1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 57 struct sfp_bus; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 /* UDP Tunnel offloads */ 64 struct udp_tunnel_info; 65 struct bpf_prog; 66 struct xdp_buff; 67 68 void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104 /* Driver transmit return codes */ 105 #define NETDEV_TX_MASK 0xf0 106 107 enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111 }; 112 typedef enum netdev_tx netdev_tx_t; 113 114 /* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118 static inline bool dev_xmit_complete(int rc) 119 { 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130 } 131 132 /* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137 #if defined(CONFIG_HYPERV_NET) 138 # define LL_MAX_HEADER 128 139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #else 146 # define LL_MAX_HEADER 32 147 #endif 148 149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151 #define MAX_HEADER LL_MAX_HEADER 152 #else 153 #define MAX_HEADER (LL_MAX_HEADER + 48) 154 #endif 155 156 /* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161 struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185 }; 186 187 188 #include <linux/cache.h> 189 #include <linux/skbuff.h> 190 191 #ifdef CONFIG_RPS 192 #include <linux/static_key.h> 193 extern struct static_key_false rps_needed; 194 extern struct static_key_false rfs_needed; 195 #endif 196 197 struct neighbour; 198 struct neigh_parms; 199 struct sk_buff; 200 201 struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205 #define NETDEV_HW_ADDR_T_LAN 1 206 #define NETDEV_HW_ADDR_T_SAN 2 207 #define NETDEV_HW_ADDR_T_SLAVE 3 208 #define NETDEV_HW_ADDR_T_UNICAST 4 209 #define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215 }; 216 217 struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220 }; 221 222 #define netdev_hw_addr_list_count(l) ((l)->count) 223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224 #define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229 #define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234 #define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237 struct hh_cache { 238 unsigned int hh_len; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242 #define HH_DATA_MOD 16 243 #define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245 #define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248 }; 249 250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258 #define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263 struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273 __be16 (*parse_protocol)(const struct sk_buff *skb); 274 }; 275 276 /* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281 enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287 }; 288 289 290 /* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294 struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297 }; 298 #define NETDEV_BOOT_SETUP_MAX 8 299 300 int __init netdev_boot_setup(char *str); 301 302 struct gro_list { 303 struct list_head list; 304 int count; 305 }; 306 307 /* 308 * size of gro hash buckets, must less than bit number of 309 * napi_struct::gro_bitmask 310 */ 311 #define GRO_HASH_BUCKETS 8 312 313 /* 314 * Structure for NAPI scheduling similar to tasklet but with weighting 315 */ 316 struct napi_struct { 317 /* The poll_list must only be managed by the entity which 318 * changes the state of the NAPI_STATE_SCHED bit. This means 319 * whoever atomically sets that bit can add this napi_struct 320 * to the per-CPU poll_list, and whoever clears that bit 321 * can remove from the list right before clearing the bit. 322 */ 323 struct list_head poll_list; 324 325 unsigned long state; 326 int weight; 327 unsigned long gro_bitmask; 328 int (*poll)(struct napi_struct *, int); 329 #ifdef CONFIG_NETPOLL 330 int poll_owner; 331 #endif 332 struct net_device *dev; 333 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 334 struct sk_buff *skb; 335 struct hrtimer timer; 336 struct list_head dev_list; 337 struct hlist_node napi_hash_node; 338 unsigned int napi_id; 339 }; 340 341 enum { 342 NAPI_STATE_SCHED, /* Poll is scheduled */ 343 NAPI_STATE_MISSED, /* reschedule a napi */ 344 NAPI_STATE_DISABLE, /* Disable pending */ 345 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 346 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 347 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 348 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 349 }; 350 351 enum { 352 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 353 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 354 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 355 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 356 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 357 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 358 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 359 }; 360 361 enum gro_result { 362 GRO_MERGED, 363 GRO_MERGED_FREE, 364 GRO_HELD, 365 GRO_NORMAL, 366 GRO_DROP, 367 GRO_CONSUMED, 368 }; 369 typedef enum gro_result gro_result_t; 370 371 /* 372 * enum rx_handler_result - Possible return values for rx_handlers. 373 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 374 * further. 375 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 376 * case skb->dev was changed by rx_handler. 377 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 378 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 379 * 380 * rx_handlers are functions called from inside __netif_receive_skb(), to do 381 * special processing of the skb, prior to delivery to protocol handlers. 382 * 383 * Currently, a net_device can only have a single rx_handler registered. Trying 384 * to register a second rx_handler will return -EBUSY. 385 * 386 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 387 * To unregister a rx_handler on a net_device, use 388 * netdev_rx_handler_unregister(). 389 * 390 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 391 * do with the skb. 392 * 393 * If the rx_handler consumed the skb in some way, it should return 394 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 395 * the skb to be delivered in some other way. 396 * 397 * If the rx_handler changed skb->dev, to divert the skb to another 398 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 399 * new device will be called if it exists. 400 * 401 * If the rx_handler decides the skb should be ignored, it should return 402 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 403 * are registered on exact device (ptype->dev == skb->dev). 404 * 405 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 406 * delivered, it should return RX_HANDLER_PASS. 407 * 408 * A device without a registered rx_handler will behave as if rx_handler 409 * returned RX_HANDLER_PASS. 410 */ 411 412 enum rx_handler_result { 413 RX_HANDLER_CONSUMED, 414 RX_HANDLER_ANOTHER, 415 RX_HANDLER_EXACT, 416 RX_HANDLER_PASS, 417 }; 418 typedef enum rx_handler_result rx_handler_result_t; 419 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 420 421 void __napi_schedule(struct napi_struct *n); 422 void __napi_schedule_irqoff(struct napi_struct *n); 423 424 static inline bool napi_disable_pending(struct napi_struct *n) 425 { 426 return test_bit(NAPI_STATE_DISABLE, &n->state); 427 } 428 429 bool napi_schedule_prep(struct napi_struct *n); 430 431 /** 432 * napi_schedule - schedule NAPI poll 433 * @n: NAPI context 434 * 435 * Schedule NAPI poll routine to be called if it is not already 436 * running. 437 */ 438 static inline void napi_schedule(struct napi_struct *n) 439 { 440 if (napi_schedule_prep(n)) 441 __napi_schedule(n); 442 } 443 444 /** 445 * napi_schedule_irqoff - schedule NAPI poll 446 * @n: NAPI context 447 * 448 * Variant of napi_schedule(), assuming hard irqs are masked. 449 */ 450 static inline void napi_schedule_irqoff(struct napi_struct *n) 451 { 452 if (napi_schedule_prep(n)) 453 __napi_schedule_irqoff(n); 454 } 455 456 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 457 static inline bool napi_reschedule(struct napi_struct *napi) 458 { 459 if (napi_schedule_prep(napi)) { 460 __napi_schedule(napi); 461 return true; 462 } 463 return false; 464 } 465 466 bool napi_complete_done(struct napi_struct *n, int work_done); 467 /** 468 * napi_complete - NAPI processing complete 469 * @n: NAPI context 470 * 471 * Mark NAPI processing as complete. 472 * Consider using napi_complete_done() instead. 473 * Return false if device should avoid rearming interrupts. 474 */ 475 static inline bool napi_complete(struct napi_struct *n) 476 { 477 return napi_complete_done(n, 0); 478 } 479 480 /** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: NAPI context 483 * 484 * Warning: caller must observe RCU grace period 485 * before freeing memory containing @napi, if 486 * this function returns true. 487 * Note: core networking stack automatically calls it 488 * from netif_napi_del(). 489 * Drivers might want to call this helper to combine all 490 * the needed RCU grace periods into a single one. 491 */ 492 bool napi_hash_del(struct napi_struct *napi); 493 494 /** 495 * napi_disable - prevent NAPI from scheduling 496 * @n: NAPI context 497 * 498 * Stop NAPI from being scheduled on this context. 499 * Waits till any outstanding processing completes. 500 */ 501 void napi_disable(struct napi_struct *n); 502 503 /** 504 * napi_enable - enable NAPI scheduling 505 * @n: NAPI context 506 * 507 * Resume NAPI from being scheduled on this context. 508 * Must be paired with napi_disable. 509 */ 510 static inline void napi_enable(struct napi_struct *n) 511 { 512 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 513 smp_mb__before_atomic(); 514 clear_bit(NAPI_STATE_SCHED, &n->state); 515 clear_bit(NAPI_STATE_NPSVC, &n->state); 516 } 517 518 /** 519 * napi_synchronize - wait until NAPI is not running 520 * @n: NAPI context 521 * 522 * Wait until NAPI is done being scheduled on this context. 523 * Waits till any outstanding processing completes but 524 * does not disable future activations. 525 */ 526 static inline void napi_synchronize(const struct napi_struct *n) 527 { 528 if (IS_ENABLED(CONFIG_SMP)) 529 while (test_bit(NAPI_STATE_SCHED, &n->state)) 530 msleep(1); 531 else 532 barrier(); 533 } 534 535 /** 536 * napi_if_scheduled_mark_missed - if napi is running, set the 537 * NAPIF_STATE_MISSED 538 * @n: NAPI context 539 * 540 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 541 * NAPI is scheduled. 542 **/ 543 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 544 { 545 unsigned long val, new; 546 547 do { 548 val = READ_ONCE(n->state); 549 if (val & NAPIF_STATE_DISABLE) 550 return true; 551 552 if (!(val & NAPIF_STATE_SCHED)) 553 return false; 554 555 new = val | NAPIF_STATE_MISSED; 556 } while (cmpxchg(&n->state, val, new) != val); 557 558 return true; 559 } 560 561 enum netdev_queue_state_t { 562 __QUEUE_STATE_DRV_XOFF, 563 __QUEUE_STATE_STACK_XOFF, 564 __QUEUE_STATE_FROZEN, 565 }; 566 567 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 568 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 569 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 570 571 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 572 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 573 QUEUE_STATE_FROZEN) 574 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 575 QUEUE_STATE_FROZEN) 576 577 /* 578 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 579 * netif_tx_* functions below are used to manipulate this flag. The 580 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 581 * queue independently. The netif_xmit_*stopped functions below are called 582 * to check if the queue has been stopped by the driver or stack (either 583 * of the XOFF bits are set in the state). Drivers should not need to call 584 * netif_xmit*stopped functions, they should only be using netif_tx_*. 585 */ 586 587 struct netdev_queue { 588 /* 589 * read-mostly part 590 */ 591 struct net_device *dev; 592 struct Qdisc __rcu *qdisc; 593 struct Qdisc *qdisc_sleeping; 594 #ifdef CONFIG_SYSFS 595 struct kobject kobj; 596 #endif 597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 598 int numa_node; 599 #endif 600 unsigned long tx_maxrate; 601 /* 602 * Number of TX timeouts for this queue 603 * (/sys/class/net/DEV/Q/trans_timeout) 604 */ 605 unsigned long trans_timeout; 606 607 /* Subordinate device that the queue has been assigned to */ 608 struct net_device *sb_dev; 609 #ifdef CONFIG_XDP_SOCKETS 610 struct xdp_umem *umem; 611 #endif 612 /* 613 * write-mostly part 614 */ 615 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 616 int xmit_lock_owner; 617 /* 618 * Time (in jiffies) of last Tx 619 */ 620 unsigned long trans_start; 621 622 unsigned long state; 623 624 #ifdef CONFIG_BQL 625 struct dql dql; 626 #endif 627 } ____cacheline_aligned_in_smp; 628 629 extern int sysctl_fb_tunnels_only_for_init_net; 630 extern int sysctl_devconf_inherit_init_net; 631 632 static inline bool net_has_fallback_tunnels(const struct net *net) 633 { 634 return net == &init_net || 635 !IS_ENABLED(CONFIG_SYSCTL) || 636 !sysctl_fb_tunnels_only_for_init_net; 637 } 638 639 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 640 { 641 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 642 return q->numa_node; 643 #else 644 return NUMA_NO_NODE; 645 #endif 646 } 647 648 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 649 { 650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 651 q->numa_node = node; 652 #endif 653 } 654 655 #ifdef CONFIG_RPS 656 /* 657 * This structure holds an RPS map which can be of variable length. The 658 * map is an array of CPUs. 659 */ 660 struct rps_map { 661 unsigned int len; 662 struct rcu_head rcu; 663 u16 cpus[0]; 664 }; 665 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 666 667 /* 668 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 669 * tail pointer for that CPU's input queue at the time of last enqueue, and 670 * a hardware filter index. 671 */ 672 struct rps_dev_flow { 673 u16 cpu; 674 u16 filter; 675 unsigned int last_qtail; 676 }; 677 #define RPS_NO_FILTER 0xffff 678 679 /* 680 * The rps_dev_flow_table structure contains a table of flow mappings. 681 */ 682 struct rps_dev_flow_table { 683 unsigned int mask; 684 struct rcu_head rcu; 685 struct rps_dev_flow flows[0]; 686 }; 687 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 688 ((_num) * sizeof(struct rps_dev_flow))) 689 690 /* 691 * The rps_sock_flow_table contains mappings of flows to the last CPU 692 * on which they were processed by the application (set in recvmsg). 693 * Each entry is a 32bit value. Upper part is the high-order bits 694 * of flow hash, lower part is CPU number. 695 * rps_cpu_mask is used to partition the space, depending on number of 696 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 697 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 698 * meaning we use 32-6=26 bits for the hash. 699 */ 700 struct rps_sock_flow_table { 701 u32 mask; 702 703 u32 ents[0] ____cacheline_aligned_in_smp; 704 }; 705 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 706 707 #define RPS_NO_CPU 0xffff 708 709 extern u32 rps_cpu_mask; 710 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 711 712 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 713 u32 hash) 714 { 715 if (table && hash) { 716 unsigned int index = hash & table->mask; 717 u32 val = hash & ~rps_cpu_mask; 718 719 /* We only give a hint, preemption can change CPU under us */ 720 val |= raw_smp_processor_id(); 721 722 if (table->ents[index] != val) 723 table->ents[index] = val; 724 } 725 } 726 727 #ifdef CONFIG_RFS_ACCEL 728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 729 u16 filter_id); 730 #endif 731 #endif /* CONFIG_RPS */ 732 733 /* This structure contains an instance of an RX queue. */ 734 struct netdev_rx_queue { 735 #ifdef CONFIG_RPS 736 struct rps_map __rcu *rps_map; 737 struct rps_dev_flow_table __rcu *rps_flow_table; 738 #endif 739 struct kobject kobj; 740 struct net_device *dev; 741 struct xdp_rxq_info xdp_rxq; 742 #ifdef CONFIG_XDP_SOCKETS 743 struct xdp_umem *umem; 744 #endif 745 } ____cacheline_aligned_in_smp; 746 747 /* 748 * RX queue sysfs structures and functions. 749 */ 750 struct rx_queue_attribute { 751 struct attribute attr; 752 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 753 ssize_t (*store)(struct netdev_rx_queue *queue, 754 const char *buf, size_t len); 755 }; 756 757 #ifdef CONFIG_XPS 758 /* 759 * This structure holds an XPS map which can be of variable length. The 760 * map is an array of queues. 761 */ 762 struct xps_map { 763 unsigned int len; 764 unsigned int alloc_len; 765 struct rcu_head rcu; 766 u16 queues[0]; 767 }; 768 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 769 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 770 - sizeof(struct xps_map)) / sizeof(u16)) 771 772 /* 773 * This structure holds all XPS maps for device. Maps are indexed by CPU. 774 */ 775 struct xps_dev_maps { 776 struct rcu_head rcu; 777 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 778 }; 779 780 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 781 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 782 783 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 784 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 785 786 #endif /* CONFIG_XPS */ 787 788 #define TC_MAX_QUEUE 16 789 #define TC_BITMASK 15 790 /* HW offloaded queuing disciplines txq count and offset maps */ 791 struct netdev_tc_txq { 792 u16 count; 793 u16 offset; 794 }; 795 796 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 797 /* 798 * This structure is to hold information about the device 799 * configured to run FCoE protocol stack. 800 */ 801 struct netdev_fcoe_hbainfo { 802 char manufacturer[64]; 803 char serial_number[64]; 804 char hardware_version[64]; 805 char driver_version[64]; 806 char optionrom_version[64]; 807 char firmware_version[64]; 808 char model[256]; 809 char model_description[256]; 810 }; 811 #endif 812 813 #define MAX_PHYS_ITEM_ID_LEN 32 814 815 /* This structure holds a unique identifier to identify some 816 * physical item (port for example) used by a netdevice. 817 */ 818 struct netdev_phys_item_id { 819 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 820 unsigned char id_len; 821 }; 822 823 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 824 struct netdev_phys_item_id *b) 825 { 826 return a->id_len == b->id_len && 827 memcmp(a->id, b->id, a->id_len) == 0; 828 } 829 830 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 831 struct sk_buff *skb, 832 struct net_device *sb_dev); 833 834 enum tc_setup_type { 835 TC_SETUP_QDISC_MQPRIO, 836 TC_SETUP_CLSU32, 837 TC_SETUP_CLSFLOWER, 838 TC_SETUP_CLSMATCHALL, 839 TC_SETUP_CLSBPF, 840 TC_SETUP_BLOCK, 841 TC_SETUP_QDISC_CBS, 842 TC_SETUP_QDISC_RED, 843 TC_SETUP_QDISC_PRIO, 844 TC_SETUP_QDISC_MQ, 845 TC_SETUP_QDISC_ETF, 846 TC_SETUP_ROOT_QDISC, 847 TC_SETUP_QDISC_GRED, 848 }; 849 850 /* These structures hold the attributes of bpf state that are being passed 851 * to the netdevice through the bpf op. 852 */ 853 enum bpf_netdev_command { 854 /* Set or clear a bpf program used in the earliest stages of packet 855 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 856 * is responsible for calling bpf_prog_put on any old progs that are 857 * stored. In case of error, the callee need not release the new prog 858 * reference, but on success it takes ownership and must bpf_prog_put 859 * when it is no longer used. 860 */ 861 XDP_SETUP_PROG, 862 XDP_SETUP_PROG_HW, 863 XDP_QUERY_PROG, 864 XDP_QUERY_PROG_HW, 865 /* BPF program for offload callbacks, invoked at program load time. */ 866 BPF_OFFLOAD_MAP_ALLOC, 867 BPF_OFFLOAD_MAP_FREE, 868 XDP_SETUP_XSK_UMEM, 869 }; 870 871 struct bpf_prog_offload_ops; 872 struct netlink_ext_ack; 873 struct xdp_umem; 874 875 struct netdev_bpf { 876 enum bpf_netdev_command command; 877 union { 878 /* XDP_SETUP_PROG */ 879 struct { 880 u32 flags; 881 struct bpf_prog *prog; 882 struct netlink_ext_ack *extack; 883 }; 884 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 885 struct { 886 u32 prog_id; 887 /* flags with which program was installed */ 888 u32 prog_flags; 889 }; 890 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 891 struct { 892 struct bpf_offloaded_map *offmap; 893 }; 894 /* XDP_SETUP_XSK_UMEM */ 895 struct { 896 struct xdp_umem *umem; 897 u16 queue_id; 898 } xsk; 899 }; 900 }; 901 902 #ifdef CONFIG_XFRM_OFFLOAD 903 struct xfrmdev_ops { 904 int (*xdo_dev_state_add) (struct xfrm_state *x); 905 void (*xdo_dev_state_delete) (struct xfrm_state *x); 906 void (*xdo_dev_state_free) (struct xfrm_state *x); 907 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 908 struct xfrm_state *x); 909 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 910 }; 911 #endif 912 913 struct dev_ifalias { 914 struct rcu_head rcuhead; 915 char ifalias[]; 916 }; 917 918 struct devlink; 919 struct tlsdev_ops; 920 921 /* 922 * This structure defines the management hooks for network devices. 923 * The following hooks can be defined; unless noted otherwise, they are 924 * optional and can be filled with a null pointer. 925 * 926 * int (*ndo_init)(struct net_device *dev); 927 * This function is called once when a network device is registered. 928 * The network device can use this for any late stage initialization 929 * or semantic validation. It can fail with an error code which will 930 * be propagated back to register_netdev. 931 * 932 * void (*ndo_uninit)(struct net_device *dev); 933 * This function is called when device is unregistered or when registration 934 * fails. It is not called if init fails. 935 * 936 * int (*ndo_open)(struct net_device *dev); 937 * This function is called when a network device transitions to the up 938 * state. 939 * 940 * int (*ndo_stop)(struct net_device *dev); 941 * This function is called when a network device transitions to the down 942 * state. 943 * 944 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 945 * struct net_device *dev); 946 * Called when a packet needs to be transmitted. 947 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 948 * the queue before that can happen; it's for obsolete devices and weird 949 * corner cases, but the stack really does a non-trivial amount 950 * of useless work if you return NETDEV_TX_BUSY. 951 * Required; cannot be NULL. 952 * 953 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 954 * struct net_device *dev 955 * netdev_features_t features); 956 * Called by core transmit path to determine if device is capable of 957 * performing offload operations on a given packet. This is to give 958 * the device an opportunity to implement any restrictions that cannot 959 * be otherwise expressed by feature flags. The check is called with 960 * the set of features that the stack has calculated and it returns 961 * those the driver believes to be appropriate. 962 * 963 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 964 * struct net_device *sb_dev); 965 * Called to decide which queue to use when device supports multiple 966 * transmit queues. 967 * 968 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 969 * This function is called to allow device receiver to make 970 * changes to configuration when multicast or promiscuous is enabled. 971 * 972 * void (*ndo_set_rx_mode)(struct net_device *dev); 973 * This function is called device changes address list filtering. 974 * If driver handles unicast address filtering, it should set 975 * IFF_UNICAST_FLT in its priv_flags. 976 * 977 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 978 * This function is called when the Media Access Control address 979 * needs to be changed. If this interface is not defined, the 980 * MAC address can not be changed. 981 * 982 * int (*ndo_validate_addr)(struct net_device *dev); 983 * Test if Media Access Control address is valid for the device. 984 * 985 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 986 * Called when a user requests an ioctl which can't be handled by 987 * the generic interface code. If not defined ioctls return 988 * not supported error code. 989 * 990 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 991 * Used to set network devices bus interface parameters. This interface 992 * is retained for legacy reasons; new devices should use the bus 993 * interface (PCI) for low level management. 994 * 995 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 996 * Called when a user wants to change the Maximum Transfer Unit 997 * of a device. 998 * 999 * void (*ndo_tx_timeout)(struct net_device *dev); 1000 * Callback used when the transmitter has not made any progress 1001 * for dev->watchdog ticks. 1002 * 1003 * void (*ndo_get_stats64)(struct net_device *dev, 1004 * struct rtnl_link_stats64 *storage); 1005 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1006 * Called when a user wants to get the network device usage 1007 * statistics. Drivers must do one of the following: 1008 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1009 * rtnl_link_stats64 structure passed by the caller. 1010 * 2. Define @ndo_get_stats to update a net_device_stats structure 1011 * (which should normally be dev->stats) and return a pointer to 1012 * it. The structure may be changed asynchronously only if each 1013 * field is written atomically. 1014 * 3. Update dev->stats asynchronously and atomically, and define 1015 * neither operation. 1016 * 1017 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1018 * Return true if this device supports offload stats of this attr_id. 1019 * 1020 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1021 * void *attr_data) 1022 * Get statistics for offload operations by attr_id. Write it into the 1023 * attr_data pointer. 1024 * 1025 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1026 * If device supports VLAN filtering this function is called when a 1027 * VLAN id is registered. 1028 * 1029 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1030 * If device supports VLAN filtering this function is called when a 1031 * VLAN id is unregistered. 1032 * 1033 * void (*ndo_poll_controller)(struct net_device *dev); 1034 * 1035 * SR-IOV management functions. 1036 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1037 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1038 * u8 qos, __be16 proto); 1039 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1040 * int max_tx_rate); 1041 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1042 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1043 * int (*ndo_get_vf_config)(struct net_device *dev, 1044 * int vf, struct ifla_vf_info *ivf); 1045 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1046 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1047 * struct nlattr *port[]); 1048 * 1049 * Enable or disable the VF ability to query its RSS Redirection Table and 1050 * Hash Key. This is needed since on some devices VF share this information 1051 * with PF and querying it may introduce a theoretical security risk. 1052 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1053 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1054 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1055 * void *type_data); 1056 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1057 * This is always called from the stack with the rtnl lock held and netif 1058 * tx queues stopped. This allows the netdevice to perform queue 1059 * management safely. 1060 * 1061 * Fiber Channel over Ethernet (FCoE) offload functions. 1062 * int (*ndo_fcoe_enable)(struct net_device *dev); 1063 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1064 * so the underlying device can perform whatever needed configuration or 1065 * initialization to support acceleration of FCoE traffic. 1066 * 1067 * int (*ndo_fcoe_disable)(struct net_device *dev); 1068 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1069 * so the underlying device can perform whatever needed clean-ups to 1070 * stop supporting acceleration of FCoE traffic. 1071 * 1072 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1073 * struct scatterlist *sgl, unsigned int sgc); 1074 * Called when the FCoE Initiator wants to initialize an I/O that 1075 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1076 * perform necessary setup and returns 1 to indicate the device is set up 1077 * successfully to perform DDP on this I/O, otherwise this returns 0. 1078 * 1079 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1080 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1081 * indicated by the FC exchange id 'xid', so the underlying device can 1082 * clean up and reuse resources for later DDP requests. 1083 * 1084 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1085 * struct scatterlist *sgl, unsigned int sgc); 1086 * Called when the FCoE Target wants to initialize an I/O that 1087 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1088 * perform necessary setup and returns 1 to indicate the device is set up 1089 * successfully to perform DDP on this I/O, otherwise this returns 0. 1090 * 1091 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1092 * struct netdev_fcoe_hbainfo *hbainfo); 1093 * Called when the FCoE Protocol stack wants information on the underlying 1094 * device. This information is utilized by the FCoE protocol stack to 1095 * register attributes with Fiber Channel management service as per the 1096 * FC-GS Fabric Device Management Information(FDMI) specification. 1097 * 1098 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1099 * Called when the underlying device wants to override default World Wide 1100 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1101 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1102 * protocol stack to use. 1103 * 1104 * RFS acceleration. 1105 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1106 * u16 rxq_index, u32 flow_id); 1107 * Set hardware filter for RFS. rxq_index is the target queue index; 1108 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1109 * Return the filter ID on success, or a negative error code. 1110 * 1111 * Slave management functions (for bridge, bonding, etc). 1112 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1113 * Called to make another netdev an underling. 1114 * 1115 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1116 * Called to release previously enslaved netdev. 1117 * 1118 * Feature/offload setting functions. 1119 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1120 * netdev_features_t features); 1121 * Adjusts the requested feature flags according to device-specific 1122 * constraints, and returns the resulting flags. Must not modify 1123 * the device state. 1124 * 1125 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1126 * Called to update device configuration to new features. Passed 1127 * feature set might be less than what was returned by ndo_fix_features()). 1128 * Must return >0 or -errno if it changed dev->features itself. 1129 * 1130 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1131 * struct net_device *dev, 1132 * const unsigned char *addr, u16 vid, u16 flags, 1133 * struct netlink_ext_ack *extack); 1134 * Adds an FDB entry to dev for addr. 1135 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1136 * struct net_device *dev, 1137 * const unsigned char *addr, u16 vid) 1138 * Deletes the FDB entry from dev coresponding to addr. 1139 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1140 * struct net_device *dev, struct net_device *filter_dev, 1141 * int *idx) 1142 * Used to add FDB entries to dump requests. Implementers should add 1143 * entries to skb and update idx with the number of entries. 1144 * 1145 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1146 * u16 flags, struct netlink_ext_ack *extack) 1147 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1148 * struct net_device *dev, u32 filter_mask, 1149 * int nlflags) 1150 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1151 * u16 flags); 1152 * 1153 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1154 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1155 * which do not represent real hardware may define this to allow their 1156 * userspace components to manage their virtual carrier state. Devices 1157 * that determine carrier state from physical hardware properties (eg 1158 * network cables) or protocol-dependent mechanisms (eg 1159 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1160 * 1161 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1162 * struct netdev_phys_item_id *ppid); 1163 * Called to get ID of physical port of this device. If driver does 1164 * not implement this, it is assumed that the hw is not able to have 1165 * multiple net devices on single physical port. 1166 * 1167 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1168 * struct netdev_phys_item_id *ppid) 1169 * Called to get the parent ID of the physical port of this device. 1170 * 1171 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1172 * struct udp_tunnel_info *ti); 1173 * Called by UDP tunnel to notify a driver about the UDP port and socket 1174 * address family that a UDP tunnel is listnening to. It is called only 1175 * when a new port starts listening. The operation is protected by the 1176 * RTNL. 1177 * 1178 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1179 * struct udp_tunnel_info *ti); 1180 * Called by UDP tunnel to notify the driver about a UDP port and socket 1181 * address family that the UDP tunnel is not listening to anymore. The 1182 * operation is protected by the RTNL. 1183 * 1184 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1185 * struct net_device *dev) 1186 * Called by upper layer devices to accelerate switching or other 1187 * station functionality into hardware. 'pdev is the lowerdev 1188 * to use for the offload and 'dev' is the net device that will 1189 * back the offload. Returns a pointer to the private structure 1190 * the upper layer will maintain. 1191 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1192 * Called by upper layer device to delete the station created 1193 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1194 * the station and priv is the structure returned by the add 1195 * operation. 1196 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1197 * int queue_index, u32 maxrate); 1198 * Called when a user wants to set a max-rate limitation of specific 1199 * TX queue. 1200 * int (*ndo_get_iflink)(const struct net_device *dev); 1201 * Called to get the iflink value of this device. 1202 * void (*ndo_change_proto_down)(struct net_device *dev, 1203 * bool proto_down); 1204 * This function is used to pass protocol port error state information 1205 * to the switch driver. The switch driver can react to the proto_down 1206 * by doing a phys down on the associated switch port. 1207 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1208 * This function is used to get egress tunnel information for given skb. 1209 * This is useful for retrieving outer tunnel header parameters while 1210 * sampling packet. 1211 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1212 * This function is used to specify the headroom that the skb must 1213 * consider when allocation skb during packet reception. Setting 1214 * appropriate rx headroom value allows avoiding skb head copy on 1215 * forward. Setting a negative value resets the rx headroom to the 1216 * default value. 1217 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1218 * This function is used to set or query state related to XDP on the 1219 * netdevice and manage BPF offload. See definition of 1220 * enum bpf_netdev_command for details. 1221 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1222 * u32 flags); 1223 * This function is used to submit @n XDP packets for transmit on a 1224 * netdevice. Returns number of frames successfully transmitted, frames 1225 * that got dropped are freed/returned via xdp_return_frame(). 1226 * Returns negative number, means general error invoking ndo, meaning 1227 * no frames were xmit'ed and core-caller will free all frames. 1228 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1229 * Get devlink port instance associated with a given netdev. 1230 * Called with a reference on the netdevice and devlink locks only, 1231 * rtnl_lock is not held. 1232 */ 1233 struct net_device_ops { 1234 int (*ndo_init)(struct net_device *dev); 1235 void (*ndo_uninit)(struct net_device *dev); 1236 int (*ndo_open)(struct net_device *dev); 1237 int (*ndo_stop)(struct net_device *dev); 1238 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1239 struct net_device *dev); 1240 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1241 struct net_device *dev, 1242 netdev_features_t features); 1243 u16 (*ndo_select_queue)(struct net_device *dev, 1244 struct sk_buff *skb, 1245 struct net_device *sb_dev); 1246 void (*ndo_change_rx_flags)(struct net_device *dev, 1247 int flags); 1248 void (*ndo_set_rx_mode)(struct net_device *dev); 1249 int (*ndo_set_mac_address)(struct net_device *dev, 1250 void *addr); 1251 int (*ndo_validate_addr)(struct net_device *dev); 1252 int (*ndo_do_ioctl)(struct net_device *dev, 1253 struct ifreq *ifr, int cmd); 1254 int (*ndo_set_config)(struct net_device *dev, 1255 struct ifmap *map); 1256 int (*ndo_change_mtu)(struct net_device *dev, 1257 int new_mtu); 1258 int (*ndo_neigh_setup)(struct net_device *dev, 1259 struct neigh_parms *); 1260 void (*ndo_tx_timeout) (struct net_device *dev); 1261 1262 void (*ndo_get_stats64)(struct net_device *dev, 1263 struct rtnl_link_stats64 *storage); 1264 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1265 int (*ndo_get_offload_stats)(int attr_id, 1266 const struct net_device *dev, 1267 void *attr_data); 1268 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1269 1270 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1271 __be16 proto, u16 vid); 1272 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1273 __be16 proto, u16 vid); 1274 #ifdef CONFIG_NET_POLL_CONTROLLER 1275 void (*ndo_poll_controller)(struct net_device *dev); 1276 int (*ndo_netpoll_setup)(struct net_device *dev, 1277 struct netpoll_info *info); 1278 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1279 #endif 1280 int (*ndo_set_vf_mac)(struct net_device *dev, 1281 int queue, u8 *mac); 1282 int (*ndo_set_vf_vlan)(struct net_device *dev, 1283 int queue, u16 vlan, 1284 u8 qos, __be16 proto); 1285 int (*ndo_set_vf_rate)(struct net_device *dev, 1286 int vf, int min_tx_rate, 1287 int max_tx_rate); 1288 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1289 int vf, bool setting); 1290 int (*ndo_set_vf_trust)(struct net_device *dev, 1291 int vf, bool setting); 1292 int (*ndo_get_vf_config)(struct net_device *dev, 1293 int vf, 1294 struct ifla_vf_info *ivf); 1295 int (*ndo_set_vf_link_state)(struct net_device *dev, 1296 int vf, int link_state); 1297 int (*ndo_get_vf_stats)(struct net_device *dev, 1298 int vf, 1299 struct ifla_vf_stats 1300 *vf_stats); 1301 int (*ndo_set_vf_port)(struct net_device *dev, 1302 int vf, 1303 struct nlattr *port[]); 1304 int (*ndo_get_vf_port)(struct net_device *dev, 1305 int vf, struct sk_buff *skb); 1306 int (*ndo_set_vf_guid)(struct net_device *dev, 1307 int vf, u64 guid, 1308 int guid_type); 1309 int (*ndo_set_vf_rss_query_en)( 1310 struct net_device *dev, 1311 int vf, bool setting); 1312 int (*ndo_setup_tc)(struct net_device *dev, 1313 enum tc_setup_type type, 1314 void *type_data); 1315 #if IS_ENABLED(CONFIG_FCOE) 1316 int (*ndo_fcoe_enable)(struct net_device *dev); 1317 int (*ndo_fcoe_disable)(struct net_device *dev); 1318 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1319 u16 xid, 1320 struct scatterlist *sgl, 1321 unsigned int sgc); 1322 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1323 u16 xid); 1324 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1325 u16 xid, 1326 struct scatterlist *sgl, 1327 unsigned int sgc); 1328 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1329 struct netdev_fcoe_hbainfo *hbainfo); 1330 #endif 1331 1332 #if IS_ENABLED(CONFIG_LIBFCOE) 1333 #define NETDEV_FCOE_WWNN 0 1334 #define NETDEV_FCOE_WWPN 1 1335 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1336 u64 *wwn, int type); 1337 #endif 1338 1339 #ifdef CONFIG_RFS_ACCEL 1340 int (*ndo_rx_flow_steer)(struct net_device *dev, 1341 const struct sk_buff *skb, 1342 u16 rxq_index, 1343 u32 flow_id); 1344 #endif 1345 int (*ndo_add_slave)(struct net_device *dev, 1346 struct net_device *slave_dev, 1347 struct netlink_ext_ack *extack); 1348 int (*ndo_del_slave)(struct net_device *dev, 1349 struct net_device *slave_dev); 1350 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1351 netdev_features_t features); 1352 int (*ndo_set_features)(struct net_device *dev, 1353 netdev_features_t features); 1354 int (*ndo_neigh_construct)(struct net_device *dev, 1355 struct neighbour *n); 1356 void (*ndo_neigh_destroy)(struct net_device *dev, 1357 struct neighbour *n); 1358 1359 int (*ndo_fdb_add)(struct ndmsg *ndm, 1360 struct nlattr *tb[], 1361 struct net_device *dev, 1362 const unsigned char *addr, 1363 u16 vid, 1364 u16 flags, 1365 struct netlink_ext_ack *extack); 1366 int (*ndo_fdb_del)(struct ndmsg *ndm, 1367 struct nlattr *tb[], 1368 struct net_device *dev, 1369 const unsigned char *addr, 1370 u16 vid); 1371 int (*ndo_fdb_dump)(struct sk_buff *skb, 1372 struct netlink_callback *cb, 1373 struct net_device *dev, 1374 struct net_device *filter_dev, 1375 int *idx); 1376 int (*ndo_fdb_get)(struct sk_buff *skb, 1377 struct nlattr *tb[], 1378 struct net_device *dev, 1379 const unsigned char *addr, 1380 u16 vid, u32 portid, u32 seq, 1381 struct netlink_ext_ack *extack); 1382 int (*ndo_bridge_setlink)(struct net_device *dev, 1383 struct nlmsghdr *nlh, 1384 u16 flags, 1385 struct netlink_ext_ack *extack); 1386 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1387 u32 pid, u32 seq, 1388 struct net_device *dev, 1389 u32 filter_mask, 1390 int nlflags); 1391 int (*ndo_bridge_dellink)(struct net_device *dev, 1392 struct nlmsghdr *nlh, 1393 u16 flags); 1394 int (*ndo_change_carrier)(struct net_device *dev, 1395 bool new_carrier); 1396 int (*ndo_get_phys_port_id)(struct net_device *dev, 1397 struct netdev_phys_item_id *ppid); 1398 int (*ndo_get_port_parent_id)(struct net_device *dev, 1399 struct netdev_phys_item_id *ppid); 1400 int (*ndo_get_phys_port_name)(struct net_device *dev, 1401 char *name, size_t len); 1402 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1403 struct udp_tunnel_info *ti); 1404 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1405 struct udp_tunnel_info *ti); 1406 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1407 struct net_device *dev); 1408 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1409 void *priv); 1410 1411 int (*ndo_get_lock_subclass)(struct net_device *dev); 1412 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1413 int queue_index, 1414 u32 maxrate); 1415 int (*ndo_get_iflink)(const struct net_device *dev); 1416 int (*ndo_change_proto_down)(struct net_device *dev, 1417 bool proto_down); 1418 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1419 struct sk_buff *skb); 1420 void (*ndo_set_rx_headroom)(struct net_device *dev, 1421 int needed_headroom); 1422 int (*ndo_bpf)(struct net_device *dev, 1423 struct netdev_bpf *bpf); 1424 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1425 struct xdp_frame **xdp, 1426 u32 flags); 1427 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1428 u32 queue_id); 1429 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1430 }; 1431 1432 /** 1433 * enum net_device_priv_flags - &struct net_device priv_flags 1434 * 1435 * These are the &struct net_device, they are only set internally 1436 * by drivers and used in the kernel. These flags are invisible to 1437 * userspace; this means that the order of these flags can change 1438 * during any kernel release. 1439 * 1440 * You should have a pretty good reason to be extending these flags. 1441 * 1442 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1443 * @IFF_EBRIDGE: Ethernet bridging device 1444 * @IFF_BONDING: bonding master or slave 1445 * @IFF_ISATAP: ISATAP interface (RFC4214) 1446 * @IFF_WAN_HDLC: WAN HDLC device 1447 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1448 * release skb->dst 1449 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1450 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1451 * @IFF_MACVLAN_PORT: device used as macvlan port 1452 * @IFF_BRIDGE_PORT: device used as bridge port 1453 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1454 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1455 * @IFF_UNICAST_FLT: Supports unicast filtering 1456 * @IFF_TEAM_PORT: device used as team port 1457 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1458 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1459 * change when it's running 1460 * @IFF_MACVLAN: Macvlan device 1461 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1462 * underlying stacked devices 1463 * @IFF_L3MDEV_MASTER: device is an L3 master device 1464 * @IFF_NO_QUEUE: device can run without qdisc attached 1465 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1466 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1467 * @IFF_TEAM: device is a team device 1468 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1469 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1470 * entity (i.e. the master device for bridged veth) 1471 * @IFF_MACSEC: device is a MACsec device 1472 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1473 * @IFF_FAILOVER: device is a failover master device 1474 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1475 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1476 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1477 */ 1478 enum netdev_priv_flags { 1479 IFF_802_1Q_VLAN = 1<<0, 1480 IFF_EBRIDGE = 1<<1, 1481 IFF_BONDING = 1<<2, 1482 IFF_ISATAP = 1<<3, 1483 IFF_WAN_HDLC = 1<<4, 1484 IFF_XMIT_DST_RELEASE = 1<<5, 1485 IFF_DONT_BRIDGE = 1<<6, 1486 IFF_DISABLE_NETPOLL = 1<<7, 1487 IFF_MACVLAN_PORT = 1<<8, 1488 IFF_BRIDGE_PORT = 1<<9, 1489 IFF_OVS_DATAPATH = 1<<10, 1490 IFF_TX_SKB_SHARING = 1<<11, 1491 IFF_UNICAST_FLT = 1<<12, 1492 IFF_TEAM_PORT = 1<<13, 1493 IFF_SUPP_NOFCS = 1<<14, 1494 IFF_LIVE_ADDR_CHANGE = 1<<15, 1495 IFF_MACVLAN = 1<<16, 1496 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1497 IFF_L3MDEV_MASTER = 1<<18, 1498 IFF_NO_QUEUE = 1<<19, 1499 IFF_OPENVSWITCH = 1<<20, 1500 IFF_L3MDEV_SLAVE = 1<<21, 1501 IFF_TEAM = 1<<22, 1502 IFF_RXFH_CONFIGURED = 1<<23, 1503 IFF_PHONY_HEADROOM = 1<<24, 1504 IFF_MACSEC = 1<<25, 1505 IFF_NO_RX_HANDLER = 1<<26, 1506 IFF_FAILOVER = 1<<27, 1507 IFF_FAILOVER_SLAVE = 1<<28, 1508 IFF_L3MDEV_RX_HANDLER = 1<<29, 1509 IFF_LIVE_RENAME_OK = 1<<30, 1510 }; 1511 1512 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1513 #define IFF_EBRIDGE IFF_EBRIDGE 1514 #define IFF_BONDING IFF_BONDING 1515 #define IFF_ISATAP IFF_ISATAP 1516 #define IFF_WAN_HDLC IFF_WAN_HDLC 1517 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1518 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1519 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1520 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1521 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1522 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1523 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1524 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1525 #define IFF_TEAM_PORT IFF_TEAM_PORT 1526 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1527 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1528 #define IFF_MACVLAN IFF_MACVLAN 1529 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1530 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1531 #define IFF_NO_QUEUE IFF_NO_QUEUE 1532 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1533 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1534 #define IFF_TEAM IFF_TEAM 1535 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1536 #define IFF_MACSEC IFF_MACSEC 1537 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1538 #define IFF_FAILOVER IFF_FAILOVER 1539 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1540 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1541 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1542 1543 /** 1544 * struct net_device - The DEVICE structure. 1545 * 1546 * Actually, this whole structure is a big mistake. It mixes I/O 1547 * data with strictly "high-level" data, and it has to know about 1548 * almost every data structure used in the INET module. 1549 * 1550 * @name: This is the first field of the "visible" part of this structure 1551 * (i.e. as seen by users in the "Space.c" file). It is the name 1552 * of the interface. 1553 * 1554 * @name_hlist: Device name hash chain, please keep it close to name[] 1555 * @ifalias: SNMP alias 1556 * @mem_end: Shared memory end 1557 * @mem_start: Shared memory start 1558 * @base_addr: Device I/O address 1559 * @irq: Device IRQ number 1560 * 1561 * @state: Generic network queuing layer state, see netdev_state_t 1562 * @dev_list: The global list of network devices 1563 * @napi_list: List entry used for polling NAPI devices 1564 * @unreg_list: List entry when we are unregistering the 1565 * device; see the function unregister_netdev 1566 * @close_list: List entry used when we are closing the device 1567 * @ptype_all: Device-specific packet handlers for all protocols 1568 * @ptype_specific: Device-specific, protocol-specific packet handlers 1569 * 1570 * @adj_list: Directly linked devices, like slaves for bonding 1571 * @features: Currently active device features 1572 * @hw_features: User-changeable features 1573 * 1574 * @wanted_features: User-requested features 1575 * @vlan_features: Mask of features inheritable by VLAN devices 1576 * 1577 * @hw_enc_features: Mask of features inherited by encapsulating devices 1578 * This field indicates what encapsulation 1579 * offloads the hardware is capable of doing, 1580 * and drivers will need to set them appropriately. 1581 * 1582 * @mpls_features: Mask of features inheritable by MPLS 1583 * 1584 * @ifindex: interface index 1585 * @group: The group the device belongs to 1586 * 1587 * @stats: Statistics struct, which was left as a legacy, use 1588 * rtnl_link_stats64 instead 1589 * 1590 * @rx_dropped: Dropped packets by core network, 1591 * do not use this in drivers 1592 * @tx_dropped: Dropped packets by core network, 1593 * do not use this in drivers 1594 * @rx_nohandler: nohandler dropped packets by core network on 1595 * inactive devices, do not use this in drivers 1596 * @carrier_up_count: Number of times the carrier has been up 1597 * @carrier_down_count: Number of times the carrier has been down 1598 * 1599 * @wireless_handlers: List of functions to handle Wireless Extensions, 1600 * instead of ioctl, 1601 * see <net/iw_handler.h> for details. 1602 * @wireless_data: Instance data managed by the core of wireless extensions 1603 * 1604 * @netdev_ops: Includes several pointers to callbacks, 1605 * if one wants to override the ndo_*() functions 1606 * @ethtool_ops: Management operations 1607 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1608 * discovery handling. Necessary for e.g. 6LoWPAN. 1609 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1610 * of Layer 2 headers. 1611 * 1612 * @flags: Interface flags (a la BSD) 1613 * @priv_flags: Like 'flags' but invisible to userspace, 1614 * see if.h for the definitions 1615 * @gflags: Global flags ( kept as legacy ) 1616 * @padded: How much padding added by alloc_netdev() 1617 * @operstate: RFC2863 operstate 1618 * @link_mode: Mapping policy to operstate 1619 * @if_port: Selectable AUI, TP, ... 1620 * @dma: DMA channel 1621 * @mtu: Interface MTU value 1622 * @min_mtu: Interface Minimum MTU value 1623 * @max_mtu: Interface Maximum MTU value 1624 * @type: Interface hardware type 1625 * @hard_header_len: Maximum hardware header length. 1626 * @min_header_len: Minimum hardware header length 1627 * 1628 * @needed_headroom: Extra headroom the hardware may need, but not in all 1629 * cases can this be guaranteed 1630 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1631 * cases can this be guaranteed. Some cases also use 1632 * LL_MAX_HEADER instead to allocate the skb 1633 * 1634 * interface address info: 1635 * 1636 * @perm_addr: Permanent hw address 1637 * @addr_assign_type: Hw address assignment type 1638 * @addr_len: Hardware address length 1639 * @neigh_priv_len: Used in neigh_alloc() 1640 * @dev_id: Used to differentiate devices that share 1641 * the same link layer address 1642 * @dev_port: Used to differentiate devices that share 1643 * the same function 1644 * @addr_list_lock: XXX: need comments on this one 1645 * @uc_promisc: Counter that indicates promiscuous mode 1646 * has been enabled due to the need to listen to 1647 * additional unicast addresses in a device that 1648 * does not implement ndo_set_rx_mode() 1649 * @uc: unicast mac addresses 1650 * @mc: multicast mac addresses 1651 * @dev_addrs: list of device hw addresses 1652 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1653 * @promiscuity: Number of times the NIC is told to work in 1654 * promiscuous mode; if it becomes 0 the NIC will 1655 * exit promiscuous mode 1656 * @allmulti: Counter, enables or disables allmulticast mode 1657 * 1658 * @vlan_info: VLAN info 1659 * @dsa_ptr: dsa specific data 1660 * @tipc_ptr: TIPC specific data 1661 * @atalk_ptr: AppleTalk link 1662 * @ip_ptr: IPv4 specific data 1663 * @dn_ptr: DECnet specific data 1664 * @ip6_ptr: IPv6 specific data 1665 * @ax25_ptr: AX.25 specific data 1666 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1667 * 1668 * @dev_addr: Hw address (before bcast, 1669 * because most packets are unicast) 1670 * 1671 * @_rx: Array of RX queues 1672 * @num_rx_queues: Number of RX queues 1673 * allocated at register_netdev() time 1674 * @real_num_rx_queues: Number of RX queues currently active in device 1675 * 1676 * @rx_handler: handler for received packets 1677 * @rx_handler_data: XXX: need comments on this one 1678 * @miniq_ingress: ingress/clsact qdisc specific data for 1679 * ingress processing 1680 * @ingress_queue: XXX: need comments on this one 1681 * @broadcast: hw bcast address 1682 * 1683 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1684 * indexed by RX queue number. Assigned by driver. 1685 * This must only be set if the ndo_rx_flow_steer 1686 * operation is defined 1687 * @index_hlist: Device index hash chain 1688 * 1689 * @_tx: Array of TX queues 1690 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1691 * @real_num_tx_queues: Number of TX queues currently active in device 1692 * @qdisc: Root qdisc from userspace point of view 1693 * @tx_queue_len: Max frames per queue allowed 1694 * @tx_global_lock: XXX: need comments on this one 1695 * 1696 * @xps_maps: XXX: need comments on this one 1697 * @miniq_egress: clsact qdisc specific data for 1698 * egress processing 1699 * @watchdog_timeo: Represents the timeout that is used by 1700 * the watchdog (see dev_watchdog()) 1701 * @watchdog_timer: List of timers 1702 * 1703 * @pcpu_refcnt: Number of references to this device 1704 * @todo_list: Delayed register/unregister 1705 * @link_watch_list: XXX: need comments on this one 1706 * 1707 * @reg_state: Register/unregister state machine 1708 * @dismantle: Device is going to be freed 1709 * @rtnl_link_state: This enum represents the phases of creating 1710 * a new link 1711 * 1712 * @needs_free_netdev: Should unregister perform free_netdev? 1713 * @priv_destructor: Called from unregister 1714 * @npinfo: XXX: need comments on this one 1715 * @nd_net: Network namespace this network device is inside 1716 * 1717 * @ml_priv: Mid-layer private 1718 * @lstats: Loopback statistics 1719 * @tstats: Tunnel statistics 1720 * @dstats: Dummy statistics 1721 * @vstats: Virtual ethernet statistics 1722 * 1723 * @garp_port: GARP 1724 * @mrp_port: MRP 1725 * 1726 * @dev: Class/net/name entry 1727 * @sysfs_groups: Space for optional device, statistics and wireless 1728 * sysfs groups 1729 * 1730 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1731 * @rtnl_link_ops: Rtnl_link_ops 1732 * 1733 * @gso_max_size: Maximum size of generic segmentation offload 1734 * @gso_max_segs: Maximum number of segments that can be passed to the 1735 * NIC for GSO 1736 * 1737 * @dcbnl_ops: Data Center Bridging netlink ops 1738 * @num_tc: Number of traffic classes in the net device 1739 * @tc_to_txq: XXX: need comments on this one 1740 * @prio_tc_map: XXX: need comments on this one 1741 * 1742 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1743 * 1744 * @priomap: XXX: need comments on this one 1745 * @phydev: Physical device may attach itself 1746 * for hardware timestamping 1747 * @sfp_bus: attached &struct sfp_bus structure. 1748 * 1749 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1750 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1751 * 1752 * @proto_down: protocol port state information can be sent to the 1753 * switch driver and used to set the phys state of the 1754 * switch port. 1755 * 1756 * @wol_enabled: Wake-on-LAN is enabled 1757 * 1758 * FIXME: cleanup struct net_device such that network protocol info 1759 * moves out. 1760 */ 1761 1762 struct net_device { 1763 char name[IFNAMSIZ]; 1764 struct hlist_node name_hlist; 1765 struct dev_ifalias __rcu *ifalias; 1766 /* 1767 * I/O specific fields 1768 * FIXME: Merge these and struct ifmap into one 1769 */ 1770 unsigned long mem_end; 1771 unsigned long mem_start; 1772 unsigned long base_addr; 1773 int irq; 1774 1775 /* 1776 * Some hardware also needs these fields (state,dev_list, 1777 * napi_list,unreg_list,close_list) but they are not 1778 * part of the usual set specified in Space.c. 1779 */ 1780 1781 unsigned long state; 1782 1783 struct list_head dev_list; 1784 struct list_head napi_list; 1785 struct list_head unreg_list; 1786 struct list_head close_list; 1787 struct list_head ptype_all; 1788 struct list_head ptype_specific; 1789 1790 struct { 1791 struct list_head upper; 1792 struct list_head lower; 1793 } adj_list; 1794 1795 netdev_features_t features; 1796 netdev_features_t hw_features; 1797 netdev_features_t wanted_features; 1798 netdev_features_t vlan_features; 1799 netdev_features_t hw_enc_features; 1800 netdev_features_t mpls_features; 1801 netdev_features_t gso_partial_features; 1802 1803 int ifindex; 1804 int group; 1805 1806 struct net_device_stats stats; 1807 1808 atomic_long_t rx_dropped; 1809 atomic_long_t tx_dropped; 1810 atomic_long_t rx_nohandler; 1811 1812 /* Stats to monitor link on/off, flapping */ 1813 atomic_t carrier_up_count; 1814 atomic_t carrier_down_count; 1815 1816 #ifdef CONFIG_WIRELESS_EXT 1817 const struct iw_handler_def *wireless_handlers; 1818 struct iw_public_data *wireless_data; 1819 #endif 1820 const struct net_device_ops *netdev_ops; 1821 const struct ethtool_ops *ethtool_ops; 1822 #ifdef CONFIG_NET_L3_MASTER_DEV 1823 const struct l3mdev_ops *l3mdev_ops; 1824 #endif 1825 #if IS_ENABLED(CONFIG_IPV6) 1826 const struct ndisc_ops *ndisc_ops; 1827 #endif 1828 1829 #ifdef CONFIG_XFRM_OFFLOAD 1830 const struct xfrmdev_ops *xfrmdev_ops; 1831 #endif 1832 1833 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1834 const struct tlsdev_ops *tlsdev_ops; 1835 #endif 1836 1837 const struct header_ops *header_ops; 1838 1839 unsigned int flags; 1840 unsigned int priv_flags; 1841 1842 unsigned short gflags; 1843 unsigned short padded; 1844 1845 unsigned char operstate; 1846 unsigned char link_mode; 1847 1848 unsigned char if_port; 1849 unsigned char dma; 1850 1851 unsigned int mtu; 1852 unsigned int min_mtu; 1853 unsigned int max_mtu; 1854 unsigned short type; 1855 unsigned short hard_header_len; 1856 unsigned char min_header_len; 1857 1858 unsigned short needed_headroom; 1859 unsigned short needed_tailroom; 1860 1861 /* Interface address info. */ 1862 unsigned char perm_addr[MAX_ADDR_LEN]; 1863 unsigned char addr_assign_type; 1864 unsigned char addr_len; 1865 unsigned short neigh_priv_len; 1866 unsigned short dev_id; 1867 unsigned short dev_port; 1868 spinlock_t addr_list_lock; 1869 unsigned char name_assign_type; 1870 bool uc_promisc; 1871 struct netdev_hw_addr_list uc; 1872 struct netdev_hw_addr_list mc; 1873 struct netdev_hw_addr_list dev_addrs; 1874 1875 #ifdef CONFIG_SYSFS 1876 struct kset *queues_kset; 1877 #endif 1878 unsigned int promiscuity; 1879 unsigned int allmulti; 1880 1881 1882 /* Protocol-specific pointers */ 1883 1884 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1885 struct vlan_info __rcu *vlan_info; 1886 #endif 1887 #if IS_ENABLED(CONFIG_NET_DSA) 1888 struct dsa_port *dsa_ptr; 1889 #endif 1890 #if IS_ENABLED(CONFIG_TIPC) 1891 struct tipc_bearer __rcu *tipc_ptr; 1892 #endif 1893 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1894 void *atalk_ptr; 1895 #endif 1896 struct in_device __rcu *ip_ptr; 1897 #if IS_ENABLED(CONFIG_DECNET) 1898 struct dn_dev __rcu *dn_ptr; 1899 #endif 1900 struct inet6_dev __rcu *ip6_ptr; 1901 #if IS_ENABLED(CONFIG_AX25) 1902 void *ax25_ptr; 1903 #endif 1904 struct wireless_dev *ieee80211_ptr; 1905 struct wpan_dev *ieee802154_ptr; 1906 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1907 struct mpls_dev __rcu *mpls_ptr; 1908 #endif 1909 1910 /* 1911 * Cache lines mostly used on receive path (including eth_type_trans()) 1912 */ 1913 /* Interface address info used in eth_type_trans() */ 1914 unsigned char *dev_addr; 1915 1916 struct netdev_rx_queue *_rx; 1917 unsigned int num_rx_queues; 1918 unsigned int real_num_rx_queues; 1919 1920 struct bpf_prog __rcu *xdp_prog; 1921 unsigned long gro_flush_timeout; 1922 rx_handler_func_t __rcu *rx_handler; 1923 void __rcu *rx_handler_data; 1924 1925 #ifdef CONFIG_NET_CLS_ACT 1926 struct mini_Qdisc __rcu *miniq_ingress; 1927 #endif 1928 struct netdev_queue __rcu *ingress_queue; 1929 #ifdef CONFIG_NETFILTER_INGRESS 1930 struct nf_hook_entries __rcu *nf_hooks_ingress; 1931 #endif 1932 1933 unsigned char broadcast[MAX_ADDR_LEN]; 1934 #ifdef CONFIG_RFS_ACCEL 1935 struct cpu_rmap *rx_cpu_rmap; 1936 #endif 1937 struct hlist_node index_hlist; 1938 1939 /* 1940 * Cache lines mostly used on transmit path 1941 */ 1942 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1943 unsigned int num_tx_queues; 1944 unsigned int real_num_tx_queues; 1945 struct Qdisc *qdisc; 1946 #ifdef CONFIG_NET_SCHED 1947 DECLARE_HASHTABLE (qdisc_hash, 4); 1948 #endif 1949 unsigned int tx_queue_len; 1950 spinlock_t tx_global_lock; 1951 int watchdog_timeo; 1952 1953 #ifdef CONFIG_XPS 1954 struct xps_dev_maps __rcu *xps_cpus_map; 1955 struct xps_dev_maps __rcu *xps_rxqs_map; 1956 #endif 1957 #ifdef CONFIG_NET_CLS_ACT 1958 struct mini_Qdisc __rcu *miniq_egress; 1959 #endif 1960 1961 /* These may be needed for future network-power-down code. */ 1962 struct timer_list watchdog_timer; 1963 1964 int __percpu *pcpu_refcnt; 1965 struct list_head todo_list; 1966 1967 struct list_head link_watch_list; 1968 1969 enum { NETREG_UNINITIALIZED=0, 1970 NETREG_REGISTERED, /* completed register_netdevice */ 1971 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1972 NETREG_UNREGISTERED, /* completed unregister todo */ 1973 NETREG_RELEASED, /* called free_netdev */ 1974 NETREG_DUMMY, /* dummy device for NAPI poll */ 1975 } reg_state:8; 1976 1977 bool dismantle; 1978 1979 enum { 1980 RTNL_LINK_INITIALIZED, 1981 RTNL_LINK_INITIALIZING, 1982 } rtnl_link_state:16; 1983 1984 bool needs_free_netdev; 1985 void (*priv_destructor)(struct net_device *dev); 1986 1987 #ifdef CONFIG_NETPOLL 1988 struct netpoll_info __rcu *npinfo; 1989 #endif 1990 1991 possible_net_t nd_net; 1992 1993 /* mid-layer private */ 1994 union { 1995 void *ml_priv; 1996 struct pcpu_lstats __percpu *lstats; 1997 struct pcpu_sw_netstats __percpu *tstats; 1998 struct pcpu_dstats __percpu *dstats; 1999 }; 2000 2001 #if IS_ENABLED(CONFIG_GARP) 2002 struct garp_port __rcu *garp_port; 2003 #endif 2004 #if IS_ENABLED(CONFIG_MRP) 2005 struct mrp_port __rcu *mrp_port; 2006 #endif 2007 2008 struct device dev; 2009 const struct attribute_group *sysfs_groups[4]; 2010 const struct attribute_group *sysfs_rx_queue_group; 2011 2012 const struct rtnl_link_ops *rtnl_link_ops; 2013 2014 /* for setting kernel sock attribute on TCP connection setup */ 2015 #define GSO_MAX_SIZE 65536 2016 unsigned int gso_max_size; 2017 #define GSO_MAX_SEGS 65535 2018 u16 gso_max_segs; 2019 2020 #ifdef CONFIG_DCB 2021 const struct dcbnl_rtnl_ops *dcbnl_ops; 2022 #endif 2023 s16 num_tc; 2024 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2025 u8 prio_tc_map[TC_BITMASK + 1]; 2026 2027 #if IS_ENABLED(CONFIG_FCOE) 2028 unsigned int fcoe_ddp_xid; 2029 #endif 2030 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2031 struct netprio_map __rcu *priomap; 2032 #endif 2033 struct phy_device *phydev; 2034 struct sfp_bus *sfp_bus; 2035 struct lock_class_key *qdisc_tx_busylock; 2036 struct lock_class_key *qdisc_running_key; 2037 bool proto_down; 2038 unsigned wol_enabled:1; 2039 }; 2040 #define to_net_dev(d) container_of(d, struct net_device, dev) 2041 2042 static inline bool netif_elide_gro(const struct net_device *dev) 2043 { 2044 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2045 return true; 2046 return false; 2047 } 2048 2049 #define NETDEV_ALIGN 32 2050 2051 static inline 2052 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2053 { 2054 return dev->prio_tc_map[prio & TC_BITMASK]; 2055 } 2056 2057 static inline 2058 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2059 { 2060 if (tc >= dev->num_tc) 2061 return -EINVAL; 2062 2063 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2064 return 0; 2065 } 2066 2067 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2068 void netdev_reset_tc(struct net_device *dev); 2069 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2070 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2071 2072 static inline 2073 int netdev_get_num_tc(struct net_device *dev) 2074 { 2075 return dev->num_tc; 2076 } 2077 2078 void netdev_unbind_sb_channel(struct net_device *dev, 2079 struct net_device *sb_dev); 2080 int netdev_bind_sb_channel_queue(struct net_device *dev, 2081 struct net_device *sb_dev, 2082 u8 tc, u16 count, u16 offset); 2083 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2084 static inline int netdev_get_sb_channel(struct net_device *dev) 2085 { 2086 return max_t(int, -dev->num_tc, 0); 2087 } 2088 2089 static inline 2090 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2091 unsigned int index) 2092 { 2093 return &dev->_tx[index]; 2094 } 2095 2096 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2097 const struct sk_buff *skb) 2098 { 2099 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2100 } 2101 2102 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2103 void (*f)(struct net_device *, 2104 struct netdev_queue *, 2105 void *), 2106 void *arg) 2107 { 2108 unsigned int i; 2109 2110 for (i = 0; i < dev->num_tx_queues; i++) 2111 f(dev, &dev->_tx[i], arg); 2112 } 2113 2114 #define netdev_lockdep_set_classes(dev) \ 2115 { \ 2116 static struct lock_class_key qdisc_tx_busylock_key; \ 2117 static struct lock_class_key qdisc_running_key; \ 2118 static struct lock_class_key qdisc_xmit_lock_key; \ 2119 static struct lock_class_key dev_addr_list_lock_key; \ 2120 unsigned int i; \ 2121 \ 2122 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2123 (dev)->qdisc_running_key = &qdisc_running_key; \ 2124 lockdep_set_class(&(dev)->addr_list_lock, \ 2125 &dev_addr_list_lock_key); \ 2126 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2127 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2128 &qdisc_xmit_lock_key); \ 2129 } 2130 2131 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2132 struct net_device *sb_dev); 2133 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2134 struct sk_buff *skb, 2135 struct net_device *sb_dev); 2136 2137 /* returns the headroom that the master device needs to take in account 2138 * when forwarding to this dev 2139 */ 2140 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2141 { 2142 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2143 } 2144 2145 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2146 { 2147 if (dev->netdev_ops->ndo_set_rx_headroom) 2148 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2149 } 2150 2151 /* set the device rx headroom to the dev's default */ 2152 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2153 { 2154 netdev_set_rx_headroom(dev, -1); 2155 } 2156 2157 /* 2158 * Net namespace inlines 2159 */ 2160 static inline 2161 struct net *dev_net(const struct net_device *dev) 2162 { 2163 return read_pnet(&dev->nd_net); 2164 } 2165 2166 static inline 2167 void dev_net_set(struct net_device *dev, struct net *net) 2168 { 2169 write_pnet(&dev->nd_net, net); 2170 } 2171 2172 /** 2173 * netdev_priv - access network device private data 2174 * @dev: network device 2175 * 2176 * Get network device private data 2177 */ 2178 static inline void *netdev_priv(const struct net_device *dev) 2179 { 2180 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2181 } 2182 2183 /* Set the sysfs physical device reference for the network logical device 2184 * if set prior to registration will cause a symlink during initialization. 2185 */ 2186 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2187 2188 /* Set the sysfs device type for the network logical device to allow 2189 * fine-grained identification of different network device types. For 2190 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2191 */ 2192 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2193 2194 /* Default NAPI poll() weight 2195 * Device drivers are strongly advised to not use bigger value 2196 */ 2197 #define NAPI_POLL_WEIGHT 64 2198 2199 /** 2200 * netif_napi_add - initialize a NAPI context 2201 * @dev: network device 2202 * @napi: NAPI context 2203 * @poll: polling function 2204 * @weight: default weight 2205 * 2206 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2207 * *any* of the other NAPI-related functions. 2208 */ 2209 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2210 int (*poll)(struct napi_struct *, int), int weight); 2211 2212 /** 2213 * netif_tx_napi_add - initialize a NAPI context 2214 * @dev: network device 2215 * @napi: NAPI context 2216 * @poll: polling function 2217 * @weight: default weight 2218 * 2219 * This variant of netif_napi_add() should be used from drivers using NAPI 2220 * to exclusively poll a TX queue. 2221 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2222 */ 2223 static inline void netif_tx_napi_add(struct net_device *dev, 2224 struct napi_struct *napi, 2225 int (*poll)(struct napi_struct *, int), 2226 int weight) 2227 { 2228 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2229 netif_napi_add(dev, napi, poll, weight); 2230 } 2231 2232 /** 2233 * netif_napi_del - remove a NAPI context 2234 * @napi: NAPI context 2235 * 2236 * netif_napi_del() removes a NAPI context from the network device NAPI list 2237 */ 2238 void netif_napi_del(struct napi_struct *napi); 2239 2240 struct napi_gro_cb { 2241 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2242 void *frag0; 2243 2244 /* Length of frag0. */ 2245 unsigned int frag0_len; 2246 2247 /* This indicates where we are processing relative to skb->data. */ 2248 int data_offset; 2249 2250 /* This is non-zero if the packet cannot be merged with the new skb. */ 2251 u16 flush; 2252 2253 /* Save the IP ID here and check when we get to the transport layer */ 2254 u16 flush_id; 2255 2256 /* Number of segments aggregated. */ 2257 u16 count; 2258 2259 /* Start offset for remote checksum offload */ 2260 u16 gro_remcsum_start; 2261 2262 /* jiffies when first packet was created/queued */ 2263 unsigned long age; 2264 2265 /* Used in ipv6_gro_receive() and foo-over-udp */ 2266 u16 proto; 2267 2268 /* This is non-zero if the packet may be of the same flow. */ 2269 u8 same_flow:1; 2270 2271 /* Used in tunnel GRO receive */ 2272 u8 encap_mark:1; 2273 2274 /* GRO checksum is valid */ 2275 u8 csum_valid:1; 2276 2277 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2278 u8 csum_cnt:3; 2279 2280 /* Free the skb? */ 2281 u8 free:2; 2282 #define NAPI_GRO_FREE 1 2283 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2284 2285 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2286 u8 is_ipv6:1; 2287 2288 /* Used in GRE, set in fou/gue_gro_receive */ 2289 u8 is_fou:1; 2290 2291 /* Used to determine if flush_id can be ignored */ 2292 u8 is_atomic:1; 2293 2294 /* Number of gro_receive callbacks this packet already went through */ 2295 u8 recursion_counter:4; 2296 2297 /* 1 bit hole */ 2298 2299 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2300 __wsum csum; 2301 2302 /* used in skb_gro_receive() slow path */ 2303 struct sk_buff *last; 2304 }; 2305 2306 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2307 2308 #define GRO_RECURSION_LIMIT 15 2309 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2310 { 2311 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2312 } 2313 2314 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2315 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2316 struct list_head *head, 2317 struct sk_buff *skb) 2318 { 2319 if (unlikely(gro_recursion_inc_test(skb))) { 2320 NAPI_GRO_CB(skb)->flush |= 1; 2321 return NULL; 2322 } 2323 2324 return cb(head, skb); 2325 } 2326 2327 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2328 struct sk_buff *); 2329 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2330 struct sock *sk, 2331 struct list_head *head, 2332 struct sk_buff *skb) 2333 { 2334 if (unlikely(gro_recursion_inc_test(skb))) { 2335 NAPI_GRO_CB(skb)->flush |= 1; 2336 return NULL; 2337 } 2338 2339 return cb(sk, head, skb); 2340 } 2341 2342 struct packet_type { 2343 __be16 type; /* This is really htons(ether_type). */ 2344 bool ignore_outgoing; 2345 struct net_device *dev; /* NULL is wildcarded here */ 2346 int (*func) (struct sk_buff *, 2347 struct net_device *, 2348 struct packet_type *, 2349 struct net_device *); 2350 void (*list_func) (struct list_head *, 2351 struct packet_type *, 2352 struct net_device *); 2353 bool (*id_match)(struct packet_type *ptype, 2354 struct sock *sk); 2355 void *af_packet_priv; 2356 struct list_head list; 2357 }; 2358 2359 struct offload_callbacks { 2360 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2361 netdev_features_t features); 2362 struct sk_buff *(*gro_receive)(struct list_head *head, 2363 struct sk_buff *skb); 2364 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2365 }; 2366 2367 struct packet_offload { 2368 __be16 type; /* This is really htons(ether_type). */ 2369 u16 priority; 2370 struct offload_callbacks callbacks; 2371 struct list_head list; 2372 }; 2373 2374 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2375 struct pcpu_sw_netstats { 2376 u64 rx_packets; 2377 u64 rx_bytes; 2378 u64 tx_packets; 2379 u64 tx_bytes; 2380 struct u64_stats_sync syncp; 2381 } __aligned(4 * sizeof(u64)); 2382 2383 struct pcpu_lstats { 2384 u64 packets; 2385 u64 bytes; 2386 struct u64_stats_sync syncp; 2387 } __aligned(2 * sizeof(u64)); 2388 2389 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2390 ({ \ 2391 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2392 if (pcpu_stats) { \ 2393 int __cpu; \ 2394 for_each_possible_cpu(__cpu) { \ 2395 typeof(type) *stat; \ 2396 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2397 u64_stats_init(&stat->syncp); \ 2398 } \ 2399 } \ 2400 pcpu_stats; \ 2401 }) 2402 2403 #define netdev_alloc_pcpu_stats(type) \ 2404 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2405 2406 enum netdev_lag_tx_type { 2407 NETDEV_LAG_TX_TYPE_UNKNOWN, 2408 NETDEV_LAG_TX_TYPE_RANDOM, 2409 NETDEV_LAG_TX_TYPE_BROADCAST, 2410 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2411 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2412 NETDEV_LAG_TX_TYPE_HASH, 2413 }; 2414 2415 enum netdev_lag_hash { 2416 NETDEV_LAG_HASH_NONE, 2417 NETDEV_LAG_HASH_L2, 2418 NETDEV_LAG_HASH_L34, 2419 NETDEV_LAG_HASH_L23, 2420 NETDEV_LAG_HASH_E23, 2421 NETDEV_LAG_HASH_E34, 2422 NETDEV_LAG_HASH_UNKNOWN, 2423 }; 2424 2425 struct netdev_lag_upper_info { 2426 enum netdev_lag_tx_type tx_type; 2427 enum netdev_lag_hash hash_type; 2428 }; 2429 2430 struct netdev_lag_lower_state_info { 2431 u8 link_up : 1, 2432 tx_enabled : 1; 2433 }; 2434 2435 #include <linux/notifier.h> 2436 2437 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2438 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2439 * adding new types. 2440 */ 2441 enum netdev_cmd { 2442 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2443 NETDEV_DOWN, 2444 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2445 detected a hardware crash and restarted 2446 - we can use this eg to kick tcp sessions 2447 once done */ 2448 NETDEV_CHANGE, /* Notify device state change */ 2449 NETDEV_REGISTER, 2450 NETDEV_UNREGISTER, 2451 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2452 NETDEV_CHANGEADDR, /* notify after the address change */ 2453 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2454 NETDEV_GOING_DOWN, 2455 NETDEV_CHANGENAME, 2456 NETDEV_FEAT_CHANGE, 2457 NETDEV_BONDING_FAILOVER, 2458 NETDEV_PRE_UP, 2459 NETDEV_PRE_TYPE_CHANGE, 2460 NETDEV_POST_TYPE_CHANGE, 2461 NETDEV_POST_INIT, 2462 NETDEV_RELEASE, 2463 NETDEV_NOTIFY_PEERS, 2464 NETDEV_JOIN, 2465 NETDEV_CHANGEUPPER, 2466 NETDEV_RESEND_IGMP, 2467 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2468 NETDEV_CHANGEINFODATA, 2469 NETDEV_BONDING_INFO, 2470 NETDEV_PRECHANGEUPPER, 2471 NETDEV_CHANGELOWERSTATE, 2472 NETDEV_UDP_TUNNEL_PUSH_INFO, 2473 NETDEV_UDP_TUNNEL_DROP_INFO, 2474 NETDEV_CHANGE_TX_QUEUE_LEN, 2475 NETDEV_CVLAN_FILTER_PUSH_INFO, 2476 NETDEV_CVLAN_FILTER_DROP_INFO, 2477 NETDEV_SVLAN_FILTER_PUSH_INFO, 2478 NETDEV_SVLAN_FILTER_DROP_INFO, 2479 }; 2480 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2481 2482 int register_netdevice_notifier(struct notifier_block *nb); 2483 int unregister_netdevice_notifier(struct notifier_block *nb); 2484 2485 struct netdev_notifier_info { 2486 struct net_device *dev; 2487 struct netlink_ext_ack *extack; 2488 }; 2489 2490 struct netdev_notifier_info_ext { 2491 struct netdev_notifier_info info; /* must be first */ 2492 union { 2493 u32 mtu; 2494 } ext; 2495 }; 2496 2497 struct netdev_notifier_change_info { 2498 struct netdev_notifier_info info; /* must be first */ 2499 unsigned int flags_changed; 2500 }; 2501 2502 struct netdev_notifier_changeupper_info { 2503 struct netdev_notifier_info info; /* must be first */ 2504 struct net_device *upper_dev; /* new upper dev */ 2505 bool master; /* is upper dev master */ 2506 bool linking; /* is the notification for link or unlink */ 2507 void *upper_info; /* upper dev info */ 2508 }; 2509 2510 struct netdev_notifier_changelowerstate_info { 2511 struct netdev_notifier_info info; /* must be first */ 2512 void *lower_state_info; /* is lower dev state */ 2513 }; 2514 2515 struct netdev_notifier_pre_changeaddr_info { 2516 struct netdev_notifier_info info; /* must be first */ 2517 const unsigned char *dev_addr; 2518 }; 2519 2520 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2521 struct net_device *dev) 2522 { 2523 info->dev = dev; 2524 info->extack = NULL; 2525 } 2526 2527 static inline struct net_device * 2528 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2529 { 2530 return info->dev; 2531 } 2532 2533 static inline struct netlink_ext_ack * 2534 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2535 { 2536 return info->extack; 2537 } 2538 2539 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2540 2541 2542 extern rwlock_t dev_base_lock; /* Device list lock */ 2543 2544 #define for_each_netdev(net, d) \ 2545 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2546 #define for_each_netdev_reverse(net, d) \ 2547 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2548 #define for_each_netdev_rcu(net, d) \ 2549 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2550 #define for_each_netdev_safe(net, d, n) \ 2551 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2552 #define for_each_netdev_continue(net, d) \ 2553 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2554 #define for_each_netdev_continue_rcu(net, d) \ 2555 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2556 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2557 for_each_netdev_rcu(&init_net, slave) \ 2558 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2559 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2560 2561 static inline struct net_device *next_net_device(struct net_device *dev) 2562 { 2563 struct list_head *lh; 2564 struct net *net; 2565 2566 net = dev_net(dev); 2567 lh = dev->dev_list.next; 2568 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2569 } 2570 2571 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2572 { 2573 struct list_head *lh; 2574 struct net *net; 2575 2576 net = dev_net(dev); 2577 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2578 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2579 } 2580 2581 static inline struct net_device *first_net_device(struct net *net) 2582 { 2583 return list_empty(&net->dev_base_head) ? NULL : 2584 net_device_entry(net->dev_base_head.next); 2585 } 2586 2587 static inline struct net_device *first_net_device_rcu(struct net *net) 2588 { 2589 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2590 2591 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2592 } 2593 2594 int netdev_boot_setup_check(struct net_device *dev); 2595 unsigned long netdev_boot_base(const char *prefix, int unit); 2596 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2597 const char *hwaddr); 2598 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2599 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2600 void dev_add_pack(struct packet_type *pt); 2601 void dev_remove_pack(struct packet_type *pt); 2602 void __dev_remove_pack(struct packet_type *pt); 2603 void dev_add_offload(struct packet_offload *po); 2604 void dev_remove_offload(struct packet_offload *po); 2605 2606 int dev_get_iflink(const struct net_device *dev); 2607 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2608 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2609 unsigned short mask); 2610 struct net_device *dev_get_by_name(struct net *net, const char *name); 2611 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2612 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2613 int dev_alloc_name(struct net_device *dev, const char *name); 2614 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2615 void dev_close(struct net_device *dev); 2616 void dev_close_many(struct list_head *head, bool unlink); 2617 void dev_disable_lro(struct net_device *dev); 2618 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2619 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2620 struct net_device *sb_dev); 2621 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2622 struct net_device *sb_dev); 2623 int dev_queue_xmit(struct sk_buff *skb); 2624 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2625 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2626 int register_netdevice(struct net_device *dev); 2627 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2628 void unregister_netdevice_many(struct list_head *head); 2629 static inline void unregister_netdevice(struct net_device *dev) 2630 { 2631 unregister_netdevice_queue(dev, NULL); 2632 } 2633 2634 int netdev_refcnt_read(const struct net_device *dev); 2635 void free_netdev(struct net_device *dev); 2636 void netdev_freemem(struct net_device *dev); 2637 void synchronize_net(void); 2638 int init_dummy_netdev(struct net_device *dev); 2639 2640 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2641 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2642 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2643 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2644 int netdev_get_name(struct net *net, char *name, int ifindex); 2645 int dev_restart(struct net_device *dev); 2646 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2647 2648 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2649 { 2650 return NAPI_GRO_CB(skb)->data_offset; 2651 } 2652 2653 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2654 { 2655 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2656 } 2657 2658 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2659 { 2660 NAPI_GRO_CB(skb)->data_offset += len; 2661 } 2662 2663 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2664 unsigned int offset) 2665 { 2666 return NAPI_GRO_CB(skb)->frag0 + offset; 2667 } 2668 2669 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2670 { 2671 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2672 } 2673 2674 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2675 { 2676 NAPI_GRO_CB(skb)->frag0 = NULL; 2677 NAPI_GRO_CB(skb)->frag0_len = 0; 2678 } 2679 2680 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2681 unsigned int offset) 2682 { 2683 if (!pskb_may_pull(skb, hlen)) 2684 return NULL; 2685 2686 skb_gro_frag0_invalidate(skb); 2687 return skb->data + offset; 2688 } 2689 2690 static inline void *skb_gro_network_header(struct sk_buff *skb) 2691 { 2692 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2693 skb_network_offset(skb); 2694 } 2695 2696 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2697 const void *start, unsigned int len) 2698 { 2699 if (NAPI_GRO_CB(skb)->csum_valid) 2700 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2701 csum_partial(start, len, 0)); 2702 } 2703 2704 /* GRO checksum functions. These are logical equivalents of the normal 2705 * checksum functions (in skbuff.h) except that they operate on the GRO 2706 * offsets and fields in sk_buff. 2707 */ 2708 2709 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2710 2711 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2712 { 2713 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2714 } 2715 2716 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2717 bool zero_okay, 2718 __sum16 check) 2719 { 2720 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2721 skb_checksum_start_offset(skb) < 2722 skb_gro_offset(skb)) && 2723 !skb_at_gro_remcsum_start(skb) && 2724 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2725 (!zero_okay || check)); 2726 } 2727 2728 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2729 __wsum psum) 2730 { 2731 if (NAPI_GRO_CB(skb)->csum_valid && 2732 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2733 return 0; 2734 2735 NAPI_GRO_CB(skb)->csum = psum; 2736 2737 return __skb_gro_checksum_complete(skb); 2738 } 2739 2740 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2741 { 2742 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2743 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2744 NAPI_GRO_CB(skb)->csum_cnt--; 2745 } else { 2746 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2747 * verified a new top level checksum or an encapsulated one 2748 * during GRO. This saves work if we fallback to normal path. 2749 */ 2750 __skb_incr_checksum_unnecessary(skb); 2751 } 2752 } 2753 2754 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2755 compute_pseudo) \ 2756 ({ \ 2757 __sum16 __ret = 0; \ 2758 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2759 __ret = __skb_gro_checksum_validate_complete(skb, \ 2760 compute_pseudo(skb, proto)); \ 2761 if (!__ret) \ 2762 skb_gro_incr_csum_unnecessary(skb); \ 2763 __ret; \ 2764 }) 2765 2766 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2767 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2768 2769 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2770 compute_pseudo) \ 2771 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2772 2773 #define skb_gro_checksum_simple_validate(skb) \ 2774 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2775 2776 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2777 { 2778 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2779 !NAPI_GRO_CB(skb)->csum_valid); 2780 } 2781 2782 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2783 __sum16 check, __wsum pseudo) 2784 { 2785 NAPI_GRO_CB(skb)->csum = ~pseudo; 2786 NAPI_GRO_CB(skb)->csum_valid = 1; 2787 } 2788 2789 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2790 do { \ 2791 if (__skb_gro_checksum_convert_check(skb)) \ 2792 __skb_gro_checksum_convert(skb, check, \ 2793 compute_pseudo(skb, proto)); \ 2794 } while (0) 2795 2796 struct gro_remcsum { 2797 int offset; 2798 __wsum delta; 2799 }; 2800 2801 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2802 { 2803 grc->offset = 0; 2804 grc->delta = 0; 2805 } 2806 2807 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2808 unsigned int off, size_t hdrlen, 2809 int start, int offset, 2810 struct gro_remcsum *grc, 2811 bool nopartial) 2812 { 2813 __wsum delta; 2814 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2815 2816 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2817 2818 if (!nopartial) { 2819 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2820 return ptr; 2821 } 2822 2823 ptr = skb_gro_header_fast(skb, off); 2824 if (skb_gro_header_hard(skb, off + plen)) { 2825 ptr = skb_gro_header_slow(skb, off + plen, off); 2826 if (!ptr) 2827 return NULL; 2828 } 2829 2830 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2831 start, offset); 2832 2833 /* Adjust skb->csum since we changed the packet */ 2834 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2835 2836 grc->offset = off + hdrlen + offset; 2837 grc->delta = delta; 2838 2839 return ptr; 2840 } 2841 2842 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2843 struct gro_remcsum *grc) 2844 { 2845 void *ptr; 2846 size_t plen = grc->offset + sizeof(u16); 2847 2848 if (!grc->delta) 2849 return; 2850 2851 ptr = skb_gro_header_fast(skb, grc->offset); 2852 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2853 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2854 if (!ptr) 2855 return; 2856 } 2857 2858 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2859 } 2860 2861 #ifdef CONFIG_XFRM_OFFLOAD 2862 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2863 { 2864 if (PTR_ERR(pp) != -EINPROGRESS) 2865 NAPI_GRO_CB(skb)->flush |= flush; 2866 } 2867 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2868 struct sk_buff *pp, 2869 int flush, 2870 struct gro_remcsum *grc) 2871 { 2872 if (PTR_ERR(pp) != -EINPROGRESS) { 2873 NAPI_GRO_CB(skb)->flush |= flush; 2874 skb_gro_remcsum_cleanup(skb, grc); 2875 skb->remcsum_offload = 0; 2876 } 2877 } 2878 #else 2879 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2880 { 2881 NAPI_GRO_CB(skb)->flush |= flush; 2882 } 2883 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2884 struct sk_buff *pp, 2885 int flush, 2886 struct gro_remcsum *grc) 2887 { 2888 NAPI_GRO_CB(skb)->flush |= flush; 2889 skb_gro_remcsum_cleanup(skb, grc); 2890 skb->remcsum_offload = 0; 2891 } 2892 #endif 2893 2894 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2895 unsigned short type, 2896 const void *daddr, const void *saddr, 2897 unsigned int len) 2898 { 2899 if (!dev->header_ops || !dev->header_ops->create) 2900 return 0; 2901 2902 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2903 } 2904 2905 static inline int dev_parse_header(const struct sk_buff *skb, 2906 unsigned char *haddr) 2907 { 2908 const struct net_device *dev = skb->dev; 2909 2910 if (!dev->header_ops || !dev->header_ops->parse) 2911 return 0; 2912 return dev->header_ops->parse(skb, haddr); 2913 } 2914 2915 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2916 { 2917 const struct net_device *dev = skb->dev; 2918 2919 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2920 return 0; 2921 return dev->header_ops->parse_protocol(skb); 2922 } 2923 2924 /* ll_header must have at least hard_header_len allocated */ 2925 static inline bool dev_validate_header(const struct net_device *dev, 2926 char *ll_header, int len) 2927 { 2928 if (likely(len >= dev->hard_header_len)) 2929 return true; 2930 if (len < dev->min_header_len) 2931 return false; 2932 2933 if (capable(CAP_SYS_RAWIO)) { 2934 memset(ll_header + len, 0, dev->hard_header_len - len); 2935 return true; 2936 } 2937 2938 if (dev->header_ops && dev->header_ops->validate) 2939 return dev->header_ops->validate(ll_header, len); 2940 2941 return false; 2942 } 2943 2944 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2945 int len, int size); 2946 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2947 static inline int unregister_gifconf(unsigned int family) 2948 { 2949 return register_gifconf(family, NULL); 2950 } 2951 2952 #ifdef CONFIG_NET_FLOW_LIMIT 2953 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2954 struct sd_flow_limit { 2955 u64 count; 2956 unsigned int num_buckets; 2957 unsigned int history_head; 2958 u16 history[FLOW_LIMIT_HISTORY]; 2959 u8 buckets[]; 2960 }; 2961 2962 extern int netdev_flow_limit_table_len; 2963 #endif /* CONFIG_NET_FLOW_LIMIT */ 2964 2965 /* 2966 * Incoming packets are placed on per-CPU queues 2967 */ 2968 struct softnet_data { 2969 struct list_head poll_list; 2970 struct sk_buff_head process_queue; 2971 2972 /* stats */ 2973 unsigned int processed; 2974 unsigned int time_squeeze; 2975 unsigned int received_rps; 2976 #ifdef CONFIG_RPS 2977 struct softnet_data *rps_ipi_list; 2978 #endif 2979 #ifdef CONFIG_NET_FLOW_LIMIT 2980 struct sd_flow_limit __rcu *flow_limit; 2981 #endif 2982 struct Qdisc *output_queue; 2983 struct Qdisc **output_queue_tailp; 2984 struct sk_buff *completion_queue; 2985 #ifdef CONFIG_XFRM_OFFLOAD 2986 struct sk_buff_head xfrm_backlog; 2987 #endif 2988 /* written and read only by owning cpu: */ 2989 struct { 2990 u16 recursion; 2991 u8 more; 2992 } xmit; 2993 #ifdef CONFIG_RPS 2994 /* input_queue_head should be written by cpu owning this struct, 2995 * and only read by other cpus. Worth using a cache line. 2996 */ 2997 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2998 2999 /* Elements below can be accessed between CPUs for RPS/RFS */ 3000 call_single_data_t csd ____cacheline_aligned_in_smp; 3001 struct softnet_data *rps_ipi_next; 3002 unsigned int cpu; 3003 unsigned int input_queue_tail; 3004 #endif 3005 unsigned int dropped; 3006 struct sk_buff_head input_pkt_queue; 3007 struct napi_struct backlog; 3008 3009 }; 3010 3011 static inline void input_queue_head_incr(struct softnet_data *sd) 3012 { 3013 #ifdef CONFIG_RPS 3014 sd->input_queue_head++; 3015 #endif 3016 } 3017 3018 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3019 unsigned int *qtail) 3020 { 3021 #ifdef CONFIG_RPS 3022 *qtail = ++sd->input_queue_tail; 3023 #endif 3024 } 3025 3026 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3027 3028 static inline int dev_recursion_level(void) 3029 { 3030 return this_cpu_read(softnet_data.xmit.recursion); 3031 } 3032 3033 #define XMIT_RECURSION_LIMIT 10 3034 static inline bool dev_xmit_recursion(void) 3035 { 3036 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3037 XMIT_RECURSION_LIMIT); 3038 } 3039 3040 static inline void dev_xmit_recursion_inc(void) 3041 { 3042 __this_cpu_inc(softnet_data.xmit.recursion); 3043 } 3044 3045 static inline void dev_xmit_recursion_dec(void) 3046 { 3047 __this_cpu_dec(softnet_data.xmit.recursion); 3048 } 3049 3050 void __netif_schedule(struct Qdisc *q); 3051 void netif_schedule_queue(struct netdev_queue *txq); 3052 3053 static inline void netif_tx_schedule_all(struct net_device *dev) 3054 { 3055 unsigned int i; 3056 3057 for (i = 0; i < dev->num_tx_queues; i++) 3058 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3059 } 3060 3061 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3062 { 3063 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3064 } 3065 3066 /** 3067 * netif_start_queue - allow transmit 3068 * @dev: network device 3069 * 3070 * Allow upper layers to call the device hard_start_xmit routine. 3071 */ 3072 static inline void netif_start_queue(struct net_device *dev) 3073 { 3074 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3075 } 3076 3077 static inline void netif_tx_start_all_queues(struct net_device *dev) 3078 { 3079 unsigned int i; 3080 3081 for (i = 0; i < dev->num_tx_queues; i++) { 3082 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3083 netif_tx_start_queue(txq); 3084 } 3085 } 3086 3087 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3088 3089 /** 3090 * netif_wake_queue - restart transmit 3091 * @dev: network device 3092 * 3093 * Allow upper layers to call the device hard_start_xmit routine. 3094 * Used for flow control when transmit resources are available. 3095 */ 3096 static inline void netif_wake_queue(struct net_device *dev) 3097 { 3098 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3099 } 3100 3101 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3102 { 3103 unsigned int i; 3104 3105 for (i = 0; i < dev->num_tx_queues; i++) { 3106 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3107 netif_tx_wake_queue(txq); 3108 } 3109 } 3110 3111 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3112 { 3113 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3114 } 3115 3116 /** 3117 * netif_stop_queue - stop transmitted packets 3118 * @dev: network device 3119 * 3120 * Stop upper layers calling the device hard_start_xmit routine. 3121 * Used for flow control when transmit resources are unavailable. 3122 */ 3123 static inline void netif_stop_queue(struct net_device *dev) 3124 { 3125 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3126 } 3127 3128 void netif_tx_stop_all_queues(struct net_device *dev); 3129 3130 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3131 { 3132 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3133 } 3134 3135 /** 3136 * netif_queue_stopped - test if transmit queue is flowblocked 3137 * @dev: network device 3138 * 3139 * Test if transmit queue on device is currently unable to send. 3140 */ 3141 static inline bool netif_queue_stopped(const struct net_device *dev) 3142 { 3143 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3144 } 3145 3146 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3147 { 3148 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3149 } 3150 3151 static inline bool 3152 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3153 { 3154 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3155 } 3156 3157 static inline bool 3158 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3159 { 3160 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3161 } 3162 3163 /** 3164 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3165 * @dev_queue: pointer to transmit queue 3166 * 3167 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3168 * to give appropriate hint to the CPU. 3169 */ 3170 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3171 { 3172 #ifdef CONFIG_BQL 3173 prefetchw(&dev_queue->dql.num_queued); 3174 #endif 3175 } 3176 3177 /** 3178 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3179 * @dev_queue: pointer to transmit queue 3180 * 3181 * BQL enabled drivers might use this helper in their TX completion path, 3182 * to give appropriate hint to the CPU. 3183 */ 3184 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3185 { 3186 #ifdef CONFIG_BQL 3187 prefetchw(&dev_queue->dql.limit); 3188 #endif 3189 } 3190 3191 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3192 unsigned int bytes) 3193 { 3194 #ifdef CONFIG_BQL 3195 dql_queued(&dev_queue->dql, bytes); 3196 3197 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3198 return; 3199 3200 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3201 3202 /* 3203 * The XOFF flag must be set before checking the dql_avail below, 3204 * because in netdev_tx_completed_queue we update the dql_completed 3205 * before checking the XOFF flag. 3206 */ 3207 smp_mb(); 3208 3209 /* check again in case another CPU has just made room avail */ 3210 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3211 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3212 #endif 3213 } 3214 3215 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3216 * that they should not test BQL status themselves. 3217 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3218 * skb of a batch. 3219 * Returns true if the doorbell must be used to kick the NIC. 3220 */ 3221 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3222 unsigned int bytes, 3223 bool xmit_more) 3224 { 3225 if (xmit_more) { 3226 #ifdef CONFIG_BQL 3227 dql_queued(&dev_queue->dql, bytes); 3228 #endif 3229 return netif_tx_queue_stopped(dev_queue); 3230 } 3231 netdev_tx_sent_queue(dev_queue, bytes); 3232 return true; 3233 } 3234 3235 /** 3236 * netdev_sent_queue - report the number of bytes queued to hardware 3237 * @dev: network device 3238 * @bytes: number of bytes queued to the hardware device queue 3239 * 3240 * Report the number of bytes queued for sending/completion to the network 3241 * device hardware queue. @bytes should be a good approximation and should 3242 * exactly match netdev_completed_queue() @bytes 3243 */ 3244 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3245 { 3246 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3247 } 3248 3249 static inline bool __netdev_sent_queue(struct net_device *dev, 3250 unsigned int bytes, 3251 bool xmit_more) 3252 { 3253 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3254 xmit_more); 3255 } 3256 3257 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3258 unsigned int pkts, unsigned int bytes) 3259 { 3260 #ifdef CONFIG_BQL 3261 if (unlikely(!bytes)) 3262 return; 3263 3264 dql_completed(&dev_queue->dql, bytes); 3265 3266 /* 3267 * Without the memory barrier there is a small possiblity that 3268 * netdev_tx_sent_queue will miss the update and cause the queue to 3269 * be stopped forever 3270 */ 3271 smp_mb(); 3272 3273 if (dql_avail(&dev_queue->dql) < 0) 3274 return; 3275 3276 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3277 netif_schedule_queue(dev_queue); 3278 #endif 3279 } 3280 3281 /** 3282 * netdev_completed_queue - report bytes and packets completed by device 3283 * @dev: network device 3284 * @pkts: actual number of packets sent over the medium 3285 * @bytes: actual number of bytes sent over the medium 3286 * 3287 * Report the number of bytes and packets transmitted by the network device 3288 * hardware queue over the physical medium, @bytes must exactly match the 3289 * @bytes amount passed to netdev_sent_queue() 3290 */ 3291 static inline void netdev_completed_queue(struct net_device *dev, 3292 unsigned int pkts, unsigned int bytes) 3293 { 3294 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3295 } 3296 3297 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3298 { 3299 #ifdef CONFIG_BQL 3300 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3301 dql_reset(&q->dql); 3302 #endif 3303 } 3304 3305 /** 3306 * netdev_reset_queue - reset the packets and bytes count of a network device 3307 * @dev_queue: network device 3308 * 3309 * Reset the bytes and packet count of a network device and clear the 3310 * software flow control OFF bit for this network device 3311 */ 3312 static inline void netdev_reset_queue(struct net_device *dev_queue) 3313 { 3314 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3315 } 3316 3317 /** 3318 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3319 * @dev: network device 3320 * @queue_index: given tx queue index 3321 * 3322 * Returns 0 if given tx queue index >= number of device tx queues, 3323 * otherwise returns the originally passed tx queue index. 3324 */ 3325 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3326 { 3327 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3328 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3329 dev->name, queue_index, 3330 dev->real_num_tx_queues); 3331 return 0; 3332 } 3333 3334 return queue_index; 3335 } 3336 3337 /** 3338 * netif_running - test if up 3339 * @dev: network device 3340 * 3341 * Test if the device has been brought up. 3342 */ 3343 static inline bool netif_running(const struct net_device *dev) 3344 { 3345 return test_bit(__LINK_STATE_START, &dev->state); 3346 } 3347 3348 /* 3349 * Routines to manage the subqueues on a device. We only need start, 3350 * stop, and a check if it's stopped. All other device management is 3351 * done at the overall netdevice level. 3352 * Also test the device if we're multiqueue. 3353 */ 3354 3355 /** 3356 * netif_start_subqueue - allow sending packets on subqueue 3357 * @dev: network device 3358 * @queue_index: sub queue index 3359 * 3360 * Start individual transmit queue of a device with multiple transmit queues. 3361 */ 3362 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3363 { 3364 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3365 3366 netif_tx_start_queue(txq); 3367 } 3368 3369 /** 3370 * netif_stop_subqueue - stop sending packets on subqueue 3371 * @dev: network device 3372 * @queue_index: sub queue index 3373 * 3374 * Stop individual transmit queue of a device with multiple transmit queues. 3375 */ 3376 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3377 { 3378 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3379 netif_tx_stop_queue(txq); 3380 } 3381 3382 /** 3383 * netif_subqueue_stopped - test status of subqueue 3384 * @dev: network device 3385 * @queue_index: sub queue index 3386 * 3387 * Check individual transmit queue of a device with multiple transmit queues. 3388 */ 3389 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3390 u16 queue_index) 3391 { 3392 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3393 3394 return netif_tx_queue_stopped(txq); 3395 } 3396 3397 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3398 struct sk_buff *skb) 3399 { 3400 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3401 } 3402 3403 /** 3404 * netif_wake_subqueue - allow sending packets on subqueue 3405 * @dev: network device 3406 * @queue_index: sub queue index 3407 * 3408 * Resume individual transmit queue of a device with multiple transmit queues. 3409 */ 3410 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3411 { 3412 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3413 3414 netif_tx_wake_queue(txq); 3415 } 3416 3417 #ifdef CONFIG_XPS 3418 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3419 u16 index); 3420 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3421 u16 index, bool is_rxqs_map); 3422 3423 /** 3424 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3425 * @j: CPU/Rx queue index 3426 * @mask: bitmask of all cpus/rx queues 3427 * @nr_bits: number of bits in the bitmask 3428 * 3429 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3430 */ 3431 static inline bool netif_attr_test_mask(unsigned long j, 3432 const unsigned long *mask, 3433 unsigned int nr_bits) 3434 { 3435 cpu_max_bits_warn(j, nr_bits); 3436 return test_bit(j, mask); 3437 } 3438 3439 /** 3440 * netif_attr_test_online - Test for online CPU/Rx queue 3441 * @j: CPU/Rx queue index 3442 * @online_mask: bitmask for CPUs/Rx queues that are online 3443 * @nr_bits: number of bits in the bitmask 3444 * 3445 * Returns true if a CPU/Rx queue is online. 3446 */ 3447 static inline bool netif_attr_test_online(unsigned long j, 3448 const unsigned long *online_mask, 3449 unsigned int nr_bits) 3450 { 3451 cpu_max_bits_warn(j, nr_bits); 3452 3453 if (online_mask) 3454 return test_bit(j, online_mask); 3455 3456 return (j < nr_bits); 3457 } 3458 3459 /** 3460 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3461 * @n: CPU/Rx queue index 3462 * @srcp: the cpumask/Rx queue mask pointer 3463 * @nr_bits: number of bits in the bitmask 3464 * 3465 * Returns >= nr_bits if no further CPUs/Rx queues set. 3466 */ 3467 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3468 unsigned int nr_bits) 3469 { 3470 /* -1 is a legal arg here. */ 3471 if (n != -1) 3472 cpu_max_bits_warn(n, nr_bits); 3473 3474 if (srcp) 3475 return find_next_bit(srcp, nr_bits, n + 1); 3476 3477 return n + 1; 3478 } 3479 3480 /** 3481 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3482 * @n: CPU/Rx queue index 3483 * @src1p: the first CPUs/Rx queues mask pointer 3484 * @src2p: the second CPUs/Rx queues mask pointer 3485 * @nr_bits: number of bits in the bitmask 3486 * 3487 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3488 */ 3489 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3490 const unsigned long *src2p, 3491 unsigned int nr_bits) 3492 { 3493 /* -1 is a legal arg here. */ 3494 if (n != -1) 3495 cpu_max_bits_warn(n, nr_bits); 3496 3497 if (src1p && src2p) 3498 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3499 else if (src1p) 3500 return find_next_bit(src1p, nr_bits, n + 1); 3501 else if (src2p) 3502 return find_next_bit(src2p, nr_bits, n + 1); 3503 3504 return n + 1; 3505 } 3506 #else 3507 static inline int netif_set_xps_queue(struct net_device *dev, 3508 const struct cpumask *mask, 3509 u16 index) 3510 { 3511 return 0; 3512 } 3513 3514 static inline int __netif_set_xps_queue(struct net_device *dev, 3515 const unsigned long *mask, 3516 u16 index, bool is_rxqs_map) 3517 { 3518 return 0; 3519 } 3520 #endif 3521 3522 /** 3523 * netif_is_multiqueue - test if device has multiple transmit queues 3524 * @dev: network device 3525 * 3526 * Check if device has multiple transmit queues 3527 */ 3528 static inline bool netif_is_multiqueue(const struct net_device *dev) 3529 { 3530 return dev->num_tx_queues > 1; 3531 } 3532 3533 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3534 3535 #ifdef CONFIG_SYSFS 3536 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3537 #else 3538 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3539 unsigned int rxqs) 3540 { 3541 dev->real_num_rx_queues = rxqs; 3542 return 0; 3543 } 3544 #endif 3545 3546 static inline struct netdev_rx_queue * 3547 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3548 { 3549 return dev->_rx + rxq; 3550 } 3551 3552 #ifdef CONFIG_SYSFS 3553 static inline unsigned int get_netdev_rx_queue_index( 3554 struct netdev_rx_queue *queue) 3555 { 3556 struct net_device *dev = queue->dev; 3557 int index = queue - dev->_rx; 3558 3559 BUG_ON(index >= dev->num_rx_queues); 3560 return index; 3561 } 3562 #endif 3563 3564 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3565 int netif_get_num_default_rss_queues(void); 3566 3567 enum skb_free_reason { 3568 SKB_REASON_CONSUMED, 3569 SKB_REASON_DROPPED, 3570 }; 3571 3572 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3574 3575 /* 3576 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3577 * interrupt context or with hardware interrupts being disabled. 3578 * (in_irq() || irqs_disabled()) 3579 * 3580 * We provide four helpers that can be used in following contexts : 3581 * 3582 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3583 * replacing kfree_skb(skb) 3584 * 3585 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3586 * Typically used in place of consume_skb(skb) in TX completion path 3587 * 3588 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3589 * replacing kfree_skb(skb) 3590 * 3591 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3592 * and consumed a packet. Used in place of consume_skb(skb) 3593 */ 3594 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3595 { 3596 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3597 } 3598 3599 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3600 { 3601 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3602 } 3603 3604 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3605 { 3606 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3607 } 3608 3609 static inline void dev_consume_skb_any(struct sk_buff *skb) 3610 { 3611 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3612 } 3613 3614 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3615 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3616 int netif_rx(struct sk_buff *skb); 3617 int netif_rx_ni(struct sk_buff *skb); 3618 int netif_receive_skb(struct sk_buff *skb); 3619 int netif_receive_skb_core(struct sk_buff *skb); 3620 void netif_receive_skb_list(struct list_head *head); 3621 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3622 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3623 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3624 gro_result_t napi_gro_frags(struct napi_struct *napi); 3625 struct packet_offload *gro_find_receive_by_type(__be16 type); 3626 struct packet_offload *gro_find_complete_by_type(__be16 type); 3627 3628 static inline void napi_free_frags(struct napi_struct *napi) 3629 { 3630 kfree_skb(napi->skb); 3631 napi->skb = NULL; 3632 } 3633 3634 bool netdev_is_rx_handler_busy(struct net_device *dev); 3635 int netdev_rx_handler_register(struct net_device *dev, 3636 rx_handler_func_t *rx_handler, 3637 void *rx_handler_data); 3638 void netdev_rx_handler_unregister(struct net_device *dev); 3639 3640 bool dev_valid_name(const char *name); 3641 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3642 bool *need_copyout); 3643 int dev_ifconf(struct net *net, struct ifconf *, int); 3644 int dev_ethtool(struct net *net, struct ifreq *); 3645 unsigned int dev_get_flags(const struct net_device *); 3646 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3647 struct netlink_ext_ack *extack); 3648 int dev_change_flags(struct net_device *dev, unsigned int flags, 3649 struct netlink_ext_ack *extack); 3650 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3651 unsigned int gchanges); 3652 int dev_change_name(struct net_device *, const char *); 3653 int dev_set_alias(struct net_device *, const char *, size_t); 3654 int dev_get_alias(const struct net_device *, char *, size_t); 3655 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3656 int __dev_set_mtu(struct net_device *, int); 3657 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3658 struct netlink_ext_ack *extack); 3659 int dev_set_mtu(struct net_device *, int); 3660 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3661 void dev_set_group(struct net_device *, int); 3662 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3663 struct netlink_ext_ack *extack); 3664 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3665 struct netlink_ext_ack *extack); 3666 int dev_change_carrier(struct net_device *, bool new_carrier); 3667 int dev_get_phys_port_id(struct net_device *dev, 3668 struct netdev_phys_item_id *ppid); 3669 int dev_get_phys_port_name(struct net_device *dev, 3670 char *name, size_t len); 3671 int dev_get_port_parent_id(struct net_device *dev, 3672 struct netdev_phys_item_id *ppid, bool recurse); 3673 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3674 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3675 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3676 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3677 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3678 struct netdev_queue *txq, int *ret); 3679 3680 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3681 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3682 int fd, u32 flags); 3683 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3684 enum bpf_netdev_command cmd); 3685 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3686 3687 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3688 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3689 bool is_skb_forwardable(const struct net_device *dev, 3690 const struct sk_buff *skb); 3691 3692 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3693 struct sk_buff *skb) 3694 { 3695 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3696 unlikely(!is_skb_forwardable(dev, skb))) { 3697 atomic_long_inc(&dev->rx_dropped); 3698 kfree_skb(skb); 3699 return NET_RX_DROP; 3700 } 3701 3702 skb_scrub_packet(skb, true); 3703 skb->priority = 0; 3704 return 0; 3705 } 3706 3707 bool dev_nit_active(struct net_device *dev); 3708 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3709 3710 extern int netdev_budget; 3711 extern unsigned int netdev_budget_usecs; 3712 3713 /* Called by rtnetlink.c:rtnl_unlock() */ 3714 void netdev_run_todo(void); 3715 3716 /** 3717 * dev_put - release reference to device 3718 * @dev: network device 3719 * 3720 * Release reference to device to allow it to be freed. 3721 */ 3722 static inline void dev_put(struct net_device *dev) 3723 { 3724 this_cpu_dec(*dev->pcpu_refcnt); 3725 } 3726 3727 /** 3728 * dev_hold - get reference to device 3729 * @dev: network device 3730 * 3731 * Hold reference to device to keep it from being freed. 3732 */ 3733 static inline void dev_hold(struct net_device *dev) 3734 { 3735 this_cpu_inc(*dev->pcpu_refcnt); 3736 } 3737 3738 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3739 * and _off may be called from IRQ context, but it is caller 3740 * who is responsible for serialization of these calls. 3741 * 3742 * The name carrier is inappropriate, these functions should really be 3743 * called netif_lowerlayer_*() because they represent the state of any 3744 * kind of lower layer not just hardware media. 3745 */ 3746 3747 void linkwatch_init_dev(struct net_device *dev); 3748 void linkwatch_fire_event(struct net_device *dev); 3749 void linkwatch_forget_dev(struct net_device *dev); 3750 3751 /** 3752 * netif_carrier_ok - test if carrier present 3753 * @dev: network device 3754 * 3755 * Check if carrier is present on device 3756 */ 3757 static inline bool netif_carrier_ok(const struct net_device *dev) 3758 { 3759 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3760 } 3761 3762 unsigned long dev_trans_start(struct net_device *dev); 3763 3764 void __netdev_watchdog_up(struct net_device *dev); 3765 3766 void netif_carrier_on(struct net_device *dev); 3767 3768 void netif_carrier_off(struct net_device *dev); 3769 3770 /** 3771 * netif_dormant_on - mark device as dormant. 3772 * @dev: network device 3773 * 3774 * Mark device as dormant (as per RFC2863). 3775 * 3776 * The dormant state indicates that the relevant interface is not 3777 * actually in a condition to pass packets (i.e., it is not 'up') but is 3778 * in a "pending" state, waiting for some external event. For "on- 3779 * demand" interfaces, this new state identifies the situation where the 3780 * interface is waiting for events to place it in the up state. 3781 */ 3782 static inline void netif_dormant_on(struct net_device *dev) 3783 { 3784 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3785 linkwatch_fire_event(dev); 3786 } 3787 3788 /** 3789 * netif_dormant_off - set device as not dormant. 3790 * @dev: network device 3791 * 3792 * Device is not in dormant state. 3793 */ 3794 static inline void netif_dormant_off(struct net_device *dev) 3795 { 3796 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3797 linkwatch_fire_event(dev); 3798 } 3799 3800 /** 3801 * netif_dormant - test if device is dormant 3802 * @dev: network device 3803 * 3804 * Check if device is dormant. 3805 */ 3806 static inline bool netif_dormant(const struct net_device *dev) 3807 { 3808 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3809 } 3810 3811 3812 /** 3813 * netif_oper_up - test if device is operational 3814 * @dev: network device 3815 * 3816 * Check if carrier is operational 3817 */ 3818 static inline bool netif_oper_up(const struct net_device *dev) 3819 { 3820 return (dev->operstate == IF_OPER_UP || 3821 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3822 } 3823 3824 /** 3825 * netif_device_present - is device available or removed 3826 * @dev: network device 3827 * 3828 * Check if device has not been removed from system. 3829 */ 3830 static inline bool netif_device_present(struct net_device *dev) 3831 { 3832 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3833 } 3834 3835 void netif_device_detach(struct net_device *dev); 3836 3837 void netif_device_attach(struct net_device *dev); 3838 3839 /* 3840 * Network interface message level settings 3841 */ 3842 3843 enum { 3844 NETIF_MSG_DRV = 0x0001, 3845 NETIF_MSG_PROBE = 0x0002, 3846 NETIF_MSG_LINK = 0x0004, 3847 NETIF_MSG_TIMER = 0x0008, 3848 NETIF_MSG_IFDOWN = 0x0010, 3849 NETIF_MSG_IFUP = 0x0020, 3850 NETIF_MSG_RX_ERR = 0x0040, 3851 NETIF_MSG_TX_ERR = 0x0080, 3852 NETIF_MSG_TX_QUEUED = 0x0100, 3853 NETIF_MSG_INTR = 0x0200, 3854 NETIF_MSG_TX_DONE = 0x0400, 3855 NETIF_MSG_RX_STATUS = 0x0800, 3856 NETIF_MSG_PKTDATA = 0x1000, 3857 NETIF_MSG_HW = 0x2000, 3858 NETIF_MSG_WOL = 0x4000, 3859 }; 3860 3861 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3862 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3863 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3864 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3865 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3866 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3867 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3868 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3869 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3870 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3871 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3872 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3873 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3874 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3875 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3876 3877 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3878 { 3879 /* use default */ 3880 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3881 return default_msg_enable_bits; 3882 if (debug_value == 0) /* no output */ 3883 return 0; 3884 /* set low N bits */ 3885 return (1U << debug_value) - 1; 3886 } 3887 3888 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3889 { 3890 spin_lock(&txq->_xmit_lock); 3891 txq->xmit_lock_owner = cpu; 3892 } 3893 3894 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3895 { 3896 __acquire(&txq->_xmit_lock); 3897 return true; 3898 } 3899 3900 static inline void __netif_tx_release(struct netdev_queue *txq) 3901 { 3902 __release(&txq->_xmit_lock); 3903 } 3904 3905 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3906 { 3907 spin_lock_bh(&txq->_xmit_lock); 3908 txq->xmit_lock_owner = smp_processor_id(); 3909 } 3910 3911 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3912 { 3913 bool ok = spin_trylock(&txq->_xmit_lock); 3914 if (likely(ok)) 3915 txq->xmit_lock_owner = smp_processor_id(); 3916 return ok; 3917 } 3918 3919 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3920 { 3921 txq->xmit_lock_owner = -1; 3922 spin_unlock(&txq->_xmit_lock); 3923 } 3924 3925 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3926 { 3927 txq->xmit_lock_owner = -1; 3928 spin_unlock_bh(&txq->_xmit_lock); 3929 } 3930 3931 static inline void txq_trans_update(struct netdev_queue *txq) 3932 { 3933 if (txq->xmit_lock_owner != -1) 3934 txq->trans_start = jiffies; 3935 } 3936 3937 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3938 static inline void netif_trans_update(struct net_device *dev) 3939 { 3940 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3941 3942 if (txq->trans_start != jiffies) 3943 txq->trans_start = jiffies; 3944 } 3945 3946 /** 3947 * netif_tx_lock - grab network device transmit lock 3948 * @dev: network device 3949 * 3950 * Get network device transmit lock 3951 */ 3952 static inline void netif_tx_lock(struct net_device *dev) 3953 { 3954 unsigned int i; 3955 int cpu; 3956 3957 spin_lock(&dev->tx_global_lock); 3958 cpu = smp_processor_id(); 3959 for (i = 0; i < dev->num_tx_queues; i++) { 3960 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3961 3962 /* We are the only thread of execution doing a 3963 * freeze, but we have to grab the _xmit_lock in 3964 * order to synchronize with threads which are in 3965 * the ->hard_start_xmit() handler and already 3966 * checked the frozen bit. 3967 */ 3968 __netif_tx_lock(txq, cpu); 3969 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3970 __netif_tx_unlock(txq); 3971 } 3972 } 3973 3974 static inline void netif_tx_lock_bh(struct net_device *dev) 3975 { 3976 local_bh_disable(); 3977 netif_tx_lock(dev); 3978 } 3979 3980 static inline void netif_tx_unlock(struct net_device *dev) 3981 { 3982 unsigned int i; 3983 3984 for (i = 0; i < dev->num_tx_queues; i++) { 3985 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3986 3987 /* No need to grab the _xmit_lock here. If the 3988 * queue is not stopped for another reason, we 3989 * force a schedule. 3990 */ 3991 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3992 netif_schedule_queue(txq); 3993 } 3994 spin_unlock(&dev->tx_global_lock); 3995 } 3996 3997 static inline void netif_tx_unlock_bh(struct net_device *dev) 3998 { 3999 netif_tx_unlock(dev); 4000 local_bh_enable(); 4001 } 4002 4003 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4004 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4005 __netif_tx_lock(txq, cpu); \ 4006 } else { \ 4007 __netif_tx_acquire(txq); \ 4008 } \ 4009 } 4010 4011 #define HARD_TX_TRYLOCK(dev, txq) \ 4012 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4013 __netif_tx_trylock(txq) : \ 4014 __netif_tx_acquire(txq)) 4015 4016 #define HARD_TX_UNLOCK(dev, txq) { \ 4017 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4018 __netif_tx_unlock(txq); \ 4019 } else { \ 4020 __netif_tx_release(txq); \ 4021 } \ 4022 } 4023 4024 static inline void netif_tx_disable(struct net_device *dev) 4025 { 4026 unsigned int i; 4027 int cpu; 4028 4029 local_bh_disable(); 4030 cpu = smp_processor_id(); 4031 for (i = 0; i < dev->num_tx_queues; i++) { 4032 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4033 4034 __netif_tx_lock(txq, cpu); 4035 netif_tx_stop_queue(txq); 4036 __netif_tx_unlock(txq); 4037 } 4038 local_bh_enable(); 4039 } 4040 4041 static inline void netif_addr_lock(struct net_device *dev) 4042 { 4043 spin_lock(&dev->addr_list_lock); 4044 } 4045 4046 static inline void netif_addr_lock_nested(struct net_device *dev) 4047 { 4048 int subclass = SINGLE_DEPTH_NESTING; 4049 4050 if (dev->netdev_ops->ndo_get_lock_subclass) 4051 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4052 4053 spin_lock_nested(&dev->addr_list_lock, subclass); 4054 } 4055 4056 static inline void netif_addr_lock_bh(struct net_device *dev) 4057 { 4058 spin_lock_bh(&dev->addr_list_lock); 4059 } 4060 4061 static inline void netif_addr_unlock(struct net_device *dev) 4062 { 4063 spin_unlock(&dev->addr_list_lock); 4064 } 4065 4066 static inline void netif_addr_unlock_bh(struct net_device *dev) 4067 { 4068 spin_unlock_bh(&dev->addr_list_lock); 4069 } 4070 4071 /* 4072 * dev_addrs walker. Should be used only for read access. Call with 4073 * rcu_read_lock held. 4074 */ 4075 #define for_each_dev_addr(dev, ha) \ 4076 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4077 4078 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4079 4080 void ether_setup(struct net_device *dev); 4081 4082 /* Support for loadable net-drivers */ 4083 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4084 unsigned char name_assign_type, 4085 void (*setup)(struct net_device *), 4086 unsigned int txqs, unsigned int rxqs); 4087 int dev_get_valid_name(struct net *net, struct net_device *dev, 4088 const char *name); 4089 4090 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4091 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4092 4093 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4094 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4095 count) 4096 4097 int register_netdev(struct net_device *dev); 4098 void unregister_netdev(struct net_device *dev); 4099 4100 /* General hardware address lists handling functions */ 4101 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4102 struct netdev_hw_addr_list *from_list, int addr_len); 4103 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4104 struct netdev_hw_addr_list *from_list, int addr_len); 4105 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4106 struct net_device *dev, 4107 int (*sync)(struct net_device *, const unsigned char *), 4108 int (*unsync)(struct net_device *, 4109 const unsigned char *)); 4110 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4111 struct net_device *dev, 4112 int (*sync)(struct net_device *, 4113 const unsigned char *, int), 4114 int (*unsync)(struct net_device *, 4115 const unsigned char *, int)); 4116 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4117 struct net_device *dev, 4118 int (*unsync)(struct net_device *, 4119 const unsigned char *, int)); 4120 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4121 struct net_device *dev, 4122 int (*unsync)(struct net_device *, 4123 const unsigned char *)); 4124 void __hw_addr_init(struct netdev_hw_addr_list *list); 4125 4126 /* Functions used for device addresses handling */ 4127 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4128 unsigned char addr_type); 4129 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4130 unsigned char addr_type); 4131 void dev_addr_flush(struct net_device *dev); 4132 int dev_addr_init(struct net_device *dev); 4133 4134 /* Functions used for unicast addresses handling */ 4135 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4136 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4137 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4138 int dev_uc_sync(struct net_device *to, struct net_device *from); 4139 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4140 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4141 void dev_uc_flush(struct net_device *dev); 4142 void dev_uc_init(struct net_device *dev); 4143 4144 /** 4145 * __dev_uc_sync - Synchonize device's unicast list 4146 * @dev: device to sync 4147 * @sync: function to call if address should be added 4148 * @unsync: function to call if address should be removed 4149 * 4150 * Add newly added addresses to the interface, and release 4151 * addresses that have been deleted. 4152 */ 4153 static inline int __dev_uc_sync(struct net_device *dev, 4154 int (*sync)(struct net_device *, 4155 const unsigned char *), 4156 int (*unsync)(struct net_device *, 4157 const unsigned char *)) 4158 { 4159 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4160 } 4161 4162 /** 4163 * __dev_uc_unsync - Remove synchronized addresses from device 4164 * @dev: device to sync 4165 * @unsync: function to call if address should be removed 4166 * 4167 * Remove all addresses that were added to the device by dev_uc_sync(). 4168 */ 4169 static inline void __dev_uc_unsync(struct net_device *dev, 4170 int (*unsync)(struct net_device *, 4171 const unsigned char *)) 4172 { 4173 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4174 } 4175 4176 /* Functions used for multicast addresses handling */ 4177 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4178 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4179 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4180 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4181 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4182 int dev_mc_sync(struct net_device *to, struct net_device *from); 4183 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4184 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4185 void dev_mc_flush(struct net_device *dev); 4186 void dev_mc_init(struct net_device *dev); 4187 4188 /** 4189 * __dev_mc_sync - Synchonize device's multicast list 4190 * @dev: device to sync 4191 * @sync: function to call if address should be added 4192 * @unsync: function to call if address should be removed 4193 * 4194 * Add newly added addresses to the interface, and release 4195 * addresses that have been deleted. 4196 */ 4197 static inline int __dev_mc_sync(struct net_device *dev, 4198 int (*sync)(struct net_device *, 4199 const unsigned char *), 4200 int (*unsync)(struct net_device *, 4201 const unsigned char *)) 4202 { 4203 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4204 } 4205 4206 /** 4207 * __dev_mc_unsync - Remove synchronized addresses from device 4208 * @dev: device to sync 4209 * @unsync: function to call if address should be removed 4210 * 4211 * Remove all addresses that were added to the device by dev_mc_sync(). 4212 */ 4213 static inline void __dev_mc_unsync(struct net_device *dev, 4214 int (*unsync)(struct net_device *, 4215 const unsigned char *)) 4216 { 4217 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4218 } 4219 4220 /* Functions used for secondary unicast and multicast support */ 4221 void dev_set_rx_mode(struct net_device *dev); 4222 void __dev_set_rx_mode(struct net_device *dev); 4223 int dev_set_promiscuity(struct net_device *dev, int inc); 4224 int dev_set_allmulti(struct net_device *dev, int inc); 4225 void netdev_state_change(struct net_device *dev); 4226 void netdev_notify_peers(struct net_device *dev); 4227 void netdev_features_change(struct net_device *dev); 4228 /* Load a device via the kmod */ 4229 void dev_load(struct net *net, const char *name); 4230 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4231 struct rtnl_link_stats64 *storage); 4232 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4233 const struct net_device_stats *netdev_stats); 4234 4235 extern int netdev_max_backlog; 4236 extern int netdev_tstamp_prequeue; 4237 extern int weight_p; 4238 extern int dev_weight_rx_bias; 4239 extern int dev_weight_tx_bias; 4240 extern int dev_rx_weight; 4241 extern int dev_tx_weight; 4242 4243 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4244 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4245 struct list_head **iter); 4246 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4247 struct list_head **iter); 4248 4249 /* iterate through upper list, must be called under RCU read lock */ 4250 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4251 for (iter = &(dev)->adj_list.upper, \ 4252 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4253 updev; \ 4254 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4255 4256 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4257 int (*fn)(struct net_device *upper_dev, 4258 void *data), 4259 void *data); 4260 4261 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4262 struct net_device *upper_dev); 4263 4264 bool netdev_has_any_upper_dev(struct net_device *dev); 4265 4266 void *netdev_lower_get_next_private(struct net_device *dev, 4267 struct list_head **iter); 4268 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4269 struct list_head **iter); 4270 4271 #define netdev_for_each_lower_private(dev, priv, iter) \ 4272 for (iter = (dev)->adj_list.lower.next, \ 4273 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4274 priv; \ 4275 priv = netdev_lower_get_next_private(dev, &(iter))) 4276 4277 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4278 for (iter = &(dev)->adj_list.lower, \ 4279 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4280 priv; \ 4281 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4282 4283 void *netdev_lower_get_next(struct net_device *dev, 4284 struct list_head **iter); 4285 4286 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4287 for (iter = (dev)->adj_list.lower.next, \ 4288 ldev = netdev_lower_get_next(dev, &(iter)); \ 4289 ldev; \ 4290 ldev = netdev_lower_get_next(dev, &(iter))) 4291 4292 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4293 struct list_head **iter); 4294 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4295 struct list_head **iter); 4296 4297 int netdev_walk_all_lower_dev(struct net_device *dev, 4298 int (*fn)(struct net_device *lower_dev, 4299 void *data), 4300 void *data); 4301 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4302 int (*fn)(struct net_device *lower_dev, 4303 void *data), 4304 void *data); 4305 4306 void *netdev_adjacent_get_private(struct list_head *adj_list); 4307 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4308 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4309 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4310 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4311 struct netlink_ext_ack *extack); 4312 int netdev_master_upper_dev_link(struct net_device *dev, 4313 struct net_device *upper_dev, 4314 void *upper_priv, void *upper_info, 4315 struct netlink_ext_ack *extack); 4316 void netdev_upper_dev_unlink(struct net_device *dev, 4317 struct net_device *upper_dev); 4318 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4319 void *netdev_lower_dev_get_private(struct net_device *dev, 4320 struct net_device *lower_dev); 4321 void netdev_lower_state_changed(struct net_device *lower_dev, 4322 void *lower_state_info); 4323 4324 /* RSS keys are 40 or 52 bytes long */ 4325 #define NETDEV_RSS_KEY_LEN 52 4326 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4327 void netdev_rss_key_fill(void *buffer, size_t len); 4328 4329 int dev_get_nest_level(struct net_device *dev); 4330 int skb_checksum_help(struct sk_buff *skb); 4331 int skb_crc32c_csum_help(struct sk_buff *skb); 4332 int skb_csum_hwoffload_help(struct sk_buff *skb, 4333 const netdev_features_t features); 4334 4335 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4336 netdev_features_t features, bool tx_path); 4337 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4338 netdev_features_t features); 4339 4340 struct netdev_bonding_info { 4341 ifslave slave; 4342 ifbond master; 4343 }; 4344 4345 struct netdev_notifier_bonding_info { 4346 struct netdev_notifier_info info; /* must be first */ 4347 struct netdev_bonding_info bonding_info; 4348 }; 4349 4350 void netdev_bonding_info_change(struct net_device *dev, 4351 struct netdev_bonding_info *bonding_info); 4352 4353 static inline 4354 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4355 { 4356 return __skb_gso_segment(skb, features, true); 4357 } 4358 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4359 4360 static inline bool can_checksum_protocol(netdev_features_t features, 4361 __be16 protocol) 4362 { 4363 if (protocol == htons(ETH_P_FCOE)) 4364 return !!(features & NETIF_F_FCOE_CRC); 4365 4366 /* Assume this is an IP checksum (not SCTP CRC) */ 4367 4368 if (features & NETIF_F_HW_CSUM) { 4369 /* Can checksum everything */ 4370 return true; 4371 } 4372 4373 switch (protocol) { 4374 case htons(ETH_P_IP): 4375 return !!(features & NETIF_F_IP_CSUM); 4376 case htons(ETH_P_IPV6): 4377 return !!(features & NETIF_F_IPV6_CSUM); 4378 default: 4379 return false; 4380 } 4381 } 4382 4383 #ifdef CONFIG_BUG 4384 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4385 #else 4386 static inline void netdev_rx_csum_fault(struct net_device *dev, 4387 struct sk_buff *skb) 4388 { 4389 } 4390 #endif 4391 /* rx skb timestamps */ 4392 void net_enable_timestamp(void); 4393 void net_disable_timestamp(void); 4394 4395 #ifdef CONFIG_PROC_FS 4396 int __init dev_proc_init(void); 4397 #else 4398 #define dev_proc_init() 0 4399 #endif 4400 4401 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4402 struct sk_buff *skb, struct net_device *dev, 4403 bool more) 4404 { 4405 __this_cpu_write(softnet_data.xmit.more, more); 4406 return ops->ndo_start_xmit(skb, dev); 4407 } 4408 4409 static inline bool netdev_xmit_more(void) 4410 { 4411 return __this_cpu_read(softnet_data.xmit.more); 4412 } 4413 4414 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4415 struct netdev_queue *txq, bool more) 4416 { 4417 const struct net_device_ops *ops = dev->netdev_ops; 4418 netdev_tx_t rc; 4419 4420 rc = __netdev_start_xmit(ops, skb, dev, more); 4421 if (rc == NETDEV_TX_OK) 4422 txq_trans_update(txq); 4423 4424 return rc; 4425 } 4426 4427 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4428 const void *ns); 4429 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4430 const void *ns); 4431 4432 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4433 { 4434 return netdev_class_create_file_ns(class_attr, NULL); 4435 } 4436 4437 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4438 { 4439 netdev_class_remove_file_ns(class_attr, NULL); 4440 } 4441 4442 extern const struct kobj_ns_type_operations net_ns_type_operations; 4443 4444 const char *netdev_drivername(const struct net_device *dev); 4445 4446 void linkwatch_run_queue(void); 4447 4448 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4449 netdev_features_t f2) 4450 { 4451 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4452 if (f1 & NETIF_F_HW_CSUM) 4453 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4454 else 4455 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4456 } 4457 4458 return f1 & f2; 4459 } 4460 4461 static inline netdev_features_t netdev_get_wanted_features( 4462 struct net_device *dev) 4463 { 4464 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4465 } 4466 netdev_features_t netdev_increment_features(netdev_features_t all, 4467 netdev_features_t one, netdev_features_t mask); 4468 4469 /* Allow TSO being used on stacked device : 4470 * Performing the GSO segmentation before last device 4471 * is a performance improvement. 4472 */ 4473 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4474 netdev_features_t mask) 4475 { 4476 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4477 } 4478 4479 int __netdev_update_features(struct net_device *dev); 4480 void netdev_update_features(struct net_device *dev); 4481 void netdev_change_features(struct net_device *dev); 4482 4483 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4484 struct net_device *dev); 4485 4486 netdev_features_t passthru_features_check(struct sk_buff *skb, 4487 struct net_device *dev, 4488 netdev_features_t features); 4489 netdev_features_t netif_skb_features(struct sk_buff *skb); 4490 4491 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4492 { 4493 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4494 4495 /* check flags correspondence */ 4496 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4497 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4498 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4499 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4500 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4501 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4502 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4503 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4514 4515 return (features & feature) == feature; 4516 } 4517 4518 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4519 { 4520 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4521 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4522 } 4523 4524 static inline bool netif_needs_gso(struct sk_buff *skb, 4525 netdev_features_t features) 4526 { 4527 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4528 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4529 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4530 } 4531 4532 static inline void netif_set_gso_max_size(struct net_device *dev, 4533 unsigned int size) 4534 { 4535 dev->gso_max_size = size; 4536 } 4537 4538 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4539 int pulled_hlen, u16 mac_offset, 4540 int mac_len) 4541 { 4542 skb->protocol = protocol; 4543 skb->encapsulation = 1; 4544 skb_push(skb, pulled_hlen); 4545 skb_reset_transport_header(skb); 4546 skb->mac_header = mac_offset; 4547 skb->network_header = skb->mac_header + mac_len; 4548 skb->mac_len = mac_len; 4549 } 4550 4551 static inline bool netif_is_macsec(const struct net_device *dev) 4552 { 4553 return dev->priv_flags & IFF_MACSEC; 4554 } 4555 4556 static inline bool netif_is_macvlan(const struct net_device *dev) 4557 { 4558 return dev->priv_flags & IFF_MACVLAN; 4559 } 4560 4561 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4562 { 4563 return dev->priv_flags & IFF_MACVLAN_PORT; 4564 } 4565 4566 static inline bool netif_is_bond_master(const struct net_device *dev) 4567 { 4568 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4569 } 4570 4571 static inline bool netif_is_bond_slave(const struct net_device *dev) 4572 { 4573 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4574 } 4575 4576 static inline bool netif_supports_nofcs(struct net_device *dev) 4577 { 4578 return dev->priv_flags & IFF_SUPP_NOFCS; 4579 } 4580 4581 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4582 { 4583 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4584 } 4585 4586 static inline bool netif_is_l3_master(const struct net_device *dev) 4587 { 4588 return dev->priv_flags & IFF_L3MDEV_MASTER; 4589 } 4590 4591 static inline bool netif_is_l3_slave(const struct net_device *dev) 4592 { 4593 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4594 } 4595 4596 static inline bool netif_is_bridge_master(const struct net_device *dev) 4597 { 4598 return dev->priv_flags & IFF_EBRIDGE; 4599 } 4600 4601 static inline bool netif_is_bridge_port(const struct net_device *dev) 4602 { 4603 return dev->priv_flags & IFF_BRIDGE_PORT; 4604 } 4605 4606 static inline bool netif_is_ovs_master(const struct net_device *dev) 4607 { 4608 return dev->priv_flags & IFF_OPENVSWITCH; 4609 } 4610 4611 static inline bool netif_is_ovs_port(const struct net_device *dev) 4612 { 4613 return dev->priv_flags & IFF_OVS_DATAPATH; 4614 } 4615 4616 static inline bool netif_is_team_master(const struct net_device *dev) 4617 { 4618 return dev->priv_flags & IFF_TEAM; 4619 } 4620 4621 static inline bool netif_is_team_port(const struct net_device *dev) 4622 { 4623 return dev->priv_flags & IFF_TEAM_PORT; 4624 } 4625 4626 static inline bool netif_is_lag_master(const struct net_device *dev) 4627 { 4628 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4629 } 4630 4631 static inline bool netif_is_lag_port(const struct net_device *dev) 4632 { 4633 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4634 } 4635 4636 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4637 { 4638 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4639 } 4640 4641 static inline bool netif_is_failover(const struct net_device *dev) 4642 { 4643 return dev->priv_flags & IFF_FAILOVER; 4644 } 4645 4646 static inline bool netif_is_failover_slave(const struct net_device *dev) 4647 { 4648 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4649 } 4650 4651 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4652 static inline void netif_keep_dst(struct net_device *dev) 4653 { 4654 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4655 } 4656 4657 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4658 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4659 { 4660 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4661 return dev->priv_flags & IFF_MACSEC; 4662 } 4663 4664 extern struct pernet_operations __net_initdata loopback_net_ops; 4665 4666 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4667 4668 /* netdev_printk helpers, similar to dev_printk */ 4669 4670 static inline const char *netdev_name(const struct net_device *dev) 4671 { 4672 if (!dev->name[0] || strchr(dev->name, '%')) 4673 return "(unnamed net_device)"; 4674 return dev->name; 4675 } 4676 4677 static inline bool netdev_unregistering(const struct net_device *dev) 4678 { 4679 return dev->reg_state == NETREG_UNREGISTERING; 4680 } 4681 4682 static inline const char *netdev_reg_state(const struct net_device *dev) 4683 { 4684 switch (dev->reg_state) { 4685 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4686 case NETREG_REGISTERED: return ""; 4687 case NETREG_UNREGISTERING: return " (unregistering)"; 4688 case NETREG_UNREGISTERED: return " (unregistered)"; 4689 case NETREG_RELEASED: return " (released)"; 4690 case NETREG_DUMMY: return " (dummy)"; 4691 } 4692 4693 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4694 return " (unknown)"; 4695 } 4696 4697 __printf(3, 4) __cold 4698 void netdev_printk(const char *level, const struct net_device *dev, 4699 const char *format, ...); 4700 __printf(2, 3) __cold 4701 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4702 __printf(2, 3) __cold 4703 void netdev_alert(const struct net_device *dev, const char *format, ...); 4704 __printf(2, 3) __cold 4705 void netdev_crit(const struct net_device *dev, const char *format, ...); 4706 __printf(2, 3) __cold 4707 void netdev_err(const struct net_device *dev, const char *format, ...); 4708 __printf(2, 3) __cold 4709 void netdev_warn(const struct net_device *dev, const char *format, ...); 4710 __printf(2, 3) __cold 4711 void netdev_notice(const struct net_device *dev, const char *format, ...); 4712 __printf(2, 3) __cold 4713 void netdev_info(const struct net_device *dev, const char *format, ...); 4714 4715 #define netdev_level_once(level, dev, fmt, ...) \ 4716 do { \ 4717 static bool __print_once __read_mostly; \ 4718 \ 4719 if (!__print_once) { \ 4720 __print_once = true; \ 4721 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4722 } \ 4723 } while (0) 4724 4725 #define netdev_emerg_once(dev, fmt, ...) \ 4726 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4727 #define netdev_alert_once(dev, fmt, ...) \ 4728 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4729 #define netdev_crit_once(dev, fmt, ...) \ 4730 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4731 #define netdev_err_once(dev, fmt, ...) \ 4732 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4733 #define netdev_warn_once(dev, fmt, ...) \ 4734 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4735 #define netdev_notice_once(dev, fmt, ...) \ 4736 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4737 #define netdev_info_once(dev, fmt, ...) \ 4738 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4739 4740 #define MODULE_ALIAS_NETDEV(device) \ 4741 MODULE_ALIAS("netdev-" device) 4742 4743 #if defined(CONFIG_DYNAMIC_DEBUG) 4744 #define netdev_dbg(__dev, format, args...) \ 4745 do { \ 4746 dynamic_netdev_dbg(__dev, format, ##args); \ 4747 } while (0) 4748 #elif defined(DEBUG) 4749 #define netdev_dbg(__dev, format, args...) \ 4750 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4751 #else 4752 #define netdev_dbg(__dev, format, args...) \ 4753 ({ \ 4754 if (0) \ 4755 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4756 }) 4757 #endif 4758 4759 #if defined(VERBOSE_DEBUG) 4760 #define netdev_vdbg netdev_dbg 4761 #else 4762 4763 #define netdev_vdbg(dev, format, args...) \ 4764 ({ \ 4765 if (0) \ 4766 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4767 0; \ 4768 }) 4769 #endif 4770 4771 /* 4772 * netdev_WARN() acts like dev_printk(), but with the key difference 4773 * of using a WARN/WARN_ON to get the message out, including the 4774 * file/line information and a backtrace. 4775 */ 4776 #define netdev_WARN(dev, format, args...) \ 4777 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4778 netdev_reg_state(dev), ##args) 4779 4780 #define netdev_WARN_ONCE(dev, format, args...) \ 4781 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4782 netdev_reg_state(dev), ##args) 4783 4784 /* netif printk helpers, similar to netdev_printk */ 4785 4786 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4787 do { \ 4788 if (netif_msg_##type(priv)) \ 4789 netdev_printk(level, (dev), fmt, ##args); \ 4790 } while (0) 4791 4792 #define netif_level(level, priv, type, dev, fmt, args...) \ 4793 do { \ 4794 if (netif_msg_##type(priv)) \ 4795 netdev_##level(dev, fmt, ##args); \ 4796 } while (0) 4797 4798 #define netif_emerg(priv, type, dev, fmt, args...) \ 4799 netif_level(emerg, priv, type, dev, fmt, ##args) 4800 #define netif_alert(priv, type, dev, fmt, args...) \ 4801 netif_level(alert, priv, type, dev, fmt, ##args) 4802 #define netif_crit(priv, type, dev, fmt, args...) \ 4803 netif_level(crit, priv, type, dev, fmt, ##args) 4804 #define netif_err(priv, type, dev, fmt, args...) \ 4805 netif_level(err, priv, type, dev, fmt, ##args) 4806 #define netif_warn(priv, type, dev, fmt, args...) \ 4807 netif_level(warn, priv, type, dev, fmt, ##args) 4808 #define netif_notice(priv, type, dev, fmt, args...) \ 4809 netif_level(notice, priv, type, dev, fmt, ##args) 4810 #define netif_info(priv, type, dev, fmt, args...) \ 4811 netif_level(info, priv, type, dev, fmt, ##args) 4812 4813 #if defined(CONFIG_DYNAMIC_DEBUG) 4814 #define netif_dbg(priv, type, netdev, format, args...) \ 4815 do { \ 4816 if (netif_msg_##type(priv)) \ 4817 dynamic_netdev_dbg(netdev, format, ##args); \ 4818 } while (0) 4819 #elif defined(DEBUG) 4820 #define netif_dbg(priv, type, dev, format, args...) \ 4821 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4822 #else 4823 #define netif_dbg(priv, type, dev, format, args...) \ 4824 ({ \ 4825 if (0) \ 4826 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4827 0; \ 4828 }) 4829 #endif 4830 4831 /* if @cond then downgrade to debug, else print at @level */ 4832 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4833 do { \ 4834 if (cond) \ 4835 netif_dbg(priv, type, netdev, fmt, ##args); \ 4836 else \ 4837 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4838 } while (0) 4839 4840 #if defined(VERBOSE_DEBUG) 4841 #define netif_vdbg netif_dbg 4842 #else 4843 #define netif_vdbg(priv, type, dev, format, args...) \ 4844 ({ \ 4845 if (0) \ 4846 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4847 0; \ 4848 }) 4849 #endif 4850 4851 /* 4852 * The list of packet types we will receive (as opposed to discard) 4853 * and the routines to invoke. 4854 * 4855 * Why 16. Because with 16 the only overlap we get on a hash of the 4856 * low nibble of the protocol value is RARP/SNAP/X.25. 4857 * 4858 * 0800 IP 4859 * 0001 802.3 4860 * 0002 AX.25 4861 * 0004 802.2 4862 * 8035 RARP 4863 * 0005 SNAP 4864 * 0805 X.25 4865 * 0806 ARP 4866 * 8137 IPX 4867 * 0009 Localtalk 4868 * 86DD IPv6 4869 */ 4870 #define PTYPE_HASH_SIZE (16) 4871 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4872 4873 #endif /* _LINUX_NETDEVICE_H */ 4874