xref: /openbmc/linux/include/linux/netdevice.h (revision 0ca8d3ca4561535f97b31e7b8de569c69bc3b27b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 
51 struct netpoll_info;
52 struct device;
53 struct ethtool_ops;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 struct gro_list {
299 	struct list_head	list;
300 	int			count;
301 };
302 
303 /*
304  * size of gro hash buckets, must less than bit number of
305  * napi_struct::gro_bitmask
306  */
307 #define GRO_HASH_BUCKETS	8
308 
309 /*
310  * Structure for NAPI scheduling similar to tasklet but with weighting
311  */
312 struct napi_struct {
313 	/* The poll_list must only be managed by the entity which
314 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
315 	 * whoever atomically sets that bit can add this napi_struct
316 	 * to the per-CPU poll_list, and whoever clears that bit
317 	 * can remove from the list right before clearing the bit.
318 	 */
319 	struct list_head	poll_list;
320 
321 	unsigned long		state;
322 	int			weight;
323 	int			defer_hard_irqs_count;
324 	unsigned long		gro_bitmask;
325 	int			(*poll)(struct napi_struct *, int);
326 #ifdef CONFIG_NETPOLL
327 	int			poll_owner;
328 #endif
329 	struct net_device	*dev;
330 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
331 	struct sk_buff		*skb;
332 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
333 	int			rx_count; /* length of rx_list */
334 	struct hrtimer		timer;
335 	struct list_head	dev_list;
336 	struct hlist_node	napi_hash_node;
337 	unsigned int		napi_id;
338 	struct task_struct	*thread;
339 };
340 
341 enum {
342 	NAPI_STATE_SCHED,		/* Poll is scheduled */
343 	NAPI_STATE_MISSED,		/* reschedule a napi */
344 	NAPI_STATE_DISABLE,		/* Disable pending */
345 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
346 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
347 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
348 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
349 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
350 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
351 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
352 };
353 
354 enum {
355 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
356 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
357 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
358 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
359 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
360 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
361 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
362 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
363 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
364 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
365 };
366 
367 enum gro_result {
368 	GRO_MERGED,
369 	GRO_MERGED_FREE,
370 	GRO_HELD,
371 	GRO_NORMAL,
372 	GRO_CONSUMED,
373 };
374 typedef enum gro_result gro_result_t;
375 
376 /*
377  * enum rx_handler_result - Possible return values for rx_handlers.
378  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
379  * further.
380  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
381  * case skb->dev was changed by rx_handler.
382  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
383  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
384  *
385  * rx_handlers are functions called from inside __netif_receive_skb(), to do
386  * special processing of the skb, prior to delivery to protocol handlers.
387  *
388  * Currently, a net_device can only have a single rx_handler registered. Trying
389  * to register a second rx_handler will return -EBUSY.
390  *
391  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
392  * To unregister a rx_handler on a net_device, use
393  * netdev_rx_handler_unregister().
394  *
395  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
396  * do with the skb.
397  *
398  * If the rx_handler consumed the skb in some way, it should return
399  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
400  * the skb to be delivered in some other way.
401  *
402  * If the rx_handler changed skb->dev, to divert the skb to another
403  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
404  * new device will be called if it exists.
405  *
406  * If the rx_handler decides the skb should be ignored, it should return
407  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
408  * are registered on exact device (ptype->dev == skb->dev).
409  *
410  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
411  * delivered, it should return RX_HANDLER_PASS.
412  *
413  * A device without a registered rx_handler will behave as if rx_handler
414  * returned RX_HANDLER_PASS.
415  */
416 
417 enum rx_handler_result {
418 	RX_HANDLER_CONSUMED,
419 	RX_HANDLER_ANOTHER,
420 	RX_HANDLER_EXACT,
421 	RX_HANDLER_PASS,
422 };
423 typedef enum rx_handler_result rx_handler_result_t;
424 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
425 
426 void __napi_schedule(struct napi_struct *n);
427 void __napi_schedule_irqoff(struct napi_struct *n);
428 
429 static inline bool napi_disable_pending(struct napi_struct *n)
430 {
431 	return test_bit(NAPI_STATE_DISABLE, &n->state);
432 }
433 
434 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
435 {
436 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
437 }
438 
439 bool napi_schedule_prep(struct napi_struct *n);
440 
441 /**
442  *	napi_schedule - schedule NAPI poll
443  *	@n: NAPI context
444  *
445  * Schedule NAPI poll routine to be called if it is not already
446  * running.
447  */
448 static inline void napi_schedule(struct napi_struct *n)
449 {
450 	if (napi_schedule_prep(n))
451 		__napi_schedule(n);
452 }
453 
454 /**
455  *	napi_schedule_irqoff - schedule NAPI poll
456  *	@n: NAPI context
457  *
458  * Variant of napi_schedule(), assuming hard irqs are masked.
459  */
460 static inline void napi_schedule_irqoff(struct napi_struct *n)
461 {
462 	if (napi_schedule_prep(n))
463 		__napi_schedule_irqoff(n);
464 }
465 
466 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
467 static inline bool napi_reschedule(struct napi_struct *napi)
468 {
469 	if (napi_schedule_prep(napi)) {
470 		__napi_schedule(napi);
471 		return true;
472 	}
473 	return false;
474 }
475 
476 bool napi_complete_done(struct napi_struct *n, int work_done);
477 /**
478  *	napi_complete - NAPI processing complete
479  *	@n: NAPI context
480  *
481  * Mark NAPI processing as complete.
482  * Consider using napi_complete_done() instead.
483  * Return false if device should avoid rearming interrupts.
484  */
485 static inline bool napi_complete(struct napi_struct *n)
486 {
487 	return napi_complete_done(n, 0);
488 }
489 
490 int dev_set_threaded(struct net_device *dev, bool threaded);
491 
492 /**
493  *	napi_disable - prevent NAPI from scheduling
494  *	@n: NAPI context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500 
501 void napi_enable(struct napi_struct *n);
502 
503 /**
504  *	napi_synchronize - wait until NAPI is not running
505  *	@n: NAPI context
506  *
507  * Wait until NAPI is done being scheduled on this context.
508  * Waits till any outstanding processing completes but
509  * does not disable future activations.
510  */
511 static inline void napi_synchronize(const struct napi_struct *n)
512 {
513 	if (IS_ENABLED(CONFIG_SMP))
514 		while (test_bit(NAPI_STATE_SCHED, &n->state))
515 			msleep(1);
516 	else
517 		barrier();
518 }
519 
520 /**
521  *	napi_if_scheduled_mark_missed - if napi is running, set the
522  *	NAPIF_STATE_MISSED
523  *	@n: NAPI context
524  *
525  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
526  * NAPI is scheduled.
527  **/
528 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
529 {
530 	unsigned long val, new;
531 
532 	do {
533 		val = READ_ONCE(n->state);
534 		if (val & NAPIF_STATE_DISABLE)
535 			return true;
536 
537 		if (!(val & NAPIF_STATE_SCHED))
538 			return false;
539 
540 		new = val | NAPIF_STATE_MISSED;
541 	} while (cmpxchg(&n->state, val, new) != val);
542 
543 	return true;
544 }
545 
546 enum netdev_queue_state_t {
547 	__QUEUE_STATE_DRV_XOFF,
548 	__QUEUE_STATE_STACK_XOFF,
549 	__QUEUE_STATE_FROZEN,
550 };
551 
552 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
553 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
554 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
555 
556 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
557 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
558 					QUEUE_STATE_FROZEN)
559 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
560 					QUEUE_STATE_FROZEN)
561 
562 /*
563  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
564  * netif_tx_* functions below are used to manipulate this flag.  The
565  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
566  * queue independently.  The netif_xmit_*stopped functions below are called
567  * to check if the queue has been stopped by the driver or stack (either
568  * of the XOFF bits are set in the state).  Drivers should not need to call
569  * netif_xmit*stopped functions, they should only be using netif_tx_*.
570  */
571 
572 struct netdev_queue {
573 /*
574  * read-mostly part
575  */
576 	struct net_device	*dev;
577 	struct Qdisc __rcu	*qdisc;
578 	struct Qdisc		*qdisc_sleeping;
579 #ifdef CONFIG_SYSFS
580 	struct kobject		kobj;
581 #endif
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 	int			numa_node;
584 #endif
585 	unsigned long		tx_maxrate;
586 	/*
587 	 * Number of TX timeouts for this queue
588 	 * (/sys/class/net/DEV/Q/trans_timeout)
589 	 */
590 	unsigned long		trans_timeout;
591 
592 	/* Subordinate device that the queue has been assigned to */
593 	struct net_device	*sb_dev;
594 #ifdef CONFIG_XDP_SOCKETS
595 	struct xsk_buff_pool    *pool;
596 #endif
597 /*
598  * write-mostly part
599  */
600 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
601 	int			xmit_lock_owner;
602 	/*
603 	 * Time (in jiffies) of last Tx
604 	 */
605 	unsigned long		trans_start;
606 
607 	unsigned long		state;
608 
609 #ifdef CONFIG_BQL
610 	struct dql		dql;
611 #endif
612 } ____cacheline_aligned_in_smp;
613 
614 extern int sysctl_fb_tunnels_only_for_init_net;
615 extern int sysctl_devconf_inherit_init_net;
616 
617 /*
618  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
619  *                                     == 1 : For initns only
620  *                                     == 2 : For none.
621  */
622 static inline bool net_has_fallback_tunnels(const struct net *net)
623 {
624 	return !IS_ENABLED(CONFIG_SYSCTL) ||
625 	       !sysctl_fb_tunnels_only_for_init_net ||
626 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
627 }
628 
629 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
630 {
631 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
632 	return q->numa_node;
633 #else
634 	return NUMA_NO_NODE;
635 #endif
636 }
637 
638 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
639 {
640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
641 	q->numa_node = node;
642 #endif
643 }
644 
645 #ifdef CONFIG_RPS
646 /*
647  * This structure holds an RPS map which can be of variable length.  The
648  * map is an array of CPUs.
649  */
650 struct rps_map {
651 	unsigned int len;
652 	struct rcu_head rcu;
653 	u16 cpus[];
654 };
655 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
656 
657 /*
658  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
659  * tail pointer for that CPU's input queue at the time of last enqueue, and
660  * a hardware filter index.
661  */
662 struct rps_dev_flow {
663 	u16 cpu;
664 	u16 filter;
665 	unsigned int last_qtail;
666 };
667 #define RPS_NO_FILTER 0xffff
668 
669 /*
670  * The rps_dev_flow_table structure contains a table of flow mappings.
671  */
672 struct rps_dev_flow_table {
673 	unsigned int mask;
674 	struct rcu_head rcu;
675 	struct rps_dev_flow flows[];
676 };
677 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
678     ((_num) * sizeof(struct rps_dev_flow)))
679 
680 /*
681  * The rps_sock_flow_table contains mappings of flows to the last CPU
682  * on which they were processed by the application (set in recvmsg).
683  * Each entry is a 32bit value. Upper part is the high-order bits
684  * of flow hash, lower part is CPU number.
685  * rps_cpu_mask is used to partition the space, depending on number of
686  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
687  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
688  * meaning we use 32-6=26 bits for the hash.
689  */
690 struct rps_sock_flow_table {
691 	u32	mask;
692 
693 	u32	ents[] ____cacheline_aligned_in_smp;
694 };
695 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
696 
697 #define RPS_NO_CPU 0xffff
698 
699 extern u32 rps_cpu_mask;
700 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
701 
702 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
703 					u32 hash)
704 {
705 	if (table && hash) {
706 		unsigned int index = hash & table->mask;
707 		u32 val = hash & ~rps_cpu_mask;
708 
709 		/* We only give a hint, preemption can change CPU under us */
710 		val |= raw_smp_processor_id();
711 
712 		if (table->ents[index] != val)
713 			table->ents[index] = val;
714 	}
715 }
716 
717 #ifdef CONFIG_RFS_ACCEL
718 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
719 			 u16 filter_id);
720 #endif
721 #endif /* CONFIG_RPS */
722 
723 /* This structure contains an instance of an RX queue. */
724 struct netdev_rx_queue {
725 #ifdef CONFIG_RPS
726 	struct rps_map __rcu		*rps_map;
727 	struct rps_dev_flow_table __rcu	*rps_flow_table;
728 #endif
729 	struct kobject			kobj;
730 	struct net_device		*dev;
731 	struct xdp_rxq_info		xdp_rxq;
732 #ifdef CONFIG_XDP_SOCKETS
733 	struct xsk_buff_pool            *pool;
734 #endif
735 } ____cacheline_aligned_in_smp;
736 
737 /*
738  * RX queue sysfs structures and functions.
739  */
740 struct rx_queue_attribute {
741 	struct attribute attr;
742 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
743 	ssize_t (*store)(struct netdev_rx_queue *queue,
744 			 const char *buf, size_t len);
745 };
746 
747 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
748 enum xps_map_type {
749 	XPS_CPUS = 0,
750 	XPS_RXQS,
751 	XPS_MAPS_MAX,
752 };
753 
754 #ifdef CONFIG_XPS
755 /*
756  * This structure holds an XPS map which can be of variable length.  The
757  * map is an array of queues.
758  */
759 struct xps_map {
760 	unsigned int len;
761 	unsigned int alloc_len;
762 	struct rcu_head rcu;
763 	u16 queues[];
764 };
765 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
766 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
767        - sizeof(struct xps_map)) / sizeof(u16))
768 
769 /*
770  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
771  *
772  * We keep track of the number of cpus/rxqs used when the struct is allocated,
773  * in nr_ids. This will help not accessing out-of-bound memory.
774  *
775  * We keep track of the number of traffic classes used when the struct is
776  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
777  * not crossing its upper bound, as the original dev->num_tc can be updated in
778  * the meantime.
779  */
780 struct xps_dev_maps {
781 	struct rcu_head rcu;
782 	unsigned int nr_ids;
783 	s16 num_tc;
784 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
785 };
786 
787 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
788 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
789 
790 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
791 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
792 
793 #endif /* CONFIG_XPS */
794 
795 #define TC_MAX_QUEUE	16
796 #define TC_BITMASK	15
797 /* HW offloaded queuing disciplines txq count and offset maps */
798 struct netdev_tc_txq {
799 	u16 count;
800 	u16 offset;
801 };
802 
803 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
804 /*
805  * This structure is to hold information about the device
806  * configured to run FCoE protocol stack.
807  */
808 struct netdev_fcoe_hbainfo {
809 	char	manufacturer[64];
810 	char	serial_number[64];
811 	char	hardware_version[64];
812 	char	driver_version[64];
813 	char	optionrom_version[64];
814 	char	firmware_version[64];
815 	char	model[256];
816 	char	model_description[256];
817 };
818 #endif
819 
820 #define MAX_PHYS_ITEM_ID_LEN 32
821 
822 /* This structure holds a unique identifier to identify some
823  * physical item (port for example) used by a netdevice.
824  */
825 struct netdev_phys_item_id {
826 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
827 	unsigned char id_len;
828 };
829 
830 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
831 					    struct netdev_phys_item_id *b)
832 {
833 	return a->id_len == b->id_len &&
834 	       memcmp(a->id, b->id, a->id_len) == 0;
835 }
836 
837 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
838 				       struct sk_buff *skb,
839 				       struct net_device *sb_dev);
840 
841 enum net_device_path_type {
842 	DEV_PATH_ETHERNET = 0,
843 	DEV_PATH_VLAN,
844 	DEV_PATH_BRIDGE,
845 	DEV_PATH_PPPOE,
846 	DEV_PATH_DSA,
847 };
848 
849 struct net_device_path {
850 	enum net_device_path_type	type;
851 	const struct net_device		*dev;
852 	union {
853 		struct {
854 			u16		id;
855 			__be16		proto;
856 			u8		h_dest[ETH_ALEN];
857 		} encap;
858 		struct {
859 			enum {
860 				DEV_PATH_BR_VLAN_KEEP,
861 				DEV_PATH_BR_VLAN_TAG,
862 				DEV_PATH_BR_VLAN_UNTAG,
863 				DEV_PATH_BR_VLAN_UNTAG_HW,
864 			}		vlan_mode;
865 			u16		vlan_id;
866 			__be16		vlan_proto;
867 		} bridge;
868 		struct {
869 			int port;
870 			u16 proto;
871 		} dsa;
872 	};
873 };
874 
875 #define NET_DEVICE_PATH_STACK_MAX	5
876 #define NET_DEVICE_PATH_VLAN_MAX	2
877 
878 struct net_device_path_stack {
879 	int			num_paths;
880 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
881 };
882 
883 struct net_device_path_ctx {
884 	const struct net_device *dev;
885 	const u8		*daddr;
886 
887 	int			num_vlans;
888 	struct {
889 		u16		id;
890 		__be16		proto;
891 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
892 };
893 
894 enum tc_setup_type {
895 	TC_SETUP_QDISC_MQPRIO,
896 	TC_SETUP_CLSU32,
897 	TC_SETUP_CLSFLOWER,
898 	TC_SETUP_CLSMATCHALL,
899 	TC_SETUP_CLSBPF,
900 	TC_SETUP_BLOCK,
901 	TC_SETUP_QDISC_CBS,
902 	TC_SETUP_QDISC_RED,
903 	TC_SETUP_QDISC_PRIO,
904 	TC_SETUP_QDISC_MQ,
905 	TC_SETUP_QDISC_ETF,
906 	TC_SETUP_ROOT_QDISC,
907 	TC_SETUP_QDISC_GRED,
908 	TC_SETUP_QDISC_TAPRIO,
909 	TC_SETUP_FT,
910 	TC_SETUP_QDISC_ETS,
911 	TC_SETUP_QDISC_TBF,
912 	TC_SETUP_QDISC_FIFO,
913 	TC_SETUP_QDISC_HTB,
914 };
915 
916 /* These structures hold the attributes of bpf state that are being passed
917  * to the netdevice through the bpf op.
918  */
919 enum bpf_netdev_command {
920 	/* Set or clear a bpf program used in the earliest stages of packet
921 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
922 	 * is responsible for calling bpf_prog_put on any old progs that are
923 	 * stored. In case of error, the callee need not release the new prog
924 	 * reference, but on success it takes ownership and must bpf_prog_put
925 	 * when it is no longer used.
926 	 */
927 	XDP_SETUP_PROG,
928 	XDP_SETUP_PROG_HW,
929 	/* BPF program for offload callbacks, invoked at program load time. */
930 	BPF_OFFLOAD_MAP_ALLOC,
931 	BPF_OFFLOAD_MAP_FREE,
932 	XDP_SETUP_XSK_POOL,
933 };
934 
935 struct bpf_prog_offload_ops;
936 struct netlink_ext_ack;
937 struct xdp_umem;
938 struct xdp_dev_bulk_queue;
939 struct bpf_xdp_link;
940 
941 enum bpf_xdp_mode {
942 	XDP_MODE_SKB = 0,
943 	XDP_MODE_DRV = 1,
944 	XDP_MODE_HW = 2,
945 	__MAX_XDP_MODE
946 };
947 
948 struct bpf_xdp_entity {
949 	struct bpf_prog *prog;
950 	struct bpf_xdp_link *link;
951 };
952 
953 struct netdev_bpf {
954 	enum bpf_netdev_command command;
955 	union {
956 		/* XDP_SETUP_PROG */
957 		struct {
958 			u32 flags;
959 			struct bpf_prog *prog;
960 			struct netlink_ext_ack *extack;
961 		};
962 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
963 		struct {
964 			struct bpf_offloaded_map *offmap;
965 		};
966 		/* XDP_SETUP_XSK_POOL */
967 		struct {
968 			struct xsk_buff_pool *pool;
969 			u16 queue_id;
970 		} xsk;
971 	};
972 };
973 
974 /* Flags for ndo_xsk_wakeup. */
975 #define XDP_WAKEUP_RX (1 << 0)
976 #define XDP_WAKEUP_TX (1 << 1)
977 
978 #ifdef CONFIG_XFRM_OFFLOAD
979 struct xfrmdev_ops {
980 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
981 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
982 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
983 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
984 				       struct xfrm_state *x);
985 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
986 };
987 #endif
988 
989 struct dev_ifalias {
990 	struct rcu_head rcuhead;
991 	char ifalias[];
992 };
993 
994 struct devlink;
995 struct tlsdev_ops;
996 
997 struct netdev_name_node {
998 	struct hlist_node hlist;
999 	struct list_head list;
1000 	struct net_device *dev;
1001 	const char *name;
1002 };
1003 
1004 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1005 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1006 
1007 struct netdev_net_notifier {
1008 	struct list_head list;
1009 	struct notifier_block *nb;
1010 };
1011 
1012 /*
1013  * This structure defines the management hooks for network devices.
1014  * The following hooks can be defined; unless noted otherwise, they are
1015  * optional and can be filled with a null pointer.
1016  *
1017  * int (*ndo_init)(struct net_device *dev);
1018  *     This function is called once when a network device is registered.
1019  *     The network device can use this for any late stage initialization
1020  *     or semantic validation. It can fail with an error code which will
1021  *     be propagated back to register_netdev.
1022  *
1023  * void (*ndo_uninit)(struct net_device *dev);
1024  *     This function is called when device is unregistered or when registration
1025  *     fails. It is not called if init fails.
1026  *
1027  * int (*ndo_open)(struct net_device *dev);
1028  *     This function is called when a network device transitions to the up
1029  *     state.
1030  *
1031  * int (*ndo_stop)(struct net_device *dev);
1032  *     This function is called when a network device transitions to the down
1033  *     state.
1034  *
1035  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1036  *                               struct net_device *dev);
1037  *	Called when a packet needs to be transmitted.
1038  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1039  *	the queue before that can happen; it's for obsolete devices and weird
1040  *	corner cases, but the stack really does a non-trivial amount
1041  *	of useless work if you return NETDEV_TX_BUSY.
1042  *	Required; cannot be NULL.
1043  *
1044  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1045  *					   struct net_device *dev
1046  *					   netdev_features_t features);
1047  *	Called by core transmit path to determine if device is capable of
1048  *	performing offload operations on a given packet. This is to give
1049  *	the device an opportunity to implement any restrictions that cannot
1050  *	be otherwise expressed by feature flags. The check is called with
1051  *	the set of features that the stack has calculated and it returns
1052  *	those the driver believes to be appropriate.
1053  *
1054  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1055  *                         struct net_device *sb_dev);
1056  *	Called to decide which queue to use when device supports multiple
1057  *	transmit queues.
1058  *
1059  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1060  *	This function is called to allow device receiver to make
1061  *	changes to configuration when multicast or promiscuous is enabled.
1062  *
1063  * void (*ndo_set_rx_mode)(struct net_device *dev);
1064  *	This function is called device changes address list filtering.
1065  *	If driver handles unicast address filtering, it should set
1066  *	IFF_UNICAST_FLT in its priv_flags.
1067  *
1068  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1069  *	This function  is called when the Media Access Control address
1070  *	needs to be changed. If this interface is not defined, the
1071  *	MAC address can not be changed.
1072  *
1073  * int (*ndo_validate_addr)(struct net_device *dev);
1074  *	Test if Media Access Control address is valid for the device.
1075  *
1076  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1077  *	Old-style ioctl entry point. This is used internally by the
1078  *	appletalk and ieee802154 subsystems but is no longer called by
1079  *	the device ioctl handler.
1080  *
1081  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1082  *	Used by the bonding driver for its device specific ioctls:
1083  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1084  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1085  *
1086  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1088  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1089  *
1090  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1091  *	Used to set network devices bus interface parameters. This interface
1092  *	is retained for legacy reasons; new devices should use the bus
1093  *	interface (PCI) for low level management.
1094  *
1095  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1096  *	Called when a user wants to change the Maximum Transfer Unit
1097  *	of a device.
1098  *
1099  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1100  *	Callback used when the transmitter has not made any progress
1101  *	for dev->watchdog ticks.
1102  *
1103  * void (*ndo_get_stats64)(struct net_device *dev,
1104  *                         struct rtnl_link_stats64 *storage);
1105  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1106  *	Called when a user wants to get the network device usage
1107  *	statistics. Drivers must do one of the following:
1108  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1109  *	   rtnl_link_stats64 structure passed by the caller.
1110  *	2. Define @ndo_get_stats to update a net_device_stats structure
1111  *	   (which should normally be dev->stats) and return a pointer to
1112  *	   it. The structure may be changed asynchronously only if each
1113  *	   field is written atomically.
1114  *	3. Update dev->stats asynchronously and atomically, and define
1115  *	   neither operation.
1116  *
1117  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1118  *	Return true if this device supports offload stats of this attr_id.
1119  *
1120  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1121  *	void *attr_data)
1122  *	Get statistics for offload operations by attr_id. Write it into the
1123  *	attr_data pointer.
1124  *
1125  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1126  *	If device supports VLAN filtering this function is called when a
1127  *	VLAN id is registered.
1128  *
1129  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1130  *	If device supports VLAN filtering this function is called when a
1131  *	VLAN id is unregistered.
1132  *
1133  * void (*ndo_poll_controller)(struct net_device *dev);
1134  *
1135  *	SR-IOV management functions.
1136  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1137  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1138  *			  u8 qos, __be16 proto);
1139  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1140  *			  int max_tx_rate);
1141  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1142  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1143  * int (*ndo_get_vf_config)(struct net_device *dev,
1144  *			    int vf, struct ifla_vf_info *ivf);
1145  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1146  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1147  *			  struct nlattr *port[]);
1148  *
1149  *      Enable or disable the VF ability to query its RSS Redirection Table and
1150  *      Hash Key. This is needed since on some devices VF share this information
1151  *      with PF and querying it may introduce a theoretical security risk.
1152  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1153  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1154  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1155  *		       void *type_data);
1156  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1157  *	This is always called from the stack with the rtnl lock held and netif
1158  *	tx queues stopped. This allows the netdevice to perform queue
1159  *	management safely.
1160  *
1161  *	Fiber Channel over Ethernet (FCoE) offload functions.
1162  * int (*ndo_fcoe_enable)(struct net_device *dev);
1163  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1164  *	so the underlying device can perform whatever needed configuration or
1165  *	initialization to support acceleration of FCoE traffic.
1166  *
1167  * int (*ndo_fcoe_disable)(struct net_device *dev);
1168  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1169  *	so the underlying device can perform whatever needed clean-ups to
1170  *	stop supporting acceleration of FCoE traffic.
1171  *
1172  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1173  *			     struct scatterlist *sgl, unsigned int sgc);
1174  *	Called when the FCoE Initiator wants to initialize an I/O that
1175  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1176  *	perform necessary setup and returns 1 to indicate the device is set up
1177  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1178  *
1179  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1180  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1181  *	indicated by the FC exchange id 'xid', so the underlying device can
1182  *	clean up and reuse resources for later DDP requests.
1183  *
1184  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1185  *			      struct scatterlist *sgl, unsigned int sgc);
1186  *	Called when the FCoE Target wants to initialize an I/O that
1187  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1188  *	perform necessary setup and returns 1 to indicate the device is set up
1189  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1190  *
1191  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1192  *			       struct netdev_fcoe_hbainfo *hbainfo);
1193  *	Called when the FCoE Protocol stack wants information on the underlying
1194  *	device. This information is utilized by the FCoE protocol stack to
1195  *	register attributes with Fiber Channel management service as per the
1196  *	FC-GS Fabric Device Management Information(FDMI) specification.
1197  *
1198  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1199  *	Called when the underlying device wants to override default World Wide
1200  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1201  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1202  *	protocol stack to use.
1203  *
1204  *	RFS acceleration.
1205  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1206  *			    u16 rxq_index, u32 flow_id);
1207  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1208  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1209  *	Return the filter ID on success, or a negative error code.
1210  *
1211  *	Slave management functions (for bridge, bonding, etc).
1212  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1213  *	Called to make another netdev an underling.
1214  *
1215  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1216  *	Called to release previously enslaved netdev.
1217  *
1218  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1219  *					    struct sk_buff *skb,
1220  *					    bool all_slaves);
1221  *	Get the xmit slave of master device. If all_slaves is true, function
1222  *	assume all the slaves can transmit.
1223  *
1224  *      Feature/offload setting functions.
1225  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1226  *		netdev_features_t features);
1227  *	Adjusts the requested feature flags according to device-specific
1228  *	constraints, and returns the resulting flags. Must not modify
1229  *	the device state.
1230  *
1231  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1232  *	Called to update device configuration to new features. Passed
1233  *	feature set might be less than what was returned by ndo_fix_features()).
1234  *	Must return >0 or -errno if it changed dev->features itself.
1235  *
1236  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1237  *		      struct net_device *dev,
1238  *		      const unsigned char *addr, u16 vid, u16 flags,
1239  *		      struct netlink_ext_ack *extack);
1240  *	Adds an FDB entry to dev for addr.
1241  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1242  *		      struct net_device *dev,
1243  *		      const unsigned char *addr, u16 vid)
1244  *	Deletes the FDB entry from dev coresponding to addr.
1245  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1246  *		       struct net_device *dev, struct net_device *filter_dev,
1247  *		       int *idx)
1248  *	Used to add FDB entries to dump requests. Implementers should add
1249  *	entries to skb and update idx with the number of entries.
1250  *
1251  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1252  *			     u16 flags, struct netlink_ext_ack *extack)
1253  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1254  *			     struct net_device *dev, u32 filter_mask,
1255  *			     int nlflags)
1256  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1257  *			     u16 flags);
1258  *
1259  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1260  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1261  *	which do not represent real hardware may define this to allow their
1262  *	userspace components to manage their virtual carrier state. Devices
1263  *	that determine carrier state from physical hardware properties (eg
1264  *	network cables) or protocol-dependent mechanisms (eg
1265  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1266  *
1267  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1268  *			       struct netdev_phys_item_id *ppid);
1269  *	Called to get ID of physical port of this device. If driver does
1270  *	not implement this, it is assumed that the hw is not able to have
1271  *	multiple net devices on single physical port.
1272  *
1273  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1274  *				 struct netdev_phys_item_id *ppid)
1275  *	Called to get the parent ID of the physical port of this device.
1276  *
1277  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1278  *				 struct net_device *dev)
1279  *	Called by upper layer devices to accelerate switching or other
1280  *	station functionality into hardware. 'pdev is the lowerdev
1281  *	to use for the offload and 'dev' is the net device that will
1282  *	back the offload. Returns a pointer to the private structure
1283  *	the upper layer will maintain.
1284  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1285  *	Called by upper layer device to delete the station created
1286  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1287  *	the station and priv is the structure returned by the add
1288  *	operation.
1289  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1290  *			     int queue_index, u32 maxrate);
1291  *	Called when a user wants to set a max-rate limitation of specific
1292  *	TX queue.
1293  * int (*ndo_get_iflink)(const struct net_device *dev);
1294  *	Called to get the iflink value of this device.
1295  * void (*ndo_change_proto_down)(struct net_device *dev,
1296  *				 bool proto_down);
1297  *	This function is used to pass protocol port error state information
1298  *	to the switch driver. The switch driver can react to the proto_down
1299  *      by doing a phys down on the associated switch port.
1300  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1301  *	This function is used to get egress tunnel information for given skb.
1302  *	This is useful for retrieving outer tunnel header parameters while
1303  *	sampling packet.
1304  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1305  *	This function is used to specify the headroom that the skb must
1306  *	consider when allocation skb during packet reception. Setting
1307  *	appropriate rx headroom value allows avoiding skb head copy on
1308  *	forward. Setting a negative value resets the rx headroom to the
1309  *	default value.
1310  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1311  *	This function is used to set or query state related to XDP on the
1312  *	netdevice and manage BPF offload. See definition of
1313  *	enum bpf_netdev_command for details.
1314  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1315  *			u32 flags);
1316  *	This function is used to submit @n XDP packets for transmit on a
1317  *	netdevice. Returns number of frames successfully transmitted, frames
1318  *	that got dropped are freed/returned via xdp_return_frame().
1319  *	Returns negative number, means general error invoking ndo, meaning
1320  *	no frames were xmit'ed and core-caller will free all frames.
1321  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1322  *      This function is used to wake up the softirq, ksoftirqd or kthread
1323  *	responsible for sending and/or receiving packets on a specific
1324  *	queue id bound to an AF_XDP socket. The flags field specifies if
1325  *	only RX, only Tx, or both should be woken up using the flags
1326  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1327  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1328  *	Get devlink port instance associated with a given netdev.
1329  *	Called with a reference on the netdevice and devlink locks only,
1330  *	rtnl_lock is not held.
1331  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1332  *			 int cmd);
1333  *	Add, change, delete or get information on an IPv4 tunnel.
1334  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1335  *	If a device is paired with a peer device, return the peer instance.
1336  *	The caller must be under RCU read context.
1337  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1338  *     Get the forwarding path to reach the real device from the HW destination address
1339  */
1340 struct net_device_ops {
1341 	int			(*ndo_init)(struct net_device *dev);
1342 	void			(*ndo_uninit)(struct net_device *dev);
1343 	int			(*ndo_open)(struct net_device *dev);
1344 	int			(*ndo_stop)(struct net_device *dev);
1345 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1346 						  struct net_device *dev);
1347 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1348 						      struct net_device *dev,
1349 						      netdev_features_t features);
1350 	u16			(*ndo_select_queue)(struct net_device *dev,
1351 						    struct sk_buff *skb,
1352 						    struct net_device *sb_dev);
1353 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1354 						       int flags);
1355 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1356 	int			(*ndo_set_mac_address)(struct net_device *dev,
1357 						       void *addr);
1358 	int			(*ndo_validate_addr)(struct net_device *dev);
1359 	int			(*ndo_do_ioctl)(struct net_device *dev,
1360 					        struct ifreq *ifr, int cmd);
1361 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1362 						 struct ifreq *ifr, int cmd);
1363 	int			(*ndo_siocbond)(struct net_device *dev,
1364 						struct ifreq *ifr, int cmd);
1365 	int			(*ndo_siocwandev)(struct net_device *dev,
1366 						  struct if_settings *ifs);
1367 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1368 						      struct ifreq *ifr,
1369 						      void __user *data, int cmd);
1370 	int			(*ndo_set_config)(struct net_device *dev,
1371 					          struct ifmap *map);
1372 	int			(*ndo_change_mtu)(struct net_device *dev,
1373 						  int new_mtu);
1374 	int			(*ndo_neigh_setup)(struct net_device *dev,
1375 						   struct neigh_parms *);
1376 	void			(*ndo_tx_timeout) (struct net_device *dev,
1377 						   unsigned int txqueue);
1378 
1379 	void			(*ndo_get_stats64)(struct net_device *dev,
1380 						   struct rtnl_link_stats64 *storage);
1381 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1382 	int			(*ndo_get_offload_stats)(int attr_id,
1383 							 const struct net_device *dev,
1384 							 void *attr_data);
1385 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1386 
1387 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1388 						       __be16 proto, u16 vid);
1389 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1390 						        __be16 proto, u16 vid);
1391 #ifdef CONFIG_NET_POLL_CONTROLLER
1392 	void                    (*ndo_poll_controller)(struct net_device *dev);
1393 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1394 						     struct netpoll_info *info);
1395 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1396 #endif
1397 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1398 						  int queue, u8 *mac);
1399 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1400 						   int queue, u16 vlan,
1401 						   u8 qos, __be16 proto);
1402 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1403 						   int vf, int min_tx_rate,
1404 						   int max_tx_rate);
1405 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1406 						       int vf, bool setting);
1407 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1408 						    int vf, bool setting);
1409 	int			(*ndo_get_vf_config)(struct net_device *dev,
1410 						     int vf,
1411 						     struct ifla_vf_info *ivf);
1412 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1413 							 int vf, int link_state);
1414 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1415 						    int vf,
1416 						    struct ifla_vf_stats
1417 						    *vf_stats);
1418 	int			(*ndo_set_vf_port)(struct net_device *dev,
1419 						   int vf,
1420 						   struct nlattr *port[]);
1421 	int			(*ndo_get_vf_port)(struct net_device *dev,
1422 						   int vf, struct sk_buff *skb);
1423 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1424 						   int vf,
1425 						   struct ifla_vf_guid *node_guid,
1426 						   struct ifla_vf_guid *port_guid);
1427 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1428 						   int vf, u64 guid,
1429 						   int guid_type);
1430 	int			(*ndo_set_vf_rss_query_en)(
1431 						   struct net_device *dev,
1432 						   int vf, bool setting);
1433 	int			(*ndo_setup_tc)(struct net_device *dev,
1434 						enum tc_setup_type type,
1435 						void *type_data);
1436 #if IS_ENABLED(CONFIG_FCOE)
1437 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1438 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1439 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1440 						      u16 xid,
1441 						      struct scatterlist *sgl,
1442 						      unsigned int sgc);
1443 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1444 						     u16 xid);
1445 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1446 						       u16 xid,
1447 						       struct scatterlist *sgl,
1448 						       unsigned int sgc);
1449 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1450 							struct netdev_fcoe_hbainfo *hbainfo);
1451 #endif
1452 
1453 #if IS_ENABLED(CONFIG_LIBFCOE)
1454 #define NETDEV_FCOE_WWNN 0
1455 #define NETDEV_FCOE_WWPN 1
1456 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1457 						    u64 *wwn, int type);
1458 #endif
1459 
1460 #ifdef CONFIG_RFS_ACCEL
1461 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1462 						     const struct sk_buff *skb,
1463 						     u16 rxq_index,
1464 						     u32 flow_id);
1465 #endif
1466 	int			(*ndo_add_slave)(struct net_device *dev,
1467 						 struct net_device *slave_dev,
1468 						 struct netlink_ext_ack *extack);
1469 	int			(*ndo_del_slave)(struct net_device *dev,
1470 						 struct net_device *slave_dev);
1471 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1472 						      struct sk_buff *skb,
1473 						      bool all_slaves);
1474 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1475 							struct sock *sk);
1476 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1477 						    netdev_features_t features);
1478 	int			(*ndo_set_features)(struct net_device *dev,
1479 						    netdev_features_t features);
1480 	int			(*ndo_neigh_construct)(struct net_device *dev,
1481 						       struct neighbour *n);
1482 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1483 						     struct neighbour *n);
1484 
1485 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1486 					       struct nlattr *tb[],
1487 					       struct net_device *dev,
1488 					       const unsigned char *addr,
1489 					       u16 vid,
1490 					       u16 flags,
1491 					       struct netlink_ext_ack *extack);
1492 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1493 					       struct nlattr *tb[],
1494 					       struct net_device *dev,
1495 					       const unsigned char *addr,
1496 					       u16 vid);
1497 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1498 						struct netlink_callback *cb,
1499 						struct net_device *dev,
1500 						struct net_device *filter_dev,
1501 						int *idx);
1502 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1503 					       struct nlattr *tb[],
1504 					       struct net_device *dev,
1505 					       const unsigned char *addr,
1506 					       u16 vid, u32 portid, u32 seq,
1507 					       struct netlink_ext_ack *extack);
1508 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1509 						      struct nlmsghdr *nlh,
1510 						      u16 flags,
1511 						      struct netlink_ext_ack *extack);
1512 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1513 						      u32 pid, u32 seq,
1514 						      struct net_device *dev,
1515 						      u32 filter_mask,
1516 						      int nlflags);
1517 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1518 						      struct nlmsghdr *nlh,
1519 						      u16 flags);
1520 	int			(*ndo_change_carrier)(struct net_device *dev,
1521 						      bool new_carrier);
1522 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1523 							struct netdev_phys_item_id *ppid);
1524 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1525 							  struct netdev_phys_item_id *ppid);
1526 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1527 							  char *name, size_t len);
1528 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1529 							struct net_device *dev);
1530 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1531 							void *priv);
1532 
1533 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1534 						      int queue_index,
1535 						      u32 maxrate);
1536 	int			(*ndo_get_iflink)(const struct net_device *dev);
1537 	int			(*ndo_change_proto_down)(struct net_device *dev,
1538 							 bool proto_down);
1539 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1540 						       struct sk_buff *skb);
1541 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1542 						       int needed_headroom);
1543 	int			(*ndo_bpf)(struct net_device *dev,
1544 					   struct netdev_bpf *bpf);
1545 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1546 						struct xdp_frame **xdp,
1547 						u32 flags);
1548 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1549 						  u32 queue_id, u32 flags);
1550 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1551 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1552 						  struct ip_tunnel_parm *p, int cmd);
1553 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1554 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1555                                                          struct net_device_path *path);
1556 };
1557 
1558 /**
1559  * enum netdev_priv_flags - &struct net_device priv_flags
1560  *
1561  * These are the &struct net_device, they are only set internally
1562  * by drivers and used in the kernel. These flags are invisible to
1563  * userspace; this means that the order of these flags can change
1564  * during any kernel release.
1565  *
1566  * You should have a pretty good reason to be extending these flags.
1567  *
1568  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1569  * @IFF_EBRIDGE: Ethernet bridging device
1570  * @IFF_BONDING: bonding master or slave
1571  * @IFF_ISATAP: ISATAP interface (RFC4214)
1572  * @IFF_WAN_HDLC: WAN HDLC device
1573  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1574  *	release skb->dst
1575  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1576  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1577  * @IFF_MACVLAN_PORT: device used as macvlan port
1578  * @IFF_BRIDGE_PORT: device used as bridge port
1579  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1580  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1581  * @IFF_UNICAST_FLT: Supports unicast filtering
1582  * @IFF_TEAM_PORT: device used as team port
1583  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1584  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1585  *	change when it's running
1586  * @IFF_MACVLAN: Macvlan device
1587  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1588  *	underlying stacked devices
1589  * @IFF_L3MDEV_MASTER: device is an L3 master device
1590  * @IFF_NO_QUEUE: device can run without qdisc attached
1591  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1592  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1593  * @IFF_TEAM: device is a team device
1594  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1595  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1596  *	entity (i.e. the master device for bridged veth)
1597  * @IFF_MACSEC: device is a MACsec device
1598  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1599  * @IFF_FAILOVER: device is a failover master device
1600  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1601  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1602  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1603  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1604  *	skb_headlen(skb) == 0 (data starts from frag0)
1605  */
1606 enum netdev_priv_flags {
1607 	IFF_802_1Q_VLAN			= 1<<0,
1608 	IFF_EBRIDGE			= 1<<1,
1609 	IFF_BONDING			= 1<<2,
1610 	IFF_ISATAP			= 1<<3,
1611 	IFF_WAN_HDLC			= 1<<4,
1612 	IFF_XMIT_DST_RELEASE		= 1<<5,
1613 	IFF_DONT_BRIDGE			= 1<<6,
1614 	IFF_DISABLE_NETPOLL		= 1<<7,
1615 	IFF_MACVLAN_PORT		= 1<<8,
1616 	IFF_BRIDGE_PORT			= 1<<9,
1617 	IFF_OVS_DATAPATH		= 1<<10,
1618 	IFF_TX_SKB_SHARING		= 1<<11,
1619 	IFF_UNICAST_FLT			= 1<<12,
1620 	IFF_TEAM_PORT			= 1<<13,
1621 	IFF_SUPP_NOFCS			= 1<<14,
1622 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1623 	IFF_MACVLAN			= 1<<16,
1624 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1625 	IFF_L3MDEV_MASTER		= 1<<18,
1626 	IFF_NO_QUEUE			= 1<<19,
1627 	IFF_OPENVSWITCH			= 1<<20,
1628 	IFF_L3MDEV_SLAVE		= 1<<21,
1629 	IFF_TEAM			= 1<<22,
1630 	IFF_RXFH_CONFIGURED		= 1<<23,
1631 	IFF_PHONY_HEADROOM		= 1<<24,
1632 	IFF_MACSEC			= 1<<25,
1633 	IFF_NO_RX_HANDLER		= 1<<26,
1634 	IFF_FAILOVER			= 1<<27,
1635 	IFF_FAILOVER_SLAVE		= 1<<28,
1636 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1637 	IFF_LIVE_RENAME_OK		= 1<<30,
1638 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1639 };
1640 
1641 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1642 #define IFF_EBRIDGE			IFF_EBRIDGE
1643 #define IFF_BONDING			IFF_BONDING
1644 #define IFF_ISATAP			IFF_ISATAP
1645 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1646 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1647 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1648 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1649 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1650 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1651 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1652 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1653 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1654 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1655 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1656 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1657 #define IFF_MACVLAN			IFF_MACVLAN
1658 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1659 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1660 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1661 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1662 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1663 #define IFF_TEAM			IFF_TEAM
1664 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1665 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1666 #define IFF_MACSEC			IFF_MACSEC
1667 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1668 #define IFF_FAILOVER			IFF_FAILOVER
1669 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1670 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1671 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1672 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1673 
1674 /* Specifies the type of the struct net_device::ml_priv pointer */
1675 enum netdev_ml_priv_type {
1676 	ML_PRIV_NONE,
1677 	ML_PRIV_CAN,
1678 };
1679 
1680 /**
1681  *	struct net_device - The DEVICE structure.
1682  *
1683  *	Actually, this whole structure is a big mistake.  It mixes I/O
1684  *	data with strictly "high-level" data, and it has to know about
1685  *	almost every data structure used in the INET module.
1686  *
1687  *	@name:	This is the first field of the "visible" part of this structure
1688  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1689  *		of the interface.
1690  *
1691  *	@name_node:	Name hashlist node
1692  *	@ifalias:	SNMP alias
1693  *	@mem_end:	Shared memory end
1694  *	@mem_start:	Shared memory start
1695  *	@base_addr:	Device I/O address
1696  *	@irq:		Device IRQ number
1697  *
1698  *	@state:		Generic network queuing layer state, see netdev_state_t
1699  *	@dev_list:	The global list of network devices
1700  *	@napi_list:	List entry used for polling NAPI devices
1701  *	@unreg_list:	List entry  when we are unregistering the
1702  *			device; see the function unregister_netdev
1703  *	@close_list:	List entry used when we are closing the device
1704  *	@ptype_all:     Device-specific packet handlers for all protocols
1705  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1706  *
1707  *	@adj_list:	Directly linked devices, like slaves for bonding
1708  *	@features:	Currently active device features
1709  *	@hw_features:	User-changeable features
1710  *
1711  *	@wanted_features:	User-requested features
1712  *	@vlan_features:		Mask of features inheritable by VLAN devices
1713  *
1714  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1715  *				This field indicates what encapsulation
1716  *				offloads the hardware is capable of doing,
1717  *				and drivers will need to set them appropriately.
1718  *
1719  *	@mpls_features:	Mask of features inheritable by MPLS
1720  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1721  *
1722  *	@ifindex:	interface index
1723  *	@group:		The group the device belongs to
1724  *
1725  *	@stats:		Statistics struct, which was left as a legacy, use
1726  *			rtnl_link_stats64 instead
1727  *
1728  *	@rx_dropped:	Dropped packets by core network,
1729  *			do not use this in drivers
1730  *	@tx_dropped:	Dropped packets by core network,
1731  *			do not use this in drivers
1732  *	@rx_nohandler:	nohandler dropped packets by core network on
1733  *			inactive devices, do not use this in drivers
1734  *	@carrier_up_count:	Number of times the carrier has been up
1735  *	@carrier_down_count:	Number of times the carrier has been down
1736  *
1737  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1738  *				instead of ioctl,
1739  *				see <net/iw_handler.h> for details.
1740  *	@wireless_data:	Instance data managed by the core of wireless extensions
1741  *
1742  *	@netdev_ops:	Includes several pointers to callbacks,
1743  *			if one wants to override the ndo_*() functions
1744  *	@ethtool_ops:	Management operations
1745  *	@l3mdev_ops:	Layer 3 master device operations
1746  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1747  *			discovery handling. Necessary for e.g. 6LoWPAN.
1748  *	@xfrmdev_ops:	Transformation offload operations
1749  *	@tlsdev_ops:	Transport Layer Security offload operations
1750  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1751  *			of Layer 2 headers.
1752  *
1753  *	@flags:		Interface flags (a la BSD)
1754  *	@priv_flags:	Like 'flags' but invisible to userspace,
1755  *			see if.h for the definitions
1756  *	@gflags:	Global flags ( kept as legacy )
1757  *	@padded:	How much padding added by alloc_netdev()
1758  *	@operstate:	RFC2863 operstate
1759  *	@link_mode:	Mapping policy to operstate
1760  *	@if_port:	Selectable AUI, TP, ...
1761  *	@dma:		DMA channel
1762  *	@mtu:		Interface MTU value
1763  *	@min_mtu:	Interface Minimum MTU value
1764  *	@max_mtu:	Interface Maximum MTU value
1765  *	@type:		Interface hardware type
1766  *	@hard_header_len: Maximum hardware header length.
1767  *	@min_header_len:  Minimum hardware header length
1768  *
1769  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1770  *			  cases can this be guaranteed
1771  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1772  *			  cases can this be guaranteed. Some cases also use
1773  *			  LL_MAX_HEADER instead to allocate the skb
1774  *
1775  *	interface address info:
1776  *
1777  * 	@perm_addr:		Permanent hw address
1778  * 	@addr_assign_type:	Hw address assignment type
1779  * 	@addr_len:		Hardware address length
1780  *	@upper_level:		Maximum depth level of upper devices.
1781  *	@lower_level:		Maximum depth level of lower devices.
1782  *	@neigh_priv_len:	Used in neigh_alloc()
1783  * 	@dev_id:		Used to differentiate devices that share
1784  * 				the same link layer address
1785  * 	@dev_port:		Used to differentiate devices that share
1786  * 				the same function
1787  *	@addr_list_lock:	XXX: need comments on this one
1788  *	@name_assign_type:	network interface name assignment type
1789  *	@uc_promisc:		Counter that indicates promiscuous mode
1790  *				has been enabled due to the need to listen to
1791  *				additional unicast addresses in a device that
1792  *				does not implement ndo_set_rx_mode()
1793  *	@uc:			unicast mac addresses
1794  *	@mc:			multicast mac addresses
1795  *	@dev_addrs:		list of device hw addresses
1796  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1797  *	@promiscuity:		Number of times the NIC is told to work in
1798  *				promiscuous mode; if it becomes 0 the NIC will
1799  *				exit promiscuous mode
1800  *	@allmulti:		Counter, enables or disables allmulticast mode
1801  *
1802  *	@vlan_info:	VLAN info
1803  *	@dsa_ptr:	dsa specific data
1804  *	@tipc_ptr:	TIPC specific data
1805  *	@atalk_ptr:	AppleTalk link
1806  *	@ip_ptr:	IPv4 specific data
1807  *	@dn_ptr:	DECnet specific data
1808  *	@ip6_ptr:	IPv6 specific data
1809  *	@ax25_ptr:	AX.25 specific data
1810  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1811  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1812  *			 device struct
1813  *	@mpls_ptr:	mpls_dev struct pointer
1814  *	@mctp_ptr:	MCTP specific data
1815  *
1816  *	@dev_addr:	Hw address (before bcast,
1817  *			because most packets are unicast)
1818  *
1819  *	@_rx:			Array of RX queues
1820  *	@num_rx_queues:		Number of RX queues
1821  *				allocated at register_netdev() time
1822  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1823  *	@xdp_prog:		XDP sockets filter program pointer
1824  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1825  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1826  *				allow to avoid NIC hard IRQ, on busy queues.
1827  *
1828  *	@rx_handler:		handler for received packets
1829  *	@rx_handler_data: 	XXX: need comments on this one
1830  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1831  *				ingress processing
1832  *	@ingress_queue:		XXX: need comments on this one
1833  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1834  *	@broadcast:		hw bcast address
1835  *
1836  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1837  *			indexed by RX queue number. Assigned by driver.
1838  *			This must only be set if the ndo_rx_flow_steer
1839  *			operation is defined
1840  *	@index_hlist:		Device index hash chain
1841  *
1842  *	@_tx:			Array of TX queues
1843  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1844  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1845  *	@qdisc:			Root qdisc from userspace point of view
1846  *	@tx_queue_len:		Max frames per queue allowed
1847  *	@tx_global_lock: 	XXX: need comments on this one
1848  *	@xdp_bulkq:		XDP device bulk queue
1849  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1850  *
1851  *	@xps_maps:	XXX: need comments on this one
1852  *	@miniq_egress:		clsact qdisc specific data for
1853  *				egress processing
1854  *	@qdisc_hash:		qdisc hash table
1855  *	@watchdog_timeo:	Represents the timeout that is used by
1856  *				the watchdog (see dev_watchdog())
1857  *	@watchdog_timer:	List of timers
1858  *
1859  *	@proto_down_reason:	reason a netdev interface is held down
1860  *	@pcpu_refcnt:		Number of references to this device
1861  *	@dev_refcnt:		Number of references to this device
1862  *	@todo_list:		Delayed register/unregister
1863  *	@link_watch_list:	XXX: need comments on this one
1864  *
1865  *	@reg_state:		Register/unregister state machine
1866  *	@dismantle:		Device is going to be freed
1867  *	@rtnl_link_state:	This enum represents the phases of creating
1868  *				a new link
1869  *
1870  *	@needs_free_netdev:	Should unregister perform free_netdev?
1871  *	@priv_destructor:	Called from unregister
1872  *	@npinfo:		XXX: need comments on this one
1873  * 	@nd_net:		Network namespace this network device is inside
1874  *
1875  * 	@ml_priv:	Mid-layer private
1876  *	@ml_priv_type:  Mid-layer private type
1877  * 	@lstats:	Loopback statistics
1878  * 	@tstats:	Tunnel statistics
1879  * 	@dstats:	Dummy statistics
1880  * 	@vstats:	Virtual ethernet statistics
1881  *
1882  *	@garp_port:	GARP
1883  *	@mrp_port:	MRP
1884  *
1885  *	@dev:		Class/net/name entry
1886  *	@sysfs_groups:	Space for optional device, statistics and wireless
1887  *			sysfs groups
1888  *
1889  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1890  *	@rtnl_link_ops:	Rtnl_link_ops
1891  *
1892  *	@gso_max_size:	Maximum size of generic segmentation offload
1893  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1894  *			NIC for GSO
1895  *
1896  *	@dcbnl_ops:	Data Center Bridging netlink ops
1897  *	@num_tc:	Number of traffic classes in the net device
1898  *	@tc_to_txq:	XXX: need comments on this one
1899  *	@prio_tc_map:	XXX: need comments on this one
1900  *
1901  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1902  *
1903  *	@priomap:	XXX: need comments on this one
1904  *	@phydev:	Physical device may attach itself
1905  *			for hardware timestamping
1906  *	@sfp_bus:	attached &struct sfp_bus structure.
1907  *
1908  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1909  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1910  *
1911  *	@proto_down:	protocol port state information can be sent to the
1912  *			switch driver and used to set the phys state of the
1913  *			switch port.
1914  *
1915  *	@wol_enabled:	Wake-on-LAN is enabled
1916  *
1917  *	@threaded:	napi threaded mode is enabled
1918  *
1919  *	@net_notifier_list:	List of per-net netdev notifier block
1920  *				that follow this device when it is moved
1921  *				to another network namespace.
1922  *
1923  *	@macsec_ops:    MACsec offloading ops
1924  *
1925  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1926  *				offload capabilities of the device
1927  *	@udp_tunnel_nic:	UDP tunnel offload state
1928  *	@xdp_state:		stores info on attached XDP BPF programs
1929  *
1930  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1931  *			dev->addr_list_lock.
1932  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1933  *			keep a list of interfaces to be deleted.
1934  *
1935  *	FIXME: cleanup struct net_device such that network protocol info
1936  *	moves out.
1937  */
1938 
1939 struct net_device {
1940 	char			name[IFNAMSIZ];
1941 	struct netdev_name_node	*name_node;
1942 	struct dev_ifalias	__rcu *ifalias;
1943 	/*
1944 	 *	I/O specific fields
1945 	 *	FIXME: Merge these and struct ifmap into one
1946 	 */
1947 	unsigned long		mem_end;
1948 	unsigned long		mem_start;
1949 	unsigned long		base_addr;
1950 
1951 	/*
1952 	 *	Some hardware also needs these fields (state,dev_list,
1953 	 *	napi_list,unreg_list,close_list) but they are not
1954 	 *	part of the usual set specified in Space.c.
1955 	 */
1956 
1957 	unsigned long		state;
1958 
1959 	struct list_head	dev_list;
1960 	struct list_head	napi_list;
1961 	struct list_head	unreg_list;
1962 	struct list_head	close_list;
1963 	struct list_head	ptype_all;
1964 	struct list_head	ptype_specific;
1965 
1966 	struct {
1967 		struct list_head upper;
1968 		struct list_head lower;
1969 	} adj_list;
1970 
1971 	/* Read-mostly cache-line for fast-path access */
1972 	unsigned int		flags;
1973 	unsigned int		priv_flags;
1974 	const struct net_device_ops *netdev_ops;
1975 	int			ifindex;
1976 	unsigned short		gflags;
1977 	unsigned short		hard_header_len;
1978 
1979 	/* Note : dev->mtu is often read without holding a lock.
1980 	 * Writers usually hold RTNL.
1981 	 * It is recommended to use READ_ONCE() to annotate the reads,
1982 	 * and to use WRITE_ONCE() to annotate the writes.
1983 	 */
1984 	unsigned int		mtu;
1985 	unsigned short		needed_headroom;
1986 	unsigned short		needed_tailroom;
1987 
1988 	netdev_features_t	features;
1989 	netdev_features_t	hw_features;
1990 	netdev_features_t	wanted_features;
1991 	netdev_features_t	vlan_features;
1992 	netdev_features_t	hw_enc_features;
1993 	netdev_features_t	mpls_features;
1994 	netdev_features_t	gso_partial_features;
1995 
1996 	unsigned int		min_mtu;
1997 	unsigned int		max_mtu;
1998 	unsigned short		type;
1999 	unsigned char		min_header_len;
2000 	unsigned char		name_assign_type;
2001 
2002 	int			group;
2003 
2004 	struct net_device_stats	stats; /* not used by modern drivers */
2005 
2006 	atomic_long_t		rx_dropped;
2007 	atomic_long_t		tx_dropped;
2008 	atomic_long_t		rx_nohandler;
2009 
2010 	/* Stats to monitor link on/off, flapping */
2011 	atomic_t		carrier_up_count;
2012 	atomic_t		carrier_down_count;
2013 
2014 #ifdef CONFIG_WIRELESS_EXT
2015 	const struct iw_handler_def *wireless_handlers;
2016 	struct iw_public_data	*wireless_data;
2017 #endif
2018 	const struct ethtool_ops *ethtool_ops;
2019 #ifdef CONFIG_NET_L3_MASTER_DEV
2020 	const struct l3mdev_ops	*l3mdev_ops;
2021 #endif
2022 #if IS_ENABLED(CONFIG_IPV6)
2023 	const struct ndisc_ops *ndisc_ops;
2024 #endif
2025 
2026 #ifdef CONFIG_XFRM_OFFLOAD
2027 	const struct xfrmdev_ops *xfrmdev_ops;
2028 #endif
2029 
2030 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2031 	const struct tlsdev_ops *tlsdev_ops;
2032 #endif
2033 
2034 	const struct header_ops *header_ops;
2035 
2036 	unsigned char		operstate;
2037 	unsigned char		link_mode;
2038 
2039 	unsigned char		if_port;
2040 	unsigned char		dma;
2041 
2042 	/* Interface address info. */
2043 	unsigned char		perm_addr[MAX_ADDR_LEN];
2044 	unsigned char		addr_assign_type;
2045 	unsigned char		addr_len;
2046 	unsigned char		upper_level;
2047 	unsigned char		lower_level;
2048 
2049 	unsigned short		neigh_priv_len;
2050 	unsigned short          dev_id;
2051 	unsigned short          dev_port;
2052 	unsigned short		padded;
2053 
2054 	spinlock_t		addr_list_lock;
2055 	int			irq;
2056 
2057 	struct netdev_hw_addr_list	uc;
2058 	struct netdev_hw_addr_list	mc;
2059 	struct netdev_hw_addr_list	dev_addrs;
2060 
2061 #ifdef CONFIG_SYSFS
2062 	struct kset		*queues_kset;
2063 #endif
2064 #ifdef CONFIG_LOCKDEP
2065 	struct list_head	unlink_list;
2066 #endif
2067 	unsigned int		promiscuity;
2068 	unsigned int		allmulti;
2069 	bool			uc_promisc;
2070 #ifdef CONFIG_LOCKDEP
2071 	unsigned char		nested_level;
2072 #endif
2073 
2074 
2075 	/* Protocol-specific pointers */
2076 
2077 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2078 	struct vlan_info __rcu	*vlan_info;
2079 #endif
2080 #if IS_ENABLED(CONFIG_NET_DSA)
2081 	struct dsa_port		*dsa_ptr;
2082 #endif
2083 #if IS_ENABLED(CONFIG_TIPC)
2084 	struct tipc_bearer __rcu *tipc_ptr;
2085 #endif
2086 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2087 	void 			*atalk_ptr;
2088 #endif
2089 	struct in_device __rcu	*ip_ptr;
2090 #if IS_ENABLED(CONFIG_DECNET)
2091 	struct dn_dev __rcu     *dn_ptr;
2092 #endif
2093 	struct inet6_dev __rcu	*ip6_ptr;
2094 #if IS_ENABLED(CONFIG_AX25)
2095 	void			*ax25_ptr;
2096 #endif
2097 	struct wireless_dev	*ieee80211_ptr;
2098 	struct wpan_dev		*ieee802154_ptr;
2099 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2100 	struct mpls_dev __rcu	*mpls_ptr;
2101 #endif
2102 #if IS_ENABLED(CONFIG_MCTP)
2103 	struct mctp_dev __rcu	*mctp_ptr;
2104 #endif
2105 
2106 /*
2107  * Cache lines mostly used on receive path (including eth_type_trans())
2108  */
2109 	/* Interface address info used in eth_type_trans() */
2110 	unsigned char		*dev_addr;
2111 
2112 	struct netdev_rx_queue	*_rx;
2113 	unsigned int		num_rx_queues;
2114 	unsigned int		real_num_rx_queues;
2115 
2116 	struct bpf_prog __rcu	*xdp_prog;
2117 	unsigned long		gro_flush_timeout;
2118 	int			napi_defer_hard_irqs;
2119 	rx_handler_func_t __rcu	*rx_handler;
2120 	void __rcu		*rx_handler_data;
2121 
2122 #ifdef CONFIG_NET_CLS_ACT
2123 	struct mini_Qdisc __rcu	*miniq_ingress;
2124 #endif
2125 	struct netdev_queue __rcu *ingress_queue;
2126 #ifdef CONFIG_NETFILTER_INGRESS
2127 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2128 #endif
2129 
2130 	unsigned char		broadcast[MAX_ADDR_LEN];
2131 #ifdef CONFIG_RFS_ACCEL
2132 	struct cpu_rmap		*rx_cpu_rmap;
2133 #endif
2134 	struct hlist_node	index_hlist;
2135 
2136 /*
2137  * Cache lines mostly used on transmit path
2138  */
2139 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2140 	unsigned int		num_tx_queues;
2141 	unsigned int		real_num_tx_queues;
2142 	struct Qdisc		*qdisc;
2143 	unsigned int		tx_queue_len;
2144 	spinlock_t		tx_global_lock;
2145 
2146 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2147 
2148 #ifdef CONFIG_XPS
2149 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2150 #endif
2151 #ifdef CONFIG_NET_CLS_ACT
2152 	struct mini_Qdisc __rcu	*miniq_egress;
2153 #endif
2154 
2155 #ifdef CONFIG_NET_SCHED
2156 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2157 #endif
2158 	/* These may be needed for future network-power-down code. */
2159 	struct timer_list	watchdog_timer;
2160 	int			watchdog_timeo;
2161 
2162 	u32                     proto_down_reason;
2163 
2164 	struct list_head	todo_list;
2165 
2166 #ifdef CONFIG_PCPU_DEV_REFCNT
2167 	int __percpu		*pcpu_refcnt;
2168 #else
2169 	refcount_t		dev_refcnt;
2170 #endif
2171 
2172 	struct list_head	link_watch_list;
2173 
2174 	enum { NETREG_UNINITIALIZED=0,
2175 	       NETREG_REGISTERED,	/* completed register_netdevice */
2176 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2177 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2178 	       NETREG_RELEASED,		/* called free_netdev */
2179 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2180 	} reg_state:8;
2181 
2182 	bool dismantle;
2183 
2184 	enum {
2185 		RTNL_LINK_INITIALIZED,
2186 		RTNL_LINK_INITIALIZING,
2187 	} rtnl_link_state:16;
2188 
2189 	bool needs_free_netdev;
2190 	void (*priv_destructor)(struct net_device *dev);
2191 
2192 #ifdef CONFIG_NETPOLL
2193 	struct netpoll_info __rcu	*npinfo;
2194 #endif
2195 
2196 	possible_net_t			nd_net;
2197 
2198 	/* mid-layer private */
2199 	void				*ml_priv;
2200 	enum netdev_ml_priv_type	ml_priv_type;
2201 
2202 	union {
2203 		struct pcpu_lstats __percpu		*lstats;
2204 		struct pcpu_sw_netstats __percpu	*tstats;
2205 		struct pcpu_dstats __percpu		*dstats;
2206 	};
2207 
2208 #if IS_ENABLED(CONFIG_GARP)
2209 	struct garp_port __rcu	*garp_port;
2210 #endif
2211 #if IS_ENABLED(CONFIG_MRP)
2212 	struct mrp_port __rcu	*mrp_port;
2213 #endif
2214 
2215 	struct device		dev;
2216 	const struct attribute_group *sysfs_groups[4];
2217 	const struct attribute_group *sysfs_rx_queue_group;
2218 
2219 	const struct rtnl_link_ops *rtnl_link_ops;
2220 
2221 	/* for setting kernel sock attribute on TCP connection setup */
2222 #define GSO_MAX_SIZE		65536
2223 	unsigned int		gso_max_size;
2224 #define GSO_MAX_SEGS		65535
2225 	u16			gso_max_segs;
2226 
2227 #ifdef CONFIG_DCB
2228 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2229 #endif
2230 	s16			num_tc;
2231 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2232 	u8			prio_tc_map[TC_BITMASK + 1];
2233 
2234 #if IS_ENABLED(CONFIG_FCOE)
2235 	unsigned int		fcoe_ddp_xid;
2236 #endif
2237 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2238 	struct netprio_map __rcu *priomap;
2239 #endif
2240 	struct phy_device	*phydev;
2241 	struct sfp_bus		*sfp_bus;
2242 	struct lock_class_key	*qdisc_tx_busylock;
2243 	struct lock_class_key	*qdisc_running_key;
2244 	bool			proto_down;
2245 	unsigned		wol_enabled:1;
2246 	unsigned		threaded:1;
2247 
2248 	struct list_head	net_notifier_list;
2249 
2250 #if IS_ENABLED(CONFIG_MACSEC)
2251 	/* MACsec management functions */
2252 	const struct macsec_ops *macsec_ops;
2253 #endif
2254 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2255 	struct udp_tunnel_nic	*udp_tunnel_nic;
2256 
2257 	/* protected by rtnl_lock */
2258 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2259 };
2260 #define to_net_dev(d) container_of(d, struct net_device, dev)
2261 
2262 static inline bool netif_elide_gro(const struct net_device *dev)
2263 {
2264 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2265 		return true;
2266 	return false;
2267 }
2268 
2269 #define	NETDEV_ALIGN		32
2270 
2271 static inline
2272 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2273 {
2274 	return dev->prio_tc_map[prio & TC_BITMASK];
2275 }
2276 
2277 static inline
2278 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2279 {
2280 	if (tc >= dev->num_tc)
2281 		return -EINVAL;
2282 
2283 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2284 	return 0;
2285 }
2286 
2287 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2288 void netdev_reset_tc(struct net_device *dev);
2289 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2290 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2291 
2292 static inline
2293 int netdev_get_num_tc(struct net_device *dev)
2294 {
2295 	return dev->num_tc;
2296 }
2297 
2298 static inline void net_prefetch(void *p)
2299 {
2300 	prefetch(p);
2301 #if L1_CACHE_BYTES < 128
2302 	prefetch((u8 *)p + L1_CACHE_BYTES);
2303 #endif
2304 }
2305 
2306 static inline void net_prefetchw(void *p)
2307 {
2308 	prefetchw(p);
2309 #if L1_CACHE_BYTES < 128
2310 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2311 #endif
2312 }
2313 
2314 void netdev_unbind_sb_channel(struct net_device *dev,
2315 			      struct net_device *sb_dev);
2316 int netdev_bind_sb_channel_queue(struct net_device *dev,
2317 				 struct net_device *sb_dev,
2318 				 u8 tc, u16 count, u16 offset);
2319 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2320 static inline int netdev_get_sb_channel(struct net_device *dev)
2321 {
2322 	return max_t(int, -dev->num_tc, 0);
2323 }
2324 
2325 static inline
2326 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2327 					 unsigned int index)
2328 {
2329 	return &dev->_tx[index];
2330 }
2331 
2332 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2333 						    const struct sk_buff *skb)
2334 {
2335 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2336 }
2337 
2338 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2339 					    void (*f)(struct net_device *,
2340 						      struct netdev_queue *,
2341 						      void *),
2342 					    void *arg)
2343 {
2344 	unsigned int i;
2345 
2346 	for (i = 0; i < dev->num_tx_queues; i++)
2347 		f(dev, &dev->_tx[i], arg);
2348 }
2349 
2350 #define netdev_lockdep_set_classes(dev)				\
2351 {								\
2352 	static struct lock_class_key qdisc_tx_busylock_key;	\
2353 	static struct lock_class_key qdisc_running_key;		\
2354 	static struct lock_class_key qdisc_xmit_lock_key;	\
2355 	static struct lock_class_key dev_addr_list_lock_key;	\
2356 	unsigned int i;						\
2357 								\
2358 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2359 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2360 	lockdep_set_class(&(dev)->addr_list_lock,		\
2361 			  &dev_addr_list_lock_key);		\
2362 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2363 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2364 				  &qdisc_xmit_lock_key);	\
2365 }
2366 
2367 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2368 		     struct net_device *sb_dev);
2369 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2370 					 struct sk_buff *skb,
2371 					 struct net_device *sb_dev);
2372 
2373 /* returns the headroom that the master device needs to take in account
2374  * when forwarding to this dev
2375  */
2376 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2377 {
2378 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2379 }
2380 
2381 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2382 {
2383 	if (dev->netdev_ops->ndo_set_rx_headroom)
2384 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2385 }
2386 
2387 /* set the device rx headroom to the dev's default */
2388 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2389 {
2390 	netdev_set_rx_headroom(dev, -1);
2391 }
2392 
2393 static inline void *netdev_get_ml_priv(struct net_device *dev,
2394 				       enum netdev_ml_priv_type type)
2395 {
2396 	if (dev->ml_priv_type != type)
2397 		return NULL;
2398 
2399 	return dev->ml_priv;
2400 }
2401 
2402 static inline void netdev_set_ml_priv(struct net_device *dev,
2403 				      void *ml_priv,
2404 				      enum netdev_ml_priv_type type)
2405 {
2406 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2407 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2408 	     dev->ml_priv_type, type);
2409 	WARN(!dev->ml_priv_type && dev->ml_priv,
2410 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2411 
2412 	dev->ml_priv = ml_priv;
2413 	dev->ml_priv_type = type;
2414 }
2415 
2416 /*
2417  * Net namespace inlines
2418  */
2419 static inline
2420 struct net *dev_net(const struct net_device *dev)
2421 {
2422 	return read_pnet(&dev->nd_net);
2423 }
2424 
2425 static inline
2426 void dev_net_set(struct net_device *dev, struct net *net)
2427 {
2428 	write_pnet(&dev->nd_net, net);
2429 }
2430 
2431 /**
2432  *	netdev_priv - access network device private data
2433  *	@dev: network device
2434  *
2435  * Get network device private data
2436  */
2437 static inline void *netdev_priv(const struct net_device *dev)
2438 {
2439 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2440 }
2441 
2442 /* Set the sysfs physical device reference for the network logical device
2443  * if set prior to registration will cause a symlink during initialization.
2444  */
2445 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2446 
2447 /* Set the sysfs device type for the network logical device to allow
2448  * fine-grained identification of different network device types. For
2449  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2450  */
2451 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2452 
2453 /* Default NAPI poll() weight
2454  * Device drivers are strongly advised to not use bigger value
2455  */
2456 #define NAPI_POLL_WEIGHT 64
2457 
2458 /**
2459  *	netif_napi_add - initialize a NAPI context
2460  *	@dev:  network device
2461  *	@napi: NAPI context
2462  *	@poll: polling function
2463  *	@weight: default weight
2464  *
2465  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2466  * *any* of the other NAPI-related functions.
2467  */
2468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2469 		    int (*poll)(struct napi_struct *, int), int weight);
2470 
2471 /**
2472  *	netif_tx_napi_add - initialize a NAPI context
2473  *	@dev:  network device
2474  *	@napi: NAPI context
2475  *	@poll: polling function
2476  *	@weight: default weight
2477  *
2478  * This variant of netif_napi_add() should be used from drivers using NAPI
2479  * to exclusively poll a TX queue.
2480  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2481  */
2482 static inline void netif_tx_napi_add(struct net_device *dev,
2483 				     struct napi_struct *napi,
2484 				     int (*poll)(struct napi_struct *, int),
2485 				     int weight)
2486 {
2487 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2488 	netif_napi_add(dev, napi, poll, weight);
2489 }
2490 
2491 /**
2492  *  __netif_napi_del - remove a NAPI context
2493  *  @napi: NAPI context
2494  *
2495  * Warning: caller must observe RCU grace period before freeing memory
2496  * containing @napi. Drivers might want to call this helper to combine
2497  * all the needed RCU grace periods into a single one.
2498  */
2499 void __netif_napi_del(struct napi_struct *napi);
2500 
2501 /**
2502  *  netif_napi_del - remove a NAPI context
2503  *  @napi: NAPI context
2504  *
2505  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2506  */
2507 static inline void netif_napi_del(struct napi_struct *napi)
2508 {
2509 	__netif_napi_del(napi);
2510 	synchronize_net();
2511 }
2512 
2513 struct napi_gro_cb {
2514 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2515 	void	*frag0;
2516 
2517 	/* Length of frag0. */
2518 	unsigned int frag0_len;
2519 
2520 	/* This indicates where we are processing relative to skb->data. */
2521 	int	data_offset;
2522 
2523 	/* This is non-zero if the packet cannot be merged with the new skb. */
2524 	u16	flush;
2525 
2526 	/* Save the IP ID here and check when we get to the transport layer */
2527 	u16	flush_id;
2528 
2529 	/* Number of segments aggregated. */
2530 	u16	count;
2531 
2532 	/* Start offset for remote checksum offload */
2533 	u16	gro_remcsum_start;
2534 
2535 	/* jiffies when first packet was created/queued */
2536 	unsigned long age;
2537 
2538 	/* Used in ipv6_gro_receive() and foo-over-udp */
2539 	u16	proto;
2540 
2541 	/* This is non-zero if the packet may be of the same flow. */
2542 	u8	same_flow:1;
2543 
2544 	/* Used in tunnel GRO receive */
2545 	u8	encap_mark:1;
2546 
2547 	/* GRO checksum is valid */
2548 	u8	csum_valid:1;
2549 
2550 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2551 	u8	csum_cnt:3;
2552 
2553 	/* Free the skb? */
2554 	u8	free:2;
2555 #define NAPI_GRO_FREE		  1
2556 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2557 
2558 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2559 	u8	is_ipv6:1;
2560 
2561 	/* Used in GRE, set in fou/gue_gro_receive */
2562 	u8	is_fou:1;
2563 
2564 	/* Used to determine if flush_id can be ignored */
2565 	u8	is_atomic:1;
2566 
2567 	/* Number of gro_receive callbacks this packet already went through */
2568 	u8 recursion_counter:4;
2569 
2570 	/* GRO is done by frag_list pointer chaining. */
2571 	u8	is_flist:1;
2572 
2573 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2574 	__wsum	csum;
2575 
2576 	/* used in skb_gro_receive() slow path */
2577 	struct sk_buff *last;
2578 };
2579 
2580 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2581 
2582 #define GRO_RECURSION_LIMIT 15
2583 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2584 {
2585 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2586 }
2587 
2588 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2589 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2590 					       struct list_head *head,
2591 					       struct sk_buff *skb)
2592 {
2593 	if (unlikely(gro_recursion_inc_test(skb))) {
2594 		NAPI_GRO_CB(skb)->flush |= 1;
2595 		return NULL;
2596 	}
2597 
2598 	return cb(head, skb);
2599 }
2600 
2601 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2602 					    struct sk_buff *);
2603 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2604 						  struct sock *sk,
2605 						  struct list_head *head,
2606 						  struct sk_buff *skb)
2607 {
2608 	if (unlikely(gro_recursion_inc_test(skb))) {
2609 		NAPI_GRO_CB(skb)->flush |= 1;
2610 		return NULL;
2611 	}
2612 
2613 	return cb(sk, head, skb);
2614 }
2615 
2616 struct packet_type {
2617 	__be16			type;	/* This is really htons(ether_type). */
2618 	bool			ignore_outgoing;
2619 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2620 	int			(*func) (struct sk_buff *,
2621 					 struct net_device *,
2622 					 struct packet_type *,
2623 					 struct net_device *);
2624 	void			(*list_func) (struct list_head *,
2625 					      struct packet_type *,
2626 					      struct net_device *);
2627 	bool			(*id_match)(struct packet_type *ptype,
2628 					    struct sock *sk);
2629 	void			*af_packet_priv;
2630 	struct list_head	list;
2631 };
2632 
2633 struct offload_callbacks {
2634 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2635 						netdev_features_t features);
2636 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2637 						struct sk_buff *skb);
2638 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2639 };
2640 
2641 struct packet_offload {
2642 	__be16			 type;	/* This is really htons(ether_type). */
2643 	u16			 priority;
2644 	struct offload_callbacks callbacks;
2645 	struct list_head	 list;
2646 };
2647 
2648 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2649 struct pcpu_sw_netstats {
2650 	u64     rx_packets;
2651 	u64     rx_bytes;
2652 	u64     tx_packets;
2653 	u64     tx_bytes;
2654 	struct u64_stats_sync   syncp;
2655 } __aligned(4 * sizeof(u64));
2656 
2657 struct pcpu_lstats {
2658 	u64_stats_t packets;
2659 	u64_stats_t bytes;
2660 	struct u64_stats_sync syncp;
2661 } __aligned(2 * sizeof(u64));
2662 
2663 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2664 
2665 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2666 {
2667 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2668 
2669 	u64_stats_update_begin(&tstats->syncp);
2670 	tstats->rx_bytes += len;
2671 	tstats->rx_packets++;
2672 	u64_stats_update_end(&tstats->syncp);
2673 }
2674 
2675 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2676 					  unsigned int packets,
2677 					  unsigned int len)
2678 {
2679 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2680 
2681 	u64_stats_update_begin(&tstats->syncp);
2682 	tstats->tx_bytes += len;
2683 	tstats->tx_packets += packets;
2684 	u64_stats_update_end(&tstats->syncp);
2685 }
2686 
2687 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2688 {
2689 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2690 
2691 	u64_stats_update_begin(&lstats->syncp);
2692 	u64_stats_add(&lstats->bytes, len);
2693 	u64_stats_inc(&lstats->packets);
2694 	u64_stats_update_end(&lstats->syncp);
2695 }
2696 
2697 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2698 ({									\
2699 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2700 	if (pcpu_stats)	{						\
2701 		int __cpu;						\
2702 		for_each_possible_cpu(__cpu) {				\
2703 			typeof(type) *stat;				\
2704 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2705 			u64_stats_init(&stat->syncp);			\
2706 		}							\
2707 	}								\
2708 	pcpu_stats;							\
2709 })
2710 
2711 #define netdev_alloc_pcpu_stats(type)					\
2712 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2713 
2714 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2715 ({									\
2716 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2717 	if (pcpu_stats) {						\
2718 		int __cpu;						\
2719 		for_each_possible_cpu(__cpu) {				\
2720 			typeof(type) *stat;				\
2721 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2722 			u64_stats_init(&stat->syncp);			\
2723 		}							\
2724 	}								\
2725 	pcpu_stats;							\
2726 })
2727 
2728 enum netdev_lag_tx_type {
2729 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2730 	NETDEV_LAG_TX_TYPE_RANDOM,
2731 	NETDEV_LAG_TX_TYPE_BROADCAST,
2732 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2733 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2734 	NETDEV_LAG_TX_TYPE_HASH,
2735 };
2736 
2737 enum netdev_lag_hash {
2738 	NETDEV_LAG_HASH_NONE,
2739 	NETDEV_LAG_HASH_L2,
2740 	NETDEV_LAG_HASH_L34,
2741 	NETDEV_LAG_HASH_L23,
2742 	NETDEV_LAG_HASH_E23,
2743 	NETDEV_LAG_HASH_E34,
2744 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2745 	NETDEV_LAG_HASH_UNKNOWN,
2746 };
2747 
2748 struct netdev_lag_upper_info {
2749 	enum netdev_lag_tx_type tx_type;
2750 	enum netdev_lag_hash hash_type;
2751 };
2752 
2753 struct netdev_lag_lower_state_info {
2754 	u8 link_up : 1,
2755 	   tx_enabled : 1;
2756 };
2757 
2758 #include <linux/notifier.h>
2759 
2760 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2761  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2762  * adding new types.
2763  */
2764 enum netdev_cmd {
2765 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2766 	NETDEV_DOWN,
2767 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2768 				   detected a hardware crash and restarted
2769 				   - we can use this eg to kick tcp sessions
2770 				   once done */
2771 	NETDEV_CHANGE,		/* Notify device state change */
2772 	NETDEV_REGISTER,
2773 	NETDEV_UNREGISTER,
2774 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2775 	NETDEV_CHANGEADDR,	/* notify after the address change */
2776 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2777 	NETDEV_GOING_DOWN,
2778 	NETDEV_CHANGENAME,
2779 	NETDEV_FEAT_CHANGE,
2780 	NETDEV_BONDING_FAILOVER,
2781 	NETDEV_PRE_UP,
2782 	NETDEV_PRE_TYPE_CHANGE,
2783 	NETDEV_POST_TYPE_CHANGE,
2784 	NETDEV_POST_INIT,
2785 	NETDEV_RELEASE,
2786 	NETDEV_NOTIFY_PEERS,
2787 	NETDEV_JOIN,
2788 	NETDEV_CHANGEUPPER,
2789 	NETDEV_RESEND_IGMP,
2790 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2791 	NETDEV_CHANGEINFODATA,
2792 	NETDEV_BONDING_INFO,
2793 	NETDEV_PRECHANGEUPPER,
2794 	NETDEV_CHANGELOWERSTATE,
2795 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2796 	NETDEV_UDP_TUNNEL_DROP_INFO,
2797 	NETDEV_CHANGE_TX_QUEUE_LEN,
2798 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2799 	NETDEV_CVLAN_FILTER_DROP_INFO,
2800 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2801 	NETDEV_SVLAN_FILTER_DROP_INFO,
2802 };
2803 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2804 
2805 int register_netdevice_notifier(struct notifier_block *nb);
2806 int unregister_netdevice_notifier(struct notifier_block *nb);
2807 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2808 int unregister_netdevice_notifier_net(struct net *net,
2809 				      struct notifier_block *nb);
2810 int register_netdevice_notifier_dev_net(struct net_device *dev,
2811 					struct notifier_block *nb,
2812 					struct netdev_net_notifier *nn);
2813 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2814 					  struct notifier_block *nb,
2815 					  struct netdev_net_notifier *nn);
2816 
2817 struct netdev_notifier_info {
2818 	struct net_device	*dev;
2819 	struct netlink_ext_ack	*extack;
2820 };
2821 
2822 struct netdev_notifier_info_ext {
2823 	struct netdev_notifier_info info; /* must be first */
2824 	union {
2825 		u32 mtu;
2826 	} ext;
2827 };
2828 
2829 struct netdev_notifier_change_info {
2830 	struct netdev_notifier_info info; /* must be first */
2831 	unsigned int flags_changed;
2832 };
2833 
2834 struct netdev_notifier_changeupper_info {
2835 	struct netdev_notifier_info info; /* must be first */
2836 	struct net_device *upper_dev; /* new upper dev */
2837 	bool master; /* is upper dev master */
2838 	bool linking; /* is the notification for link or unlink */
2839 	void *upper_info; /* upper dev info */
2840 };
2841 
2842 struct netdev_notifier_changelowerstate_info {
2843 	struct netdev_notifier_info info; /* must be first */
2844 	void *lower_state_info; /* is lower dev state */
2845 };
2846 
2847 struct netdev_notifier_pre_changeaddr_info {
2848 	struct netdev_notifier_info info; /* must be first */
2849 	const unsigned char *dev_addr;
2850 };
2851 
2852 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2853 					     struct net_device *dev)
2854 {
2855 	info->dev = dev;
2856 	info->extack = NULL;
2857 }
2858 
2859 static inline struct net_device *
2860 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2861 {
2862 	return info->dev;
2863 }
2864 
2865 static inline struct netlink_ext_ack *
2866 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2867 {
2868 	return info->extack;
2869 }
2870 
2871 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2872 
2873 
2874 extern rwlock_t				dev_base_lock;		/* Device list lock */
2875 
2876 #define for_each_netdev(net, d)		\
2877 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2878 #define for_each_netdev_reverse(net, d)	\
2879 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2880 #define for_each_netdev_rcu(net, d)		\
2881 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2882 #define for_each_netdev_safe(net, d, n)	\
2883 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2884 #define for_each_netdev_continue(net, d)		\
2885 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2886 #define for_each_netdev_continue_reverse(net, d)		\
2887 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2888 						     dev_list)
2889 #define for_each_netdev_continue_rcu(net, d)		\
2890 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2891 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2892 		for_each_netdev_rcu(&init_net, slave)	\
2893 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2894 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2895 
2896 static inline struct net_device *next_net_device(struct net_device *dev)
2897 {
2898 	struct list_head *lh;
2899 	struct net *net;
2900 
2901 	net = dev_net(dev);
2902 	lh = dev->dev_list.next;
2903 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2904 }
2905 
2906 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2907 {
2908 	struct list_head *lh;
2909 	struct net *net;
2910 
2911 	net = dev_net(dev);
2912 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2913 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2914 }
2915 
2916 static inline struct net_device *first_net_device(struct net *net)
2917 {
2918 	return list_empty(&net->dev_base_head) ? NULL :
2919 		net_device_entry(net->dev_base_head.next);
2920 }
2921 
2922 static inline struct net_device *first_net_device_rcu(struct net *net)
2923 {
2924 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2925 
2926 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2927 }
2928 
2929 int netdev_boot_setup_check(struct net_device *dev);
2930 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2931 				       const char *hwaddr);
2932 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2933 void dev_add_pack(struct packet_type *pt);
2934 void dev_remove_pack(struct packet_type *pt);
2935 void __dev_remove_pack(struct packet_type *pt);
2936 void dev_add_offload(struct packet_offload *po);
2937 void dev_remove_offload(struct packet_offload *po);
2938 
2939 int dev_get_iflink(const struct net_device *dev);
2940 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2941 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2942 			  struct net_device_path_stack *stack);
2943 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2944 				      unsigned short mask);
2945 struct net_device *dev_get_by_name(struct net *net, const char *name);
2946 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2947 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2948 int dev_alloc_name(struct net_device *dev, const char *name);
2949 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2950 void dev_close(struct net_device *dev);
2951 void dev_close_many(struct list_head *head, bool unlink);
2952 void dev_disable_lro(struct net_device *dev);
2953 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2954 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2955 		     struct net_device *sb_dev);
2956 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2957 		       struct net_device *sb_dev);
2958 
2959 int dev_queue_xmit(struct sk_buff *skb);
2960 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2961 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2962 
2963 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2964 {
2965 	int ret;
2966 
2967 	ret = __dev_direct_xmit(skb, queue_id);
2968 	if (!dev_xmit_complete(ret))
2969 		kfree_skb(skb);
2970 	return ret;
2971 }
2972 
2973 int register_netdevice(struct net_device *dev);
2974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2975 void unregister_netdevice_many(struct list_head *head);
2976 static inline void unregister_netdevice(struct net_device *dev)
2977 {
2978 	unregister_netdevice_queue(dev, NULL);
2979 }
2980 
2981 int netdev_refcnt_read(const struct net_device *dev);
2982 void free_netdev(struct net_device *dev);
2983 void netdev_freemem(struct net_device *dev);
2984 int init_dummy_netdev(struct net_device *dev);
2985 
2986 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2987 					 struct sk_buff *skb,
2988 					 bool all_slaves);
2989 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2990 					    struct sock *sk);
2991 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2992 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2993 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2994 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2995 int netdev_get_name(struct net *net, char *name, int ifindex);
2996 int dev_restart(struct net_device *dev);
2997 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2998 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2999 
3000 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
3001 {
3002 	return NAPI_GRO_CB(skb)->data_offset;
3003 }
3004 
3005 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
3006 {
3007 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
3008 }
3009 
3010 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3011 {
3012 	NAPI_GRO_CB(skb)->data_offset += len;
3013 }
3014 
3015 static inline void *skb_gro_header_fast(struct sk_buff *skb,
3016 					unsigned int offset)
3017 {
3018 	return NAPI_GRO_CB(skb)->frag0 + offset;
3019 }
3020 
3021 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3022 {
3023 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
3024 }
3025 
3026 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3027 {
3028 	NAPI_GRO_CB(skb)->frag0 = NULL;
3029 	NAPI_GRO_CB(skb)->frag0_len = 0;
3030 }
3031 
3032 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3033 					unsigned int offset)
3034 {
3035 	if (!pskb_may_pull(skb, hlen))
3036 		return NULL;
3037 
3038 	skb_gro_frag0_invalidate(skb);
3039 	return skb->data + offset;
3040 }
3041 
3042 static inline void *skb_gro_network_header(struct sk_buff *skb)
3043 {
3044 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3045 	       skb_network_offset(skb);
3046 }
3047 
3048 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3049 					const void *start, unsigned int len)
3050 {
3051 	if (NAPI_GRO_CB(skb)->csum_valid)
3052 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3053 						  csum_partial(start, len, 0));
3054 }
3055 
3056 /* GRO checksum functions. These are logical equivalents of the normal
3057  * checksum functions (in skbuff.h) except that they operate on the GRO
3058  * offsets and fields in sk_buff.
3059  */
3060 
3061 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3062 
3063 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3064 {
3065 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3066 }
3067 
3068 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3069 						      bool zero_okay,
3070 						      __sum16 check)
3071 {
3072 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3073 		skb_checksum_start_offset(skb) <
3074 		 skb_gro_offset(skb)) &&
3075 		!skb_at_gro_remcsum_start(skb) &&
3076 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3077 		(!zero_okay || check));
3078 }
3079 
3080 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3081 							   __wsum psum)
3082 {
3083 	if (NAPI_GRO_CB(skb)->csum_valid &&
3084 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3085 		return 0;
3086 
3087 	NAPI_GRO_CB(skb)->csum = psum;
3088 
3089 	return __skb_gro_checksum_complete(skb);
3090 }
3091 
3092 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3093 {
3094 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3095 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3096 		NAPI_GRO_CB(skb)->csum_cnt--;
3097 	} else {
3098 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3099 		 * verified a new top level checksum or an encapsulated one
3100 		 * during GRO. This saves work if we fallback to normal path.
3101 		 */
3102 		__skb_incr_checksum_unnecessary(skb);
3103 	}
3104 }
3105 
3106 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3107 				    compute_pseudo)			\
3108 ({									\
3109 	__sum16 __ret = 0;						\
3110 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3111 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3112 				compute_pseudo(skb, proto));		\
3113 	if (!__ret)							\
3114 		skb_gro_incr_csum_unnecessary(skb);			\
3115 	__ret;								\
3116 })
3117 
3118 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3119 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3120 
3121 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3122 					     compute_pseudo)		\
3123 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3124 
3125 #define skb_gro_checksum_simple_validate(skb)				\
3126 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3127 
3128 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3129 {
3130 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3131 		!NAPI_GRO_CB(skb)->csum_valid);
3132 }
3133 
3134 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3135 					      __wsum pseudo)
3136 {
3137 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3138 	NAPI_GRO_CB(skb)->csum_valid = 1;
3139 }
3140 
3141 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3142 do {									\
3143 	if (__skb_gro_checksum_convert_check(skb))			\
3144 		__skb_gro_checksum_convert(skb, 			\
3145 					   compute_pseudo(skb, proto));	\
3146 } while (0)
3147 
3148 struct gro_remcsum {
3149 	int offset;
3150 	__wsum delta;
3151 };
3152 
3153 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3154 {
3155 	grc->offset = 0;
3156 	grc->delta = 0;
3157 }
3158 
3159 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3160 					    unsigned int off, size_t hdrlen,
3161 					    int start, int offset,
3162 					    struct gro_remcsum *grc,
3163 					    bool nopartial)
3164 {
3165 	__wsum delta;
3166 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3167 
3168 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3169 
3170 	if (!nopartial) {
3171 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3172 		return ptr;
3173 	}
3174 
3175 	ptr = skb_gro_header_fast(skb, off);
3176 	if (skb_gro_header_hard(skb, off + plen)) {
3177 		ptr = skb_gro_header_slow(skb, off + plen, off);
3178 		if (!ptr)
3179 			return NULL;
3180 	}
3181 
3182 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3183 			       start, offset);
3184 
3185 	/* Adjust skb->csum since we changed the packet */
3186 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3187 
3188 	grc->offset = off + hdrlen + offset;
3189 	grc->delta = delta;
3190 
3191 	return ptr;
3192 }
3193 
3194 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3195 					   struct gro_remcsum *grc)
3196 {
3197 	void *ptr;
3198 	size_t plen = grc->offset + sizeof(u16);
3199 
3200 	if (!grc->delta)
3201 		return;
3202 
3203 	ptr = skb_gro_header_fast(skb, grc->offset);
3204 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3205 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3206 		if (!ptr)
3207 			return;
3208 	}
3209 
3210 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3211 }
3212 
3213 #ifdef CONFIG_XFRM_OFFLOAD
3214 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3215 {
3216 	if (PTR_ERR(pp) != -EINPROGRESS)
3217 		NAPI_GRO_CB(skb)->flush |= flush;
3218 }
3219 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3220 					       struct sk_buff *pp,
3221 					       int flush,
3222 					       struct gro_remcsum *grc)
3223 {
3224 	if (PTR_ERR(pp) != -EINPROGRESS) {
3225 		NAPI_GRO_CB(skb)->flush |= flush;
3226 		skb_gro_remcsum_cleanup(skb, grc);
3227 		skb->remcsum_offload = 0;
3228 	}
3229 }
3230 #else
3231 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3232 {
3233 	NAPI_GRO_CB(skb)->flush |= flush;
3234 }
3235 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3236 					       struct sk_buff *pp,
3237 					       int flush,
3238 					       struct gro_remcsum *grc)
3239 {
3240 	NAPI_GRO_CB(skb)->flush |= flush;
3241 	skb_gro_remcsum_cleanup(skb, grc);
3242 	skb->remcsum_offload = 0;
3243 }
3244 #endif
3245 
3246 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3247 				  unsigned short type,
3248 				  const void *daddr, const void *saddr,
3249 				  unsigned int len)
3250 {
3251 	if (!dev->header_ops || !dev->header_ops->create)
3252 		return 0;
3253 
3254 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3255 }
3256 
3257 static inline int dev_parse_header(const struct sk_buff *skb,
3258 				   unsigned char *haddr)
3259 {
3260 	const struct net_device *dev = skb->dev;
3261 
3262 	if (!dev->header_ops || !dev->header_ops->parse)
3263 		return 0;
3264 	return dev->header_ops->parse(skb, haddr);
3265 }
3266 
3267 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3268 {
3269 	const struct net_device *dev = skb->dev;
3270 
3271 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3272 		return 0;
3273 	return dev->header_ops->parse_protocol(skb);
3274 }
3275 
3276 /* ll_header must have at least hard_header_len allocated */
3277 static inline bool dev_validate_header(const struct net_device *dev,
3278 				       char *ll_header, int len)
3279 {
3280 	if (likely(len >= dev->hard_header_len))
3281 		return true;
3282 	if (len < dev->min_header_len)
3283 		return false;
3284 
3285 	if (capable(CAP_SYS_RAWIO)) {
3286 		memset(ll_header + len, 0, dev->hard_header_len - len);
3287 		return true;
3288 	}
3289 
3290 	if (dev->header_ops && dev->header_ops->validate)
3291 		return dev->header_ops->validate(ll_header, len);
3292 
3293 	return false;
3294 }
3295 
3296 static inline bool dev_has_header(const struct net_device *dev)
3297 {
3298 	return dev->header_ops && dev->header_ops->create;
3299 }
3300 
3301 #ifdef CONFIG_NET_FLOW_LIMIT
3302 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3303 struct sd_flow_limit {
3304 	u64			count;
3305 	unsigned int		num_buckets;
3306 	unsigned int		history_head;
3307 	u16			history[FLOW_LIMIT_HISTORY];
3308 	u8			buckets[];
3309 };
3310 
3311 extern int netdev_flow_limit_table_len;
3312 #endif /* CONFIG_NET_FLOW_LIMIT */
3313 
3314 /*
3315  * Incoming packets are placed on per-CPU queues
3316  */
3317 struct softnet_data {
3318 	struct list_head	poll_list;
3319 	struct sk_buff_head	process_queue;
3320 
3321 	/* stats */
3322 	unsigned int		processed;
3323 	unsigned int		time_squeeze;
3324 	unsigned int		received_rps;
3325 #ifdef CONFIG_RPS
3326 	struct softnet_data	*rps_ipi_list;
3327 #endif
3328 #ifdef CONFIG_NET_FLOW_LIMIT
3329 	struct sd_flow_limit __rcu *flow_limit;
3330 #endif
3331 	struct Qdisc		*output_queue;
3332 	struct Qdisc		**output_queue_tailp;
3333 	struct sk_buff		*completion_queue;
3334 #ifdef CONFIG_XFRM_OFFLOAD
3335 	struct sk_buff_head	xfrm_backlog;
3336 #endif
3337 	/* written and read only by owning cpu: */
3338 	struct {
3339 		u16 recursion;
3340 		u8  more;
3341 	} xmit;
3342 #ifdef CONFIG_RPS
3343 	/* input_queue_head should be written by cpu owning this struct,
3344 	 * and only read by other cpus. Worth using a cache line.
3345 	 */
3346 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3347 
3348 	/* Elements below can be accessed between CPUs for RPS/RFS */
3349 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3350 	struct softnet_data	*rps_ipi_next;
3351 	unsigned int		cpu;
3352 	unsigned int		input_queue_tail;
3353 #endif
3354 	unsigned int		dropped;
3355 	struct sk_buff_head	input_pkt_queue;
3356 	struct napi_struct	backlog;
3357 
3358 };
3359 
3360 static inline void input_queue_head_incr(struct softnet_data *sd)
3361 {
3362 #ifdef CONFIG_RPS
3363 	sd->input_queue_head++;
3364 #endif
3365 }
3366 
3367 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3368 					      unsigned int *qtail)
3369 {
3370 #ifdef CONFIG_RPS
3371 	*qtail = ++sd->input_queue_tail;
3372 #endif
3373 }
3374 
3375 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3376 
3377 static inline int dev_recursion_level(void)
3378 {
3379 	return this_cpu_read(softnet_data.xmit.recursion);
3380 }
3381 
3382 #define XMIT_RECURSION_LIMIT	8
3383 static inline bool dev_xmit_recursion(void)
3384 {
3385 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3386 			XMIT_RECURSION_LIMIT);
3387 }
3388 
3389 static inline void dev_xmit_recursion_inc(void)
3390 {
3391 	__this_cpu_inc(softnet_data.xmit.recursion);
3392 }
3393 
3394 static inline void dev_xmit_recursion_dec(void)
3395 {
3396 	__this_cpu_dec(softnet_data.xmit.recursion);
3397 }
3398 
3399 void __netif_schedule(struct Qdisc *q);
3400 void netif_schedule_queue(struct netdev_queue *txq);
3401 
3402 static inline void netif_tx_schedule_all(struct net_device *dev)
3403 {
3404 	unsigned int i;
3405 
3406 	for (i = 0; i < dev->num_tx_queues; i++)
3407 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3408 }
3409 
3410 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3411 {
3412 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3413 }
3414 
3415 /**
3416  *	netif_start_queue - allow transmit
3417  *	@dev: network device
3418  *
3419  *	Allow upper layers to call the device hard_start_xmit routine.
3420  */
3421 static inline void netif_start_queue(struct net_device *dev)
3422 {
3423 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3424 }
3425 
3426 static inline void netif_tx_start_all_queues(struct net_device *dev)
3427 {
3428 	unsigned int i;
3429 
3430 	for (i = 0; i < dev->num_tx_queues; i++) {
3431 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3432 		netif_tx_start_queue(txq);
3433 	}
3434 }
3435 
3436 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3437 
3438 /**
3439  *	netif_wake_queue - restart transmit
3440  *	@dev: network device
3441  *
3442  *	Allow upper layers to call the device hard_start_xmit routine.
3443  *	Used for flow control when transmit resources are available.
3444  */
3445 static inline void netif_wake_queue(struct net_device *dev)
3446 {
3447 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3448 }
3449 
3450 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3451 {
3452 	unsigned int i;
3453 
3454 	for (i = 0; i < dev->num_tx_queues; i++) {
3455 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3456 		netif_tx_wake_queue(txq);
3457 	}
3458 }
3459 
3460 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3461 {
3462 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3463 }
3464 
3465 /**
3466  *	netif_stop_queue - stop transmitted packets
3467  *	@dev: network device
3468  *
3469  *	Stop upper layers calling the device hard_start_xmit routine.
3470  *	Used for flow control when transmit resources are unavailable.
3471  */
3472 static inline void netif_stop_queue(struct net_device *dev)
3473 {
3474 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3475 }
3476 
3477 void netif_tx_stop_all_queues(struct net_device *dev);
3478 
3479 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3480 {
3481 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3482 }
3483 
3484 /**
3485  *	netif_queue_stopped - test if transmit queue is flowblocked
3486  *	@dev: network device
3487  *
3488  *	Test if transmit queue on device is currently unable to send.
3489  */
3490 static inline bool netif_queue_stopped(const struct net_device *dev)
3491 {
3492 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3493 }
3494 
3495 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3496 {
3497 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3498 }
3499 
3500 static inline bool
3501 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3502 {
3503 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3504 }
3505 
3506 static inline bool
3507 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3508 {
3509 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3510 }
3511 
3512 /**
3513  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3514  *	@dev_queue: pointer to transmit queue
3515  *	@min_limit: dql minimum limit
3516  *
3517  * Forces xmit_more() to return true until the minimum threshold
3518  * defined by @min_limit is reached (or until the tx queue is
3519  * empty). Warning: to be use with care, misuse will impact the
3520  * latency.
3521  */
3522 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3523 						  unsigned int min_limit)
3524 {
3525 #ifdef CONFIG_BQL
3526 	dev_queue->dql.min_limit = min_limit;
3527 #endif
3528 }
3529 
3530 /**
3531  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3532  *	@dev_queue: pointer to transmit queue
3533  *
3534  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3535  * to give appropriate hint to the CPU.
3536  */
3537 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3538 {
3539 #ifdef CONFIG_BQL
3540 	prefetchw(&dev_queue->dql.num_queued);
3541 #endif
3542 }
3543 
3544 /**
3545  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3546  *	@dev_queue: pointer to transmit queue
3547  *
3548  * BQL enabled drivers might use this helper in their TX completion path,
3549  * to give appropriate hint to the CPU.
3550  */
3551 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3552 {
3553 #ifdef CONFIG_BQL
3554 	prefetchw(&dev_queue->dql.limit);
3555 #endif
3556 }
3557 
3558 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3559 					unsigned int bytes)
3560 {
3561 #ifdef CONFIG_BQL
3562 	dql_queued(&dev_queue->dql, bytes);
3563 
3564 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3565 		return;
3566 
3567 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3568 
3569 	/*
3570 	 * The XOFF flag must be set before checking the dql_avail below,
3571 	 * because in netdev_tx_completed_queue we update the dql_completed
3572 	 * before checking the XOFF flag.
3573 	 */
3574 	smp_mb();
3575 
3576 	/* check again in case another CPU has just made room avail */
3577 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3578 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3579 #endif
3580 }
3581 
3582 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3583  * that they should not test BQL status themselves.
3584  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3585  * skb of a batch.
3586  * Returns true if the doorbell must be used to kick the NIC.
3587  */
3588 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3589 					  unsigned int bytes,
3590 					  bool xmit_more)
3591 {
3592 	if (xmit_more) {
3593 #ifdef CONFIG_BQL
3594 		dql_queued(&dev_queue->dql, bytes);
3595 #endif
3596 		return netif_tx_queue_stopped(dev_queue);
3597 	}
3598 	netdev_tx_sent_queue(dev_queue, bytes);
3599 	return true;
3600 }
3601 
3602 /**
3603  * 	netdev_sent_queue - report the number of bytes queued to hardware
3604  * 	@dev: network device
3605  * 	@bytes: number of bytes queued to the hardware device queue
3606  *
3607  * 	Report the number of bytes queued for sending/completion to the network
3608  * 	device hardware queue. @bytes should be a good approximation and should
3609  * 	exactly match netdev_completed_queue() @bytes
3610  */
3611 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3612 {
3613 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3614 }
3615 
3616 static inline bool __netdev_sent_queue(struct net_device *dev,
3617 				       unsigned int bytes,
3618 				       bool xmit_more)
3619 {
3620 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3621 				      xmit_more);
3622 }
3623 
3624 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3625 					     unsigned int pkts, unsigned int bytes)
3626 {
3627 #ifdef CONFIG_BQL
3628 	if (unlikely(!bytes))
3629 		return;
3630 
3631 	dql_completed(&dev_queue->dql, bytes);
3632 
3633 	/*
3634 	 * Without the memory barrier there is a small possiblity that
3635 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3636 	 * be stopped forever
3637 	 */
3638 	smp_mb();
3639 
3640 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3641 		return;
3642 
3643 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3644 		netif_schedule_queue(dev_queue);
3645 #endif
3646 }
3647 
3648 /**
3649  * 	netdev_completed_queue - report bytes and packets completed by device
3650  * 	@dev: network device
3651  * 	@pkts: actual number of packets sent over the medium
3652  * 	@bytes: actual number of bytes sent over the medium
3653  *
3654  * 	Report the number of bytes and packets transmitted by the network device
3655  * 	hardware queue over the physical medium, @bytes must exactly match the
3656  * 	@bytes amount passed to netdev_sent_queue()
3657  */
3658 static inline void netdev_completed_queue(struct net_device *dev,
3659 					  unsigned int pkts, unsigned int bytes)
3660 {
3661 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3662 }
3663 
3664 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3665 {
3666 #ifdef CONFIG_BQL
3667 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3668 	dql_reset(&q->dql);
3669 #endif
3670 }
3671 
3672 /**
3673  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3674  * 	@dev_queue: network device
3675  *
3676  * 	Reset the bytes and packet count of a network device and clear the
3677  * 	software flow control OFF bit for this network device
3678  */
3679 static inline void netdev_reset_queue(struct net_device *dev_queue)
3680 {
3681 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3682 }
3683 
3684 /**
3685  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3686  * 	@dev: network device
3687  * 	@queue_index: given tx queue index
3688  *
3689  * 	Returns 0 if given tx queue index >= number of device tx queues,
3690  * 	otherwise returns the originally passed tx queue index.
3691  */
3692 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3693 {
3694 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3695 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3696 				     dev->name, queue_index,
3697 				     dev->real_num_tx_queues);
3698 		return 0;
3699 	}
3700 
3701 	return queue_index;
3702 }
3703 
3704 /**
3705  *	netif_running - test if up
3706  *	@dev: network device
3707  *
3708  *	Test if the device has been brought up.
3709  */
3710 static inline bool netif_running(const struct net_device *dev)
3711 {
3712 	return test_bit(__LINK_STATE_START, &dev->state);
3713 }
3714 
3715 /*
3716  * Routines to manage the subqueues on a device.  We only need start,
3717  * stop, and a check if it's stopped.  All other device management is
3718  * done at the overall netdevice level.
3719  * Also test the device if we're multiqueue.
3720  */
3721 
3722 /**
3723  *	netif_start_subqueue - allow sending packets on subqueue
3724  *	@dev: network device
3725  *	@queue_index: sub queue index
3726  *
3727  * Start individual transmit queue of a device with multiple transmit queues.
3728  */
3729 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3730 {
3731 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3732 
3733 	netif_tx_start_queue(txq);
3734 }
3735 
3736 /**
3737  *	netif_stop_subqueue - stop sending packets on subqueue
3738  *	@dev: network device
3739  *	@queue_index: sub queue index
3740  *
3741  * Stop individual transmit queue of a device with multiple transmit queues.
3742  */
3743 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3744 {
3745 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3746 	netif_tx_stop_queue(txq);
3747 }
3748 
3749 /**
3750  *	__netif_subqueue_stopped - test status of subqueue
3751  *	@dev: network device
3752  *	@queue_index: sub queue index
3753  *
3754  * Check individual transmit queue of a device with multiple transmit queues.
3755  */
3756 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3757 					    u16 queue_index)
3758 {
3759 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3760 
3761 	return netif_tx_queue_stopped(txq);
3762 }
3763 
3764 /**
3765  *	netif_subqueue_stopped - test status of subqueue
3766  *	@dev: network device
3767  *	@skb: sub queue buffer pointer
3768  *
3769  * Check individual transmit queue of a device with multiple transmit queues.
3770  */
3771 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3772 					  struct sk_buff *skb)
3773 {
3774 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3775 }
3776 
3777 /**
3778  *	netif_wake_subqueue - allow sending packets on subqueue
3779  *	@dev: network device
3780  *	@queue_index: sub queue index
3781  *
3782  * Resume individual transmit queue of a device with multiple transmit queues.
3783  */
3784 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3785 {
3786 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3787 
3788 	netif_tx_wake_queue(txq);
3789 }
3790 
3791 #ifdef CONFIG_XPS
3792 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3793 			u16 index);
3794 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3795 			  u16 index, enum xps_map_type type);
3796 
3797 /**
3798  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3799  *	@j: CPU/Rx queue index
3800  *	@mask: bitmask of all cpus/rx queues
3801  *	@nr_bits: number of bits in the bitmask
3802  *
3803  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3804  */
3805 static inline bool netif_attr_test_mask(unsigned long j,
3806 					const unsigned long *mask,
3807 					unsigned int nr_bits)
3808 {
3809 	cpu_max_bits_warn(j, nr_bits);
3810 	return test_bit(j, mask);
3811 }
3812 
3813 /**
3814  *	netif_attr_test_online - Test for online CPU/Rx queue
3815  *	@j: CPU/Rx queue index
3816  *	@online_mask: bitmask for CPUs/Rx queues that are online
3817  *	@nr_bits: number of bits in the bitmask
3818  *
3819  * Returns true if a CPU/Rx queue is online.
3820  */
3821 static inline bool netif_attr_test_online(unsigned long j,
3822 					  const unsigned long *online_mask,
3823 					  unsigned int nr_bits)
3824 {
3825 	cpu_max_bits_warn(j, nr_bits);
3826 
3827 	if (online_mask)
3828 		return test_bit(j, online_mask);
3829 
3830 	return (j < nr_bits);
3831 }
3832 
3833 /**
3834  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3835  *	@n: CPU/Rx queue index
3836  *	@srcp: the cpumask/Rx queue mask pointer
3837  *	@nr_bits: number of bits in the bitmask
3838  *
3839  * Returns >= nr_bits if no further CPUs/Rx queues set.
3840  */
3841 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3842 					       unsigned int nr_bits)
3843 {
3844 	/* -1 is a legal arg here. */
3845 	if (n != -1)
3846 		cpu_max_bits_warn(n, nr_bits);
3847 
3848 	if (srcp)
3849 		return find_next_bit(srcp, nr_bits, n + 1);
3850 
3851 	return n + 1;
3852 }
3853 
3854 /**
3855  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3856  *	@n: CPU/Rx queue index
3857  *	@src1p: the first CPUs/Rx queues mask pointer
3858  *	@src2p: the second CPUs/Rx queues mask pointer
3859  *	@nr_bits: number of bits in the bitmask
3860  *
3861  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3862  */
3863 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3864 					  const unsigned long *src2p,
3865 					  unsigned int nr_bits)
3866 {
3867 	/* -1 is a legal arg here. */
3868 	if (n != -1)
3869 		cpu_max_bits_warn(n, nr_bits);
3870 
3871 	if (src1p && src2p)
3872 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3873 	else if (src1p)
3874 		return find_next_bit(src1p, nr_bits, n + 1);
3875 	else if (src2p)
3876 		return find_next_bit(src2p, nr_bits, n + 1);
3877 
3878 	return n + 1;
3879 }
3880 #else
3881 static inline int netif_set_xps_queue(struct net_device *dev,
3882 				      const struct cpumask *mask,
3883 				      u16 index)
3884 {
3885 	return 0;
3886 }
3887 
3888 static inline int __netif_set_xps_queue(struct net_device *dev,
3889 					const unsigned long *mask,
3890 					u16 index, enum xps_map_type type)
3891 {
3892 	return 0;
3893 }
3894 #endif
3895 
3896 /**
3897  *	netif_is_multiqueue - test if device has multiple transmit queues
3898  *	@dev: network device
3899  *
3900  * Check if device has multiple transmit queues
3901  */
3902 static inline bool netif_is_multiqueue(const struct net_device *dev)
3903 {
3904 	return dev->num_tx_queues > 1;
3905 }
3906 
3907 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3908 
3909 #ifdef CONFIG_SYSFS
3910 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3911 #else
3912 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3913 						unsigned int rxqs)
3914 {
3915 	dev->real_num_rx_queues = rxqs;
3916 	return 0;
3917 }
3918 #endif
3919 int netif_set_real_num_queues(struct net_device *dev,
3920 			      unsigned int txq, unsigned int rxq);
3921 
3922 static inline struct netdev_rx_queue *
3923 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3924 {
3925 	return dev->_rx + rxq;
3926 }
3927 
3928 #ifdef CONFIG_SYSFS
3929 static inline unsigned int get_netdev_rx_queue_index(
3930 		struct netdev_rx_queue *queue)
3931 {
3932 	struct net_device *dev = queue->dev;
3933 	int index = queue - dev->_rx;
3934 
3935 	BUG_ON(index >= dev->num_rx_queues);
3936 	return index;
3937 }
3938 #endif
3939 
3940 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3941 int netif_get_num_default_rss_queues(void);
3942 
3943 enum skb_free_reason {
3944 	SKB_REASON_CONSUMED,
3945 	SKB_REASON_DROPPED,
3946 };
3947 
3948 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3949 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3950 
3951 /*
3952  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3953  * interrupt context or with hardware interrupts being disabled.
3954  * (in_irq() || irqs_disabled())
3955  *
3956  * We provide four helpers that can be used in following contexts :
3957  *
3958  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3959  *  replacing kfree_skb(skb)
3960  *
3961  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3962  *  Typically used in place of consume_skb(skb) in TX completion path
3963  *
3964  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3965  *  replacing kfree_skb(skb)
3966  *
3967  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3968  *  and consumed a packet. Used in place of consume_skb(skb)
3969  */
3970 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3971 {
3972 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3973 }
3974 
3975 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3976 {
3977 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3978 }
3979 
3980 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3981 {
3982 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3983 }
3984 
3985 static inline void dev_consume_skb_any(struct sk_buff *skb)
3986 {
3987 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3988 }
3989 
3990 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3991 			     struct bpf_prog *xdp_prog);
3992 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3993 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3994 int netif_rx(struct sk_buff *skb);
3995 int netif_rx_ni(struct sk_buff *skb);
3996 int netif_rx_any_context(struct sk_buff *skb);
3997 int netif_receive_skb(struct sk_buff *skb);
3998 int netif_receive_skb_core(struct sk_buff *skb);
3999 void netif_receive_skb_list(struct list_head *head);
4000 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4001 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4002 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4003 gro_result_t napi_gro_frags(struct napi_struct *napi);
4004 struct packet_offload *gro_find_receive_by_type(__be16 type);
4005 struct packet_offload *gro_find_complete_by_type(__be16 type);
4006 
4007 static inline void napi_free_frags(struct napi_struct *napi)
4008 {
4009 	kfree_skb(napi->skb);
4010 	napi->skb = NULL;
4011 }
4012 
4013 bool netdev_is_rx_handler_busy(struct net_device *dev);
4014 int netdev_rx_handler_register(struct net_device *dev,
4015 			       rx_handler_func_t *rx_handler,
4016 			       void *rx_handler_data);
4017 void netdev_rx_handler_unregister(struct net_device *dev);
4018 
4019 bool dev_valid_name(const char *name);
4020 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4021 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4022 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4023 		void __user *data, bool *need_copyout);
4024 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4025 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4026 unsigned int dev_get_flags(const struct net_device *);
4027 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4028 		       struct netlink_ext_ack *extack);
4029 int dev_change_flags(struct net_device *dev, unsigned int flags,
4030 		     struct netlink_ext_ack *extack);
4031 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4032 			unsigned int gchanges);
4033 int dev_change_name(struct net_device *, const char *);
4034 int dev_set_alias(struct net_device *, const char *, size_t);
4035 int dev_get_alias(const struct net_device *, char *, size_t);
4036 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4037 			       const char *pat, int new_ifindex);
4038 static inline
4039 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4040 			     const char *pat)
4041 {
4042 	return __dev_change_net_namespace(dev, net, pat, 0);
4043 }
4044 int __dev_set_mtu(struct net_device *, int);
4045 int dev_validate_mtu(struct net_device *dev, int mtu,
4046 		     struct netlink_ext_ack *extack);
4047 int dev_set_mtu_ext(struct net_device *dev, int mtu,
4048 		    struct netlink_ext_ack *extack);
4049 int dev_set_mtu(struct net_device *, int);
4050 int dev_change_tx_queue_len(struct net_device *, unsigned long);
4051 void dev_set_group(struct net_device *, int);
4052 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4053 			      struct netlink_ext_ack *extack);
4054 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4055 			struct netlink_ext_ack *extack);
4056 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4057 			     struct netlink_ext_ack *extack);
4058 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4059 int dev_change_carrier(struct net_device *, bool new_carrier);
4060 int dev_get_phys_port_id(struct net_device *dev,
4061 			 struct netdev_phys_item_id *ppid);
4062 int dev_get_phys_port_name(struct net_device *dev,
4063 			   char *name, size_t len);
4064 int dev_get_port_parent_id(struct net_device *dev,
4065 			   struct netdev_phys_item_id *ppid, bool recurse);
4066 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4067 int dev_change_proto_down(struct net_device *dev, bool proto_down);
4068 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4069 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4070 				  u32 value);
4071 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4072 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4073 				    struct netdev_queue *txq, int *ret);
4074 
4075 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4076 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4077 		      int fd, int expected_fd, u32 flags);
4078 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4079 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4080 
4081 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4082 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4083 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4084 bool is_skb_forwardable(const struct net_device *dev,
4085 			const struct sk_buff *skb);
4086 
4087 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4088 						 const struct sk_buff *skb,
4089 						 const bool check_mtu)
4090 {
4091 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4092 	unsigned int len;
4093 
4094 	if (!(dev->flags & IFF_UP))
4095 		return false;
4096 
4097 	if (!check_mtu)
4098 		return true;
4099 
4100 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4101 	if (skb->len <= len)
4102 		return true;
4103 
4104 	/* if TSO is enabled, we don't care about the length as the packet
4105 	 * could be forwarded without being segmented before
4106 	 */
4107 	if (skb_is_gso(skb))
4108 		return true;
4109 
4110 	return false;
4111 }
4112 
4113 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4114 					       struct sk_buff *skb,
4115 					       const bool check_mtu)
4116 {
4117 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4118 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4119 		atomic_long_inc(&dev->rx_dropped);
4120 		kfree_skb(skb);
4121 		return NET_RX_DROP;
4122 	}
4123 
4124 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4125 	skb->priority = 0;
4126 	return 0;
4127 }
4128 
4129 bool dev_nit_active(struct net_device *dev);
4130 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4131 
4132 extern int		netdev_budget;
4133 extern unsigned int	netdev_budget_usecs;
4134 
4135 /* Called by rtnetlink.c:rtnl_unlock() */
4136 void netdev_run_todo(void);
4137 
4138 /**
4139  *	dev_put - release reference to device
4140  *	@dev: network device
4141  *
4142  * Release reference to device to allow it to be freed.
4143  */
4144 static inline void dev_put(struct net_device *dev)
4145 {
4146 	if (dev) {
4147 #ifdef CONFIG_PCPU_DEV_REFCNT
4148 		this_cpu_dec(*dev->pcpu_refcnt);
4149 #else
4150 		refcount_dec(&dev->dev_refcnt);
4151 #endif
4152 	}
4153 }
4154 
4155 /**
4156  *	dev_hold - get reference to device
4157  *	@dev: network device
4158  *
4159  * Hold reference to device to keep it from being freed.
4160  */
4161 static inline void dev_hold(struct net_device *dev)
4162 {
4163 	if (dev) {
4164 #ifdef CONFIG_PCPU_DEV_REFCNT
4165 		this_cpu_inc(*dev->pcpu_refcnt);
4166 #else
4167 		refcount_inc(&dev->dev_refcnt);
4168 #endif
4169 	}
4170 }
4171 
4172 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4173  * and _off may be called from IRQ context, but it is caller
4174  * who is responsible for serialization of these calls.
4175  *
4176  * The name carrier is inappropriate, these functions should really be
4177  * called netif_lowerlayer_*() because they represent the state of any
4178  * kind of lower layer not just hardware media.
4179  */
4180 
4181 void linkwatch_init_dev(struct net_device *dev);
4182 void linkwatch_fire_event(struct net_device *dev);
4183 void linkwatch_forget_dev(struct net_device *dev);
4184 
4185 /**
4186  *	netif_carrier_ok - test if carrier present
4187  *	@dev: network device
4188  *
4189  * Check if carrier is present on device
4190  */
4191 static inline bool netif_carrier_ok(const struct net_device *dev)
4192 {
4193 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4194 }
4195 
4196 unsigned long dev_trans_start(struct net_device *dev);
4197 
4198 void __netdev_watchdog_up(struct net_device *dev);
4199 
4200 void netif_carrier_on(struct net_device *dev);
4201 void netif_carrier_off(struct net_device *dev);
4202 void netif_carrier_event(struct net_device *dev);
4203 
4204 /**
4205  *	netif_dormant_on - mark device as dormant.
4206  *	@dev: network device
4207  *
4208  * Mark device as dormant (as per RFC2863).
4209  *
4210  * The dormant state indicates that the relevant interface is not
4211  * actually in a condition to pass packets (i.e., it is not 'up') but is
4212  * in a "pending" state, waiting for some external event.  For "on-
4213  * demand" interfaces, this new state identifies the situation where the
4214  * interface is waiting for events to place it in the up state.
4215  */
4216 static inline void netif_dormant_on(struct net_device *dev)
4217 {
4218 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4219 		linkwatch_fire_event(dev);
4220 }
4221 
4222 /**
4223  *	netif_dormant_off - set device as not dormant.
4224  *	@dev: network device
4225  *
4226  * Device is not in dormant state.
4227  */
4228 static inline void netif_dormant_off(struct net_device *dev)
4229 {
4230 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4231 		linkwatch_fire_event(dev);
4232 }
4233 
4234 /**
4235  *	netif_dormant - test if device is dormant
4236  *	@dev: network device
4237  *
4238  * Check if device is dormant.
4239  */
4240 static inline bool netif_dormant(const struct net_device *dev)
4241 {
4242 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4243 }
4244 
4245 
4246 /**
4247  *	netif_testing_on - mark device as under test.
4248  *	@dev: network device
4249  *
4250  * Mark device as under test (as per RFC2863).
4251  *
4252  * The testing state indicates that some test(s) must be performed on
4253  * the interface. After completion, of the test, the interface state
4254  * will change to up, dormant, or down, as appropriate.
4255  */
4256 static inline void netif_testing_on(struct net_device *dev)
4257 {
4258 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4259 		linkwatch_fire_event(dev);
4260 }
4261 
4262 /**
4263  *	netif_testing_off - set device as not under test.
4264  *	@dev: network device
4265  *
4266  * Device is not in testing state.
4267  */
4268 static inline void netif_testing_off(struct net_device *dev)
4269 {
4270 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4271 		linkwatch_fire_event(dev);
4272 }
4273 
4274 /**
4275  *	netif_testing - test if device is under test
4276  *	@dev: network device
4277  *
4278  * Check if device is under test
4279  */
4280 static inline bool netif_testing(const struct net_device *dev)
4281 {
4282 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4283 }
4284 
4285 
4286 /**
4287  *	netif_oper_up - test if device is operational
4288  *	@dev: network device
4289  *
4290  * Check if carrier is operational
4291  */
4292 static inline bool netif_oper_up(const struct net_device *dev)
4293 {
4294 	return (dev->operstate == IF_OPER_UP ||
4295 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4296 }
4297 
4298 /**
4299  *	netif_device_present - is device available or removed
4300  *	@dev: network device
4301  *
4302  * Check if device has not been removed from system.
4303  */
4304 static inline bool netif_device_present(const struct net_device *dev)
4305 {
4306 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4307 }
4308 
4309 void netif_device_detach(struct net_device *dev);
4310 
4311 void netif_device_attach(struct net_device *dev);
4312 
4313 /*
4314  * Network interface message level settings
4315  */
4316 
4317 enum {
4318 	NETIF_MSG_DRV_BIT,
4319 	NETIF_MSG_PROBE_BIT,
4320 	NETIF_MSG_LINK_BIT,
4321 	NETIF_MSG_TIMER_BIT,
4322 	NETIF_MSG_IFDOWN_BIT,
4323 	NETIF_MSG_IFUP_BIT,
4324 	NETIF_MSG_RX_ERR_BIT,
4325 	NETIF_MSG_TX_ERR_BIT,
4326 	NETIF_MSG_TX_QUEUED_BIT,
4327 	NETIF_MSG_INTR_BIT,
4328 	NETIF_MSG_TX_DONE_BIT,
4329 	NETIF_MSG_RX_STATUS_BIT,
4330 	NETIF_MSG_PKTDATA_BIT,
4331 	NETIF_MSG_HW_BIT,
4332 	NETIF_MSG_WOL_BIT,
4333 
4334 	/* When you add a new bit above, update netif_msg_class_names array
4335 	 * in net/ethtool/common.c
4336 	 */
4337 	NETIF_MSG_CLASS_COUNT,
4338 };
4339 /* Both ethtool_ops interface and internal driver implementation use u32 */
4340 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4341 
4342 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4343 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4344 
4345 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4346 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4347 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4348 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4349 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4350 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4351 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4352 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4353 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4354 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4355 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4356 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4357 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4358 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4359 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4360 
4361 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4362 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4363 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4364 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4365 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4366 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4367 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4368 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4369 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4370 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4371 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4372 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4373 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4374 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4375 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4376 
4377 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4378 {
4379 	/* use default */
4380 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4381 		return default_msg_enable_bits;
4382 	if (debug_value == 0)	/* no output */
4383 		return 0;
4384 	/* set low N bits */
4385 	return (1U << debug_value) - 1;
4386 }
4387 
4388 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4389 {
4390 	spin_lock(&txq->_xmit_lock);
4391 	txq->xmit_lock_owner = cpu;
4392 }
4393 
4394 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4395 {
4396 	__acquire(&txq->_xmit_lock);
4397 	return true;
4398 }
4399 
4400 static inline void __netif_tx_release(struct netdev_queue *txq)
4401 {
4402 	__release(&txq->_xmit_lock);
4403 }
4404 
4405 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4406 {
4407 	spin_lock_bh(&txq->_xmit_lock);
4408 	txq->xmit_lock_owner = smp_processor_id();
4409 }
4410 
4411 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4412 {
4413 	bool ok = spin_trylock(&txq->_xmit_lock);
4414 	if (likely(ok))
4415 		txq->xmit_lock_owner = smp_processor_id();
4416 	return ok;
4417 }
4418 
4419 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4420 {
4421 	txq->xmit_lock_owner = -1;
4422 	spin_unlock(&txq->_xmit_lock);
4423 }
4424 
4425 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4426 {
4427 	txq->xmit_lock_owner = -1;
4428 	spin_unlock_bh(&txq->_xmit_lock);
4429 }
4430 
4431 static inline void txq_trans_update(struct netdev_queue *txq)
4432 {
4433 	if (txq->xmit_lock_owner != -1)
4434 		txq->trans_start = jiffies;
4435 }
4436 
4437 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4438 static inline void netif_trans_update(struct net_device *dev)
4439 {
4440 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4441 
4442 	if (txq->trans_start != jiffies)
4443 		txq->trans_start = jiffies;
4444 }
4445 
4446 /**
4447  *	netif_tx_lock - grab network device transmit lock
4448  *	@dev: network device
4449  *
4450  * Get network device transmit lock
4451  */
4452 static inline void netif_tx_lock(struct net_device *dev)
4453 {
4454 	unsigned int i;
4455 	int cpu;
4456 
4457 	spin_lock(&dev->tx_global_lock);
4458 	cpu = smp_processor_id();
4459 	for (i = 0; i < dev->num_tx_queues; i++) {
4460 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4461 
4462 		/* We are the only thread of execution doing a
4463 		 * freeze, but we have to grab the _xmit_lock in
4464 		 * order to synchronize with threads which are in
4465 		 * the ->hard_start_xmit() handler and already
4466 		 * checked the frozen bit.
4467 		 */
4468 		__netif_tx_lock(txq, cpu);
4469 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4470 		__netif_tx_unlock(txq);
4471 	}
4472 }
4473 
4474 static inline void netif_tx_lock_bh(struct net_device *dev)
4475 {
4476 	local_bh_disable();
4477 	netif_tx_lock(dev);
4478 }
4479 
4480 static inline void netif_tx_unlock(struct net_device *dev)
4481 {
4482 	unsigned int i;
4483 
4484 	for (i = 0; i < dev->num_tx_queues; i++) {
4485 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4486 
4487 		/* No need to grab the _xmit_lock here.  If the
4488 		 * queue is not stopped for another reason, we
4489 		 * force a schedule.
4490 		 */
4491 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4492 		netif_schedule_queue(txq);
4493 	}
4494 	spin_unlock(&dev->tx_global_lock);
4495 }
4496 
4497 static inline void netif_tx_unlock_bh(struct net_device *dev)
4498 {
4499 	netif_tx_unlock(dev);
4500 	local_bh_enable();
4501 }
4502 
4503 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4504 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4505 		__netif_tx_lock(txq, cpu);		\
4506 	} else {					\
4507 		__netif_tx_acquire(txq);		\
4508 	}						\
4509 }
4510 
4511 #define HARD_TX_TRYLOCK(dev, txq)			\
4512 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4513 		__netif_tx_trylock(txq) :		\
4514 		__netif_tx_acquire(txq))
4515 
4516 #define HARD_TX_UNLOCK(dev, txq) {			\
4517 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4518 		__netif_tx_unlock(txq);			\
4519 	} else {					\
4520 		__netif_tx_release(txq);		\
4521 	}						\
4522 }
4523 
4524 static inline void netif_tx_disable(struct net_device *dev)
4525 {
4526 	unsigned int i;
4527 	int cpu;
4528 
4529 	local_bh_disable();
4530 	cpu = smp_processor_id();
4531 	spin_lock(&dev->tx_global_lock);
4532 	for (i = 0; i < dev->num_tx_queues; i++) {
4533 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4534 
4535 		__netif_tx_lock(txq, cpu);
4536 		netif_tx_stop_queue(txq);
4537 		__netif_tx_unlock(txq);
4538 	}
4539 	spin_unlock(&dev->tx_global_lock);
4540 	local_bh_enable();
4541 }
4542 
4543 static inline void netif_addr_lock(struct net_device *dev)
4544 {
4545 	unsigned char nest_level = 0;
4546 
4547 #ifdef CONFIG_LOCKDEP
4548 	nest_level = dev->nested_level;
4549 #endif
4550 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4551 }
4552 
4553 static inline void netif_addr_lock_bh(struct net_device *dev)
4554 {
4555 	unsigned char nest_level = 0;
4556 
4557 #ifdef CONFIG_LOCKDEP
4558 	nest_level = dev->nested_level;
4559 #endif
4560 	local_bh_disable();
4561 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4562 }
4563 
4564 static inline void netif_addr_unlock(struct net_device *dev)
4565 {
4566 	spin_unlock(&dev->addr_list_lock);
4567 }
4568 
4569 static inline void netif_addr_unlock_bh(struct net_device *dev)
4570 {
4571 	spin_unlock_bh(&dev->addr_list_lock);
4572 }
4573 
4574 /*
4575  * dev_addrs walker. Should be used only for read access. Call with
4576  * rcu_read_lock held.
4577  */
4578 #define for_each_dev_addr(dev, ha) \
4579 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4580 
4581 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4582 
4583 void ether_setup(struct net_device *dev);
4584 
4585 /* Support for loadable net-drivers */
4586 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4587 				    unsigned char name_assign_type,
4588 				    void (*setup)(struct net_device *),
4589 				    unsigned int txqs, unsigned int rxqs);
4590 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4591 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4592 
4593 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4594 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4595 			 count)
4596 
4597 int register_netdev(struct net_device *dev);
4598 void unregister_netdev(struct net_device *dev);
4599 
4600 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4601 
4602 /* General hardware address lists handling functions */
4603 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4604 		   struct netdev_hw_addr_list *from_list, int addr_len);
4605 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4606 		      struct netdev_hw_addr_list *from_list, int addr_len);
4607 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4608 		       struct net_device *dev,
4609 		       int (*sync)(struct net_device *, const unsigned char *),
4610 		       int (*unsync)(struct net_device *,
4611 				     const unsigned char *));
4612 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4613 			   struct net_device *dev,
4614 			   int (*sync)(struct net_device *,
4615 				       const unsigned char *, int),
4616 			   int (*unsync)(struct net_device *,
4617 					 const unsigned char *, int));
4618 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4619 			      struct net_device *dev,
4620 			      int (*unsync)(struct net_device *,
4621 					    const unsigned char *, int));
4622 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4623 			  struct net_device *dev,
4624 			  int (*unsync)(struct net_device *,
4625 					const unsigned char *));
4626 void __hw_addr_init(struct netdev_hw_addr_list *list);
4627 
4628 /* Functions used for device addresses handling */
4629 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4630 		 unsigned char addr_type);
4631 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4632 		 unsigned char addr_type);
4633 void dev_addr_flush(struct net_device *dev);
4634 int dev_addr_init(struct net_device *dev);
4635 
4636 /* Functions used for unicast addresses handling */
4637 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4638 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4639 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4640 int dev_uc_sync(struct net_device *to, struct net_device *from);
4641 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4642 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4643 void dev_uc_flush(struct net_device *dev);
4644 void dev_uc_init(struct net_device *dev);
4645 
4646 /**
4647  *  __dev_uc_sync - Synchonize device's unicast list
4648  *  @dev:  device to sync
4649  *  @sync: function to call if address should be added
4650  *  @unsync: function to call if address should be removed
4651  *
4652  *  Add newly added addresses to the interface, and release
4653  *  addresses that have been deleted.
4654  */
4655 static inline int __dev_uc_sync(struct net_device *dev,
4656 				int (*sync)(struct net_device *,
4657 					    const unsigned char *),
4658 				int (*unsync)(struct net_device *,
4659 					      const unsigned char *))
4660 {
4661 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4662 }
4663 
4664 /**
4665  *  __dev_uc_unsync - Remove synchronized addresses from device
4666  *  @dev:  device to sync
4667  *  @unsync: function to call if address should be removed
4668  *
4669  *  Remove all addresses that were added to the device by dev_uc_sync().
4670  */
4671 static inline void __dev_uc_unsync(struct net_device *dev,
4672 				   int (*unsync)(struct net_device *,
4673 						 const unsigned char *))
4674 {
4675 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4676 }
4677 
4678 /* Functions used for multicast addresses handling */
4679 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4680 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4681 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4682 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4683 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4684 int dev_mc_sync(struct net_device *to, struct net_device *from);
4685 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4686 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4687 void dev_mc_flush(struct net_device *dev);
4688 void dev_mc_init(struct net_device *dev);
4689 
4690 /**
4691  *  __dev_mc_sync - Synchonize device's multicast list
4692  *  @dev:  device to sync
4693  *  @sync: function to call if address should be added
4694  *  @unsync: function to call if address should be removed
4695  *
4696  *  Add newly added addresses to the interface, and release
4697  *  addresses that have been deleted.
4698  */
4699 static inline int __dev_mc_sync(struct net_device *dev,
4700 				int (*sync)(struct net_device *,
4701 					    const unsigned char *),
4702 				int (*unsync)(struct net_device *,
4703 					      const unsigned char *))
4704 {
4705 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4706 }
4707 
4708 /**
4709  *  __dev_mc_unsync - Remove synchronized addresses from device
4710  *  @dev:  device to sync
4711  *  @unsync: function to call if address should be removed
4712  *
4713  *  Remove all addresses that were added to the device by dev_mc_sync().
4714  */
4715 static inline void __dev_mc_unsync(struct net_device *dev,
4716 				   int (*unsync)(struct net_device *,
4717 						 const unsigned char *))
4718 {
4719 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4720 }
4721 
4722 /* Functions used for secondary unicast and multicast support */
4723 void dev_set_rx_mode(struct net_device *dev);
4724 void __dev_set_rx_mode(struct net_device *dev);
4725 int dev_set_promiscuity(struct net_device *dev, int inc);
4726 int dev_set_allmulti(struct net_device *dev, int inc);
4727 void netdev_state_change(struct net_device *dev);
4728 void __netdev_notify_peers(struct net_device *dev);
4729 void netdev_notify_peers(struct net_device *dev);
4730 void netdev_features_change(struct net_device *dev);
4731 /* Load a device via the kmod */
4732 void dev_load(struct net *net, const char *name);
4733 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4734 					struct rtnl_link_stats64 *storage);
4735 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4736 			     const struct net_device_stats *netdev_stats);
4737 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4738 			   const struct pcpu_sw_netstats __percpu *netstats);
4739 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4740 
4741 extern int		netdev_max_backlog;
4742 extern int		netdev_tstamp_prequeue;
4743 extern int		netdev_unregister_timeout_secs;
4744 extern int		weight_p;
4745 extern int		dev_weight_rx_bias;
4746 extern int		dev_weight_tx_bias;
4747 extern int		dev_rx_weight;
4748 extern int		dev_tx_weight;
4749 extern int		gro_normal_batch;
4750 
4751 enum {
4752 	NESTED_SYNC_IMM_BIT,
4753 	NESTED_SYNC_TODO_BIT,
4754 };
4755 
4756 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4757 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4758 
4759 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4760 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4761 
4762 struct netdev_nested_priv {
4763 	unsigned char flags;
4764 	void *data;
4765 };
4766 
4767 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4768 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4769 						     struct list_head **iter);
4770 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4771 						     struct list_head **iter);
4772 
4773 #ifdef CONFIG_LOCKDEP
4774 static LIST_HEAD(net_unlink_list);
4775 
4776 static inline void net_unlink_todo(struct net_device *dev)
4777 {
4778 	if (list_empty(&dev->unlink_list))
4779 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4780 }
4781 #endif
4782 
4783 /* iterate through upper list, must be called under RCU read lock */
4784 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4785 	for (iter = &(dev)->adj_list.upper, \
4786 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4787 	     updev; \
4788 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4789 
4790 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4791 				  int (*fn)(struct net_device *upper_dev,
4792 					    struct netdev_nested_priv *priv),
4793 				  struct netdev_nested_priv *priv);
4794 
4795 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4796 				  struct net_device *upper_dev);
4797 
4798 bool netdev_has_any_upper_dev(struct net_device *dev);
4799 
4800 void *netdev_lower_get_next_private(struct net_device *dev,
4801 				    struct list_head **iter);
4802 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4803 					struct list_head **iter);
4804 
4805 #define netdev_for_each_lower_private(dev, priv, iter) \
4806 	for (iter = (dev)->adj_list.lower.next, \
4807 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4808 	     priv; \
4809 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4810 
4811 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4812 	for (iter = &(dev)->adj_list.lower, \
4813 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4814 	     priv; \
4815 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4816 
4817 void *netdev_lower_get_next(struct net_device *dev,
4818 				struct list_head **iter);
4819 
4820 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4821 	for (iter = (dev)->adj_list.lower.next, \
4822 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4823 	     ldev; \
4824 	     ldev = netdev_lower_get_next(dev, &(iter)))
4825 
4826 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4827 					     struct list_head **iter);
4828 int netdev_walk_all_lower_dev(struct net_device *dev,
4829 			      int (*fn)(struct net_device *lower_dev,
4830 					struct netdev_nested_priv *priv),
4831 			      struct netdev_nested_priv *priv);
4832 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4833 				  int (*fn)(struct net_device *lower_dev,
4834 					    struct netdev_nested_priv *priv),
4835 				  struct netdev_nested_priv *priv);
4836 
4837 void *netdev_adjacent_get_private(struct list_head *adj_list);
4838 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4839 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4840 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4841 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4842 			  struct netlink_ext_ack *extack);
4843 int netdev_master_upper_dev_link(struct net_device *dev,
4844 				 struct net_device *upper_dev,
4845 				 void *upper_priv, void *upper_info,
4846 				 struct netlink_ext_ack *extack);
4847 void netdev_upper_dev_unlink(struct net_device *dev,
4848 			     struct net_device *upper_dev);
4849 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4850 				   struct net_device *new_dev,
4851 				   struct net_device *dev,
4852 				   struct netlink_ext_ack *extack);
4853 void netdev_adjacent_change_commit(struct net_device *old_dev,
4854 				   struct net_device *new_dev,
4855 				   struct net_device *dev);
4856 void netdev_adjacent_change_abort(struct net_device *old_dev,
4857 				  struct net_device *new_dev,
4858 				  struct net_device *dev);
4859 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4860 void *netdev_lower_dev_get_private(struct net_device *dev,
4861 				   struct net_device *lower_dev);
4862 void netdev_lower_state_changed(struct net_device *lower_dev,
4863 				void *lower_state_info);
4864 
4865 /* RSS keys are 40 or 52 bytes long */
4866 #define NETDEV_RSS_KEY_LEN 52
4867 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4868 void netdev_rss_key_fill(void *buffer, size_t len);
4869 
4870 int skb_checksum_help(struct sk_buff *skb);
4871 int skb_crc32c_csum_help(struct sk_buff *skb);
4872 int skb_csum_hwoffload_help(struct sk_buff *skb,
4873 			    const netdev_features_t features);
4874 
4875 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4876 				  netdev_features_t features, bool tx_path);
4877 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4878 				    netdev_features_t features);
4879 
4880 struct netdev_bonding_info {
4881 	ifslave	slave;
4882 	ifbond	master;
4883 };
4884 
4885 struct netdev_notifier_bonding_info {
4886 	struct netdev_notifier_info info; /* must be first */
4887 	struct netdev_bonding_info  bonding_info;
4888 };
4889 
4890 void netdev_bonding_info_change(struct net_device *dev,
4891 				struct netdev_bonding_info *bonding_info);
4892 
4893 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4894 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4895 #else
4896 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4897 				  const void *data)
4898 {
4899 }
4900 #endif
4901 
4902 static inline
4903 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4904 {
4905 	return __skb_gso_segment(skb, features, true);
4906 }
4907 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4908 
4909 static inline bool can_checksum_protocol(netdev_features_t features,
4910 					 __be16 protocol)
4911 {
4912 	if (protocol == htons(ETH_P_FCOE))
4913 		return !!(features & NETIF_F_FCOE_CRC);
4914 
4915 	/* Assume this is an IP checksum (not SCTP CRC) */
4916 
4917 	if (features & NETIF_F_HW_CSUM) {
4918 		/* Can checksum everything */
4919 		return true;
4920 	}
4921 
4922 	switch (protocol) {
4923 	case htons(ETH_P_IP):
4924 		return !!(features & NETIF_F_IP_CSUM);
4925 	case htons(ETH_P_IPV6):
4926 		return !!(features & NETIF_F_IPV6_CSUM);
4927 	default:
4928 		return false;
4929 	}
4930 }
4931 
4932 #ifdef CONFIG_BUG
4933 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4934 #else
4935 static inline void netdev_rx_csum_fault(struct net_device *dev,
4936 					struct sk_buff *skb)
4937 {
4938 }
4939 #endif
4940 /* rx skb timestamps */
4941 void net_enable_timestamp(void);
4942 void net_disable_timestamp(void);
4943 
4944 #ifdef CONFIG_PROC_FS
4945 int __init dev_proc_init(void);
4946 #else
4947 #define dev_proc_init() 0
4948 #endif
4949 
4950 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4951 					      struct sk_buff *skb, struct net_device *dev,
4952 					      bool more)
4953 {
4954 	__this_cpu_write(softnet_data.xmit.more, more);
4955 	return ops->ndo_start_xmit(skb, dev);
4956 }
4957 
4958 static inline bool netdev_xmit_more(void)
4959 {
4960 	return __this_cpu_read(softnet_data.xmit.more);
4961 }
4962 
4963 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4964 					    struct netdev_queue *txq, bool more)
4965 {
4966 	const struct net_device_ops *ops = dev->netdev_ops;
4967 	netdev_tx_t rc;
4968 
4969 	rc = __netdev_start_xmit(ops, skb, dev, more);
4970 	if (rc == NETDEV_TX_OK)
4971 		txq_trans_update(txq);
4972 
4973 	return rc;
4974 }
4975 
4976 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4977 				const void *ns);
4978 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4979 				 const void *ns);
4980 
4981 extern const struct kobj_ns_type_operations net_ns_type_operations;
4982 
4983 const char *netdev_drivername(const struct net_device *dev);
4984 
4985 void linkwatch_run_queue(void);
4986 
4987 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4988 							  netdev_features_t f2)
4989 {
4990 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4991 		if (f1 & NETIF_F_HW_CSUM)
4992 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4993 		else
4994 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4995 	}
4996 
4997 	return f1 & f2;
4998 }
4999 
5000 static inline netdev_features_t netdev_get_wanted_features(
5001 	struct net_device *dev)
5002 {
5003 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5004 }
5005 netdev_features_t netdev_increment_features(netdev_features_t all,
5006 	netdev_features_t one, netdev_features_t mask);
5007 
5008 /* Allow TSO being used on stacked device :
5009  * Performing the GSO segmentation before last device
5010  * is a performance improvement.
5011  */
5012 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5013 							netdev_features_t mask)
5014 {
5015 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5016 }
5017 
5018 int __netdev_update_features(struct net_device *dev);
5019 void netdev_update_features(struct net_device *dev);
5020 void netdev_change_features(struct net_device *dev);
5021 
5022 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5023 					struct net_device *dev);
5024 
5025 netdev_features_t passthru_features_check(struct sk_buff *skb,
5026 					  struct net_device *dev,
5027 					  netdev_features_t features);
5028 netdev_features_t netif_skb_features(struct sk_buff *skb);
5029 
5030 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5031 {
5032 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5033 
5034 	/* check flags correspondence */
5035 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5036 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5037 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5038 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5039 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5040 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5041 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5042 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5043 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5044 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5045 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5046 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5047 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5048 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5049 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5050 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5051 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5052 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5053 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5054 
5055 	return (features & feature) == feature;
5056 }
5057 
5058 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5059 {
5060 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5061 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5062 }
5063 
5064 static inline bool netif_needs_gso(struct sk_buff *skb,
5065 				   netdev_features_t features)
5066 {
5067 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5068 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5069 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5070 }
5071 
5072 static inline void netif_set_gso_max_size(struct net_device *dev,
5073 					  unsigned int size)
5074 {
5075 	dev->gso_max_size = size;
5076 }
5077 
5078 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5079 					int pulled_hlen, u16 mac_offset,
5080 					int mac_len)
5081 {
5082 	skb->protocol = protocol;
5083 	skb->encapsulation = 1;
5084 	skb_push(skb, pulled_hlen);
5085 	skb_reset_transport_header(skb);
5086 	skb->mac_header = mac_offset;
5087 	skb->network_header = skb->mac_header + mac_len;
5088 	skb->mac_len = mac_len;
5089 }
5090 
5091 static inline bool netif_is_macsec(const struct net_device *dev)
5092 {
5093 	return dev->priv_flags & IFF_MACSEC;
5094 }
5095 
5096 static inline bool netif_is_macvlan(const struct net_device *dev)
5097 {
5098 	return dev->priv_flags & IFF_MACVLAN;
5099 }
5100 
5101 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5102 {
5103 	return dev->priv_flags & IFF_MACVLAN_PORT;
5104 }
5105 
5106 static inline bool netif_is_bond_master(const struct net_device *dev)
5107 {
5108 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5109 }
5110 
5111 static inline bool netif_is_bond_slave(const struct net_device *dev)
5112 {
5113 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5114 }
5115 
5116 static inline bool netif_supports_nofcs(struct net_device *dev)
5117 {
5118 	return dev->priv_flags & IFF_SUPP_NOFCS;
5119 }
5120 
5121 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5122 {
5123 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5124 }
5125 
5126 static inline bool netif_is_l3_master(const struct net_device *dev)
5127 {
5128 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5129 }
5130 
5131 static inline bool netif_is_l3_slave(const struct net_device *dev)
5132 {
5133 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5134 }
5135 
5136 static inline bool netif_is_bridge_master(const struct net_device *dev)
5137 {
5138 	return dev->priv_flags & IFF_EBRIDGE;
5139 }
5140 
5141 static inline bool netif_is_bridge_port(const struct net_device *dev)
5142 {
5143 	return dev->priv_flags & IFF_BRIDGE_PORT;
5144 }
5145 
5146 static inline bool netif_is_ovs_master(const struct net_device *dev)
5147 {
5148 	return dev->priv_flags & IFF_OPENVSWITCH;
5149 }
5150 
5151 static inline bool netif_is_ovs_port(const struct net_device *dev)
5152 {
5153 	return dev->priv_flags & IFF_OVS_DATAPATH;
5154 }
5155 
5156 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5157 {
5158 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5159 }
5160 
5161 static inline bool netif_is_team_master(const struct net_device *dev)
5162 {
5163 	return dev->priv_flags & IFF_TEAM;
5164 }
5165 
5166 static inline bool netif_is_team_port(const struct net_device *dev)
5167 {
5168 	return dev->priv_flags & IFF_TEAM_PORT;
5169 }
5170 
5171 static inline bool netif_is_lag_master(const struct net_device *dev)
5172 {
5173 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5174 }
5175 
5176 static inline bool netif_is_lag_port(const struct net_device *dev)
5177 {
5178 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5179 }
5180 
5181 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5182 {
5183 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5184 }
5185 
5186 static inline bool netif_is_failover(const struct net_device *dev)
5187 {
5188 	return dev->priv_flags & IFF_FAILOVER;
5189 }
5190 
5191 static inline bool netif_is_failover_slave(const struct net_device *dev)
5192 {
5193 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5194 }
5195 
5196 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5197 static inline void netif_keep_dst(struct net_device *dev)
5198 {
5199 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5200 }
5201 
5202 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5203 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5204 {
5205 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5206 	return dev->priv_flags & IFF_MACSEC;
5207 }
5208 
5209 extern struct pernet_operations __net_initdata loopback_net_ops;
5210 
5211 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5212 
5213 /* netdev_printk helpers, similar to dev_printk */
5214 
5215 static inline const char *netdev_name(const struct net_device *dev)
5216 {
5217 	if (!dev->name[0] || strchr(dev->name, '%'))
5218 		return "(unnamed net_device)";
5219 	return dev->name;
5220 }
5221 
5222 static inline bool netdev_unregistering(const struct net_device *dev)
5223 {
5224 	return dev->reg_state == NETREG_UNREGISTERING;
5225 }
5226 
5227 static inline const char *netdev_reg_state(const struct net_device *dev)
5228 {
5229 	switch (dev->reg_state) {
5230 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5231 	case NETREG_REGISTERED: return "";
5232 	case NETREG_UNREGISTERING: return " (unregistering)";
5233 	case NETREG_UNREGISTERED: return " (unregistered)";
5234 	case NETREG_RELEASED: return " (released)";
5235 	case NETREG_DUMMY: return " (dummy)";
5236 	}
5237 
5238 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5239 	return " (unknown)";
5240 }
5241 
5242 __printf(3, 4) __cold
5243 void netdev_printk(const char *level, const struct net_device *dev,
5244 		   const char *format, ...);
5245 __printf(2, 3) __cold
5246 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5247 __printf(2, 3) __cold
5248 void netdev_alert(const struct net_device *dev, const char *format, ...);
5249 __printf(2, 3) __cold
5250 void netdev_crit(const struct net_device *dev, const char *format, ...);
5251 __printf(2, 3) __cold
5252 void netdev_err(const struct net_device *dev, const char *format, ...);
5253 __printf(2, 3) __cold
5254 void netdev_warn(const struct net_device *dev, const char *format, ...);
5255 __printf(2, 3) __cold
5256 void netdev_notice(const struct net_device *dev, const char *format, ...);
5257 __printf(2, 3) __cold
5258 void netdev_info(const struct net_device *dev, const char *format, ...);
5259 
5260 #define netdev_level_once(level, dev, fmt, ...)			\
5261 do {								\
5262 	static bool __print_once __read_mostly;			\
5263 								\
5264 	if (!__print_once) {					\
5265 		__print_once = true;				\
5266 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5267 	}							\
5268 } while (0)
5269 
5270 #define netdev_emerg_once(dev, fmt, ...) \
5271 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5272 #define netdev_alert_once(dev, fmt, ...) \
5273 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5274 #define netdev_crit_once(dev, fmt, ...) \
5275 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5276 #define netdev_err_once(dev, fmt, ...) \
5277 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5278 #define netdev_warn_once(dev, fmt, ...) \
5279 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5280 #define netdev_notice_once(dev, fmt, ...) \
5281 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5282 #define netdev_info_once(dev, fmt, ...) \
5283 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5284 
5285 #define MODULE_ALIAS_NETDEV(device) \
5286 	MODULE_ALIAS("netdev-" device)
5287 
5288 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5289 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5290 #define netdev_dbg(__dev, format, args...)			\
5291 do {								\
5292 	dynamic_netdev_dbg(__dev, format, ##args);		\
5293 } while (0)
5294 #elif defined(DEBUG)
5295 #define netdev_dbg(__dev, format, args...)			\
5296 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5297 #else
5298 #define netdev_dbg(__dev, format, args...)			\
5299 ({								\
5300 	if (0)							\
5301 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5302 })
5303 #endif
5304 
5305 #if defined(VERBOSE_DEBUG)
5306 #define netdev_vdbg	netdev_dbg
5307 #else
5308 
5309 #define netdev_vdbg(dev, format, args...)			\
5310 ({								\
5311 	if (0)							\
5312 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5313 	0;							\
5314 })
5315 #endif
5316 
5317 /*
5318  * netdev_WARN() acts like dev_printk(), but with the key difference
5319  * of using a WARN/WARN_ON to get the message out, including the
5320  * file/line information and a backtrace.
5321  */
5322 #define netdev_WARN(dev, format, args...)			\
5323 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5324 	     netdev_reg_state(dev), ##args)
5325 
5326 #define netdev_WARN_ONCE(dev, format, args...)				\
5327 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5328 		  netdev_reg_state(dev), ##args)
5329 
5330 /* netif printk helpers, similar to netdev_printk */
5331 
5332 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5333 do {					  			\
5334 	if (netif_msg_##type(priv))				\
5335 		netdev_printk(level, (dev), fmt, ##args);	\
5336 } while (0)
5337 
5338 #define netif_level(level, priv, type, dev, fmt, args...)	\
5339 do {								\
5340 	if (netif_msg_##type(priv))				\
5341 		netdev_##level(dev, fmt, ##args);		\
5342 } while (0)
5343 
5344 #define netif_emerg(priv, type, dev, fmt, args...)		\
5345 	netif_level(emerg, priv, type, dev, fmt, ##args)
5346 #define netif_alert(priv, type, dev, fmt, args...)		\
5347 	netif_level(alert, priv, type, dev, fmt, ##args)
5348 #define netif_crit(priv, type, dev, fmt, args...)		\
5349 	netif_level(crit, priv, type, dev, fmt, ##args)
5350 #define netif_err(priv, type, dev, fmt, args...)		\
5351 	netif_level(err, priv, type, dev, fmt, ##args)
5352 #define netif_warn(priv, type, dev, fmt, args...)		\
5353 	netif_level(warn, priv, type, dev, fmt, ##args)
5354 #define netif_notice(priv, type, dev, fmt, args...)		\
5355 	netif_level(notice, priv, type, dev, fmt, ##args)
5356 #define netif_info(priv, type, dev, fmt, args...)		\
5357 	netif_level(info, priv, type, dev, fmt, ##args)
5358 
5359 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5360 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5361 #define netif_dbg(priv, type, netdev, format, args...)		\
5362 do {								\
5363 	if (netif_msg_##type(priv))				\
5364 		dynamic_netdev_dbg(netdev, format, ##args);	\
5365 } while (0)
5366 #elif defined(DEBUG)
5367 #define netif_dbg(priv, type, dev, format, args...)		\
5368 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5369 #else
5370 #define netif_dbg(priv, type, dev, format, args...)			\
5371 ({									\
5372 	if (0)								\
5373 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5374 	0;								\
5375 })
5376 #endif
5377 
5378 /* if @cond then downgrade to debug, else print at @level */
5379 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5380 	do {                                                              \
5381 		if (cond)                                                 \
5382 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5383 		else                                                      \
5384 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5385 	} while (0)
5386 
5387 #if defined(VERBOSE_DEBUG)
5388 #define netif_vdbg	netif_dbg
5389 #else
5390 #define netif_vdbg(priv, type, dev, format, args...)		\
5391 ({								\
5392 	if (0)							\
5393 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5394 	0;							\
5395 })
5396 #endif
5397 
5398 /*
5399  *	The list of packet types we will receive (as opposed to discard)
5400  *	and the routines to invoke.
5401  *
5402  *	Why 16. Because with 16 the only overlap we get on a hash of the
5403  *	low nibble of the protocol value is RARP/SNAP/X.25.
5404  *
5405  *		0800	IP
5406  *		0001	802.3
5407  *		0002	AX.25
5408  *		0004	802.2
5409  *		8035	RARP
5410  *		0005	SNAP
5411  *		0805	X.25
5412  *		0806	ARP
5413  *		8137	IPX
5414  *		0009	Localtalk
5415  *		86DD	IPv6
5416  */
5417 #define PTYPE_HASH_SIZE	(16)
5418 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5419 
5420 extern struct list_head ptype_all __read_mostly;
5421 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5422 
5423 extern struct net_device *blackhole_netdev;
5424 
5425 #endif	/* _LINUX_NETDEVICE_H */
5426