1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <net/net_namespace.h> 38 #ifdef CONFIG_DCB 39 #include <net/dcbnl.h> 40 #endif 41 #include <net/netprio_cgroup.h> 42 #include <net/xdp.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <linux/hashtable.h> 50 51 struct netpoll_info; 52 struct device; 53 struct ethtool_ops; 54 struct phy_device; 55 struct dsa_port; 56 struct ip_tunnel_parm; 57 struct macsec_context; 58 struct macsec_ops; 59 60 struct sfp_bus; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct udp_tunnel_nic_info; 69 struct udp_tunnel_nic; 70 struct bpf_prog; 71 struct xdp_buff; 72 73 void synchronize_net(void); 74 void netdev_set_default_ethtool_ops(struct net_device *dev, 75 const struct ethtool_ops *ops); 76 77 /* Backlog congestion levels */ 78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 79 #define NET_RX_DROP 1 /* packet dropped */ 80 81 #define MAX_NEST_DEV 8 82 83 /* 84 * Transmit return codes: transmit return codes originate from three different 85 * namespaces: 86 * 87 * - qdisc return codes 88 * - driver transmit return codes 89 * - errno values 90 * 91 * Drivers are allowed to return any one of those in their hard_start_xmit() 92 * function. Real network devices commonly used with qdiscs should only return 93 * the driver transmit return codes though - when qdiscs are used, the actual 94 * transmission happens asynchronously, so the value is not propagated to 95 * higher layers. Virtual network devices transmit synchronously; in this case 96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 97 * others are propagated to higher layers. 98 */ 99 100 /* qdisc ->enqueue() return codes. */ 101 #define NET_XMIT_SUCCESS 0x00 102 #define NET_XMIT_DROP 0x01 /* skb dropped */ 103 #define NET_XMIT_CN 0x02 /* congestion notification */ 104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 105 106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 107 * indicates that the device will soon be dropping packets, or already drops 108 * some packets of the same priority; prompting us to send less aggressively. */ 109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 111 112 /* Driver transmit return codes */ 113 #define NETDEV_TX_MASK 0xf0 114 115 enum netdev_tx { 116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 117 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 119 }; 120 typedef enum netdev_tx netdev_tx_t; 121 122 /* 123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 125 */ 126 static inline bool dev_xmit_complete(int rc) 127 { 128 /* 129 * Positive cases with an skb consumed by a driver: 130 * - successful transmission (rc == NETDEV_TX_OK) 131 * - error while transmitting (rc < 0) 132 * - error while queueing to a different device (rc & NET_XMIT_MASK) 133 */ 134 if (likely(rc < NET_XMIT_MASK)) 135 return true; 136 137 return false; 138 } 139 140 /* 141 * Compute the worst-case header length according to the protocols 142 * used. 143 */ 144 145 #if defined(CONFIG_HYPERV_NET) 146 # define LL_MAX_HEADER 128 147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #else 154 # define LL_MAX_HEADER 32 155 #endif 156 157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 159 #define MAX_HEADER LL_MAX_HEADER 160 #else 161 #define MAX_HEADER (LL_MAX_HEADER + 48) 162 #endif 163 164 /* 165 * Old network device statistics. Fields are native words 166 * (unsigned long) so they can be read and written atomically. 167 */ 168 169 struct net_device_stats { 170 unsigned long rx_packets; 171 unsigned long tx_packets; 172 unsigned long rx_bytes; 173 unsigned long tx_bytes; 174 unsigned long rx_errors; 175 unsigned long tx_errors; 176 unsigned long rx_dropped; 177 unsigned long tx_dropped; 178 unsigned long multicast; 179 unsigned long collisions; 180 unsigned long rx_length_errors; 181 unsigned long rx_over_errors; 182 unsigned long rx_crc_errors; 183 unsigned long rx_frame_errors; 184 unsigned long rx_fifo_errors; 185 unsigned long rx_missed_errors; 186 unsigned long tx_aborted_errors; 187 unsigned long tx_carrier_errors; 188 unsigned long tx_fifo_errors; 189 unsigned long tx_heartbeat_errors; 190 unsigned long tx_window_errors; 191 unsigned long rx_compressed; 192 unsigned long tx_compressed; 193 }; 194 195 196 #include <linux/cache.h> 197 #include <linux/skbuff.h> 198 199 #ifdef CONFIG_RPS 200 #include <linux/static_key.h> 201 extern struct static_key_false rps_needed; 202 extern struct static_key_false rfs_needed; 203 #endif 204 205 struct neighbour; 206 struct neigh_parms; 207 struct sk_buff; 208 209 struct netdev_hw_addr { 210 struct list_head list; 211 unsigned char addr[MAX_ADDR_LEN]; 212 unsigned char type; 213 #define NETDEV_HW_ADDR_T_LAN 1 214 #define NETDEV_HW_ADDR_T_SAN 2 215 #define NETDEV_HW_ADDR_T_UNICAST 3 216 #define NETDEV_HW_ADDR_T_MULTICAST 4 217 bool global_use; 218 int sync_cnt; 219 int refcount; 220 int synced; 221 struct rcu_head rcu_head; 222 }; 223 224 struct netdev_hw_addr_list { 225 struct list_head list; 226 int count; 227 }; 228 229 #define netdev_hw_addr_list_count(l) ((l)->count) 230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 231 #define netdev_hw_addr_list_for_each(ha, l) \ 232 list_for_each_entry(ha, &(l)->list, list) 233 234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 236 #define netdev_for_each_uc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 238 239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 241 #define netdev_for_each_mc_addr(ha, dev) \ 242 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 243 244 struct hh_cache { 245 unsigned int hh_len; 246 seqlock_t hh_lock; 247 248 /* cached hardware header; allow for machine alignment needs. */ 249 #define HH_DATA_MOD 16 250 #define HH_DATA_OFF(__len) \ 251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 252 #define HH_DATA_ALIGN(__len) \ 253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 255 }; 256 257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 258 * Alternative is: 259 * dev->hard_header_len ? (dev->hard_header_len + 260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 261 * 262 * We could use other alignment values, but we must maintain the 263 * relationship HH alignment <= LL alignment. 264 */ 265 #define LL_RESERVED_SPACE(dev) \ 266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 269 270 struct header_ops { 271 int (*create) (struct sk_buff *skb, struct net_device *dev, 272 unsigned short type, const void *daddr, 273 const void *saddr, unsigned int len); 274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 276 void (*cache_update)(struct hh_cache *hh, 277 const struct net_device *dev, 278 const unsigned char *haddr); 279 bool (*validate)(const char *ll_header, unsigned int len); 280 __be16 (*parse_protocol)(const struct sk_buff *skb); 281 }; 282 283 /* These flag bits are private to the generic network queueing 284 * layer; they may not be explicitly referenced by any other 285 * code. 286 */ 287 288 enum netdev_state_t { 289 __LINK_STATE_START, 290 __LINK_STATE_PRESENT, 291 __LINK_STATE_NOCARRIER, 292 __LINK_STATE_LINKWATCH_PENDING, 293 __LINK_STATE_DORMANT, 294 __LINK_STATE_TESTING, 295 }; 296 297 298 struct gro_list { 299 struct list_head list; 300 int count; 301 }; 302 303 /* 304 * size of gro hash buckets, must less than bit number of 305 * napi_struct::gro_bitmask 306 */ 307 #define GRO_HASH_BUCKETS 8 308 309 /* 310 * Structure for NAPI scheduling similar to tasklet but with weighting 311 */ 312 struct napi_struct { 313 /* The poll_list must only be managed by the entity which 314 * changes the state of the NAPI_STATE_SCHED bit. This means 315 * whoever atomically sets that bit can add this napi_struct 316 * to the per-CPU poll_list, and whoever clears that bit 317 * can remove from the list right before clearing the bit. 318 */ 319 struct list_head poll_list; 320 321 unsigned long state; 322 int weight; 323 int defer_hard_irqs_count; 324 unsigned long gro_bitmask; 325 int (*poll)(struct napi_struct *, int); 326 #ifdef CONFIG_NETPOLL 327 int poll_owner; 328 #endif 329 struct net_device *dev; 330 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 331 struct sk_buff *skb; 332 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 333 int rx_count; /* length of rx_list */ 334 struct hrtimer timer; 335 struct list_head dev_list; 336 struct hlist_node napi_hash_node; 337 unsigned int napi_id; 338 struct task_struct *thread; 339 }; 340 341 enum { 342 NAPI_STATE_SCHED, /* Poll is scheduled */ 343 NAPI_STATE_MISSED, /* reschedule a napi */ 344 NAPI_STATE_DISABLE, /* Disable pending */ 345 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 346 NAPI_STATE_LISTED, /* NAPI added to system lists */ 347 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 348 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 349 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 350 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 351 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 352 }; 353 354 enum { 355 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 356 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 357 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 358 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 359 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 360 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 361 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 362 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 363 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 364 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 365 }; 366 367 enum gro_result { 368 GRO_MERGED, 369 GRO_MERGED_FREE, 370 GRO_HELD, 371 GRO_NORMAL, 372 GRO_CONSUMED, 373 }; 374 typedef enum gro_result gro_result_t; 375 376 /* 377 * enum rx_handler_result - Possible return values for rx_handlers. 378 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 379 * further. 380 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 381 * case skb->dev was changed by rx_handler. 382 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 383 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 384 * 385 * rx_handlers are functions called from inside __netif_receive_skb(), to do 386 * special processing of the skb, prior to delivery to protocol handlers. 387 * 388 * Currently, a net_device can only have a single rx_handler registered. Trying 389 * to register a second rx_handler will return -EBUSY. 390 * 391 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 392 * To unregister a rx_handler on a net_device, use 393 * netdev_rx_handler_unregister(). 394 * 395 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 396 * do with the skb. 397 * 398 * If the rx_handler consumed the skb in some way, it should return 399 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 400 * the skb to be delivered in some other way. 401 * 402 * If the rx_handler changed skb->dev, to divert the skb to another 403 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 404 * new device will be called if it exists. 405 * 406 * If the rx_handler decides the skb should be ignored, it should return 407 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 408 * are registered on exact device (ptype->dev == skb->dev). 409 * 410 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 411 * delivered, it should return RX_HANDLER_PASS. 412 * 413 * A device without a registered rx_handler will behave as if rx_handler 414 * returned RX_HANDLER_PASS. 415 */ 416 417 enum rx_handler_result { 418 RX_HANDLER_CONSUMED, 419 RX_HANDLER_ANOTHER, 420 RX_HANDLER_EXACT, 421 RX_HANDLER_PASS, 422 }; 423 typedef enum rx_handler_result rx_handler_result_t; 424 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 425 426 void __napi_schedule(struct napi_struct *n); 427 void __napi_schedule_irqoff(struct napi_struct *n); 428 429 static inline bool napi_disable_pending(struct napi_struct *n) 430 { 431 return test_bit(NAPI_STATE_DISABLE, &n->state); 432 } 433 434 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 435 { 436 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 437 } 438 439 bool napi_schedule_prep(struct napi_struct *n); 440 441 /** 442 * napi_schedule - schedule NAPI poll 443 * @n: NAPI context 444 * 445 * Schedule NAPI poll routine to be called if it is not already 446 * running. 447 */ 448 static inline void napi_schedule(struct napi_struct *n) 449 { 450 if (napi_schedule_prep(n)) 451 __napi_schedule(n); 452 } 453 454 /** 455 * napi_schedule_irqoff - schedule NAPI poll 456 * @n: NAPI context 457 * 458 * Variant of napi_schedule(), assuming hard irqs are masked. 459 */ 460 static inline void napi_schedule_irqoff(struct napi_struct *n) 461 { 462 if (napi_schedule_prep(n)) 463 __napi_schedule_irqoff(n); 464 } 465 466 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 467 static inline bool napi_reschedule(struct napi_struct *napi) 468 { 469 if (napi_schedule_prep(napi)) { 470 __napi_schedule(napi); 471 return true; 472 } 473 return false; 474 } 475 476 bool napi_complete_done(struct napi_struct *n, int work_done); 477 /** 478 * napi_complete - NAPI processing complete 479 * @n: NAPI context 480 * 481 * Mark NAPI processing as complete. 482 * Consider using napi_complete_done() instead. 483 * Return false if device should avoid rearming interrupts. 484 */ 485 static inline bool napi_complete(struct napi_struct *n) 486 { 487 return napi_complete_done(n, 0); 488 } 489 490 int dev_set_threaded(struct net_device *dev, bool threaded); 491 492 /** 493 * napi_disable - prevent NAPI from scheduling 494 * @n: NAPI context 495 * 496 * Stop NAPI from being scheduled on this context. 497 * Waits till any outstanding processing completes. 498 */ 499 void napi_disable(struct napi_struct *n); 500 501 void napi_enable(struct napi_struct *n); 502 503 /** 504 * napi_synchronize - wait until NAPI is not running 505 * @n: NAPI context 506 * 507 * Wait until NAPI is done being scheduled on this context. 508 * Waits till any outstanding processing completes but 509 * does not disable future activations. 510 */ 511 static inline void napi_synchronize(const struct napi_struct *n) 512 { 513 if (IS_ENABLED(CONFIG_SMP)) 514 while (test_bit(NAPI_STATE_SCHED, &n->state)) 515 msleep(1); 516 else 517 barrier(); 518 } 519 520 /** 521 * napi_if_scheduled_mark_missed - if napi is running, set the 522 * NAPIF_STATE_MISSED 523 * @n: NAPI context 524 * 525 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 526 * NAPI is scheduled. 527 **/ 528 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 529 { 530 unsigned long val, new; 531 532 do { 533 val = READ_ONCE(n->state); 534 if (val & NAPIF_STATE_DISABLE) 535 return true; 536 537 if (!(val & NAPIF_STATE_SCHED)) 538 return false; 539 540 new = val | NAPIF_STATE_MISSED; 541 } while (cmpxchg(&n->state, val, new) != val); 542 543 return true; 544 } 545 546 enum netdev_queue_state_t { 547 __QUEUE_STATE_DRV_XOFF, 548 __QUEUE_STATE_STACK_XOFF, 549 __QUEUE_STATE_FROZEN, 550 }; 551 552 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 553 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 554 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 555 556 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 557 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 558 QUEUE_STATE_FROZEN) 559 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 560 QUEUE_STATE_FROZEN) 561 562 /* 563 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 564 * netif_tx_* functions below are used to manipulate this flag. The 565 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 566 * queue independently. The netif_xmit_*stopped functions below are called 567 * to check if the queue has been stopped by the driver or stack (either 568 * of the XOFF bits are set in the state). Drivers should not need to call 569 * netif_xmit*stopped functions, they should only be using netif_tx_*. 570 */ 571 572 struct netdev_queue { 573 /* 574 * read-mostly part 575 */ 576 struct net_device *dev; 577 struct Qdisc __rcu *qdisc; 578 struct Qdisc *qdisc_sleeping; 579 #ifdef CONFIG_SYSFS 580 struct kobject kobj; 581 #endif 582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 583 int numa_node; 584 #endif 585 unsigned long tx_maxrate; 586 /* 587 * Number of TX timeouts for this queue 588 * (/sys/class/net/DEV/Q/trans_timeout) 589 */ 590 unsigned long trans_timeout; 591 592 /* Subordinate device that the queue has been assigned to */ 593 struct net_device *sb_dev; 594 #ifdef CONFIG_XDP_SOCKETS 595 struct xsk_buff_pool *pool; 596 #endif 597 /* 598 * write-mostly part 599 */ 600 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 601 int xmit_lock_owner; 602 /* 603 * Time (in jiffies) of last Tx 604 */ 605 unsigned long trans_start; 606 607 unsigned long state; 608 609 #ifdef CONFIG_BQL 610 struct dql dql; 611 #endif 612 } ____cacheline_aligned_in_smp; 613 614 extern int sysctl_fb_tunnels_only_for_init_net; 615 extern int sysctl_devconf_inherit_init_net; 616 617 /* 618 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 619 * == 1 : For initns only 620 * == 2 : For none. 621 */ 622 static inline bool net_has_fallback_tunnels(const struct net *net) 623 { 624 return !IS_ENABLED(CONFIG_SYSCTL) || 625 !sysctl_fb_tunnels_only_for_init_net || 626 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1); 627 } 628 629 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 630 { 631 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 632 return q->numa_node; 633 #else 634 return NUMA_NO_NODE; 635 #endif 636 } 637 638 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 639 { 640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 641 q->numa_node = node; 642 #endif 643 } 644 645 #ifdef CONFIG_RPS 646 /* 647 * This structure holds an RPS map which can be of variable length. The 648 * map is an array of CPUs. 649 */ 650 struct rps_map { 651 unsigned int len; 652 struct rcu_head rcu; 653 u16 cpus[]; 654 }; 655 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 656 657 /* 658 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 659 * tail pointer for that CPU's input queue at the time of last enqueue, and 660 * a hardware filter index. 661 */ 662 struct rps_dev_flow { 663 u16 cpu; 664 u16 filter; 665 unsigned int last_qtail; 666 }; 667 #define RPS_NO_FILTER 0xffff 668 669 /* 670 * The rps_dev_flow_table structure contains a table of flow mappings. 671 */ 672 struct rps_dev_flow_table { 673 unsigned int mask; 674 struct rcu_head rcu; 675 struct rps_dev_flow flows[]; 676 }; 677 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 678 ((_num) * sizeof(struct rps_dev_flow))) 679 680 /* 681 * The rps_sock_flow_table contains mappings of flows to the last CPU 682 * on which they were processed by the application (set in recvmsg). 683 * Each entry is a 32bit value. Upper part is the high-order bits 684 * of flow hash, lower part is CPU number. 685 * rps_cpu_mask is used to partition the space, depending on number of 686 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 687 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 688 * meaning we use 32-6=26 bits for the hash. 689 */ 690 struct rps_sock_flow_table { 691 u32 mask; 692 693 u32 ents[] ____cacheline_aligned_in_smp; 694 }; 695 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 696 697 #define RPS_NO_CPU 0xffff 698 699 extern u32 rps_cpu_mask; 700 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 701 702 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 703 u32 hash) 704 { 705 if (table && hash) { 706 unsigned int index = hash & table->mask; 707 u32 val = hash & ~rps_cpu_mask; 708 709 /* We only give a hint, preemption can change CPU under us */ 710 val |= raw_smp_processor_id(); 711 712 if (table->ents[index] != val) 713 table->ents[index] = val; 714 } 715 } 716 717 #ifdef CONFIG_RFS_ACCEL 718 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 719 u16 filter_id); 720 #endif 721 #endif /* CONFIG_RPS */ 722 723 /* This structure contains an instance of an RX queue. */ 724 struct netdev_rx_queue { 725 #ifdef CONFIG_RPS 726 struct rps_map __rcu *rps_map; 727 struct rps_dev_flow_table __rcu *rps_flow_table; 728 #endif 729 struct kobject kobj; 730 struct net_device *dev; 731 struct xdp_rxq_info xdp_rxq; 732 #ifdef CONFIG_XDP_SOCKETS 733 struct xsk_buff_pool *pool; 734 #endif 735 } ____cacheline_aligned_in_smp; 736 737 /* 738 * RX queue sysfs structures and functions. 739 */ 740 struct rx_queue_attribute { 741 struct attribute attr; 742 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 743 ssize_t (*store)(struct netdev_rx_queue *queue, 744 const char *buf, size_t len); 745 }; 746 747 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 748 enum xps_map_type { 749 XPS_CPUS = 0, 750 XPS_RXQS, 751 XPS_MAPS_MAX, 752 }; 753 754 #ifdef CONFIG_XPS 755 /* 756 * This structure holds an XPS map which can be of variable length. The 757 * map is an array of queues. 758 */ 759 struct xps_map { 760 unsigned int len; 761 unsigned int alloc_len; 762 struct rcu_head rcu; 763 u16 queues[]; 764 }; 765 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 766 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 767 - sizeof(struct xps_map)) / sizeof(u16)) 768 769 /* 770 * This structure holds all XPS maps for device. Maps are indexed by CPU. 771 * 772 * We keep track of the number of cpus/rxqs used when the struct is allocated, 773 * in nr_ids. This will help not accessing out-of-bound memory. 774 * 775 * We keep track of the number of traffic classes used when the struct is 776 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 777 * not crossing its upper bound, as the original dev->num_tc can be updated in 778 * the meantime. 779 */ 780 struct xps_dev_maps { 781 struct rcu_head rcu; 782 unsigned int nr_ids; 783 s16 num_tc; 784 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 785 }; 786 787 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 788 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 789 790 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 791 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 792 793 #endif /* CONFIG_XPS */ 794 795 #define TC_MAX_QUEUE 16 796 #define TC_BITMASK 15 797 /* HW offloaded queuing disciplines txq count and offset maps */ 798 struct netdev_tc_txq { 799 u16 count; 800 u16 offset; 801 }; 802 803 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 804 /* 805 * This structure is to hold information about the device 806 * configured to run FCoE protocol stack. 807 */ 808 struct netdev_fcoe_hbainfo { 809 char manufacturer[64]; 810 char serial_number[64]; 811 char hardware_version[64]; 812 char driver_version[64]; 813 char optionrom_version[64]; 814 char firmware_version[64]; 815 char model[256]; 816 char model_description[256]; 817 }; 818 #endif 819 820 #define MAX_PHYS_ITEM_ID_LEN 32 821 822 /* This structure holds a unique identifier to identify some 823 * physical item (port for example) used by a netdevice. 824 */ 825 struct netdev_phys_item_id { 826 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 827 unsigned char id_len; 828 }; 829 830 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 831 struct netdev_phys_item_id *b) 832 { 833 return a->id_len == b->id_len && 834 memcmp(a->id, b->id, a->id_len) == 0; 835 } 836 837 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 838 struct sk_buff *skb, 839 struct net_device *sb_dev); 840 841 enum net_device_path_type { 842 DEV_PATH_ETHERNET = 0, 843 DEV_PATH_VLAN, 844 DEV_PATH_BRIDGE, 845 DEV_PATH_PPPOE, 846 DEV_PATH_DSA, 847 }; 848 849 struct net_device_path { 850 enum net_device_path_type type; 851 const struct net_device *dev; 852 union { 853 struct { 854 u16 id; 855 __be16 proto; 856 u8 h_dest[ETH_ALEN]; 857 } encap; 858 struct { 859 enum { 860 DEV_PATH_BR_VLAN_KEEP, 861 DEV_PATH_BR_VLAN_TAG, 862 DEV_PATH_BR_VLAN_UNTAG, 863 DEV_PATH_BR_VLAN_UNTAG_HW, 864 } vlan_mode; 865 u16 vlan_id; 866 __be16 vlan_proto; 867 } bridge; 868 struct { 869 int port; 870 u16 proto; 871 } dsa; 872 }; 873 }; 874 875 #define NET_DEVICE_PATH_STACK_MAX 5 876 #define NET_DEVICE_PATH_VLAN_MAX 2 877 878 struct net_device_path_stack { 879 int num_paths; 880 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 881 }; 882 883 struct net_device_path_ctx { 884 const struct net_device *dev; 885 const u8 *daddr; 886 887 int num_vlans; 888 struct { 889 u16 id; 890 __be16 proto; 891 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 892 }; 893 894 enum tc_setup_type { 895 TC_SETUP_QDISC_MQPRIO, 896 TC_SETUP_CLSU32, 897 TC_SETUP_CLSFLOWER, 898 TC_SETUP_CLSMATCHALL, 899 TC_SETUP_CLSBPF, 900 TC_SETUP_BLOCK, 901 TC_SETUP_QDISC_CBS, 902 TC_SETUP_QDISC_RED, 903 TC_SETUP_QDISC_PRIO, 904 TC_SETUP_QDISC_MQ, 905 TC_SETUP_QDISC_ETF, 906 TC_SETUP_ROOT_QDISC, 907 TC_SETUP_QDISC_GRED, 908 TC_SETUP_QDISC_TAPRIO, 909 TC_SETUP_FT, 910 TC_SETUP_QDISC_ETS, 911 TC_SETUP_QDISC_TBF, 912 TC_SETUP_QDISC_FIFO, 913 TC_SETUP_QDISC_HTB, 914 }; 915 916 /* These structures hold the attributes of bpf state that are being passed 917 * to the netdevice through the bpf op. 918 */ 919 enum bpf_netdev_command { 920 /* Set or clear a bpf program used in the earliest stages of packet 921 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 922 * is responsible for calling bpf_prog_put on any old progs that are 923 * stored. In case of error, the callee need not release the new prog 924 * reference, but on success it takes ownership and must bpf_prog_put 925 * when it is no longer used. 926 */ 927 XDP_SETUP_PROG, 928 XDP_SETUP_PROG_HW, 929 /* BPF program for offload callbacks, invoked at program load time. */ 930 BPF_OFFLOAD_MAP_ALLOC, 931 BPF_OFFLOAD_MAP_FREE, 932 XDP_SETUP_XSK_POOL, 933 }; 934 935 struct bpf_prog_offload_ops; 936 struct netlink_ext_ack; 937 struct xdp_umem; 938 struct xdp_dev_bulk_queue; 939 struct bpf_xdp_link; 940 941 enum bpf_xdp_mode { 942 XDP_MODE_SKB = 0, 943 XDP_MODE_DRV = 1, 944 XDP_MODE_HW = 2, 945 __MAX_XDP_MODE 946 }; 947 948 struct bpf_xdp_entity { 949 struct bpf_prog *prog; 950 struct bpf_xdp_link *link; 951 }; 952 953 struct netdev_bpf { 954 enum bpf_netdev_command command; 955 union { 956 /* XDP_SETUP_PROG */ 957 struct { 958 u32 flags; 959 struct bpf_prog *prog; 960 struct netlink_ext_ack *extack; 961 }; 962 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 963 struct { 964 struct bpf_offloaded_map *offmap; 965 }; 966 /* XDP_SETUP_XSK_POOL */ 967 struct { 968 struct xsk_buff_pool *pool; 969 u16 queue_id; 970 } xsk; 971 }; 972 }; 973 974 /* Flags for ndo_xsk_wakeup. */ 975 #define XDP_WAKEUP_RX (1 << 0) 976 #define XDP_WAKEUP_TX (1 << 1) 977 978 #ifdef CONFIG_XFRM_OFFLOAD 979 struct xfrmdev_ops { 980 int (*xdo_dev_state_add) (struct xfrm_state *x); 981 void (*xdo_dev_state_delete) (struct xfrm_state *x); 982 void (*xdo_dev_state_free) (struct xfrm_state *x); 983 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 984 struct xfrm_state *x); 985 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 986 }; 987 #endif 988 989 struct dev_ifalias { 990 struct rcu_head rcuhead; 991 char ifalias[]; 992 }; 993 994 struct devlink; 995 struct tlsdev_ops; 996 997 struct netdev_name_node { 998 struct hlist_node hlist; 999 struct list_head list; 1000 struct net_device *dev; 1001 const char *name; 1002 }; 1003 1004 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 1005 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 1006 1007 struct netdev_net_notifier { 1008 struct list_head list; 1009 struct notifier_block *nb; 1010 }; 1011 1012 /* 1013 * This structure defines the management hooks for network devices. 1014 * The following hooks can be defined; unless noted otherwise, they are 1015 * optional and can be filled with a null pointer. 1016 * 1017 * int (*ndo_init)(struct net_device *dev); 1018 * This function is called once when a network device is registered. 1019 * The network device can use this for any late stage initialization 1020 * or semantic validation. It can fail with an error code which will 1021 * be propagated back to register_netdev. 1022 * 1023 * void (*ndo_uninit)(struct net_device *dev); 1024 * This function is called when device is unregistered or when registration 1025 * fails. It is not called if init fails. 1026 * 1027 * int (*ndo_open)(struct net_device *dev); 1028 * This function is called when a network device transitions to the up 1029 * state. 1030 * 1031 * int (*ndo_stop)(struct net_device *dev); 1032 * This function is called when a network device transitions to the down 1033 * state. 1034 * 1035 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1036 * struct net_device *dev); 1037 * Called when a packet needs to be transmitted. 1038 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1039 * the queue before that can happen; it's for obsolete devices and weird 1040 * corner cases, but the stack really does a non-trivial amount 1041 * of useless work if you return NETDEV_TX_BUSY. 1042 * Required; cannot be NULL. 1043 * 1044 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1045 * struct net_device *dev 1046 * netdev_features_t features); 1047 * Called by core transmit path to determine if device is capable of 1048 * performing offload operations on a given packet. This is to give 1049 * the device an opportunity to implement any restrictions that cannot 1050 * be otherwise expressed by feature flags. The check is called with 1051 * the set of features that the stack has calculated and it returns 1052 * those the driver believes to be appropriate. 1053 * 1054 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1055 * struct net_device *sb_dev); 1056 * Called to decide which queue to use when device supports multiple 1057 * transmit queues. 1058 * 1059 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1060 * This function is called to allow device receiver to make 1061 * changes to configuration when multicast or promiscuous is enabled. 1062 * 1063 * void (*ndo_set_rx_mode)(struct net_device *dev); 1064 * This function is called device changes address list filtering. 1065 * If driver handles unicast address filtering, it should set 1066 * IFF_UNICAST_FLT in its priv_flags. 1067 * 1068 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1069 * This function is called when the Media Access Control address 1070 * needs to be changed. If this interface is not defined, the 1071 * MAC address can not be changed. 1072 * 1073 * int (*ndo_validate_addr)(struct net_device *dev); 1074 * Test if Media Access Control address is valid for the device. 1075 * 1076 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1077 * Old-style ioctl entry point. This is used internally by the 1078 * appletalk and ieee802154 subsystems but is no longer called by 1079 * the device ioctl handler. 1080 * 1081 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1082 * Used by the bonding driver for its device specific ioctls: 1083 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1084 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1085 * 1086 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1087 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1088 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1089 * 1090 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1091 * Used to set network devices bus interface parameters. This interface 1092 * is retained for legacy reasons; new devices should use the bus 1093 * interface (PCI) for low level management. 1094 * 1095 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1096 * Called when a user wants to change the Maximum Transfer Unit 1097 * of a device. 1098 * 1099 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1100 * Callback used when the transmitter has not made any progress 1101 * for dev->watchdog ticks. 1102 * 1103 * void (*ndo_get_stats64)(struct net_device *dev, 1104 * struct rtnl_link_stats64 *storage); 1105 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1106 * Called when a user wants to get the network device usage 1107 * statistics. Drivers must do one of the following: 1108 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1109 * rtnl_link_stats64 structure passed by the caller. 1110 * 2. Define @ndo_get_stats to update a net_device_stats structure 1111 * (which should normally be dev->stats) and return a pointer to 1112 * it. The structure may be changed asynchronously only if each 1113 * field is written atomically. 1114 * 3. Update dev->stats asynchronously and atomically, and define 1115 * neither operation. 1116 * 1117 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1118 * Return true if this device supports offload stats of this attr_id. 1119 * 1120 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1121 * void *attr_data) 1122 * Get statistics for offload operations by attr_id. Write it into the 1123 * attr_data pointer. 1124 * 1125 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1126 * If device supports VLAN filtering this function is called when a 1127 * VLAN id is registered. 1128 * 1129 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1130 * If device supports VLAN filtering this function is called when a 1131 * VLAN id is unregistered. 1132 * 1133 * void (*ndo_poll_controller)(struct net_device *dev); 1134 * 1135 * SR-IOV management functions. 1136 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1137 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1138 * u8 qos, __be16 proto); 1139 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1140 * int max_tx_rate); 1141 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1142 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1143 * int (*ndo_get_vf_config)(struct net_device *dev, 1144 * int vf, struct ifla_vf_info *ivf); 1145 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1146 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1147 * struct nlattr *port[]); 1148 * 1149 * Enable or disable the VF ability to query its RSS Redirection Table and 1150 * Hash Key. This is needed since on some devices VF share this information 1151 * with PF and querying it may introduce a theoretical security risk. 1152 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1153 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1154 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1155 * void *type_data); 1156 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1157 * This is always called from the stack with the rtnl lock held and netif 1158 * tx queues stopped. This allows the netdevice to perform queue 1159 * management safely. 1160 * 1161 * Fiber Channel over Ethernet (FCoE) offload functions. 1162 * int (*ndo_fcoe_enable)(struct net_device *dev); 1163 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1164 * so the underlying device can perform whatever needed configuration or 1165 * initialization to support acceleration of FCoE traffic. 1166 * 1167 * int (*ndo_fcoe_disable)(struct net_device *dev); 1168 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1169 * so the underlying device can perform whatever needed clean-ups to 1170 * stop supporting acceleration of FCoE traffic. 1171 * 1172 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1173 * struct scatterlist *sgl, unsigned int sgc); 1174 * Called when the FCoE Initiator wants to initialize an I/O that 1175 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1176 * perform necessary setup and returns 1 to indicate the device is set up 1177 * successfully to perform DDP on this I/O, otherwise this returns 0. 1178 * 1179 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1180 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1181 * indicated by the FC exchange id 'xid', so the underlying device can 1182 * clean up and reuse resources for later DDP requests. 1183 * 1184 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1185 * struct scatterlist *sgl, unsigned int sgc); 1186 * Called when the FCoE Target wants to initialize an I/O that 1187 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1188 * perform necessary setup and returns 1 to indicate the device is set up 1189 * successfully to perform DDP on this I/O, otherwise this returns 0. 1190 * 1191 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1192 * struct netdev_fcoe_hbainfo *hbainfo); 1193 * Called when the FCoE Protocol stack wants information on the underlying 1194 * device. This information is utilized by the FCoE protocol stack to 1195 * register attributes with Fiber Channel management service as per the 1196 * FC-GS Fabric Device Management Information(FDMI) specification. 1197 * 1198 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1199 * Called when the underlying device wants to override default World Wide 1200 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1201 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1202 * protocol stack to use. 1203 * 1204 * RFS acceleration. 1205 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1206 * u16 rxq_index, u32 flow_id); 1207 * Set hardware filter for RFS. rxq_index is the target queue index; 1208 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1209 * Return the filter ID on success, or a negative error code. 1210 * 1211 * Slave management functions (for bridge, bonding, etc). 1212 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1213 * Called to make another netdev an underling. 1214 * 1215 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1216 * Called to release previously enslaved netdev. 1217 * 1218 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1219 * struct sk_buff *skb, 1220 * bool all_slaves); 1221 * Get the xmit slave of master device. If all_slaves is true, function 1222 * assume all the slaves can transmit. 1223 * 1224 * Feature/offload setting functions. 1225 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1226 * netdev_features_t features); 1227 * Adjusts the requested feature flags according to device-specific 1228 * constraints, and returns the resulting flags. Must not modify 1229 * the device state. 1230 * 1231 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1232 * Called to update device configuration to new features. Passed 1233 * feature set might be less than what was returned by ndo_fix_features()). 1234 * Must return >0 or -errno if it changed dev->features itself. 1235 * 1236 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1237 * struct net_device *dev, 1238 * const unsigned char *addr, u16 vid, u16 flags, 1239 * struct netlink_ext_ack *extack); 1240 * Adds an FDB entry to dev for addr. 1241 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1242 * struct net_device *dev, 1243 * const unsigned char *addr, u16 vid) 1244 * Deletes the FDB entry from dev coresponding to addr. 1245 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1246 * struct net_device *dev, struct net_device *filter_dev, 1247 * int *idx) 1248 * Used to add FDB entries to dump requests. Implementers should add 1249 * entries to skb and update idx with the number of entries. 1250 * 1251 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1252 * u16 flags, struct netlink_ext_ack *extack) 1253 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1254 * struct net_device *dev, u32 filter_mask, 1255 * int nlflags) 1256 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1257 * u16 flags); 1258 * 1259 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1260 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1261 * which do not represent real hardware may define this to allow their 1262 * userspace components to manage their virtual carrier state. Devices 1263 * that determine carrier state from physical hardware properties (eg 1264 * network cables) or protocol-dependent mechanisms (eg 1265 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1266 * 1267 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1268 * struct netdev_phys_item_id *ppid); 1269 * Called to get ID of physical port of this device. If driver does 1270 * not implement this, it is assumed that the hw is not able to have 1271 * multiple net devices on single physical port. 1272 * 1273 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1274 * struct netdev_phys_item_id *ppid) 1275 * Called to get the parent ID of the physical port of this device. 1276 * 1277 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1278 * struct net_device *dev) 1279 * Called by upper layer devices to accelerate switching or other 1280 * station functionality into hardware. 'pdev is the lowerdev 1281 * to use for the offload and 'dev' is the net device that will 1282 * back the offload. Returns a pointer to the private structure 1283 * the upper layer will maintain. 1284 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1285 * Called by upper layer device to delete the station created 1286 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1287 * the station and priv is the structure returned by the add 1288 * operation. 1289 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1290 * int queue_index, u32 maxrate); 1291 * Called when a user wants to set a max-rate limitation of specific 1292 * TX queue. 1293 * int (*ndo_get_iflink)(const struct net_device *dev); 1294 * Called to get the iflink value of this device. 1295 * void (*ndo_change_proto_down)(struct net_device *dev, 1296 * bool proto_down); 1297 * This function is used to pass protocol port error state information 1298 * to the switch driver. The switch driver can react to the proto_down 1299 * by doing a phys down on the associated switch port. 1300 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1301 * This function is used to get egress tunnel information for given skb. 1302 * This is useful for retrieving outer tunnel header parameters while 1303 * sampling packet. 1304 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1305 * This function is used to specify the headroom that the skb must 1306 * consider when allocation skb during packet reception. Setting 1307 * appropriate rx headroom value allows avoiding skb head copy on 1308 * forward. Setting a negative value resets the rx headroom to the 1309 * default value. 1310 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1311 * This function is used to set or query state related to XDP on the 1312 * netdevice and manage BPF offload. See definition of 1313 * enum bpf_netdev_command for details. 1314 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1315 * u32 flags); 1316 * This function is used to submit @n XDP packets for transmit on a 1317 * netdevice. Returns number of frames successfully transmitted, frames 1318 * that got dropped are freed/returned via xdp_return_frame(). 1319 * Returns negative number, means general error invoking ndo, meaning 1320 * no frames were xmit'ed and core-caller will free all frames. 1321 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1322 * This function is used to wake up the softirq, ksoftirqd or kthread 1323 * responsible for sending and/or receiving packets on a specific 1324 * queue id bound to an AF_XDP socket. The flags field specifies if 1325 * only RX, only Tx, or both should be woken up using the flags 1326 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1327 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1328 * Get devlink port instance associated with a given netdev. 1329 * Called with a reference on the netdevice and devlink locks only, 1330 * rtnl_lock is not held. 1331 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1332 * int cmd); 1333 * Add, change, delete or get information on an IPv4 tunnel. 1334 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1335 * If a device is paired with a peer device, return the peer instance. 1336 * The caller must be under RCU read context. 1337 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1338 * Get the forwarding path to reach the real device from the HW destination address 1339 */ 1340 struct net_device_ops { 1341 int (*ndo_init)(struct net_device *dev); 1342 void (*ndo_uninit)(struct net_device *dev); 1343 int (*ndo_open)(struct net_device *dev); 1344 int (*ndo_stop)(struct net_device *dev); 1345 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1346 struct net_device *dev); 1347 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1348 struct net_device *dev, 1349 netdev_features_t features); 1350 u16 (*ndo_select_queue)(struct net_device *dev, 1351 struct sk_buff *skb, 1352 struct net_device *sb_dev); 1353 void (*ndo_change_rx_flags)(struct net_device *dev, 1354 int flags); 1355 void (*ndo_set_rx_mode)(struct net_device *dev); 1356 int (*ndo_set_mac_address)(struct net_device *dev, 1357 void *addr); 1358 int (*ndo_validate_addr)(struct net_device *dev); 1359 int (*ndo_do_ioctl)(struct net_device *dev, 1360 struct ifreq *ifr, int cmd); 1361 int (*ndo_eth_ioctl)(struct net_device *dev, 1362 struct ifreq *ifr, int cmd); 1363 int (*ndo_siocbond)(struct net_device *dev, 1364 struct ifreq *ifr, int cmd); 1365 int (*ndo_siocwandev)(struct net_device *dev, 1366 struct if_settings *ifs); 1367 int (*ndo_siocdevprivate)(struct net_device *dev, 1368 struct ifreq *ifr, 1369 void __user *data, int cmd); 1370 int (*ndo_set_config)(struct net_device *dev, 1371 struct ifmap *map); 1372 int (*ndo_change_mtu)(struct net_device *dev, 1373 int new_mtu); 1374 int (*ndo_neigh_setup)(struct net_device *dev, 1375 struct neigh_parms *); 1376 void (*ndo_tx_timeout) (struct net_device *dev, 1377 unsigned int txqueue); 1378 1379 void (*ndo_get_stats64)(struct net_device *dev, 1380 struct rtnl_link_stats64 *storage); 1381 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1382 int (*ndo_get_offload_stats)(int attr_id, 1383 const struct net_device *dev, 1384 void *attr_data); 1385 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1386 1387 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1388 __be16 proto, u16 vid); 1389 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1390 __be16 proto, u16 vid); 1391 #ifdef CONFIG_NET_POLL_CONTROLLER 1392 void (*ndo_poll_controller)(struct net_device *dev); 1393 int (*ndo_netpoll_setup)(struct net_device *dev, 1394 struct netpoll_info *info); 1395 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1396 #endif 1397 int (*ndo_set_vf_mac)(struct net_device *dev, 1398 int queue, u8 *mac); 1399 int (*ndo_set_vf_vlan)(struct net_device *dev, 1400 int queue, u16 vlan, 1401 u8 qos, __be16 proto); 1402 int (*ndo_set_vf_rate)(struct net_device *dev, 1403 int vf, int min_tx_rate, 1404 int max_tx_rate); 1405 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1406 int vf, bool setting); 1407 int (*ndo_set_vf_trust)(struct net_device *dev, 1408 int vf, bool setting); 1409 int (*ndo_get_vf_config)(struct net_device *dev, 1410 int vf, 1411 struct ifla_vf_info *ivf); 1412 int (*ndo_set_vf_link_state)(struct net_device *dev, 1413 int vf, int link_state); 1414 int (*ndo_get_vf_stats)(struct net_device *dev, 1415 int vf, 1416 struct ifla_vf_stats 1417 *vf_stats); 1418 int (*ndo_set_vf_port)(struct net_device *dev, 1419 int vf, 1420 struct nlattr *port[]); 1421 int (*ndo_get_vf_port)(struct net_device *dev, 1422 int vf, struct sk_buff *skb); 1423 int (*ndo_get_vf_guid)(struct net_device *dev, 1424 int vf, 1425 struct ifla_vf_guid *node_guid, 1426 struct ifla_vf_guid *port_guid); 1427 int (*ndo_set_vf_guid)(struct net_device *dev, 1428 int vf, u64 guid, 1429 int guid_type); 1430 int (*ndo_set_vf_rss_query_en)( 1431 struct net_device *dev, 1432 int vf, bool setting); 1433 int (*ndo_setup_tc)(struct net_device *dev, 1434 enum tc_setup_type type, 1435 void *type_data); 1436 #if IS_ENABLED(CONFIG_FCOE) 1437 int (*ndo_fcoe_enable)(struct net_device *dev); 1438 int (*ndo_fcoe_disable)(struct net_device *dev); 1439 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1440 u16 xid, 1441 struct scatterlist *sgl, 1442 unsigned int sgc); 1443 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1444 u16 xid); 1445 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1446 u16 xid, 1447 struct scatterlist *sgl, 1448 unsigned int sgc); 1449 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1450 struct netdev_fcoe_hbainfo *hbainfo); 1451 #endif 1452 1453 #if IS_ENABLED(CONFIG_LIBFCOE) 1454 #define NETDEV_FCOE_WWNN 0 1455 #define NETDEV_FCOE_WWPN 1 1456 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1457 u64 *wwn, int type); 1458 #endif 1459 1460 #ifdef CONFIG_RFS_ACCEL 1461 int (*ndo_rx_flow_steer)(struct net_device *dev, 1462 const struct sk_buff *skb, 1463 u16 rxq_index, 1464 u32 flow_id); 1465 #endif 1466 int (*ndo_add_slave)(struct net_device *dev, 1467 struct net_device *slave_dev, 1468 struct netlink_ext_ack *extack); 1469 int (*ndo_del_slave)(struct net_device *dev, 1470 struct net_device *slave_dev); 1471 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1472 struct sk_buff *skb, 1473 bool all_slaves); 1474 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1475 struct sock *sk); 1476 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1477 netdev_features_t features); 1478 int (*ndo_set_features)(struct net_device *dev, 1479 netdev_features_t features); 1480 int (*ndo_neigh_construct)(struct net_device *dev, 1481 struct neighbour *n); 1482 void (*ndo_neigh_destroy)(struct net_device *dev, 1483 struct neighbour *n); 1484 1485 int (*ndo_fdb_add)(struct ndmsg *ndm, 1486 struct nlattr *tb[], 1487 struct net_device *dev, 1488 const unsigned char *addr, 1489 u16 vid, 1490 u16 flags, 1491 struct netlink_ext_ack *extack); 1492 int (*ndo_fdb_del)(struct ndmsg *ndm, 1493 struct nlattr *tb[], 1494 struct net_device *dev, 1495 const unsigned char *addr, 1496 u16 vid); 1497 int (*ndo_fdb_dump)(struct sk_buff *skb, 1498 struct netlink_callback *cb, 1499 struct net_device *dev, 1500 struct net_device *filter_dev, 1501 int *idx); 1502 int (*ndo_fdb_get)(struct sk_buff *skb, 1503 struct nlattr *tb[], 1504 struct net_device *dev, 1505 const unsigned char *addr, 1506 u16 vid, u32 portid, u32 seq, 1507 struct netlink_ext_ack *extack); 1508 int (*ndo_bridge_setlink)(struct net_device *dev, 1509 struct nlmsghdr *nlh, 1510 u16 flags, 1511 struct netlink_ext_ack *extack); 1512 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1513 u32 pid, u32 seq, 1514 struct net_device *dev, 1515 u32 filter_mask, 1516 int nlflags); 1517 int (*ndo_bridge_dellink)(struct net_device *dev, 1518 struct nlmsghdr *nlh, 1519 u16 flags); 1520 int (*ndo_change_carrier)(struct net_device *dev, 1521 bool new_carrier); 1522 int (*ndo_get_phys_port_id)(struct net_device *dev, 1523 struct netdev_phys_item_id *ppid); 1524 int (*ndo_get_port_parent_id)(struct net_device *dev, 1525 struct netdev_phys_item_id *ppid); 1526 int (*ndo_get_phys_port_name)(struct net_device *dev, 1527 char *name, size_t len); 1528 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1529 struct net_device *dev); 1530 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1531 void *priv); 1532 1533 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1534 int queue_index, 1535 u32 maxrate); 1536 int (*ndo_get_iflink)(const struct net_device *dev); 1537 int (*ndo_change_proto_down)(struct net_device *dev, 1538 bool proto_down); 1539 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1540 struct sk_buff *skb); 1541 void (*ndo_set_rx_headroom)(struct net_device *dev, 1542 int needed_headroom); 1543 int (*ndo_bpf)(struct net_device *dev, 1544 struct netdev_bpf *bpf); 1545 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1546 struct xdp_frame **xdp, 1547 u32 flags); 1548 int (*ndo_xsk_wakeup)(struct net_device *dev, 1549 u32 queue_id, u32 flags); 1550 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1551 int (*ndo_tunnel_ctl)(struct net_device *dev, 1552 struct ip_tunnel_parm *p, int cmd); 1553 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1554 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1555 struct net_device_path *path); 1556 }; 1557 1558 /** 1559 * enum netdev_priv_flags - &struct net_device priv_flags 1560 * 1561 * These are the &struct net_device, they are only set internally 1562 * by drivers and used in the kernel. These flags are invisible to 1563 * userspace; this means that the order of these flags can change 1564 * during any kernel release. 1565 * 1566 * You should have a pretty good reason to be extending these flags. 1567 * 1568 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1569 * @IFF_EBRIDGE: Ethernet bridging device 1570 * @IFF_BONDING: bonding master or slave 1571 * @IFF_ISATAP: ISATAP interface (RFC4214) 1572 * @IFF_WAN_HDLC: WAN HDLC device 1573 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1574 * release skb->dst 1575 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1576 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1577 * @IFF_MACVLAN_PORT: device used as macvlan port 1578 * @IFF_BRIDGE_PORT: device used as bridge port 1579 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1580 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1581 * @IFF_UNICAST_FLT: Supports unicast filtering 1582 * @IFF_TEAM_PORT: device used as team port 1583 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1584 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1585 * change when it's running 1586 * @IFF_MACVLAN: Macvlan device 1587 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1588 * underlying stacked devices 1589 * @IFF_L3MDEV_MASTER: device is an L3 master device 1590 * @IFF_NO_QUEUE: device can run without qdisc attached 1591 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1592 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1593 * @IFF_TEAM: device is a team device 1594 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1595 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1596 * entity (i.e. the master device for bridged veth) 1597 * @IFF_MACSEC: device is a MACsec device 1598 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1599 * @IFF_FAILOVER: device is a failover master device 1600 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1601 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1602 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1603 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1604 * skb_headlen(skb) == 0 (data starts from frag0) 1605 */ 1606 enum netdev_priv_flags { 1607 IFF_802_1Q_VLAN = 1<<0, 1608 IFF_EBRIDGE = 1<<1, 1609 IFF_BONDING = 1<<2, 1610 IFF_ISATAP = 1<<3, 1611 IFF_WAN_HDLC = 1<<4, 1612 IFF_XMIT_DST_RELEASE = 1<<5, 1613 IFF_DONT_BRIDGE = 1<<6, 1614 IFF_DISABLE_NETPOLL = 1<<7, 1615 IFF_MACVLAN_PORT = 1<<8, 1616 IFF_BRIDGE_PORT = 1<<9, 1617 IFF_OVS_DATAPATH = 1<<10, 1618 IFF_TX_SKB_SHARING = 1<<11, 1619 IFF_UNICAST_FLT = 1<<12, 1620 IFF_TEAM_PORT = 1<<13, 1621 IFF_SUPP_NOFCS = 1<<14, 1622 IFF_LIVE_ADDR_CHANGE = 1<<15, 1623 IFF_MACVLAN = 1<<16, 1624 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1625 IFF_L3MDEV_MASTER = 1<<18, 1626 IFF_NO_QUEUE = 1<<19, 1627 IFF_OPENVSWITCH = 1<<20, 1628 IFF_L3MDEV_SLAVE = 1<<21, 1629 IFF_TEAM = 1<<22, 1630 IFF_RXFH_CONFIGURED = 1<<23, 1631 IFF_PHONY_HEADROOM = 1<<24, 1632 IFF_MACSEC = 1<<25, 1633 IFF_NO_RX_HANDLER = 1<<26, 1634 IFF_FAILOVER = 1<<27, 1635 IFF_FAILOVER_SLAVE = 1<<28, 1636 IFF_L3MDEV_RX_HANDLER = 1<<29, 1637 IFF_LIVE_RENAME_OK = 1<<30, 1638 IFF_TX_SKB_NO_LINEAR = 1<<31, 1639 }; 1640 1641 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1642 #define IFF_EBRIDGE IFF_EBRIDGE 1643 #define IFF_BONDING IFF_BONDING 1644 #define IFF_ISATAP IFF_ISATAP 1645 #define IFF_WAN_HDLC IFF_WAN_HDLC 1646 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1647 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1648 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1649 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1650 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1651 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1652 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1653 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1654 #define IFF_TEAM_PORT IFF_TEAM_PORT 1655 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1656 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1657 #define IFF_MACVLAN IFF_MACVLAN 1658 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1659 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1660 #define IFF_NO_QUEUE IFF_NO_QUEUE 1661 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1662 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1663 #define IFF_TEAM IFF_TEAM 1664 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1665 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1666 #define IFF_MACSEC IFF_MACSEC 1667 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1668 #define IFF_FAILOVER IFF_FAILOVER 1669 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1670 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1671 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1672 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1673 1674 /* Specifies the type of the struct net_device::ml_priv pointer */ 1675 enum netdev_ml_priv_type { 1676 ML_PRIV_NONE, 1677 ML_PRIV_CAN, 1678 }; 1679 1680 /** 1681 * struct net_device - The DEVICE structure. 1682 * 1683 * Actually, this whole structure is a big mistake. It mixes I/O 1684 * data with strictly "high-level" data, and it has to know about 1685 * almost every data structure used in the INET module. 1686 * 1687 * @name: This is the first field of the "visible" part of this structure 1688 * (i.e. as seen by users in the "Space.c" file). It is the name 1689 * of the interface. 1690 * 1691 * @name_node: Name hashlist node 1692 * @ifalias: SNMP alias 1693 * @mem_end: Shared memory end 1694 * @mem_start: Shared memory start 1695 * @base_addr: Device I/O address 1696 * @irq: Device IRQ number 1697 * 1698 * @state: Generic network queuing layer state, see netdev_state_t 1699 * @dev_list: The global list of network devices 1700 * @napi_list: List entry used for polling NAPI devices 1701 * @unreg_list: List entry when we are unregistering the 1702 * device; see the function unregister_netdev 1703 * @close_list: List entry used when we are closing the device 1704 * @ptype_all: Device-specific packet handlers for all protocols 1705 * @ptype_specific: Device-specific, protocol-specific packet handlers 1706 * 1707 * @adj_list: Directly linked devices, like slaves for bonding 1708 * @features: Currently active device features 1709 * @hw_features: User-changeable features 1710 * 1711 * @wanted_features: User-requested features 1712 * @vlan_features: Mask of features inheritable by VLAN devices 1713 * 1714 * @hw_enc_features: Mask of features inherited by encapsulating devices 1715 * This field indicates what encapsulation 1716 * offloads the hardware is capable of doing, 1717 * and drivers will need to set them appropriately. 1718 * 1719 * @mpls_features: Mask of features inheritable by MPLS 1720 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1721 * 1722 * @ifindex: interface index 1723 * @group: The group the device belongs to 1724 * 1725 * @stats: Statistics struct, which was left as a legacy, use 1726 * rtnl_link_stats64 instead 1727 * 1728 * @rx_dropped: Dropped packets by core network, 1729 * do not use this in drivers 1730 * @tx_dropped: Dropped packets by core network, 1731 * do not use this in drivers 1732 * @rx_nohandler: nohandler dropped packets by core network on 1733 * inactive devices, do not use this in drivers 1734 * @carrier_up_count: Number of times the carrier has been up 1735 * @carrier_down_count: Number of times the carrier has been down 1736 * 1737 * @wireless_handlers: List of functions to handle Wireless Extensions, 1738 * instead of ioctl, 1739 * see <net/iw_handler.h> for details. 1740 * @wireless_data: Instance data managed by the core of wireless extensions 1741 * 1742 * @netdev_ops: Includes several pointers to callbacks, 1743 * if one wants to override the ndo_*() functions 1744 * @ethtool_ops: Management operations 1745 * @l3mdev_ops: Layer 3 master device operations 1746 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1747 * discovery handling. Necessary for e.g. 6LoWPAN. 1748 * @xfrmdev_ops: Transformation offload operations 1749 * @tlsdev_ops: Transport Layer Security offload operations 1750 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1751 * of Layer 2 headers. 1752 * 1753 * @flags: Interface flags (a la BSD) 1754 * @priv_flags: Like 'flags' but invisible to userspace, 1755 * see if.h for the definitions 1756 * @gflags: Global flags ( kept as legacy ) 1757 * @padded: How much padding added by alloc_netdev() 1758 * @operstate: RFC2863 operstate 1759 * @link_mode: Mapping policy to operstate 1760 * @if_port: Selectable AUI, TP, ... 1761 * @dma: DMA channel 1762 * @mtu: Interface MTU value 1763 * @min_mtu: Interface Minimum MTU value 1764 * @max_mtu: Interface Maximum MTU value 1765 * @type: Interface hardware type 1766 * @hard_header_len: Maximum hardware header length. 1767 * @min_header_len: Minimum hardware header length 1768 * 1769 * @needed_headroom: Extra headroom the hardware may need, but not in all 1770 * cases can this be guaranteed 1771 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1772 * cases can this be guaranteed. Some cases also use 1773 * LL_MAX_HEADER instead to allocate the skb 1774 * 1775 * interface address info: 1776 * 1777 * @perm_addr: Permanent hw address 1778 * @addr_assign_type: Hw address assignment type 1779 * @addr_len: Hardware address length 1780 * @upper_level: Maximum depth level of upper devices. 1781 * @lower_level: Maximum depth level of lower devices. 1782 * @neigh_priv_len: Used in neigh_alloc() 1783 * @dev_id: Used to differentiate devices that share 1784 * the same link layer address 1785 * @dev_port: Used to differentiate devices that share 1786 * the same function 1787 * @addr_list_lock: XXX: need comments on this one 1788 * @name_assign_type: network interface name assignment type 1789 * @uc_promisc: Counter that indicates promiscuous mode 1790 * has been enabled due to the need to listen to 1791 * additional unicast addresses in a device that 1792 * does not implement ndo_set_rx_mode() 1793 * @uc: unicast mac addresses 1794 * @mc: multicast mac addresses 1795 * @dev_addrs: list of device hw addresses 1796 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1797 * @promiscuity: Number of times the NIC is told to work in 1798 * promiscuous mode; if it becomes 0 the NIC will 1799 * exit promiscuous mode 1800 * @allmulti: Counter, enables or disables allmulticast mode 1801 * 1802 * @vlan_info: VLAN info 1803 * @dsa_ptr: dsa specific data 1804 * @tipc_ptr: TIPC specific data 1805 * @atalk_ptr: AppleTalk link 1806 * @ip_ptr: IPv4 specific data 1807 * @dn_ptr: DECnet specific data 1808 * @ip6_ptr: IPv6 specific data 1809 * @ax25_ptr: AX.25 specific data 1810 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1811 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1812 * device struct 1813 * @mpls_ptr: mpls_dev struct pointer 1814 * @mctp_ptr: MCTP specific data 1815 * 1816 * @dev_addr: Hw address (before bcast, 1817 * because most packets are unicast) 1818 * 1819 * @_rx: Array of RX queues 1820 * @num_rx_queues: Number of RX queues 1821 * allocated at register_netdev() time 1822 * @real_num_rx_queues: Number of RX queues currently active in device 1823 * @xdp_prog: XDP sockets filter program pointer 1824 * @gro_flush_timeout: timeout for GRO layer in NAPI 1825 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1826 * allow to avoid NIC hard IRQ, on busy queues. 1827 * 1828 * @rx_handler: handler for received packets 1829 * @rx_handler_data: XXX: need comments on this one 1830 * @miniq_ingress: ingress/clsact qdisc specific data for 1831 * ingress processing 1832 * @ingress_queue: XXX: need comments on this one 1833 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1834 * @broadcast: hw bcast address 1835 * 1836 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1837 * indexed by RX queue number. Assigned by driver. 1838 * This must only be set if the ndo_rx_flow_steer 1839 * operation is defined 1840 * @index_hlist: Device index hash chain 1841 * 1842 * @_tx: Array of TX queues 1843 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1844 * @real_num_tx_queues: Number of TX queues currently active in device 1845 * @qdisc: Root qdisc from userspace point of view 1846 * @tx_queue_len: Max frames per queue allowed 1847 * @tx_global_lock: XXX: need comments on this one 1848 * @xdp_bulkq: XDP device bulk queue 1849 * @xps_maps: all CPUs/RXQs maps for XPS device 1850 * 1851 * @xps_maps: XXX: need comments on this one 1852 * @miniq_egress: clsact qdisc specific data for 1853 * egress processing 1854 * @qdisc_hash: qdisc hash table 1855 * @watchdog_timeo: Represents the timeout that is used by 1856 * the watchdog (see dev_watchdog()) 1857 * @watchdog_timer: List of timers 1858 * 1859 * @proto_down_reason: reason a netdev interface is held down 1860 * @pcpu_refcnt: Number of references to this device 1861 * @dev_refcnt: Number of references to this device 1862 * @todo_list: Delayed register/unregister 1863 * @link_watch_list: XXX: need comments on this one 1864 * 1865 * @reg_state: Register/unregister state machine 1866 * @dismantle: Device is going to be freed 1867 * @rtnl_link_state: This enum represents the phases of creating 1868 * a new link 1869 * 1870 * @needs_free_netdev: Should unregister perform free_netdev? 1871 * @priv_destructor: Called from unregister 1872 * @npinfo: XXX: need comments on this one 1873 * @nd_net: Network namespace this network device is inside 1874 * 1875 * @ml_priv: Mid-layer private 1876 * @ml_priv_type: Mid-layer private type 1877 * @lstats: Loopback statistics 1878 * @tstats: Tunnel statistics 1879 * @dstats: Dummy statistics 1880 * @vstats: Virtual ethernet statistics 1881 * 1882 * @garp_port: GARP 1883 * @mrp_port: MRP 1884 * 1885 * @dev: Class/net/name entry 1886 * @sysfs_groups: Space for optional device, statistics and wireless 1887 * sysfs groups 1888 * 1889 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1890 * @rtnl_link_ops: Rtnl_link_ops 1891 * 1892 * @gso_max_size: Maximum size of generic segmentation offload 1893 * @gso_max_segs: Maximum number of segments that can be passed to the 1894 * NIC for GSO 1895 * 1896 * @dcbnl_ops: Data Center Bridging netlink ops 1897 * @num_tc: Number of traffic classes in the net device 1898 * @tc_to_txq: XXX: need comments on this one 1899 * @prio_tc_map: XXX: need comments on this one 1900 * 1901 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1902 * 1903 * @priomap: XXX: need comments on this one 1904 * @phydev: Physical device may attach itself 1905 * for hardware timestamping 1906 * @sfp_bus: attached &struct sfp_bus structure. 1907 * 1908 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1909 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1910 * 1911 * @proto_down: protocol port state information can be sent to the 1912 * switch driver and used to set the phys state of the 1913 * switch port. 1914 * 1915 * @wol_enabled: Wake-on-LAN is enabled 1916 * 1917 * @threaded: napi threaded mode is enabled 1918 * 1919 * @net_notifier_list: List of per-net netdev notifier block 1920 * that follow this device when it is moved 1921 * to another network namespace. 1922 * 1923 * @macsec_ops: MACsec offloading ops 1924 * 1925 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1926 * offload capabilities of the device 1927 * @udp_tunnel_nic: UDP tunnel offload state 1928 * @xdp_state: stores info on attached XDP BPF programs 1929 * 1930 * @nested_level: Used as as a parameter of spin_lock_nested() of 1931 * dev->addr_list_lock. 1932 * @unlink_list: As netif_addr_lock() can be called recursively, 1933 * keep a list of interfaces to be deleted. 1934 * 1935 * FIXME: cleanup struct net_device such that network protocol info 1936 * moves out. 1937 */ 1938 1939 struct net_device { 1940 char name[IFNAMSIZ]; 1941 struct netdev_name_node *name_node; 1942 struct dev_ifalias __rcu *ifalias; 1943 /* 1944 * I/O specific fields 1945 * FIXME: Merge these and struct ifmap into one 1946 */ 1947 unsigned long mem_end; 1948 unsigned long mem_start; 1949 unsigned long base_addr; 1950 1951 /* 1952 * Some hardware also needs these fields (state,dev_list, 1953 * napi_list,unreg_list,close_list) but they are not 1954 * part of the usual set specified in Space.c. 1955 */ 1956 1957 unsigned long state; 1958 1959 struct list_head dev_list; 1960 struct list_head napi_list; 1961 struct list_head unreg_list; 1962 struct list_head close_list; 1963 struct list_head ptype_all; 1964 struct list_head ptype_specific; 1965 1966 struct { 1967 struct list_head upper; 1968 struct list_head lower; 1969 } adj_list; 1970 1971 /* Read-mostly cache-line for fast-path access */ 1972 unsigned int flags; 1973 unsigned int priv_flags; 1974 const struct net_device_ops *netdev_ops; 1975 int ifindex; 1976 unsigned short gflags; 1977 unsigned short hard_header_len; 1978 1979 /* Note : dev->mtu is often read without holding a lock. 1980 * Writers usually hold RTNL. 1981 * It is recommended to use READ_ONCE() to annotate the reads, 1982 * and to use WRITE_ONCE() to annotate the writes. 1983 */ 1984 unsigned int mtu; 1985 unsigned short needed_headroom; 1986 unsigned short needed_tailroom; 1987 1988 netdev_features_t features; 1989 netdev_features_t hw_features; 1990 netdev_features_t wanted_features; 1991 netdev_features_t vlan_features; 1992 netdev_features_t hw_enc_features; 1993 netdev_features_t mpls_features; 1994 netdev_features_t gso_partial_features; 1995 1996 unsigned int min_mtu; 1997 unsigned int max_mtu; 1998 unsigned short type; 1999 unsigned char min_header_len; 2000 unsigned char name_assign_type; 2001 2002 int group; 2003 2004 struct net_device_stats stats; /* not used by modern drivers */ 2005 2006 atomic_long_t rx_dropped; 2007 atomic_long_t tx_dropped; 2008 atomic_long_t rx_nohandler; 2009 2010 /* Stats to monitor link on/off, flapping */ 2011 atomic_t carrier_up_count; 2012 atomic_t carrier_down_count; 2013 2014 #ifdef CONFIG_WIRELESS_EXT 2015 const struct iw_handler_def *wireless_handlers; 2016 struct iw_public_data *wireless_data; 2017 #endif 2018 const struct ethtool_ops *ethtool_ops; 2019 #ifdef CONFIG_NET_L3_MASTER_DEV 2020 const struct l3mdev_ops *l3mdev_ops; 2021 #endif 2022 #if IS_ENABLED(CONFIG_IPV6) 2023 const struct ndisc_ops *ndisc_ops; 2024 #endif 2025 2026 #ifdef CONFIG_XFRM_OFFLOAD 2027 const struct xfrmdev_ops *xfrmdev_ops; 2028 #endif 2029 2030 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2031 const struct tlsdev_ops *tlsdev_ops; 2032 #endif 2033 2034 const struct header_ops *header_ops; 2035 2036 unsigned char operstate; 2037 unsigned char link_mode; 2038 2039 unsigned char if_port; 2040 unsigned char dma; 2041 2042 /* Interface address info. */ 2043 unsigned char perm_addr[MAX_ADDR_LEN]; 2044 unsigned char addr_assign_type; 2045 unsigned char addr_len; 2046 unsigned char upper_level; 2047 unsigned char lower_level; 2048 2049 unsigned short neigh_priv_len; 2050 unsigned short dev_id; 2051 unsigned short dev_port; 2052 unsigned short padded; 2053 2054 spinlock_t addr_list_lock; 2055 int irq; 2056 2057 struct netdev_hw_addr_list uc; 2058 struct netdev_hw_addr_list mc; 2059 struct netdev_hw_addr_list dev_addrs; 2060 2061 #ifdef CONFIG_SYSFS 2062 struct kset *queues_kset; 2063 #endif 2064 #ifdef CONFIG_LOCKDEP 2065 struct list_head unlink_list; 2066 #endif 2067 unsigned int promiscuity; 2068 unsigned int allmulti; 2069 bool uc_promisc; 2070 #ifdef CONFIG_LOCKDEP 2071 unsigned char nested_level; 2072 #endif 2073 2074 2075 /* Protocol-specific pointers */ 2076 2077 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2078 struct vlan_info __rcu *vlan_info; 2079 #endif 2080 #if IS_ENABLED(CONFIG_NET_DSA) 2081 struct dsa_port *dsa_ptr; 2082 #endif 2083 #if IS_ENABLED(CONFIG_TIPC) 2084 struct tipc_bearer __rcu *tipc_ptr; 2085 #endif 2086 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 2087 void *atalk_ptr; 2088 #endif 2089 struct in_device __rcu *ip_ptr; 2090 #if IS_ENABLED(CONFIG_DECNET) 2091 struct dn_dev __rcu *dn_ptr; 2092 #endif 2093 struct inet6_dev __rcu *ip6_ptr; 2094 #if IS_ENABLED(CONFIG_AX25) 2095 void *ax25_ptr; 2096 #endif 2097 struct wireless_dev *ieee80211_ptr; 2098 struct wpan_dev *ieee802154_ptr; 2099 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2100 struct mpls_dev __rcu *mpls_ptr; 2101 #endif 2102 #if IS_ENABLED(CONFIG_MCTP) 2103 struct mctp_dev __rcu *mctp_ptr; 2104 #endif 2105 2106 /* 2107 * Cache lines mostly used on receive path (including eth_type_trans()) 2108 */ 2109 /* Interface address info used in eth_type_trans() */ 2110 unsigned char *dev_addr; 2111 2112 struct netdev_rx_queue *_rx; 2113 unsigned int num_rx_queues; 2114 unsigned int real_num_rx_queues; 2115 2116 struct bpf_prog __rcu *xdp_prog; 2117 unsigned long gro_flush_timeout; 2118 int napi_defer_hard_irqs; 2119 rx_handler_func_t __rcu *rx_handler; 2120 void __rcu *rx_handler_data; 2121 2122 #ifdef CONFIG_NET_CLS_ACT 2123 struct mini_Qdisc __rcu *miniq_ingress; 2124 #endif 2125 struct netdev_queue __rcu *ingress_queue; 2126 #ifdef CONFIG_NETFILTER_INGRESS 2127 struct nf_hook_entries __rcu *nf_hooks_ingress; 2128 #endif 2129 2130 unsigned char broadcast[MAX_ADDR_LEN]; 2131 #ifdef CONFIG_RFS_ACCEL 2132 struct cpu_rmap *rx_cpu_rmap; 2133 #endif 2134 struct hlist_node index_hlist; 2135 2136 /* 2137 * Cache lines mostly used on transmit path 2138 */ 2139 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2140 unsigned int num_tx_queues; 2141 unsigned int real_num_tx_queues; 2142 struct Qdisc *qdisc; 2143 unsigned int tx_queue_len; 2144 spinlock_t tx_global_lock; 2145 2146 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2147 2148 #ifdef CONFIG_XPS 2149 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2150 #endif 2151 #ifdef CONFIG_NET_CLS_ACT 2152 struct mini_Qdisc __rcu *miniq_egress; 2153 #endif 2154 2155 #ifdef CONFIG_NET_SCHED 2156 DECLARE_HASHTABLE (qdisc_hash, 4); 2157 #endif 2158 /* These may be needed for future network-power-down code. */ 2159 struct timer_list watchdog_timer; 2160 int watchdog_timeo; 2161 2162 u32 proto_down_reason; 2163 2164 struct list_head todo_list; 2165 2166 #ifdef CONFIG_PCPU_DEV_REFCNT 2167 int __percpu *pcpu_refcnt; 2168 #else 2169 refcount_t dev_refcnt; 2170 #endif 2171 2172 struct list_head link_watch_list; 2173 2174 enum { NETREG_UNINITIALIZED=0, 2175 NETREG_REGISTERED, /* completed register_netdevice */ 2176 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2177 NETREG_UNREGISTERED, /* completed unregister todo */ 2178 NETREG_RELEASED, /* called free_netdev */ 2179 NETREG_DUMMY, /* dummy device for NAPI poll */ 2180 } reg_state:8; 2181 2182 bool dismantle; 2183 2184 enum { 2185 RTNL_LINK_INITIALIZED, 2186 RTNL_LINK_INITIALIZING, 2187 } rtnl_link_state:16; 2188 2189 bool needs_free_netdev; 2190 void (*priv_destructor)(struct net_device *dev); 2191 2192 #ifdef CONFIG_NETPOLL 2193 struct netpoll_info __rcu *npinfo; 2194 #endif 2195 2196 possible_net_t nd_net; 2197 2198 /* mid-layer private */ 2199 void *ml_priv; 2200 enum netdev_ml_priv_type ml_priv_type; 2201 2202 union { 2203 struct pcpu_lstats __percpu *lstats; 2204 struct pcpu_sw_netstats __percpu *tstats; 2205 struct pcpu_dstats __percpu *dstats; 2206 }; 2207 2208 #if IS_ENABLED(CONFIG_GARP) 2209 struct garp_port __rcu *garp_port; 2210 #endif 2211 #if IS_ENABLED(CONFIG_MRP) 2212 struct mrp_port __rcu *mrp_port; 2213 #endif 2214 2215 struct device dev; 2216 const struct attribute_group *sysfs_groups[4]; 2217 const struct attribute_group *sysfs_rx_queue_group; 2218 2219 const struct rtnl_link_ops *rtnl_link_ops; 2220 2221 /* for setting kernel sock attribute on TCP connection setup */ 2222 #define GSO_MAX_SIZE 65536 2223 unsigned int gso_max_size; 2224 #define GSO_MAX_SEGS 65535 2225 u16 gso_max_segs; 2226 2227 #ifdef CONFIG_DCB 2228 const struct dcbnl_rtnl_ops *dcbnl_ops; 2229 #endif 2230 s16 num_tc; 2231 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2232 u8 prio_tc_map[TC_BITMASK + 1]; 2233 2234 #if IS_ENABLED(CONFIG_FCOE) 2235 unsigned int fcoe_ddp_xid; 2236 #endif 2237 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2238 struct netprio_map __rcu *priomap; 2239 #endif 2240 struct phy_device *phydev; 2241 struct sfp_bus *sfp_bus; 2242 struct lock_class_key *qdisc_tx_busylock; 2243 struct lock_class_key *qdisc_running_key; 2244 bool proto_down; 2245 unsigned wol_enabled:1; 2246 unsigned threaded:1; 2247 2248 struct list_head net_notifier_list; 2249 2250 #if IS_ENABLED(CONFIG_MACSEC) 2251 /* MACsec management functions */ 2252 const struct macsec_ops *macsec_ops; 2253 #endif 2254 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2255 struct udp_tunnel_nic *udp_tunnel_nic; 2256 2257 /* protected by rtnl_lock */ 2258 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2259 }; 2260 #define to_net_dev(d) container_of(d, struct net_device, dev) 2261 2262 static inline bool netif_elide_gro(const struct net_device *dev) 2263 { 2264 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2265 return true; 2266 return false; 2267 } 2268 2269 #define NETDEV_ALIGN 32 2270 2271 static inline 2272 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2273 { 2274 return dev->prio_tc_map[prio & TC_BITMASK]; 2275 } 2276 2277 static inline 2278 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2279 { 2280 if (tc >= dev->num_tc) 2281 return -EINVAL; 2282 2283 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2284 return 0; 2285 } 2286 2287 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2288 void netdev_reset_tc(struct net_device *dev); 2289 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2290 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2291 2292 static inline 2293 int netdev_get_num_tc(struct net_device *dev) 2294 { 2295 return dev->num_tc; 2296 } 2297 2298 static inline void net_prefetch(void *p) 2299 { 2300 prefetch(p); 2301 #if L1_CACHE_BYTES < 128 2302 prefetch((u8 *)p + L1_CACHE_BYTES); 2303 #endif 2304 } 2305 2306 static inline void net_prefetchw(void *p) 2307 { 2308 prefetchw(p); 2309 #if L1_CACHE_BYTES < 128 2310 prefetchw((u8 *)p + L1_CACHE_BYTES); 2311 #endif 2312 } 2313 2314 void netdev_unbind_sb_channel(struct net_device *dev, 2315 struct net_device *sb_dev); 2316 int netdev_bind_sb_channel_queue(struct net_device *dev, 2317 struct net_device *sb_dev, 2318 u8 tc, u16 count, u16 offset); 2319 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2320 static inline int netdev_get_sb_channel(struct net_device *dev) 2321 { 2322 return max_t(int, -dev->num_tc, 0); 2323 } 2324 2325 static inline 2326 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2327 unsigned int index) 2328 { 2329 return &dev->_tx[index]; 2330 } 2331 2332 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2333 const struct sk_buff *skb) 2334 { 2335 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2336 } 2337 2338 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2339 void (*f)(struct net_device *, 2340 struct netdev_queue *, 2341 void *), 2342 void *arg) 2343 { 2344 unsigned int i; 2345 2346 for (i = 0; i < dev->num_tx_queues; i++) 2347 f(dev, &dev->_tx[i], arg); 2348 } 2349 2350 #define netdev_lockdep_set_classes(dev) \ 2351 { \ 2352 static struct lock_class_key qdisc_tx_busylock_key; \ 2353 static struct lock_class_key qdisc_running_key; \ 2354 static struct lock_class_key qdisc_xmit_lock_key; \ 2355 static struct lock_class_key dev_addr_list_lock_key; \ 2356 unsigned int i; \ 2357 \ 2358 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2359 (dev)->qdisc_running_key = &qdisc_running_key; \ 2360 lockdep_set_class(&(dev)->addr_list_lock, \ 2361 &dev_addr_list_lock_key); \ 2362 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2363 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2364 &qdisc_xmit_lock_key); \ 2365 } 2366 2367 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2368 struct net_device *sb_dev); 2369 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2370 struct sk_buff *skb, 2371 struct net_device *sb_dev); 2372 2373 /* returns the headroom that the master device needs to take in account 2374 * when forwarding to this dev 2375 */ 2376 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2377 { 2378 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2379 } 2380 2381 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2382 { 2383 if (dev->netdev_ops->ndo_set_rx_headroom) 2384 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2385 } 2386 2387 /* set the device rx headroom to the dev's default */ 2388 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2389 { 2390 netdev_set_rx_headroom(dev, -1); 2391 } 2392 2393 static inline void *netdev_get_ml_priv(struct net_device *dev, 2394 enum netdev_ml_priv_type type) 2395 { 2396 if (dev->ml_priv_type != type) 2397 return NULL; 2398 2399 return dev->ml_priv; 2400 } 2401 2402 static inline void netdev_set_ml_priv(struct net_device *dev, 2403 void *ml_priv, 2404 enum netdev_ml_priv_type type) 2405 { 2406 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2407 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2408 dev->ml_priv_type, type); 2409 WARN(!dev->ml_priv_type && dev->ml_priv, 2410 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2411 2412 dev->ml_priv = ml_priv; 2413 dev->ml_priv_type = type; 2414 } 2415 2416 /* 2417 * Net namespace inlines 2418 */ 2419 static inline 2420 struct net *dev_net(const struct net_device *dev) 2421 { 2422 return read_pnet(&dev->nd_net); 2423 } 2424 2425 static inline 2426 void dev_net_set(struct net_device *dev, struct net *net) 2427 { 2428 write_pnet(&dev->nd_net, net); 2429 } 2430 2431 /** 2432 * netdev_priv - access network device private data 2433 * @dev: network device 2434 * 2435 * Get network device private data 2436 */ 2437 static inline void *netdev_priv(const struct net_device *dev) 2438 { 2439 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2440 } 2441 2442 /* Set the sysfs physical device reference for the network logical device 2443 * if set prior to registration will cause a symlink during initialization. 2444 */ 2445 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2446 2447 /* Set the sysfs device type for the network logical device to allow 2448 * fine-grained identification of different network device types. For 2449 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2450 */ 2451 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2452 2453 /* Default NAPI poll() weight 2454 * Device drivers are strongly advised to not use bigger value 2455 */ 2456 #define NAPI_POLL_WEIGHT 64 2457 2458 /** 2459 * netif_napi_add - initialize a NAPI context 2460 * @dev: network device 2461 * @napi: NAPI context 2462 * @poll: polling function 2463 * @weight: default weight 2464 * 2465 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2466 * *any* of the other NAPI-related functions. 2467 */ 2468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2469 int (*poll)(struct napi_struct *, int), int weight); 2470 2471 /** 2472 * netif_tx_napi_add - initialize a NAPI context 2473 * @dev: network device 2474 * @napi: NAPI context 2475 * @poll: polling function 2476 * @weight: default weight 2477 * 2478 * This variant of netif_napi_add() should be used from drivers using NAPI 2479 * to exclusively poll a TX queue. 2480 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2481 */ 2482 static inline void netif_tx_napi_add(struct net_device *dev, 2483 struct napi_struct *napi, 2484 int (*poll)(struct napi_struct *, int), 2485 int weight) 2486 { 2487 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2488 netif_napi_add(dev, napi, poll, weight); 2489 } 2490 2491 /** 2492 * __netif_napi_del - remove a NAPI context 2493 * @napi: NAPI context 2494 * 2495 * Warning: caller must observe RCU grace period before freeing memory 2496 * containing @napi. Drivers might want to call this helper to combine 2497 * all the needed RCU grace periods into a single one. 2498 */ 2499 void __netif_napi_del(struct napi_struct *napi); 2500 2501 /** 2502 * netif_napi_del - remove a NAPI context 2503 * @napi: NAPI context 2504 * 2505 * netif_napi_del() removes a NAPI context from the network device NAPI list 2506 */ 2507 static inline void netif_napi_del(struct napi_struct *napi) 2508 { 2509 __netif_napi_del(napi); 2510 synchronize_net(); 2511 } 2512 2513 struct napi_gro_cb { 2514 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2515 void *frag0; 2516 2517 /* Length of frag0. */ 2518 unsigned int frag0_len; 2519 2520 /* This indicates where we are processing relative to skb->data. */ 2521 int data_offset; 2522 2523 /* This is non-zero if the packet cannot be merged with the new skb. */ 2524 u16 flush; 2525 2526 /* Save the IP ID here and check when we get to the transport layer */ 2527 u16 flush_id; 2528 2529 /* Number of segments aggregated. */ 2530 u16 count; 2531 2532 /* Start offset for remote checksum offload */ 2533 u16 gro_remcsum_start; 2534 2535 /* jiffies when first packet was created/queued */ 2536 unsigned long age; 2537 2538 /* Used in ipv6_gro_receive() and foo-over-udp */ 2539 u16 proto; 2540 2541 /* This is non-zero if the packet may be of the same flow. */ 2542 u8 same_flow:1; 2543 2544 /* Used in tunnel GRO receive */ 2545 u8 encap_mark:1; 2546 2547 /* GRO checksum is valid */ 2548 u8 csum_valid:1; 2549 2550 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2551 u8 csum_cnt:3; 2552 2553 /* Free the skb? */ 2554 u8 free:2; 2555 #define NAPI_GRO_FREE 1 2556 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2557 2558 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2559 u8 is_ipv6:1; 2560 2561 /* Used in GRE, set in fou/gue_gro_receive */ 2562 u8 is_fou:1; 2563 2564 /* Used to determine if flush_id can be ignored */ 2565 u8 is_atomic:1; 2566 2567 /* Number of gro_receive callbacks this packet already went through */ 2568 u8 recursion_counter:4; 2569 2570 /* GRO is done by frag_list pointer chaining. */ 2571 u8 is_flist:1; 2572 2573 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2574 __wsum csum; 2575 2576 /* used in skb_gro_receive() slow path */ 2577 struct sk_buff *last; 2578 }; 2579 2580 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2581 2582 #define GRO_RECURSION_LIMIT 15 2583 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2584 { 2585 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2586 } 2587 2588 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2589 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2590 struct list_head *head, 2591 struct sk_buff *skb) 2592 { 2593 if (unlikely(gro_recursion_inc_test(skb))) { 2594 NAPI_GRO_CB(skb)->flush |= 1; 2595 return NULL; 2596 } 2597 2598 return cb(head, skb); 2599 } 2600 2601 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2602 struct sk_buff *); 2603 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2604 struct sock *sk, 2605 struct list_head *head, 2606 struct sk_buff *skb) 2607 { 2608 if (unlikely(gro_recursion_inc_test(skb))) { 2609 NAPI_GRO_CB(skb)->flush |= 1; 2610 return NULL; 2611 } 2612 2613 return cb(sk, head, skb); 2614 } 2615 2616 struct packet_type { 2617 __be16 type; /* This is really htons(ether_type). */ 2618 bool ignore_outgoing; 2619 struct net_device *dev; /* NULL is wildcarded here */ 2620 int (*func) (struct sk_buff *, 2621 struct net_device *, 2622 struct packet_type *, 2623 struct net_device *); 2624 void (*list_func) (struct list_head *, 2625 struct packet_type *, 2626 struct net_device *); 2627 bool (*id_match)(struct packet_type *ptype, 2628 struct sock *sk); 2629 void *af_packet_priv; 2630 struct list_head list; 2631 }; 2632 2633 struct offload_callbacks { 2634 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2635 netdev_features_t features); 2636 struct sk_buff *(*gro_receive)(struct list_head *head, 2637 struct sk_buff *skb); 2638 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2639 }; 2640 2641 struct packet_offload { 2642 __be16 type; /* This is really htons(ether_type). */ 2643 u16 priority; 2644 struct offload_callbacks callbacks; 2645 struct list_head list; 2646 }; 2647 2648 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2649 struct pcpu_sw_netstats { 2650 u64 rx_packets; 2651 u64 rx_bytes; 2652 u64 tx_packets; 2653 u64 tx_bytes; 2654 struct u64_stats_sync syncp; 2655 } __aligned(4 * sizeof(u64)); 2656 2657 struct pcpu_lstats { 2658 u64_stats_t packets; 2659 u64_stats_t bytes; 2660 struct u64_stats_sync syncp; 2661 } __aligned(2 * sizeof(u64)); 2662 2663 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2664 2665 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2666 { 2667 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2668 2669 u64_stats_update_begin(&tstats->syncp); 2670 tstats->rx_bytes += len; 2671 tstats->rx_packets++; 2672 u64_stats_update_end(&tstats->syncp); 2673 } 2674 2675 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2676 unsigned int packets, 2677 unsigned int len) 2678 { 2679 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2680 2681 u64_stats_update_begin(&tstats->syncp); 2682 tstats->tx_bytes += len; 2683 tstats->tx_packets += packets; 2684 u64_stats_update_end(&tstats->syncp); 2685 } 2686 2687 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2688 { 2689 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2690 2691 u64_stats_update_begin(&lstats->syncp); 2692 u64_stats_add(&lstats->bytes, len); 2693 u64_stats_inc(&lstats->packets); 2694 u64_stats_update_end(&lstats->syncp); 2695 } 2696 2697 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2698 ({ \ 2699 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2700 if (pcpu_stats) { \ 2701 int __cpu; \ 2702 for_each_possible_cpu(__cpu) { \ 2703 typeof(type) *stat; \ 2704 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2705 u64_stats_init(&stat->syncp); \ 2706 } \ 2707 } \ 2708 pcpu_stats; \ 2709 }) 2710 2711 #define netdev_alloc_pcpu_stats(type) \ 2712 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2713 2714 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2715 ({ \ 2716 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2717 if (pcpu_stats) { \ 2718 int __cpu; \ 2719 for_each_possible_cpu(__cpu) { \ 2720 typeof(type) *stat; \ 2721 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2722 u64_stats_init(&stat->syncp); \ 2723 } \ 2724 } \ 2725 pcpu_stats; \ 2726 }) 2727 2728 enum netdev_lag_tx_type { 2729 NETDEV_LAG_TX_TYPE_UNKNOWN, 2730 NETDEV_LAG_TX_TYPE_RANDOM, 2731 NETDEV_LAG_TX_TYPE_BROADCAST, 2732 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2733 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2734 NETDEV_LAG_TX_TYPE_HASH, 2735 }; 2736 2737 enum netdev_lag_hash { 2738 NETDEV_LAG_HASH_NONE, 2739 NETDEV_LAG_HASH_L2, 2740 NETDEV_LAG_HASH_L34, 2741 NETDEV_LAG_HASH_L23, 2742 NETDEV_LAG_HASH_E23, 2743 NETDEV_LAG_HASH_E34, 2744 NETDEV_LAG_HASH_VLAN_SRCMAC, 2745 NETDEV_LAG_HASH_UNKNOWN, 2746 }; 2747 2748 struct netdev_lag_upper_info { 2749 enum netdev_lag_tx_type tx_type; 2750 enum netdev_lag_hash hash_type; 2751 }; 2752 2753 struct netdev_lag_lower_state_info { 2754 u8 link_up : 1, 2755 tx_enabled : 1; 2756 }; 2757 2758 #include <linux/notifier.h> 2759 2760 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2761 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2762 * adding new types. 2763 */ 2764 enum netdev_cmd { 2765 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2766 NETDEV_DOWN, 2767 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2768 detected a hardware crash and restarted 2769 - we can use this eg to kick tcp sessions 2770 once done */ 2771 NETDEV_CHANGE, /* Notify device state change */ 2772 NETDEV_REGISTER, 2773 NETDEV_UNREGISTER, 2774 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2775 NETDEV_CHANGEADDR, /* notify after the address change */ 2776 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2777 NETDEV_GOING_DOWN, 2778 NETDEV_CHANGENAME, 2779 NETDEV_FEAT_CHANGE, 2780 NETDEV_BONDING_FAILOVER, 2781 NETDEV_PRE_UP, 2782 NETDEV_PRE_TYPE_CHANGE, 2783 NETDEV_POST_TYPE_CHANGE, 2784 NETDEV_POST_INIT, 2785 NETDEV_RELEASE, 2786 NETDEV_NOTIFY_PEERS, 2787 NETDEV_JOIN, 2788 NETDEV_CHANGEUPPER, 2789 NETDEV_RESEND_IGMP, 2790 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2791 NETDEV_CHANGEINFODATA, 2792 NETDEV_BONDING_INFO, 2793 NETDEV_PRECHANGEUPPER, 2794 NETDEV_CHANGELOWERSTATE, 2795 NETDEV_UDP_TUNNEL_PUSH_INFO, 2796 NETDEV_UDP_TUNNEL_DROP_INFO, 2797 NETDEV_CHANGE_TX_QUEUE_LEN, 2798 NETDEV_CVLAN_FILTER_PUSH_INFO, 2799 NETDEV_CVLAN_FILTER_DROP_INFO, 2800 NETDEV_SVLAN_FILTER_PUSH_INFO, 2801 NETDEV_SVLAN_FILTER_DROP_INFO, 2802 }; 2803 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2804 2805 int register_netdevice_notifier(struct notifier_block *nb); 2806 int unregister_netdevice_notifier(struct notifier_block *nb); 2807 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2808 int unregister_netdevice_notifier_net(struct net *net, 2809 struct notifier_block *nb); 2810 int register_netdevice_notifier_dev_net(struct net_device *dev, 2811 struct notifier_block *nb, 2812 struct netdev_net_notifier *nn); 2813 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2814 struct notifier_block *nb, 2815 struct netdev_net_notifier *nn); 2816 2817 struct netdev_notifier_info { 2818 struct net_device *dev; 2819 struct netlink_ext_ack *extack; 2820 }; 2821 2822 struct netdev_notifier_info_ext { 2823 struct netdev_notifier_info info; /* must be first */ 2824 union { 2825 u32 mtu; 2826 } ext; 2827 }; 2828 2829 struct netdev_notifier_change_info { 2830 struct netdev_notifier_info info; /* must be first */ 2831 unsigned int flags_changed; 2832 }; 2833 2834 struct netdev_notifier_changeupper_info { 2835 struct netdev_notifier_info info; /* must be first */ 2836 struct net_device *upper_dev; /* new upper dev */ 2837 bool master; /* is upper dev master */ 2838 bool linking; /* is the notification for link or unlink */ 2839 void *upper_info; /* upper dev info */ 2840 }; 2841 2842 struct netdev_notifier_changelowerstate_info { 2843 struct netdev_notifier_info info; /* must be first */ 2844 void *lower_state_info; /* is lower dev state */ 2845 }; 2846 2847 struct netdev_notifier_pre_changeaddr_info { 2848 struct netdev_notifier_info info; /* must be first */ 2849 const unsigned char *dev_addr; 2850 }; 2851 2852 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2853 struct net_device *dev) 2854 { 2855 info->dev = dev; 2856 info->extack = NULL; 2857 } 2858 2859 static inline struct net_device * 2860 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2861 { 2862 return info->dev; 2863 } 2864 2865 static inline struct netlink_ext_ack * 2866 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2867 { 2868 return info->extack; 2869 } 2870 2871 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2872 2873 2874 extern rwlock_t dev_base_lock; /* Device list lock */ 2875 2876 #define for_each_netdev(net, d) \ 2877 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2878 #define for_each_netdev_reverse(net, d) \ 2879 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2880 #define for_each_netdev_rcu(net, d) \ 2881 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2882 #define for_each_netdev_safe(net, d, n) \ 2883 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2884 #define for_each_netdev_continue(net, d) \ 2885 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2886 #define for_each_netdev_continue_reverse(net, d) \ 2887 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2888 dev_list) 2889 #define for_each_netdev_continue_rcu(net, d) \ 2890 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2891 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2892 for_each_netdev_rcu(&init_net, slave) \ 2893 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2894 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2895 2896 static inline struct net_device *next_net_device(struct net_device *dev) 2897 { 2898 struct list_head *lh; 2899 struct net *net; 2900 2901 net = dev_net(dev); 2902 lh = dev->dev_list.next; 2903 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2904 } 2905 2906 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2907 { 2908 struct list_head *lh; 2909 struct net *net; 2910 2911 net = dev_net(dev); 2912 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2913 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2914 } 2915 2916 static inline struct net_device *first_net_device(struct net *net) 2917 { 2918 return list_empty(&net->dev_base_head) ? NULL : 2919 net_device_entry(net->dev_base_head.next); 2920 } 2921 2922 static inline struct net_device *first_net_device_rcu(struct net *net) 2923 { 2924 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2925 2926 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2927 } 2928 2929 int netdev_boot_setup_check(struct net_device *dev); 2930 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2931 const char *hwaddr); 2932 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2933 void dev_add_pack(struct packet_type *pt); 2934 void dev_remove_pack(struct packet_type *pt); 2935 void __dev_remove_pack(struct packet_type *pt); 2936 void dev_add_offload(struct packet_offload *po); 2937 void dev_remove_offload(struct packet_offload *po); 2938 2939 int dev_get_iflink(const struct net_device *dev); 2940 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2941 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 2942 struct net_device_path_stack *stack); 2943 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2944 unsigned short mask); 2945 struct net_device *dev_get_by_name(struct net *net, const char *name); 2946 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2947 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2948 int dev_alloc_name(struct net_device *dev, const char *name); 2949 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2950 void dev_close(struct net_device *dev); 2951 void dev_close_many(struct list_head *head, bool unlink); 2952 void dev_disable_lro(struct net_device *dev); 2953 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2954 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2955 struct net_device *sb_dev); 2956 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2957 struct net_device *sb_dev); 2958 2959 int dev_queue_xmit(struct sk_buff *skb); 2960 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2961 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2962 2963 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 2964 { 2965 int ret; 2966 2967 ret = __dev_direct_xmit(skb, queue_id); 2968 if (!dev_xmit_complete(ret)) 2969 kfree_skb(skb); 2970 return ret; 2971 } 2972 2973 int register_netdevice(struct net_device *dev); 2974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2975 void unregister_netdevice_many(struct list_head *head); 2976 static inline void unregister_netdevice(struct net_device *dev) 2977 { 2978 unregister_netdevice_queue(dev, NULL); 2979 } 2980 2981 int netdev_refcnt_read(const struct net_device *dev); 2982 void free_netdev(struct net_device *dev); 2983 void netdev_freemem(struct net_device *dev); 2984 int init_dummy_netdev(struct net_device *dev); 2985 2986 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2987 struct sk_buff *skb, 2988 bool all_slaves); 2989 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 2990 struct sock *sk); 2991 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2992 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2993 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2994 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2995 int netdev_get_name(struct net *net, char *name, int ifindex); 2996 int dev_restart(struct net_device *dev); 2997 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2998 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2999 3000 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 3001 { 3002 return NAPI_GRO_CB(skb)->data_offset; 3003 } 3004 3005 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 3006 { 3007 return skb->len - NAPI_GRO_CB(skb)->data_offset; 3008 } 3009 3010 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 3011 { 3012 NAPI_GRO_CB(skb)->data_offset += len; 3013 } 3014 3015 static inline void *skb_gro_header_fast(struct sk_buff *skb, 3016 unsigned int offset) 3017 { 3018 return NAPI_GRO_CB(skb)->frag0 + offset; 3019 } 3020 3021 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 3022 { 3023 return NAPI_GRO_CB(skb)->frag0_len < hlen; 3024 } 3025 3026 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 3027 { 3028 NAPI_GRO_CB(skb)->frag0 = NULL; 3029 NAPI_GRO_CB(skb)->frag0_len = 0; 3030 } 3031 3032 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 3033 unsigned int offset) 3034 { 3035 if (!pskb_may_pull(skb, hlen)) 3036 return NULL; 3037 3038 skb_gro_frag0_invalidate(skb); 3039 return skb->data + offset; 3040 } 3041 3042 static inline void *skb_gro_network_header(struct sk_buff *skb) 3043 { 3044 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 3045 skb_network_offset(skb); 3046 } 3047 3048 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 3049 const void *start, unsigned int len) 3050 { 3051 if (NAPI_GRO_CB(skb)->csum_valid) 3052 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 3053 csum_partial(start, len, 0)); 3054 } 3055 3056 /* GRO checksum functions. These are logical equivalents of the normal 3057 * checksum functions (in skbuff.h) except that they operate on the GRO 3058 * offsets and fields in sk_buff. 3059 */ 3060 3061 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 3062 3063 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 3064 { 3065 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 3066 } 3067 3068 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 3069 bool zero_okay, 3070 __sum16 check) 3071 { 3072 return ((skb->ip_summed != CHECKSUM_PARTIAL || 3073 skb_checksum_start_offset(skb) < 3074 skb_gro_offset(skb)) && 3075 !skb_at_gro_remcsum_start(skb) && 3076 NAPI_GRO_CB(skb)->csum_cnt == 0 && 3077 (!zero_okay || check)); 3078 } 3079 3080 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 3081 __wsum psum) 3082 { 3083 if (NAPI_GRO_CB(skb)->csum_valid && 3084 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 3085 return 0; 3086 3087 NAPI_GRO_CB(skb)->csum = psum; 3088 3089 return __skb_gro_checksum_complete(skb); 3090 } 3091 3092 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 3093 { 3094 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 3095 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 3096 NAPI_GRO_CB(skb)->csum_cnt--; 3097 } else { 3098 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 3099 * verified a new top level checksum or an encapsulated one 3100 * during GRO. This saves work if we fallback to normal path. 3101 */ 3102 __skb_incr_checksum_unnecessary(skb); 3103 } 3104 } 3105 3106 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 3107 compute_pseudo) \ 3108 ({ \ 3109 __sum16 __ret = 0; \ 3110 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 3111 __ret = __skb_gro_checksum_validate_complete(skb, \ 3112 compute_pseudo(skb, proto)); \ 3113 if (!__ret) \ 3114 skb_gro_incr_csum_unnecessary(skb); \ 3115 __ret; \ 3116 }) 3117 3118 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 3119 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 3120 3121 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 3122 compute_pseudo) \ 3123 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 3124 3125 #define skb_gro_checksum_simple_validate(skb) \ 3126 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 3127 3128 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 3129 { 3130 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 3131 !NAPI_GRO_CB(skb)->csum_valid); 3132 } 3133 3134 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 3135 __wsum pseudo) 3136 { 3137 NAPI_GRO_CB(skb)->csum = ~pseudo; 3138 NAPI_GRO_CB(skb)->csum_valid = 1; 3139 } 3140 3141 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 3142 do { \ 3143 if (__skb_gro_checksum_convert_check(skb)) \ 3144 __skb_gro_checksum_convert(skb, \ 3145 compute_pseudo(skb, proto)); \ 3146 } while (0) 3147 3148 struct gro_remcsum { 3149 int offset; 3150 __wsum delta; 3151 }; 3152 3153 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 3154 { 3155 grc->offset = 0; 3156 grc->delta = 0; 3157 } 3158 3159 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 3160 unsigned int off, size_t hdrlen, 3161 int start, int offset, 3162 struct gro_remcsum *grc, 3163 bool nopartial) 3164 { 3165 __wsum delta; 3166 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 3167 3168 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 3169 3170 if (!nopartial) { 3171 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 3172 return ptr; 3173 } 3174 3175 ptr = skb_gro_header_fast(skb, off); 3176 if (skb_gro_header_hard(skb, off + plen)) { 3177 ptr = skb_gro_header_slow(skb, off + plen, off); 3178 if (!ptr) 3179 return NULL; 3180 } 3181 3182 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 3183 start, offset); 3184 3185 /* Adjust skb->csum since we changed the packet */ 3186 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 3187 3188 grc->offset = off + hdrlen + offset; 3189 grc->delta = delta; 3190 3191 return ptr; 3192 } 3193 3194 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 3195 struct gro_remcsum *grc) 3196 { 3197 void *ptr; 3198 size_t plen = grc->offset + sizeof(u16); 3199 3200 if (!grc->delta) 3201 return; 3202 3203 ptr = skb_gro_header_fast(skb, grc->offset); 3204 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 3205 ptr = skb_gro_header_slow(skb, plen, grc->offset); 3206 if (!ptr) 3207 return; 3208 } 3209 3210 remcsum_unadjust((__sum16 *)ptr, grc->delta); 3211 } 3212 3213 #ifdef CONFIG_XFRM_OFFLOAD 3214 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3215 { 3216 if (PTR_ERR(pp) != -EINPROGRESS) 3217 NAPI_GRO_CB(skb)->flush |= flush; 3218 } 3219 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3220 struct sk_buff *pp, 3221 int flush, 3222 struct gro_remcsum *grc) 3223 { 3224 if (PTR_ERR(pp) != -EINPROGRESS) { 3225 NAPI_GRO_CB(skb)->flush |= flush; 3226 skb_gro_remcsum_cleanup(skb, grc); 3227 skb->remcsum_offload = 0; 3228 } 3229 } 3230 #else 3231 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3232 { 3233 NAPI_GRO_CB(skb)->flush |= flush; 3234 } 3235 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3236 struct sk_buff *pp, 3237 int flush, 3238 struct gro_remcsum *grc) 3239 { 3240 NAPI_GRO_CB(skb)->flush |= flush; 3241 skb_gro_remcsum_cleanup(skb, grc); 3242 skb->remcsum_offload = 0; 3243 } 3244 #endif 3245 3246 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3247 unsigned short type, 3248 const void *daddr, const void *saddr, 3249 unsigned int len) 3250 { 3251 if (!dev->header_ops || !dev->header_ops->create) 3252 return 0; 3253 3254 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3255 } 3256 3257 static inline int dev_parse_header(const struct sk_buff *skb, 3258 unsigned char *haddr) 3259 { 3260 const struct net_device *dev = skb->dev; 3261 3262 if (!dev->header_ops || !dev->header_ops->parse) 3263 return 0; 3264 return dev->header_ops->parse(skb, haddr); 3265 } 3266 3267 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3268 { 3269 const struct net_device *dev = skb->dev; 3270 3271 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3272 return 0; 3273 return dev->header_ops->parse_protocol(skb); 3274 } 3275 3276 /* ll_header must have at least hard_header_len allocated */ 3277 static inline bool dev_validate_header(const struct net_device *dev, 3278 char *ll_header, int len) 3279 { 3280 if (likely(len >= dev->hard_header_len)) 3281 return true; 3282 if (len < dev->min_header_len) 3283 return false; 3284 3285 if (capable(CAP_SYS_RAWIO)) { 3286 memset(ll_header + len, 0, dev->hard_header_len - len); 3287 return true; 3288 } 3289 3290 if (dev->header_ops && dev->header_ops->validate) 3291 return dev->header_ops->validate(ll_header, len); 3292 3293 return false; 3294 } 3295 3296 static inline bool dev_has_header(const struct net_device *dev) 3297 { 3298 return dev->header_ops && dev->header_ops->create; 3299 } 3300 3301 #ifdef CONFIG_NET_FLOW_LIMIT 3302 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3303 struct sd_flow_limit { 3304 u64 count; 3305 unsigned int num_buckets; 3306 unsigned int history_head; 3307 u16 history[FLOW_LIMIT_HISTORY]; 3308 u8 buckets[]; 3309 }; 3310 3311 extern int netdev_flow_limit_table_len; 3312 #endif /* CONFIG_NET_FLOW_LIMIT */ 3313 3314 /* 3315 * Incoming packets are placed on per-CPU queues 3316 */ 3317 struct softnet_data { 3318 struct list_head poll_list; 3319 struct sk_buff_head process_queue; 3320 3321 /* stats */ 3322 unsigned int processed; 3323 unsigned int time_squeeze; 3324 unsigned int received_rps; 3325 #ifdef CONFIG_RPS 3326 struct softnet_data *rps_ipi_list; 3327 #endif 3328 #ifdef CONFIG_NET_FLOW_LIMIT 3329 struct sd_flow_limit __rcu *flow_limit; 3330 #endif 3331 struct Qdisc *output_queue; 3332 struct Qdisc **output_queue_tailp; 3333 struct sk_buff *completion_queue; 3334 #ifdef CONFIG_XFRM_OFFLOAD 3335 struct sk_buff_head xfrm_backlog; 3336 #endif 3337 /* written and read only by owning cpu: */ 3338 struct { 3339 u16 recursion; 3340 u8 more; 3341 } xmit; 3342 #ifdef CONFIG_RPS 3343 /* input_queue_head should be written by cpu owning this struct, 3344 * and only read by other cpus. Worth using a cache line. 3345 */ 3346 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3347 3348 /* Elements below can be accessed between CPUs for RPS/RFS */ 3349 call_single_data_t csd ____cacheline_aligned_in_smp; 3350 struct softnet_data *rps_ipi_next; 3351 unsigned int cpu; 3352 unsigned int input_queue_tail; 3353 #endif 3354 unsigned int dropped; 3355 struct sk_buff_head input_pkt_queue; 3356 struct napi_struct backlog; 3357 3358 }; 3359 3360 static inline void input_queue_head_incr(struct softnet_data *sd) 3361 { 3362 #ifdef CONFIG_RPS 3363 sd->input_queue_head++; 3364 #endif 3365 } 3366 3367 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3368 unsigned int *qtail) 3369 { 3370 #ifdef CONFIG_RPS 3371 *qtail = ++sd->input_queue_tail; 3372 #endif 3373 } 3374 3375 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3376 3377 static inline int dev_recursion_level(void) 3378 { 3379 return this_cpu_read(softnet_data.xmit.recursion); 3380 } 3381 3382 #define XMIT_RECURSION_LIMIT 8 3383 static inline bool dev_xmit_recursion(void) 3384 { 3385 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3386 XMIT_RECURSION_LIMIT); 3387 } 3388 3389 static inline void dev_xmit_recursion_inc(void) 3390 { 3391 __this_cpu_inc(softnet_data.xmit.recursion); 3392 } 3393 3394 static inline void dev_xmit_recursion_dec(void) 3395 { 3396 __this_cpu_dec(softnet_data.xmit.recursion); 3397 } 3398 3399 void __netif_schedule(struct Qdisc *q); 3400 void netif_schedule_queue(struct netdev_queue *txq); 3401 3402 static inline void netif_tx_schedule_all(struct net_device *dev) 3403 { 3404 unsigned int i; 3405 3406 for (i = 0; i < dev->num_tx_queues; i++) 3407 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3408 } 3409 3410 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3411 { 3412 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3413 } 3414 3415 /** 3416 * netif_start_queue - allow transmit 3417 * @dev: network device 3418 * 3419 * Allow upper layers to call the device hard_start_xmit routine. 3420 */ 3421 static inline void netif_start_queue(struct net_device *dev) 3422 { 3423 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3424 } 3425 3426 static inline void netif_tx_start_all_queues(struct net_device *dev) 3427 { 3428 unsigned int i; 3429 3430 for (i = 0; i < dev->num_tx_queues; i++) { 3431 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3432 netif_tx_start_queue(txq); 3433 } 3434 } 3435 3436 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3437 3438 /** 3439 * netif_wake_queue - restart transmit 3440 * @dev: network device 3441 * 3442 * Allow upper layers to call the device hard_start_xmit routine. 3443 * Used for flow control when transmit resources are available. 3444 */ 3445 static inline void netif_wake_queue(struct net_device *dev) 3446 { 3447 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3448 } 3449 3450 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3451 { 3452 unsigned int i; 3453 3454 for (i = 0; i < dev->num_tx_queues; i++) { 3455 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3456 netif_tx_wake_queue(txq); 3457 } 3458 } 3459 3460 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3461 { 3462 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3463 } 3464 3465 /** 3466 * netif_stop_queue - stop transmitted packets 3467 * @dev: network device 3468 * 3469 * Stop upper layers calling the device hard_start_xmit routine. 3470 * Used for flow control when transmit resources are unavailable. 3471 */ 3472 static inline void netif_stop_queue(struct net_device *dev) 3473 { 3474 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3475 } 3476 3477 void netif_tx_stop_all_queues(struct net_device *dev); 3478 3479 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3480 { 3481 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3482 } 3483 3484 /** 3485 * netif_queue_stopped - test if transmit queue is flowblocked 3486 * @dev: network device 3487 * 3488 * Test if transmit queue on device is currently unable to send. 3489 */ 3490 static inline bool netif_queue_stopped(const struct net_device *dev) 3491 { 3492 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3493 } 3494 3495 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3496 { 3497 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3498 } 3499 3500 static inline bool 3501 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3502 { 3503 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3504 } 3505 3506 static inline bool 3507 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3508 { 3509 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3510 } 3511 3512 /** 3513 * netdev_queue_set_dql_min_limit - set dql minimum limit 3514 * @dev_queue: pointer to transmit queue 3515 * @min_limit: dql minimum limit 3516 * 3517 * Forces xmit_more() to return true until the minimum threshold 3518 * defined by @min_limit is reached (or until the tx queue is 3519 * empty). Warning: to be use with care, misuse will impact the 3520 * latency. 3521 */ 3522 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3523 unsigned int min_limit) 3524 { 3525 #ifdef CONFIG_BQL 3526 dev_queue->dql.min_limit = min_limit; 3527 #endif 3528 } 3529 3530 /** 3531 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3532 * @dev_queue: pointer to transmit queue 3533 * 3534 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3535 * to give appropriate hint to the CPU. 3536 */ 3537 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3538 { 3539 #ifdef CONFIG_BQL 3540 prefetchw(&dev_queue->dql.num_queued); 3541 #endif 3542 } 3543 3544 /** 3545 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3546 * @dev_queue: pointer to transmit queue 3547 * 3548 * BQL enabled drivers might use this helper in their TX completion path, 3549 * to give appropriate hint to the CPU. 3550 */ 3551 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3552 { 3553 #ifdef CONFIG_BQL 3554 prefetchw(&dev_queue->dql.limit); 3555 #endif 3556 } 3557 3558 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3559 unsigned int bytes) 3560 { 3561 #ifdef CONFIG_BQL 3562 dql_queued(&dev_queue->dql, bytes); 3563 3564 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3565 return; 3566 3567 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3568 3569 /* 3570 * The XOFF flag must be set before checking the dql_avail below, 3571 * because in netdev_tx_completed_queue we update the dql_completed 3572 * before checking the XOFF flag. 3573 */ 3574 smp_mb(); 3575 3576 /* check again in case another CPU has just made room avail */ 3577 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3578 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3579 #endif 3580 } 3581 3582 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3583 * that they should not test BQL status themselves. 3584 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3585 * skb of a batch. 3586 * Returns true if the doorbell must be used to kick the NIC. 3587 */ 3588 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3589 unsigned int bytes, 3590 bool xmit_more) 3591 { 3592 if (xmit_more) { 3593 #ifdef CONFIG_BQL 3594 dql_queued(&dev_queue->dql, bytes); 3595 #endif 3596 return netif_tx_queue_stopped(dev_queue); 3597 } 3598 netdev_tx_sent_queue(dev_queue, bytes); 3599 return true; 3600 } 3601 3602 /** 3603 * netdev_sent_queue - report the number of bytes queued to hardware 3604 * @dev: network device 3605 * @bytes: number of bytes queued to the hardware device queue 3606 * 3607 * Report the number of bytes queued for sending/completion to the network 3608 * device hardware queue. @bytes should be a good approximation and should 3609 * exactly match netdev_completed_queue() @bytes 3610 */ 3611 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3612 { 3613 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3614 } 3615 3616 static inline bool __netdev_sent_queue(struct net_device *dev, 3617 unsigned int bytes, 3618 bool xmit_more) 3619 { 3620 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3621 xmit_more); 3622 } 3623 3624 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3625 unsigned int pkts, unsigned int bytes) 3626 { 3627 #ifdef CONFIG_BQL 3628 if (unlikely(!bytes)) 3629 return; 3630 3631 dql_completed(&dev_queue->dql, bytes); 3632 3633 /* 3634 * Without the memory barrier there is a small possiblity that 3635 * netdev_tx_sent_queue will miss the update and cause the queue to 3636 * be stopped forever 3637 */ 3638 smp_mb(); 3639 3640 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3641 return; 3642 3643 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3644 netif_schedule_queue(dev_queue); 3645 #endif 3646 } 3647 3648 /** 3649 * netdev_completed_queue - report bytes and packets completed by device 3650 * @dev: network device 3651 * @pkts: actual number of packets sent over the medium 3652 * @bytes: actual number of bytes sent over the medium 3653 * 3654 * Report the number of bytes and packets transmitted by the network device 3655 * hardware queue over the physical medium, @bytes must exactly match the 3656 * @bytes amount passed to netdev_sent_queue() 3657 */ 3658 static inline void netdev_completed_queue(struct net_device *dev, 3659 unsigned int pkts, unsigned int bytes) 3660 { 3661 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3662 } 3663 3664 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3665 { 3666 #ifdef CONFIG_BQL 3667 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3668 dql_reset(&q->dql); 3669 #endif 3670 } 3671 3672 /** 3673 * netdev_reset_queue - reset the packets and bytes count of a network device 3674 * @dev_queue: network device 3675 * 3676 * Reset the bytes and packet count of a network device and clear the 3677 * software flow control OFF bit for this network device 3678 */ 3679 static inline void netdev_reset_queue(struct net_device *dev_queue) 3680 { 3681 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3682 } 3683 3684 /** 3685 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3686 * @dev: network device 3687 * @queue_index: given tx queue index 3688 * 3689 * Returns 0 if given tx queue index >= number of device tx queues, 3690 * otherwise returns the originally passed tx queue index. 3691 */ 3692 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3693 { 3694 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3695 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3696 dev->name, queue_index, 3697 dev->real_num_tx_queues); 3698 return 0; 3699 } 3700 3701 return queue_index; 3702 } 3703 3704 /** 3705 * netif_running - test if up 3706 * @dev: network device 3707 * 3708 * Test if the device has been brought up. 3709 */ 3710 static inline bool netif_running(const struct net_device *dev) 3711 { 3712 return test_bit(__LINK_STATE_START, &dev->state); 3713 } 3714 3715 /* 3716 * Routines to manage the subqueues on a device. We only need start, 3717 * stop, and a check if it's stopped. All other device management is 3718 * done at the overall netdevice level. 3719 * Also test the device if we're multiqueue. 3720 */ 3721 3722 /** 3723 * netif_start_subqueue - allow sending packets on subqueue 3724 * @dev: network device 3725 * @queue_index: sub queue index 3726 * 3727 * Start individual transmit queue of a device with multiple transmit queues. 3728 */ 3729 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3730 { 3731 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3732 3733 netif_tx_start_queue(txq); 3734 } 3735 3736 /** 3737 * netif_stop_subqueue - stop sending packets on subqueue 3738 * @dev: network device 3739 * @queue_index: sub queue index 3740 * 3741 * Stop individual transmit queue of a device with multiple transmit queues. 3742 */ 3743 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3744 { 3745 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3746 netif_tx_stop_queue(txq); 3747 } 3748 3749 /** 3750 * __netif_subqueue_stopped - test status of subqueue 3751 * @dev: network device 3752 * @queue_index: sub queue index 3753 * 3754 * Check individual transmit queue of a device with multiple transmit queues. 3755 */ 3756 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3757 u16 queue_index) 3758 { 3759 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3760 3761 return netif_tx_queue_stopped(txq); 3762 } 3763 3764 /** 3765 * netif_subqueue_stopped - test status of subqueue 3766 * @dev: network device 3767 * @skb: sub queue buffer pointer 3768 * 3769 * Check individual transmit queue of a device with multiple transmit queues. 3770 */ 3771 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3772 struct sk_buff *skb) 3773 { 3774 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3775 } 3776 3777 /** 3778 * netif_wake_subqueue - allow sending packets on subqueue 3779 * @dev: network device 3780 * @queue_index: sub queue index 3781 * 3782 * Resume individual transmit queue of a device with multiple transmit queues. 3783 */ 3784 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3785 { 3786 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3787 3788 netif_tx_wake_queue(txq); 3789 } 3790 3791 #ifdef CONFIG_XPS 3792 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3793 u16 index); 3794 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3795 u16 index, enum xps_map_type type); 3796 3797 /** 3798 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3799 * @j: CPU/Rx queue index 3800 * @mask: bitmask of all cpus/rx queues 3801 * @nr_bits: number of bits in the bitmask 3802 * 3803 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3804 */ 3805 static inline bool netif_attr_test_mask(unsigned long j, 3806 const unsigned long *mask, 3807 unsigned int nr_bits) 3808 { 3809 cpu_max_bits_warn(j, nr_bits); 3810 return test_bit(j, mask); 3811 } 3812 3813 /** 3814 * netif_attr_test_online - Test for online CPU/Rx queue 3815 * @j: CPU/Rx queue index 3816 * @online_mask: bitmask for CPUs/Rx queues that are online 3817 * @nr_bits: number of bits in the bitmask 3818 * 3819 * Returns true if a CPU/Rx queue is online. 3820 */ 3821 static inline bool netif_attr_test_online(unsigned long j, 3822 const unsigned long *online_mask, 3823 unsigned int nr_bits) 3824 { 3825 cpu_max_bits_warn(j, nr_bits); 3826 3827 if (online_mask) 3828 return test_bit(j, online_mask); 3829 3830 return (j < nr_bits); 3831 } 3832 3833 /** 3834 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3835 * @n: CPU/Rx queue index 3836 * @srcp: the cpumask/Rx queue mask pointer 3837 * @nr_bits: number of bits in the bitmask 3838 * 3839 * Returns >= nr_bits if no further CPUs/Rx queues set. 3840 */ 3841 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3842 unsigned int nr_bits) 3843 { 3844 /* -1 is a legal arg here. */ 3845 if (n != -1) 3846 cpu_max_bits_warn(n, nr_bits); 3847 3848 if (srcp) 3849 return find_next_bit(srcp, nr_bits, n + 1); 3850 3851 return n + 1; 3852 } 3853 3854 /** 3855 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3856 * @n: CPU/Rx queue index 3857 * @src1p: the first CPUs/Rx queues mask pointer 3858 * @src2p: the second CPUs/Rx queues mask pointer 3859 * @nr_bits: number of bits in the bitmask 3860 * 3861 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3862 */ 3863 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3864 const unsigned long *src2p, 3865 unsigned int nr_bits) 3866 { 3867 /* -1 is a legal arg here. */ 3868 if (n != -1) 3869 cpu_max_bits_warn(n, nr_bits); 3870 3871 if (src1p && src2p) 3872 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3873 else if (src1p) 3874 return find_next_bit(src1p, nr_bits, n + 1); 3875 else if (src2p) 3876 return find_next_bit(src2p, nr_bits, n + 1); 3877 3878 return n + 1; 3879 } 3880 #else 3881 static inline int netif_set_xps_queue(struct net_device *dev, 3882 const struct cpumask *mask, 3883 u16 index) 3884 { 3885 return 0; 3886 } 3887 3888 static inline int __netif_set_xps_queue(struct net_device *dev, 3889 const unsigned long *mask, 3890 u16 index, enum xps_map_type type) 3891 { 3892 return 0; 3893 } 3894 #endif 3895 3896 /** 3897 * netif_is_multiqueue - test if device has multiple transmit queues 3898 * @dev: network device 3899 * 3900 * Check if device has multiple transmit queues 3901 */ 3902 static inline bool netif_is_multiqueue(const struct net_device *dev) 3903 { 3904 return dev->num_tx_queues > 1; 3905 } 3906 3907 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3908 3909 #ifdef CONFIG_SYSFS 3910 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3911 #else 3912 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3913 unsigned int rxqs) 3914 { 3915 dev->real_num_rx_queues = rxqs; 3916 return 0; 3917 } 3918 #endif 3919 int netif_set_real_num_queues(struct net_device *dev, 3920 unsigned int txq, unsigned int rxq); 3921 3922 static inline struct netdev_rx_queue * 3923 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3924 { 3925 return dev->_rx + rxq; 3926 } 3927 3928 #ifdef CONFIG_SYSFS 3929 static inline unsigned int get_netdev_rx_queue_index( 3930 struct netdev_rx_queue *queue) 3931 { 3932 struct net_device *dev = queue->dev; 3933 int index = queue - dev->_rx; 3934 3935 BUG_ON(index >= dev->num_rx_queues); 3936 return index; 3937 } 3938 #endif 3939 3940 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3941 int netif_get_num_default_rss_queues(void); 3942 3943 enum skb_free_reason { 3944 SKB_REASON_CONSUMED, 3945 SKB_REASON_DROPPED, 3946 }; 3947 3948 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3949 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3950 3951 /* 3952 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3953 * interrupt context or with hardware interrupts being disabled. 3954 * (in_irq() || irqs_disabled()) 3955 * 3956 * We provide four helpers that can be used in following contexts : 3957 * 3958 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3959 * replacing kfree_skb(skb) 3960 * 3961 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3962 * Typically used in place of consume_skb(skb) in TX completion path 3963 * 3964 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3965 * replacing kfree_skb(skb) 3966 * 3967 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3968 * and consumed a packet. Used in place of consume_skb(skb) 3969 */ 3970 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3971 { 3972 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3973 } 3974 3975 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3976 { 3977 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3978 } 3979 3980 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3981 { 3982 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3983 } 3984 3985 static inline void dev_consume_skb_any(struct sk_buff *skb) 3986 { 3987 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3988 } 3989 3990 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3991 struct bpf_prog *xdp_prog); 3992 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3993 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3994 int netif_rx(struct sk_buff *skb); 3995 int netif_rx_ni(struct sk_buff *skb); 3996 int netif_rx_any_context(struct sk_buff *skb); 3997 int netif_receive_skb(struct sk_buff *skb); 3998 int netif_receive_skb_core(struct sk_buff *skb); 3999 void netif_receive_skb_list(struct list_head *head); 4000 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 4001 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 4002 struct sk_buff *napi_get_frags(struct napi_struct *napi); 4003 gro_result_t napi_gro_frags(struct napi_struct *napi); 4004 struct packet_offload *gro_find_receive_by_type(__be16 type); 4005 struct packet_offload *gro_find_complete_by_type(__be16 type); 4006 4007 static inline void napi_free_frags(struct napi_struct *napi) 4008 { 4009 kfree_skb(napi->skb); 4010 napi->skb = NULL; 4011 } 4012 4013 bool netdev_is_rx_handler_busy(struct net_device *dev); 4014 int netdev_rx_handler_register(struct net_device *dev, 4015 rx_handler_func_t *rx_handler, 4016 void *rx_handler_data); 4017 void netdev_rx_handler_unregister(struct net_device *dev); 4018 4019 bool dev_valid_name(const char *name); 4020 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 4021 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 4022 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 4023 void __user *data, bool *need_copyout); 4024 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 4025 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 4026 unsigned int dev_get_flags(const struct net_device *); 4027 int __dev_change_flags(struct net_device *dev, unsigned int flags, 4028 struct netlink_ext_ack *extack); 4029 int dev_change_flags(struct net_device *dev, unsigned int flags, 4030 struct netlink_ext_ack *extack); 4031 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 4032 unsigned int gchanges); 4033 int dev_change_name(struct net_device *, const char *); 4034 int dev_set_alias(struct net_device *, const char *, size_t); 4035 int dev_get_alias(const struct net_device *, char *, size_t); 4036 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 4037 const char *pat, int new_ifindex); 4038 static inline 4039 int dev_change_net_namespace(struct net_device *dev, struct net *net, 4040 const char *pat) 4041 { 4042 return __dev_change_net_namespace(dev, net, pat, 0); 4043 } 4044 int __dev_set_mtu(struct net_device *, int); 4045 int dev_validate_mtu(struct net_device *dev, int mtu, 4046 struct netlink_ext_ack *extack); 4047 int dev_set_mtu_ext(struct net_device *dev, int mtu, 4048 struct netlink_ext_ack *extack); 4049 int dev_set_mtu(struct net_device *, int); 4050 int dev_change_tx_queue_len(struct net_device *, unsigned long); 4051 void dev_set_group(struct net_device *, int); 4052 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 4053 struct netlink_ext_ack *extack); 4054 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 4055 struct netlink_ext_ack *extack); 4056 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 4057 struct netlink_ext_ack *extack); 4058 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 4059 int dev_change_carrier(struct net_device *, bool new_carrier); 4060 int dev_get_phys_port_id(struct net_device *dev, 4061 struct netdev_phys_item_id *ppid); 4062 int dev_get_phys_port_name(struct net_device *dev, 4063 char *name, size_t len); 4064 int dev_get_port_parent_id(struct net_device *dev, 4065 struct netdev_phys_item_id *ppid, bool recurse); 4066 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 4067 int dev_change_proto_down(struct net_device *dev, bool proto_down); 4068 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 4069 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 4070 u32 value); 4071 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4072 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4073 struct netdev_queue *txq, int *ret); 4074 4075 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 4076 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 4077 int fd, int expected_fd, u32 flags); 4078 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4079 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4080 4081 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4082 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4083 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4084 bool is_skb_forwardable(const struct net_device *dev, 4085 const struct sk_buff *skb); 4086 4087 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4088 const struct sk_buff *skb, 4089 const bool check_mtu) 4090 { 4091 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4092 unsigned int len; 4093 4094 if (!(dev->flags & IFF_UP)) 4095 return false; 4096 4097 if (!check_mtu) 4098 return true; 4099 4100 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4101 if (skb->len <= len) 4102 return true; 4103 4104 /* if TSO is enabled, we don't care about the length as the packet 4105 * could be forwarded without being segmented before 4106 */ 4107 if (skb_is_gso(skb)) 4108 return true; 4109 4110 return false; 4111 } 4112 4113 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4114 struct sk_buff *skb, 4115 const bool check_mtu) 4116 { 4117 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4118 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4119 atomic_long_inc(&dev->rx_dropped); 4120 kfree_skb(skb); 4121 return NET_RX_DROP; 4122 } 4123 4124 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4125 skb->priority = 0; 4126 return 0; 4127 } 4128 4129 bool dev_nit_active(struct net_device *dev); 4130 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4131 4132 extern int netdev_budget; 4133 extern unsigned int netdev_budget_usecs; 4134 4135 /* Called by rtnetlink.c:rtnl_unlock() */ 4136 void netdev_run_todo(void); 4137 4138 /** 4139 * dev_put - release reference to device 4140 * @dev: network device 4141 * 4142 * Release reference to device to allow it to be freed. 4143 */ 4144 static inline void dev_put(struct net_device *dev) 4145 { 4146 if (dev) { 4147 #ifdef CONFIG_PCPU_DEV_REFCNT 4148 this_cpu_dec(*dev->pcpu_refcnt); 4149 #else 4150 refcount_dec(&dev->dev_refcnt); 4151 #endif 4152 } 4153 } 4154 4155 /** 4156 * dev_hold - get reference to device 4157 * @dev: network device 4158 * 4159 * Hold reference to device to keep it from being freed. 4160 */ 4161 static inline void dev_hold(struct net_device *dev) 4162 { 4163 if (dev) { 4164 #ifdef CONFIG_PCPU_DEV_REFCNT 4165 this_cpu_inc(*dev->pcpu_refcnt); 4166 #else 4167 refcount_inc(&dev->dev_refcnt); 4168 #endif 4169 } 4170 } 4171 4172 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4173 * and _off may be called from IRQ context, but it is caller 4174 * who is responsible for serialization of these calls. 4175 * 4176 * The name carrier is inappropriate, these functions should really be 4177 * called netif_lowerlayer_*() because they represent the state of any 4178 * kind of lower layer not just hardware media. 4179 */ 4180 4181 void linkwatch_init_dev(struct net_device *dev); 4182 void linkwatch_fire_event(struct net_device *dev); 4183 void linkwatch_forget_dev(struct net_device *dev); 4184 4185 /** 4186 * netif_carrier_ok - test if carrier present 4187 * @dev: network device 4188 * 4189 * Check if carrier is present on device 4190 */ 4191 static inline bool netif_carrier_ok(const struct net_device *dev) 4192 { 4193 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4194 } 4195 4196 unsigned long dev_trans_start(struct net_device *dev); 4197 4198 void __netdev_watchdog_up(struct net_device *dev); 4199 4200 void netif_carrier_on(struct net_device *dev); 4201 void netif_carrier_off(struct net_device *dev); 4202 void netif_carrier_event(struct net_device *dev); 4203 4204 /** 4205 * netif_dormant_on - mark device as dormant. 4206 * @dev: network device 4207 * 4208 * Mark device as dormant (as per RFC2863). 4209 * 4210 * The dormant state indicates that the relevant interface is not 4211 * actually in a condition to pass packets (i.e., it is not 'up') but is 4212 * in a "pending" state, waiting for some external event. For "on- 4213 * demand" interfaces, this new state identifies the situation where the 4214 * interface is waiting for events to place it in the up state. 4215 */ 4216 static inline void netif_dormant_on(struct net_device *dev) 4217 { 4218 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4219 linkwatch_fire_event(dev); 4220 } 4221 4222 /** 4223 * netif_dormant_off - set device as not dormant. 4224 * @dev: network device 4225 * 4226 * Device is not in dormant state. 4227 */ 4228 static inline void netif_dormant_off(struct net_device *dev) 4229 { 4230 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4231 linkwatch_fire_event(dev); 4232 } 4233 4234 /** 4235 * netif_dormant - test if device is dormant 4236 * @dev: network device 4237 * 4238 * Check if device is dormant. 4239 */ 4240 static inline bool netif_dormant(const struct net_device *dev) 4241 { 4242 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4243 } 4244 4245 4246 /** 4247 * netif_testing_on - mark device as under test. 4248 * @dev: network device 4249 * 4250 * Mark device as under test (as per RFC2863). 4251 * 4252 * The testing state indicates that some test(s) must be performed on 4253 * the interface. After completion, of the test, the interface state 4254 * will change to up, dormant, or down, as appropriate. 4255 */ 4256 static inline void netif_testing_on(struct net_device *dev) 4257 { 4258 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4259 linkwatch_fire_event(dev); 4260 } 4261 4262 /** 4263 * netif_testing_off - set device as not under test. 4264 * @dev: network device 4265 * 4266 * Device is not in testing state. 4267 */ 4268 static inline void netif_testing_off(struct net_device *dev) 4269 { 4270 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4271 linkwatch_fire_event(dev); 4272 } 4273 4274 /** 4275 * netif_testing - test if device is under test 4276 * @dev: network device 4277 * 4278 * Check if device is under test 4279 */ 4280 static inline bool netif_testing(const struct net_device *dev) 4281 { 4282 return test_bit(__LINK_STATE_TESTING, &dev->state); 4283 } 4284 4285 4286 /** 4287 * netif_oper_up - test if device is operational 4288 * @dev: network device 4289 * 4290 * Check if carrier is operational 4291 */ 4292 static inline bool netif_oper_up(const struct net_device *dev) 4293 { 4294 return (dev->operstate == IF_OPER_UP || 4295 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4296 } 4297 4298 /** 4299 * netif_device_present - is device available or removed 4300 * @dev: network device 4301 * 4302 * Check if device has not been removed from system. 4303 */ 4304 static inline bool netif_device_present(const struct net_device *dev) 4305 { 4306 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4307 } 4308 4309 void netif_device_detach(struct net_device *dev); 4310 4311 void netif_device_attach(struct net_device *dev); 4312 4313 /* 4314 * Network interface message level settings 4315 */ 4316 4317 enum { 4318 NETIF_MSG_DRV_BIT, 4319 NETIF_MSG_PROBE_BIT, 4320 NETIF_MSG_LINK_BIT, 4321 NETIF_MSG_TIMER_BIT, 4322 NETIF_MSG_IFDOWN_BIT, 4323 NETIF_MSG_IFUP_BIT, 4324 NETIF_MSG_RX_ERR_BIT, 4325 NETIF_MSG_TX_ERR_BIT, 4326 NETIF_MSG_TX_QUEUED_BIT, 4327 NETIF_MSG_INTR_BIT, 4328 NETIF_MSG_TX_DONE_BIT, 4329 NETIF_MSG_RX_STATUS_BIT, 4330 NETIF_MSG_PKTDATA_BIT, 4331 NETIF_MSG_HW_BIT, 4332 NETIF_MSG_WOL_BIT, 4333 4334 /* When you add a new bit above, update netif_msg_class_names array 4335 * in net/ethtool/common.c 4336 */ 4337 NETIF_MSG_CLASS_COUNT, 4338 }; 4339 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4340 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4341 4342 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4343 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4344 4345 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4346 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4347 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4348 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4349 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4350 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4351 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4352 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4353 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4354 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4355 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4356 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4357 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4358 #define NETIF_MSG_HW __NETIF_MSG(HW) 4359 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4360 4361 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4362 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4363 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4364 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4365 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4366 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4367 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4368 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4369 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4370 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4371 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4372 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4373 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4374 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4375 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4376 4377 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4378 { 4379 /* use default */ 4380 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4381 return default_msg_enable_bits; 4382 if (debug_value == 0) /* no output */ 4383 return 0; 4384 /* set low N bits */ 4385 return (1U << debug_value) - 1; 4386 } 4387 4388 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4389 { 4390 spin_lock(&txq->_xmit_lock); 4391 txq->xmit_lock_owner = cpu; 4392 } 4393 4394 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4395 { 4396 __acquire(&txq->_xmit_lock); 4397 return true; 4398 } 4399 4400 static inline void __netif_tx_release(struct netdev_queue *txq) 4401 { 4402 __release(&txq->_xmit_lock); 4403 } 4404 4405 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4406 { 4407 spin_lock_bh(&txq->_xmit_lock); 4408 txq->xmit_lock_owner = smp_processor_id(); 4409 } 4410 4411 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4412 { 4413 bool ok = spin_trylock(&txq->_xmit_lock); 4414 if (likely(ok)) 4415 txq->xmit_lock_owner = smp_processor_id(); 4416 return ok; 4417 } 4418 4419 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4420 { 4421 txq->xmit_lock_owner = -1; 4422 spin_unlock(&txq->_xmit_lock); 4423 } 4424 4425 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4426 { 4427 txq->xmit_lock_owner = -1; 4428 spin_unlock_bh(&txq->_xmit_lock); 4429 } 4430 4431 static inline void txq_trans_update(struct netdev_queue *txq) 4432 { 4433 if (txq->xmit_lock_owner != -1) 4434 txq->trans_start = jiffies; 4435 } 4436 4437 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4438 static inline void netif_trans_update(struct net_device *dev) 4439 { 4440 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4441 4442 if (txq->trans_start != jiffies) 4443 txq->trans_start = jiffies; 4444 } 4445 4446 /** 4447 * netif_tx_lock - grab network device transmit lock 4448 * @dev: network device 4449 * 4450 * Get network device transmit lock 4451 */ 4452 static inline void netif_tx_lock(struct net_device *dev) 4453 { 4454 unsigned int i; 4455 int cpu; 4456 4457 spin_lock(&dev->tx_global_lock); 4458 cpu = smp_processor_id(); 4459 for (i = 0; i < dev->num_tx_queues; i++) { 4460 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4461 4462 /* We are the only thread of execution doing a 4463 * freeze, but we have to grab the _xmit_lock in 4464 * order to synchronize with threads which are in 4465 * the ->hard_start_xmit() handler and already 4466 * checked the frozen bit. 4467 */ 4468 __netif_tx_lock(txq, cpu); 4469 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4470 __netif_tx_unlock(txq); 4471 } 4472 } 4473 4474 static inline void netif_tx_lock_bh(struct net_device *dev) 4475 { 4476 local_bh_disable(); 4477 netif_tx_lock(dev); 4478 } 4479 4480 static inline void netif_tx_unlock(struct net_device *dev) 4481 { 4482 unsigned int i; 4483 4484 for (i = 0; i < dev->num_tx_queues; i++) { 4485 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4486 4487 /* No need to grab the _xmit_lock here. If the 4488 * queue is not stopped for another reason, we 4489 * force a schedule. 4490 */ 4491 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4492 netif_schedule_queue(txq); 4493 } 4494 spin_unlock(&dev->tx_global_lock); 4495 } 4496 4497 static inline void netif_tx_unlock_bh(struct net_device *dev) 4498 { 4499 netif_tx_unlock(dev); 4500 local_bh_enable(); 4501 } 4502 4503 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4504 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4505 __netif_tx_lock(txq, cpu); \ 4506 } else { \ 4507 __netif_tx_acquire(txq); \ 4508 } \ 4509 } 4510 4511 #define HARD_TX_TRYLOCK(dev, txq) \ 4512 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4513 __netif_tx_trylock(txq) : \ 4514 __netif_tx_acquire(txq)) 4515 4516 #define HARD_TX_UNLOCK(dev, txq) { \ 4517 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4518 __netif_tx_unlock(txq); \ 4519 } else { \ 4520 __netif_tx_release(txq); \ 4521 } \ 4522 } 4523 4524 static inline void netif_tx_disable(struct net_device *dev) 4525 { 4526 unsigned int i; 4527 int cpu; 4528 4529 local_bh_disable(); 4530 cpu = smp_processor_id(); 4531 spin_lock(&dev->tx_global_lock); 4532 for (i = 0; i < dev->num_tx_queues; i++) { 4533 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4534 4535 __netif_tx_lock(txq, cpu); 4536 netif_tx_stop_queue(txq); 4537 __netif_tx_unlock(txq); 4538 } 4539 spin_unlock(&dev->tx_global_lock); 4540 local_bh_enable(); 4541 } 4542 4543 static inline void netif_addr_lock(struct net_device *dev) 4544 { 4545 unsigned char nest_level = 0; 4546 4547 #ifdef CONFIG_LOCKDEP 4548 nest_level = dev->nested_level; 4549 #endif 4550 spin_lock_nested(&dev->addr_list_lock, nest_level); 4551 } 4552 4553 static inline void netif_addr_lock_bh(struct net_device *dev) 4554 { 4555 unsigned char nest_level = 0; 4556 4557 #ifdef CONFIG_LOCKDEP 4558 nest_level = dev->nested_level; 4559 #endif 4560 local_bh_disable(); 4561 spin_lock_nested(&dev->addr_list_lock, nest_level); 4562 } 4563 4564 static inline void netif_addr_unlock(struct net_device *dev) 4565 { 4566 spin_unlock(&dev->addr_list_lock); 4567 } 4568 4569 static inline void netif_addr_unlock_bh(struct net_device *dev) 4570 { 4571 spin_unlock_bh(&dev->addr_list_lock); 4572 } 4573 4574 /* 4575 * dev_addrs walker. Should be used only for read access. Call with 4576 * rcu_read_lock held. 4577 */ 4578 #define for_each_dev_addr(dev, ha) \ 4579 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4580 4581 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4582 4583 void ether_setup(struct net_device *dev); 4584 4585 /* Support for loadable net-drivers */ 4586 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4587 unsigned char name_assign_type, 4588 void (*setup)(struct net_device *), 4589 unsigned int txqs, unsigned int rxqs); 4590 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4591 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4592 4593 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4594 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4595 count) 4596 4597 int register_netdev(struct net_device *dev); 4598 void unregister_netdev(struct net_device *dev); 4599 4600 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4601 4602 /* General hardware address lists handling functions */ 4603 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4604 struct netdev_hw_addr_list *from_list, int addr_len); 4605 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4606 struct netdev_hw_addr_list *from_list, int addr_len); 4607 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4608 struct net_device *dev, 4609 int (*sync)(struct net_device *, const unsigned char *), 4610 int (*unsync)(struct net_device *, 4611 const unsigned char *)); 4612 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4613 struct net_device *dev, 4614 int (*sync)(struct net_device *, 4615 const unsigned char *, int), 4616 int (*unsync)(struct net_device *, 4617 const unsigned char *, int)); 4618 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4619 struct net_device *dev, 4620 int (*unsync)(struct net_device *, 4621 const unsigned char *, int)); 4622 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4623 struct net_device *dev, 4624 int (*unsync)(struct net_device *, 4625 const unsigned char *)); 4626 void __hw_addr_init(struct netdev_hw_addr_list *list); 4627 4628 /* Functions used for device addresses handling */ 4629 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4630 unsigned char addr_type); 4631 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4632 unsigned char addr_type); 4633 void dev_addr_flush(struct net_device *dev); 4634 int dev_addr_init(struct net_device *dev); 4635 4636 /* Functions used for unicast addresses handling */ 4637 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4638 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4639 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4640 int dev_uc_sync(struct net_device *to, struct net_device *from); 4641 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4642 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4643 void dev_uc_flush(struct net_device *dev); 4644 void dev_uc_init(struct net_device *dev); 4645 4646 /** 4647 * __dev_uc_sync - Synchonize device's unicast list 4648 * @dev: device to sync 4649 * @sync: function to call if address should be added 4650 * @unsync: function to call if address should be removed 4651 * 4652 * Add newly added addresses to the interface, and release 4653 * addresses that have been deleted. 4654 */ 4655 static inline int __dev_uc_sync(struct net_device *dev, 4656 int (*sync)(struct net_device *, 4657 const unsigned char *), 4658 int (*unsync)(struct net_device *, 4659 const unsigned char *)) 4660 { 4661 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4662 } 4663 4664 /** 4665 * __dev_uc_unsync - Remove synchronized addresses from device 4666 * @dev: device to sync 4667 * @unsync: function to call if address should be removed 4668 * 4669 * Remove all addresses that were added to the device by dev_uc_sync(). 4670 */ 4671 static inline void __dev_uc_unsync(struct net_device *dev, 4672 int (*unsync)(struct net_device *, 4673 const unsigned char *)) 4674 { 4675 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4676 } 4677 4678 /* Functions used for multicast addresses handling */ 4679 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4680 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4681 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4682 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4683 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4684 int dev_mc_sync(struct net_device *to, struct net_device *from); 4685 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4686 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4687 void dev_mc_flush(struct net_device *dev); 4688 void dev_mc_init(struct net_device *dev); 4689 4690 /** 4691 * __dev_mc_sync - Synchonize device's multicast list 4692 * @dev: device to sync 4693 * @sync: function to call if address should be added 4694 * @unsync: function to call if address should be removed 4695 * 4696 * Add newly added addresses to the interface, and release 4697 * addresses that have been deleted. 4698 */ 4699 static inline int __dev_mc_sync(struct net_device *dev, 4700 int (*sync)(struct net_device *, 4701 const unsigned char *), 4702 int (*unsync)(struct net_device *, 4703 const unsigned char *)) 4704 { 4705 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4706 } 4707 4708 /** 4709 * __dev_mc_unsync - Remove synchronized addresses from device 4710 * @dev: device to sync 4711 * @unsync: function to call if address should be removed 4712 * 4713 * Remove all addresses that were added to the device by dev_mc_sync(). 4714 */ 4715 static inline void __dev_mc_unsync(struct net_device *dev, 4716 int (*unsync)(struct net_device *, 4717 const unsigned char *)) 4718 { 4719 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4720 } 4721 4722 /* Functions used for secondary unicast and multicast support */ 4723 void dev_set_rx_mode(struct net_device *dev); 4724 void __dev_set_rx_mode(struct net_device *dev); 4725 int dev_set_promiscuity(struct net_device *dev, int inc); 4726 int dev_set_allmulti(struct net_device *dev, int inc); 4727 void netdev_state_change(struct net_device *dev); 4728 void __netdev_notify_peers(struct net_device *dev); 4729 void netdev_notify_peers(struct net_device *dev); 4730 void netdev_features_change(struct net_device *dev); 4731 /* Load a device via the kmod */ 4732 void dev_load(struct net *net, const char *name); 4733 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4734 struct rtnl_link_stats64 *storage); 4735 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4736 const struct net_device_stats *netdev_stats); 4737 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4738 const struct pcpu_sw_netstats __percpu *netstats); 4739 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4740 4741 extern int netdev_max_backlog; 4742 extern int netdev_tstamp_prequeue; 4743 extern int netdev_unregister_timeout_secs; 4744 extern int weight_p; 4745 extern int dev_weight_rx_bias; 4746 extern int dev_weight_tx_bias; 4747 extern int dev_rx_weight; 4748 extern int dev_tx_weight; 4749 extern int gro_normal_batch; 4750 4751 enum { 4752 NESTED_SYNC_IMM_BIT, 4753 NESTED_SYNC_TODO_BIT, 4754 }; 4755 4756 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4757 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4758 4759 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4760 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4761 4762 struct netdev_nested_priv { 4763 unsigned char flags; 4764 void *data; 4765 }; 4766 4767 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4768 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4769 struct list_head **iter); 4770 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4771 struct list_head **iter); 4772 4773 #ifdef CONFIG_LOCKDEP 4774 static LIST_HEAD(net_unlink_list); 4775 4776 static inline void net_unlink_todo(struct net_device *dev) 4777 { 4778 if (list_empty(&dev->unlink_list)) 4779 list_add_tail(&dev->unlink_list, &net_unlink_list); 4780 } 4781 #endif 4782 4783 /* iterate through upper list, must be called under RCU read lock */ 4784 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4785 for (iter = &(dev)->adj_list.upper, \ 4786 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4787 updev; \ 4788 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4789 4790 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4791 int (*fn)(struct net_device *upper_dev, 4792 struct netdev_nested_priv *priv), 4793 struct netdev_nested_priv *priv); 4794 4795 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4796 struct net_device *upper_dev); 4797 4798 bool netdev_has_any_upper_dev(struct net_device *dev); 4799 4800 void *netdev_lower_get_next_private(struct net_device *dev, 4801 struct list_head **iter); 4802 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4803 struct list_head **iter); 4804 4805 #define netdev_for_each_lower_private(dev, priv, iter) \ 4806 for (iter = (dev)->adj_list.lower.next, \ 4807 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4808 priv; \ 4809 priv = netdev_lower_get_next_private(dev, &(iter))) 4810 4811 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4812 for (iter = &(dev)->adj_list.lower, \ 4813 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4814 priv; \ 4815 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4816 4817 void *netdev_lower_get_next(struct net_device *dev, 4818 struct list_head **iter); 4819 4820 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4821 for (iter = (dev)->adj_list.lower.next, \ 4822 ldev = netdev_lower_get_next(dev, &(iter)); \ 4823 ldev; \ 4824 ldev = netdev_lower_get_next(dev, &(iter))) 4825 4826 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4827 struct list_head **iter); 4828 int netdev_walk_all_lower_dev(struct net_device *dev, 4829 int (*fn)(struct net_device *lower_dev, 4830 struct netdev_nested_priv *priv), 4831 struct netdev_nested_priv *priv); 4832 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4833 int (*fn)(struct net_device *lower_dev, 4834 struct netdev_nested_priv *priv), 4835 struct netdev_nested_priv *priv); 4836 4837 void *netdev_adjacent_get_private(struct list_head *adj_list); 4838 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4839 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4840 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4841 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4842 struct netlink_ext_ack *extack); 4843 int netdev_master_upper_dev_link(struct net_device *dev, 4844 struct net_device *upper_dev, 4845 void *upper_priv, void *upper_info, 4846 struct netlink_ext_ack *extack); 4847 void netdev_upper_dev_unlink(struct net_device *dev, 4848 struct net_device *upper_dev); 4849 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4850 struct net_device *new_dev, 4851 struct net_device *dev, 4852 struct netlink_ext_ack *extack); 4853 void netdev_adjacent_change_commit(struct net_device *old_dev, 4854 struct net_device *new_dev, 4855 struct net_device *dev); 4856 void netdev_adjacent_change_abort(struct net_device *old_dev, 4857 struct net_device *new_dev, 4858 struct net_device *dev); 4859 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4860 void *netdev_lower_dev_get_private(struct net_device *dev, 4861 struct net_device *lower_dev); 4862 void netdev_lower_state_changed(struct net_device *lower_dev, 4863 void *lower_state_info); 4864 4865 /* RSS keys are 40 or 52 bytes long */ 4866 #define NETDEV_RSS_KEY_LEN 52 4867 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4868 void netdev_rss_key_fill(void *buffer, size_t len); 4869 4870 int skb_checksum_help(struct sk_buff *skb); 4871 int skb_crc32c_csum_help(struct sk_buff *skb); 4872 int skb_csum_hwoffload_help(struct sk_buff *skb, 4873 const netdev_features_t features); 4874 4875 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4876 netdev_features_t features, bool tx_path); 4877 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4878 netdev_features_t features); 4879 4880 struct netdev_bonding_info { 4881 ifslave slave; 4882 ifbond master; 4883 }; 4884 4885 struct netdev_notifier_bonding_info { 4886 struct netdev_notifier_info info; /* must be first */ 4887 struct netdev_bonding_info bonding_info; 4888 }; 4889 4890 void netdev_bonding_info_change(struct net_device *dev, 4891 struct netdev_bonding_info *bonding_info); 4892 4893 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4894 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4895 #else 4896 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4897 const void *data) 4898 { 4899 } 4900 #endif 4901 4902 static inline 4903 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4904 { 4905 return __skb_gso_segment(skb, features, true); 4906 } 4907 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4908 4909 static inline bool can_checksum_protocol(netdev_features_t features, 4910 __be16 protocol) 4911 { 4912 if (protocol == htons(ETH_P_FCOE)) 4913 return !!(features & NETIF_F_FCOE_CRC); 4914 4915 /* Assume this is an IP checksum (not SCTP CRC) */ 4916 4917 if (features & NETIF_F_HW_CSUM) { 4918 /* Can checksum everything */ 4919 return true; 4920 } 4921 4922 switch (protocol) { 4923 case htons(ETH_P_IP): 4924 return !!(features & NETIF_F_IP_CSUM); 4925 case htons(ETH_P_IPV6): 4926 return !!(features & NETIF_F_IPV6_CSUM); 4927 default: 4928 return false; 4929 } 4930 } 4931 4932 #ifdef CONFIG_BUG 4933 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4934 #else 4935 static inline void netdev_rx_csum_fault(struct net_device *dev, 4936 struct sk_buff *skb) 4937 { 4938 } 4939 #endif 4940 /* rx skb timestamps */ 4941 void net_enable_timestamp(void); 4942 void net_disable_timestamp(void); 4943 4944 #ifdef CONFIG_PROC_FS 4945 int __init dev_proc_init(void); 4946 #else 4947 #define dev_proc_init() 0 4948 #endif 4949 4950 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4951 struct sk_buff *skb, struct net_device *dev, 4952 bool more) 4953 { 4954 __this_cpu_write(softnet_data.xmit.more, more); 4955 return ops->ndo_start_xmit(skb, dev); 4956 } 4957 4958 static inline bool netdev_xmit_more(void) 4959 { 4960 return __this_cpu_read(softnet_data.xmit.more); 4961 } 4962 4963 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4964 struct netdev_queue *txq, bool more) 4965 { 4966 const struct net_device_ops *ops = dev->netdev_ops; 4967 netdev_tx_t rc; 4968 4969 rc = __netdev_start_xmit(ops, skb, dev, more); 4970 if (rc == NETDEV_TX_OK) 4971 txq_trans_update(txq); 4972 4973 return rc; 4974 } 4975 4976 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4977 const void *ns); 4978 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4979 const void *ns); 4980 4981 extern const struct kobj_ns_type_operations net_ns_type_operations; 4982 4983 const char *netdev_drivername(const struct net_device *dev); 4984 4985 void linkwatch_run_queue(void); 4986 4987 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4988 netdev_features_t f2) 4989 { 4990 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4991 if (f1 & NETIF_F_HW_CSUM) 4992 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4993 else 4994 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4995 } 4996 4997 return f1 & f2; 4998 } 4999 5000 static inline netdev_features_t netdev_get_wanted_features( 5001 struct net_device *dev) 5002 { 5003 return (dev->features & ~dev->hw_features) | dev->wanted_features; 5004 } 5005 netdev_features_t netdev_increment_features(netdev_features_t all, 5006 netdev_features_t one, netdev_features_t mask); 5007 5008 /* Allow TSO being used on stacked device : 5009 * Performing the GSO segmentation before last device 5010 * is a performance improvement. 5011 */ 5012 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 5013 netdev_features_t mask) 5014 { 5015 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 5016 } 5017 5018 int __netdev_update_features(struct net_device *dev); 5019 void netdev_update_features(struct net_device *dev); 5020 void netdev_change_features(struct net_device *dev); 5021 5022 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5023 struct net_device *dev); 5024 5025 netdev_features_t passthru_features_check(struct sk_buff *skb, 5026 struct net_device *dev, 5027 netdev_features_t features); 5028 netdev_features_t netif_skb_features(struct sk_buff *skb); 5029 5030 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5031 { 5032 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5033 5034 /* check flags correspondence */ 5035 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5036 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5037 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5038 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5039 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5040 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5041 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5042 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5043 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5044 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5045 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5046 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5047 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5048 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5049 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5050 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5051 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5052 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5053 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5054 5055 return (features & feature) == feature; 5056 } 5057 5058 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5059 { 5060 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5061 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5062 } 5063 5064 static inline bool netif_needs_gso(struct sk_buff *skb, 5065 netdev_features_t features) 5066 { 5067 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5068 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5069 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5070 } 5071 5072 static inline void netif_set_gso_max_size(struct net_device *dev, 5073 unsigned int size) 5074 { 5075 dev->gso_max_size = size; 5076 } 5077 5078 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5079 int pulled_hlen, u16 mac_offset, 5080 int mac_len) 5081 { 5082 skb->protocol = protocol; 5083 skb->encapsulation = 1; 5084 skb_push(skb, pulled_hlen); 5085 skb_reset_transport_header(skb); 5086 skb->mac_header = mac_offset; 5087 skb->network_header = skb->mac_header + mac_len; 5088 skb->mac_len = mac_len; 5089 } 5090 5091 static inline bool netif_is_macsec(const struct net_device *dev) 5092 { 5093 return dev->priv_flags & IFF_MACSEC; 5094 } 5095 5096 static inline bool netif_is_macvlan(const struct net_device *dev) 5097 { 5098 return dev->priv_flags & IFF_MACVLAN; 5099 } 5100 5101 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5102 { 5103 return dev->priv_flags & IFF_MACVLAN_PORT; 5104 } 5105 5106 static inline bool netif_is_bond_master(const struct net_device *dev) 5107 { 5108 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5109 } 5110 5111 static inline bool netif_is_bond_slave(const struct net_device *dev) 5112 { 5113 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5114 } 5115 5116 static inline bool netif_supports_nofcs(struct net_device *dev) 5117 { 5118 return dev->priv_flags & IFF_SUPP_NOFCS; 5119 } 5120 5121 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5122 { 5123 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5124 } 5125 5126 static inline bool netif_is_l3_master(const struct net_device *dev) 5127 { 5128 return dev->priv_flags & IFF_L3MDEV_MASTER; 5129 } 5130 5131 static inline bool netif_is_l3_slave(const struct net_device *dev) 5132 { 5133 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5134 } 5135 5136 static inline bool netif_is_bridge_master(const struct net_device *dev) 5137 { 5138 return dev->priv_flags & IFF_EBRIDGE; 5139 } 5140 5141 static inline bool netif_is_bridge_port(const struct net_device *dev) 5142 { 5143 return dev->priv_flags & IFF_BRIDGE_PORT; 5144 } 5145 5146 static inline bool netif_is_ovs_master(const struct net_device *dev) 5147 { 5148 return dev->priv_flags & IFF_OPENVSWITCH; 5149 } 5150 5151 static inline bool netif_is_ovs_port(const struct net_device *dev) 5152 { 5153 return dev->priv_flags & IFF_OVS_DATAPATH; 5154 } 5155 5156 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5157 { 5158 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5159 } 5160 5161 static inline bool netif_is_team_master(const struct net_device *dev) 5162 { 5163 return dev->priv_flags & IFF_TEAM; 5164 } 5165 5166 static inline bool netif_is_team_port(const struct net_device *dev) 5167 { 5168 return dev->priv_flags & IFF_TEAM_PORT; 5169 } 5170 5171 static inline bool netif_is_lag_master(const struct net_device *dev) 5172 { 5173 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5174 } 5175 5176 static inline bool netif_is_lag_port(const struct net_device *dev) 5177 { 5178 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5179 } 5180 5181 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5182 { 5183 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5184 } 5185 5186 static inline bool netif_is_failover(const struct net_device *dev) 5187 { 5188 return dev->priv_flags & IFF_FAILOVER; 5189 } 5190 5191 static inline bool netif_is_failover_slave(const struct net_device *dev) 5192 { 5193 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5194 } 5195 5196 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5197 static inline void netif_keep_dst(struct net_device *dev) 5198 { 5199 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5200 } 5201 5202 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5203 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5204 { 5205 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5206 return dev->priv_flags & IFF_MACSEC; 5207 } 5208 5209 extern struct pernet_operations __net_initdata loopback_net_ops; 5210 5211 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5212 5213 /* netdev_printk helpers, similar to dev_printk */ 5214 5215 static inline const char *netdev_name(const struct net_device *dev) 5216 { 5217 if (!dev->name[0] || strchr(dev->name, '%')) 5218 return "(unnamed net_device)"; 5219 return dev->name; 5220 } 5221 5222 static inline bool netdev_unregistering(const struct net_device *dev) 5223 { 5224 return dev->reg_state == NETREG_UNREGISTERING; 5225 } 5226 5227 static inline const char *netdev_reg_state(const struct net_device *dev) 5228 { 5229 switch (dev->reg_state) { 5230 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5231 case NETREG_REGISTERED: return ""; 5232 case NETREG_UNREGISTERING: return " (unregistering)"; 5233 case NETREG_UNREGISTERED: return " (unregistered)"; 5234 case NETREG_RELEASED: return " (released)"; 5235 case NETREG_DUMMY: return " (dummy)"; 5236 } 5237 5238 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5239 return " (unknown)"; 5240 } 5241 5242 __printf(3, 4) __cold 5243 void netdev_printk(const char *level, const struct net_device *dev, 5244 const char *format, ...); 5245 __printf(2, 3) __cold 5246 void netdev_emerg(const struct net_device *dev, const char *format, ...); 5247 __printf(2, 3) __cold 5248 void netdev_alert(const struct net_device *dev, const char *format, ...); 5249 __printf(2, 3) __cold 5250 void netdev_crit(const struct net_device *dev, const char *format, ...); 5251 __printf(2, 3) __cold 5252 void netdev_err(const struct net_device *dev, const char *format, ...); 5253 __printf(2, 3) __cold 5254 void netdev_warn(const struct net_device *dev, const char *format, ...); 5255 __printf(2, 3) __cold 5256 void netdev_notice(const struct net_device *dev, const char *format, ...); 5257 __printf(2, 3) __cold 5258 void netdev_info(const struct net_device *dev, const char *format, ...); 5259 5260 #define netdev_level_once(level, dev, fmt, ...) \ 5261 do { \ 5262 static bool __print_once __read_mostly; \ 5263 \ 5264 if (!__print_once) { \ 5265 __print_once = true; \ 5266 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 5267 } \ 5268 } while (0) 5269 5270 #define netdev_emerg_once(dev, fmt, ...) \ 5271 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 5272 #define netdev_alert_once(dev, fmt, ...) \ 5273 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 5274 #define netdev_crit_once(dev, fmt, ...) \ 5275 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 5276 #define netdev_err_once(dev, fmt, ...) \ 5277 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 5278 #define netdev_warn_once(dev, fmt, ...) \ 5279 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 5280 #define netdev_notice_once(dev, fmt, ...) \ 5281 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 5282 #define netdev_info_once(dev, fmt, ...) \ 5283 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 5284 5285 #define MODULE_ALIAS_NETDEV(device) \ 5286 MODULE_ALIAS("netdev-" device) 5287 5288 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5289 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5290 #define netdev_dbg(__dev, format, args...) \ 5291 do { \ 5292 dynamic_netdev_dbg(__dev, format, ##args); \ 5293 } while (0) 5294 #elif defined(DEBUG) 5295 #define netdev_dbg(__dev, format, args...) \ 5296 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5297 #else 5298 #define netdev_dbg(__dev, format, args...) \ 5299 ({ \ 5300 if (0) \ 5301 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5302 }) 5303 #endif 5304 5305 #if defined(VERBOSE_DEBUG) 5306 #define netdev_vdbg netdev_dbg 5307 #else 5308 5309 #define netdev_vdbg(dev, format, args...) \ 5310 ({ \ 5311 if (0) \ 5312 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5313 0; \ 5314 }) 5315 #endif 5316 5317 /* 5318 * netdev_WARN() acts like dev_printk(), but with the key difference 5319 * of using a WARN/WARN_ON to get the message out, including the 5320 * file/line information and a backtrace. 5321 */ 5322 #define netdev_WARN(dev, format, args...) \ 5323 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5324 netdev_reg_state(dev), ##args) 5325 5326 #define netdev_WARN_ONCE(dev, format, args...) \ 5327 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5328 netdev_reg_state(dev), ##args) 5329 5330 /* netif printk helpers, similar to netdev_printk */ 5331 5332 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5333 do { \ 5334 if (netif_msg_##type(priv)) \ 5335 netdev_printk(level, (dev), fmt, ##args); \ 5336 } while (0) 5337 5338 #define netif_level(level, priv, type, dev, fmt, args...) \ 5339 do { \ 5340 if (netif_msg_##type(priv)) \ 5341 netdev_##level(dev, fmt, ##args); \ 5342 } while (0) 5343 5344 #define netif_emerg(priv, type, dev, fmt, args...) \ 5345 netif_level(emerg, priv, type, dev, fmt, ##args) 5346 #define netif_alert(priv, type, dev, fmt, args...) \ 5347 netif_level(alert, priv, type, dev, fmt, ##args) 5348 #define netif_crit(priv, type, dev, fmt, args...) \ 5349 netif_level(crit, priv, type, dev, fmt, ##args) 5350 #define netif_err(priv, type, dev, fmt, args...) \ 5351 netif_level(err, priv, type, dev, fmt, ##args) 5352 #define netif_warn(priv, type, dev, fmt, args...) \ 5353 netif_level(warn, priv, type, dev, fmt, ##args) 5354 #define netif_notice(priv, type, dev, fmt, args...) \ 5355 netif_level(notice, priv, type, dev, fmt, ##args) 5356 #define netif_info(priv, type, dev, fmt, args...) \ 5357 netif_level(info, priv, type, dev, fmt, ##args) 5358 5359 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5360 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5361 #define netif_dbg(priv, type, netdev, format, args...) \ 5362 do { \ 5363 if (netif_msg_##type(priv)) \ 5364 dynamic_netdev_dbg(netdev, format, ##args); \ 5365 } while (0) 5366 #elif defined(DEBUG) 5367 #define netif_dbg(priv, type, dev, format, args...) \ 5368 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5369 #else 5370 #define netif_dbg(priv, type, dev, format, args...) \ 5371 ({ \ 5372 if (0) \ 5373 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5374 0; \ 5375 }) 5376 #endif 5377 5378 /* if @cond then downgrade to debug, else print at @level */ 5379 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5380 do { \ 5381 if (cond) \ 5382 netif_dbg(priv, type, netdev, fmt, ##args); \ 5383 else \ 5384 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5385 } while (0) 5386 5387 #if defined(VERBOSE_DEBUG) 5388 #define netif_vdbg netif_dbg 5389 #else 5390 #define netif_vdbg(priv, type, dev, format, args...) \ 5391 ({ \ 5392 if (0) \ 5393 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5394 0; \ 5395 }) 5396 #endif 5397 5398 /* 5399 * The list of packet types we will receive (as opposed to discard) 5400 * and the routines to invoke. 5401 * 5402 * Why 16. Because with 16 the only overlap we get on a hash of the 5403 * low nibble of the protocol value is RARP/SNAP/X.25. 5404 * 5405 * 0800 IP 5406 * 0001 802.3 5407 * 0002 AX.25 5408 * 0004 802.2 5409 * 8035 RARP 5410 * 0005 SNAP 5411 * 0805 X.25 5412 * 0806 ARP 5413 * 8137 IPX 5414 * 0009 Localtalk 5415 * 86DD IPv6 5416 */ 5417 #define PTYPE_HASH_SIZE (16) 5418 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5419 5420 extern struct list_head ptype_all __read_mostly; 5421 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5422 5423 extern struct net_device *blackhole_netdev; 5424 5425 #endif /* _LINUX_NETDEVICE_H */ 5426