xref: /openbmc/linux/include/linux/netdevice.h (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 	unsigned long		tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592 
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	return q->numa_node;
597 #else
598 	return NUMA_NO_NODE;
599 #endif
600 }
601 
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 	q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615 	unsigned int len;
616 	struct rcu_head rcu;
617 	u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627 	u16 cpu;
628 	u16 filter;
629 	unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637 	unsigned int mask;
638 	struct rcu_head rcu;
639 	struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655 	u32	mask;
656 
657 	u32	ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 					u32 hash)
668 {
669 	if (table && hash) {
670 		unsigned int index = hash & table->mask;
671 		u32 val = hash & ~rps_cpu_mask;
672 
673 		/* We only give a hint, preemption can change cpu under us */
674 		val |= raw_smp_processor_id();
675 
676 		if (table->ents[index] != val)
677 			table->ents[index] = val;
678 	}
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 			 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 	struct rps_map __rcu		*rps_map;
691 	struct rps_dev_flow_table __rcu	*rps_flow_table;
692 #endif
693 	struct kobject			kobj;
694 	struct net_device		*dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701 	struct attribute attr;
702 	ssize_t (*show)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, char *buf);
704 	ssize_t (*store)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714 	unsigned int len;
715 	unsigned int alloc_len;
716 	struct rcu_head rcu;
717 	u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727 	struct rcu_head rcu;
728 	struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE	16
735 #define TC_BITMASK	15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 	u16 count;
739 	u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748 	char	manufacturer[64];
749 	char	serial_number[64];
750 	char	hardware_version[64];
751 	char	driver_version[64];
752 	char	optionrom_version[64];
753 	char	firmware_version[64];
754 	char	model[256];
755 	char	model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 	unsigned char id_len;
767 };
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 				       struct sk_buff *skb);
771 
772 /*
773  * This structure defines the management hooks for network devices.
774  * The following hooks can be defined; unless noted otherwise, they are
775  * optional and can be filled with a null pointer.
776  *
777  * int (*ndo_init)(struct net_device *dev);
778  *     This function is called once when network device is registered.
779  *     The network device can use this to any late stage initializaton
780  *     or semantic validattion. It can fail with an error code which will
781  *     be propogated back to register_netdev
782  *
783  * void (*ndo_uninit)(struct net_device *dev);
784  *     This function is called when device is unregistered or when registration
785  *     fails. It is not called if init fails.
786  *
787  * int (*ndo_open)(struct net_device *dev);
788  *     This function is called when network device transistions to the up
789  *     state.
790  *
791  * int (*ndo_stop)(struct net_device *dev);
792  *     This function is called when network device transistions to the down
793  *     state.
794  *
795  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796  *                               struct net_device *dev);
797  *	Called when a packet needs to be transmitted.
798  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
799  *	the queue before that can happen; it's for obsolete devices and weird
800  *	corner cases, but the stack really does a non-trivial amount
801  *	of useless work if you return NETDEV_TX_BUSY.
802  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803  *	Required can not be NULL.
804  *
805  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806  *                         void *accel_priv, select_queue_fallback_t fallback);
807  *	Called to decide which queue to when device supports multiple
808  *	transmit queues.
809  *
810  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811  *	This function is called to allow device receiver to make
812  *	changes to configuration when multicast or promiscious is enabled.
813  *
814  * void (*ndo_set_rx_mode)(struct net_device *dev);
815  *	This function is called device changes address list filtering.
816  *	If driver handles unicast address filtering, it should set
817  *	IFF_UNICAST_FLT to its priv_flags.
818  *
819  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820  *	This function  is called when the Media Access Control address
821  *	needs to be changed. If this interface is not defined, the
822  *	mac address can not be changed.
823  *
824  * int (*ndo_validate_addr)(struct net_device *dev);
825  *	Test if Media Access Control address is valid for the device.
826  *
827  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828  *	Called when a user request an ioctl which can't be handled by
829  *	the generic interface code. If not defined ioctl's return
830  *	not supported error code.
831  *
832  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833  *	Used to set network devices bus interface parameters. This interface
834  *	is retained for legacy reason, new devices should use the bus
835  *	interface (PCI) for low level management.
836  *
837  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838  *	Called when a user wants to change the Maximum Transfer Unit
839  *	of a device. If not defined, any request to change MTU will
840  *	will return an error.
841  *
842  * void (*ndo_tx_timeout)(struct net_device *dev);
843  *	Callback uses when the transmitter has not made any progress
844  *	for dev->watchdog ticks.
845  *
846  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847  *                      struct rtnl_link_stats64 *storage);
848  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849  *	Called when a user wants to get the network device usage
850  *	statistics. Drivers must do one of the following:
851  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
852  *	   rtnl_link_stats64 structure passed by the caller.
853  *	2. Define @ndo_get_stats to update a net_device_stats structure
854  *	   (which should normally be dev->stats) and return a pointer to
855  *	   it. The structure may be changed asynchronously only if each
856  *	   field is written atomically.
857  *	3. Update dev->stats asynchronously and atomically, and define
858  *	   neither operation.
859  *
860  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861  *	If device support VLAN filtering this function is called when a
862  *	VLAN id is registered.
863  *
864  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865  *	If device support VLAN filtering this function is called when a
866  *	VLAN id is unregistered.
867  *
868  * void (*ndo_poll_controller)(struct net_device *dev);
869  *
870  *	SR-IOV management functions.
871  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874  *			  int max_tx_rate);
875  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876  * int (*ndo_get_vf_config)(struct net_device *dev,
877  *			    int vf, struct ifla_vf_info *ivf);
878  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880  *			  struct nlattr *port[]);
881  *
882  *      Enable or disable the VF ability to query its RSS Redirection Table and
883  *      Hash Key. This is needed since on some devices VF share this information
884  *      with PF and querying it may adduce a theoretical security risk.
885  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888  * 	Called to setup 'tc' number of traffic classes in the net device. This
889  * 	is always called from the stack with the rtnl lock held and netif tx
890  * 	queues stopped. This allows the netdevice to perform queue management
891  * 	safely.
892  *
893  *	Fiber Channel over Ethernet (FCoE) offload functions.
894  * int (*ndo_fcoe_enable)(struct net_device *dev);
895  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
896  *	so the underlying device can perform whatever needed configuration or
897  *	initialization to support acceleration of FCoE traffic.
898  *
899  * int (*ndo_fcoe_disable)(struct net_device *dev);
900  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
901  *	so the underlying device can perform whatever needed clean-ups to
902  *	stop supporting acceleration of FCoE traffic.
903  *
904  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905  *			     struct scatterlist *sgl, unsigned int sgc);
906  *	Called when the FCoE Initiator wants to initialize an I/O that
907  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
908  *	perform necessary setup and returns 1 to indicate the device is set up
909  *	successfully to perform DDP on this I/O, otherwise this returns 0.
910  *
911  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
912  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
913  *	indicated by the FC exchange id 'xid', so the underlying device can
914  *	clean up and reuse resources for later DDP requests.
915  *
916  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917  *			      struct scatterlist *sgl, unsigned int sgc);
918  *	Called when the FCoE Target wants to initialize an I/O that
919  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
920  *	perform necessary setup and returns 1 to indicate the device is set up
921  *	successfully to perform DDP on this I/O, otherwise this returns 0.
922  *
923  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924  *			       struct netdev_fcoe_hbainfo *hbainfo);
925  *	Called when the FCoE Protocol stack wants information on the underlying
926  *	device. This information is utilized by the FCoE protocol stack to
927  *	register attributes with Fiber Channel management service as per the
928  *	FC-GS Fabric Device Management Information(FDMI) specification.
929  *
930  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931  *	Called when the underlying device wants to override default World Wide
932  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934  *	protocol stack to use.
935  *
936  *	RFS acceleration.
937  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938  *			    u16 rxq_index, u32 flow_id);
939  *	Set hardware filter for RFS.  rxq_index is the target queue index;
940  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941  *	Return the filter ID on success, or a negative error code.
942  *
943  *	Slave management functions (for bridge, bonding, etc).
944  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945  *	Called to make another netdev an underling.
946  *
947  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948  *	Called to release previously enslaved netdev.
949  *
950  *      Feature/offload setting functions.
951  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952  *		netdev_features_t features);
953  *	Adjusts the requested feature flags according to device-specific
954  *	constraints, and returns the resulting flags. Must not modify
955  *	the device state.
956  *
957  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958  *	Called to update device configuration to new features. Passed
959  *	feature set might be less than what was returned by ndo_fix_features()).
960  *	Must return >0 or -errno if it changed dev->features itself.
961  *
962  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963  *		      struct net_device *dev,
964  *		      const unsigned char *addr, u16 vid, u16 flags)
965  *	Adds an FDB entry to dev for addr.
966  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967  *		      struct net_device *dev,
968  *		      const unsigned char *addr, u16 vid)
969  *	Deletes the FDB entry from dev coresponding to addr.
970  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971  *		       struct net_device *dev, struct net_device *filter_dev,
972  *		       int idx)
973  *	Used to add FDB entries to dump requests. Implementers should add
974  *	entries to skb and update idx with the number of entries.
975  *
976  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977  *			     u16 flags)
978  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979  *			     struct net_device *dev, u32 filter_mask,
980  *			     int nlflags)
981  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982  *			     u16 flags);
983  *
984  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
986  *	which do not represent real hardware may define this to allow their
987  *	userspace components to manage their virtual carrier state. Devices
988  *	that determine carrier state from physical hardware properties (eg
989  *	network cables) or protocol-dependent mechanisms (eg
990  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
991  *
992  * int (*ndo_get_phys_port_id)(struct net_device *dev,
993  *			       struct netdev_phys_item_id *ppid);
994  *	Called to get ID of physical port of this device. If driver does
995  *	not implement this, it is assumed that the hw is not able to have
996  *	multiple net devices on single physical port.
997  *
998  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
999  *			      sa_family_t sa_family, __be16 port);
1000  *	Called by vxlan to notiy a driver about the UDP port and socket
1001  *	address family that vxlan is listnening to. It is called only when
1002  *	a new port starts listening. The operation is protected by the
1003  *	vxlan_net->sock_lock.
1004  *
1005  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1006  *			      sa_family_t sa_family, __be16 port);
1007  *	Called by vxlan to notify the driver about a UDP port and socket
1008  *	address family that vxlan is not listening to anymore. The operation
1009  *	is protected by the vxlan_net->sock_lock.
1010  *
1011  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012  *				 struct net_device *dev)
1013  *	Called by upper layer devices to accelerate switching or other
1014  *	station functionality into hardware. 'pdev is the lowerdev
1015  *	to use for the offload and 'dev' is the net device that will
1016  *	back the offload. Returns a pointer to the private structure
1017  *	the upper layer will maintain.
1018  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019  *	Called by upper layer device to delete the station created
1020  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021  *	the station and priv is the structure returned by the add
1022  *	operation.
1023  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024  *				      struct net_device *dev,
1025  *				      void *priv);
1026  *	Callback to use for xmit over the accelerated station. This
1027  *	is used in place of ndo_start_xmit on accelerated net
1028  *	devices.
1029  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030  *					    struct net_device *dev
1031  *					    netdev_features_t features);
1032  *	Called by core transmit path to determine if device is capable of
1033  *	performing offload operations on a given packet. This is to give
1034  *	the device an opportunity to implement any restrictions that cannot
1035  *	be otherwise expressed by feature flags. The check is called with
1036  *	the set of features that the stack has calculated and it returns
1037  *	those the driver believes to be appropriate.
1038  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039  *			     int queue_index, u32 maxrate);
1040  *	Called when a user wants to set a max-rate limitation of specific
1041  *	TX queue.
1042  * int (*ndo_get_iflink)(const struct net_device *dev);
1043  *	Called to get the iflink value of this device.
1044  */
1045 struct net_device_ops {
1046 	int			(*ndo_init)(struct net_device *dev);
1047 	void			(*ndo_uninit)(struct net_device *dev);
1048 	int			(*ndo_open)(struct net_device *dev);
1049 	int			(*ndo_stop)(struct net_device *dev);
1050 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1051 						   struct net_device *dev);
1052 	u16			(*ndo_select_queue)(struct net_device *dev,
1053 						    struct sk_buff *skb,
1054 						    void *accel_priv,
1055 						    select_queue_fallback_t fallback);
1056 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1057 						       int flags);
1058 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1059 	int			(*ndo_set_mac_address)(struct net_device *dev,
1060 						       void *addr);
1061 	int			(*ndo_validate_addr)(struct net_device *dev);
1062 	int			(*ndo_do_ioctl)(struct net_device *dev,
1063 					        struct ifreq *ifr, int cmd);
1064 	int			(*ndo_set_config)(struct net_device *dev,
1065 					          struct ifmap *map);
1066 	int			(*ndo_change_mtu)(struct net_device *dev,
1067 						  int new_mtu);
1068 	int			(*ndo_neigh_setup)(struct net_device *dev,
1069 						   struct neigh_parms *);
1070 	void			(*ndo_tx_timeout) (struct net_device *dev);
1071 
1072 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073 						     struct rtnl_link_stats64 *storage);
1074 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075 
1076 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077 						       __be16 proto, u16 vid);
1078 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079 						        __be16 proto, u16 vid);
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 	void                    (*ndo_poll_controller)(struct net_device *dev);
1082 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1083 						     struct netpoll_info *info);
1084 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1085 #endif
1086 #ifdef CONFIG_NET_RX_BUSY_POLL
1087 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1088 #endif
1089 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1090 						  int queue, u8 *mac);
1091 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1092 						   int queue, u16 vlan, u8 qos);
1093 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1094 						   int vf, int min_tx_rate,
1095 						   int max_tx_rate);
1096 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1097 						       int vf, bool setting);
1098 	int			(*ndo_get_vf_config)(struct net_device *dev,
1099 						     int vf,
1100 						     struct ifla_vf_info *ivf);
1101 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1102 							 int vf, int link_state);
1103 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1104 						    int vf,
1105 						    struct ifla_vf_stats
1106 						    *vf_stats);
1107 	int			(*ndo_set_vf_port)(struct net_device *dev,
1108 						   int vf,
1109 						   struct nlattr *port[]);
1110 	int			(*ndo_get_vf_port)(struct net_device *dev,
1111 						   int vf, struct sk_buff *skb);
1112 	int			(*ndo_set_vf_rss_query_en)(
1113 						   struct net_device *dev,
1114 						   int vf, bool setting);
1115 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1116 #if IS_ENABLED(CONFIG_FCOE)
1117 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1118 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1119 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1120 						      u16 xid,
1121 						      struct scatterlist *sgl,
1122 						      unsigned int sgc);
1123 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1124 						     u16 xid);
1125 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1126 						       u16 xid,
1127 						       struct scatterlist *sgl,
1128 						       unsigned int sgc);
1129 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1130 							struct netdev_fcoe_hbainfo *hbainfo);
1131 #endif
1132 
1133 #if IS_ENABLED(CONFIG_LIBFCOE)
1134 #define NETDEV_FCOE_WWNN 0
1135 #define NETDEV_FCOE_WWPN 1
1136 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1137 						    u64 *wwn, int type);
1138 #endif
1139 
1140 #ifdef CONFIG_RFS_ACCEL
1141 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1142 						     const struct sk_buff *skb,
1143 						     u16 rxq_index,
1144 						     u32 flow_id);
1145 #endif
1146 	int			(*ndo_add_slave)(struct net_device *dev,
1147 						 struct net_device *slave_dev);
1148 	int			(*ndo_del_slave)(struct net_device *dev,
1149 						 struct net_device *slave_dev);
1150 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1151 						    netdev_features_t features);
1152 	int			(*ndo_set_features)(struct net_device *dev,
1153 						    netdev_features_t features);
1154 	int			(*ndo_neigh_construct)(struct neighbour *n);
1155 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1156 
1157 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1158 					       struct nlattr *tb[],
1159 					       struct net_device *dev,
1160 					       const unsigned char *addr,
1161 					       u16 vid,
1162 					       u16 flags);
1163 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1164 					       struct nlattr *tb[],
1165 					       struct net_device *dev,
1166 					       const unsigned char *addr,
1167 					       u16 vid);
1168 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1169 						struct netlink_callback *cb,
1170 						struct net_device *dev,
1171 						struct net_device *filter_dev,
1172 						int idx);
1173 
1174 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1175 						      struct nlmsghdr *nlh,
1176 						      u16 flags);
1177 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1178 						      u32 pid, u32 seq,
1179 						      struct net_device *dev,
1180 						      u32 filter_mask,
1181 						      int nlflags);
1182 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1183 						      struct nlmsghdr *nlh,
1184 						      u16 flags);
1185 	int			(*ndo_change_carrier)(struct net_device *dev,
1186 						      bool new_carrier);
1187 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1188 							struct netdev_phys_item_id *ppid);
1189 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1190 							  char *name, size_t len);
1191 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1192 						      sa_family_t sa_family,
1193 						      __be16 port);
1194 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1195 						      sa_family_t sa_family,
1196 						      __be16 port);
1197 
1198 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1199 							struct net_device *dev);
1200 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1201 							void *priv);
1202 
1203 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1204 							struct net_device *dev,
1205 							void *priv);
1206 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1207 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1208 						       struct net_device *dev,
1209 						       netdev_features_t features);
1210 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1211 						      int queue_index,
1212 						      u32 maxrate);
1213 	int			(*ndo_get_iflink)(const struct net_device *dev);
1214 };
1215 
1216 /**
1217  * enum net_device_priv_flags - &struct net_device priv_flags
1218  *
1219  * These are the &struct net_device, they are only set internally
1220  * by drivers and used in the kernel. These flags are invisible to
1221  * userspace, this means that the order of these flags can change
1222  * during any kernel release.
1223  *
1224  * You should have a pretty good reason to be extending these flags.
1225  *
1226  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1227  * @IFF_EBRIDGE: Ethernet bridging device
1228  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1229  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1230  * @IFF_MASTER_ALB: bonding master, balance-alb
1231  * @IFF_BONDING: bonding master or slave
1232  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1233  * @IFF_ISATAP: ISATAP interface (RFC4214)
1234  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1235  * @IFF_WAN_HDLC: WAN HDLC device
1236  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1237  *	release skb->dst
1238  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1239  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1240  * @IFF_MACVLAN_PORT: device used as macvlan port
1241  * @IFF_BRIDGE_PORT: device used as bridge port
1242  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1243  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1244  * @IFF_UNICAST_FLT: Supports unicast filtering
1245  * @IFF_TEAM_PORT: device used as team port
1246  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1247  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1248  *	change when it's running
1249  * @IFF_MACVLAN: Macvlan device
1250  */
1251 enum netdev_priv_flags {
1252 	IFF_802_1Q_VLAN			= 1<<0,
1253 	IFF_EBRIDGE			= 1<<1,
1254 	IFF_SLAVE_INACTIVE		= 1<<2,
1255 	IFF_MASTER_8023AD		= 1<<3,
1256 	IFF_MASTER_ALB			= 1<<4,
1257 	IFF_BONDING			= 1<<5,
1258 	IFF_SLAVE_NEEDARP		= 1<<6,
1259 	IFF_ISATAP			= 1<<7,
1260 	IFF_MASTER_ARPMON		= 1<<8,
1261 	IFF_WAN_HDLC			= 1<<9,
1262 	IFF_XMIT_DST_RELEASE		= 1<<10,
1263 	IFF_DONT_BRIDGE			= 1<<11,
1264 	IFF_DISABLE_NETPOLL		= 1<<12,
1265 	IFF_MACVLAN_PORT		= 1<<13,
1266 	IFF_BRIDGE_PORT			= 1<<14,
1267 	IFF_OVS_DATAPATH		= 1<<15,
1268 	IFF_TX_SKB_SHARING		= 1<<16,
1269 	IFF_UNICAST_FLT			= 1<<17,
1270 	IFF_TEAM_PORT			= 1<<18,
1271 	IFF_SUPP_NOFCS			= 1<<19,
1272 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1273 	IFF_MACVLAN			= 1<<21,
1274 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1275 	IFF_IPVLAN_MASTER		= 1<<23,
1276 	IFF_IPVLAN_SLAVE		= 1<<24,
1277 };
1278 
1279 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1280 #define IFF_EBRIDGE			IFF_EBRIDGE
1281 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1282 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1283 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1284 #define IFF_BONDING			IFF_BONDING
1285 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1286 #define IFF_ISATAP			IFF_ISATAP
1287 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1288 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1289 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1290 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1291 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1292 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1293 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1294 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1295 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1296 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1297 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1298 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1299 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1300 #define IFF_MACVLAN			IFF_MACVLAN
1301 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1302 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1303 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1304 
1305 /**
1306  *	struct net_device - The DEVICE structure.
1307  *		Actually, this whole structure is a big mistake.  It mixes I/O
1308  *		data with strictly "high-level" data, and it has to know about
1309  *		almost every data structure used in the INET module.
1310  *
1311  *	@name:	This is the first field of the "visible" part of this structure
1312  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1313  *	 	of the interface.
1314  *
1315  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1316  *	@ifalias:	SNMP alias
1317  *	@mem_end:	Shared memory end
1318  *	@mem_start:	Shared memory start
1319  *	@base_addr:	Device I/O address
1320  *	@irq:		Device IRQ number
1321  *
1322  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1323  *
1324  *	@state:		Generic network queuing layer state, see netdev_state_t
1325  *	@dev_list:	The global list of network devices
1326  *	@napi_list:	List entry, that is used for polling napi devices
1327  *	@unreg_list:	List entry, that is used, when we are unregistering the
1328  *			device, see the function unregister_netdev
1329  *	@close_list:	List entry, that is used, when we are closing the device
1330  *
1331  *	@adj_list:	Directly linked devices, like slaves for bonding
1332  *	@all_adj_list:	All linked devices, *including* neighbours
1333  *	@features:	Currently active device features
1334  *	@hw_features:	User-changeable features
1335  *
1336  *	@wanted_features:	User-requested features
1337  *	@vlan_features:		Mask of features inheritable by VLAN devices
1338  *
1339  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1340  *				This field indicates what encapsulation
1341  *				offloads the hardware is capable of doing,
1342  *				and drivers will need to set them appropriately.
1343  *
1344  *	@mpls_features:	Mask of features inheritable by MPLS
1345  *
1346  *	@ifindex:	interface index
1347  *	@group:		The group, that the device belongs to
1348  *
1349  *	@stats:		Statistics struct, which was left as a legacy, use
1350  *			rtnl_link_stats64 instead
1351  *
1352  *	@rx_dropped:	Dropped packets by core network,
1353  *			do not use this in drivers
1354  *	@tx_dropped:	Dropped packets by core network,
1355  *			do not use this in drivers
1356  *
1357  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1358  *				instead of ioctl,
1359  *				see <net/iw_handler.h> for details.
1360  *	@wireless_data:	Instance data managed by the core of wireless extensions
1361  *
1362  *	@netdev_ops:	Includes several pointers to callbacks,
1363  *			if one wants to override the ndo_*() functions
1364  *	@ethtool_ops:	Management operations
1365  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1366  *			of Layer 2 headers.
1367  *
1368  *	@flags:		Interface flags (a la BSD)
1369  *	@priv_flags:	Like 'flags' but invisible to userspace,
1370  *			see if.h for the definitions
1371  *	@gflags:	Global flags ( kept as legacy )
1372  *	@padded:	How much padding added by alloc_netdev()
1373  *	@operstate:	RFC2863 operstate
1374  *	@link_mode:	Mapping policy to operstate
1375  *	@if_port:	Selectable AUI, TP, ...
1376  *	@dma:		DMA channel
1377  *	@mtu:		Interface MTU value
1378  *	@type:		Interface hardware type
1379  *	@hard_header_len: Hardware header length
1380  *
1381  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1382  *			  cases can this be guaranteed
1383  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1384  *			  cases can this be guaranteed. Some cases also use
1385  *			  LL_MAX_HEADER instead to allocate the skb
1386  *
1387  *	interface address info:
1388  *
1389  * 	@perm_addr:		Permanent hw address
1390  * 	@addr_assign_type:	Hw address assignment type
1391  * 	@addr_len:		Hardware address length
1392  * 	@neigh_priv_len;	Used in neigh_alloc(),
1393  * 				initialized only in atm/clip.c
1394  * 	@dev_id:		Used to differentiate devices that share
1395  * 				the same link layer address
1396  * 	@dev_port:		Used to differentiate devices that share
1397  * 				the same function
1398  *	@addr_list_lock:	XXX: need comments on this one
1399  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1400  *				has been enabled due to the need to listen to
1401  *				additional unicast addresses in a device that
1402  *				does not implement ndo_set_rx_mode()
1403  *	@uc:			unicast mac addresses
1404  *	@mc:			multicast mac addresses
1405  *	@dev_addrs:		list of device hw addresses
1406  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1407  *	@promiscuity:		Number of times, the NIC is told to work in
1408  *				Promiscuous mode, if it becomes 0 the NIC will
1409  *				exit from working in Promiscuous mode
1410  *	@allmulti:		Counter, enables or disables allmulticast mode
1411  *
1412  *	@vlan_info:	VLAN info
1413  *	@dsa_ptr:	dsa specific data
1414  *	@tipc_ptr:	TIPC specific data
1415  *	@atalk_ptr:	AppleTalk link
1416  *	@ip_ptr:	IPv4 specific data
1417  *	@dn_ptr:	DECnet specific data
1418  *	@ip6_ptr:	IPv6 specific data
1419  *	@ax25_ptr:	AX.25 specific data
1420  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1421  *
1422  *	@last_rx:	Time of last Rx
1423  *	@dev_addr:	Hw address (before bcast,
1424  *			because most packets are unicast)
1425  *
1426  *	@_rx:			Array of RX queues
1427  *	@num_rx_queues:		Number of RX queues
1428  *				allocated at register_netdev() time
1429  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1430  *
1431  *	@rx_handler:		handler for received packets
1432  *	@rx_handler_data: 	XXX: need comments on this one
1433  *	@ingress_queue:		XXX: need comments on this one
1434  *	@broadcast:		hw bcast address
1435  *
1436  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1437  *			indexed by RX queue number. Assigned by driver.
1438  *			This must only be set if the ndo_rx_flow_steer
1439  *			operation is defined
1440  *	@index_hlist:		Device index hash chain
1441  *
1442  *	@_tx:			Array of TX queues
1443  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1444  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1445  *	@qdisc:			Root qdisc from userspace point of view
1446  *	@tx_queue_len:		Max frames per queue allowed
1447  *	@tx_global_lock: 	XXX: need comments on this one
1448  *
1449  *	@xps_maps:	XXX: need comments on this one
1450  *
1451  *	@trans_start:		Time (in jiffies) of last Tx
1452  *	@watchdog_timeo:	Represents the timeout that is used by
1453  *				the watchdog ( see dev_watchdog() )
1454  *	@watchdog_timer:	List of timers
1455  *
1456  *	@pcpu_refcnt:		Number of references to this device
1457  *	@todo_list:		Delayed register/unregister
1458  *	@link_watch_list:	XXX: need comments on this one
1459  *
1460  *	@reg_state:		Register/unregister state machine
1461  *	@dismantle:		Device is going to be freed
1462  *	@rtnl_link_state:	This enum represents the phases of creating
1463  *				a new link
1464  *
1465  *	@destructor:		Called from unregister,
1466  *				can be used to call free_netdev
1467  *	@npinfo:		XXX: need comments on this one
1468  * 	@nd_net:		Network namespace this network device is inside
1469  *
1470  * 	@ml_priv:	Mid-layer private
1471  * 	@lstats:	Loopback statistics
1472  * 	@tstats:	Tunnel statistics
1473  * 	@dstats:	Dummy statistics
1474  * 	@vstats:	Virtual ethernet statistics
1475  *
1476  *	@garp_port:	GARP
1477  *	@mrp_port:	MRP
1478  *
1479  *	@dev:		Class/net/name entry
1480  *	@sysfs_groups:	Space for optional device, statistics and wireless
1481  *			sysfs groups
1482  *
1483  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1484  *	@rtnl_link_ops:	Rtnl_link_ops
1485  *
1486  *	@gso_max_size:	Maximum size of generic segmentation offload
1487  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1488  *			NIC for GSO
1489  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1490  *			NIC for GSO
1491  *
1492  *	@dcbnl_ops:	Data Center Bridging netlink ops
1493  *	@num_tc:	Number of traffic classes in the net device
1494  *	@tc_to_txq:	XXX: need comments on this one
1495  *	@prio_tc_map	XXX: need comments on this one
1496  *
1497  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1498  *
1499  *	@priomap:	XXX: need comments on this one
1500  *	@phydev:	Physical device may attach itself
1501  *			for hardware timestamping
1502  *
1503  *	@qdisc_tx_busylock:	XXX: need comments on this one
1504  *
1505  *	FIXME: cleanup struct net_device such that network protocol info
1506  *	moves out.
1507  */
1508 
1509 struct net_device {
1510 	char			name[IFNAMSIZ];
1511 	struct hlist_node	name_hlist;
1512 	char 			*ifalias;
1513 	/*
1514 	 *	I/O specific fields
1515 	 *	FIXME: Merge these and struct ifmap into one
1516 	 */
1517 	unsigned long		mem_end;
1518 	unsigned long		mem_start;
1519 	unsigned long		base_addr;
1520 	int			irq;
1521 
1522 	atomic_t		carrier_changes;
1523 
1524 	/*
1525 	 *	Some hardware also needs these fields (state,dev_list,
1526 	 *	napi_list,unreg_list,close_list) but they are not
1527 	 *	part of the usual set specified in Space.c.
1528 	 */
1529 
1530 	unsigned long		state;
1531 
1532 	struct list_head	dev_list;
1533 	struct list_head	napi_list;
1534 	struct list_head	unreg_list;
1535 	struct list_head	close_list;
1536 	struct list_head	ptype_all;
1537 	struct list_head	ptype_specific;
1538 
1539 	struct {
1540 		struct list_head upper;
1541 		struct list_head lower;
1542 	} adj_list;
1543 
1544 	struct {
1545 		struct list_head upper;
1546 		struct list_head lower;
1547 	} all_adj_list;
1548 
1549 	netdev_features_t	features;
1550 	netdev_features_t	hw_features;
1551 	netdev_features_t	wanted_features;
1552 	netdev_features_t	vlan_features;
1553 	netdev_features_t	hw_enc_features;
1554 	netdev_features_t	mpls_features;
1555 
1556 	int			ifindex;
1557 	int			group;
1558 
1559 	struct net_device_stats	stats;
1560 
1561 	atomic_long_t		rx_dropped;
1562 	atomic_long_t		tx_dropped;
1563 
1564 #ifdef CONFIG_WIRELESS_EXT
1565 	const struct iw_handler_def *	wireless_handlers;
1566 	struct iw_public_data *	wireless_data;
1567 #endif
1568 	const struct net_device_ops *netdev_ops;
1569 	const struct ethtool_ops *ethtool_ops;
1570 #ifdef CONFIG_NET_SWITCHDEV
1571 	const struct switchdev_ops *switchdev_ops;
1572 #endif
1573 
1574 	const struct header_ops *header_ops;
1575 
1576 	unsigned int		flags;
1577 	unsigned int		priv_flags;
1578 
1579 	unsigned short		gflags;
1580 	unsigned short		padded;
1581 
1582 	unsigned char		operstate;
1583 	unsigned char		link_mode;
1584 
1585 	unsigned char		if_port;
1586 	unsigned char		dma;
1587 
1588 	unsigned int		mtu;
1589 	unsigned short		type;
1590 	unsigned short		hard_header_len;
1591 
1592 	unsigned short		needed_headroom;
1593 	unsigned short		needed_tailroom;
1594 
1595 	/* Interface address info. */
1596 	unsigned char		perm_addr[MAX_ADDR_LEN];
1597 	unsigned char		addr_assign_type;
1598 	unsigned char		addr_len;
1599 	unsigned short		neigh_priv_len;
1600 	unsigned short          dev_id;
1601 	unsigned short          dev_port;
1602 	spinlock_t		addr_list_lock;
1603 	unsigned char		name_assign_type;
1604 	bool			uc_promisc;
1605 	struct netdev_hw_addr_list	uc;
1606 	struct netdev_hw_addr_list	mc;
1607 	struct netdev_hw_addr_list	dev_addrs;
1608 
1609 #ifdef CONFIG_SYSFS
1610 	struct kset		*queues_kset;
1611 #endif
1612 	unsigned int		promiscuity;
1613 	unsigned int		allmulti;
1614 
1615 
1616 	/* Protocol specific pointers */
1617 
1618 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1619 	struct vlan_info __rcu	*vlan_info;
1620 #endif
1621 #if IS_ENABLED(CONFIG_NET_DSA)
1622 	struct dsa_switch_tree	*dsa_ptr;
1623 #endif
1624 #if IS_ENABLED(CONFIG_TIPC)
1625 	struct tipc_bearer __rcu *tipc_ptr;
1626 #endif
1627 	void 			*atalk_ptr;
1628 	struct in_device __rcu	*ip_ptr;
1629 	struct dn_dev __rcu     *dn_ptr;
1630 	struct inet6_dev __rcu	*ip6_ptr;
1631 	void			*ax25_ptr;
1632 	struct wireless_dev	*ieee80211_ptr;
1633 	struct wpan_dev		*ieee802154_ptr;
1634 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1635 	struct mpls_dev __rcu	*mpls_ptr;
1636 #endif
1637 
1638 /*
1639  * Cache lines mostly used on receive path (including eth_type_trans())
1640  */
1641 	unsigned long		last_rx;
1642 
1643 	/* Interface address info used in eth_type_trans() */
1644 	unsigned char		*dev_addr;
1645 
1646 
1647 #ifdef CONFIG_SYSFS
1648 	struct netdev_rx_queue	*_rx;
1649 
1650 	unsigned int		num_rx_queues;
1651 	unsigned int		real_num_rx_queues;
1652 
1653 #endif
1654 
1655 	unsigned long		gro_flush_timeout;
1656 	rx_handler_func_t __rcu	*rx_handler;
1657 	void __rcu		*rx_handler_data;
1658 
1659 #ifdef CONFIG_NET_CLS_ACT
1660 	struct tcf_proto __rcu  *ingress_cl_list;
1661 #endif
1662 	struct netdev_queue __rcu *ingress_queue;
1663 #ifdef CONFIG_NETFILTER_INGRESS
1664 	struct list_head	nf_hooks_ingress;
1665 #endif
1666 
1667 	unsigned char		broadcast[MAX_ADDR_LEN];
1668 #ifdef CONFIG_RFS_ACCEL
1669 	struct cpu_rmap		*rx_cpu_rmap;
1670 #endif
1671 	struct hlist_node	index_hlist;
1672 
1673 /*
1674  * Cache lines mostly used on transmit path
1675  */
1676 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1677 	unsigned int		num_tx_queues;
1678 	unsigned int		real_num_tx_queues;
1679 	struct Qdisc		*qdisc;
1680 	unsigned long		tx_queue_len;
1681 	spinlock_t		tx_global_lock;
1682 	int			watchdog_timeo;
1683 
1684 #ifdef CONFIG_XPS
1685 	struct xps_dev_maps __rcu *xps_maps;
1686 #endif
1687 
1688 	/* These may be needed for future network-power-down code. */
1689 
1690 	/*
1691 	 * trans_start here is expensive for high speed devices on SMP,
1692 	 * please use netdev_queue->trans_start instead.
1693 	 */
1694 	unsigned long		trans_start;
1695 
1696 	struct timer_list	watchdog_timer;
1697 
1698 	int __percpu		*pcpu_refcnt;
1699 	struct list_head	todo_list;
1700 
1701 	struct list_head	link_watch_list;
1702 
1703 	enum { NETREG_UNINITIALIZED=0,
1704 	       NETREG_REGISTERED,	/* completed register_netdevice */
1705 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1706 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1707 	       NETREG_RELEASED,		/* called free_netdev */
1708 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1709 	} reg_state:8;
1710 
1711 	bool dismantle;
1712 
1713 	enum {
1714 		RTNL_LINK_INITIALIZED,
1715 		RTNL_LINK_INITIALIZING,
1716 	} rtnl_link_state:16;
1717 
1718 	void (*destructor)(struct net_device *dev);
1719 
1720 #ifdef CONFIG_NETPOLL
1721 	struct netpoll_info __rcu	*npinfo;
1722 #endif
1723 
1724 	possible_net_t			nd_net;
1725 
1726 	/* mid-layer private */
1727 	union {
1728 		void					*ml_priv;
1729 		struct pcpu_lstats __percpu		*lstats;
1730 		struct pcpu_sw_netstats __percpu	*tstats;
1731 		struct pcpu_dstats __percpu		*dstats;
1732 		struct pcpu_vstats __percpu		*vstats;
1733 	};
1734 
1735 	struct garp_port __rcu	*garp_port;
1736 	struct mrp_port __rcu	*mrp_port;
1737 
1738 	struct device	dev;
1739 	const struct attribute_group *sysfs_groups[4];
1740 	const struct attribute_group *sysfs_rx_queue_group;
1741 
1742 	const struct rtnl_link_ops *rtnl_link_ops;
1743 
1744 	/* for setting kernel sock attribute on TCP connection setup */
1745 #define GSO_MAX_SIZE		65536
1746 	unsigned int		gso_max_size;
1747 #define GSO_MAX_SEGS		65535
1748 	u16			gso_max_segs;
1749 	u16			gso_min_segs;
1750 #ifdef CONFIG_DCB
1751 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1752 #endif
1753 	u8 num_tc;
1754 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1755 	u8 prio_tc_map[TC_BITMASK + 1];
1756 
1757 #if IS_ENABLED(CONFIG_FCOE)
1758 	unsigned int		fcoe_ddp_xid;
1759 #endif
1760 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1761 	struct netprio_map __rcu *priomap;
1762 #endif
1763 	struct phy_device *phydev;
1764 	struct lock_class_key *qdisc_tx_busylock;
1765 };
1766 #define to_net_dev(d) container_of(d, struct net_device, dev)
1767 
1768 #define	NETDEV_ALIGN		32
1769 
1770 static inline
1771 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1772 {
1773 	return dev->prio_tc_map[prio & TC_BITMASK];
1774 }
1775 
1776 static inline
1777 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1778 {
1779 	if (tc >= dev->num_tc)
1780 		return -EINVAL;
1781 
1782 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1783 	return 0;
1784 }
1785 
1786 static inline
1787 void netdev_reset_tc(struct net_device *dev)
1788 {
1789 	dev->num_tc = 0;
1790 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1791 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1792 }
1793 
1794 static inline
1795 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1796 {
1797 	if (tc >= dev->num_tc)
1798 		return -EINVAL;
1799 
1800 	dev->tc_to_txq[tc].count = count;
1801 	dev->tc_to_txq[tc].offset = offset;
1802 	return 0;
1803 }
1804 
1805 static inline
1806 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1807 {
1808 	if (num_tc > TC_MAX_QUEUE)
1809 		return -EINVAL;
1810 
1811 	dev->num_tc = num_tc;
1812 	return 0;
1813 }
1814 
1815 static inline
1816 int netdev_get_num_tc(struct net_device *dev)
1817 {
1818 	return dev->num_tc;
1819 }
1820 
1821 static inline
1822 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1823 					 unsigned int index)
1824 {
1825 	return &dev->_tx[index];
1826 }
1827 
1828 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1829 						    const struct sk_buff *skb)
1830 {
1831 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1832 }
1833 
1834 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1835 					    void (*f)(struct net_device *,
1836 						      struct netdev_queue *,
1837 						      void *),
1838 					    void *arg)
1839 {
1840 	unsigned int i;
1841 
1842 	for (i = 0; i < dev->num_tx_queues; i++)
1843 		f(dev, &dev->_tx[i], arg);
1844 }
1845 
1846 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1847 				    struct sk_buff *skb,
1848 				    void *accel_priv);
1849 
1850 /*
1851  * Net namespace inlines
1852  */
1853 static inline
1854 struct net *dev_net(const struct net_device *dev)
1855 {
1856 	return read_pnet(&dev->nd_net);
1857 }
1858 
1859 static inline
1860 void dev_net_set(struct net_device *dev, struct net *net)
1861 {
1862 	write_pnet(&dev->nd_net, net);
1863 }
1864 
1865 static inline bool netdev_uses_dsa(struct net_device *dev)
1866 {
1867 #if IS_ENABLED(CONFIG_NET_DSA)
1868 	if (dev->dsa_ptr != NULL)
1869 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1870 #endif
1871 	return false;
1872 }
1873 
1874 /**
1875  *	netdev_priv - access network device private data
1876  *	@dev: network device
1877  *
1878  * Get network device private data
1879  */
1880 static inline void *netdev_priv(const struct net_device *dev)
1881 {
1882 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1883 }
1884 
1885 /* Set the sysfs physical device reference for the network logical device
1886  * if set prior to registration will cause a symlink during initialization.
1887  */
1888 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1889 
1890 /* Set the sysfs device type for the network logical device to allow
1891  * fine-grained identification of different network device types. For
1892  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1893  */
1894 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1895 
1896 /* Default NAPI poll() weight
1897  * Device drivers are strongly advised to not use bigger value
1898  */
1899 #define NAPI_POLL_WEIGHT 64
1900 
1901 /**
1902  *	netif_napi_add - initialize a napi context
1903  *	@dev:  network device
1904  *	@napi: napi context
1905  *	@poll: polling function
1906  *	@weight: default weight
1907  *
1908  * netif_napi_add() must be used to initialize a napi context prior to calling
1909  * *any* of the other napi related functions.
1910  */
1911 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1912 		    int (*poll)(struct napi_struct *, int), int weight);
1913 
1914 /**
1915  *  netif_napi_del - remove a napi context
1916  *  @napi: napi context
1917  *
1918  *  netif_napi_del() removes a napi context from the network device napi list
1919  */
1920 void netif_napi_del(struct napi_struct *napi);
1921 
1922 struct napi_gro_cb {
1923 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1924 	void *frag0;
1925 
1926 	/* Length of frag0. */
1927 	unsigned int frag0_len;
1928 
1929 	/* This indicates where we are processing relative to skb->data. */
1930 	int data_offset;
1931 
1932 	/* This is non-zero if the packet cannot be merged with the new skb. */
1933 	u16	flush;
1934 
1935 	/* Save the IP ID here and check when we get to the transport layer */
1936 	u16	flush_id;
1937 
1938 	/* Number of segments aggregated. */
1939 	u16	count;
1940 
1941 	/* Start offset for remote checksum offload */
1942 	u16	gro_remcsum_start;
1943 
1944 	/* jiffies when first packet was created/queued */
1945 	unsigned long age;
1946 
1947 	/* Used in ipv6_gro_receive() and foo-over-udp */
1948 	u16	proto;
1949 
1950 	/* This is non-zero if the packet may be of the same flow. */
1951 	u8	same_flow:1;
1952 
1953 	/* Used in udp_gro_receive */
1954 	u8	udp_mark:1;
1955 
1956 	/* GRO checksum is valid */
1957 	u8	csum_valid:1;
1958 
1959 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1960 	u8	csum_cnt:3;
1961 
1962 	/* Free the skb? */
1963 	u8	free:2;
1964 #define NAPI_GRO_FREE		  1
1965 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1966 
1967 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1968 	u8	is_ipv6:1;
1969 
1970 	/* 7 bit hole */
1971 
1972 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1973 	__wsum	csum;
1974 
1975 	/* used in skb_gro_receive() slow path */
1976 	struct sk_buff *last;
1977 };
1978 
1979 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1980 
1981 struct packet_type {
1982 	__be16			type;	/* This is really htons(ether_type). */
1983 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1984 	int			(*func) (struct sk_buff *,
1985 					 struct net_device *,
1986 					 struct packet_type *,
1987 					 struct net_device *);
1988 	bool			(*id_match)(struct packet_type *ptype,
1989 					    struct sock *sk);
1990 	void			*af_packet_priv;
1991 	struct list_head	list;
1992 };
1993 
1994 struct offload_callbacks {
1995 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1996 						netdev_features_t features);
1997 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1998 						 struct sk_buff *skb);
1999 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2000 };
2001 
2002 struct packet_offload {
2003 	__be16			 type;	/* This is really htons(ether_type). */
2004 	u16			 priority;
2005 	struct offload_callbacks callbacks;
2006 	struct list_head	 list;
2007 };
2008 
2009 struct udp_offload;
2010 
2011 struct udp_offload_callbacks {
2012 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2013 						 struct sk_buff *skb,
2014 						 struct udp_offload *uoff);
2015 	int			(*gro_complete)(struct sk_buff *skb,
2016 						int nhoff,
2017 						struct udp_offload *uoff);
2018 };
2019 
2020 struct udp_offload {
2021 	__be16			 port;
2022 	u8			 ipproto;
2023 	struct udp_offload_callbacks callbacks;
2024 };
2025 
2026 /* often modified stats are per cpu, other are shared (netdev->stats) */
2027 struct pcpu_sw_netstats {
2028 	u64     rx_packets;
2029 	u64     rx_bytes;
2030 	u64     tx_packets;
2031 	u64     tx_bytes;
2032 	struct u64_stats_sync   syncp;
2033 };
2034 
2035 #define netdev_alloc_pcpu_stats(type)				\
2036 ({								\
2037 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2038 	if (pcpu_stats)	{					\
2039 		int __cpu;					\
2040 		for_each_possible_cpu(__cpu) {			\
2041 			typeof(type) *stat;			\
2042 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2043 			u64_stats_init(&stat->syncp);		\
2044 		}						\
2045 	}							\
2046 	pcpu_stats;						\
2047 })
2048 
2049 #include <linux/notifier.h>
2050 
2051 /* netdevice notifier chain. Please remember to update the rtnetlink
2052  * notification exclusion list in rtnetlink_event() when adding new
2053  * types.
2054  */
2055 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2056 #define NETDEV_DOWN	0x0002
2057 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2058 				   detected a hardware crash and restarted
2059 				   - we can use this eg to kick tcp sessions
2060 				   once done */
2061 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2062 #define NETDEV_REGISTER 0x0005
2063 #define NETDEV_UNREGISTER	0x0006
2064 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2065 #define NETDEV_CHANGEADDR	0x0008
2066 #define NETDEV_GOING_DOWN	0x0009
2067 #define NETDEV_CHANGENAME	0x000A
2068 #define NETDEV_FEAT_CHANGE	0x000B
2069 #define NETDEV_BONDING_FAILOVER 0x000C
2070 #define NETDEV_PRE_UP		0x000D
2071 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2072 #define NETDEV_POST_TYPE_CHANGE	0x000F
2073 #define NETDEV_POST_INIT	0x0010
2074 #define NETDEV_UNREGISTER_FINAL 0x0011
2075 #define NETDEV_RELEASE		0x0012
2076 #define NETDEV_NOTIFY_PEERS	0x0013
2077 #define NETDEV_JOIN		0x0014
2078 #define NETDEV_CHANGEUPPER	0x0015
2079 #define NETDEV_RESEND_IGMP	0x0016
2080 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2081 #define NETDEV_CHANGEINFODATA	0x0018
2082 #define NETDEV_BONDING_INFO	0x0019
2083 
2084 int register_netdevice_notifier(struct notifier_block *nb);
2085 int unregister_netdevice_notifier(struct notifier_block *nb);
2086 
2087 struct netdev_notifier_info {
2088 	struct net_device *dev;
2089 };
2090 
2091 struct netdev_notifier_change_info {
2092 	struct netdev_notifier_info info; /* must be first */
2093 	unsigned int flags_changed;
2094 };
2095 
2096 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2097 					     struct net_device *dev)
2098 {
2099 	info->dev = dev;
2100 }
2101 
2102 static inline struct net_device *
2103 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2104 {
2105 	return info->dev;
2106 }
2107 
2108 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2109 
2110 
2111 extern rwlock_t				dev_base_lock;		/* Device list lock */
2112 
2113 #define for_each_netdev(net, d)		\
2114 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2115 #define for_each_netdev_reverse(net, d)	\
2116 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2117 #define for_each_netdev_rcu(net, d)		\
2118 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2119 #define for_each_netdev_safe(net, d, n)	\
2120 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2121 #define for_each_netdev_continue(net, d)		\
2122 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2123 #define for_each_netdev_continue_rcu(net, d)		\
2124 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2125 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2126 		for_each_netdev_rcu(&init_net, slave)	\
2127 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2128 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2129 
2130 static inline struct net_device *next_net_device(struct net_device *dev)
2131 {
2132 	struct list_head *lh;
2133 	struct net *net;
2134 
2135 	net = dev_net(dev);
2136 	lh = dev->dev_list.next;
2137 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2138 }
2139 
2140 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2141 {
2142 	struct list_head *lh;
2143 	struct net *net;
2144 
2145 	net = dev_net(dev);
2146 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2147 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2148 }
2149 
2150 static inline struct net_device *first_net_device(struct net *net)
2151 {
2152 	return list_empty(&net->dev_base_head) ? NULL :
2153 		net_device_entry(net->dev_base_head.next);
2154 }
2155 
2156 static inline struct net_device *first_net_device_rcu(struct net *net)
2157 {
2158 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2159 
2160 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2161 }
2162 
2163 int netdev_boot_setup_check(struct net_device *dev);
2164 unsigned long netdev_boot_base(const char *prefix, int unit);
2165 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2166 				       const char *hwaddr);
2167 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2168 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2169 void dev_add_pack(struct packet_type *pt);
2170 void dev_remove_pack(struct packet_type *pt);
2171 void __dev_remove_pack(struct packet_type *pt);
2172 void dev_add_offload(struct packet_offload *po);
2173 void dev_remove_offload(struct packet_offload *po);
2174 
2175 int dev_get_iflink(const struct net_device *dev);
2176 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2177 				      unsigned short mask);
2178 struct net_device *dev_get_by_name(struct net *net, const char *name);
2179 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2180 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2181 int dev_alloc_name(struct net_device *dev, const char *name);
2182 int dev_open(struct net_device *dev);
2183 int dev_close(struct net_device *dev);
2184 int dev_close_many(struct list_head *head, bool unlink);
2185 void dev_disable_lro(struct net_device *dev);
2186 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2187 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2188 static inline int dev_queue_xmit(struct sk_buff *skb)
2189 {
2190 	return dev_queue_xmit_sk(skb->sk, skb);
2191 }
2192 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2193 int register_netdevice(struct net_device *dev);
2194 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2195 void unregister_netdevice_many(struct list_head *head);
2196 static inline void unregister_netdevice(struct net_device *dev)
2197 {
2198 	unregister_netdevice_queue(dev, NULL);
2199 }
2200 
2201 int netdev_refcnt_read(const struct net_device *dev);
2202 void free_netdev(struct net_device *dev);
2203 void netdev_freemem(struct net_device *dev);
2204 void synchronize_net(void);
2205 int init_dummy_netdev(struct net_device *dev);
2206 
2207 DECLARE_PER_CPU(int, xmit_recursion);
2208 static inline int dev_recursion_level(void)
2209 {
2210 	return this_cpu_read(xmit_recursion);
2211 }
2212 
2213 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2214 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2215 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2216 int netdev_get_name(struct net *net, char *name, int ifindex);
2217 int dev_restart(struct net_device *dev);
2218 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2219 
2220 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2221 {
2222 	return NAPI_GRO_CB(skb)->data_offset;
2223 }
2224 
2225 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2226 {
2227 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2228 }
2229 
2230 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2231 {
2232 	NAPI_GRO_CB(skb)->data_offset += len;
2233 }
2234 
2235 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2236 					unsigned int offset)
2237 {
2238 	return NAPI_GRO_CB(skb)->frag0 + offset;
2239 }
2240 
2241 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2242 {
2243 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2244 }
2245 
2246 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2247 					unsigned int offset)
2248 {
2249 	if (!pskb_may_pull(skb, hlen))
2250 		return NULL;
2251 
2252 	NAPI_GRO_CB(skb)->frag0 = NULL;
2253 	NAPI_GRO_CB(skb)->frag0_len = 0;
2254 	return skb->data + offset;
2255 }
2256 
2257 static inline void *skb_gro_network_header(struct sk_buff *skb)
2258 {
2259 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2260 	       skb_network_offset(skb);
2261 }
2262 
2263 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2264 					const void *start, unsigned int len)
2265 {
2266 	if (NAPI_GRO_CB(skb)->csum_valid)
2267 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2268 						  csum_partial(start, len, 0));
2269 }
2270 
2271 /* GRO checksum functions. These are logical equivalents of the normal
2272  * checksum functions (in skbuff.h) except that they operate on the GRO
2273  * offsets and fields in sk_buff.
2274  */
2275 
2276 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2277 
2278 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2279 {
2280 	return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2281 		skb_gro_offset(skb));
2282 }
2283 
2284 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2285 						      bool zero_okay,
2286 						      __sum16 check)
2287 {
2288 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2289 		skb_checksum_start_offset(skb) <
2290 		 skb_gro_offset(skb)) &&
2291 		!skb_at_gro_remcsum_start(skb) &&
2292 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2293 		(!zero_okay || check));
2294 }
2295 
2296 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2297 							   __wsum psum)
2298 {
2299 	if (NAPI_GRO_CB(skb)->csum_valid &&
2300 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2301 		return 0;
2302 
2303 	NAPI_GRO_CB(skb)->csum = psum;
2304 
2305 	return __skb_gro_checksum_complete(skb);
2306 }
2307 
2308 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2309 {
2310 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2311 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2312 		NAPI_GRO_CB(skb)->csum_cnt--;
2313 	} else {
2314 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2315 		 * verified a new top level checksum or an encapsulated one
2316 		 * during GRO. This saves work if we fallback to normal path.
2317 		 */
2318 		__skb_incr_checksum_unnecessary(skb);
2319 	}
2320 }
2321 
2322 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2323 				    compute_pseudo)			\
2324 ({									\
2325 	__sum16 __ret = 0;						\
2326 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2327 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2328 				compute_pseudo(skb, proto));		\
2329 	if (__ret)							\
2330 		__skb_mark_checksum_bad(skb);				\
2331 	else								\
2332 		skb_gro_incr_csum_unnecessary(skb);			\
2333 	__ret;								\
2334 })
2335 
2336 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2337 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2338 
2339 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2340 					     compute_pseudo)		\
2341 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2342 
2343 #define skb_gro_checksum_simple_validate(skb)				\
2344 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2345 
2346 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2347 {
2348 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2349 		!NAPI_GRO_CB(skb)->csum_valid);
2350 }
2351 
2352 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2353 					      __sum16 check, __wsum pseudo)
2354 {
2355 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2356 	NAPI_GRO_CB(skb)->csum_valid = 1;
2357 }
2358 
2359 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2360 do {									\
2361 	if (__skb_gro_checksum_convert_check(skb))			\
2362 		__skb_gro_checksum_convert(skb, check,			\
2363 					   compute_pseudo(skb, proto));	\
2364 } while (0)
2365 
2366 struct gro_remcsum {
2367 	int offset;
2368 	__wsum delta;
2369 };
2370 
2371 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2372 {
2373 	grc->offset = 0;
2374 	grc->delta = 0;
2375 }
2376 
2377 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2378 					   int start, int offset,
2379 					   struct gro_remcsum *grc,
2380 					   bool nopartial)
2381 {
2382 	__wsum delta;
2383 
2384 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2385 
2386 	if (!nopartial) {
2387 		NAPI_GRO_CB(skb)->gro_remcsum_start =
2388 		    ((unsigned char *)ptr + start) - skb->head;
2389 		return;
2390 	}
2391 
2392 	delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2393 
2394 	/* Adjust skb->csum since we changed the packet */
2395 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2396 
2397 	grc->offset = (ptr + offset) - (void *)skb->head;
2398 	grc->delta = delta;
2399 }
2400 
2401 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2402 					   struct gro_remcsum *grc)
2403 {
2404 	if (!grc->delta)
2405 		return;
2406 
2407 	remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2408 }
2409 
2410 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2411 				  unsigned short type,
2412 				  const void *daddr, const void *saddr,
2413 				  unsigned int len)
2414 {
2415 	if (!dev->header_ops || !dev->header_ops->create)
2416 		return 0;
2417 
2418 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2419 }
2420 
2421 static inline int dev_parse_header(const struct sk_buff *skb,
2422 				   unsigned char *haddr)
2423 {
2424 	const struct net_device *dev = skb->dev;
2425 
2426 	if (!dev->header_ops || !dev->header_ops->parse)
2427 		return 0;
2428 	return dev->header_ops->parse(skb, haddr);
2429 }
2430 
2431 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2432 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2433 static inline int unregister_gifconf(unsigned int family)
2434 {
2435 	return register_gifconf(family, NULL);
2436 }
2437 
2438 #ifdef CONFIG_NET_FLOW_LIMIT
2439 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2440 struct sd_flow_limit {
2441 	u64			count;
2442 	unsigned int		num_buckets;
2443 	unsigned int		history_head;
2444 	u16			history[FLOW_LIMIT_HISTORY];
2445 	u8			buckets[];
2446 };
2447 
2448 extern int netdev_flow_limit_table_len;
2449 #endif /* CONFIG_NET_FLOW_LIMIT */
2450 
2451 /*
2452  * Incoming packets are placed on per-cpu queues
2453  */
2454 struct softnet_data {
2455 	struct list_head	poll_list;
2456 	struct sk_buff_head	process_queue;
2457 
2458 	/* stats */
2459 	unsigned int		processed;
2460 	unsigned int		time_squeeze;
2461 	unsigned int		cpu_collision;
2462 	unsigned int		received_rps;
2463 #ifdef CONFIG_RPS
2464 	struct softnet_data	*rps_ipi_list;
2465 #endif
2466 #ifdef CONFIG_NET_FLOW_LIMIT
2467 	struct sd_flow_limit __rcu *flow_limit;
2468 #endif
2469 	struct Qdisc		*output_queue;
2470 	struct Qdisc		**output_queue_tailp;
2471 	struct sk_buff		*completion_queue;
2472 
2473 #ifdef CONFIG_RPS
2474 	/* Elements below can be accessed between CPUs for RPS */
2475 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2476 	struct softnet_data	*rps_ipi_next;
2477 	unsigned int		cpu;
2478 	unsigned int		input_queue_head;
2479 	unsigned int		input_queue_tail;
2480 #endif
2481 	unsigned int		dropped;
2482 	struct sk_buff_head	input_pkt_queue;
2483 	struct napi_struct	backlog;
2484 
2485 };
2486 
2487 static inline void input_queue_head_incr(struct softnet_data *sd)
2488 {
2489 #ifdef CONFIG_RPS
2490 	sd->input_queue_head++;
2491 #endif
2492 }
2493 
2494 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2495 					      unsigned int *qtail)
2496 {
2497 #ifdef CONFIG_RPS
2498 	*qtail = ++sd->input_queue_tail;
2499 #endif
2500 }
2501 
2502 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2503 
2504 void __netif_schedule(struct Qdisc *q);
2505 void netif_schedule_queue(struct netdev_queue *txq);
2506 
2507 static inline void netif_tx_schedule_all(struct net_device *dev)
2508 {
2509 	unsigned int i;
2510 
2511 	for (i = 0; i < dev->num_tx_queues; i++)
2512 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2513 }
2514 
2515 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2516 {
2517 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2518 }
2519 
2520 /**
2521  *	netif_start_queue - allow transmit
2522  *	@dev: network device
2523  *
2524  *	Allow upper layers to call the device hard_start_xmit routine.
2525  */
2526 static inline void netif_start_queue(struct net_device *dev)
2527 {
2528 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2529 }
2530 
2531 static inline void netif_tx_start_all_queues(struct net_device *dev)
2532 {
2533 	unsigned int i;
2534 
2535 	for (i = 0; i < dev->num_tx_queues; i++) {
2536 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2537 		netif_tx_start_queue(txq);
2538 	}
2539 }
2540 
2541 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2542 
2543 /**
2544  *	netif_wake_queue - restart transmit
2545  *	@dev: network device
2546  *
2547  *	Allow upper layers to call the device hard_start_xmit routine.
2548  *	Used for flow control when transmit resources are available.
2549  */
2550 static inline void netif_wake_queue(struct net_device *dev)
2551 {
2552 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2553 }
2554 
2555 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2556 {
2557 	unsigned int i;
2558 
2559 	for (i = 0; i < dev->num_tx_queues; i++) {
2560 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2561 		netif_tx_wake_queue(txq);
2562 	}
2563 }
2564 
2565 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2566 {
2567 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2568 }
2569 
2570 /**
2571  *	netif_stop_queue - stop transmitted packets
2572  *	@dev: network device
2573  *
2574  *	Stop upper layers calling the device hard_start_xmit routine.
2575  *	Used for flow control when transmit resources are unavailable.
2576  */
2577 static inline void netif_stop_queue(struct net_device *dev)
2578 {
2579 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2580 }
2581 
2582 void netif_tx_stop_all_queues(struct net_device *dev);
2583 
2584 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2585 {
2586 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587 }
2588 
2589 /**
2590  *	netif_queue_stopped - test if transmit queue is flowblocked
2591  *	@dev: network device
2592  *
2593  *	Test if transmit queue on device is currently unable to send.
2594  */
2595 static inline bool netif_queue_stopped(const struct net_device *dev)
2596 {
2597 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2598 }
2599 
2600 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2601 {
2602 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2603 }
2604 
2605 static inline bool
2606 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2607 {
2608 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2609 }
2610 
2611 static inline bool
2612 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2613 {
2614 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2615 }
2616 
2617 /**
2618  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619  *	@dev_queue: pointer to transmit queue
2620  *
2621  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622  * to give appropriate hint to the cpu.
2623  */
2624 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2625 {
2626 #ifdef CONFIG_BQL
2627 	prefetchw(&dev_queue->dql.num_queued);
2628 #endif
2629 }
2630 
2631 /**
2632  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633  *	@dev_queue: pointer to transmit queue
2634  *
2635  * BQL enabled drivers might use this helper in their TX completion path,
2636  * to give appropriate hint to the cpu.
2637  */
2638 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2639 {
2640 #ifdef CONFIG_BQL
2641 	prefetchw(&dev_queue->dql.limit);
2642 #endif
2643 }
2644 
2645 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646 					unsigned int bytes)
2647 {
2648 #ifdef CONFIG_BQL
2649 	dql_queued(&dev_queue->dql, bytes);
2650 
2651 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2652 		return;
2653 
2654 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2655 
2656 	/*
2657 	 * The XOFF flag must be set before checking the dql_avail below,
2658 	 * because in netdev_tx_completed_queue we update the dql_completed
2659 	 * before checking the XOFF flag.
2660 	 */
2661 	smp_mb();
2662 
2663 	/* check again in case another CPU has just made room avail */
2664 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666 #endif
2667 }
2668 
2669 /**
2670  * 	netdev_sent_queue - report the number of bytes queued to hardware
2671  * 	@dev: network device
2672  * 	@bytes: number of bytes queued to the hardware device queue
2673  *
2674  * 	Report the number of bytes queued for sending/completion to the network
2675  * 	device hardware queue. @bytes should be a good approximation and should
2676  * 	exactly match netdev_completed_queue() @bytes
2677  */
2678 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2679 {
2680 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2681 }
2682 
2683 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684 					     unsigned int pkts, unsigned int bytes)
2685 {
2686 #ifdef CONFIG_BQL
2687 	if (unlikely(!bytes))
2688 		return;
2689 
2690 	dql_completed(&dev_queue->dql, bytes);
2691 
2692 	/*
2693 	 * Without the memory barrier there is a small possiblity that
2694 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2695 	 * be stopped forever
2696 	 */
2697 	smp_mb();
2698 
2699 	if (dql_avail(&dev_queue->dql) < 0)
2700 		return;
2701 
2702 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703 		netif_schedule_queue(dev_queue);
2704 #endif
2705 }
2706 
2707 /**
2708  * 	netdev_completed_queue - report bytes and packets completed by device
2709  * 	@dev: network device
2710  * 	@pkts: actual number of packets sent over the medium
2711  * 	@bytes: actual number of bytes sent over the medium
2712  *
2713  * 	Report the number of bytes and packets transmitted by the network device
2714  * 	hardware queue over the physical medium, @bytes must exactly match the
2715  * 	@bytes amount passed to netdev_sent_queue()
2716  */
2717 static inline void netdev_completed_queue(struct net_device *dev,
2718 					  unsigned int pkts, unsigned int bytes)
2719 {
2720 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2721 }
2722 
2723 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2724 {
2725 #ifdef CONFIG_BQL
2726 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727 	dql_reset(&q->dql);
2728 #endif
2729 }
2730 
2731 /**
2732  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2733  * 	@dev_queue: network device
2734  *
2735  * 	Reset the bytes and packet count of a network device and clear the
2736  * 	software flow control OFF bit for this network device
2737  */
2738 static inline void netdev_reset_queue(struct net_device *dev_queue)
2739 {
2740 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2741 }
2742 
2743 /**
2744  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745  * 	@dev: network device
2746  * 	@queue_index: given tx queue index
2747  *
2748  * 	Returns 0 if given tx queue index >= number of device tx queues,
2749  * 	otherwise returns the originally passed tx queue index.
2750  */
2751 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2752 {
2753 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755 				     dev->name, queue_index,
2756 				     dev->real_num_tx_queues);
2757 		return 0;
2758 	}
2759 
2760 	return queue_index;
2761 }
2762 
2763 /**
2764  *	netif_running - test if up
2765  *	@dev: network device
2766  *
2767  *	Test if the device has been brought up.
2768  */
2769 static inline bool netif_running(const struct net_device *dev)
2770 {
2771 	return test_bit(__LINK_STATE_START, &dev->state);
2772 }
2773 
2774 /*
2775  * Routines to manage the subqueues on a device.  We only need start
2776  * stop, and a check if it's stopped.  All other device management is
2777  * done at the overall netdevice level.
2778  * Also test the device if we're multiqueue.
2779  */
2780 
2781 /**
2782  *	netif_start_subqueue - allow sending packets on subqueue
2783  *	@dev: network device
2784  *	@queue_index: sub queue index
2785  *
2786  * Start individual transmit queue of a device with multiple transmit queues.
2787  */
2788 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2789 {
2790 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2791 
2792 	netif_tx_start_queue(txq);
2793 }
2794 
2795 /**
2796  *	netif_stop_subqueue - stop sending packets on subqueue
2797  *	@dev: network device
2798  *	@queue_index: sub queue index
2799  *
2800  * Stop individual transmit queue of a device with multiple transmit queues.
2801  */
2802 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2803 {
2804 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805 	netif_tx_stop_queue(txq);
2806 }
2807 
2808 /**
2809  *	netif_subqueue_stopped - test status of subqueue
2810  *	@dev: network device
2811  *	@queue_index: sub queue index
2812  *
2813  * Check individual transmit queue of a device with multiple transmit queues.
2814  */
2815 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816 					    u16 queue_index)
2817 {
2818 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2819 
2820 	return netif_tx_queue_stopped(txq);
2821 }
2822 
2823 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824 					  struct sk_buff *skb)
2825 {
2826 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2827 }
2828 
2829 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2830 
2831 #ifdef CONFIG_XPS
2832 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833 			u16 index);
2834 #else
2835 static inline int netif_set_xps_queue(struct net_device *dev,
2836 				      const struct cpumask *mask,
2837 				      u16 index)
2838 {
2839 	return 0;
2840 }
2841 #endif
2842 
2843 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2844 		  unsigned int num_tx_queues);
2845 
2846 /*
2847  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2848  * as a distribution range limit for the returned value.
2849  */
2850 static inline u16 skb_tx_hash(const struct net_device *dev,
2851 			      struct sk_buff *skb)
2852 {
2853 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2854 }
2855 
2856 /**
2857  *	netif_is_multiqueue - test if device has multiple transmit queues
2858  *	@dev: network device
2859  *
2860  * Check if device has multiple transmit queues
2861  */
2862 static inline bool netif_is_multiqueue(const struct net_device *dev)
2863 {
2864 	return dev->num_tx_queues > 1;
2865 }
2866 
2867 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2868 
2869 #ifdef CONFIG_SYSFS
2870 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2871 #else
2872 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2873 						unsigned int rxq)
2874 {
2875 	return 0;
2876 }
2877 #endif
2878 
2879 #ifdef CONFIG_SYSFS
2880 static inline unsigned int get_netdev_rx_queue_index(
2881 		struct netdev_rx_queue *queue)
2882 {
2883 	struct net_device *dev = queue->dev;
2884 	int index = queue - dev->_rx;
2885 
2886 	BUG_ON(index >= dev->num_rx_queues);
2887 	return index;
2888 }
2889 #endif
2890 
2891 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2892 int netif_get_num_default_rss_queues(void);
2893 
2894 enum skb_free_reason {
2895 	SKB_REASON_CONSUMED,
2896 	SKB_REASON_DROPPED,
2897 };
2898 
2899 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2900 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2901 
2902 /*
2903  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2904  * interrupt context or with hardware interrupts being disabled.
2905  * (in_irq() || irqs_disabled())
2906  *
2907  * We provide four helpers that can be used in following contexts :
2908  *
2909  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2910  *  replacing kfree_skb(skb)
2911  *
2912  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2913  *  Typically used in place of consume_skb(skb) in TX completion path
2914  *
2915  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2916  *  replacing kfree_skb(skb)
2917  *
2918  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2919  *  and consumed a packet. Used in place of consume_skb(skb)
2920  */
2921 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2922 {
2923 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2924 }
2925 
2926 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2927 {
2928 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2929 }
2930 
2931 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2932 {
2933 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2934 }
2935 
2936 static inline void dev_consume_skb_any(struct sk_buff *skb)
2937 {
2938 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2939 }
2940 
2941 int netif_rx(struct sk_buff *skb);
2942 int netif_rx_ni(struct sk_buff *skb);
2943 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2944 static inline int netif_receive_skb(struct sk_buff *skb)
2945 {
2946 	return netif_receive_skb_sk(skb->sk, skb);
2947 }
2948 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2949 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2950 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2951 gro_result_t napi_gro_frags(struct napi_struct *napi);
2952 struct packet_offload *gro_find_receive_by_type(__be16 type);
2953 struct packet_offload *gro_find_complete_by_type(__be16 type);
2954 
2955 static inline void napi_free_frags(struct napi_struct *napi)
2956 {
2957 	kfree_skb(napi->skb);
2958 	napi->skb = NULL;
2959 }
2960 
2961 int netdev_rx_handler_register(struct net_device *dev,
2962 			       rx_handler_func_t *rx_handler,
2963 			       void *rx_handler_data);
2964 void netdev_rx_handler_unregister(struct net_device *dev);
2965 
2966 bool dev_valid_name(const char *name);
2967 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2968 int dev_ethtool(struct net *net, struct ifreq *);
2969 unsigned int dev_get_flags(const struct net_device *);
2970 int __dev_change_flags(struct net_device *, unsigned int flags);
2971 int dev_change_flags(struct net_device *, unsigned int);
2972 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2973 			unsigned int gchanges);
2974 int dev_change_name(struct net_device *, const char *);
2975 int dev_set_alias(struct net_device *, const char *, size_t);
2976 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2977 int dev_set_mtu(struct net_device *, int);
2978 void dev_set_group(struct net_device *, int);
2979 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2980 int dev_change_carrier(struct net_device *, bool new_carrier);
2981 int dev_get_phys_port_id(struct net_device *dev,
2982 			 struct netdev_phys_item_id *ppid);
2983 int dev_get_phys_port_name(struct net_device *dev,
2984 			   char *name, size_t len);
2985 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2986 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2987 				    struct netdev_queue *txq, int *ret);
2988 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2989 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2990 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2991 
2992 extern int		netdev_budget;
2993 
2994 /* Called by rtnetlink.c:rtnl_unlock() */
2995 void netdev_run_todo(void);
2996 
2997 /**
2998  *	dev_put - release reference to device
2999  *	@dev: network device
3000  *
3001  * Release reference to device to allow it to be freed.
3002  */
3003 static inline void dev_put(struct net_device *dev)
3004 {
3005 	this_cpu_dec(*dev->pcpu_refcnt);
3006 }
3007 
3008 /**
3009  *	dev_hold - get reference to device
3010  *	@dev: network device
3011  *
3012  * Hold reference to device to keep it from being freed.
3013  */
3014 static inline void dev_hold(struct net_device *dev)
3015 {
3016 	this_cpu_inc(*dev->pcpu_refcnt);
3017 }
3018 
3019 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3020  * and _off may be called from IRQ context, but it is caller
3021  * who is responsible for serialization of these calls.
3022  *
3023  * The name carrier is inappropriate, these functions should really be
3024  * called netif_lowerlayer_*() because they represent the state of any
3025  * kind of lower layer not just hardware media.
3026  */
3027 
3028 void linkwatch_init_dev(struct net_device *dev);
3029 void linkwatch_fire_event(struct net_device *dev);
3030 void linkwatch_forget_dev(struct net_device *dev);
3031 
3032 /**
3033  *	netif_carrier_ok - test if carrier present
3034  *	@dev: network device
3035  *
3036  * Check if carrier is present on device
3037  */
3038 static inline bool netif_carrier_ok(const struct net_device *dev)
3039 {
3040 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3041 }
3042 
3043 unsigned long dev_trans_start(struct net_device *dev);
3044 
3045 void __netdev_watchdog_up(struct net_device *dev);
3046 
3047 void netif_carrier_on(struct net_device *dev);
3048 
3049 void netif_carrier_off(struct net_device *dev);
3050 
3051 /**
3052  *	netif_dormant_on - mark device as dormant.
3053  *	@dev: network device
3054  *
3055  * Mark device as dormant (as per RFC2863).
3056  *
3057  * The dormant state indicates that the relevant interface is not
3058  * actually in a condition to pass packets (i.e., it is not 'up') but is
3059  * in a "pending" state, waiting for some external event.  For "on-
3060  * demand" interfaces, this new state identifies the situation where the
3061  * interface is waiting for events to place it in the up state.
3062  *
3063  */
3064 static inline void netif_dormant_on(struct net_device *dev)
3065 {
3066 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3067 		linkwatch_fire_event(dev);
3068 }
3069 
3070 /**
3071  *	netif_dormant_off - set device as not dormant.
3072  *	@dev: network device
3073  *
3074  * Device is not in dormant state.
3075  */
3076 static inline void netif_dormant_off(struct net_device *dev)
3077 {
3078 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3079 		linkwatch_fire_event(dev);
3080 }
3081 
3082 /**
3083  *	netif_dormant - test if carrier present
3084  *	@dev: network device
3085  *
3086  * Check if carrier is present on device
3087  */
3088 static inline bool netif_dormant(const struct net_device *dev)
3089 {
3090 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3091 }
3092 
3093 
3094 /**
3095  *	netif_oper_up - test if device is operational
3096  *	@dev: network device
3097  *
3098  * Check if carrier is operational
3099  */
3100 static inline bool netif_oper_up(const struct net_device *dev)
3101 {
3102 	return (dev->operstate == IF_OPER_UP ||
3103 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3104 }
3105 
3106 /**
3107  *	netif_device_present - is device available or removed
3108  *	@dev: network device
3109  *
3110  * Check if device has not been removed from system.
3111  */
3112 static inline bool netif_device_present(struct net_device *dev)
3113 {
3114 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3115 }
3116 
3117 void netif_device_detach(struct net_device *dev);
3118 
3119 void netif_device_attach(struct net_device *dev);
3120 
3121 /*
3122  * Network interface message level settings
3123  */
3124 
3125 enum {
3126 	NETIF_MSG_DRV		= 0x0001,
3127 	NETIF_MSG_PROBE		= 0x0002,
3128 	NETIF_MSG_LINK		= 0x0004,
3129 	NETIF_MSG_TIMER		= 0x0008,
3130 	NETIF_MSG_IFDOWN	= 0x0010,
3131 	NETIF_MSG_IFUP		= 0x0020,
3132 	NETIF_MSG_RX_ERR	= 0x0040,
3133 	NETIF_MSG_TX_ERR	= 0x0080,
3134 	NETIF_MSG_TX_QUEUED	= 0x0100,
3135 	NETIF_MSG_INTR		= 0x0200,
3136 	NETIF_MSG_TX_DONE	= 0x0400,
3137 	NETIF_MSG_RX_STATUS	= 0x0800,
3138 	NETIF_MSG_PKTDATA	= 0x1000,
3139 	NETIF_MSG_HW		= 0x2000,
3140 	NETIF_MSG_WOL		= 0x4000,
3141 };
3142 
3143 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3144 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3145 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3146 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3147 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3148 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3149 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3150 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3151 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3152 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3153 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3154 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3155 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3156 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3157 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3158 
3159 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3160 {
3161 	/* use default */
3162 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3163 		return default_msg_enable_bits;
3164 	if (debug_value == 0)	/* no output */
3165 		return 0;
3166 	/* set low N bits */
3167 	return (1 << debug_value) - 1;
3168 }
3169 
3170 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3171 {
3172 	spin_lock(&txq->_xmit_lock);
3173 	txq->xmit_lock_owner = cpu;
3174 }
3175 
3176 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3177 {
3178 	spin_lock_bh(&txq->_xmit_lock);
3179 	txq->xmit_lock_owner = smp_processor_id();
3180 }
3181 
3182 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3183 {
3184 	bool ok = spin_trylock(&txq->_xmit_lock);
3185 	if (likely(ok))
3186 		txq->xmit_lock_owner = smp_processor_id();
3187 	return ok;
3188 }
3189 
3190 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3191 {
3192 	txq->xmit_lock_owner = -1;
3193 	spin_unlock(&txq->_xmit_lock);
3194 }
3195 
3196 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3197 {
3198 	txq->xmit_lock_owner = -1;
3199 	spin_unlock_bh(&txq->_xmit_lock);
3200 }
3201 
3202 static inline void txq_trans_update(struct netdev_queue *txq)
3203 {
3204 	if (txq->xmit_lock_owner != -1)
3205 		txq->trans_start = jiffies;
3206 }
3207 
3208 /**
3209  *	netif_tx_lock - grab network device transmit lock
3210  *	@dev: network device
3211  *
3212  * Get network device transmit lock
3213  */
3214 static inline void netif_tx_lock(struct net_device *dev)
3215 {
3216 	unsigned int i;
3217 	int cpu;
3218 
3219 	spin_lock(&dev->tx_global_lock);
3220 	cpu = smp_processor_id();
3221 	for (i = 0; i < dev->num_tx_queues; i++) {
3222 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3223 
3224 		/* We are the only thread of execution doing a
3225 		 * freeze, but we have to grab the _xmit_lock in
3226 		 * order to synchronize with threads which are in
3227 		 * the ->hard_start_xmit() handler and already
3228 		 * checked the frozen bit.
3229 		 */
3230 		__netif_tx_lock(txq, cpu);
3231 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3232 		__netif_tx_unlock(txq);
3233 	}
3234 }
3235 
3236 static inline void netif_tx_lock_bh(struct net_device *dev)
3237 {
3238 	local_bh_disable();
3239 	netif_tx_lock(dev);
3240 }
3241 
3242 static inline void netif_tx_unlock(struct net_device *dev)
3243 {
3244 	unsigned int i;
3245 
3246 	for (i = 0; i < dev->num_tx_queues; i++) {
3247 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3248 
3249 		/* No need to grab the _xmit_lock here.  If the
3250 		 * queue is not stopped for another reason, we
3251 		 * force a schedule.
3252 		 */
3253 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3254 		netif_schedule_queue(txq);
3255 	}
3256 	spin_unlock(&dev->tx_global_lock);
3257 }
3258 
3259 static inline void netif_tx_unlock_bh(struct net_device *dev)
3260 {
3261 	netif_tx_unlock(dev);
3262 	local_bh_enable();
3263 }
3264 
3265 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3266 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3267 		__netif_tx_lock(txq, cpu);		\
3268 	}						\
3269 }
3270 
3271 #define HARD_TX_TRYLOCK(dev, txq)			\
3272 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3273 		__netif_tx_trylock(txq) :		\
3274 		true )
3275 
3276 #define HARD_TX_UNLOCK(dev, txq) {			\
3277 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3278 		__netif_tx_unlock(txq);			\
3279 	}						\
3280 }
3281 
3282 static inline void netif_tx_disable(struct net_device *dev)
3283 {
3284 	unsigned int i;
3285 	int cpu;
3286 
3287 	local_bh_disable();
3288 	cpu = smp_processor_id();
3289 	for (i = 0; i < dev->num_tx_queues; i++) {
3290 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3291 
3292 		__netif_tx_lock(txq, cpu);
3293 		netif_tx_stop_queue(txq);
3294 		__netif_tx_unlock(txq);
3295 	}
3296 	local_bh_enable();
3297 }
3298 
3299 static inline void netif_addr_lock(struct net_device *dev)
3300 {
3301 	spin_lock(&dev->addr_list_lock);
3302 }
3303 
3304 static inline void netif_addr_lock_nested(struct net_device *dev)
3305 {
3306 	int subclass = SINGLE_DEPTH_NESTING;
3307 
3308 	if (dev->netdev_ops->ndo_get_lock_subclass)
3309 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3310 
3311 	spin_lock_nested(&dev->addr_list_lock, subclass);
3312 }
3313 
3314 static inline void netif_addr_lock_bh(struct net_device *dev)
3315 {
3316 	spin_lock_bh(&dev->addr_list_lock);
3317 }
3318 
3319 static inline void netif_addr_unlock(struct net_device *dev)
3320 {
3321 	spin_unlock(&dev->addr_list_lock);
3322 }
3323 
3324 static inline void netif_addr_unlock_bh(struct net_device *dev)
3325 {
3326 	spin_unlock_bh(&dev->addr_list_lock);
3327 }
3328 
3329 /*
3330  * dev_addrs walker. Should be used only for read access. Call with
3331  * rcu_read_lock held.
3332  */
3333 #define for_each_dev_addr(dev, ha) \
3334 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3335 
3336 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3337 
3338 void ether_setup(struct net_device *dev);
3339 
3340 /* Support for loadable net-drivers */
3341 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3342 				    unsigned char name_assign_type,
3343 				    void (*setup)(struct net_device *),
3344 				    unsigned int txqs, unsigned int rxqs);
3345 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3346 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3347 
3348 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3349 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3350 			 count)
3351 
3352 int register_netdev(struct net_device *dev);
3353 void unregister_netdev(struct net_device *dev);
3354 
3355 /* General hardware address lists handling functions */
3356 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3357 		   struct netdev_hw_addr_list *from_list, int addr_len);
3358 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3359 		      struct netdev_hw_addr_list *from_list, int addr_len);
3360 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3361 		       struct net_device *dev,
3362 		       int (*sync)(struct net_device *, const unsigned char *),
3363 		       int (*unsync)(struct net_device *,
3364 				     const unsigned char *));
3365 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3366 			  struct net_device *dev,
3367 			  int (*unsync)(struct net_device *,
3368 					const unsigned char *));
3369 void __hw_addr_init(struct netdev_hw_addr_list *list);
3370 
3371 /* Functions used for device addresses handling */
3372 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3373 		 unsigned char addr_type);
3374 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3375 		 unsigned char addr_type);
3376 void dev_addr_flush(struct net_device *dev);
3377 int dev_addr_init(struct net_device *dev);
3378 
3379 /* Functions used for unicast addresses handling */
3380 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3381 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3382 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3383 int dev_uc_sync(struct net_device *to, struct net_device *from);
3384 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3385 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3386 void dev_uc_flush(struct net_device *dev);
3387 void dev_uc_init(struct net_device *dev);
3388 
3389 /**
3390  *  __dev_uc_sync - Synchonize device's unicast list
3391  *  @dev:  device to sync
3392  *  @sync: function to call if address should be added
3393  *  @unsync: function to call if address should be removed
3394  *
3395  *  Add newly added addresses to the interface, and release
3396  *  addresses that have been deleted.
3397  **/
3398 static inline int __dev_uc_sync(struct net_device *dev,
3399 				int (*sync)(struct net_device *,
3400 					    const unsigned char *),
3401 				int (*unsync)(struct net_device *,
3402 					      const unsigned char *))
3403 {
3404 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3405 }
3406 
3407 /**
3408  *  __dev_uc_unsync - Remove synchronized addresses from device
3409  *  @dev:  device to sync
3410  *  @unsync: function to call if address should be removed
3411  *
3412  *  Remove all addresses that were added to the device by dev_uc_sync().
3413  **/
3414 static inline void __dev_uc_unsync(struct net_device *dev,
3415 				   int (*unsync)(struct net_device *,
3416 						 const unsigned char *))
3417 {
3418 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3419 }
3420 
3421 /* Functions used for multicast addresses handling */
3422 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3423 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3424 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3425 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3426 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3427 int dev_mc_sync(struct net_device *to, struct net_device *from);
3428 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3429 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3430 void dev_mc_flush(struct net_device *dev);
3431 void dev_mc_init(struct net_device *dev);
3432 
3433 /**
3434  *  __dev_mc_sync - Synchonize device's multicast list
3435  *  @dev:  device to sync
3436  *  @sync: function to call if address should be added
3437  *  @unsync: function to call if address should be removed
3438  *
3439  *  Add newly added addresses to the interface, and release
3440  *  addresses that have been deleted.
3441  **/
3442 static inline int __dev_mc_sync(struct net_device *dev,
3443 				int (*sync)(struct net_device *,
3444 					    const unsigned char *),
3445 				int (*unsync)(struct net_device *,
3446 					      const unsigned char *))
3447 {
3448 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3449 }
3450 
3451 /**
3452  *  __dev_mc_unsync - Remove synchronized addresses from device
3453  *  @dev:  device to sync
3454  *  @unsync: function to call if address should be removed
3455  *
3456  *  Remove all addresses that were added to the device by dev_mc_sync().
3457  **/
3458 static inline void __dev_mc_unsync(struct net_device *dev,
3459 				   int (*unsync)(struct net_device *,
3460 						 const unsigned char *))
3461 {
3462 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3463 }
3464 
3465 /* Functions used for secondary unicast and multicast support */
3466 void dev_set_rx_mode(struct net_device *dev);
3467 void __dev_set_rx_mode(struct net_device *dev);
3468 int dev_set_promiscuity(struct net_device *dev, int inc);
3469 int dev_set_allmulti(struct net_device *dev, int inc);
3470 void netdev_state_change(struct net_device *dev);
3471 void netdev_notify_peers(struct net_device *dev);
3472 void netdev_features_change(struct net_device *dev);
3473 /* Load a device via the kmod */
3474 void dev_load(struct net *net, const char *name);
3475 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3476 					struct rtnl_link_stats64 *storage);
3477 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3478 			     const struct net_device_stats *netdev_stats);
3479 
3480 extern int		netdev_max_backlog;
3481 extern int		netdev_tstamp_prequeue;
3482 extern int		weight_p;
3483 extern int		bpf_jit_enable;
3484 
3485 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3486 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3487 						     struct list_head **iter);
3488 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3489 						     struct list_head **iter);
3490 
3491 /* iterate through upper list, must be called under RCU read lock */
3492 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3493 	for (iter = &(dev)->adj_list.upper, \
3494 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3495 	     updev; \
3496 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3497 
3498 /* iterate through upper list, must be called under RCU read lock */
3499 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3500 	for (iter = &(dev)->all_adj_list.upper, \
3501 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3502 	     updev; \
3503 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3504 
3505 void *netdev_lower_get_next_private(struct net_device *dev,
3506 				    struct list_head **iter);
3507 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3508 					struct list_head **iter);
3509 
3510 #define netdev_for_each_lower_private(dev, priv, iter) \
3511 	for (iter = (dev)->adj_list.lower.next, \
3512 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3513 	     priv; \
3514 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3515 
3516 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3517 	for (iter = &(dev)->adj_list.lower, \
3518 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3519 	     priv; \
3520 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3521 
3522 void *netdev_lower_get_next(struct net_device *dev,
3523 				struct list_head **iter);
3524 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3525 	for (iter = &(dev)->adj_list.lower, \
3526 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3527 	     ldev; \
3528 	     ldev = netdev_lower_get_next(dev, &(iter)))
3529 
3530 void *netdev_adjacent_get_private(struct list_head *adj_list);
3531 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3533 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3534 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3535 int netdev_master_upper_dev_link(struct net_device *dev,
3536 				 struct net_device *upper_dev);
3537 int netdev_master_upper_dev_link_private(struct net_device *dev,
3538 					 struct net_device *upper_dev,
3539 					 void *private);
3540 void netdev_upper_dev_unlink(struct net_device *dev,
3541 			     struct net_device *upper_dev);
3542 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3543 void *netdev_lower_dev_get_private(struct net_device *dev,
3544 				   struct net_device *lower_dev);
3545 
3546 /* RSS keys are 40 or 52 bytes long */
3547 #define NETDEV_RSS_KEY_LEN 52
3548 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3549 void netdev_rss_key_fill(void *buffer, size_t len);
3550 
3551 int dev_get_nest_level(struct net_device *dev,
3552 		       bool (*type_check)(struct net_device *dev));
3553 int skb_checksum_help(struct sk_buff *skb);
3554 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3555 				  netdev_features_t features, bool tx_path);
3556 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3557 				    netdev_features_t features);
3558 
3559 struct netdev_bonding_info {
3560 	ifslave	slave;
3561 	ifbond	master;
3562 };
3563 
3564 struct netdev_notifier_bonding_info {
3565 	struct netdev_notifier_info info; /* must be first */
3566 	struct netdev_bonding_info  bonding_info;
3567 };
3568 
3569 void netdev_bonding_info_change(struct net_device *dev,
3570 				struct netdev_bonding_info *bonding_info);
3571 
3572 static inline
3573 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3574 {
3575 	return __skb_gso_segment(skb, features, true);
3576 }
3577 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3578 
3579 static inline bool can_checksum_protocol(netdev_features_t features,
3580 					 __be16 protocol)
3581 {
3582 	return ((features & NETIF_F_GEN_CSUM) ||
3583 		((features & NETIF_F_V4_CSUM) &&
3584 		 protocol == htons(ETH_P_IP)) ||
3585 		((features & NETIF_F_V6_CSUM) &&
3586 		 protocol == htons(ETH_P_IPV6)) ||
3587 		((features & NETIF_F_FCOE_CRC) &&
3588 		 protocol == htons(ETH_P_FCOE)));
3589 }
3590 
3591 #ifdef CONFIG_BUG
3592 void netdev_rx_csum_fault(struct net_device *dev);
3593 #else
3594 static inline void netdev_rx_csum_fault(struct net_device *dev)
3595 {
3596 }
3597 #endif
3598 /* rx skb timestamps */
3599 void net_enable_timestamp(void);
3600 void net_disable_timestamp(void);
3601 
3602 #ifdef CONFIG_PROC_FS
3603 int __init dev_proc_init(void);
3604 #else
3605 #define dev_proc_init() 0
3606 #endif
3607 
3608 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3609 					      struct sk_buff *skb, struct net_device *dev,
3610 					      bool more)
3611 {
3612 	skb->xmit_more = more ? 1 : 0;
3613 	return ops->ndo_start_xmit(skb, dev);
3614 }
3615 
3616 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3617 					    struct netdev_queue *txq, bool more)
3618 {
3619 	const struct net_device_ops *ops = dev->netdev_ops;
3620 	int rc;
3621 
3622 	rc = __netdev_start_xmit(ops, skb, dev, more);
3623 	if (rc == NETDEV_TX_OK)
3624 		txq_trans_update(txq);
3625 
3626 	return rc;
3627 }
3628 
3629 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3630 				const void *ns);
3631 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3632 				 const void *ns);
3633 
3634 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3635 {
3636 	return netdev_class_create_file_ns(class_attr, NULL);
3637 }
3638 
3639 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3640 {
3641 	netdev_class_remove_file_ns(class_attr, NULL);
3642 }
3643 
3644 extern struct kobj_ns_type_operations net_ns_type_operations;
3645 
3646 const char *netdev_drivername(const struct net_device *dev);
3647 
3648 void linkwatch_run_queue(void);
3649 
3650 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3651 							  netdev_features_t f2)
3652 {
3653 	if (f1 & NETIF_F_GEN_CSUM)
3654 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3655 	if (f2 & NETIF_F_GEN_CSUM)
3656 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657 	f1 &= f2;
3658 	if (f1 & NETIF_F_GEN_CSUM)
3659 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3660 
3661 	return f1;
3662 }
3663 
3664 static inline netdev_features_t netdev_get_wanted_features(
3665 	struct net_device *dev)
3666 {
3667 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3668 }
3669 netdev_features_t netdev_increment_features(netdev_features_t all,
3670 	netdev_features_t one, netdev_features_t mask);
3671 
3672 /* Allow TSO being used on stacked device :
3673  * Performing the GSO segmentation before last device
3674  * is a performance improvement.
3675  */
3676 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3677 							netdev_features_t mask)
3678 {
3679 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3680 }
3681 
3682 int __netdev_update_features(struct net_device *dev);
3683 void netdev_update_features(struct net_device *dev);
3684 void netdev_change_features(struct net_device *dev);
3685 
3686 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3687 					struct net_device *dev);
3688 
3689 netdev_features_t passthru_features_check(struct sk_buff *skb,
3690 					  struct net_device *dev,
3691 					  netdev_features_t features);
3692 netdev_features_t netif_skb_features(struct sk_buff *skb);
3693 
3694 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3695 {
3696 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3697 
3698 	/* check flags correspondence */
3699 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3700 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3701 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3702 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3703 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3704 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3705 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3706 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3707 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3708 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3709 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3710 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3711 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3712 
3713 	return (features & feature) == feature;
3714 }
3715 
3716 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3717 {
3718 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3719 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3720 }
3721 
3722 static inline bool netif_needs_gso(struct sk_buff *skb,
3723 				   netdev_features_t features)
3724 {
3725 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3726 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3727 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3728 }
3729 
3730 static inline void netif_set_gso_max_size(struct net_device *dev,
3731 					  unsigned int size)
3732 {
3733 	dev->gso_max_size = size;
3734 }
3735 
3736 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3737 					int pulled_hlen, u16 mac_offset,
3738 					int mac_len)
3739 {
3740 	skb->protocol = protocol;
3741 	skb->encapsulation = 1;
3742 	skb_push(skb, pulled_hlen);
3743 	skb_reset_transport_header(skb);
3744 	skb->mac_header = mac_offset;
3745 	skb->network_header = skb->mac_header + mac_len;
3746 	skb->mac_len = mac_len;
3747 }
3748 
3749 static inline bool netif_is_macvlan(struct net_device *dev)
3750 {
3751 	return dev->priv_flags & IFF_MACVLAN;
3752 }
3753 
3754 static inline bool netif_is_macvlan_port(struct net_device *dev)
3755 {
3756 	return dev->priv_flags & IFF_MACVLAN_PORT;
3757 }
3758 
3759 static inline bool netif_is_ipvlan(struct net_device *dev)
3760 {
3761 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3762 }
3763 
3764 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3765 {
3766 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3767 }
3768 
3769 static inline bool netif_is_bond_master(struct net_device *dev)
3770 {
3771 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3772 }
3773 
3774 static inline bool netif_is_bond_slave(struct net_device *dev)
3775 {
3776 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3777 }
3778 
3779 static inline bool netif_supports_nofcs(struct net_device *dev)
3780 {
3781 	return dev->priv_flags & IFF_SUPP_NOFCS;
3782 }
3783 
3784 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3785 static inline void netif_keep_dst(struct net_device *dev)
3786 {
3787 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3788 }
3789 
3790 extern struct pernet_operations __net_initdata loopback_net_ops;
3791 
3792 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3793 
3794 /* netdev_printk helpers, similar to dev_printk */
3795 
3796 static inline const char *netdev_name(const struct net_device *dev)
3797 {
3798 	if (!dev->name[0] || strchr(dev->name, '%'))
3799 		return "(unnamed net_device)";
3800 	return dev->name;
3801 }
3802 
3803 static inline const char *netdev_reg_state(const struct net_device *dev)
3804 {
3805 	switch (dev->reg_state) {
3806 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3807 	case NETREG_REGISTERED: return "";
3808 	case NETREG_UNREGISTERING: return " (unregistering)";
3809 	case NETREG_UNREGISTERED: return " (unregistered)";
3810 	case NETREG_RELEASED: return " (released)";
3811 	case NETREG_DUMMY: return " (dummy)";
3812 	}
3813 
3814 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3815 	return " (unknown)";
3816 }
3817 
3818 __printf(3, 4)
3819 void netdev_printk(const char *level, const struct net_device *dev,
3820 		   const char *format, ...);
3821 __printf(2, 3)
3822 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3823 __printf(2, 3)
3824 void netdev_alert(const struct net_device *dev, const char *format, ...);
3825 __printf(2, 3)
3826 void netdev_crit(const struct net_device *dev, const char *format, ...);
3827 __printf(2, 3)
3828 void netdev_err(const struct net_device *dev, const char *format, ...);
3829 __printf(2, 3)
3830 void netdev_warn(const struct net_device *dev, const char *format, ...);
3831 __printf(2, 3)
3832 void netdev_notice(const struct net_device *dev, const char *format, ...);
3833 __printf(2, 3)
3834 void netdev_info(const struct net_device *dev, const char *format, ...);
3835 
3836 #define MODULE_ALIAS_NETDEV(device) \
3837 	MODULE_ALIAS("netdev-" device)
3838 
3839 #if defined(CONFIG_DYNAMIC_DEBUG)
3840 #define netdev_dbg(__dev, format, args...)			\
3841 do {								\
3842 	dynamic_netdev_dbg(__dev, format, ##args);		\
3843 } while (0)
3844 #elif defined(DEBUG)
3845 #define netdev_dbg(__dev, format, args...)			\
3846 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3847 #else
3848 #define netdev_dbg(__dev, format, args...)			\
3849 ({								\
3850 	if (0)							\
3851 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3852 })
3853 #endif
3854 
3855 #if defined(VERBOSE_DEBUG)
3856 #define netdev_vdbg	netdev_dbg
3857 #else
3858 
3859 #define netdev_vdbg(dev, format, args...)			\
3860 ({								\
3861 	if (0)							\
3862 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3863 	0;							\
3864 })
3865 #endif
3866 
3867 /*
3868  * netdev_WARN() acts like dev_printk(), but with the key difference
3869  * of using a WARN/WARN_ON to get the message out, including the
3870  * file/line information and a backtrace.
3871  */
3872 #define netdev_WARN(dev, format, args...)			\
3873 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3874 	     netdev_reg_state(dev), ##args)
3875 
3876 /* netif printk helpers, similar to netdev_printk */
3877 
3878 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3879 do {					  			\
3880 	if (netif_msg_##type(priv))				\
3881 		netdev_printk(level, (dev), fmt, ##args);	\
3882 } while (0)
3883 
3884 #define netif_level(level, priv, type, dev, fmt, args...)	\
3885 do {								\
3886 	if (netif_msg_##type(priv))				\
3887 		netdev_##level(dev, fmt, ##args);		\
3888 } while (0)
3889 
3890 #define netif_emerg(priv, type, dev, fmt, args...)		\
3891 	netif_level(emerg, priv, type, dev, fmt, ##args)
3892 #define netif_alert(priv, type, dev, fmt, args...)		\
3893 	netif_level(alert, priv, type, dev, fmt, ##args)
3894 #define netif_crit(priv, type, dev, fmt, args...)		\
3895 	netif_level(crit, priv, type, dev, fmt, ##args)
3896 #define netif_err(priv, type, dev, fmt, args...)		\
3897 	netif_level(err, priv, type, dev, fmt, ##args)
3898 #define netif_warn(priv, type, dev, fmt, args...)		\
3899 	netif_level(warn, priv, type, dev, fmt, ##args)
3900 #define netif_notice(priv, type, dev, fmt, args...)		\
3901 	netif_level(notice, priv, type, dev, fmt, ##args)
3902 #define netif_info(priv, type, dev, fmt, args...)		\
3903 	netif_level(info, priv, type, dev, fmt, ##args)
3904 
3905 #if defined(CONFIG_DYNAMIC_DEBUG)
3906 #define netif_dbg(priv, type, netdev, format, args...)		\
3907 do {								\
3908 	if (netif_msg_##type(priv))				\
3909 		dynamic_netdev_dbg(netdev, format, ##args);	\
3910 } while (0)
3911 #elif defined(DEBUG)
3912 #define netif_dbg(priv, type, dev, format, args...)		\
3913 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3914 #else
3915 #define netif_dbg(priv, type, dev, format, args...)			\
3916 ({									\
3917 	if (0)								\
3918 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3919 	0;								\
3920 })
3921 #endif
3922 
3923 #if defined(VERBOSE_DEBUG)
3924 #define netif_vdbg	netif_dbg
3925 #else
3926 #define netif_vdbg(priv, type, dev, format, args...)		\
3927 ({								\
3928 	if (0)							\
3929 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3930 	0;							\
3931 })
3932 #endif
3933 
3934 /*
3935  *	The list of packet types we will receive (as opposed to discard)
3936  *	and the routines to invoke.
3937  *
3938  *	Why 16. Because with 16 the only overlap we get on a hash of the
3939  *	low nibble of the protocol value is RARP/SNAP/X.25.
3940  *
3941  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3942  *             sure which should go first, but I bet it won't make much
3943  *             difference if we are running VLANs.  The good news is that
3944  *             this protocol won't be in the list unless compiled in, so
3945  *             the average user (w/out VLANs) will not be adversely affected.
3946  *             --BLG
3947  *
3948  *		0800	IP
3949  *		8100    802.1Q VLAN
3950  *		0001	802.3
3951  *		0002	AX.25
3952  *		0004	802.2
3953  *		8035	RARP
3954  *		0005	SNAP
3955  *		0805	X.25
3956  *		0806	ARP
3957  *		8137	IPX
3958  *		0009	Localtalk
3959  *		86DD	IPv6
3960  */
3961 #define PTYPE_HASH_SIZE	(16)
3962 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3963 
3964 #endif	/* _LINUX_NETDEVICE_H */
3965