1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key_false rps_needed; 198 extern struct static_key_false rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 __be16 (*parse_protocol)(const struct sk_buff *skb); 278 }; 279 280 /* These flag bits are private to the generic network queueing 281 * layer; they may not be explicitly referenced by any other 282 * code. 283 */ 284 285 enum netdev_state_t { 286 __LINK_STATE_START, 287 __LINK_STATE_PRESENT, 288 __LINK_STATE_NOCARRIER, 289 __LINK_STATE_LINKWATCH_PENDING, 290 __LINK_STATE_DORMANT, 291 }; 292 293 294 /* 295 * This structure holds boot-time configured netdevice settings. They 296 * are then used in the device probing. 297 */ 298 struct netdev_boot_setup { 299 char name[IFNAMSIZ]; 300 struct ifmap map; 301 }; 302 #define NETDEV_BOOT_SETUP_MAX 8 303 304 int __init netdev_boot_setup(char *str); 305 306 struct gro_list { 307 struct list_head list; 308 int count; 309 }; 310 311 /* 312 * size of gro hash buckets, must less than bit number of 313 * napi_struct::gro_bitmask 314 */ 315 #define GRO_HASH_BUCKETS 8 316 317 /* 318 * Structure for NAPI scheduling similar to tasklet but with weighting 319 */ 320 struct napi_struct { 321 /* The poll_list must only be managed by the entity which 322 * changes the state of the NAPI_STATE_SCHED bit. This means 323 * whoever atomically sets that bit can add this napi_struct 324 * to the per-CPU poll_list, and whoever clears that bit 325 * can remove from the list right before clearing the bit. 326 */ 327 struct list_head poll_list; 328 329 unsigned long state; 330 int weight; 331 unsigned long gro_bitmask; 332 int (*poll)(struct napi_struct *, int); 333 #ifdef CONFIG_NETPOLL 334 int poll_owner; 335 #endif 336 struct net_device *dev; 337 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 338 struct sk_buff *skb; 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343 }; 344 345 enum { 346 NAPI_STATE_SCHED, /* Poll is scheduled */ 347 NAPI_STATE_MISSED, /* reschedule a napi */ 348 NAPI_STATE_DISABLE, /* Disable pending */ 349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 353 }; 354 355 enum { 356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 363 }; 364 365 enum gro_result { 366 GRO_MERGED, 367 GRO_MERGED_FREE, 368 GRO_HELD, 369 GRO_NORMAL, 370 GRO_DROP, 371 GRO_CONSUMED, 372 }; 373 typedef enum gro_result gro_result_t; 374 375 /* 376 * enum rx_handler_result - Possible return values for rx_handlers. 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 378 * further. 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 380 * case skb->dev was changed by rx_handler. 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 383 * 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do 385 * special processing of the skb, prior to delivery to protocol handlers. 386 * 387 * Currently, a net_device can only have a single rx_handler registered. Trying 388 * to register a second rx_handler will return -EBUSY. 389 * 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 391 * To unregister a rx_handler on a net_device, use 392 * netdev_rx_handler_unregister(). 393 * 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 395 * do with the skb. 396 * 397 * If the rx_handler consumed the skb in some way, it should return 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 399 * the skb to be delivered in some other way. 400 * 401 * If the rx_handler changed skb->dev, to divert the skb to another 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 403 * new device will be called if it exists. 404 * 405 * If the rx_handler decides the skb should be ignored, it should return 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 407 * are registered on exact device (ptype->dev == skb->dev). 408 * 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 410 * delivered, it should return RX_HANDLER_PASS. 411 * 412 * A device without a registered rx_handler will behave as if rx_handler 413 * returned RX_HANDLER_PASS. 414 */ 415 416 enum rx_handler_result { 417 RX_HANDLER_CONSUMED, 418 RX_HANDLER_ANOTHER, 419 RX_HANDLER_EXACT, 420 RX_HANDLER_PASS, 421 }; 422 typedef enum rx_handler_result rx_handler_result_t; 423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 424 425 void __napi_schedule(struct napi_struct *n); 426 void __napi_schedule_irqoff(struct napi_struct *n); 427 428 static inline bool napi_disable_pending(struct napi_struct *n) 429 { 430 return test_bit(NAPI_STATE_DISABLE, &n->state); 431 } 432 433 bool napi_schedule_prep(struct napi_struct *n); 434 435 /** 436 * napi_schedule - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Schedule NAPI poll routine to be called if it is not already 440 * running. 441 */ 442 static inline void napi_schedule(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule(n); 446 } 447 448 /** 449 * napi_schedule_irqoff - schedule NAPI poll 450 * @n: NAPI context 451 * 452 * Variant of napi_schedule(), assuming hard irqs are masked. 453 */ 454 static inline void napi_schedule_irqoff(struct napi_struct *n) 455 { 456 if (napi_schedule_prep(n)) 457 __napi_schedule_irqoff(n); 458 } 459 460 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 461 static inline bool napi_reschedule(struct napi_struct *napi) 462 { 463 if (napi_schedule_prep(napi)) { 464 __napi_schedule(napi); 465 return true; 466 } 467 return false; 468 } 469 470 bool napi_complete_done(struct napi_struct *n, int work_done); 471 /** 472 * napi_complete - NAPI processing complete 473 * @n: NAPI context 474 * 475 * Mark NAPI processing as complete. 476 * Consider using napi_complete_done() instead. 477 * Return false if device should avoid rearming interrupts. 478 */ 479 static inline bool napi_complete(struct napi_struct *n) 480 { 481 return napi_complete_done(n, 0); 482 } 483 484 /** 485 * napi_hash_del - remove a NAPI from global table 486 * @napi: NAPI context 487 * 488 * Warning: caller must observe RCU grace period 489 * before freeing memory containing @napi, if 490 * this function returns true. 491 * Note: core networking stack automatically calls it 492 * from netif_napi_del(). 493 * Drivers might want to call this helper to combine all 494 * the needed RCU grace periods into a single one. 495 */ 496 bool napi_hash_del(struct napi_struct *napi); 497 498 /** 499 * napi_disable - prevent NAPI from scheduling 500 * @n: NAPI context 501 * 502 * Stop NAPI from being scheduled on this context. 503 * Waits till any outstanding processing completes. 504 */ 505 void napi_disable(struct napi_struct *n); 506 507 /** 508 * napi_enable - enable NAPI scheduling 509 * @n: NAPI context 510 * 511 * Resume NAPI from being scheduled on this context. 512 * Must be paired with napi_disable. 513 */ 514 static inline void napi_enable(struct napi_struct *n) 515 { 516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 517 smp_mb__before_atomic(); 518 clear_bit(NAPI_STATE_SCHED, &n->state); 519 clear_bit(NAPI_STATE_NPSVC, &n->state); 520 } 521 522 /** 523 * napi_synchronize - wait until NAPI is not running 524 * @n: NAPI context 525 * 526 * Wait until NAPI is done being scheduled on this context. 527 * Waits till any outstanding processing completes but 528 * does not disable future activations. 529 */ 530 static inline void napi_synchronize(const struct napi_struct *n) 531 { 532 if (IS_ENABLED(CONFIG_SMP)) 533 while (test_bit(NAPI_STATE_SCHED, &n->state)) 534 msleep(1); 535 else 536 barrier(); 537 } 538 539 /** 540 * napi_if_scheduled_mark_missed - if napi is running, set the 541 * NAPIF_STATE_MISSED 542 * @n: NAPI context 543 * 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 545 * NAPI is scheduled. 546 **/ 547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 548 { 549 unsigned long val, new; 550 551 do { 552 val = READ_ONCE(n->state); 553 if (val & NAPIF_STATE_DISABLE) 554 return true; 555 556 if (!(val & NAPIF_STATE_SCHED)) 557 return false; 558 559 new = val | NAPIF_STATE_MISSED; 560 } while (cmpxchg(&n->state, val, new) != val); 561 562 return true; 563 } 564 565 enum netdev_queue_state_t { 566 __QUEUE_STATE_DRV_XOFF, 567 __QUEUE_STATE_STACK_XOFF, 568 __QUEUE_STATE_FROZEN, 569 }; 570 571 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 572 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 573 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 574 575 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 579 QUEUE_STATE_FROZEN) 580 581 /* 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 583 * netif_tx_* functions below are used to manipulate this flag. The 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 585 * queue independently. The netif_xmit_*stopped functions below are called 586 * to check if the queue has been stopped by the driver or stack (either 587 * of the XOFF bits are set in the state). Drivers should not need to call 588 * netif_xmit*stopped functions, they should only be using netif_tx_*. 589 */ 590 591 struct netdev_queue { 592 /* 593 * read-mostly part 594 */ 595 struct net_device *dev; 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598 #ifdef CONFIG_SYSFS 599 struct kobject kobj; 600 #endif 601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603 #endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 unsigned long trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613 #ifdef CONFIG_XDP_SOCKETS 614 struct xdp_umem *umem; 615 #endif 616 /* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628 #ifdef CONFIG_BQL 629 struct dql dql; 630 #endif 631 } ____cacheline_aligned_in_smp; 632 633 extern int sysctl_fb_tunnels_only_for_init_net; 634 extern int sysctl_devconf_inherit_init_net; 635 636 static inline bool net_has_fallback_tunnels(const struct net *net) 637 { 638 return net == &init_net || 639 !IS_ENABLED(CONFIG_SYSCTL) || 640 !sysctl_fb_tunnels_only_for_init_net; 641 } 642 643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 644 { 645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 return q->numa_node; 647 #else 648 return NUMA_NO_NODE; 649 #endif 650 } 651 652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 653 { 654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 q->numa_node = node; 656 #endif 657 } 658 659 #ifdef CONFIG_RPS 660 /* 661 * This structure holds an RPS map which can be of variable length. The 662 * map is an array of CPUs. 663 */ 664 struct rps_map { 665 unsigned int len; 666 struct rcu_head rcu; 667 u16 cpus[0]; 668 }; 669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 670 671 /* 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 673 * tail pointer for that CPU's input queue at the time of last enqueue, and 674 * a hardware filter index. 675 */ 676 struct rps_dev_flow { 677 u16 cpu; 678 u16 filter; 679 unsigned int last_qtail; 680 }; 681 #define RPS_NO_FILTER 0xffff 682 683 /* 684 * The rps_dev_flow_table structure contains a table of flow mappings. 685 */ 686 struct rps_dev_flow_table { 687 unsigned int mask; 688 struct rcu_head rcu; 689 struct rps_dev_flow flows[0]; 690 }; 691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 692 ((_num) * sizeof(struct rps_dev_flow))) 693 694 /* 695 * The rps_sock_flow_table contains mappings of flows to the last CPU 696 * on which they were processed by the application (set in recvmsg). 697 * Each entry is a 32bit value. Upper part is the high-order bits 698 * of flow hash, lower part is CPU number. 699 * rps_cpu_mask is used to partition the space, depending on number of 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 702 * meaning we use 32-6=26 bits for the hash. 703 */ 704 struct rps_sock_flow_table { 705 u32 mask; 706 707 u32 ents[0] ____cacheline_aligned_in_smp; 708 }; 709 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 710 711 #define RPS_NO_CPU 0xffff 712 713 extern u32 rps_cpu_mask; 714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 715 716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 717 u32 hash) 718 { 719 if (table && hash) { 720 unsigned int index = hash & table->mask; 721 u32 val = hash & ~rps_cpu_mask; 722 723 /* We only give a hint, preemption can change CPU under us */ 724 val |= raw_smp_processor_id(); 725 726 if (table->ents[index] != val) 727 table->ents[index] = val; 728 } 729 } 730 731 #ifdef CONFIG_RFS_ACCEL 732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 733 u16 filter_id); 734 #endif 735 #endif /* CONFIG_RPS */ 736 737 /* This structure contains an instance of an RX queue. */ 738 struct netdev_rx_queue { 739 #ifdef CONFIG_RPS 740 struct rps_map __rcu *rps_map; 741 struct rps_dev_flow_table __rcu *rps_flow_table; 742 #endif 743 struct kobject kobj; 744 struct net_device *dev; 745 struct xdp_rxq_info xdp_rxq; 746 #ifdef CONFIG_XDP_SOCKETS 747 struct xdp_umem *umem; 748 #endif 749 } ____cacheline_aligned_in_smp; 750 751 /* 752 * RX queue sysfs structures and functions. 753 */ 754 struct rx_queue_attribute { 755 struct attribute attr; 756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 757 ssize_t (*store)(struct netdev_rx_queue *queue, 758 const char *buf, size_t len); 759 }; 760 761 #ifdef CONFIG_XPS 762 /* 763 * This structure holds an XPS map which can be of variable length. The 764 * map is an array of queues. 765 */ 766 struct xps_map { 767 unsigned int len; 768 unsigned int alloc_len; 769 struct rcu_head rcu; 770 u16 queues[0]; 771 }; 772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 774 - sizeof(struct xps_map)) / sizeof(u16)) 775 776 /* 777 * This structure holds all XPS maps for device. Maps are indexed by CPU. 778 */ 779 struct xps_dev_maps { 780 struct rcu_head rcu; 781 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 782 }; 783 784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 786 787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 788 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 789 790 #endif /* CONFIG_XPS */ 791 792 #define TC_MAX_QUEUE 16 793 #define TC_BITMASK 15 794 /* HW offloaded queuing disciplines txq count and offset maps */ 795 struct netdev_tc_txq { 796 u16 count; 797 u16 offset; 798 }; 799 800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 801 /* 802 * This structure is to hold information about the device 803 * configured to run FCoE protocol stack. 804 */ 805 struct netdev_fcoe_hbainfo { 806 char manufacturer[64]; 807 char serial_number[64]; 808 char hardware_version[64]; 809 char driver_version[64]; 810 char optionrom_version[64]; 811 char firmware_version[64]; 812 char model[256]; 813 char model_description[256]; 814 }; 815 #endif 816 817 #define MAX_PHYS_ITEM_ID_LEN 32 818 819 /* This structure holds a unique identifier to identify some 820 * physical item (port for example) used by a netdevice. 821 */ 822 struct netdev_phys_item_id { 823 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 824 unsigned char id_len; 825 }; 826 827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 828 struct netdev_phys_item_id *b) 829 { 830 return a->id_len == b->id_len && 831 memcmp(a->id, b->id, a->id_len) == 0; 832 } 833 834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 835 struct sk_buff *skb, 836 struct net_device *sb_dev); 837 838 enum tc_setup_type { 839 TC_SETUP_QDISC_MQPRIO, 840 TC_SETUP_CLSU32, 841 TC_SETUP_CLSFLOWER, 842 TC_SETUP_CLSMATCHALL, 843 TC_SETUP_CLSBPF, 844 TC_SETUP_BLOCK, 845 TC_SETUP_QDISC_CBS, 846 TC_SETUP_QDISC_RED, 847 TC_SETUP_QDISC_PRIO, 848 TC_SETUP_QDISC_MQ, 849 TC_SETUP_QDISC_ETF, 850 TC_SETUP_ROOT_QDISC, 851 TC_SETUP_QDISC_GRED, 852 }; 853 854 /* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857 enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904 }; 905 906 #ifdef CONFIG_XFRM_OFFLOAD 907 struct xfrmdev_ops { 908 int (*xdo_dev_state_add) (struct xfrm_state *x); 909 void (*xdo_dev_state_delete) (struct xfrm_state *x); 910 void (*xdo_dev_state_free) (struct xfrm_state *x); 911 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 912 struct xfrm_state *x); 913 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 914 }; 915 #endif 916 917 struct dev_ifalias { 918 struct rcu_head rcuhead; 919 char ifalias[]; 920 }; 921 922 struct devlink; 923 struct tlsdev_ops; 924 925 /* 926 * This structure defines the management hooks for network devices. 927 * The following hooks can be defined; unless noted otherwise, they are 928 * optional and can be filled with a null pointer. 929 * 930 * int (*ndo_init)(struct net_device *dev); 931 * This function is called once when a network device is registered. 932 * The network device can use this for any late stage initialization 933 * or semantic validation. It can fail with an error code which will 934 * be propagated back to register_netdev. 935 * 936 * void (*ndo_uninit)(struct net_device *dev); 937 * This function is called when device is unregistered or when registration 938 * fails. It is not called if init fails. 939 * 940 * int (*ndo_open)(struct net_device *dev); 941 * This function is called when a network device transitions to the up 942 * state. 943 * 944 * int (*ndo_stop)(struct net_device *dev); 945 * This function is called when a network device transitions to the down 946 * state. 947 * 948 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 949 * struct net_device *dev); 950 * Called when a packet needs to be transmitted. 951 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 952 * the queue before that can happen; it's for obsolete devices and weird 953 * corner cases, but the stack really does a non-trivial amount 954 * of useless work if you return NETDEV_TX_BUSY. 955 * Required; cannot be NULL. 956 * 957 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 958 * struct net_device *dev 959 * netdev_features_t features); 960 * Called by core transmit path to determine if device is capable of 961 * performing offload operations on a given packet. This is to give 962 * the device an opportunity to implement any restrictions that cannot 963 * be otherwise expressed by feature flags. The check is called with 964 * the set of features that the stack has calculated and it returns 965 * those the driver believes to be appropriate. 966 * 967 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 968 * struct net_device *sb_dev); 969 * Called to decide which queue to use when device supports multiple 970 * transmit queues. 971 * 972 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 973 * This function is called to allow device receiver to make 974 * changes to configuration when multicast or promiscuous is enabled. 975 * 976 * void (*ndo_set_rx_mode)(struct net_device *dev); 977 * This function is called device changes address list filtering. 978 * If driver handles unicast address filtering, it should set 979 * IFF_UNICAST_FLT in its priv_flags. 980 * 981 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 982 * This function is called when the Media Access Control address 983 * needs to be changed. If this interface is not defined, the 984 * MAC address can not be changed. 985 * 986 * int (*ndo_validate_addr)(struct net_device *dev); 987 * Test if Media Access Control address is valid for the device. 988 * 989 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 990 * Called when a user requests an ioctl which can't be handled by 991 * the generic interface code. If not defined ioctls return 992 * not supported error code. 993 * 994 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 995 * Used to set network devices bus interface parameters. This interface 996 * is retained for legacy reasons; new devices should use the bus 997 * interface (PCI) for low level management. 998 * 999 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1000 * Called when a user wants to change the Maximum Transfer Unit 1001 * of a device. 1002 * 1003 * void (*ndo_tx_timeout)(struct net_device *dev); 1004 * Callback used when the transmitter has not made any progress 1005 * for dev->watchdog ticks. 1006 * 1007 * void (*ndo_get_stats64)(struct net_device *dev, 1008 * struct rtnl_link_stats64 *storage); 1009 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1010 * Called when a user wants to get the network device usage 1011 * statistics. Drivers must do one of the following: 1012 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1013 * rtnl_link_stats64 structure passed by the caller. 1014 * 2. Define @ndo_get_stats to update a net_device_stats structure 1015 * (which should normally be dev->stats) and return a pointer to 1016 * it. The structure may be changed asynchronously only if each 1017 * field is written atomically. 1018 * 3. Update dev->stats asynchronously and atomically, and define 1019 * neither operation. 1020 * 1021 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1022 * Return true if this device supports offload stats of this attr_id. 1023 * 1024 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1025 * void *attr_data) 1026 * Get statistics for offload operations by attr_id. Write it into the 1027 * attr_data pointer. 1028 * 1029 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1030 * If device supports VLAN filtering this function is called when a 1031 * VLAN id is registered. 1032 * 1033 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1034 * If device supports VLAN filtering this function is called when a 1035 * VLAN id is unregistered. 1036 * 1037 * void (*ndo_poll_controller)(struct net_device *dev); 1038 * 1039 * SR-IOV management functions. 1040 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1041 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1042 * u8 qos, __be16 proto); 1043 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1044 * int max_tx_rate); 1045 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1046 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1047 * int (*ndo_get_vf_config)(struct net_device *dev, 1048 * int vf, struct ifla_vf_info *ivf); 1049 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1050 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1051 * struct nlattr *port[]); 1052 * 1053 * Enable or disable the VF ability to query its RSS Redirection Table and 1054 * Hash Key. This is needed since on some devices VF share this information 1055 * with PF and querying it may introduce a theoretical security risk. 1056 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1057 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1058 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1059 * void *type_data); 1060 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1061 * This is always called from the stack with the rtnl lock held and netif 1062 * tx queues stopped. This allows the netdevice to perform queue 1063 * management safely. 1064 * 1065 * Fiber Channel over Ethernet (FCoE) offload functions. 1066 * int (*ndo_fcoe_enable)(struct net_device *dev); 1067 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1068 * so the underlying device can perform whatever needed configuration or 1069 * initialization to support acceleration of FCoE traffic. 1070 * 1071 * int (*ndo_fcoe_disable)(struct net_device *dev); 1072 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1073 * so the underlying device can perform whatever needed clean-ups to 1074 * stop supporting acceleration of FCoE traffic. 1075 * 1076 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1077 * struct scatterlist *sgl, unsigned int sgc); 1078 * Called when the FCoE Initiator wants to initialize an I/O that 1079 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1080 * perform necessary setup and returns 1 to indicate the device is set up 1081 * successfully to perform DDP on this I/O, otherwise this returns 0. 1082 * 1083 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1084 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1085 * indicated by the FC exchange id 'xid', so the underlying device can 1086 * clean up and reuse resources for later DDP requests. 1087 * 1088 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1089 * struct scatterlist *sgl, unsigned int sgc); 1090 * Called when the FCoE Target wants to initialize an I/O that 1091 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1092 * perform necessary setup and returns 1 to indicate the device is set up 1093 * successfully to perform DDP on this I/O, otherwise this returns 0. 1094 * 1095 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1096 * struct netdev_fcoe_hbainfo *hbainfo); 1097 * Called when the FCoE Protocol stack wants information on the underlying 1098 * device. This information is utilized by the FCoE protocol stack to 1099 * register attributes with Fiber Channel management service as per the 1100 * FC-GS Fabric Device Management Information(FDMI) specification. 1101 * 1102 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1103 * Called when the underlying device wants to override default World Wide 1104 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1105 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1106 * protocol stack to use. 1107 * 1108 * RFS acceleration. 1109 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1110 * u16 rxq_index, u32 flow_id); 1111 * Set hardware filter for RFS. rxq_index is the target queue index; 1112 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1113 * Return the filter ID on success, or a negative error code. 1114 * 1115 * Slave management functions (for bridge, bonding, etc). 1116 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1117 * Called to make another netdev an underling. 1118 * 1119 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1120 * Called to release previously enslaved netdev. 1121 * 1122 * Feature/offload setting functions. 1123 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1124 * netdev_features_t features); 1125 * Adjusts the requested feature flags according to device-specific 1126 * constraints, and returns the resulting flags. Must not modify 1127 * the device state. 1128 * 1129 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1130 * Called to update device configuration to new features. Passed 1131 * feature set might be less than what was returned by ndo_fix_features()). 1132 * Must return >0 or -errno if it changed dev->features itself. 1133 * 1134 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1135 * struct net_device *dev, 1136 * const unsigned char *addr, u16 vid, u16 flags, 1137 * struct netlink_ext_ack *extack); 1138 * Adds an FDB entry to dev for addr. 1139 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1140 * struct net_device *dev, 1141 * const unsigned char *addr, u16 vid) 1142 * Deletes the FDB entry from dev coresponding to addr. 1143 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1144 * struct net_device *dev, struct net_device *filter_dev, 1145 * int *idx) 1146 * Used to add FDB entries to dump requests. Implementers should add 1147 * entries to skb and update idx with the number of entries. 1148 * 1149 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1150 * u16 flags, struct netlink_ext_ack *extack) 1151 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1152 * struct net_device *dev, u32 filter_mask, 1153 * int nlflags) 1154 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1155 * u16 flags); 1156 * 1157 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1158 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1159 * which do not represent real hardware may define this to allow their 1160 * userspace components to manage their virtual carrier state. Devices 1161 * that determine carrier state from physical hardware properties (eg 1162 * network cables) or protocol-dependent mechanisms (eg 1163 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1164 * 1165 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1166 * struct netdev_phys_item_id *ppid); 1167 * Called to get ID of physical port of this device. If driver does 1168 * not implement this, it is assumed that the hw is not able to have 1169 * multiple net devices on single physical port. 1170 * 1171 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1172 * struct netdev_phys_item_id *ppid) 1173 * Called to get the parent ID of the physical port of this device. 1174 * 1175 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1176 * struct udp_tunnel_info *ti); 1177 * Called by UDP tunnel to notify a driver about the UDP port and socket 1178 * address family that a UDP tunnel is listnening to. It is called only 1179 * when a new port starts listening. The operation is protected by the 1180 * RTNL. 1181 * 1182 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1183 * struct udp_tunnel_info *ti); 1184 * Called by UDP tunnel to notify the driver about a UDP port and socket 1185 * address family that the UDP tunnel is not listening to anymore. The 1186 * operation is protected by the RTNL. 1187 * 1188 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1189 * struct net_device *dev) 1190 * Called by upper layer devices to accelerate switching or other 1191 * station functionality into hardware. 'pdev is the lowerdev 1192 * to use for the offload and 'dev' is the net device that will 1193 * back the offload. Returns a pointer to the private structure 1194 * the upper layer will maintain. 1195 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1196 * Called by upper layer device to delete the station created 1197 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1198 * the station and priv is the structure returned by the add 1199 * operation. 1200 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1201 * int queue_index, u32 maxrate); 1202 * Called when a user wants to set a max-rate limitation of specific 1203 * TX queue. 1204 * int (*ndo_get_iflink)(const struct net_device *dev); 1205 * Called to get the iflink value of this device. 1206 * void (*ndo_change_proto_down)(struct net_device *dev, 1207 * bool proto_down); 1208 * This function is used to pass protocol port error state information 1209 * to the switch driver. The switch driver can react to the proto_down 1210 * by doing a phys down on the associated switch port. 1211 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1212 * This function is used to get egress tunnel information for given skb. 1213 * This is useful for retrieving outer tunnel header parameters while 1214 * sampling packet. 1215 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1216 * This function is used to specify the headroom that the skb must 1217 * consider when allocation skb during packet reception. Setting 1218 * appropriate rx headroom value allows avoiding skb head copy on 1219 * forward. Setting a negative value resets the rx headroom to the 1220 * default value. 1221 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1222 * This function is used to set or query state related to XDP on the 1223 * netdevice and manage BPF offload. See definition of 1224 * enum bpf_netdev_command for details. 1225 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1226 * u32 flags); 1227 * This function is used to submit @n XDP packets for transmit on a 1228 * netdevice. Returns number of frames successfully transmitted, frames 1229 * that got dropped are freed/returned via xdp_return_frame(). 1230 * Returns negative number, means general error invoking ndo, meaning 1231 * no frames were xmit'ed and core-caller will free all frames. 1232 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1233 * Get devlink port instance associated with a given netdev. 1234 * Called with a reference on the netdevice and devlink locks only, 1235 * rtnl_lock is not held. 1236 */ 1237 struct net_device_ops { 1238 int (*ndo_init)(struct net_device *dev); 1239 void (*ndo_uninit)(struct net_device *dev); 1240 int (*ndo_open)(struct net_device *dev); 1241 int (*ndo_stop)(struct net_device *dev); 1242 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1243 struct net_device *dev); 1244 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1245 struct net_device *dev, 1246 netdev_features_t features); 1247 u16 (*ndo_select_queue)(struct net_device *dev, 1248 struct sk_buff *skb, 1249 struct net_device *sb_dev); 1250 void (*ndo_change_rx_flags)(struct net_device *dev, 1251 int flags); 1252 void (*ndo_set_rx_mode)(struct net_device *dev); 1253 int (*ndo_set_mac_address)(struct net_device *dev, 1254 void *addr); 1255 int (*ndo_validate_addr)(struct net_device *dev); 1256 int (*ndo_do_ioctl)(struct net_device *dev, 1257 struct ifreq *ifr, int cmd); 1258 int (*ndo_set_config)(struct net_device *dev, 1259 struct ifmap *map); 1260 int (*ndo_change_mtu)(struct net_device *dev, 1261 int new_mtu); 1262 int (*ndo_neigh_setup)(struct net_device *dev, 1263 struct neigh_parms *); 1264 void (*ndo_tx_timeout) (struct net_device *dev); 1265 1266 void (*ndo_get_stats64)(struct net_device *dev, 1267 struct rtnl_link_stats64 *storage); 1268 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1269 int (*ndo_get_offload_stats)(int attr_id, 1270 const struct net_device *dev, 1271 void *attr_data); 1272 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1273 1274 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1275 __be16 proto, u16 vid); 1276 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1277 __be16 proto, u16 vid); 1278 #ifdef CONFIG_NET_POLL_CONTROLLER 1279 void (*ndo_poll_controller)(struct net_device *dev); 1280 int (*ndo_netpoll_setup)(struct net_device *dev, 1281 struct netpoll_info *info); 1282 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1283 #endif 1284 int (*ndo_set_vf_mac)(struct net_device *dev, 1285 int queue, u8 *mac); 1286 int (*ndo_set_vf_vlan)(struct net_device *dev, 1287 int queue, u16 vlan, 1288 u8 qos, __be16 proto); 1289 int (*ndo_set_vf_rate)(struct net_device *dev, 1290 int vf, int min_tx_rate, 1291 int max_tx_rate); 1292 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1293 int vf, bool setting); 1294 int (*ndo_set_vf_trust)(struct net_device *dev, 1295 int vf, bool setting); 1296 int (*ndo_get_vf_config)(struct net_device *dev, 1297 int vf, 1298 struct ifla_vf_info *ivf); 1299 int (*ndo_set_vf_link_state)(struct net_device *dev, 1300 int vf, int link_state); 1301 int (*ndo_get_vf_stats)(struct net_device *dev, 1302 int vf, 1303 struct ifla_vf_stats 1304 *vf_stats); 1305 int (*ndo_set_vf_port)(struct net_device *dev, 1306 int vf, 1307 struct nlattr *port[]); 1308 int (*ndo_get_vf_port)(struct net_device *dev, 1309 int vf, struct sk_buff *skb); 1310 int (*ndo_set_vf_guid)(struct net_device *dev, 1311 int vf, u64 guid, 1312 int guid_type); 1313 int (*ndo_set_vf_rss_query_en)( 1314 struct net_device *dev, 1315 int vf, bool setting); 1316 int (*ndo_setup_tc)(struct net_device *dev, 1317 enum tc_setup_type type, 1318 void *type_data); 1319 #if IS_ENABLED(CONFIG_FCOE) 1320 int (*ndo_fcoe_enable)(struct net_device *dev); 1321 int (*ndo_fcoe_disable)(struct net_device *dev); 1322 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1323 u16 xid, 1324 struct scatterlist *sgl, 1325 unsigned int sgc); 1326 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1327 u16 xid); 1328 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1329 u16 xid, 1330 struct scatterlist *sgl, 1331 unsigned int sgc); 1332 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1333 struct netdev_fcoe_hbainfo *hbainfo); 1334 #endif 1335 1336 #if IS_ENABLED(CONFIG_LIBFCOE) 1337 #define NETDEV_FCOE_WWNN 0 1338 #define NETDEV_FCOE_WWPN 1 1339 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1340 u64 *wwn, int type); 1341 #endif 1342 1343 #ifdef CONFIG_RFS_ACCEL 1344 int (*ndo_rx_flow_steer)(struct net_device *dev, 1345 const struct sk_buff *skb, 1346 u16 rxq_index, 1347 u32 flow_id); 1348 #endif 1349 int (*ndo_add_slave)(struct net_device *dev, 1350 struct net_device *slave_dev, 1351 struct netlink_ext_ack *extack); 1352 int (*ndo_del_slave)(struct net_device *dev, 1353 struct net_device *slave_dev); 1354 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1355 netdev_features_t features); 1356 int (*ndo_set_features)(struct net_device *dev, 1357 netdev_features_t features); 1358 int (*ndo_neigh_construct)(struct net_device *dev, 1359 struct neighbour *n); 1360 void (*ndo_neigh_destroy)(struct net_device *dev, 1361 struct neighbour *n); 1362 1363 int (*ndo_fdb_add)(struct ndmsg *ndm, 1364 struct nlattr *tb[], 1365 struct net_device *dev, 1366 const unsigned char *addr, 1367 u16 vid, 1368 u16 flags, 1369 struct netlink_ext_ack *extack); 1370 int (*ndo_fdb_del)(struct ndmsg *ndm, 1371 struct nlattr *tb[], 1372 struct net_device *dev, 1373 const unsigned char *addr, 1374 u16 vid); 1375 int (*ndo_fdb_dump)(struct sk_buff *skb, 1376 struct netlink_callback *cb, 1377 struct net_device *dev, 1378 struct net_device *filter_dev, 1379 int *idx); 1380 int (*ndo_fdb_get)(struct sk_buff *skb, 1381 struct nlattr *tb[], 1382 struct net_device *dev, 1383 const unsigned char *addr, 1384 u16 vid, u32 portid, u32 seq, 1385 struct netlink_ext_ack *extack); 1386 int (*ndo_bridge_setlink)(struct net_device *dev, 1387 struct nlmsghdr *nlh, 1388 u16 flags, 1389 struct netlink_ext_ack *extack); 1390 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1391 u32 pid, u32 seq, 1392 struct net_device *dev, 1393 u32 filter_mask, 1394 int nlflags); 1395 int (*ndo_bridge_dellink)(struct net_device *dev, 1396 struct nlmsghdr *nlh, 1397 u16 flags); 1398 int (*ndo_change_carrier)(struct net_device *dev, 1399 bool new_carrier); 1400 int (*ndo_get_phys_port_id)(struct net_device *dev, 1401 struct netdev_phys_item_id *ppid); 1402 int (*ndo_get_port_parent_id)(struct net_device *dev, 1403 struct netdev_phys_item_id *ppid); 1404 int (*ndo_get_phys_port_name)(struct net_device *dev, 1405 char *name, size_t len); 1406 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1407 struct udp_tunnel_info *ti); 1408 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1409 struct udp_tunnel_info *ti); 1410 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1411 struct net_device *dev); 1412 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1413 void *priv); 1414 1415 int (*ndo_get_lock_subclass)(struct net_device *dev); 1416 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1417 int queue_index, 1418 u32 maxrate); 1419 int (*ndo_get_iflink)(const struct net_device *dev); 1420 int (*ndo_change_proto_down)(struct net_device *dev, 1421 bool proto_down); 1422 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1423 struct sk_buff *skb); 1424 void (*ndo_set_rx_headroom)(struct net_device *dev, 1425 int needed_headroom); 1426 int (*ndo_bpf)(struct net_device *dev, 1427 struct netdev_bpf *bpf); 1428 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1429 struct xdp_frame **xdp, 1430 u32 flags); 1431 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1432 u32 queue_id); 1433 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1434 }; 1435 1436 /** 1437 * enum net_device_priv_flags - &struct net_device priv_flags 1438 * 1439 * These are the &struct net_device, they are only set internally 1440 * by drivers and used in the kernel. These flags are invisible to 1441 * userspace; this means that the order of these flags can change 1442 * during any kernel release. 1443 * 1444 * You should have a pretty good reason to be extending these flags. 1445 * 1446 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1447 * @IFF_EBRIDGE: Ethernet bridging device 1448 * @IFF_BONDING: bonding master or slave 1449 * @IFF_ISATAP: ISATAP interface (RFC4214) 1450 * @IFF_WAN_HDLC: WAN HDLC device 1451 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1452 * release skb->dst 1453 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1454 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1455 * @IFF_MACVLAN_PORT: device used as macvlan port 1456 * @IFF_BRIDGE_PORT: device used as bridge port 1457 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1458 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1459 * @IFF_UNICAST_FLT: Supports unicast filtering 1460 * @IFF_TEAM_PORT: device used as team port 1461 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1462 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1463 * change when it's running 1464 * @IFF_MACVLAN: Macvlan device 1465 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1466 * underlying stacked devices 1467 * @IFF_L3MDEV_MASTER: device is an L3 master device 1468 * @IFF_NO_QUEUE: device can run without qdisc attached 1469 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1470 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1471 * @IFF_TEAM: device is a team device 1472 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1473 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1474 * entity (i.e. the master device for bridged veth) 1475 * @IFF_MACSEC: device is a MACsec device 1476 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1477 * @IFF_FAILOVER: device is a failover master device 1478 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1479 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1480 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1481 */ 1482 enum netdev_priv_flags { 1483 IFF_802_1Q_VLAN = 1<<0, 1484 IFF_EBRIDGE = 1<<1, 1485 IFF_BONDING = 1<<2, 1486 IFF_ISATAP = 1<<3, 1487 IFF_WAN_HDLC = 1<<4, 1488 IFF_XMIT_DST_RELEASE = 1<<5, 1489 IFF_DONT_BRIDGE = 1<<6, 1490 IFF_DISABLE_NETPOLL = 1<<7, 1491 IFF_MACVLAN_PORT = 1<<8, 1492 IFF_BRIDGE_PORT = 1<<9, 1493 IFF_OVS_DATAPATH = 1<<10, 1494 IFF_TX_SKB_SHARING = 1<<11, 1495 IFF_UNICAST_FLT = 1<<12, 1496 IFF_TEAM_PORT = 1<<13, 1497 IFF_SUPP_NOFCS = 1<<14, 1498 IFF_LIVE_ADDR_CHANGE = 1<<15, 1499 IFF_MACVLAN = 1<<16, 1500 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1501 IFF_L3MDEV_MASTER = 1<<18, 1502 IFF_NO_QUEUE = 1<<19, 1503 IFF_OPENVSWITCH = 1<<20, 1504 IFF_L3MDEV_SLAVE = 1<<21, 1505 IFF_TEAM = 1<<22, 1506 IFF_RXFH_CONFIGURED = 1<<23, 1507 IFF_PHONY_HEADROOM = 1<<24, 1508 IFF_MACSEC = 1<<25, 1509 IFF_NO_RX_HANDLER = 1<<26, 1510 IFF_FAILOVER = 1<<27, 1511 IFF_FAILOVER_SLAVE = 1<<28, 1512 IFF_L3MDEV_RX_HANDLER = 1<<29, 1513 IFF_LIVE_RENAME_OK = 1<<30, 1514 }; 1515 1516 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1517 #define IFF_EBRIDGE IFF_EBRIDGE 1518 #define IFF_BONDING IFF_BONDING 1519 #define IFF_ISATAP IFF_ISATAP 1520 #define IFF_WAN_HDLC IFF_WAN_HDLC 1521 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1522 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1523 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1524 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1525 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1526 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1527 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1528 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1529 #define IFF_TEAM_PORT IFF_TEAM_PORT 1530 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1531 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1532 #define IFF_MACVLAN IFF_MACVLAN 1533 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1534 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1535 #define IFF_NO_QUEUE IFF_NO_QUEUE 1536 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1537 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1538 #define IFF_TEAM IFF_TEAM 1539 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1540 #define IFF_MACSEC IFF_MACSEC 1541 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1542 #define IFF_FAILOVER IFF_FAILOVER 1543 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1544 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1545 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1546 1547 /** 1548 * struct net_device - The DEVICE structure. 1549 * 1550 * Actually, this whole structure is a big mistake. It mixes I/O 1551 * data with strictly "high-level" data, and it has to know about 1552 * almost every data structure used in the INET module. 1553 * 1554 * @name: This is the first field of the "visible" part of this structure 1555 * (i.e. as seen by users in the "Space.c" file). It is the name 1556 * of the interface. 1557 * 1558 * @name_hlist: Device name hash chain, please keep it close to name[] 1559 * @ifalias: SNMP alias 1560 * @mem_end: Shared memory end 1561 * @mem_start: Shared memory start 1562 * @base_addr: Device I/O address 1563 * @irq: Device IRQ number 1564 * 1565 * @state: Generic network queuing layer state, see netdev_state_t 1566 * @dev_list: The global list of network devices 1567 * @napi_list: List entry used for polling NAPI devices 1568 * @unreg_list: List entry when we are unregistering the 1569 * device; see the function unregister_netdev 1570 * @close_list: List entry used when we are closing the device 1571 * @ptype_all: Device-specific packet handlers for all protocols 1572 * @ptype_specific: Device-specific, protocol-specific packet handlers 1573 * 1574 * @adj_list: Directly linked devices, like slaves for bonding 1575 * @features: Currently active device features 1576 * @hw_features: User-changeable features 1577 * 1578 * @wanted_features: User-requested features 1579 * @vlan_features: Mask of features inheritable by VLAN devices 1580 * 1581 * @hw_enc_features: Mask of features inherited by encapsulating devices 1582 * This field indicates what encapsulation 1583 * offloads the hardware is capable of doing, 1584 * and drivers will need to set them appropriately. 1585 * 1586 * @mpls_features: Mask of features inheritable by MPLS 1587 * 1588 * @ifindex: interface index 1589 * @group: The group the device belongs to 1590 * 1591 * @stats: Statistics struct, which was left as a legacy, use 1592 * rtnl_link_stats64 instead 1593 * 1594 * @rx_dropped: Dropped packets by core network, 1595 * do not use this in drivers 1596 * @tx_dropped: Dropped packets by core network, 1597 * do not use this in drivers 1598 * @rx_nohandler: nohandler dropped packets by core network on 1599 * inactive devices, do not use this in drivers 1600 * @carrier_up_count: Number of times the carrier has been up 1601 * @carrier_down_count: Number of times the carrier has been down 1602 * 1603 * @wireless_handlers: List of functions to handle Wireless Extensions, 1604 * instead of ioctl, 1605 * see <net/iw_handler.h> for details. 1606 * @wireless_data: Instance data managed by the core of wireless extensions 1607 * 1608 * @netdev_ops: Includes several pointers to callbacks, 1609 * if one wants to override the ndo_*() functions 1610 * @ethtool_ops: Management operations 1611 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1612 * discovery handling. Necessary for e.g. 6LoWPAN. 1613 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1614 * of Layer 2 headers. 1615 * 1616 * @flags: Interface flags (a la BSD) 1617 * @priv_flags: Like 'flags' but invisible to userspace, 1618 * see if.h for the definitions 1619 * @gflags: Global flags ( kept as legacy ) 1620 * @padded: How much padding added by alloc_netdev() 1621 * @operstate: RFC2863 operstate 1622 * @link_mode: Mapping policy to operstate 1623 * @if_port: Selectable AUI, TP, ... 1624 * @dma: DMA channel 1625 * @mtu: Interface MTU value 1626 * @min_mtu: Interface Minimum MTU value 1627 * @max_mtu: Interface Maximum MTU value 1628 * @type: Interface hardware type 1629 * @hard_header_len: Maximum hardware header length. 1630 * @min_header_len: Minimum hardware header length 1631 * 1632 * @needed_headroom: Extra headroom the hardware may need, but not in all 1633 * cases can this be guaranteed 1634 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1635 * cases can this be guaranteed. Some cases also use 1636 * LL_MAX_HEADER instead to allocate the skb 1637 * 1638 * interface address info: 1639 * 1640 * @perm_addr: Permanent hw address 1641 * @addr_assign_type: Hw address assignment type 1642 * @addr_len: Hardware address length 1643 * @neigh_priv_len: Used in neigh_alloc() 1644 * @dev_id: Used to differentiate devices that share 1645 * the same link layer address 1646 * @dev_port: Used to differentiate devices that share 1647 * the same function 1648 * @addr_list_lock: XXX: need comments on this one 1649 * @uc_promisc: Counter that indicates promiscuous mode 1650 * has been enabled due to the need to listen to 1651 * additional unicast addresses in a device that 1652 * does not implement ndo_set_rx_mode() 1653 * @uc: unicast mac addresses 1654 * @mc: multicast mac addresses 1655 * @dev_addrs: list of device hw addresses 1656 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1657 * @promiscuity: Number of times the NIC is told to work in 1658 * promiscuous mode; if it becomes 0 the NIC will 1659 * exit promiscuous mode 1660 * @allmulti: Counter, enables or disables allmulticast mode 1661 * 1662 * @vlan_info: VLAN info 1663 * @dsa_ptr: dsa specific data 1664 * @tipc_ptr: TIPC specific data 1665 * @atalk_ptr: AppleTalk link 1666 * @ip_ptr: IPv4 specific data 1667 * @dn_ptr: DECnet specific data 1668 * @ip6_ptr: IPv6 specific data 1669 * @ax25_ptr: AX.25 specific data 1670 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1671 * 1672 * @dev_addr: Hw address (before bcast, 1673 * because most packets are unicast) 1674 * 1675 * @_rx: Array of RX queues 1676 * @num_rx_queues: Number of RX queues 1677 * allocated at register_netdev() time 1678 * @real_num_rx_queues: Number of RX queues currently active in device 1679 * 1680 * @rx_handler: handler for received packets 1681 * @rx_handler_data: XXX: need comments on this one 1682 * @miniq_ingress: ingress/clsact qdisc specific data for 1683 * ingress processing 1684 * @ingress_queue: XXX: need comments on this one 1685 * @broadcast: hw bcast address 1686 * 1687 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1688 * indexed by RX queue number. Assigned by driver. 1689 * This must only be set if the ndo_rx_flow_steer 1690 * operation is defined 1691 * @index_hlist: Device index hash chain 1692 * 1693 * @_tx: Array of TX queues 1694 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1695 * @real_num_tx_queues: Number of TX queues currently active in device 1696 * @qdisc: Root qdisc from userspace point of view 1697 * @tx_queue_len: Max frames per queue allowed 1698 * @tx_global_lock: XXX: need comments on this one 1699 * 1700 * @xps_maps: XXX: need comments on this one 1701 * @miniq_egress: clsact qdisc specific data for 1702 * egress processing 1703 * @watchdog_timeo: Represents the timeout that is used by 1704 * the watchdog (see dev_watchdog()) 1705 * @watchdog_timer: List of timers 1706 * 1707 * @pcpu_refcnt: Number of references to this device 1708 * @todo_list: Delayed register/unregister 1709 * @link_watch_list: XXX: need comments on this one 1710 * 1711 * @reg_state: Register/unregister state machine 1712 * @dismantle: Device is going to be freed 1713 * @rtnl_link_state: This enum represents the phases of creating 1714 * a new link 1715 * 1716 * @needs_free_netdev: Should unregister perform free_netdev? 1717 * @priv_destructor: Called from unregister 1718 * @npinfo: XXX: need comments on this one 1719 * @nd_net: Network namespace this network device is inside 1720 * 1721 * @ml_priv: Mid-layer private 1722 * @lstats: Loopback statistics 1723 * @tstats: Tunnel statistics 1724 * @dstats: Dummy statistics 1725 * @vstats: Virtual ethernet statistics 1726 * 1727 * @garp_port: GARP 1728 * @mrp_port: MRP 1729 * 1730 * @dev: Class/net/name entry 1731 * @sysfs_groups: Space for optional device, statistics and wireless 1732 * sysfs groups 1733 * 1734 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1735 * @rtnl_link_ops: Rtnl_link_ops 1736 * 1737 * @gso_max_size: Maximum size of generic segmentation offload 1738 * @gso_max_segs: Maximum number of segments that can be passed to the 1739 * NIC for GSO 1740 * 1741 * @dcbnl_ops: Data Center Bridging netlink ops 1742 * @num_tc: Number of traffic classes in the net device 1743 * @tc_to_txq: XXX: need comments on this one 1744 * @prio_tc_map: XXX: need comments on this one 1745 * 1746 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1747 * 1748 * @priomap: XXX: need comments on this one 1749 * @phydev: Physical device may attach itself 1750 * for hardware timestamping 1751 * @sfp_bus: attached &struct sfp_bus structure. 1752 * 1753 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1754 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1755 * 1756 * @proto_down: protocol port state information can be sent to the 1757 * switch driver and used to set the phys state of the 1758 * switch port. 1759 * 1760 * @wol_enabled: Wake-on-LAN is enabled 1761 * 1762 * FIXME: cleanup struct net_device such that network protocol info 1763 * moves out. 1764 */ 1765 1766 struct net_device { 1767 char name[IFNAMSIZ]; 1768 struct hlist_node name_hlist; 1769 struct dev_ifalias __rcu *ifalias; 1770 /* 1771 * I/O specific fields 1772 * FIXME: Merge these and struct ifmap into one 1773 */ 1774 unsigned long mem_end; 1775 unsigned long mem_start; 1776 unsigned long base_addr; 1777 int irq; 1778 1779 /* 1780 * Some hardware also needs these fields (state,dev_list, 1781 * napi_list,unreg_list,close_list) but they are not 1782 * part of the usual set specified in Space.c. 1783 */ 1784 1785 unsigned long state; 1786 1787 struct list_head dev_list; 1788 struct list_head napi_list; 1789 struct list_head unreg_list; 1790 struct list_head close_list; 1791 struct list_head ptype_all; 1792 struct list_head ptype_specific; 1793 1794 struct { 1795 struct list_head upper; 1796 struct list_head lower; 1797 } adj_list; 1798 1799 netdev_features_t features; 1800 netdev_features_t hw_features; 1801 netdev_features_t wanted_features; 1802 netdev_features_t vlan_features; 1803 netdev_features_t hw_enc_features; 1804 netdev_features_t mpls_features; 1805 netdev_features_t gso_partial_features; 1806 1807 int ifindex; 1808 int group; 1809 1810 struct net_device_stats stats; 1811 1812 atomic_long_t rx_dropped; 1813 atomic_long_t tx_dropped; 1814 atomic_long_t rx_nohandler; 1815 1816 /* Stats to monitor link on/off, flapping */ 1817 atomic_t carrier_up_count; 1818 atomic_t carrier_down_count; 1819 1820 #ifdef CONFIG_WIRELESS_EXT 1821 const struct iw_handler_def *wireless_handlers; 1822 struct iw_public_data *wireless_data; 1823 #endif 1824 const struct net_device_ops *netdev_ops; 1825 const struct ethtool_ops *ethtool_ops; 1826 #ifdef CONFIG_NET_L3_MASTER_DEV 1827 const struct l3mdev_ops *l3mdev_ops; 1828 #endif 1829 #if IS_ENABLED(CONFIG_IPV6) 1830 const struct ndisc_ops *ndisc_ops; 1831 #endif 1832 1833 #ifdef CONFIG_XFRM_OFFLOAD 1834 const struct xfrmdev_ops *xfrmdev_ops; 1835 #endif 1836 1837 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1838 const struct tlsdev_ops *tlsdev_ops; 1839 #endif 1840 1841 const struct header_ops *header_ops; 1842 1843 unsigned int flags; 1844 unsigned int priv_flags; 1845 1846 unsigned short gflags; 1847 unsigned short padded; 1848 1849 unsigned char operstate; 1850 unsigned char link_mode; 1851 1852 unsigned char if_port; 1853 unsigned char dma; 1854 1855 unsigned int mtu; 1856 unsigned int min_mtu; 1857 unsigned int max_mtu; 1858 unsigned short type; 1859 unsigned short hard_header_len; 1860 unsigned char min_header_len; 1861 1862 unsigned short needed_headroom; 1863 unsigned short needed_tailroom; 1864 1865 /* Interface address info. */ 1866 unsigned char perm_addr[MAX_ADDR_LEN]; 1867 unsigned char addr_assign_type; 1868 unsigned char addr_len; 1869 unsigned short neigh_priv_len; 1870 unsigned short dev_id; 1871 unsigned short dev_port; 1872 spinlock_t addr_list_lock; 1873 unsigned char name_assign_type; 1874 bool uc_promisc; 1875 struct netdev_hw_addr_list uc; 1876 struct netdev_hw_addr_list mc; 1877 struct netdev_hw_addr_list dev_addrs; 1878 1879 #ifdef CONFIG_SYSFS 1880 struct kset *queues_kset; 1881 #endif 1882 unsigned int promiscuity; 1883 unsigned int allmulti; 1884 1885 1886 /* Protocol-specific pointers */ 1887 1888 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1889 struct vlan_info __rcu *vlan_info; 1890 #endif 1891 #if IS_ENABLED(CONFIG_NET_DSA) 1892 struct dsa_port *dsa_ptr; 1893 #endif 1894 #if IS_ENABLED(CONFIG_TIPC) 1895 struct tipc_bearer __rcu *tipc_ptr; 1896 #endif 1897 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1898 void *atalk_ptr; 1899 #endif 1900 struct in_device __rcu *ip_ptr; 1901 #if IS_ENABLED(CONFIG_DECNET) 1902 struct dn_dev __rcu *dn_ptr; 1903 #endif 1904 struct inet6_dev __rcu *ip6_ptr; 1905 #if IS_ENABLED(CONFIG_AX25) 1906 void *ax25_ptr; 1907 #endif 1908 struct wireless_dev *ieee80211_ptr; 1909 struct wpan_dev *ieee802154_ptr; 1910 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1911 struct mpls_dev __rcu *mpls_ptr; 1912 #endif 1913 1914 /* 1915 * Cache lines mostly used on receive path (including eth_type_trans()) 1916 */ 1917 /* Interface address info used in eth_type_trans() */ 1918 unsigned char *dev_addr; 1919 1920 struct netdev_rx_queue *_rx; 1921 unsigned int num_rx_queues; 1922 unsigned int real_num_rx_queues; 1923 1924 struct bpf_prog __rcu *xdp_prog; 1925 unsigned long gro_flush_timeout; 1926 rx_handler_func_t __rcu *rx_handler; 1927 void __rcu *rx_handler_data; 1928 1929 #ifdef CONFIG_NET_CLS_ACT 1930 struct mini_Qdisc __rcu *miniq_ingress; 1931 #endif 1932 struct netdev_queue __rcu *ingress_queue; 1933 #ifdef CONFIG_NETFILTER_INGRESS 1934 struct nf_hook_entries __rcu *nf_hooks_ingress; 1935 #endif 1936 1937 unsigned char broadcast[MAX_ADDR_LEN]; 1938 #ifdef CONFIG_RFS_ACCEL 1939 struct cpu_rmap *rx_cpu_rmap; 1940 #endif 1941 struct hlist_node index_hlist; 1942 1943 /* 1944 * Cache lines mostly used on transmit path 1945 */ 1946 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1947 unsigned int num_tx_queues; 1948 unsigned int real_num_tx_queues; 1949 struct Qdisc *qdisc; 1950 #ifdef CONFIG_NET_SCHED 1951 DECLARE_HASHTABLE (qdisc_hash, 4); 1952 #endif 1953 unsigned int tx_queue_len; 1954 spinlock_t tx_global_lock; 1955 int watchdog_timeo; 1956 1957 #ifdef CONFIG_XPS 1958 struct xps_dev_maps __rcu *xps_cpus_map; 1959 struct xps_dev_maps __rcu *xps_rxqs_map; 1960 #endif 1961 #ifdef CONFIG_NET_CLS_ACT 1962 struct mini_Qdisc __rcu *miniq_egress; 1963 #endif 1964 1965 /* These may be needed for future network-power-down code. */ 1966 struct timer_list watchdog_timer; 1967 1968 int __percpu *pcpu_refcnt; 1969 struct list_head todo_list; 1970 1971 struct list_head link_watch_list; 1972 1973 enum { NETREG_UNINITIALIZED=0, 1974 NETREG_REGISTERED, /* completed register_netdevice */ 1975 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1976 NETREG_UNREGISTERED, /* completed unregister todo */ 1977 NETREG_RELEASED, /* called free_netdev */ 1978 NETREG_DUMMY, /* dummy device for NAPI poll */ 1979 } reg_state:8; 1980 1981 bool dismantle; 1982 1983 enum { 1984 RTNL_LINK_INITIALIZED, 1985 RTNL_LINK_INITIALIZING, 1986 } rtnl_link_state:16; 1987 1988 bool needs_free_netdev; 1989 void (*priv_destructor)(struct net_device *dev); 1990 1991 #ifdef CONFIG_NETPOLL 1992 struct netpoll_info __rcu *npinfo; 1993 #endif 1994 1995 possible_net_t nd_net; 1996 1997 /* mid-layer private */ 1998 union { 1999 void *ml_priv; 2000 struct pcpu_lstats __percpu *lstats; 2001 struct pcpu_sw_netstats __percpu *tstats; 2002 struct pcpu_dstats __percpu *dstats; 2003 }; 2004 2005 #if IS_ENABLED(CONFIG_GARP) 2006 struct garp_port __rcu *garp_port; 2007 #endif 2008 #if IS_ENABLED(CONFIG_MRP) 2009 struct mrp_port __rcu *mrp_port; 2010 #endif 2011 2012 struct device dev; 2013 const struct attribute_group *sysfs_groups[4]; 2014 const struct attribute_group *sysfs_rx_queue_group; 2015 2016 const struct rtnl_link_ops *rtnl_link_ops; 2017 2018 /* for setting kernel sock attribute on TCP connection setup */ 2019 #define GSO_MAX_SIZE 65536 2020 unsigned int gso_max_size; 2021 #define GSO_MAX_SEGS 65535 2022 u16 gso_max_segs; 2023 2024 #ifdef CONFIG_DCB 2025 const struct dcbnl_rtnl_ops *dcbnl_ops; 2026 #endif 2027 s16 num_tc; 2028 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2029 u8 prio_tc_map[TC_BITMASK + 1]; 2030 2031 #if IS_ENABLED(CONFIG_FCOE) 2032 unsigned int fcoe_ddp_xid; 2033 #endif 2034 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2035 struct netprio_map __rcu *priomap; 2036 #endif 2037 struct phy_device *phydev; 2038 struct sfp_bus *sfp_bus; 2039 struct lock_class_key *qdisc_tx_busylock; 2040 struct lock_class_key *qdisc_running_key; 2041 bool proto_down; 2042 unsigned wol_enabled:1; 2043 }; 2044 #define to_net_dev(d) container_of(d, struct net_device, dev) 2045 2046 static inline bool netif_elide_gro(const struct net_device *dev) 2047 { 2048 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2049 return true; 2050 return false; 2051 } 2052 2053 #define NETDEV_ALIGN 32 2054 2055 static inline 2056 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2057 { 2058 return dev->prio_tc_map[prio & TC_BITMASK]; 2059 } 2060 2061 static inline 2062 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2063 { 2064 if (tc >= dev->num_tc) 2065 return -EINVAL; 2066 2067 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2068 return 0; 2069 } 2070 2071 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2072 void netdev_reset_tc(struct net_device *dev); 2073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2074 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2075 2076 static inline 2077 int netdev_get_num_tc(struct net_device *dev) 2078 { 2079 return dev->num_tc; 2080 } 2081 2082 void netdev_unbind_sb_channel(struct net_device *dev, 2083 struct net_device *sb_dev); 2084 int netdev_bind_sb_channel_queue(struct net_device *dev, 2085 struct net_device *sb_dev, 2086 u8 tc, u16 count, u16 offset); 2087 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2088 static inline int netdev_get_sb_channel(struct net_device *dev) 2089 { 2090 return max_t(int, -dev->num_tc, 0); 2091 } 2092 2093 static inline 2094 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2095 unsigned int index) 2096 { 2097 return &dev->_tx[index]; 2098 } 2099 2100 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2101 const struct sk_buff *skb) 2102 { 2103 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2104 } 2105 2106 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2107 void (*f)(struct net_device *, 2108 struct netdev_queue *, 2109 void *), 2110 void *arg) 2111 { 2112 unsigned int i; 2113 2114 for (i = 0; i < dev->num_tx_queues; i++) 2115 f(dev, &dev->_tx[i], arg); 2116 } 2117 2118 #define netdev_lockdep_set_classes(dev) \ 2119 { \ 2120 static struct lock_class_key qdisc_tx_busylock_key; \ 2121 static struct lock_class_key qdisc_running_key; \ 2122 static struct lock_class_key qdisc_xmit_lock_key; \ 2123 static struct lock_class_key dev_addr_list_lock_key; \ 2124 unsigned int i; \ 2125 \ 2126 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2127 (dev)->qdisc_running_key = &qdisc_running_key; \ 2128 lockdep_set_class(&(dev)->addr_list_lock, \ 2129 &dev_addr_list_lock_key); \ 2130 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2131 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2132 &qdisc_xmit_lock_key); \ 2133 } 2134 2135 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2136 struct net_device *sb_dev); 2137 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2138 struct sk_buff *skb, 2139 struct net_device *sb_dev); 2140 2141 /* returns the headroom that the master device needs to take in account 2142 * when forwarding to this dev 2143 */ 2144 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2145 { 2146 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2147 } 2148 2149 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2150 { 2151 if (dev->netdev_ops->ndo_set_rx_headroom) 2152 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2153 } 2154 2155 /* set the device rx headroom to the dev's default */ 2156 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2157 { 2158 netdev_set_rx_headroom(dev, -1); 2159 } 2160 2161 /* 2162 * Net namespace inlines 2163 */ 2164 static inline 2165 struct net *dev_net(const struct net_device *dev) 2166 { 2167 return read_pnet(&dev->nd_net); 2168 } 2169 2170 static inline 2171 void dev_net_set(struct net_device *dev, struct net *net) 2172 { 2173 write_pnet(&dev->nd_net, net); 2174 } 2175 2176 /** 2177 * netdev_priv - access network device private data 2178 * @dev: network device 2179 * 2180 * Get network device private data 2181 */ 2182 static inline void *netdev_priv(const struct net_device *dev) 2183 { 2184 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2185 } 2186 2187 /* Set the sysfs physical device reference for the network logical device 2188 * if set prior to registration will cause a symlink during initialization. 2189 */ 2190 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2191 2192 /* Set the sysfs device type for the network logical device to allow 2193 * fine-grained identification of different network device types. For 2194 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2195 */ 2196 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2197 2198 /* Default NAPI poll() weight 2199 * Device drivers are strongly advised to not use bigger value 2200 */ 2201 #define NAPI_POLL_WEIGHT 64 2202 2203 /** 2204 * netif_napi_add - initialize a NAPI context 2205 * @dev: network device 2206 * @napi: NAPI context 2207 * @poll: polling function 2208 * @weight: default weight 2209 * 2210 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2211 * *any* of the other NAPI-related functions. 2212 */ 2213 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2214 int (*poll)(struct napi_struct *, int), int weight); 2215 2216 /** 2217 * netif_tx_napi_add - initialize a NAPI context 2218 * @dev: network device 2219 * @napi: NAPI context 2220 * @poll: polling function 2221 * @weight: default weight 2222 * 2223 * This variant of netif_napi_add() should be used from drivers using NAPI 2224 * to exclusively poll a TX queue. 2225 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2226 */ 2227 static inline void netif_tx_napi_add(struct net_device *dev, 2228 struct napi_struct *napi, 2229 int (*poll)(struct napi_struct *, int), 2230 int weight) 2231 { 2232 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2233 netif_napi_add(dev, napi, poll, weight); 2234 } 2235 2236 /** 2237 * netif_napi_del - remove a NAPI context 2238 * @napi: NAPI context 2239 * 2240 * netif_napi_del() removes a NAPI context from the network device NAPI list 2241 */ 2242 void netif_napi_del(struct napi_struct *napi); 2243 2244 struct napi_gro_cb { 2245 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2246 void *frag0; 2247 2248 /* Length of frag0. */ 2249 unsigned int frag0_len; 2250 2251 /* This indicates where we are processing relative to skb->data. */ 2252 int data_offset; 2253 2254 /* This is non-zero if the packet cannot be merged with the new skb. */ 2255 u16 flush; 2256 2257 /* Save the IP ID here and check when we get to the transport layer */ 2258 u16 flush_id; 2259 2260 /* Number of segments aggregated. */ 2261 u16 count; 2262 2263 /* Start offset for remote checksum offload */ 2264 u16 gro_remcsum_start; 2265 2266 /* jiffies when first packet was created/queued */ 2267 unsigned long age; 2268 2269 /* Used in ipv6_gro_receive() and foo-over-udp */ 2270 u16 proto; 2271 2272 /* This is non-zero if the packet may be of the same flow. */ 2273 u8 same_flow:1; 2274 2275 /* Used in tunnel GRO receive */ 2276 u8 encap_mark:1; 2277 2278 /* GRO checksum is valid */ 2279 u8 csum_valid:1; 2280 2281 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2282 u8 csum_cnt:3; 2283 2284 /* Free the skb? */ 2285 u8 free:2; 2286 #define NAPI_GRO_FREE 1 2287 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2288 2289 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2290 u8 is_ipv6:1; 2291 2292 /* Used in GRE, set in fou/gue_gro_receive */ 2293 u8 is_fou:1; 2294 2295 /* Used to determine if flush_id can be ignored */ 2296 u8 is_atomic:1; 2297 2298 /* Number of gro_receive callbacks this packet already went through */ 2299 u8 recursion_counter:4; 2300 2301 /* 1 bit hole */ 2302 2303 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2304 __wsum csum; 2305 2306 /* used in skb_gro_receive() slow path */ 2307 struct sk_buff *last; 2308 }; 2309 2310 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2311 2312 #define GRO_RECURSION_LIMIT 15 2313 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2314 { 2315 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2316 } 2317 2318 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2319 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2320 struct list_head *head, 2321 struct sk_buff *skb) 2322 { 2323 if (unlikely(gro_recursion_inc_test(skb))) { 2324 NAPI_GRO_CB(skb)->flush |= 1; 2325 return NULL; 2326 } 2327 2328 return cb(head, skb); 2329 } 2330 2331 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2332 struct sk_buff *); 2333 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2334 struct sock *sk, 2335 struct list_head *head, 2336 struct sk_buff *skb) 2337 { 2338 if (unlikely(gro_recursion_inc_test(skb))) { 2339 NAPI_GRO_CB(skb)->flush |= 1; 2340 return NULL; 2341 } 2342 2343 return cb(sk, head, skb); 2344 } 2345 2346 struct packet_type { 2347 __be16 type; /* This is really htons(ether_type). */ 2348 bool ignore_outgoing; 2349 struct net_device *dev; /* NULL is wildcarded here */ 2350 int (*func) (struct sk_buff *, 2351 struct net_device *, 2352 struct packet_type *, 2353 struct net_device *); 2354 void (*list_func) (struct list_head *, 2355 struct packet_type *, 2356 struct net_device *); 2357 bool (*id_match)(struct packet_type *ptype, 2358 struct sock *sk); 2359 void *af_packet_priv; 2360 struct list_head list; 2361 }; 2362 2363 struct offload_callbacks { 2364 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2365 netdev_features_t features); 2366 struct sk_buff *(*gro_receive)(struct list_head *head, 2367 struct sk_buff *skb); 2368 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2369 }; 2370 2371 struct packet_offload { 2372 __be16 type; /* This is really htons(ether_type). */ 2373 u16 priority; 2374 struct offload_callbacks callbacks; 2375 struct list_head list; 2376 }; 2377 2378 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2379 struct pcpu_sw_netstats { 2380 u64 rx_packets; 2381 u64 rx_bytes; 2382 u64 tx_packets; 2383 u64 tx_bytes; 2384 struct u64_stats_sync syncp; 2385 } __aligned(4 * sizeof(u64)); 2386 2387 struct pcpu_lstats { 2388 u64 packets; 2389 u64 bytes; 2390 struct u64_stats_sync syncp; 2391 } __aligned(2 * sizeof(u64)); 2392 2393 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2394 ({ \ 2395 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2396 if (pcpu_stats) { \ 2397 int __cpu; \ 2398 for_each_possible_cpu(__cpu) { \ 2399 typeof(type) *stat; \ 2400 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2401 u64_stats_init(&stat->syncp); \ 2402 } \ 2403 } \ 2404 pcpu_stats; \ 2405 }) 2406 2407 #define netdev_alloc_pcpu_stats(type) \ 2408 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2409 2410 enum netdev_lag_tx_type { 2411 NETDEV_LAG_TX_TYPE_UNKNOWN, 2412 NETDEV_LAG_TX_TYPE_RANDOM, 2413 NETDEV_LAG_TX_TYPE_BROADCAST, 2414 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2415 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2416 NETDEV_LAG_TX_TYPE_HASH, 2417 }; 2418 2419 enum netdev_lag_hash { 2420 NETDEV_LAG_HASH_NONE, 2421 NETDEV_LAG_HASH_L2, 2422 NETDEV_LAG_HASH_L34, 2423 NETDEV_LAG_HASH_L23, 2424 NETDEV_LAG_HASH_E23, 2425 NETDEV_LAG_HASH_E34, 2426 NETDEV_LAG_HASH_UNKNOWN, 2427 }; 2428 2429 struct netdev_lag_upper_info { 2430 enum netdev_lag_tx_type tx_type; 2431 enum netdev_lag_hash hash_type; 2432 }; 2433 2434 struct netdev_lag_lower_state_info { 2435 u8 link_up : 1, 2436 tx_enabled : 1; 2437 }; 2438 2439 #include <linux/notifier.h> 2440 2441 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2442 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2443 * adding new types. 2444 */ 2445 enum netdev_cmd { 2446 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2447 NETDEV_DOWN, 2448 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2449 detected a hardware crash and restarted 2450 - we can use this eg to kick tcp sessions 2451 once done */ 2452 NETDEV_CHANGE, /* Notify device state change */ 2453 NETDEV_REGISTER, 2454 NETDEV_UNREGISTER, 2455 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2456 NETDEV_CHANGEADDR, /* notify after the address change */ 2457 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2458 NETDEV_GOING_DOWN, 2459 NETDEV_CHANGENAME, 2460 NETDEV_FEAT_CHANGE, 2461 NETDEV_BONDING_FAILOVER, 2462 NETDEV_PRE_UP, 2463 NETDEV_PRE_TYPE_CHANGE, 2464 NETDEV_POST_TYPE_CHANGE, 2465 NETDEV_POST_INIT, 2466 NETDEV_RELEASE, 2467 NETDEV_NOTIFY_PEERS, 2468 NETDEV_JOIN, 2469 NETDEV_CHANGEUPPER, 2470 NETDEV_RESEND_IGMP, 2471 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2472 NETDEV_CHANGEINFODATA, 2473 NETDEV_BONDING_INFO, 2474 NETDEV_PRECHANGEUPPER, 2475 NETDEV_CHANGELOWERSTATE, 2476 NETDEV_UDP_TUNNEL_PUSH_INFO, 2477 NETDEV_UDP_TUNNEL_DROP_INFO, 2478 NETDEV_CHANGE_TX_QUEUE_LEN, 2479 NETDEV_CVLAN_FILTER_PUSH_INFO, 2480 NETDEV_CVLAN_FILTER_DROP_INFO, 2481 NETDEV_SVLAN_FILTER_PUSH_INFO, 2482 NETDEV_SVLAN_FILTER_DROP_INFO, 2483 }; 2484 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2485 2486 int register_netdevice_notifier(struct notifier_block *nb); 2487 int unregister_netdevice_notifier(struct notifier_block *nb); 2488 2489 struct netdev_notifier_info { 2490 struct net_device *dev; 2491 struct netlink_ext_ack *extack; 2492 }; 2493 2494 struct netdev_notifier_info_ext { 2495 struct netdev_notifier_info info; /* must be first */ 2496 union { 2497 u32 mtu; 2498 } ext; 2499 }; 2500 2501 struct netdev_notifier_change_info { 2502 struct netdev_notifier_info info; /* must be first */ 2503 unsigned int flags_changed; 2504 }; 2505 2506 struct netdev_notifier_changeupper_info { 2507 struct netdev_notifier_info info; /* must be first */ 2508 struct net_device *upper_dev; /* new upper dev */ 2509 bool master; /* is upper dev master */ 2510 bool linking; /* is the notification for link or unlink */ 2511 void *upper_info; /* upper dev info */ 2512 }; 2513 2514 struct netdev_notifier_changelowerstate_info { 2515 struct netdev_notifier_info info; /* must be first */ 2516 void *lower_state_info; /* is lower dev state */ 2517 }; 2518 2519 struct netdev_notifier_pre_changeaddr_info { 2520 struct netdev_notifier_info info; /* must be first */ 2521 const unsigned char *dev_addr; 2522 }; 2523 2524 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2525 struct net_device *dev) 2526 { 2527 info->dev = dev; 2528 info->extack = NULL; 2529 } 2530 2531 static inline struct net_device * 2532 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2533 { 2534 return info->dev; 2535 } 2536 2537 static inline struct netlink_ext_ack * 2538 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2539 { 2540 return info->extack; 2541 } 2542 2543 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2544 2545 2546 extern rwlock_t dev_base_lock; /* Device list lock */ 2547 2548 #define for_each_netdev(net, d) \ 2549 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2550 #define for_each_netdev_reverse(net, d) \ 2551 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2552 #define for_each_netdev_rcu(net, d) \ 2553 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2554 #define for_each_netdev_safe(net, d, n) \ 2555 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2556 #define for_each_netdev_continue(net, d) \ 2557 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2558 #define for_each_netdev_continue_rcu(net, d) \ 2559 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2560 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2561 for_each_netdev_rcu(&init_net, slave) \ 2562 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2563 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2564 2565 static inline struct net_device *next_net_device(struct net_device *dev) 2566 { 2567 struct list_head *lh; 2568 struct net *net; 2569 2570 net = dev_net(dev); 2571 lh = dev->dev_list.next; 2572 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2573 } 2574 2575 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2576 { 2577 struct list_head *lh; 2578 struct net *net; 2579 2580 net = dev_net(dev); 2581 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2582 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2583 } 2584 2585 static inline struct net_device *first_net_device(struct net *net) 2586 { 2587 return list_empty(&net->dev_base_head) ? NULL : 2588 net_device_entry(net->dev_base_head.next); 2589 } 2590 2591 static inline struct net_device *first_net_device_rcu(struct net *net) 2592 { 2593 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2594 2595 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2596 } 2597 2598 int netdev_boot_setup_check(struct net_device *dev); 2599 unsigned long netdev_boot_base(const char *prefix, int unit); 2600 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2601 const char *hwaddr); 2602 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2603 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2604 void dev_add_pack(struct packet_type *pt); 2605 void dev_remove_pack(struct packet_type *pt); 2606 void __dev_remove_pack(struct packet_type *pt); 2607 void dev_add_offload(struct packet_offload *po); 2608 void dev_remove_offload(struct packet_offload *po); 2609 2610 int dev_get_iflink(const struct net_device *dev); 2611 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2612 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2613 unsigned short mask); 2614 struct net_device *dev_get_by_name(struct net *net, const char *name); 2615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2616 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2617 int dev_alloc_name(struct net_device *dev, const char *name); 2618 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2619 void dev_close(struct net_device *dev); 2620 void dev_close_many(struct list_head *head, bool unlink); 2621 void dev_disable_lro(struct net_device *dev); 2622 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2623 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2624 struct net_device *sb_dev); 2625 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2626 struct net_device *sb_dev); 2627 int dev_queue_xmit(struct sk_buff *skb); 2628 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2629 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2630 int register_netdevice(struct net_device *dev); 2631 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2632 void unregister_netdevice_many(struct list_head *head); 2633 static inline void unregister_netdevice(struct net_device *dev) 2634 { 2635 unregister_netdevice_queue(dev, NULL); 2636 } 2637 2638 int netdev_refcnt_read(const struct net_device *dev); 2639 void free_netdev(struct net_device *dev); 2640 void netdev_freemem(struct net_device *dev); 2641 void synchronize_net(void); 2642 int init_dummy_netdev(struct net_device *dev); 2643 2644 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2645 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2646 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2647 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2648 int netdev_get_name(struct net *net, char *name, int ifindex); 2649 int dev_restart(struct net_device *dev); 2650 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2651 2652 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2653 { 2654 return NAPI_GRO_CB(skb)->data_offset; 2655 } 2656 2657 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2658 { 2659 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2660 } 2661 2662 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2663 { 2664 NAPI_GRO_CB(skb)->data_offset += len; 2665 } 2666 2667 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2668 unsigned int offset) 2669 { 2670 return NAPI_GRO_CB(skb)->frag0 + offset; 2671 } 2672 2673 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2674 { 2675 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2676 } 2677 2678 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2679 { 2680 NAPI_GRO_CB(skb)->frag0 = NULL; 2681 NAPI_GRO_CB(skb)->frag0_len = 0; 2682 } 2683 2684 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2685 unsigned int offset) 2686 { 2687 if (!pskb_may_pull(skb, hlen)) 2688 return NULL; 2689 2690 skb_gro_frag0_invalidate(skb); 2691 return skb->data + offset; 2692 } 2693 2694 static inline void *skb_gro_network_header(struct sk_buff *skb) 2695 { 2696 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2697 skb_network_offset(skb); 2698 } 2699 2700 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2701 const void *start, unsigned int len) 2702 { 2703 if (NAPI_GRO_CB(skb)->csum_valid) 2704 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2705 csum_partial(start, len, 0)); 2706 } 2707 2708 /* GRO checksum functions. These are logical equivalents of the normal 2709 * checksum functions (in skbuff.h) except that they operate on the GRO 2710 * offsets and fields in sk_buff. 2711 */ 2712 2713 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2714 2715 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2716 { 2717 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2718 } 2719 2720 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2721 bool zero_okay, 2722 __sum16 check) 2723 { 2724 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2725 skb_checksum_start_offset(skb) < 2726 skb_gro_offset(skb)) && 2727 !skb_at_gro_remcsum_start(skb) && 2728 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2729 (!zero_okay || check)); 2730 } 2731 2732 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2733 __wsum psum) 2734 { 2735 if (NAPI_GRO_CB(skb)->csum_valid && 2736 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2737 return 0; 2738 2739 NAPI_GRO_CB(skb)->csum = psum; 2740 2741 return __skb_gro_checksum_complete(skb); 2742 } 2743 2744 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2745 { 2746 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2747 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2748 NAPI_GRO_CB(skb)->csum_cnt--; 2749 } else { 2750 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2751 * verified a new top level checksum or an encapsulated one 2752 * during GRO. This saves work if we fallback to normal path. 2753 */ 2754 __skb_incr_checksum_unnecessary(skb); 2755 } 2756 } 2757 2758 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2759 compute_pseudo) \ 2760 ({ \ 2761 __sum16 __ret = 0; \ 2762 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2763 __ret = __skb_gro_checksum_validate_complete(skb, \ 2764 compute_pseudo(skb, proto)); \ 2765 if (!__ret) \ 2766 skb_gro_incr_csum_unnecessary(skb); \ 2767 __ret; \ 2768 }) 2769 2770 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2771 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2772 2773 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2774 compute_pseudo) \ 2775 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2776 2777 #define skb_gro_checksum_simple_validate(skb) \ 2778 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2779 2780 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2781 { 2782 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2783 !NAPI_GRO_CB(skb)->csum_valid); 2784 } 2785 2786 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2787 __sum16 check, __wsum pseudo) 2788 { 2789 NAPI_GRO_CB(skb)->csum = ~pseudo; 2790 NAPI_GRO_CB(skb)->csum_valid = 1; 2791 } 2792 2793 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2794 do { \ 2795 if (__skb_gro_checksum_convert_check(skb)) \ 2796 __skb_gro_checksum_convert(skb, check, \ 2797 compute_pseudo(skb, proto)); \ 2798 } while (0) 2799 2800 struct gro_remcsum { 2801 int offset; 2802 __wsum delta; 2803 }; 2804 2805 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2806 { 2807 grc->offset = 0; 2808 grc->delta = 0; 2809 } 2810 2811 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2812 unsigned int off, size_t hdrlen, 2813 int start, int offset, 2814 struct gro_remcsum *grc, 2815 bool nopartial) 2816 { 2817 __wsum delta; 2818 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2819 2820 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2821 2822 if (!nopartial) { 2823 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2824 return ptr; 2825 } 2826 2827 ptr = skb_gro_header_fast(skb, off); 2828 if (skb_gro_header_hard(skb, off + plen)) { 2829 ptr = skb_gro_header_slow(skb, off + plen, off); 2830 if (!ptr) 2831 return NULL; 2832 } 2833 2834 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2835 start, offset); 2836 2837 /* Adjust skb->csum since we changed the packet */ 2838 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2839 2840 grc->offset = off + hdrlen + offset; 2841 grc->delta = delta; 2842 2843 return ptr; 2844 } 2845 2846 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2847 struct gro_remcsum *grc) 2848 { 2849 void *ptr; 2850 size_t plen = grc->offset + sizeof(u16); 2851 2852 if (!grc->delta) 2853 return; 2854 2855 ptr = skb_gro_header_fast(skb, grc->offset); 2856 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2857 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2858 if (!ptr) 2859 return; 2860 } 2861 2862 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2863 } 2864 2865 #ifdef CONFIG_XFRM_OFFLOAD 2866 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2867 { 2868 if (PTR_ERR(pp) != -EINPROGRESS) 2869 NAPI_GRO_CB(skb)->flush |= flush; 2870 } 2871 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2872 struct sk_buff *pp, 2873 int flush, 2874 struct gro_remcsum *grc) 2875 { 2876 if (PTR_ERR(pp) != -EINPROGRESS) { 2877 NAPI_GRO_CB(skb)->flush |= flush; 2878 skb_gro_remcsum_cleanup(skb, grc); 2879 skb->remcsum_offload = 0; 2880 } 2881 } 2882 #else 2883 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2884 { 2885 NAPI_GRO_CB(skb)->flush |= flush; 2886 } 2887 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2888 struct sk_buff *pp, 2889 int flush, 2890 struct gro_remcsum *grc) 2891 { 2892 NAPI_GRO_CB(skb)->flush |= flush; 2893 skb_gro_remcsum_cleanup(skb, grc); 2894 skb->remcsum_offload = 0; 2895 } 2896 #endif 2897 2898 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2899 unsigned short type, 2900 const void *daddr, const void *saddr, 2901 unsigned int len) 2902 { 2903 if (!dev->header_ops || !dev->header_ops->create) 2904 return 0; 2905 2906 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2907 } 2908 2909 static inline int dev_parse_header(const struct sk_buff *skb, 2910 unsigned char *haddr) 2911 { 2912 const struct net_device *dev = skb->dev; 2913 2914 if (!dev->header_ops || !dev->header_ops->parse) 2915 return 0; 2916 return dev->header_ops->parse(skb, haddr); 2917 } 2918 2919 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2920 { 2921 const struct net_device *dev = skb->dev; 2922 2923 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2924 return 0; 2925 return dev->header_ops->parse_protocol(skb); 2926 } 2927 2928 /* ll_header must have at least hard_header_len allocated */ 2929 static inline bool dev_validate_header(const struct net_device *dev, 2930 char *ll_header, int len) 2931 { 2932 if (likely(len >= dev->hard_header_len)) 2933 return true; 2934 if (len < dev->min_header_len) 2935 return false; 2936 2937 if (capable(CAP_SYS_RAWIO)) { 2938 memset(ll_header + len, 0, dev->hard_header_len - len); 2939 return true; 2940 } 2941 2942 if (dev->header_ops && dev->header_ops->validate) 2943 return dev->header_ops->validate(ll_header, len); 2944 2945 return false; 2946 } 2947 2948 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2949 int len, int size); 2950 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2951 static inline int unregister_gifconf(unsigned int family) 2952 { 2953 return register_gifconf(family, NULL); 2954 } 2955 2956 #ifdef CONFIG_NET_FLOW_LIMIT 2957 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2958 struct sd_flow_limit { 2959 u64 count; 2960 unsigned int num_buckets; 2961 unsigned int history_head; 2962 u16 history[FLOW_LIMIT_HISTORY]; 2963 u8 buckets[]; 2964 }; 2965 2966 extern int netdev_flow_limit_table_len; 2967 #endif /* CONFIG_NET_FLOW_LIMIT */ 2968 2969 /* 2970 * Incoming packets are placed on per-CPU queues 2971 */ 2972 struct softnet_data { 2973 struct list_head poll_list; 2974 struct sk_buff_head process_queue; 2975 2976 /* stats */ 2977 unsigned int processed; 2978 unsigned int time_squeeze; 2979 unsigned int received_rps; 2980 #ifdef CONFIG_RPS 2981 struct softnet_data *rps_ipi_list; 2982 #endif 2983 #ifdef CONFIG_NET_FLOW_LIMIT 2984 struct sd_flow_limit __rcu *flow_limit; 2985 #endif 2986 struct Qdisc *output_queue; 2987 struct Qdisc **output_queue_tailp; 2988 struct sk_buff *completion_queue; 2989 #ifdef CONFIG_XFRM_OFFLOAD 2990 struct sk_buff_head xfrm_backlog; 2991 #endif 2992 /* written and read only by owning cpu: */ 2993 struct { 2994 u16 recursion; 2995 u8 more; 2996 } xmit; 2997 #ifdef CONFIG_RPS 2998 /* input_queue_head should be written by cpu owning this struct, 2999 * and only read by other cpus. Worth using a cache line. 3000 */ 3001 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3002 3003 /* Elements below can be accessed between CPUs for RPS/RFS */ 3004 call_single_data_t csd ____cacheline_aligned_in_smp; 3005 struct softnet_data *rps_ipi_next; 3006 unsigned int cpu; 3007 unsigned int input_queue_tail; 3008 #endif 3009 unsigned int dropped; 3010 struct sk_buff_head input_pkt_queue; 3011 struct napi_struct backlog; 3012 3013 }; 3014 3015 static inline void input_queue_head_incr(struct softnet_data *sd) 3016 { 3017 #ifdef CONFIG_RPS 3018 sd->input_queue_head++; 3019 #endif 3020 } 3021 3022 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3023 unsigned int *qtail) 3024 { 3025 #ifdef CONFIG_RPS 3026 *qtail = ++sd->input_queue_tail; 3027 #endif 3028 } 3029 3030 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3031 3032 static inline int dev_recursion_level(void) 3033 { 3034 return this_cpu_read(softnet_data.xmit.recursion); 3035 } 3036 3037 #define XMIT_RECURSION_LIMIT 10 3038 static inline bool dev_xmit_recursion(void) 3039 { 3040 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3041 XMIT_RECURSION_LIMIT); 3042 } 3043 3044 static inline void dev_xmit_recursion_inc(void) 3045 { 3046 __this_cpu_inc(softnet_data.xmit.recursion); 3047 } 3048 3049 static inline void dev_xmit_recursion_dec(void) 3050 { 3051 __this_cpu_dec(softnet_data.xmit.recursion); 3052 } 3053 3054 void __netif_schedule(struct Qdisc *q); 3055 void netif_schedule_queue(struct netdev_queue *txq); 3056 3057 static inline void netif_tx_schedule_all(struct net_device *dev) 3058 { 3059 unsigned int i; 3060 3061 for (i = 0; i < dev->num_tx_queues; i++) 3062 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3063 } 3064 3065 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3066 { 3067 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3068 } 3069 3070 /** 3071 * netif_start_queue - allow transmit 3072 * @dev: network device 3073 * 3074 * Allow upper layers to call the device hard_start_xmit routine. 3075 */ 3076 static inline void netif_start_queue(struct net_device *dev) 3077 { 3078 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3079 } 3080 3081 static inline void netif_tx_start_all_queues(struct net_device *dev) 3082 { 3083 unsigned int i; 3084 3085 for (i = 0; i < dev->num_tx_queues; i++) { 3086 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3087 netif_tx_start_queue(txq); 3088 } 3089 } 3090 3091 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3092 3093 /** 3094 * netif_wake_queue - restart transmit 3095 * @dev: network device 3096 * 3097 * Allow upper layers to call the device hard_start_xmit routine. 3098 * Used for flow control when transmit resources are available. 3099 */ 3100 static inline void netif_wake_queue(struct net_device *dev) 3101 { 3102 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3103 } 3104 3105 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3106 { 3107 unsigned int i; 3108 3109 for (i = 0; i < dev->num_tx_queues; i++) { 3110 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3111 netif_tx_wake_queue(txq); 3112 } 3113 } 3114 3115 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3116 { 3117 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3118 } 3119 3120 /** 3121 * netif_stop_queue - stop transmitted packets 3122 * @dev: network device 3123 * 3124 * Stop upper layers calling the device hard_start_xmit routine. 3125 * Used for flow control when transmit resources are unavailable. 3126 */ 3127 static inline void netif_stop_queue(struct net_device *dev) 3128 { 3129 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3130 } 3131 3132 void netif_tx_stop_all_queues(struct net_device *dev); 3133 3134 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3135 { 3136 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3137 } 3138 3139 /** 3140 * netif_queue_stopped - test if transmit queue is flowblocked 3141 * @dev: network device 3142 * 3143 * Test if transmit queue on device is currently unable to send. 3144 */ 3145 static inline bool netif_queue_stopped(const struct net_device *dev) 3146 { 3147 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3148 } 3149 3150 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3151 { 3152 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3153 } 3154 3155 static inline bool 3156 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3157 { 3158 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3159 } 3160 3161 static inline bool 3162 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3163 { 3164 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3165 } 3166 3167 /** 3168 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3169 * @dev_queue: pointer to transmit queue 3170 * 3171 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3172 * to give appropriate hint to the CPU. 3173 */ 3174 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3175 { 3176 #ifdef CONFIG_BQL 3177 prefetchw(&dev_queue->dql.num_queued); 3178 #endif 3179 } 3180 3181 /** 3182 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3183 * @dev_queue: pointer to transmit queue 3184 * 3185 * BQL enabled drivers might use this helper in their TX completion path, 3186 * to give appropriate hint to the CPU. 3187 */ 3188 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3189 { 3190 #ifdef CONFIG_BQL 3191 prefetchw(&dev_queue->dql.limit); 3192 #endif 3193 } 3194 3195 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3196 unsigned int bytes) 3197 { 3198 #ifdef CONFIG_BQL 3199 dql_queued(&dev_queue->dql, bytes); 3200 3201 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3202 return; 3203 3204 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3205 3206 /* 3207 * The XOFF flag must be set before checking the dql_avail below, 3208 * because in netdev_tx_completed_queue we update the dql_completed 3209 * before checking the XOFF flag. 3210 */ 3211 smp_mb(); 3212 3213 /* check again in case another CPU has just made room avail */ 3214 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3215 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3216 #endif 3217 } 3218 3219 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3220 * that they should not test BQL status themselves. 3221 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3222 * skb of a batch. 3223 * Returns true if the doorbell must be used to kick the NIC. 3224 */ 3225 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3226 unsigned int bytes, 3227 bool xmit_more) 3228 { 3229 if (xmit_more) { 3230 #ifdef CONFIG_BQL 3231 dql_queued(&dev_queue->dql, bytes); 3232 #endif 3233 return netif_tx_queue_stopped(dev_queue); 3234 } 3235 netdev_tx_sent_queue(dev_queue, bytes); 3236 return true; 3237 } 3238 3239 /** 3240 * netdev_sent_queue - report the number of bytes queued to hardware 3241 * @dev: network device 3242 * @bytes: number of bytes queued to the hardware device queue 3243 * 3244 * Report the number of bytes queued for sending/completion to the network 3245 * device hardware queue. @bytes should be a good approximation and should 3246 * exactly match netdev_completed_queue() @bytes 3247 */ 3248 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3249 { 3250 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3251 } 3252 3253 static inline bool __netdev_sent_queue(struct net_device *dev, 3254 unsigned int bytes, 3255 bool xmit_more) 3256 { 3257 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3258 xmit_more); 3259 } 3260 3261 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3262 unsigned int pkts, unsigned int bytes) 3263 { 3264 #ifdef CONFIG_BQL 3265 if (unlikely(!bytes)) 3266 return; 3267 3268 dql_completed(&dev_queue->dql, bytes); 3269 3270 /* 3271 * Without the memory barrier there is a small possiblity that 3272 * netdev_tx_sent_queue will miss the update and cause the queue to 3273 * be stopped forever 3274 */ 3275 smp_mb(); 3276 3277 if (dql_avail(&dev_queue->dql) < 0) 3278 return; 3279 3280 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3281 netif_schedule_queue(dev_queue); 3282 #endif 3283 } 3284 3285 /** 3286 * netdev_completed_queue - report bytes and packets completed by device 3287 * @dev: network device 3288 * @pkts: actual number of packets sent over the medium 3289 * @bytes: actual number of bytes sent over the medium 3290 * 3291 * Report the number of bytes and packets transmitted by the network device 3292 * hardware queue over the physical medium, @bytes must exactly match the 3293 * @bytes amount passed to netdev_sent_queue() 3294 */ 3295 static inline void netdev_completed_queue(struct net_device *dev, 3296 unsigned int pkts, unsigned int bytes) 3297 { 3298 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3299 } 3300 3301 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3302 { 3303 #ifdef CONFIG_BQL 3304 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3305 dql_reset(&q->dql); 3306 #endif 3307 } 3308 3309 /** 3310 * netdev_reset_queue - reset the packets and bytes count of a network device 3311 * @dev_queue: network device 3312 * 3313 * Reset the bytes and packet count of a network device and clear the 3314 * software flow control OFF bit for this network device 3315 */ 3316 static inline void netdev_reset_queue(struct net_device *dev_queue) 3317 { 3318 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3319 } 3320 3321 /** 3322 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3323 * @dev: network device 3324 * @queue_index: given tx queue index 3325 * 3326 * Returns 0 if given tx queue index >= number of device tx queues, 3327 * otherwise returns the originally passed tx queue index. 3328 */ 3329 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3330 { 3331 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3332 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3333 dev->name, queue_index, 3334 dev->real_num_tx_queues); 3335 return 0; 3336 } 3337 3338 return queue_index; 3339 } 3340 3341 /** 3342 * netif_running - test if up 3343 * @dev: network device 3344 * 3345 * Test if the device has been brought up. 3346 */ 3347 static inline bool netif_running(const struct net_device *dev) 3348 { 3349 return test_bit(__LINK_STATE_START, &dev->state); 3350 } 3351 3352 /* 3353 * Routines to manage the subqueues on a device. We only need start, 3354 * stop, and a check if it's stopped. All other device management is 3355 * done at the overall netdevice level. 3356 * Also test the device if we're multiqueue. 3357 */ 3358 3359 /** 3360 * netif_start_subqueue - allow sending packets on subqueue 3361 * @dev: network device 3362 * @queue_index: sub queue index 3363 * 3364 * Start individual transmit queue of a device with multiple transmit queues. 3365 */ 3366 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3367 { 3368 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3369 3370 netif_tx_start_queue(txq); 3371 } 3372 3373 /** 3374 * netif_stop_subqueue - stop sending packets on subqueue 3375 * @dev: network device 3376 * @queue_index: sub queue index 3377 * 3378 * Stop individual transmit queue of a device with multiple transmit queues. 3379 */ 3380 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3381 { 3382 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3383 netif_tx_stop_queue(txq); 3384 } 3385 3386 /** 3387 * netif_subqueue_stopped - test status of subqueue 3388 * @dev: network device 3389 * @queue_index: sub queue index 3390 * 3391 * Check individual transmit queue of a device with multiple transmit queues. 3392 */ 3393 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3394 u16 queue_index) 3395 { 3396 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3397 3398 return netif_tx_queue_stopped(txq); 3399 } 3400 3401 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3402 struct sk_buff *skb) 3403 { 3404 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3405 } 3406 3407 /** 3408 * netif_wake_subqueue - allow sending packets on subqueue 3409 * @dev: network device 3410 * @queue_index: sub queue index 3411 * 3412 * Resume individual transmit queue of a device with multiple transmit queues. 3413 */ 3414 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3415 { 3416 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3417 3418 netif_tx_wake_queue(txq); 3419 } 3420 3421 #ifdef CONFIG_XPS 3422 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3423 u16 index); 3424 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3425 u16 index, bool is_rxqs_map); 3426 3427 /** 3428 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3429 * @j: CPU/Rx queue index 3430 * @mask: bitmask of all cpus/rx queues 3431 * @nr_bits: number of bits in the bitmask 3432 * 3433 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3434 */ 3435 static inline bool netif_attr_test_mask(unsigned long j, 3436 const unsigned long *mask, 3437 unsigned int nr_bits) 3438 { 3439 cpu_max_bits_warn(j, nr_bits); 3440 return test_bit(j, mask); 3441 } 3442 3443 /** 3444 * netif_attr_test_online - Test for online CPU/Rx queue 3445 * @j: CPU/Rx queue index 3446 * @online_mask: bitmask for CPUs/Rx queues that are online 3447 * @nr_bits: number of bits in the bitmask 3448 * 3449 * Returns true if a CPU/Rx queue is online. 3450 */ 3451 static inline bool netif_attr_test_online(unsigned long j, 3452 const unsigned long *online_mask, 3453 unsigned int nr_bits) 3454 { 3455 cpu_max_bits_warn(j, nr_bits); 3456 3457 if (online_mask) 3458 return test_bit(j, online_mask); 3459 3460 return (j < nr_bits); 3461 } 3462 3463 /** 3464 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3465 * @n: CPU/Rx queue index 3466 * @srcp: the cpumask/Rx queue mask pointer 3467 * @nr_bits: number of bits in the bitmask 3468 * 3469 * Returns >= nr_bits if no further CPUs/Rx queues set. 3470 */ 3471 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3472 unsigned int nr_bits) 3473 { 3474 /* -1 is a legal arg here. */ 3475 if (n != -1) 3476 cpu_max_bits_warn(n, nr_bits); 3477 3478 if (srcp) 3479 return find_next_bit(srcp, nr_bits, n + 1); 3480 3481 return n + 1; 3482 } 3483 3484 /** 3485 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3486 * @n: CPU/Rx queue index 3487 * @src1p: the first CPUs/Rx queues mask pointer 3488 * @src2p: the second CPUs/Rx queues mask pointer 3489 * @nr_bits: number of bits in the bitmask 3490 * 3491 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3492 */ 3493 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3494 const unsigned long *src2p, 3495 unsigned int nr_bits) 3496 { 3497 /* -1 is a legal arg here. */ 3498 if (n != -1) 3499 cpu_max_bits_warn(n, nr_bits); 3500 3501 if (src1p && src2p) 3502 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3503 else if (src1p) 3504 return find_next_bit(src1p, nr_bits, n + 1); 3505 else if (src2p) 3506 return find_next_bit(src2p, nr_bits, n + 1); 3507 3508 return n + 1; 3509 } 3510 #else 3511 static inline int netif_set_xps_queue(struct net_device *dev, 3512 const struct cpumask *mask, 3513 u16 index) 3514 { 3515 return 0; 3516 } 3517 3518 static inline int __netif_set_xps_queue(struct net_device *dev, 3519 const unsigned long *mask, 3520 u16 index, bool is_rxqs_map) 3521 { 3522 return 0; 3523 } 3524 #endif 3525 3526 /** 3527 * netif_is_multiqueue - test if device has multiple transmit queues 3528 * @dev: network device 3529 * 3530 * Check if device has multiple transmit queues 3531 */ 3532 static inline bool netif_is_multiqueue(const struct net_device *dev) 3533 { 3534 return dev->num_tx_queues > 1; 3535 } 3536 3537 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3538 3539 #ifdef CONFIG_SYSFS 3540 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3541 #else 3542 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3543 unsigned int rxqs) 3544 { 3545 dev->real_num_rx_queues = rxqs; 3546 return 0; 3547 } 3548 #endif 3549 3550 static inline struct netdev_rx_queue * 3551 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3552 { 3553 return dev->_rx + rxq; 3554 } 3555 3556 #ifdef CONFIG_SYSFS 3557 static inline unsigned int get_netdev_rx_queue_index( 3558 struct netdev_rx_queue *queue) 3559 { 3560 struct net_device *dev = queue->dev; 3561 int index = queue - dev->_rx; 3562 3563 BUG_ON(index >= dev->num_rx_queues); 3564 return index; 3565 } 3566 #endif 3567 3568 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3569 int netif_get_num_default_rss_queues(void); 3570 3571 enum skb_free_reason { 3572 SKB_REASON_CONSUMED, 3573 SKB_REASON_DROPPED, 3574 }; 3575 3576 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3577 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3578 3579 /* 3580 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3581 * interrupt context or with hardware interrupts being disabled. 3582 * (in_irq() || irqs_disabled()) 3583 * 3584 * We provide four helpers that can be used in following contexts : 3585 * 3586 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3587 * replacing kfree_skb(skb) 3588 * 3589 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3590 * Typically used in place of consume_skb(skb) in TX completion path 3591 * 3592 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3593 * replacing kfree_skb(skb) 3594 * 3595 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3596 * and consumed a packet. Used in place of consume_skb(skb) 3597 */ 3598 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3599 { 3600 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3601 } 3602 3603 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3604 { 3605 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3606 } 3607 3608 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3609 { 3610 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3611 } 3612 3613 static inline void dev_consume_skb_any(struct sk_buff *skb) 3614 { 3615 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3616 } 3617 3618 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3619 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3620 int netif_rx(struct sk_buff *skb); 3621 int netif_rx_ni(struct sk_buff *skb); 3622 int netif_receive_skb(struct sk_buff *skb); 3623 int netif_receive_skb_core(struct sk_buff *skb); 3624 void netif_receive_skb_list(struct list_head *head); 3625 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3626 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3627 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3628 gro_result_t napi_gro_frags(struct napi_struct *napi); 3629 struct packet_offload *gro_find_receive_by_type(__be16 type); 3630 struct packet_offload *gro_find_complete_by_type(__be16 type); 3631 3632 static inline void napi_free_frags(struct napi_struct *napi) 3633 { 3634 kfree_skb(napi->skb); 3635 napi->skb = NULL; 3636 } 3637 3638 bool netdev_is_rx_handler_busy(struct net_device *dev); 3639 int netdev_rx_handler_register(struct net_device *dev, 3640 rx_handler_func_t *rx_handler, 3641 void *rx_handler_data); 3642 void netdev_rx_handler_unregister(struct net_device *dev); 3643 3644 bool dev_valid_name(const char *name); 3645 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3646 bool *need_copyout); 3647 int dev_ifconf(struct net *net, struct ifconf *, int); 3648 int dev_ethtool(struct net *net, struct ifreq *); 3649 unsigned int dev_get_flags(const struct net_device *); 3650 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3651 struct netlink_ext_ack *extack); 3652 int dev_change_flags(struct net_device *dev, unsigned int flags, 3653 struct netlink_ext_ack *extack); 3654 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3655 unsigned int gchanges); 3656 int dev_change_name(struct net_device *, const char *); 3657 int dev_set_alias(struct net_device *, const char *, size_t); 3658 int dev_get_alias(const struct net_device *, char *, size_t); 3659 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3660 int __dev_set_mtu(struct net_device *, int); 3661 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3662 struct netlink_ext_ack *extack); 3663 int dev_set_mtu(struct net_device *, int); 3664 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3665 void dev_set_group(struct net_device *, int); 3666 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3667 struct netlink_ext_ack *extack); 3668 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3669 struct netlink_ext_ack *extack); 3670 int dev_change_carrier(struct net_device *, bool new_carrier); 3671 int dev_get_phys_port_id(struct net_device *dev, 3672 struct netdev_phys_item_id *ppid); 3673 int dev_get_phys_port_name(struct net_device *dev, 3674 char *name, size_t len); 3675 int dev_get_port_parent_id(struct net_device *dev, 3676 struct netdev_phys_item_id *ppid, bool recurse); 3677 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3678 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3679 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3680 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3681 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3682 struct netdev_queue *txq, int *ret); 3683 3684 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3685 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3686 int fd, u32 flags); 3687 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3688 enum bpf_netdev_command cmd); 3689 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3690 3691 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3692 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3693 bool is_skb_forwardable(const struct net_device *dev, 3694 const struct sk_buff *skb); 3695 3696 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3697 struct sk_buff *skb) 3698 { 3699 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3700 unlikely(!is_skb_forwardable(dev, skb))) { 3701 atomic_long_inc(&dev->rx_dropped); 3702 kfree_skb(skb); 3703 return NET_RX_DROP; 3704 } 3705 3706 skb_scrub_packet(skb, true); 3707 skb->priority = 0; 3708 return 0; 3709 } 3710 3711 bool dev_nit_active(struct net_device *dev); 3712 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3713 3714 extern int netdev_budget; 3715 extern unsigned int netdev_budget_usecs; 3716 3717 /* Called by rtnetlink.c:rtnl_unlock() */ 3718 void netdev_run_todo(void); 3719 3720 /** 3721 * dev_put - release reference to device 3722 * @dev: network device 3723 * 3724 * Release reference to device to allow it to be freed. 3725 */ 3726 static inline void dev_put(struct net_device *dev) 3727 { 3728 this_cpu_dec(*dev->pcpu_refcnt); 3729 } 3730 3731 /** 3732 * dev_hold - get reference to device 3733 * @dev: network device 3734 * 3735 * Hold reference to device to keep it from being freed. 3736 */ 3737 static inline void dev_hold(struct net_device *dev) 3738 { 3739 this_cpu_inc(*dev->pcpu_refcnt); 3740 } 3741 3742 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3743 * and _off may be called from IRQ context, but it is caller 3744 * who is responsible for serialization of these calls. 3745 * 3746 * The name carrier is inappropriate, these functions should really be 3747 * called netif_lowerlayer_*() because they represent the state of any 3748 * kind of lower layer not just hardware media. 3749 */ 3750 3751 void linkwatch_init_dev(struct net_device *dev); 3752 void linkwatch_fire_event(struct net_device *dev); 3753 void linkwatch_forget_dev(struct net_device *dev); 3754 3755 /** 3756 * netif_carrier_ok - test if carrier present 3757 * @dev: network device 3758 * 3759 * Check if carrier is present on device 3760 */ 3761 static inline bool netif_carrier_ok(const struct net_device *dev) 3762 { 3763 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3764 } 3765 3766 unsigned long dev_trans_start(struct net_device *dev); 3767 3768 void __netdev_watchdog_up(struct net_device *dev); 3769 3770 void netif_carrier_on(struct net_device *dev); 3771 3772 void netif_carrier_off(struct net_device *dev); 3773 3774 /** 3775 * netif_dormant_on - mark device as dormant. 3776 * @dev: network device 3777 * 3778 * Mark device as dormant (as per RFC2863). 3779 * 3780 * The dormant state indicates that the relevant interface is not 3781 * actually in a condition to pass packets (i.e., it is not 'up') but is 3782 * in a "pending" state, waiting for some external event. For "on- 3783 * demand" interfaces, this new state identifies the situation where the 3784 * interface is waiting for events to place it in the up state. 3785 */ 3786 static inline void netif_dormant_on(struct net_device *dev) 3787 { 3788 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3789 linkwatch_fire_event(dev); 3790 } 3791 3792 /** 3793 * netif_dormant_off - set device as not dormant. 3794 * @dev: network device 3795 * 3796 * Device is not in dormant state. 3797 */ 3798 static inline void netif_dormant_off(struct net_device *dev) 3799 { 3800 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3801 linkwatch_fire_event(dev); 3802 } 3803 3804 /** 3805 * netif_dormant - test if device is dormant 3806 * @dev: network device 3807 * 3808 * Check if device is dormant. 3809 */ 3810 static inline bool netif_dormant(const struct net_device *dev) 3811 { 3812 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3813 } 3814 3815 3816 /** 3817 * netif_oper_up - test if device is operational 3818 * @dev: network device 3819 * 3820 * Check if carrier is operational 3821 */ 3822 static inline bool netif_oper_up(const struct net_device *dev) 3823 { 3824 return (dev->operstate == IF_OPER_UP || 3825 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3826 } 3827 3828 /** 3829 * netif_device_present - is device available or removed 3830 * @dev: network device 3831 * 3832 * Check if device has not been removed from system. 3833 */ 3834 static inline bool netif_device_present(struct net_device *dev) 3835 { 3836 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3837 } 3838 3839 void netif_device_detach(struct net_device *dev); 3840 3841 void netif_device_attach(struct net_device *dev); 3842 3843 /* 3844 * Network interface message level settings 3845 */ 3846 3847 enum { 3848 NETIF_MSG_DRV = 0x0001, 3849 NETIF_MSG_PROBE = 0x0002, 3850 NETIF_MSG_LINK = 0x0004, 3851 NETIF_MSG_TIMER = 0x0008, 3852 NETIF_MSG_IFDOWN = 0x0010, 3853 NETIF_MSG_IFUP = 0x0020, 3854 NETIF_MSG_RX_ERR = 0x0040, 3855 NETIF_MSG_TX_ERR = 0x0080, 3856 NETIF_MSG_TX_QUEUED = 0x0100, 3857 NETIF_MSG_INTR = 0x0200, 3858 NETIF_MSG_TX_DONE = 0x0400, 3859 NETIF_MSG_RX_STATUS = 0x0800, 3860 NETIF_MSG_PKTDATA = 0x1000, 3861 NETIF_MSG_HW = 0x2000, 3862 NETIF_MSG_WOL = 0x4000, 3863 }; 3864 3865 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3866 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3867 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3868 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3869 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3870 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3871 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3872 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3873 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3874 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3875 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3876 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3877 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3878 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3879 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3880 3881 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3882 { 3883 /* use default */ 3884 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3885 return default_msg_enable_bits; 3886 if (debug_value == 0) /* no output */ 3887 return 0; 3888 /* set low N bits */ 3889 return (1U << debug_value) - 1; 3890 } 3891 3892 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3893 { 3894 spin_lock(&txq->_xmit_lock); 3895 txq->xmit_lock_owner = cpu; 3896 } 3897 3898 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3899 { 3900 __acquire(&txq->_xmit_lock); 3901 return true; 3902 } 3903 3904 static inline void __netif_tx_release(struct netdev_queue *txq) 3905 { 3906 __release(&txq->_xmit_lock); 3907 } 3908 3909 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3910 { 3911 spin_lock_bh(&txq->_xmit_lock); 3912 txq->xmit_lock_owner = smp_processor_id(); 3913 } 3914 3915 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3916 { 3917 bool ok = spin_trylock(&txq->_xmit_lock); 3918 if (likely(ok)) 3919 txq->xmit_lock_owner = smp_processor_id(); 3920 return ok; 3921 } 3922 3923 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3924 { 3925 txq->xmit_lock_owner = -1; 3926 spin_unlock(&txq->_xmit_lock); 3927 } 3928 3929 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3930 { 3931 txq->xmit_lock_owner = -1; 3932 spin_unlock_bh(&txq->_xmit_lock); 3933 } 3934 3935 static inline void txq_trans_update(struct netdev_queue *txq) 3936 { 3937 if (txq->xmit_lock_owner != -1) 3938 txq->trans_start = jiffies; 3939 } 3940 3941 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3942 static inline void netif_trans_update(struct net_device *dev) 3943 { 3944 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3945 3946 if (txq->trans_start != jiffies) 3947 txq->trans_start = jiffies; 3948 } 3949 3950 /** 3951 * netif_tx_lock - grab network device transmit lock 3952 * @dev: network device 3953 * 3954 * Get network device transmit lock 3955 */ 3956 static inline void netif_tx_lock(struct net_device *dev) 3957 { 3958 unsigned int i; 3959 int cpu; 3960 3961 spin_lock(&dev->tx_global_lock); 3962 cpu = smp_processor_id(); 3963 for (i = 0; i < dev->num_tx_queues; i++) { 3964 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3965 3966 /* We are the only thread of execution doing a 3967 * freeze, but we have to grab the _xmit_lock in 3968 * order to synchronize with threads which are in 3969 * the ->hard_start_xmit() handler and already 3970 * checked the frozen bit. 3971 */ 3972 __netif_tx_lock(txq, cpu); 3973 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3974 __netif_tx_unlock(txq); 3975 } 3976 } 3977 3978 static inline void netif_tx_lock_bh(struct net_device *dev) 3979 { 3980 local_bh_disable(); 3981 netif_tx_lock(dev); 3982 } 3983 3984 static inline void netif_tx_unlock(struct net_device *dev) 3985 { 3986 unsigned int i; 3987 3988 for (i = 0; i < dev->num_tx_queues; i++) { 3989 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3990 3991 /* No need to grab the _xmit_lock here. If the 3992 * queue is not stopped for another reason, we 3993 * force a schedule. 3994 */ 3995 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3996 netif_schedule_queue(txq); 3997 } 3998 spin_unlock(&dev->tx_global_lock); 3999 } 4000 4001 static inline void netif_tx_unlock_bh(struct net_device *dev) 4002 { 4003 netif_tx_unlock(dev); 4004 local_bh_enable(); 4005 } 4006 4007 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4008 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4009 __netif_tx_lock(txq, cpu); \ 4010 } else { \ 4011 __netif_tx_acquire(txq); \ 4012 } \ 4013 } 4014 4015 #define HARD_TX_TRYLOCK(dev, txq) \ 4016 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4017 __netif_tx_trylock(txq) : \ 4018 __netif_tx_acquire(txq)) 4019 4020 #define HARD_TX_UNLOCK(dev, txq) { \ 4021 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4022 __netif_tx_unlock(txq); \ 4023 } else { \ 4024 __netif_tx_release(txq); \ 4025 } \ 4026 } 4027 4028 static inline void netif_tx_disable(struct net_device *dev) 4029 { 4030 unsigned int i; 4031 int cpu; 4032 4033 local_bh_disable(); 4034 cpu = smp_processor_id(); 4035 for (i = 0; i < dev->num_tx_queues; i++) { 4036 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4037 4038 __netif_tx_lock(txq, cpu); 4039 netif_tx_stop_queue(txq); 4040 __netif_tx_unlock(txq); 4041 } 4042 local_bh_enable(); 4043 } 4044 4045 static inline void netif_addr_lock(struct net_device *dev) 4046 { 4047 spin_lock(&dev->addr_list_lock); 4048 } 4049 4050 static inline void netif_addr_lock_nested(struct net_device *dev) 4051 { 4052 int subclass = SINGLE_DEPTH_NESTING; 4053 4054 if (dev->netdev_ops->ndo_get_lock_subclass) 4055 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4056 4057 spin_lock_nested(&dev->addr_list_lock, subclass); 4058 } 4059 4060 static inline void netif_addr_lock_bh(struct net_device *dev) 4061 { 4062 spin_lock_bh(&dev->addr_list_lock); 4063 } 4064 4065 static inline void netif_addr_unlock(struct net_device *dev) 4066 { 4067 spin_unlock(&dev->addr_list_lock); 4068 } 4069 4070 static inline void netif_addr_unlock_bh(struct net_device *dev) 4071 { 4072 spin_unlock_bh(&dev->addr_list_lock); 4073 } 4074 4075 /* 4076 * dev_addrs walker. Should be used only for read access. Call with 4077 * rcu_read_lock held. 4078 */ 4079 #define for_each_dev_addr(dev, ha) \ 4080 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4081 4082 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4083 4084 void ether_setup(struct net_device *dev); 4085 4086 /* Support for loadable net-drivers */ 4087 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4088 unsigned char name_assign_type, 4089 void (*setup)(struct net_device *), 4090 unsigned int txqs, unsigned int rxqs); 4091 int dev_get_valid_name(struct net *net, struct net_device *dev, 4092 const char *name); 4093 4094 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4095 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4096 4097 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4098 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4099 count) 4100 4101 int register_netdev(struct net_device *dev); 4102 void unregister_netdev(struct net_device *dev); 4103 4104 /* General hardware address lists handling functions */ 4105 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4106 struct netdev_hw_addr_list *from_list, int addr_len); 4107 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4108 struct netdev_hw_addr_list *from_list, int addr_len); 4109 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4110 struct net_device *dev, 4111 int (*sync)(struct net_device *, const unsigned char *), 4112 int (*unsync)(struct net_device *, 4113 const unsigned char *)); 4114 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4115 struct net_device *dev, 4116 int (*sync)(struct net_device *, 4117 const unsigned char *, int), 4118 int (*unsync)(struct net_device *, 4119 const unsigned char *, int)); 4120 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4121 struct net_device *dev, 4122 int (*unsync)(struct net_device *, 4123 const unsigned char *, int)); 4124 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4125 struct net_device *dev, 4126 int (*unsync)(struct net_device *, 4127 const unsigned char *)); 4128 void __hw_addr_init(struct netdev_hw_addr_list *list); 4129 4130 /* Functions used for device addresses handling */ 4131 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4132 unsigned char addr_type); 4133 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4134 unsigned char addr_type); 4135 void dev_addr_flush(struct net_device *dev); 4136 int dev_addr_init(struct net_device *dev); 4137 4138 /* Functions used for unicast addresses handling */ 4139 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4140 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4141 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4142 int dev_uc_sync(struct net_device *to, struct net_device *from); 4143 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4144 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4145 void dev_uc_flush(struct net_device *dev); 4146 void dev_uc_init(struct net_device *dev); 4147 4148 /** 4149 * __dev_uc_sync - Synchonize device's unicast list 4150 * @dev: device to sync 4151 * @sync: function to call if address should be added 4152 * @unsync: function to call if address should be removed 4153 * 4154 * Add newly added addresses to the interface, and release 4155 * addresses that have been deleted. 4156 */ 4157 static inline int __dev_uc_sync(struct net_device *dev, 4158 int (*sync)(struct net_device *, 4159 const unsigned char *), 4160 int (*unsync)(struct net_device *, 4161 const unsigned char *)) 4162 { 4163 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4164 } 4165 4166 /** 4167 * __dev_uc_unsync - Remove synchronized addresses from device 4168 * @dev: device to sync 4169 * @unsync: function to call if address should be removed 4170 * 4171 * Remove all addresses that were added to the device by dev_uc_sync(). 4172 */ 4173 static inline void __dev_uc_unsync(struct net_device *dev, 4174 int (*unsync)(struct net_device *, 4175 const unsigned char *)) 4176 { 4177 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4178 } 4179 4180 /* Functions used for multicast addresses handling */ 4181 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4182 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4183 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4184 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4185 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4186 int dev_mc_sync(struct net_device *to, struct net_device *from); 4187 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4188 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4189 void dev_mc_flush(struct net_device *dev); 4190 void dev_mc_init(struct net_device *dev); 4191 4192 /** 4193 * __dev_mc_sync - Synchonize device's multicast list 4194 * @dev: device to sync 4195 * @sync: function to call if address should be added 4196 * @unsync: function to call if address should be removed 4197 * 4198 * Add newly added addresses to the interface, and release 4199 * addresses that have been deleted. 4200 */ 4201 static inline int __dev_mc_sync(struct net_device *dev, 4202 int (*sync)(struct net_device *, 4203 const unsigned char *), 4204 int (*unsync)(struct net_device *, 4205 const unsigned char *)) 4206 { 4207 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4208 } 4209 4210 /** 4211 * __dev_mc_unsync - Remove synchronized addresses from device 4212 * @dev: device to sync 4213 * @unsync: function to call if address should be removed 4214 * 4215 * Remove all addresses that were added to the device by dev_mc_sync(). 4216 */ 4217 static inline void __dev_mc_unsync(struct net_device *dev, 4218 int (*unsync)(struct net_device *, 4219 const unsigned char *)) 4220 { 4221 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4222 } 4223 4224 /* Functions used for secondary unicast and multicast support */ 4225 void dev_set_rx_mode(struct net_device *dev); 4226 void __dev_set_rx_mode(struct net_device *dev); 4227 int dev_set_promiscuity(struct net_device *dev, int inc); 4228 int dev_set_allmulti(struct net_device *dev, int inc); 4229 void netdev_state_change(struct net_device *dev); 4230 void netdev_notify_peers(struct net_device *dev); 4231 void netdev_features_change(struct net_device *dev); 4232 /* Load a device via the kmod */ 4233 void dev_load(struct net *net, const char *name); 4234 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4235 struct rtnl_link_stats64 *storage); 4236 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4237 const struct net_device_stats *netdev_stats); 4238 4239 extern int netdev_max_backlog; 4240 extern int netdev_tstamp_prequeue; 4241 extern int weight_p; 4242 extern int dev_weight_rx_bias; 4243 extern int dev_weight_tx_bias; 4244 extern int dev_rx_weight; 4245 extern int dev_tx_weight; 4246 4247 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4248 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4249 struct list_head **iter); 4250 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4251 struct list_head **iter); 4252 4253 /* iterate through upper list, must be called under RCU read lock */ 4254 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4255 for (iter = &(dev)->adj_list.upper, \ 4256 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4257 updev; \ 4258 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4259 4260 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4261 int (*fn)(struct net_device *upper_dev, 4262 void *data), 4263 void *data); 4264 4265 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4266 struct net_device *upper_dev); 4267 4268 bool netdev_has_any_upper_dev(struct net_device *dev); 4269 4270 void *netdev_lower_get_next_private(struct net_device *dev, 4271 struct list_head **iter); 4272 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4273 struct list_head **iter); 4274 4275 #define netdev_for_each_lower_private(dev, priv, iter) \ 4276 for (iter = (dev)->adj_list.lower.next, \ 4277 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4278 priv; \ 4279 priv = netdev_lower_get_next_private(dev, &(iter))) 4280 4281 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4282 for (iter = &(dev)->adj_list.lower, \ 4283 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4284 priv; \ 4285 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4286 4287 void *netdev_lower_get_next(struct net_device *dev, 4288 struct list_head **iter); 4289 4290 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4291 for (iter = (dev)->adj_list.lower.next, \ 4292 ldev = netdev_lower_get_next(dev, &(iter)); \ 4293 ldev; \ 4294 ldev = netdev_lower_get_next(dev, &(iter))) 4295 4296 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4297 struct list_head **iter); 4298 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4299 struct list_head **iter); 4300 4301 int netdev_walk_all_lower_dev(struct net_device *dev, 4302 int (*fn)(struct net_device *lower_dev, 4303 void *data), 4304 void *data); 4305 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4306 int (*fn)(struct net_device *lower_dev, 4307 void *data), 4308 void *data); 4309 4310 void *netdev_adjacent_get_private(struct list_head *adj_list); 4311 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4312 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4313 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4314 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4315 struct netlink_ext_ack *extack); 4316 int netdev_master_upper_dev_link(struct net_device *dev, 4317 struct net_device *upper_dev, 4318 void *upper_priv, void *upper_info, 4319 struct netlink_ext_ack *extack); 4320 void netdev_upper_dev_unlink(struct net_device *dev, 4321 struct net_device *upper_dev); 4322 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4323 void *netdev_lower_dev_get_private(struct net_device *dev, 4324 struct net_device *lower_dev); 4325 void netdev_lower_state_changed(struct net_device *lower_dev, 4326 void *lower_state_info); 4327 4328 /* RSS keys are 40 or 52 bytes long */ 4329 #define NETDEV_RSS_KEY_LEN 52 4330 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4331 void netdev_rss_key_fill(void *buffer, size_t len); 4332 4333 int dev_get_nest_level(struct net_device *dev); 4334 int skb_checksum_help(struct sk_buff *skb); 4335 int skb_crc32c_csum_help(struct sk_buff *skb); 4336 int skb_csum_hwoffload_help(struct sk_buff *skb, 4337 const netdev_features_t features); 4338 4339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4340 netdev_features_t features, bool tx_path); 4341 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4342 netdev_features_t features); 4343 4344 struct netdev_bonding_info { 4345 ifslave slave; 4346 ifbond master; 4347 }; 4348 4349 struct netdev_notifier_bonding_info { 4350 struct netdev_notifier_info info; /* must be first */ 4351 struct netdev_bonding_info bonding_info; 4352 }; 4353 4354 void netdev_bonding_info_change(struct net_device *dev, 4355 struct netdev_bonding_info *bonding_info); 4356 4357 static inline 4358 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4359 { 4360 return __skb_gso_segment(skb, features, true); 4361 } 4362 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4363 4364 static inline bool can_checksum_protocol(netdev_features_t features, 4365 __be16 protocol) 4366 { 4367 if (protocol == htons(ETH_P_FCOE)) 4368 return !!(features & NETIF_F_FCOE_CRC); 4369 4370 /* Assume this is an IP checksum (not SCTP CRC) */ 4371 4372 if (features & NETIF_F_HW_CSUM) { 4373 /* Can checksum everything */ 4374 return true; 4375 } 4376 4377 switch (protocol) { 4378 case htons(ETH_P_IP): 4379 return !!(features & NETIF_F_IP_CSUM); 4380 case htons(ETH_P_IPV6): 4381 return !!(features & NETIF_F_IPV6_CSUM); 4382 default: 4383 return false; 4384 } 4385 } 4386 4387 #ifdef CONFIG_BUG 4388 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4389 #else 4390 static inline void netdev_rx_csum_fault(struct net_device *dev, 4391 struct sk_buff *skb) 4392 { 4393 } 4394 #endif 4395 /* rx skb timestamps */ 4396 void net_enable_timestamp(void); 4397 void net_disable_timestamp(void); 4398 4399 #ifdef CONFIG_PROC_FS 4400 int __init dev_proc_init(void); 4401 #else 4402 #define dev_proc_init() 0 4403 #endif 4404 4405 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4406 struct sk_buff *skb, struct net_device *dev, 4407 bool more) 4408 { 4409 __this_cpu_write(softnet_data.xmit.more, more); 4410 return ops->ndo_start_xmit(skb, dev); 4411 } 4412 4413 static inline bool netdev_xmit_more(void) 4414 { 4415 return __this_cpu_read(softnet_data.xmit.more); 4416 } 4417 4418 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4419 struct netdev_queue *txq, bool more) 4420 { 4421 const struct net_device_ops *ops = dev->netdev_ops; 4422 netdev_tx_t rc; 4423 4424 rc = __netdev_start_xmit(ops, skb, dev, more); 4425 if (rc == NETDEV_TX_OK) 4426 txq_trans_update(txq); 4427 4428 return rc; 4429 } 4430 4431 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4432 const void *ns); 4433 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4434 const void *ns); 4435 4436 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4437 { 4438 return netdev_class_create_file_ns(class_attr, NULL); 4439 } 4440 4441 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4442 { 4443 netdev_class_remove_file_ns(class_attr, NULL); 4444 } 4445 4446 extern const struct kobj_ns_type_operations net_ns_type_operations; 4447 4448 const char *netdev_drivername(const struct net_device *dev); 4449 4450 void linkwatch_run_queue(void); 4451 4452 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4453 netdev_features_t f2) 4454 { 4455 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4456 if (f1 & NETIF_F_HW_CSUM) 4457 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4458 else 4459 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4460 } 4461 4462 return f1 & f2; 4463 } 4464 4465 static inline netdev_features_t netdev_get_wanted_features( 4466 struct net_device *dev) 4467 { 4468 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4469 } 4470 netdev_features_t netdev_increment_features(netdev_features_t all, 4471 netdev_features_t one, netdev_features_t mask); 4472 4473 /* Allow TSO being used on stacked device : 4474 * Performing the GSO segmentation before last device 4475 * is a performance improvement. 4476 */ 4477 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4478 netdev_features_t mask) 4479 { 4480 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4481 } 4482 4483 int __netdev_update_features(struct net_device *dev); 4484 void netdev_update_features(struct net_device *dev); 4485 void netdev_change_features(struct net_device *dev); 4486 4487 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4488 struct net_device *dev); 4489 4490 netdev_features_t passthru_features_check(struct sk_buff *skb, 4491 struct net_device *dev, 4492 netdev_features_t features); 4493 netdev_features_t netif_skb_features(struct sk_buff *skb); 4494 4495 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4496 { 4497 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4498 4499 /* check flags correspondence */ 4500 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4501 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4502 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4503 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4514 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4515 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4516 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4517 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4518 4519 return (features & feature) == feature; 4520 } 4521 4522 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4523 { 4524 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4525 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4526 } 4527 4528 static inline bool netif_needs_gso(struct sk_buff *skb, 4529 netdev_features_t features) 4530 { 4531 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4532 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4533 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4534 } 4535 4536 static inline void netif_set_gso_max_size(struct net_device *dev, 4537 unsigned int size) 4538 { 4539 dev->gso_max_size = size; 4540 } 4541 4542 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4543 int pulled_hlen, u16 mac_offset, 4544 int mac_len) 4545 { 4546 skb->protocol = protocol; 4547 skb->encapsulation = 1; 4548 skb_push(skb, pulled_hlen); 4549 skb_reset_transport_header(skb); 4550 skb->mac_header = mac_offset; 4551 skb->network_header = skb->mac_header + mac_len; 4552 skb->mac_len = mac_len; 4553 } 4554 4555 static inline bool netif_is_macsec(const struct net_device *dev) 4556 { 4557 return dev->priv_flags & IFF_MACSEC; 4558 } 4559 4560 static inline bool netif_is_macvlan(const struct net_device *dev) 4561 { 4562 return dev->priv_flags & IFF_MACVLAN; 4563 } 4564 4565 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4566 { 4567 return dev->priv_flags & IFF_MACVLAN_PORT; 4568 } 4569 4570 static inline bool netif_is_bond_master(const struct net_device *dev) 4571 { 4572 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4573 } 4574 4575 static inline bool netif_is_bond_slave(const struct net_device *dev) 4576 { 4577 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4578 } 4579 4580 static inline bool netif_supports_nofcs(struct net_device *dev) 4581 { 4582 return dev->priv_flags & IFF_SUPP_NOFCS; 4583 } 4584 4585 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4586 { 4587 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4588 } 4589 4590 static inline bool netif_is_l3_master(const struct net_device *dev) 4591 { 4592 return dev->priv_flags & IFF_L3MDEV_MASTER; 4593 } 4594 4595 static inline bool netif_is_l3_slave(const struct net_device *dev) 4596 { 4597 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4598 } 4599 4600 static inline bool netif_is_bridge_master(const struct net_device *dev) 4601 { 4602 return dev->priv_flags & IFF_EBRIDGE; 4603 } 4604 4605 static inline bool netif_is_bridge_port(const struct net_device *dev) 4606 { 4607 return dev->priv_flags & IFF_BRIDGE_PORT; 4608 } 4609 4610 static inline bool netif_is_ovs_master(const struct net_device *dev) 4611 { 4612 return dev->priv_flags & IFF_OPENVSWITCH; 4613 } 4614 4615 static inline bool netif_is_ovs_port(const struct net_device *dev) 4616 { 4617 return dev->priv_flags & IFF_OVS_DATAPATH; 4618 } 4619 4620 static inline bool netif_is_team_master(const struct net_device *dev) 4621 { 4622 return dev->priv_flags & IFF_TEAM; 4623 } 4624 4625 static inline bool netif_is_team_port(const struct net_device *dev) 4626 { 4627 return dev->priv_flags & IFF_TEAM_PORT; 4628 } 4629 4630 static inline bool netif_is_lag_master(const struct net_device *dev) 4631 { 4632 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4633 } 4634 4635 static inline bool netif_is_lag_port(const struct net_device *dev) 4636 { 4637 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4638 } 4639 4640 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4641 { 4642 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4643 } 4644 4645 static inline bool netif_is_failover(const struct net_device *dev) 4646 { 4647 return dev->priv_flags & IFF_FAILOVER; 4648 } 4649 4650 static inline bool netif_is_failover_slave(const struct net_device *dev) 4651 { 4652 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4653 } 4654 4655 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4656 static inline void netif_keep_dst(struct net_device *dev) 4657 { 4658 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4659 } 4660 4661 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4662 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4663 { 4664 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4665 return dev->priv_flags & IFF_MACSEC; 4666 } 4667 4668 extern struct pernet_operations __net_initdata loopback_net_ops; 4669 4670 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4671 4672 /* netdev_printk helpers, similar to dev_printk */ 4673 4674 static inline const char *netdev_name(const struct net_device *dev) 4675 { 4676 if (!dev->name[0] || strchr(dev->name, '%')) 4677 return "(unnamed net_device)"; 4678 return dev->name; 4679 } 4680 4681 static inline bool netdev_unregistering(const struct net_device *dev) 4682 { 4683 return dev->reg_state == NETREG_UNREGISTERING; 4684 } 4685 4686 static inline const char *netdev_reg_state(const struct net_device *dev) 4687 { 4688 switch (dev->reg_state) { 4689 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4690 case NETREG_REGISTERED: return ""; 4691 case NETREG_UNREGISTERING: return " (unregistering)"; 4692 case NETREG_UNREGISTERED: return " (unregistered)"; 4693 case NETREG_RELEASED: return " (released)"; 4694 case NETREG_DUMMY: return " (dummy)"; 4695 } 4696 4697 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4698 return " (unknown)"; 4699 } 4700 4701 __printf(3, 4) __cold 4702 void netdev_printk(const char *level, const struct net_device *dev, 4703 const char *format, ...); 4704 __printf(2, 3) __cold 4705 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4706 __printf(2, 3) __cold 4707 void netdev_alert(const struct net_device *dev, const char *format, ...); 4708 __printf(2, 3) __cold 4709 void netdev_crit(const struct net_device *dev, const char *format, ...); 4710 __printf(2, 3) __cold 4711 void netdev_err(const struct net_device *dev, const char *format, ...); 4712 __printf(2, 3) __cold 4713 void netdev_warn(const struct net_device *dev, const char *format, ...); 4714 __printf(2, 3) __cold 4715 void netdev_notice(const struct net_device *dev, const char *format, ...); 4716 __printf(2, 3) __cold 4717 void netdev_info(const struct net_device *dev, const char *format, ...); 4718 4719 #define netdev_level_once(level, dev, fmt, ...) \ 4720 do { \ 4721 static bool __print_once __read_mostly; \ 4722 \ 4723 if (!__print_once) { \ 4724 __print_once = true; \ 4725 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4726 } \ 4727 } while (0) 4728 4729 #define netdev_emerg_once(dev, fmt, ...) \ 4730 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4731 #define netdev_alert_once(dev, fmt, ...) \ 4732 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4733 #define netdev_crit_once(dev, fmt, ...) \ 4734 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4735 #define netdev_err_once(dev, fmt, ...) \ 4736 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4737 #define netdev_warn_once(dev, fmt, ...) \ 4738 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4739 #define netdev_notice_once(dev, fmt, ...) \ 4740 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4741 #define netdev_info_once(dev, fmt, ...) \ 4742 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4743 4744 #define MODULE_ALIAS_NETDEV(device) \ 4745 MODULE_ALIAS("netdev-" device) 4746 4747 #if defined(CONFIG_DYNAMIC_DEBUG) 4748 #define netdev_dbg(__dev, format, args...) \ 4749 do { \ 4750 dynamic_netdev_dbg(__dev, format, ##args); \ 4751 } while (0) 4752 #elif defined(DEBUG) 4753 #define netdev_dbg(__dev, format, args...) \ 4754 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4755 #else 4756 #define netdev_dbg(__dev, format, args...) \ 4757 ({ \ 4758 if (0) \ 4759 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4760 }) 4761 #endif 4762 4763 #if defined(VERBOSE_DEBUG) 4764 #define netdev_vdbg netdev_dbg 4765 #else 4766 4767 #define netdev_vdbg(dev, format, args...) \ 4768 ({ \ 4769 if (0) \ 4770 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4771 0; \ 4772 }) 4773 #endif 4774 4775 /* 4776 * netdev_WARN() acts like dev_printk(), but with the key difference 4777 * of using a WARN/WARN_ON to get the message out, including the 4778 * file/line information and a backtrace. 4779 */ 4780 #define netdev_WARN(dev, format, args...) \ 4781 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4782 netdev_reg_state(dev), ##args) 4783 4784 #define netdev_WARN_ONCE(dev, format, args...) \ 4785 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4786 netdev_reg_state(dev), ##args) 4787 4788 /* netif printk helpers, similar to netdev_printk */ 4789 4790 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4791 do { \ 4792 if (netif_msg_##type(priv)) \ 4793 netdev_printk(level, (dev), fmt, ##args); \ 4794 } while (0) 4795 4796 #define netif_level(level, priv, type, dev, fmt, args...) \ 4797 do { \ 4798 if (netif_msg_##type(priv)) \ 4799 netdev_##level(dev, fmt, ##args); \ 4800 } while (0) 4801 4802 #define netif_emerg(priv, type, dev, fmt, args...) \ 4803 netif_level(emerg, priv, type, dev, fmt, ##args) 4804 #define netif_alert(priv, type, dev, fmt, args...) \ 4805 netif_level(alert, priv, type, dev, fmt, ##args) 4806 #define netif_crit(priv, type, dev, fmt, args...) \ 4807 netif_level(crit, priv, type, dev, fmt, ##args) 4808 #define netif_err(priv, type, dev, fmt, args...) \ 4809 netif_level(err, priv, type, dev, fmt, ##args) 4810 #define netif_warn(priv, type, dev, fmt, args...) \ 4811 netif_level(warn, priv, type, dev, fmt, ##args) 4812 #define netif_notice(priv, type, dev, fmt, args...) \ 4813 netif_level(notice, priv, type, dev, fmt, ##args) 4814 #define netif_info(priv, type, dev, fmt, args...) \ 4815 netif_level(info, priv, type, dev, fmt, ##args) 4816 4817 #if defined(CONFIG_DYNAMIC_DEBUG) 4818 #define netif_dbg(priv, type, netdev, format, args...) \ 4819 do { \ 4820 if (netif_msg_##type(priv)) \ 4821 dynamic_netdev_dbg(netdev, format, ##args); \ 4822 } while (0) 4823 #elif defined(DEBUG) 4824 #define netif_dbg(priv, type, dev, format, args...) \ 4825 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4826 #else 4827 #define netif_dbg(priv, type, dev, format, args...) \ 4828 ({ \ 4829 if (0) \ 4830 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4831 0; \ 4832 }) 4833 #endif 4834 4835 /* if @cond then downgrade to debug, else print at @level */ 4836 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4837 do { \ 4838 if (cond) \ 4839 netif_dbg(priv, type, netdev, fmt, ##args); \ 4840 else \ 4841 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4842 } while (0) 4843 4844 #if defined(VERBOSE_DEBUG) 4845 #define netif_vdbg netif_dbg 4846 #else 4847 #define netif_vdbg(priv, type, dev, format, args...) \ 4848 ({ \ 4849 if (0) \ 4850 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4851 0; \ 4852 }) 4853 #endif 4854 4855 /* 4856 * The list of packet types we will receive (as opposed to discard) 4857 * and the routines to invoke. 4858 * 4859 * Why 16. Because with 16 the only overlap we get on a hash of the 4860 * low nibble of the protocol value is RARP/SNAP/X.25. 4861 * 4862 * 0800 IP 4863 * 0001 802.3 4864 * 0002 AX.25 4865 * 0004 802.2 4866 * 8035 RARP 4867 * 0005 SNAP 4868 * 0805 X.25 4869 * 0806 ARP 4870 * 8137 IPX 4871 * 0009 Localtalk 4872 * 86DD IPv6 4873 */ 4874 #define PTYPE_HASH_SIZE (16) 4875 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4876 4877 #endif /* _LINUX_NETDEVICE_H */ 4878