xref: /openbmc/linux/include/linux/netdevice.h (revision 089a49b6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 					   const struct ethtool_ops *ops);
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 #define NET_ADDR_SET		3	/* address is set using
71 					 * dev_set_mac_address() */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*rebuild)(struct sk_buff *skb);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 extern int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-cpu poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	spinlock_t		poll_lock;
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash */
336 };
337 
338 enum gro_result {
339 	GRO_MERGED,
340 	GRO_MERGED_FREE,
341 	GRO_HELD,
342 	GRO_NORMAL,
343 	GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed to skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other ways.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler consider the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389 	RX_HANDLER_CONSUMED,
390 	RX_HANDLER_ANOTHER,
391 	RX_HANDLER_EXACT,
392 	RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 extern void __napi_schedule(struct napi_struct *n);
398 
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 	return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403 
404 /**
405  *	napi_schedule_prep - check if napi can be scheduled
406  *	@n: napi context
407  *
408  * Test if NAPI routine is already running, and if not mark
409  * it as running.  This is used as a condition variable
410  * insure only one NAPI poll instance runs.  We also make
411  * sure there is no pending NAPI disable.
412  */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 	return !napi_disable_pending(n) &&
416 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418 
419 /**
420  *	napi_schedule - schedule NAPI poll
421  *	@n: napi context
422  *
423  * Schedule NAPI poll routine to be called if it is not already
424  * running.
425  */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 	if (napi_schedule_prep(n))
429 		__napi_schedule(n);
430 }
431 
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 	if (napi_schedule_prep(napi)) {
436 		__napi_schedule(napi);
437 		return true;
438 	}
439 	return false;
440 }
441 
442 /**
443  *	napi_complete - NAPI processing complete
444  *	@n: napi context
445  *
446  * Mark NAPI processing as complete.
447  */
448 extern void __napi_complete(struct napi_struct *n);
449 extern void napi_complete(struct napi_struct *n);
450 
451 /**
452  *	napi_by_id - lookup a NAPI by napi_id
453  *	@napi_id: hashed napi_id
454  *
455  * lookup @napi_id in napi_hash table
456  * must be called under rcu_read_lock()
457  */
458 extern struct napi_struct *napi_by_id(unsigned int napi_id);
459 
460 /**
461  *	napi_hash_add - add a NAPI to global hashtable
462  *	@napi: napi context
463  *
464  * generate a new napi_id and store a @napi under it in napi_hash
465  */
466 extern void napi_hash_add(struct napi_struct *napi);
467 
468 /**
469  *	napi_hash_del - remove a NAPI from global table
470  *	@napi: napi context
471  *
472  * Warning: caller must observe rcu grace period
473  * before freeing memory containing @napi
474  */
475 extern void napi_hash_del(struct napi_struct *napi);
476 
477 /**
478  *	napi_disable - prevent NAPI from scheduling
479  *	@n: napi context
480  *
481  * Stop NAPI from being scheduled on this context.
482  * Waits till any outstanding processing completes.
483  */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 	set_bit(NAPI_STATE_DISABLE, &n->state);
487 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
488 		msleep(1);
489 	clear_bit(NAPI_STATE_DISABLE, &n->state);
490 }
491 
492 /**
493  *	napi_enable - enable NAPI scheduling
494  *	@n: napi context
495  *
496  * Resume NAPI from being scheduled on this context.
497  * Must be paired with napi_disable.
498  */
499 static inline void napi_enable(struct napi_struct *n)
500 {
501 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
502 	smp_mb__before_clear_bit();
503 	clear_bit(NAPI_STATE_SCHED, &n->state);
504 }
505 
506 #ifdef CONFIG_SMP
507 /**
508  *	napi_synchronize - wait until NAPI is not running
509  *	@n: napi context
510  *
511  * Wait until NAPI is done being scheduled on this context.
512  * Waits till any outstanding processing completes but
513  * does not disable future activations.
514  */
515 static inline void napi_synchronize(const struct napi_struct *n)
516 {
517 	while (test_bit(NAPI_STATE_SCHED, &n->state))
518 		msleep(1);
519 }
520 #else
521 # define napi_synchronize(n)	barrier()
522 #endif
523 
524 enum netdev_queue_state_t {
525 	__QUEUE_STATE_DRV_XOFF,
526 	__QUEUE_STATE_STACK_XOFF,
527 	__QUEUE_STATE_FROZEN,
528 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
529 			      (1 << __QUEUE_STATE_STACK_XOFF))
530 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
531 					(1 << __QUEUE_STATE_FROZEN))
532 };
533 /*
534  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
535  * netif_tx_* functions below are used to manipulate this flag.  The
536  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
537  * queue independently.  The netif_xmit_*stopped functions below are called
538  * to check if the queue has been stopped by the driver or stack (either
539  * of the XOFF bits are set in the state).  Drivers should not need to call
540  * netif_xmit*stopped functions, they should only be using netif_tx_*.
541  */
542 
543 struct netdev_queue {
544 /*
545  * read mostly part
546  */
547 	struct net_device	*dev;
548 	struct Qdisc		*qdisc;
549 	struct Qdisc		*qdisc_sleeping;
550 #ifdef CONFIG_SYSFS
551 	struct kobject		kobj;
552 #endif
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 	int			numa_node;
555 #endif
556 /*
557  * write mostly part
558  */
559 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
560 	int			xmit_lock_owner;
561 	/*
562 	 * please use this field instead of dev->trans_start
563 	 */
564 	unsigned long		trans_start;
565 
566 	/*
567 	 * Number of TX timeouts for this queue
568 	 * (/sys/class/net/DEV/Q/trans_timeout)
569 	 */
570 	unsigned long		trans_timeout;
571 
572 	unsigned long		state;
573 
574 #ifdef CONFIG_BQL
575 	struct dql		dql;
576 #endif
577 } ____cacheline_aligned_in_smp;
578 
579 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
580 {
581 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
582 	return q->numa_node;
583 #else
584 	return NUMA_NO_NODE;
585 #endif
586 }
587 
588 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 	q->numa_node = node;
592 #endif
593 }
594 
595 #ifdef CONFIG_RPS
596 /*
597  * This structure holds an RPS map which can be of variable length.  The
598  * map is an array of CPUs.
599  */
600 struct rps_map {
601 	unsigned int len;
602 	struct rcu_head rcu;
603 	u16 cpus[0];
604 };
605 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
606 
607 /*
608  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
609  * tail pointer for that CPU's input queue at the time of last enqueue, and
610  * a hardware filter index.
611  */
612 struct rps_dev_flow {
613 	u16 cpu;
614 	u16 filter;
615 	unsigned int last_qtail;
616 };
617 #define RPS_NO_FILTER 0xffff
618 
619 /*
620  * The rps_dev_flow_table structure contains a table of flow mappings.
621  */
622 struct rps_dev_flow_table {
623 	unsigned int mask;
624 	struct rcu_head rcu;
625 	struct rps_dev_flow flows[0];
626 };
627 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
628     ((_num) * sizeof(struct rps_dev_flow)))
629 
630 /*
631  * The rps_sock_flow_table contains mappings of flows to the last CPU
632  * on which they were processed by the application (set in recvmsg).
633  */
634 struct rps_sock_flow_table {
635 	unsigned int mask;
636 	u16 ents[0];
637 };
638 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
639     ((_num) * sizeof(u16)))
640 
641 #define RPS_NO_CPU 0xffff
642 
643 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
644 					u32 hash)
645 {
646 	if (table && hash) {
647 		unsigned int cpu, index = hash & table->mask;
648 
649 		/* We only give a hint, preemption can change cpu under us */
650 		cpu = raw_smp_processor_id();
651 
652 		if (table->ents[index] != cpu)
653 			table->ents[index] = cpu;
654 	}
655 }
656 
657 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
658 				       u32 hash)
659 {
660 	if (table && hash)
661 		table->ents[hash & table->mask] = RPS_NO_CPU;
662 }
663 
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 #ifdef CONFIG_RFS_ACCEL
667 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
668 				u32 flow_id, u16 filter_id);
669 #endif
670 
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 	struct rps_map __rcu		*rps_map;
674 	struct rps_dev_flow_table __rcu	*rps_flow_table;
675 	struct kobject			kobj;
676 	struct net_device		*dev;
677 } ____cacheline_aligned_in_smp;
678 #endif /* CONFIG_RPS */
679 
680 #ifdef CONFIG_XPS
681 /*
682  * This structure holds an XPS map which can be of variable length.  The
683  * map is an array of queues.
684  */
685 struct xps_map {
686 	unsigned int len;
687 	unsigned int alloc_len;
688 	struct rcu_head rcu;
689 	u16 queues[0];
690 };
691 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
692 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
693     / sizeof(u16))
694 
695 /*
696  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
697  */
698 struct xps_dev_maps {
699 	struct rcu_head rcu;
700 	struct xps_map __rcu *cpu_map[0];
701 };
702 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
703     (nr_cpu_ids * sizeof(struct xps_map *)))
704 #endif /* CONFIG_XPS */
705 
706 #define TC_MAX_QUEUE	16
707 #define TC_BITMASK	15
708 /* HW offloaded queuing disciplines txq count and offset maps */
709 struct netdev_tc_txq {
710 	u16 count;
711 	u16 offset;
712 };
713 
714 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
715 /*
716  * This structure is to hold information about the device
717  * configured to run FCoE protocol stack.
718  */
719 struct netdev_fcoe_hbainfo {
720 	char	manufacturer[64];
721 	char	serial_number[64];
722 	char	hardware_version[64];
723 	char	driver_version[64];
724 	char	optionrom_version[64];
725 	char	firmware_version[64];
726 	char	model[256];
727 	char	model_description[256];
728 };
729 #endif
730 
731 #define MAX_PHYS_PORT_ID_LEN 32
732 
733 /* This structure holds a unique identifier to identify the
734  * physical port used by a netdevice.
735  */
736 struct netdev_phys_port_id {
737 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
738 	unsigned char id_len;
739 };
740 
741 /*
742  * This structure defines the management hooks for network devices.
743  * The following hooks can be defined; unless noted otherwise, they are
744  * optional and can be filled with a null pointer.
745  *
746  * int (*ndo_init)(struct net_device *dev);
747  *     This function is called once when network device is registered.
748  *     The network device can use this to any late stage initializaton
749  *     or semantic validattion. It can fail with an error code which will
750  *     be propogated back to register_netdev
751  *
752  * void (*ndo_uninit)(struct net_device *dev);
753  *     This function is called when device is unregistered or when registration
754  *     fails. It is not called if init fails.
755  *
756  * int (*ndo_open)(struct net_device *dev);
757  *     This function is called when network device transistions to the up
758  *     state.
759  *
760  * int (*ndo_stop)(struct net_device *dev);
761  *     This function is called when network device transistions to the down
762  *     state.
763  *
764  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
765  *                               struct net_device *dev);
766  *	Called when a packet needs to be transmitted.
767  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
768  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
769  *	Required can not be NULL.
770  *
771  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
772  *	Called to decide which queue to when device supports multiple
773  *	transmit queues.
774  *
775  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
776  *	This function is called to allow device receiver to make
777  *	changes to configuration when multicast or promiscious is enabled.
778  *
779  * void (*ndo_set_rx_mode)(struct net_device *dev);
780  *	This function is called device changes address list filtering.
781  *	If driver handles unicast address filtering, it should set
782  *	IFF_UNICAST_FLT to its priv_flags.
783  *
784  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
785  *	This function  is called when the Media Access Control address
786  *	needs to be changed. If this interface is not defined, the
787  *	mac address can not be changed.
788  *
789  * int (*ndo_validate_addr)(struct net_device *dev);
790  *	Test if Media Access Control address is valid for the device.
791  *
792  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
793  *	Called when a user request an ioctl which can't be handled by
794  *	the generic interface code. If not defined ioctl's return
795  *	not supported error code.
796  *
797  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
798  *	Used to set network devices bus interface parameters. This interface
799  *	is retained for legacy reason, new devices should use the bus
800  *	interface (PCI) for low level management.
801  *
802  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
803  *	Called when a user wants to change the Maximum Transfer Unit
804  *	of a device. If not defined, any request to change MTU will
805  *	will return an error.
806  *
807  * void (*ndo_tx_timeout)(struct net_device *dev);
808  *	Callback uses when the transmitter has not made any progress
809  *	for dev->watchdog ticks.
810  *
811  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
812  *                      struct rtnl_link_stats64 *storage);
813  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
814  *	Called when a user wants to get the network device usage
815  *	statistics. Drivers must do one of the following:
816  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
817  *	   rtnl_link_stats64 structure passed by the caller.
818  *	2. Define @ndo_get_stats to update a net_device_stats structure
819  *	   (which should normally be dev->stats) and return a pointer to
820  *	   it. The structure may be changed asynchronously only if each
821  *	   field is written atomically.
822  *	3. Update dev->stats asynchronously and atomically, and define
823  *	   neither operation.
824  *
825  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
826  *	If device support VLAN filtering this function is called when a
827  *	VLAN id is registered.
828  *
829  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
830  *	If device support VLAN filtering this function is called when a
831  *	VLAN id is unregistered.
832  *
833  * void (*ndo_poll_controller)(struct net_device *dev);
834  *
835  *	SR-IOV management functions.
836  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
837  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
838  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
839  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
840  * int (*ndo_get_vf_config)(struct net_device *dev,
841  *			    int vf, struct ifla_vf_info *ivf);
842  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
843  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
844  *			  struct nlattr *port[]);
845  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
846  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
847  * 	Called to setup 'tc' number of traffic classes in the net device. This
848  * 	is always called from the stack with the rtnl lock held and netif tx
849  * 	queues stopped. This allows the netdevice to perform queue management
850  * 	safely.
851  *
852  *	Fiber Channel over Ethernet (FCoE) offload functions.
853  * int (*ndo_fcoe_enable)(struct net_device *dev);
854  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
855  *	so the underlying device can perform whatever needed configuration or
856  *	initialization to support acceleration of FCoE traffic.
857  *
858  * int (*ndo_fcoe_disable)(struct net_device *dev);
859  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
860  *	so the underlying device can perform whatever needed clean-ups to
861  *	stop supporting acceleration of FCoE traffic.
862  *
863  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
864  *			     struct scatterlist *sgl, unsigned int sgc);
865  *	Called when the FCoE Initiator wants to initialize an I/O that
866  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
867  *	perform necessary setup and returns 1 to indicate the device is set up
868  *	successfully to perform DDP on this I/O, otherwise this returns 0.
869  *
870  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
871  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
872  *	indicated by the FC exchange id 'xid', so the underlying device can
873  *	clean up and reuse resources for later DDP requests.
874  *
875  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
876  *			      struct scatterlist *sgl, unsigned int sgc);
877  *	Called when the FCoE Target wants to initialize an I/O that
878  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
879  *	perform necessary setup and returns 1 to indicate the device is set up
880  *	successfully to perform DDP on this I/O, otherwise this returns 0.
881  *
882  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
883  *			       struct netdev_fcoe_hbainfo *hbainfo);
884  *	Called when the FCoE Protocol stack wants information on the underlying
885  *	device. This information is utilized by the FCoE protocol stack to
886  *	register attributes with Fiber Channel management service as per the
887  *	FC-GS Fabric Device Management Information(FDMI) specification.
888  *
889  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
890  *	Called when the underlying device wants to override default World Wide
891  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
892  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
893  *	protocol stack to use.
894  *
895  *	RFS acceleration.
896  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
897  *			    u16 rxq_index, u32 flow_id);
898  *	Set hardware filter for RFS.  rxq_index is the target queue index;
899  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
900  *	Return the filter ID on success, or a negative error code.
901  *
902  *	Slave management functions (for bridge, bonding, etc).
903  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
904  *	Called to make another netdev an underling.
905  *
906  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
907  *	Called to release previously enslaved netdev.
908  *
909  *      Feature/offload setting functions.
910  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
911  *		netdev_features_t features);
912  *	Adjusts the requested feature flags according to device-specific
913  *	constraints, and returns the resulting flags. Must not modify
914  *	the device state.
915  *
916  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
917  *	Called to update device configuration to new features. Passed
918  *	feature set might be less than what was returned by ndo_fix_features()).
919  *	Must return >0 or -errno if it changed dev->features itself.
920  *
921  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
922  *		      struct net_device *dev,
923  *		      const unsigned char *addr, u16 flags)
924  *	Adds an FDB entry to dev for addr.
925  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
926  *		      struct net_device *dev,
927  *		      const unsigned char *addr)
928  *	Deletes the FDB entry from dev coresponding to addr.
929  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
930  *		       struct net_device *dev, int idx)
931  *	Used to add FDB entries to dump requests. Implementers should add
932  *	entries to skb and update idx with the number of entries.
933  *
934  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
935  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
936  *			     struct net_device *dev, u32 filter_mask)
937  *
938  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
939  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
940  *	which do not represent real hardware may define this to allow their
941  *	userspace components to manage their virtual carrier state. Devices
942  *	that determine carrier state from physical hardware properties (eg
943  *	network cables) or protocol-dependent mechanisms (eg
944  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
945  *
946  * int (*ndo_get_phys_port_id)(struct net_device *dev,
947  *			       struct netdev_phys_port_id *ppid);
948  *	Called to get ID of physical port of this device. If driver does
949  *	not implement this, it is assumed that the hw is not able to have
950  *	multiple net devices on single physical port.
951  *
952  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
953  *			      sa_family_t sa_family, __be16 port);
954  *	Called by vxlan to notiy a driver about the UDP port and socket
955  *	address family that vxlan is listnening to. It is called only when
956  *	a new port starts listening. The operation is protected by the
957  *	vxlan_net->sock_lock.
958  *
959  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
960  *			      sa_family_t sa_family, __be16 port);
961  *	Called by vxlan to notify the driver about a UDP port and socket
962  *	address family that vxlan is not listening to anymore. The operation
963  *	is protected by the vxlan_net->sock_lock.
964  */
965 struct net_device_ops {
966 	int			(*ndo_init)(struct net_device *dev);
967 	void			(*ndo_uninit)(struct net_device *dev);
968 	int			(*ndo_open)(struct net_device *dev);
969 	int			(*ndo_stop)(struct net_device *dev);
970 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
971 						   struct net_device *dev);
972 	u16			(*ndo_select_queue)(struct net_device *dev,
973 						    struct sk_buff *skb);
974 	void			(*ndo_change_rx_flags)(struct net_device *dev,
975 						       int flags);
976 	void			(*ndo_set_rx_mode)(struct net_device *dev);
977 	int			(*ndo_set_mac_address)(struct net_device *dev,
978 						       void *addr);
979 	int			(*ndo_validate_addr)(struct net_device *dev);
980 	int			(*ndo_do_ioctl)(struct net_device *dev,
981 					        struct ifreq *ifr, int cmd);
982 	int			(*ndo_set_config)(struct net_device *dev,
983 					          struct ifmap *map);
984 	int			(*ndo_change_mtu)(struct net_device *dev,
985 						  int new_mtu);
986 	int			(*ndo_neigh_setup)(struct net_device *dev,
987 						   struct neigh_parms *);
988 	void			(*ndo_tx_timeout) (struct net_device *dev);
989 
990 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
991 						     struct rtnl_link_stats64 *storage);
992 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
993 
994 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
995 						       __be16 proto, u16 vid);
996 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
997 						        __be16 proto, u16 vid);
998 #ifdef CONFIG_NET_POLL_CONTROLLER
999 	void                    (*ndo_poll_controller)(struct net_device *dev);
1000 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1001 						     struct netpoll_info *info,
1002 						     gfp_t gfp);
1003 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1004 #endif
1005 #ifdef CONFIG_NET_RX_BUSY_POLL
1006 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1007 #endif
1008 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1009 						  int queue, u8 *mac);
1010 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1011 						   int queue, u16 vlan, u8 qos);
1012 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
1013 						      int vf, int rate);
1014 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1015 						       int vf, bool setting);
1016 	int			(*ndo_get_vf_config)(struct net_device *dev,
1017 						     int vf,
1018 						     struct ifla_vf_info *ivf);
1019 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1020 							 int vf, int link_state);
1021 	int			(*ndo_set_vf_port)(struct net_device *dev,
1022 						   int vf,
1023 						   struct nlattr *port[]);
1024 	int			(*ndo_get_vf_port)(struct net_device *dev,
1025 						   int vf, struct sk_buff *skb);
1026 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1027 #if IS_ENABLED(CONFIG_FCOE)
1028 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1029 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1030 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1031 						      u16 xid,
1032 						      struct scatterlist *sgl,
1033 						      unsigned int sgc);
1034 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1035 						     u16 xid);
1036 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1037 						       u16 xid,
1038 						       struct scatterlist *sgl,
1039 						       unsigned int sgc);
1040 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1041 							struct netdev_fcoe_hbainfo *hbainfo);
1042 #endif
1043 
1044 #if IS_ENABLED(CONFIG_LIBFCOE)
1045 #define NETDEV_FCOE_WWNN 0
1046 #define NETDEV_FCOE_WWPN 1
1047 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1048 						    u64 *wwn, int type);
1049 #endif
1050 
1051 #ifdef CONFIG_RFS_ACCEL
1052 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1053 						     const struct sk_buff *skb,
1054 						     u16 rxq_index,
1055 						     u32 flow_id);
1056 #endif
1057 	int			(*ndo_add_slave)(struct net_device *dev,
1058 						 struct net_device *slave_dev);
1059 	int			(*ndo_del_slave)(struct net_device *dev,
1060 						 struct net_device *slave_dev);
1061 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1062 						    netdev_features_t features);
1063 	int			(*ndo_set_features)(struct net_device *dev,
1064 						    netdev_features_t features);
1065 	int			(*ndo_neigh_construct)(struct neighbour *n);
1066 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1067 
1068 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1069 					       struct nlattr *tb[],
1070 					       struct net_device *dev,
1071 					       const unsigned char *addr,
1072 					       u16 flags);
1073 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1074 					       struct nlattr *tb[],
1075 					       struct net_device *dev,
1076 					       const unsigned char *addr);
1077 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1078 						struct netlink_callback *cb,
1079 						struct net_device *dev,
1080 						int idx);
1081 
1082 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1083 						      struct nlmsghdr *nlh);
1084 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1085 						      u32 pid, u32 seq,
1086 						      struct net_device *dev,
1087 						      u32 filter_mask);
1088 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1089 						      struct nlmsghdr *nlh);
1090 	int			(*ndo_change_carrier)(struct net_device *dev,
1091 						      bool new_carrier);
1092 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1093 							struct netdev_phys_port_id *ppid);
1094 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1095 						      sa_family_t sa_family,
1096 						      __be16 port);
1097 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1098 						      sa_family_t sa_family,
1099 						      __be16 port);
1100 };
1101 
1102 /*
1103  *	The DEVICE structure.
1104  *	Actually, this whole structure is a big mistake.  It mixes I/O
1105  *	data with strictly "high-level" data, and it has to know about
1106  *	almost every data structure used in the INET module.
1107  *
1108  *	FIXME: cleanup struct net_device such that network protocol info
1109  *	moves out.
1110  */
1111 
1112 struct net_device {
1113 
1114 	/*
1115 	 * This is the first field of the "visible" part of this structure
1116 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1117 	 * of the interface.
1118 	 */
1119 	char			name[IFNAMSIZ];
1120 
1121 	/* device name hash chain, please keep it close to name[] */
1122 	struct hlist_node	name_hlist;
1123 
1124 	/* snmp alias */
1125 	char 			*ifalias;
1126 
1127 	/*
1128 	 *	I/O specific fields
1129 	 *	FIXME: Merge these and struct ifmap into one
1130 	 */
1131 	unsigned long		mem_end;	/* shared mem end	*/
1132 	unsigned long		mem_start;	/* shared mem start	*/
1133 	unsigned long		base_addr;	/* device I/O address	*/
1134 	unsigned int		irq;		/* device IRQ number	*/
1135 
1136 	/*
1137 	 *	Some hardware also needs these fields, but they are not
1138 	 *	part of the usual set specified in Space.c.
1139 	 */
1140 
1141 	unsigned long		state;
1142 
1143 	struct list_head	dev_list;
1144 	struct list_head	napi_list;
1145 	struct list_head	unreg_list;
1146 	struct list_head	upper_dev_list; /* List of upper devices */
1147 	struct list_head	lower_dev_list;
1148 
1149 
1150 	/* currently active device features */
1151 	netdev_features_t	features;
1152 	/* user-changeable features */
1153 	netdev_features_t	hw_features;
1154 	/* user-requested features */
1155 	netdev_features_t	wanted_features;
1156 	/* mask of features inheritable by VLAN devices */
1157 	netdev_features_t	vlan_features;
1158 	/* mask of features inherited by encapsulating devices
1159 	 * This field indicates what encapsulation offloads
1160 	 * the hardware is capable of doing, and drivers will
1161 	 * need to set them appropriately.
1162 	 */
1163 	netdev_features_t	hw_enc_features;
1164 	/* mask of fetures inheritable by MPLS */
1165 	netdev_features_t	mpls_features;
1166 
1167 	/* Interface index. Unique device identifier	*/
1168 	int			ifindex;
1169 	int			iflink;
1170 
1171 	struct net_device_stats	stats;
1172 	atomic_long_t		rx_dropped; /* dropped packets by core network
1173 					     * Do not use this in drivers.
1174 					     */
1175 
1176 #ifdef CONFIG_WIRELESS_EXT
1177 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1178 	 * See <net/iw_handler.h> for details. Jean II */
1179 	const struct iw_handler_def *	wireless_handlers;
1180 	/* Instance data managed by the core of Wireless Extensions. */
1181 	struct iw_public_data *	wireless_data;
1182 #endif
1183 	/* Management operations */
1184 	const struct net_device_ops *netdev_ops;
1185 	const struct ethtool_ops *ethtool_ops;
1186 
1187 	/* Hardware header description */
1188 	const struct header_ops *header_ops;
1189 
1190 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1191 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1192 					     * See if.h for definitions. */
1193 	unsigned short		gflags;
1194 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1195 
1196 	unsigned char		operstate; /* RFC2863 operstate */
1197 	unsigned char		link_mode; /* mapping policy to operstate */
1198 
1199 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1200 	unsigned char		dma;		/* DMA channel		*/
1201 
1202 	unsigned int		mtu;	/* interface MTU value		*/
1203 	unsigned short		type;	/* interface hardware type	*/
1204 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1205 
1206 	/* extra head- and tailroom the hardware may need, but not in all cases
1207 	 * can this be guaranteed, especially tailroom. Some cases also use
1208 	 * LL_MAX_HEADER instead to allocate the skb.
1209 	 */
1210 	unsigned short		needed_headroom;
1211 	unsigned short		needed_tailroom;
1212 
1213 	/* Interface address info. */
1214 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1215 	unsigned char		addr_assign_type; /* hw address assignment type */
1216 	unsigned char		addr_len;	/* hardware address length	*/
1217 	unsigned char		neigh_priv_len;
1218 	unsigned short          dev_id;		/* Used to differentiate devices
1219 						 * that share the same link
1220 						 * layer address
1221 						 */
1222 	spinlock_t		addr_list_lock;
1223 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1224 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1225 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1226 						    * hw addresses
1227 						    */
1228 #ifdef CONFIG_SYSFS
1229 	struct kset		*queues_kset;
1230 #endif
1231 
1232 	bool			uc_promisc;
1233 	unsigned int		promiscuity;
1234 	unsigned int		allmulti;
1235 
1236 
1237 	/* Protocol specific pointers */
1238 
1239 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1240 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1241 #endif
1242 #if IS_ENABLED(CONFIG_NET_DSA)
1243 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1244 #endif
1245 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1246 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1247 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1248 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1249 	void			*ax25_ptr;	/* AX.25 specific data */
1250 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1251 						   assign before registering */
1252 
1253 /*
1254  * Cache lines mostly used on receive path (including eth_type_trans())
1255  */
1256 	unsigned long		last_rx;	/* Time of last Rx
1257 						 * This should not be set in
1258 						 * drivers, unless really needed,
1259 						 * because network stack (bonding)
1260 						 * use it if/when necessary, to
1261 						 * avoid dirtying this cache line.
1262 						 */
1263 
1264 	/* Interface address info used in eth_type_trans() */
1265 	unsigned char		*dev_addr;	/* hw address, (before bcast
1266 						   because most packets are
1267 						   unicast) */
1268 
1269 
1270 #ifdef CONFIG_RPS
1271 	struct netdev_rx_queue	*_rx;
1272 
1273 	/* Number of RX queues allocated at register_netdev() time */
1274 	unsigned int		num_rx_queues;
1275 
1276 	/* Number of RX queues currently active in device */
1277 	unsigned int		real_num_rx_queues;
1278 
1279 #endif
1280 
1281 	rx_handler_func_t __rcu	*rx_handler;
1282 	void __rcu		*rx_handler_data;
1283 
1284 	struct netdev_queue __rcu *ingress_queue;
1285 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1286 
1287 
1288 /*
1289  * Cache lines mostly used on transmit path
1290  */
1291 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1292 
1293 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1294 	unsigned int		num_tx_queues;
1295 
1296 	/* Number of TX queues currently active in device  */
1297 	unsigned int		real_num_tx_queues;
1298 
1299 	/* root qdisc from userspace point of view */
1300 	struct Qdisc		*qdisc;
1301 
1302 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1303 	spinlock_t		tx_global_lock;
1304 
1305 #ifdef CONFIG_XPS
1306 	struct xps_dev_maps __rcu *xps_maps;
1307 #endif
1308 #ifdef CONFIG_RFS_ACCEL
1309 	/* CPU reverse-mapping for RX completion interrupts, indexed
1310 	 * by RX queue number.  Assigned by driver.  This must only be
1311 	 * set if the ndo_rx_flow_steer operation is defined. */
1312 	struct cpu_rmap		*rx_cpu_rmap;
1313 #endif
1314 
1315 	/* These may be needed for future network-power-down code. */
1316 
1317 	/*
1318 	 * trans_start here is expensive for high speed devices on SMP,
1319 	 * please use netdev_queue->trans_start instead.
1320 	 */
1321 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1322 
1323 	int			watchdog_timeo; /* used by dev_watchdog() */
1324 	struct timer_list	watchdog_timer;
1325 
1326 	/* Number of references to this device */
1327 	int __percpu		*pcpu_refcnt;
1328 
1329 	/* delayed register/unregister */
1330 	struct list_head	todo_list;
1331 	/* device index hash chain */
1332 	struct hlist_node	index_hlist;
1333 
1334 	struct list_head	link_watch_list;
1335 
1336 	/* register/unregister state machine */
1337 	enum { NETREG_UNINITIALIZED=0,
1338 	       NETREG_REGISTERED,	/* completed register_netdevice */
1339 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1340 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1341 	       NETREG_RELEASED,		/* called free_netdev */
1342 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1343 	} reg_state:8;
1344 
1345 	bool dismantle; /* device is going do be freed */
1346 
1347 	enum {
1348 		RTNL_LINK_INITIALIZED,
1349 		RTNL_LINK_INITIALIZING,
1350 	} rtnl_link_state:16;
1351 
1352 	/* Called from unregister, can be used to call free_netdev */
1353 	void (*destructor)(struct net_device *dev);
1354 
1355 #ifdef CONFIG_NETPOLL
1356 	struct netpoll_info __rcu	*npinfo;
1357 #endif
1358 
1359 #ifdef CONFIG_NET_NS
1360 	/* Network namespace this network device is inside */
1361 	struct net		*nd_net;
1362 #endif
1363 
1364 	/* mid-layer private */
1365 	union {
1366 		void				*ml_priv;
1367 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1368 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1369 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1370 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1371 	};
1372 	/* GARP */
1373 	struct garp_port __rcu	*garp_port;
1374 	/* MRP */
1375 	struct mrp_port __rcu	*mrp_port;
1376 
1377 	/* class/net/name entry */
1378 	struct device		dev;
1379 	/* space for optional device, statistics, and wireless sysfs groups */
1380 	const struct attribute_group *sysfs_groups[4];
1381 
1382 	/* rtnetlink link ops */
1383 	const struct rtnl_link_ops *rtnl_link_ops;
1384 
1385 	/* for setting kernel sock attribute on TCP connection setup */
1386 #define GSO_MAX_SIZE		65536
1387 	unsigned int		gso_max_size;
1388 #define GSO_MAX_SEGS		65535
1389 	u16			gso_max_segs;
1390 
1391 #ifdef CONFIG_DCB
1392 	/* Data Center Bridging netlink ops */
1393 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1394 #endif
1395 	u8 num_tc;
1396 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1397 	u8 prio_tc_map[TC_BITMASK + 1];
1398 
1399 #if IS_ENABLED(CONFIG_FCOE)
1400 	/* max exchange id for FCoE LRO by ddp */
1401 	unsigned int		fcoe_ddp_xid;
1402 #endif
1403 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1404 	struct netprio_map __rcu *priomap;
1405 #endif
1406 	/* phy device may attach itself for hardware timestamping */
1407 	struct phy_device *phydev;
1408 
1409 	struct lock_class_key *qdisc_tx_busylock;
1410 
1411 	/* group the device belongs to */
1412 	int group;
1413 
1414 	struct pm_qos_request	pm_qos_req;
1415 };
1416 #define to_net_dev(d) container_of(d, struct net_device, dev)
1417 
1418 #define	NETDEV_ALIGN		32
1419 
1420 static inline
1421 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1422 {
1423 	return dev->prio_tc_map[prio & TC_BITMASK];
1424 }
1425 
1426 static inline
1427 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1428 {
1429 	if (tc >= dev->num_tc)
1430 		return -EINVAL;
1431 
1432 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1433 	return 0;
1434 }
1435 
1436 static inline
1437 void netdev_reset_tc(struct net_device *dev)
1438 {
1439 	dev->num_tc = 0;
1440 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1441 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1442 }
1443 
1444 static inline
1445 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1446 {
1447 	if (tc >= dev->num_tc)
1448 		return -EINVAL;
1449 
1450 	dev->tc_to_txq[tc].count = count;
1451 	dev->tc_to_txq[tc].offset = offset;
1452 	return 0;
1453 }
1454 
1455 static inline
1456 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1457 {
1458 	if (num_tc > TC_MAX_QUEUE)
1459 		return -EINVAL;
1460 
1461 	dev->num_tc = num_tc;
1462 	return 0;
1463 }
1464 
1465 static inline
1466 int netdev_get_num_tc(struct net_device *dev)
1467 {
1468 	return dev->num_tc;
1469 }
1470 
1471 static inline
1472 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1473 					 unsigned int index)
1474 {
1475 	return &dev->_tx[index];
1476 }
1477 
1478 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1479 					    void (*f)(struct net_device *,
1480 						      struct netdev_queue *,
1481 						      void *),
1482 					    void *arg)
1483 {
1484 	unsigned int i;
1485 
1486 	for (i = 0; i < dev->num_tx_queues; i++)
1487 		f(dev, &dev->_tx[i], arg);
1488 }
1489 
1490 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1491 					   struct sk_buff *skb);
1492 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1493 
1494 /*
1495  * Net namespace inlines
1496  */
1497 static inline
1498 struct net *dev_net(const struct net_device *dev)
1499 {
1500 	return read_pnet(&dev->nd_net);
1501 }
1502 
1503 static inline
1504 void dev_net_set(struct net_device *dev, struct net *net)
1505 {
1506 #ifdef CONFIG_NET_NS
1507 	release_net(dev->nd_net);
1508 	dev->nd_net = hold_net(net);
1509 #endif
1510 }
1511 
1512 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1513 {
1514 #ifdef CONFIG_NET_DSA_TAG_DSA
1515 	if (dev->dsa_ptr != NULL)
1516 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1517 #endif
1518 
1519 	return 0;
1520 }
1521 
1522 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1523 {
1524 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1525 	if (dev->dsa_ptr != NULL)
1526 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1527 #endif
1528 
1529 	return 0;
1530 }
1531 
1532 /**
1533  *	netdev_priv - access network device private data
1534  *	@dev: network device
1535  *
1536  * Get network device private data
1537  */
1538 static inline void *netdev_priv(const struct net_device *dev)
1539 {
1540 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1541 }
1542 
1543 /* Set the sysfs physical device reference for the network logical device
1544  * if set prior to registration will cause a symlink during initialization.
1545  */
1546 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1547 
1548 /* Set the sysfs device type for the network logical device to allow
1549  * fin grained indentification of different network device types. For
1550  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1551  */
1552 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1553 
1554 /* Default NAPI poll() weight
1555  * Device drivers are strongly advised to not use bigger value
1556  */
1557 #define NAPI_POLL_WEIGHT 64
1558 
1559 /**
1560  *	netif_napi_add - initialize a napi context
1561  *	@dev:  network device
1562  *	@napi: napi context
1563  *	@poll: polling function
1564  *	@weight: default weight
1565  *
1566  * netif_napi_add() must be used to initialize a napi context prior to calling
1567  * *any* of the other napi related functions.
1568  */
1569 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1570 		    int (*poll)(struct napi_struct *, int), int weight);
1571 
1572 /**
1573  *  netif_napi_del - remove a napi context
1574  *  @napi: napi context
1575  *
1576  *  netif_napi_del() removes a napi context from the network device napi list
1577  */
1578 void netif_napi_del(struct napi_struct *napi);
1579 
1580 struct napi_gro_cb {
1581 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1582 	void *frag0;
1583 
1584 	/* Length of frag0. */
1585 	unsigned int frag0_len;
1586 
1587 	/* This indicates where we are processing relative to skb->data. */
1588 	int data_offset;
1589 
1590 	/* This is non-zero if the packet cannot be merged with the new skb. */
1591 	int flush;
1592 
1593 	/* Number of segments aggregated. */
1594 	u16	count;
1595 
1596 	/* This is non-zero if the packet may be of the same flow. */
1597 	u8	same_flow;
1598 
1599 	/* Free the skb? */
1600 	u8	free;
1601 #define NAPI_GRO_FREE		  1
1602 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1603 
1604 	/* jiffies when first packet was created/queued */
1605 	unsigned long age;
1606 
1607 	/* Used in ipv6_gro_receive() */
1608 	int	proto;
1609 
1610 	/* used in skb_gro_receive() slow path */
1611 	struct sk_buff *last;
1612 };
1613 
1614 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1615 
1616 struct packet_type {
1617 	__be16			type;	/* This is really htons(ether_type). */
1618 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1619 	int			(*func) (struct sk_buff *,
1620 					 struct net_device *,
1621 					 struct packet_type *,
1622 					 struct net_device *);
1623 	bool			(*id_match)(struct packet_type *ptype,
1624 					    struct sock *sk);
1625 	void			*af_packet_priv;
1626 	struct list_head	list;
1627 };
1628 
1629 struct offload_callbacks {
1630 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1631 						netdev_features_t features);
1632 	int			(*gso_send_check)(struct sk_buff *skb);
1633 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1634 					       struct sk_buff *skb);
1635 	int			(*gro_complete)(struct sk_buff *skb);
1636 };
1637 
1638 struct packet_offload {
1639 	__be16			 type;	/* This is really htons(ether_type). */
1640 	struct offload_callbacks callbacks;
1641 	struct list_head	 list;
1642 };
1643 
1644 #include <linux/notifier.h>
1645 
1646 /* netdevice notifier chain. Please remember to update the rtnetlink
1647  * notification exclusion list in rtnetlink_event() when adding new
1648  * types.
1649  */
1650 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1651 #define NETDEV_DOWN	0x0002
1652 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1653 				   detected a hardware crash and restarted
1654 				   - we can use this eg to kick tcp sessions
1655 				   once done */
1656 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1657 #define NETDEV_REGISTER 0x0005
1658 #define NETDEV_UNREGISTER	0x0006
1659 #define NETDEV_CHANGEMTU	0x0007
1660 #define NETDEV_CHANGEADDR	0x0008
1661 #define NETDEV_GOING_DOWN	0x0009
1662 #define NETDEV_CHANGENAME	0x000A
1663 #define NETDEV_FEAT_CHANGE	0x000B
1664 #define NETDEV_BONDING_FAILOVER 0x000C
1665 #define NETDEV_PRE_UP		0x000D
1666 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1667 #define NETDEV_POST_TYPE_CHANGE	0x000F
1668 #define NETDEV_POST_INIT	0x0010
1669 #define NETDEV_UNREGISTER_FINAL 0x0011
1670 #define NETDEV_RELEASE		0x0012
1671 #define NETDEV_NOTIFY_PEERS	0x0013
1672 #define NETDEV_JOIN		0x0014
1673 #define NETDEV_CHANGEUPPER	0x0015
1674 #define NETDEV_RESEND_IGMP	0x0016
1675 
1676 extern int register_netdevice_notifier(struct notifier_block *nb);
1677 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1678 
1679 struct netdev_notifier_info {
1680 	struct net_device *dev;
1681 };
1682 
1683 struct netdev_notifier_change_info {
1684 	struct netdev_notifier_info info; /* must be first */
1685 	unsigned int flags_changed;
1686 };
1687 
1688 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1689 					     struct net_device *dev)
1690 {
1691 	info->dev = dev;
1692 }
1693 
1694 static inline struct net_device *
1695 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1696 {
1697 	return info->dev;
1698 }
1699 
1700 extern int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1701 					 struct netdev_notifier_info *info);
1702 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1703 
1704 
1705 extern rwlock_t				dev_base_lock;		/* Device list lock */
1706 
1707 #define for_each_netdev(net, d)		\
1708 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1709 #define for_each_netdev_reverse(net, d)	\
1710 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1711 #define for_each_netdev_rcu(net, d)		\
1712 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1713 #define for_each_netdev_safe(net, d, n)	\
1714 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1715 #define for_each_netdev_continue(net, d)		\
1716 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1717 #define for_each_netdev_continue_rcu(net, d)		\
1718 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1719 #define for_each_netdev_in_bond_rcu(bond, slave)	\
1720 		for_each_netdev_rcu(&init_net, slave)	\
1721 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
1722 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1723 
1724 static inline struct net_device *next_net_device(struct net_device *dev)
1725 {
1726 	struct list_head *lh;
1727 	struct net *net;
1728 
1729 	net = dev_net(dev);
1730 	lh = dev->dev_list.next;
1731 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1732 }
1733 
1734 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1735 {
1736 	struct list_head *lh;
1737 	struct net *net;
1738 
1739 	net = dev_net(dev);
1740 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1741 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1742 }
1743 
1744 static inline struct net_device *first_net_device(struct net *net)
1745 {
1746 	return list_empty(&net->dev_base_head) ? NULL :
1747 		net_device_entry(net->dev_base_head.next);
1748 }
1749 
1750 static inline struct net_device *first_net_device_rcu(struct net *net)
1751 {
1752 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1753 
1754 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1755 }
1756 
1757 extern int 			netdev_boot_setup_check(struct net_device *dev);
1758 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1759 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1760 					      const char *hwaddr);
1761 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1762 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1763 extern void		dev_add_pack(struct packet_type *pt);
1764 extern void		dev_remove_pack(struct packet_type *pt);
1765 extern void		__dev_remove_pack(struct packet_type *pt);
1766 extern void		dev_add_offload(struct packet_offload *po);
1767 extern void		dev_remove_offload(struct packet_offload *po);
1768 extern void		__dev_remove_offload(struct packet_offload *po);
1769 
1770 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1771 						      unsigned short mask);
1772 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1773 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1774 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1775 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1776 extern int		dev_open(struct net_device *dev);
1777 extern int		dev_close(struct net_device *dev);
1778 extern void		dev_disable_lro(struct net_device *dev);
1779 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1780 extern int		dev_queue_xmit(struct sk_buff *skb);
1781 extern int		register_netdevice(struct net_device *dev);
1782 extern void		unregister_netdevice_queue(struct net_device *dev,
1783 						   struct list_head *head);
1784 extern void		unregister_netdevice_many(struct list_head *head);
1785 static inline void unregister_netdevice(struct net_device *dev)
1786 {
1787 	unregister_netdevice_queue(dev, NULL);
1788 }
1789 
1790 extern int 		netdev_refcnt_read(const struct net_device *dev);
1791 extern void		free_netdev(struct net_device *dev);
1792 extern void		synchronize_net(void);
1793 extern int		init_dummy_netdev(struct net_device *dev);
1794 
1795 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1796 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1797 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1798 extern int		netdev_get_name(struct net *net, char *name, int ifindex);
1799 extern int		dev_restart(struct net_device *dev);
1800 #ifdef CONFIG_NETPOLL_TRAP
1801 extern int		netpoll_trap(void);
1802 #endif
1803 extern int	       skb_gro_receive(struct sk_buff **head,
1804 				       struct sk_buff *skb);
1805 
1806 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1807 {
1808 	return NAPI_GRO_CB(skb)->data_offset;
1809 }
1810 
1811 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1812 {
1813 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1814 }
1815 
1816 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1817 {
1818 	NAPI_GRO_CB(skb)->data_offset += len;
1819 }
1820 
1821 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1822 					unsigned int offset)
1823 {
1824 	return NAPI_GRO_CB(skb)->frag0 + offset;
1825 }
1826 
1827 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1828 {
1829 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1830 }
1831 
1832 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1833 					unsigned int offset)
1834 {
1835 	if (!pskb_may_pull(skb, hlen))
1836 		return NULL;
1837 
1838 	NAPI_GRO_CB(skb)->frag0 = NULL;
1839 	NAPI_GRO_CB(skb)->frag0_len = 0;
1840 	return skb->data + offset;
1841 }
1842 
1843 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1844 {
1845 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1846 }
1847 
1848 static inline void *skb_gro_network_header(struct sk_buff *skb)
1849 {
1850 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1851 	       skb_network_offset(skb);
1852 }
1853 
1854 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1855 				  unsigned short type,
1856 				  const void *daddr, const void *saddr,
1857 				  unsigned int len)
1858 {
1859 	if (!dev->header_ops || !dev->header_ops->create)
1860 		return 0;
1861 
1862 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1863 }
1864 
1865 static inline int dev_parse_header(const struct sk_buff *skb,
1866 				   unsigned char *haddr)
1867 {
1868 	const struct net_device *dev = skb->dev;
1869 
1870 	if (!dev->header_ops || !dev->header_ops->parse)
1871 		return 0;
1872 	return dev->header_ops->parse(skb, haddr);
1873 }
1874 
1875 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1876 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1877 static inline int unregister_gifconf(unsigned int family)
1878 {
1879 	return register_gifconf(family, NULL);
1880 }
1881 
1882 #ifdef CONFIG_NET_FLOW_LIMIT
1883 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
1884 struct sd_flow_limit {
1885 	u64			count;
1886 	unsigned int		num_buckets;
1887 	unsigned int		history_head;
1888 	u16			history[FLOW_LIMIT_HISTORY];
1889 	u8			buckets[];
1890 };
1891 
1892 extern int netdev_flow_limit_table_len;
1893 #endif /* CONFIG_NET_FLOW_LIMIT */
1894 
1895 /*
1896  * Incoming packets are placed on per-cpu queues
1897  */
1898 struct softnet_data {
1899 	struct Qdisc		*output_queue;
1900 	struct Qdisc		**output_queue_tailp;
1901 	struct list_head	poll_list;
1902 	struct sk_buff		*completion_queue;
1903 	struct sk_buff_head	process_queue;
1904 
1905 	/* stats */
1906 	unsigned int		processed;
1907 	unsigned int		time_squeeze;
1908 	unsigned int		cpu_collision;
1909 	unsigned int		received_rps;
1910 
1911 #ifdef CONFIG_RPS
1912 	struct softnet_data	*rps_ipi_list;
1913 
1914 	/* Elements below can be accessed between CPUs for RPS */
1915 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1916 	struct softnet_data	*rps_ipi_next;
1917 	unsigned int		cpu;
1918 	unsigned int		input_queue_head;
1919 	unsigned int		input_queue_tail;
1920 #endif
1921 	unsigned int		dropped;
1922 	struct sk_buff_head	input_pkt_queue;
1923 	struct napi_struct	backlog;
1924 
1925 #ifdef CONFIG_NET_FLOW_LIMIT
1926 	struct sd_flow_limit __rcu *flow_limit;
1927 #endif
1928 };
1929 
1930 static inline void input_queue_head_incr(struct softnet_data *sd)
1931 {
1932 #ifdef CONFIG_RPS
1933 	sd->input_queue_head++;
1934 #endif
1935 }
1936 
1937 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1938 					      unsigned int *qtail)
1939 {
1940 #ifdef CONFIG_RPS
1941 	*qtail = ++sd->input_queue_tail;
1942 #endif
1943 }
1944 
1945 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1946 
1947 extern void __netif_schedule(struct Qdisc *q);
1948 
1949 static inline void netif_schedule_queue(struct netdev_queue *txq)
1950 {
1951 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1952 		__netif_schedule(txq->qdisc);
1953 }
1954 
1955 static inline void netif_tx_schedule_all(struct net_device *dev)
1956 {
1957 	unsigned int i;
1958 
1959 	for (i = 0; i < dev->num_tx_queues; i++)
1960 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1961 }
1962 
1963 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1964 {
1965 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1966 }
1967 
1968 /**
1969  *	netif_start_queue - allow transmit
1970  *	@dev: network device
1971  *
1972  *	Allow upper layers to call the device hard_start_xmit routine.
1973  */
1974 static inline void netif_start_queue(struct net_device *dev)
1975 {
1976 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1977 }
1978 
1979 static inline void netif_tx_start_all_queues(struct net_device *dev)
1980 {
1981 	unsigned int i;
1982 
1983 	for (i = 0; i < dev->num_tx_queues; i++) {
1984 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1985 		netif_tx_start_queue(txq);
1986 	}
1987 }
1988 
1989 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1990 {
1991 #ifdef CONFIG_NETPOLL_TRAP
1992 	if (netpoll_trap()) {
1993 		netif_tx_start_queue(dev_queue);
1994 		return;
1995 	}
1996 #endif
1997 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1998 		__netif_schedule(dev_queue->qdisc);
1999 }
2000 
2001 /**
2002  *	netif_wake_queue - restart transmit
2003  *	@dev: network device
2004  *
2005  *	Allow upper layers to call the device hard_start_xmit routine.
2006  *	Used for flow control when transmit resources are available.
2007  */
2008 static inline void netif_wake_queue(struct net_device *dev)
2009 {
2010 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2011 }
2012 
2013 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2014 {
2015 	unsigned int i;
2016 
2017 	for (i = 0; i < dev->num_tx_queues; i++) {
2018 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2019 		netif_tx_wake_queue(txq);
2020 	}
2021 }
2022 
2023 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2024 {
2025 	if (WARN_ON(!dev_queue)) {
2026 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2027 		return;
2028 	}
2029 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2030 }
2031 
2032 /**
2033  *	netif_stop_queue - stop transmitted packets
2034  *	@dev: network device
2035  *
2036  *	Stop upper layers calling the device hard_start_xmit routine.
2037  *	Used for flow control when transmit resources are unavailable.
2038  */
2039 static inline void netif_stop_queue(struct net_device *dev)
2040 {
2041 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2042 }
2043 
2044 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2045 {
2046 	unsigned int i;
2047 
2048 	for (i = 0; i < dev->num_tx_queues; i++) {
2049 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2050 		netif_tx_stop_queue(txq);
2051 	}
2052 }
2053 
2054 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2055 {
2056 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2057 }
2058 
2059 /**
2060  *	netif_queue_stopped - test if transmit queue is flowblocked
2061  *	@dev: network device
2062  *
2063  *	Test if transmit queue on device is currently unable to send.
2064  */
2065 static inline bool netif_queue_stopped(const struct net_device *dev)
2066 {
2067 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2068 }
2069 
2070 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2071 {
2072 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2073 }
2074 
2075 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2076 {
2077 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2078 }
2079 
2080 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2081 					unsigned int bytes)
2082 {
2083 #ifdef CONFIG_BQL
2084 	dql_queued(&dev_queue->dql, bytes);
2085 
2086 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2087 		return;
2088 
2089 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2090 
2091 	/*
2092 	 * The XOFF flag must be set before checking the dql_avail below,
2093 	 * because in netdev_tx_completed_queue we update the dql_completed
2094 	 * before checking the XOFF flag.
2095 	 */
2096 	smp_mb();
2097 
2098 	/* check again in case another CPU has just made room avail */
2099 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2100 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2101 #endif
2102 }
2103 
2104 /**
2105  * 	netdev_sent_queue - report the number of bytes queued to hardware
2106  * 	@dev: network device
2107  * 	@bytes: number of bytes queued to the hardware device queue
2108  *
2109  * 	Report the number of bytes queued for sending/completion to the network
2110  * 	device hardware queue. @bytes should be a good approximation and should
2111  * 	exactly match netdev_completed_queue() @bytes
2112  */
2113 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2114 {
2115 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2116 }
2117 
2118 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2119 					     unsigned int pkts, unsigned int bytes)
2120 {
2121 #ifdef CONFIG_BQL
2122 	if (unlikely(!bytes))
2123 		return;
2124 
2125 	dql_completed(&dev_queue->dql, bytes);
2126 
2127 	/*
2128 	 * Without the memory barrier there is a small possiblity that
2129 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2130 	 * be stopped forever
2131 	 */
2132 	smp_mb();
2133 
2134 	if (dql_avail(&dev_queue->dql) < 0)
2135 		return;
2136 
2137 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2138 		netif_schedule_queue(dev_queue);
2139 #endif
2140 }
2141 
2142 /**
2143  * 	netdev_completed_queue - report bytes and packets completed by device
2144  * 	@dev: network device
2145  * 	@pkts: actual number of packets sent over the medium
2146  * 	@bytes: actual number of bytes sent over the medium
2147  *
2148  * 	Report the number of bytes and packets transmitted by the network device
2149  * 	hardware queue over the physical medium, @bytes must exactly match the
2150  * 	@bytes amount passed to netdev_sent_queue()
2151  */
2152 static inline void netdev_completed_queue(struct net_device *dev,
2153 					  unsigned int pkts, unsigned int bytes)
2154 {
2155 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2156 }
2157 
2158 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2159 {
2160 #ifdef CONFIG_BQL
2161 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2162 	dql_reset(&q->dql);
2163 #endif
2164 }
2165 
2166 /**
2167  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2168  * 	@dev_queue: network device
2169  *
2170  * 	Reset the bytes and packet count of a network device and clear the
2171  * 	software flow control OFF bit for this network device
2172  */
2173 static inline void netdev_reset_queue(struct net_device *dev_queue)
2174 {
2175 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2176 }
2177 
2178 /**
2179  *	netif_running - test if up
2180  *	@dev: network device
2181  *
2182  *	Test if the device has been brought up.
2183  */
2184 static inline bool netif_running(const struct net_device *dev)
2185 {
2186 	return test_bit(__LINK_STATE_START, &dev->state);
2187 }
2188 
2189 /*
2190  * Routines to manage the subqueues on a device.  We only need start
2191  * stop, and a check if it's stopped.  All other device management is
2192  * done at the overall netdevice level.
2193  * Also test the device if we're multiqueue.
2194  */
2195 
2196 /**
2197  *	netif_start_subqueue - allow sending packets on subqueue
2198  *	@dev: network device
2199  *	@queue_index: sub queue index
2200  *
2201  * Start individual transmit queue of a device with multiple transmit queues.
2202  */
2203 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2204 {
2205 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2206 
2207 	netif_tx_start_queue(txq);
2208 }
2209 
2210 /**
2211  *	netif_stop_subqueue - stop sending packets on subqueue
2212  *	@dev: network device
2213  *	@queue_index: sub queue index
2214  *
2215  * Stop individual transmit queue of a device with multiple transmit queues.
2216  */
2217 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2218 {
2219 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2220 #ifdef CONFIG_NETPOLL_TRAP
2221 	if (netpoll_trap())
2222 		return;
2223 #endif
2224 	netif_tx_stop_queue(txq);
2225 }
2226 
2227 /**
2228  *	netif_subqueue_stopped - test status of subqueue
2229  *	@dev: network device
2230  *	@queue_index: sub queue index
2231  *
2232  * Check individual transmit queue of a device with multiple transmit queues.
2233  */
2234 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2235 					    u16 queue_index)
2236 {
2237 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2238 
2239 	return netif_tx_queue_stopped(txq);
2240 }
2241 
2242 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2243 					  struct sk_buff *skb)
2244 {
2245 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2246 }
2247 
2248 /**
2249  *	netif_wake_subqueue - allow sending packets on subqueue
2250  *	@dev: network device
2251  *	@queue_index: sub queue index
2252  *
2253  * Resume individual transmit queue of a device with multiple transmit queues.
2254  */
2255 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2256 {
2257 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2258 #ifdef CONFIG_NETPOLL_TRAP
2259 	if (netpoll_trap())
2260 		return;
2261 #endif
2262 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2263 		__netif_schedule(txq->qdisc);
2264 }
2265 
2266 #ifdef CONFIG_XPS
2267 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2268 			       u16 index);
2269 #else
2270 static inline int netif_set_xps_queue(struct net_device *dev,
2271 				      struct cpumask *mask,
2272 				      u16 index)
2273 {
2274 	return 0;
2275 }
2276 #endif
2277 
2278 /*
2279  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2280  * as a distribution range limit for the returned value.
2281  */
2282 static inline u16 skb_tx_hash(const struct net_device *dev,
2283 			      const struct sk_buff *skb)
2284 {
2285 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2286 }
2287 
2288 /**
2289  *	netif_is_multiqueue - test if device has multiple transmit queues
2290  *	@dev: network device
2291  *
2292  * Check if device has multiple transmit queues
2293  */
2294 static inline bool netif_is_multiqueue(const struct net_device *dev)
2295 {
2296 	return dev->num_tx_queues > 1;
2297 }
2298 
2299 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2300 					unsigned int txq);
2301 
2302 #ifdef CONFIG_RPS
2303 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2304 					unsigned int rxq);
2305 #else
2306 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2307 						unsigned int rxq)
2308 {
2309 	return 0;
2310 }
2311 #endif
2312 
2313 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2314 					     const struct net_device *from_dev)
2315 {
2316 	int err;
2317 
2318 	err = netif_set_real_num_tx_queues(to_dev,
2319 					   from_dev->real_num_tx_queues);
2320 	if (err)
2321 		return err;
2322 #ifdef CONFIG_RPS
2323 	return netif_set_real_num_rx_queues(to_dev,
2324 					    from_dev->real_num_rx_queues);
2325 #else
2326 	return 0;
2327 #endif
2328 }
2329 
2330 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2331 extern int netif_get_num_default_rss_queues(void);
2332 
2333 /* Use this variant when it is known for sure that it
2334  * is executing from hardware interrupt context or with hardware interrupts
2335  * disabled.
2336  */
2337 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2338 
2339 /* Use this variant in places where it could be invoked
2340  * from either hardware interrupt or other context, with hardware interrupts
2341  * either disabled or enabled.
2342  */
2343 extern void dev_kfree_skb_any(struct sk_buff *skb);
2344 
2345 extern int		netif_rx(struct sk_buff *skb);
2346 extern int		netif_rx_ni(struct sk_buff *skb);
2347 extern int		netif_receive_skb(struct sk_buff *skb);
2348 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2349 					 struct sk_buff *skb);
2350 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2351 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2352 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2353 
2354 static inline void napi_free_frags(struct napi_struct *napi)
2355 {
2356 	kfree_skb(napi->skb);
2357 	napi->skb = NULL;
2358 }
2359 
2360 extern int netdev_rx_handler_register(struct net_device *dev,
2361 				      rx_handler_func_t *rx_handler,
2362 				      void *rx_handler_data);
2363 extern void netdev_rx_handler_unregister(struct net_device *dev);
2364 
2365 extern bool		dev_valid_name(const char *name);
2366 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2367 extern int		dev_ethtool(struct net *net, struct ifreq *);
2368 extern unsigned int	dev_get_flags(const struct net_device *);
2369 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2370 extern int		dev_change_flags(struct net_device *, unsigned int);
2371 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2372 extern int		dev_change_name(struct net_device *, const char *);
2373 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2374 extern int		dev_change_net_namespace(struct net_device *,
2375 						 struct net *, const char *);
2376 extern int		dev_set_mtu(struct net_device *, int);
2377 extern void		dev_set_group(struct net_device *, int);
2378 extern int		dev_set_mac_address(struct net_device *,
2379 					    struct sockaddr *);
2380 extern int		dev_change_carrier(struct net_device *,
2381 					   bool new_carrier);
2382 extern int		dev_get_phys_port_id(struct net_device *dev,
2383 					     struct netdev_phys_port_id *ppid);
2384 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2385 					    struct net_device *dev,
2386 					    struct netdev_queue *txq);
2387 extern int		dev_forward_skb(struct net_device *dev,
2388 					struct sk_buff *skb);
2389 
2390 extern int		netdev_budget;
2391 
2392 /* Called by rtnetlink.c:rtnl_unlock() */
2393 extern void netdev_run_todo(void);
2394 
2395 /**
2396  *	dev_put - release reference to device
2397  *	@dev: network device
2398  *
2399  * Release reference to device to allow it to be freed.
2400  */
2401 static inline void dev_put(struct net_device *dev)
2402 {
2403 	this_cpu_dec(*dev->pcpu_refcnt);
2404 }
2405 
2406 /**
2407  *	dev_hold - get reference to device
2408  *	@dev: network device
2409  *
2410  * Hold reference to device to keep it from being freed.
2411  */
2412 static inline void dev_hold(struct net_device *dev)
2413 {
2414 	this_cpu_inc(*dev->pcpu_refcnt);
2415 }
2416 
2417 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2418  * and _off may be called from IRQ context, but it is caller
2419  * who is responsible for serialization of these calls.
2420  *
2421  * The name carrier is inappropriate, these functions should really be
2422  * called netif_lowerlayer_*() because they represent the state of any
2423  * kind of lower layer not just hardware media.
2424  */
2425 
2426 extern void linkwatch_init_dev(struct net_device *dev);
2427 extern void linkwatch_fire_event(struct net_device *dev);
2428 extern void linkwatch_forget_dev(struct net_device *dev);
2429 
2430 /**
2431  *	netif_carrier_ok - test if carrier present
2432  *	@dev: network device
2433  *
2434  * Check if carrier is present on device
2435  */
2436 static inline bool netif_carrier_ok(const struct net_device *dev)
2437 {
2438 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2439 }
2440 
2441 extern unsigned long dev_trans_start(struct net_device *dev);
2442 
2443 extern void __netdev_watchdog_up(struct net_device *dev);
2444 
2445 extern void netif_carrier_on(struct net_device *dev);
2446 
2447 extern void netif_carrier_off(struct net_device *dev);
2448 
2449 /**
2450  *	netif_dormant_on - mark device as dormant.
2451  *	@dev: network device
2452  *
2453  * Mark device as dormant (as per RFC2863).
2454  *
2455  * The dormant state indicates that the relevant interface is not
2456  * actually in a condition to pass packets (i.e., it is not 'up') but is
2457  * in a "pending" state, waiting for some external event.  For "on-
2458  * demand" interfaces, this new state identifies the situation where the
2459  * interface is waiting for events to place it in the up state.
2460  *
2461  */
2462 static inline void netif_dormant_on(struct net_device *dev)
2463 {
2464 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2465 		linkwatch_fire_event(dev);
2466 }
2467 
2468 /**
2469  *	netif_dormant_off - set device as not dormant.
2470  *	@dev: network device
2471  *
2472  * Device is not in dormant state.
2473  */
2474 static inline void netif_dormant_off(struct net_device *dev)
2475 {
2476 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2477 		linkwatch_fire_event(dev);
2478 }
2479 
2480 /**
2481  *	netif_dormant - test if carrier present
2482  *	@dev: network device
2483  *
2484  * Check if carrier is present on device
2485  */
2486 static inline bool netif_dormant(const struct net_device *dev)
2487 {
2488 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2489 }
2490 
2491 
2492 /**
2493  *	netif_oper_up - test if device is operational
2494  *	@dev: network device
2495  *
2496  * Check if carrier is operational
2497  */
2498 static inline bool netif_oper_up(const struct net_device *dev)
2499 {
2500 	return (dev->operstate == IF_OPER_UP ||
2501 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2502 }
2503 
2504 /**
2505  *	netif_device_present - is device available or removed
2506  *	@dev: network device
2507  *
2508  * Check if device has not been removed from system.
2509  */
2510 static inline bool netif_device_present(struct net_device *dev)
2511 {
2512 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2513 }
2514 
2515 extern void netif_device_detach(struct net_device *dev);
2516 
2517 extern void netif_device_attach(struct net_device *dev);
2518 
2519 /*
2520  * Network interface message level settings
2521  */
2522 
2523 enum {
2524 	NETIF_MSG_DRV		= 0x0001,
2525 	NETIF_MSG_PROBE		= 0x0002,
2526 	NETIF_MSG_LINK		= 0x0004,
2527 	NETIF_MSG_TIMER		= 0x0008,
2528 	NETIF_MSG_IFDOWN	= 0x0010,
2529 	NETIF_MSG_IFUP		= 0x0020,
2530 	NETIF_MSG_RX_ERR	= 0x0040,
2531 	NETIF_MSG_TX_ERR	= 0x0080,
2532 	NETIF_MSG_TX_QUEUED	= 0x0100,
2533 	NETIF_MSG_INTR		= 0x0200,
2534 	NETIF_MSG_TX_DONE	= 0x0400,
2535 	NETIF_MSG_RX_STATUS	= 0x0800,
2536 	NETIF_MSG_PKTDATA	= 0x1000,
2537 	NETIF_MSG_HW		= 0x2000,
2538 	NETIF_MSG_WOL		= 0x4000,
2539 };
2540 
2541 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2542 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2543 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2544 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2545 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2546 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2547 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2548 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2549 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2550 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2551 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2552 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2553 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2554 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2555 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2556 
2557 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2558 {
2559 	/* use default */
2560 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2561 		return default_msg_enable_bits;
2562 	if (debug_value == 0)	/* no output */
2563 		return 0;
2564 	/* set low N bits */
2565 	return (1 << debug_value) - 1;
2566 }
2567 
2568 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2569 {
2570 	spin_lock(&txq->_xmit_lock);
2571 	txq->xmit_lock_owner = cpu;
2572 }
2573 
2574 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2575 {
2576 	spin_lock_bh(&txq->_xmit_lock);
2577 	txq->xmit_lock_owner = smp_processor_id();
2578 }
2579 
2580 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2581 {
2582 	bool ok = spin_trylock(&txq->_xmit_lock);
2583 	if (likely(ok))
2584 		txq->xmit_lock_owner = smp_processor_id();
2585 	return ok;
2586 }
2587 
2588 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2589 {
2590 	txq->xmit_lock_owner = -1;
2591 	spin_unlock(&txq->_xmit_lock);
2592 }
2593 
2594 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2595 {
2596 	txq->xmit_lock_owner = -1;
2597 	spin_unlock_bh(&txq->_xmit_lock);
2598 }
2599 
2600 static inline void txq_trans_update(struct netdev_queue *txq)
2601 {
2602 	if (txq->xmit_lock_owner != -1)
2603 		txq->trans_start = jiffies;
2604 }
2605 
2606 /**
2607  *	netif_tx_lock - grab network device transmit lock
2608  *	@dev: network device
2609  *
2610  * Get network device transmit lock
2611  */
2612 static inline void netif_tx_lock(struct net_device *dev)
2613 {
2614 	unsigned int i;
2615 	int cpu;
2616 
2617 	spin_lock(&dev->tx_global_lock);
2618 	cpu = smp_processor_id();
2619 	for (i = 0; i < dev->num_tx_queues; i++) {
2620 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2621 
2622 		/* We are the only thread of execution doing a
2623 		 * freeze, but we have to grab the _xmit_lock in
2624 		 * order to synchronize with threads which are in
2625 		 * the ->hard_start_xmit() handler and already
2626 		 * checked the frozen bit.
2627 		 */
2628 		__netif_tx_lock(txq, cpu);
2629 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2630 		__netif_tx_unlock(txq);
2631 	}
2632 }
2633 
2634 static inline void netif_tx_lock_bh(struct net_device *dev)
2635 {
2636 	local_bh_disable();
2637 	netif_tx_lock(dev);
2638 }
2639 
2640 static inline void netif_tx_unlock(struct net_device *dev)
2641 {
2642 	unsigned int i;
2643 
2644 	for (i = 0; i < dev->num_tx_queues; i++) {
2645 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2646 
2647 		/* No need to grab the _xmit_lock here.  If the
2648 		 * queue is not stopped for another reason, we
2649 		 * force a schedule.
2650 		 */
2651 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2652 		netif_schedule_queue(txq);
2653 	}
2654 	spin_unlock(&dev->tx_global_lock);
2655 }
2656 
2657 static inline void netif_tx_unlock_bh(struct net_device *dev)
2658 {
2659 	netif_tx_unlock(dev);
2660 	local_bh_enable();
2661 }
2662 
2663 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2664 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2665 		__netif_tx_lock(txq, cpu);		\
2666 	}						\
2667 }
2668 
2669 #define HARD_TX_UNLOCK(dev, txq) {			\
2670 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2671 		__netif_tx_unlock(txq);			\
2672 	}						\
2673 }
2674 
2675 static inline void netif_tx_disable(struct net_device *dev)
2676 {
2677 	unsigned int i;
2678 	int cpu;
2679 
2680 	local_bh_disable();
2681 	cpu = smp_processor_id();
2682 	for (i = 0; i < dev->num_tx_queues; i++) {
2683 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2684 
2685 		__netif_tx_lock(txq, cpu);
2686 		netif_tx_stop_queue(txq);
2687 		__netif_tx_unlock(txq);
2688 	}
2689 	local_bh_enable();
2690 }
2691 
2692 static inline void netif_addr_lock(struct net_device *dev)
2693 {
2694 	spin_lock(&dev->addr_list_lock);
2695 }
2696 
2697 static inline void netif_addr_lock_nested(struct net_device *dev)
2698 {
2699 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2700 }
2701 
2702 static inline void netif_addr_lock_bh(struct net_device *dev)
2703 {
2704 	spin_lock_bh(&dev->addr_list_lock);
2705 }
2706 
2707 static inline void netif_addr_unlock(struct net_device *dev)
2708 {
2709 	spin_unlock(&dev->addr_list_lock);
2710 }
2711 
2712 static inline void netif_addr_unlock_bh(struct net_device *dev)
2713 {
2714 	spin_unlock_bh(&dev->addr_list_lock);
2715 }
2716 
2717 /*
2718  * dev_addrs walker. Should be used only for read access. Call with
2719  * rcu_read_lock held.
2720  */
2721 #define for_each_dev_addr(dev, ha) \
2722 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2723 
2724 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2725 
2726 extern void		ether_setup(struct net_device *dev);
2727 
2728 /* Support for loadable net-drivers */
2729 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2730 				       void (*setup)(struct net_device *),
2731 				       unsigned int txqs, unsigned int rxqs);
2732 #define alloc_netdev(sizeof_priv, name, setup) \
2733 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2734 
2735 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2736 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2737 
2738 extern int		register_netdev(struct net_device *dev);
2739 extern void		unregister_netdev(struct net_device *dev);
2740 
2741 /* General hardware address lists handling functions */
2742 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2743 				  struct netdev_hw_addr_list *from_list,
2744 				  int addr_len, unsigned char addr_type);
2745 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2746 				   struct netdev_hw_addr_list *from_list,
2747 				   int addr_len, unsigned char addr_type);
2748 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2749 			  struct netdev_hw_addr_list *from_list,
2750 			  int addr_len);
2751 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2752 			     struct netdev_hw_addr_list *from_list,
2753 			     int addr_len);
2754 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2755 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2756 
2757 /* Functions used for device addresses handling */
2758 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2759 			unsigned char addr_type);
2760 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2761 			unsigned char addr_type);
2762 extern int dev_addr_add_multiple(struct net_device *to_dev,
2763 				 struct net_device *from_dev,
2764 				 unsigned char addr_type);
2765 extern int dev_addr_del_multiple(struct net_device *to_dev,
2766 				 struct net_device *from_dev,
2767 				 unsigned char addr_type);
2768 extern void dev_addr_flush(struct net_device *dev);
2769 extern int dev_addr_init(struct net_device *dev);
2770 
2771 /* Functions used for unicast addresses handling */
2772 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2773 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2774 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2775 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2776 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2777 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2778 extern void dev_uc_flush(struct net_device *dev);
2779 extern void dev_uc_init(struct net_device *dev);
2780 
2781 /* Functions used for multicast addresses handling */
2782 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2783 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2784 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2785 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2786 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2787 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2788 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2789 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2790 extern void dev_mc_flush(struct net_device *dev);
2791 extern void dev_mc_init(struct net_device *dev);
2792 
2793 /* Functions used for secondary unicast and multicast support */
2794 extern void		dev_set_rx_mode(struct net_device *dev);
2795 extern void		__dev_set_rx_mode(struct net_device *dev);
2796 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2797 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2798 extern void		netdev_state_change(struct net_device *dev);
2799 extern void		netdev_notify_peers(struct net_device *dev);
2800 extern void		netdev_features_change(struct net_device *dev);
2801 /* Load a device via the kmod */
2802 extern void		dev_load(struct net *net, const char *name);
2803 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2804 					       struct rtnl_link_stats64 *storage);
2805 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2806 				    const struct net_device_stats *netdev_stats);
2807 
2808 extern int		netdev_max_backlog;
2809 extern int		netdev_tstamp_prequeue;
2810 extern int		weight_p;
2811 extern int		bpf_jit_enable;
2812 
2813 extern bool netdev_has_upper_dev(struct net_device *dev,
2814 				 struct net_device *upper_dev);
2815 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2816 extern struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
2817 							struct list_head **iter);
2818 
2819 /* iterate through upper list, must be called under RCU read lock */
2820 #define netdev_for_each_upper_dev_rcu(dev, upper, iter) \
2821 	for (iter = &(dev)->upper_dev_list, \
2822 	     upper = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
2823 	     upper; \
2824 	     upper = netdev_upper_get_next_dev_rcu(dev, &(iter)))
2825 
2826 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2827 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2828 extern int netdev_upper_dev_link(struct net_device *dev,
2829 				 struct net_device *upper_dev);
2830 extern int netdev_master_upper_dev_link(struct net_device *dev,
2831 					struct net_device *upper_dev);
2832 extern void netdev_upper_dev_unlink(struct net_device *dev,
2833 				    struct net_device *upper_dev);
2834 extern int skb_checksum_help(struct sk_buff *skb);
2835 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2836 	netdev_features_t features, bool tx_path);
2837 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2838 					  netdev_features_t features);
2839 
2840 static inline
2841 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2842 {
2843 	return __skb_gso_segment(skb, features, true);
2844 }
2845 __be16 skb_network_protocol(struct sk_buff *skb);
2846 
2847 static inline bool can_checksum_protocol(netdev_features_t features,
2848 					 __be16 protocol)
2849 {
2850 	return ((features & NETIF_F_GEN_CSUM) ||
2851 		((features & NETIF_F_V4_CSUM) &&
2852 		 protocol == htons(ETH_P_IP)) ||
2853 		((features & NETIF_F_V6_CSUM) &&
2854 		 protocol == htons(ETH_P_IPV6)) ||
2855 		((features & NETIF_F_FCOE_CRC) &&
2856 		 protocol == htons(ETH_P_FCOE)));
2857 }
2858 
2859 #ifdef CONFIG_BUG
2860 extern void netdev_rx_csum_fault(struct net_device *dev);
2861 #else
2862 static inline void netdev_rx_csum_fault(struct net_device *dev)
2863 {
2864 }
2865 #endif
2866 /* rx skb timestamps */
2867 extern void		net_enable_timestamp(void);
2868 extern void		net_disable_timestamp(void);
2869 
2870 #ifdef CONFIG_PROC_FS
2871 extern int __init dev_proc_init(void);
2872 #else
2873 #define dev_proc_init() 0
2874 #endif
2875 
2876 extern int netdev_class_create_file(struct class_attribute *class_attr);
2877 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2878 
2879 extern struct kobj_ns_type_operations net_ns_type_operations;
2880 
2881 extern const char *netdev_drivername(const struct net_device *dev);
2882 
2883 extern void linkwatch_run_queue(void);
2884 
2885 static inline netdev_features_t netdev_get_wanted_features(
2886 	struct net_device *dev)
2887 {
2888 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2889 }
2890 netdev_features_t netdev_increment_features(netdev_features_t all,
2891 	netdev_features_t one, netdev_features_t mask);
2892 
2893 /* Allow TSO being used on stacked device :
2894  * Performing the GSO segmentation before last device
2895  * is a performance improvement.
2896  */
2897 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2898 							netdev_features_t mask)
2899 {
2900 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2901 }
2902 
2903 int __netdev_update_features(struct net_device *dev);
2904 void netdev_update_features(struct net_device *dev);
2905 void netdev_change_features(struct net_device *dev);
2906 
2907 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2908 					struct net_device *dev);
2909 
2910 netdev_features_t netif_skb_features(struct sk_buff *skb);
2911 
2912 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2913 {
2914 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2915 
2916 	/* check flags correspondence */
2917 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2918 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2919 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2920 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2921 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2922 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2923 
2924 	return (features & feature) == feature;
2925 }
2926 
2927 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2928 {
2929 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2930 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2931 }
2932 
2933 static inline bool netif_needs_gso(struct sk_buff *skb,
2934 				   netdev_features_t features)
2935 {
2936 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2937 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2938 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2939 }
2940 
2941 static inline void netif_set_gso_max_size(struct net_device *dev,
2942 					  unsigned int size)
2943 {
2944 	dev->gso_max_size = size;
2945 }
2946 
2947 static inline bool netif_is_bond_master(struct net_device *dev)
2948 {
2949 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2950 }
2951 
2952 static inline bool netif_is_bond_slave(struct net_device *dev)
2953 {
2954 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2955 }
2956 
2957 static inline bool netif_supports_nofcs(struct net_device *dev)
2958 {
2959 	return dev->priv_flags & IFF_SUPP_NOFCS;
2960 }
2961 
2962 extern struct pernet_operations __net_initdata loopback_net_ops;
2963 
2964 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2965 
2966 /* netdev_printk helpers, similar to dev_printk */
2967 
2968 static inline const char *netdev_name(const struct net_device *dev)
2969 {
2970 	if (dev->reg_state != NETREG_REGISTERED)
2971 		return "(unregistered net_device)";
2972 	return dev->name;
2973 }
2974 
2975 extern __printf(3, 4)
2976 int netdev_printk(const char *level, const struct net_device *dev,
2977 		  const char *format, ...);
2978 extern __printf(2, 3)
2979 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2980 extern __printf(2, 3)
2981 int netdev_alert(const struct net_device *dev, const char *format, ...);
2982 extern __printf(2, 3)
2983 int netdev_crit(const struct net_device *dev, const char *format, ...);
2984 extern __printf(2, 3)
2985 int netdev_err(const struct net_device *dev, const char *format, ...);
2986 extern __printf(2, 3)
2987 int netdev_warn(const struct net_device *dev, const char *format, ...);
2988 extern __printf(2, 3)
2989 int netdev_notice(const struct net_device *dev, const char *format, ...);
2990 extern __printf(2, 3)
2991 int netdev_info(const struct net_device *dev, const char *format, ...);
2992 
2993 #define MODULE_ALIAS_NETDEV(device) \
2994 	MODULE_ALIAS("netdev-" device)
2995 
2996 #if defined(CONFIG_DYNAMIC_DEBUG)
2997 #define netdev_dbg(__dev, format, args...)			\
2998 do {								\
2999 	dynamic_netdev_dbg(__dev, format, ##args);		\
3000 } while (0)
3001 #elif defined(DEBUG)
3002 #define netdev_dbg(__dev, format, args...)			\
3003 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3004 #else
3005 #define netdev_dbg(__dev, format, args...)			\
3006 ({								\
3007 	if (0)							\
3008 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3009 	0;							\
3010 })
3011 #endif
3012 
3013 #if defined(VERBOSE_DEBUG)
3014 #define netdev_vdbg	netdev_dbg
3015 #else
3016 
3017 #define netdev_vdbg(dev, format, args...)			\
3018 ({								\
3019 	if (0)							\
3020 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3021 	0;							\
3022 })
3023 #endif
3024 
3025 /*
3026  * netdev_WARN() acts like dev_printk(), but with the key difference
3027  * of using a WARN/WARN_ON to get the message out, including the
3028  * file/line information and a backtrace.
3029  */
3030 #define netdev_WARN(dev, format, args...)			\
3031 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
3032 
3033 /* netif printk helpers, similar to netdev_printk */
3034 
3035 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3036 do {					  			\
3037 	if (netif_msg_##type(priv))				\
3038 		netdev_printk(level, (dev), fmt, ##args);	\
3039 } while (0)
3040 
3041 #define netif_level(level, priv, type, dev, fmt, args...)	\
3042 do {								\
3043 	if (netif_msg_##type(priv))				\
3044 		netdev_##level(dev, fmt, ##args);		\
3045 } while (0)
3046 
3047 #define netif_emerg(priv, type, dev, fmt, args...)		\
3048 	netif_level(emerg, priv, type, dev, fmt, ##args)
3049 #define netif_alert(priv, type, dev, fmt, args...)		\
3050 	netif_level(alert, priv, type, dev, fmt, ##args)
3051 #define netif_crit(priv, type, dev, fmt, args...)		\
3052 	netif_level(crit, priv, type, dev, fmt, ##args)
3053 #define netif_err(priv, type, dev, fmt, args...)		\
3054 	netif_level(err, priv, type, dev, fmt, ##args)
3055 #define netif_warn(priv, type, dev, fmt, args...)		\
3056 	netif_level(warn, priv, type, dev, fmt, ##args)
3057 #define netif_notice(priv, type, dev, fmt, args...)		\
3058 	netif_level(notice, priv, type, dev, fmt, ##args)
3059 #define netif_info(priv, type, dev, fmt, args...)		\
3060 	netif_level(info, priv, type, dev, fmt, ##args)
3061 
3062 #if defined(CONFIG_DYNAMIC_DEBUG)
3063 #define netif_dbg(priv, type, netdev, format, args...)		\
3064 do {								\
3065 	if (netif_msg_##type(priv))				\
3066 		dynamic_netdev_dbg(netdev, format, ##args);	\
3067 } while (0)
3068 #elif defined(DEBUG)
3069 #define netif_dbg(priv, type, dev, format, args...)		\
3070 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3071 #else
3072 #define netif_dbg(priv, type, dev, format, args...)			\
3073 ({									\
3074 	if (0)								\
3075 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3076 	0;								\
3077 })
3078 #endif
3079 
3080 #if defined(VERBOSE_DEBUG)
3081 #define netif_vdbg	netif_dbg
3082 #else
3083 #define netif_vdbg(priv, type, dev, format, args...)		\
3084 ({								\
3085 	if (0)							\
3086 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3087 	0;							\
3088 })
3089 #endif
3090 
3091 /*
3092  *	The list of packet types we will receive (as opposed to discard)
3093  *	and the routines to invoke.
3094  *
3095  *	Why 16. Because with 16 the only overlap we get on a hash of the
3096  *	low nibble of the protocol value is RARP/SNAP/X.25.
3097  *
3098  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3099  *             sure which should go first, but I bet it won't make much
3100  *             difference if we are running VLANs.  The good news is that
3101  *             this protocol won't be in the list unless compiled in, so
3102  *             the average user (w/out VLANs) will not be adversely affected.
3103  *             --BLG
3104  *
3105  *		0800	IP
3106  *		8100    802.1Q VLAN
3107  *		0001	802.3
3108  *		0002	AX.25
3109  *		0004	802.2
3110  *		8035	RARP
3111  *		0005	SNAP
3112  *		0805	X.25
3113  *		0806	ARP
3114  *		8137	IPX
3115  *		0009	Localtalk
3116  *		86DD	IPv6
3117  */
3118 #define PTYPE_HASH_SIZE	(16)
3119 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3120 
3121 #endif	/* _LINUX_NETDEVICE_H */
3122