4519 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4520 					struct net_device *dev);
4521 
4522 netdev_features_t passthru_features_check(struct sk_buff *skb,
4523 					  struct net_device *dev,
4524 					  netdev_features_t features);
4525 netdev_features_t netif_skb_features(struct sk_buff *skb);
4526 
4527 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4528 {
4529 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4530 
4531 	/* check flags correspondence */
4532 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4533 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4534 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4535 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4536 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4537 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4538 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4539 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4540 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4541 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4542 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4543 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4544 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4545 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4546 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4547 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4548 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4549 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4550 
4551 	return (features & feature) == feature;
4552 }
4553 
4554 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4555 {
4556 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4557 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4558 }
4559 
4560 static inline bool netif_needs_gso(struct sk_buff *skb,
4561 				   netdev_features_t features)
4562 {
4563 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4564 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4565 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4566 }
4567 
4568 static inline void netif_set_gso_max_size(struct net_device *dev,
4569 					  unsigned int size)
4570 {
4571 	dev->gso_max_size = size;
4572 }
4573 
4574 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4575 					int pulled_hlen, u16 mac_offset,
4576 					int mac_len)
4577 {
4578 	skb->protocol = protocol;
4579 	skb->encapsulation = 1;
4580 	skb_push(skb, pulled_hlen);
4581 	skb_reset_transport_header(skb);
4582 	skb->mac_header = mac_offset;
4583 	skb->network_header = skb->mac_header + mac_len;
4584 	skb->mac_len = mac_len;
4585 }
4586 
4587 static inline bool netif_is_macsec(const struct net_device *dev)
4588 {
4589 	return dev->priv_flags & IFF_MACSEC;
4590 }
4591 
4592 static inline bool netif_is_macvlan(const struct net_device *dev)
4593 {
4594 	return dev->priv_flags & IFF_MACVLAN;
4595 }
4596 
4597 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4598 {
4599 	return dev->priv_flags & IFF_MACVLAN_PORT;
4600 }
4601 
4602 static inline bool netif_is_bond_master(const struct net_device *dev)
4603 {
4604 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4605 }
4606 
4607 static inline bool netif_is_bond_slave(const struct net_device *dev)
4608 {
4609 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4610 }
4611 
4612 static inline bool netif_supports_nofcs(struct net_device *dev)
4613 {
4614 	return dev->priv_flags & IFF_SUPP_NOFCS;
4615 }
4616 
4617 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4618 {
4619 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4620 }
4621 
4622 static inline bool netif_is_l3_master(const struct net_device *dev)
4623 {
4624 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4625 }
4626 
4627 static inline bool netif_is_l3_slave(const struct net_device *dev)
4628 {
4629 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4630 }
4631 
4632 static inline bool netif_is_bridge_master(const struct net_device *dev)
4633 {
4634 	return dev->priv_flags & IFF_EBRIDGE;
4635 }
4636 
4637 static inline bool netif_is_bridge_port(const struct net_device *dev)
4638 {
4639 	return dev->priv_flags & IFF_BRIDGE_PORT;
4640 }
4641 
4642 static inline bool netif_is_ovs_master(const struct net_device *dev)
4643 {
4644 	return dev->priv_flags & IFF_OPENVSWITCH;
4645 }
4646 
4647 static inline bool netif_is_ovs_port(const struct net_device *dev)
4648 {
4649 	return dev->priv_flags & IFF_OVS_DATAPATH;
4650 }
4651 
4652 static inline bool netif_is_team_master(const struct net_device *dev)
4653 {
4654 	return dev->priv_flags & IFF_TEAM;
4655 }
4656 
4657 static inline bool netif_is_team_port(const struct net_device *dev)
4658 {
4659 	return dev->priv_flags & IFF_TEAM_PORT;
4660 }
4661 
4662 static inline bool netif_is_lag_master(const struct net_device *dev)
4663 {
4664 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4665 }
4666 
4667 static inline bool netif_is_lag_port(const struct net_device *dev)
4668 {
4669 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4670 }
4671 
4672 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4673 {
4674 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4675 }
4676 
4677 static inline bool netif_is_failover(const struct net_device *dev)
4678 {
4679 	return dev->priv_flags & IFF_FAILOVER;
4680 }
4681 
4682 static inline bool netif_is_failover_slave(const struct net_device *dev)
4683 {
4684 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4685 }
4686 
4687 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4688 static inline void netif_keep_dst(struct net_device *dev)
4689 {
4690 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4691 }
4692 
4693 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4694 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4695 {
4696 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4697 	return dev->priv_flags & IFF_MACSEC;
4698 }
4699 
4700 extern struct pernet_operations __net_initdata loopback_net_ops;
4701 
4702 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4703 
4704 /* netdev_printk helpers, similar to dev_printk */
4705 
4706 static inline const char *netdev_name(const struct net_device *dev)
4707 {
4708 	if (!dev->name[0] || strchr(dev->name, '%'))
4709 		return "(unnamed net_device)";
4710 	return dev->name;
4711 }
4712 
4713 static inline bool netdev_unregistering(const struct net_device *dev)
4714 {
4715 	return dev->reg_state == NETREG_UNREGISTERING;
4716 }
4717 
4718 static inline const char *netdev_reg_state(const struct net_device *dev)
4719 {
4720 	switch (dev->reg_state) {
4721 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4722 	case NETREG_REGISTERED: return "";
4723 	case NETREG_UNREGISTERING: return " (unregistering)";
4724 	case NETREG_UNREGISTERED: return " (unregistered)";
4725 	case NETREG_RELEASED: return " (released)";
4726 	case NETREG_DUMMY: return " (dummy)";
4727 	}
4728 
4729 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4730 	return " (unknown)";
4731 }
4732 
4733 __printf(3, 4) __cold
4734 void netdev_printk(const char *level, const struct net_device *dev,
4735 		   const char *format, ...);
4736 __printf(2, 3) __cold
4737 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4738 __printf(2, 3) __cold
4739 void netdev_alert(const struct net_device *dev, const char *format, ...);
4740 __printf(2, 3) __cold
4741 void netdev_crit(const struct net_device *dev, const char *format, ...);
4742 __printf(2, 3) __cold
4743 void netdev_err(const struct net_device *dev, const char *format, ...);
4744 __printf(2, 3) __cold
4745 void netdev_warn(const struct net_device *dev, const char *format, ...);
4746 __printf(2, 3) __cold
4747 void netdev_notice(const struct net_device *dev, const char *format, ...);
4748 __printf(2, 3) __cold
4749 void netdev_info(const struct net_device *dev, const char *format, ...);
4750 
4751 #define netdev_level_once(level, dev, fmt, ...)			\
4752 do {								\
4753 	static bool __print_once __read_mostly;			\
4754 								\
4755 	if (!__print_once) {					\
4756 		__print_once = true;				\
4757 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4758 	}							\
4759 } while (0)
4760 
4761 #define netdev_emerg_once(dev, fmt, ...) \
4762 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4763 #define netdev_alert_once(dev, fmt, ...) \
4764 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4765 #define netdev_crit_once(dev, fmt, ...) \
4766 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4767 #define netdev_err_once(dev, fmt, ...) \
4768 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4769 #define netdev_warn_once(dev, fmt, ...) \
4770 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4771 #define netdev_notice_once(dev, fmt, ...) \
4772 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4773 #define netdev_info_once(dev, fmt, ...) \
4774 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4775 
4776 #define MODULE_ALIAS_NETDEV(device) \
4777 	MODULE_ALIAS("netdev-" device)
4778 
4779 #if defined(CONFIG_DYNAMIC_DEBUG)
4780 #define netdev_dbg(__dev, format, args...)			\
4781 do {								\
4782 	dynamic_netdev_dbg(__dev, format, ##args);		\
4783 } while (0)
4784 #elif defined(DEBUG)
4785 #define netdev_dbg(__dev, format, args...)			\
4786 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4787 #else
4788 #define netdev_dbg(__dev, format, args...)			\
4789 ({								\
4790 	if (0)							\
4791 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4792 })
4793 #endif
4794 
4795 #if defined(VERBOSE_DEBUG)
4796 #define netdev_vdbg	netdev_dbg
4797 #else
4798 
4799 #define netdev_vdbg(dev, format, args...)			\
4800 ({								\
4801 	if (0)							\
4802 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4803 	0;							\
4804 })
4805 #endif
4806 
4807 /*
4808  * netdev_WARN() acts like dev_printk(), but with the key difference
4809  * of using a WARN/WARN_ON to get the message out, including the
4810  * file/line information and a backtrace.
4811  */
4812 #define netdev_WARN(dev, format, args...)			\
4813 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4814 	     netdev_reg_state(dev), ##args)
4815 
4816 #define netdev_WARN_ONCE(dev, format, args...)				\
4817 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4818 		  netdev_reg_state(dev), ##args)
4819 
4820 /* netif printk helpers, similar to netdev_printk */
4821 
4822 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4823 do {					  			\
4824 	if (netif_msg_##type(priv))				\
4825 		netdev_printk(level, (dev), fmt, ##args);	\
4826 } while (0)
4827 
4828 #define netif_level(level, priv, type, dev, fmt, args...)	\
4829 do {								\
4830 	if (netif_msg_##type(priv))				\
4831 		netdev_##level(dev, fmt, ##args);		\
4832 } while (0)
4833 
4834 #define netif_emerg(priv, type, dev, fmt, args...)		\
4835 	netif_level(emerg, priv, type, dev, fmt, ##args)
4836 #define netif_alert(priv, type, dev, fmt, args...)		\
4837 	netif_level(alert, priv, type, dev, fmt, ##args)
4838 #define netif_crit(priv, type, dev, fmt, args...)		\
4839 	netif_level(crit, priv, type, dev, fmt, ##args)
4840 #define netif_err(priv, type, dev, fmt, args...)		\
4841 	netif_level(err, priv, type, dev, fmt, ##args)
4842 #define netif_warn(priv, type, dev, fmt, args...)		\
4843 	netif_level(warn, priv, type, dev, fmt, ##args)
4844 #define netif_notice(priv, type, dev, fmt, args...)		\
4845 	netif_level(notice, priv, type, dev, fmt, ##args)
4846 #define netif_info(priv, type, dev, fmt, args...)		\
4847 	netif_level(info, priv, type, dev, fmt, ##args)
4848 
4849 #if defined(CONFIG_DYNAMIC_DEBUG)
4850 #define netif_dbg(priv, type, netdev, format, args...)		\
4851 do {								\
4852 	if (netif_msg_##type(priv))				\
4853 		dynamic_netdev_dbg(netdev, format, ##args);	\
4854 } while (0)
4855 #elif defined(DEBUG)
4856 #define netif_dbg(priv, type, dev, format, args...)		\
4857 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4858 #else
4859 #define netif_dbg(priv, type, dev, format, args...)			\
4860 ({									\
4861 	if (0)								\
4862 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4863 	0;								\
4864 })
4865 #endif
4866 
4867 /* if @cond then downgrade to debug, else print at @level */
4868 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4869 	do {                                                              \
4870 		if (cond)                                                 \
4871 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4872 		else                                                      \
4873 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4874 	} while (0)
4875 
4876 #if defined(VERBOSE_DEBUG)
4877 #define netif_vdbg	netif_dbg
4878 #else
4879 #define netif_vdbg(priv, type, dev, format, args...)		\
4880 ({								\
4881 	if (0)							\
4882 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4883 	0;							\
4884 })
4885 #endif
4886 
4887 /*
4888  *	The list of packet types we will receive (as opposed to discard)
4889  *	and the routines to invoke.
4890  *
4891  *	Why 16. Because with 16 the only overlap we get on a hash of the
4892  *	low nibble of the protocol value is RARP/SNAP/X.25.
4893  *
4894  *		0800	IP
4895  *		0001	802.3
4896  *		0002	AX.25
4897  *		0004	802.2
4898  *		8035	RARP
4899  *		0005	SNAP
4900  *		0805	X.25
4901  *		0806	ARP
4902  *		8137	IPX
4903  *		0009	Localtalk
4904  *		86DD	IPv6
4905  */
4906 #define PTYPE_HASH_SIZE	(16)
4907 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4908 
4909 extern struct net_device *blackhole_netdev;
4910 
4911 #endif	/* _LINUX_NETDEVICE_H */
4912