xref: /openbmc/linux/include/linux/netdevice.h (revision 07c8a2dd69f6102adc12a621b4ef5e17d2a5b40d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct ethtool_ops;
57 struct phy_device;
58 struct dsa_port;
59 struct ip_tunnel_parm;
60 struct macsec_context;
61 struct macsec_ops;
62 struct netdev_name_node;
63 struct sd_flow_limit;
64 struct sfp_bus;
65 /* 802.11 specific */
66 struct wireless_dev;
67 /* 802.15.4 specific */
68 struct wpan_dev;
69 struct mpls_dev;
70 /* UDP Tunnel offloads */
71 struct udp_tunnel_info;
72 struct udp_tunnel_nic_info;
73 struct udp_tunnel_nic;
74 struct bpf_prog;
75 struct xdp_buff;
76 
77 void synchronize_net(void);
78 void netdev_set_default_ethtool_ops(struct net_device *dev,
79 				    const struct ethtool_ops *ops);
80 
81 /* Backlog congestion levels */
82 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
83 #define NET_RX_DROP		1	/* packet dropped */
84 
85 #define MAX_NEST_DEV 8
86 
87 /*
88  * Transmit return codes: transmit return codes originate from three different
89  * namespaces:
90  *
91  * - qdisc return codes
92  * - driver transmit return codes
93  * - errno values
94  *
95  * Drivers are allowed to return any one of those in their hard_start_xmit()
96  * function. Real network devices commonly used with qdiscs should only return
97  * the driver transmit return codes though - when qdiscs are used, the actual
98  * transmission happens asynchronously, so the value is not propagated to
99  * higher layers. Virtual network devices transmit synchronously; in this case
100  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
101  * others are propagated to higher layers.
102  */
103 
104 /* qdisc ->enqueue() return codes. */
105 #define NET_XMIT_SUCCESS	0x00
106 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
107 #define NET_XMIT_CN		0x02	/* congestion notification	*/
108 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
109 
110 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
111  * indicates that the device will soon be dropping packets, or already drops
112  * some packets of the same priority; prompting us to send less aggressively. */
113 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
114 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
115 
116 /* Driver transmit return codes */
117 #define NETDEV_TX_MASK		0xf0
118 
119 enum netdev_tx {
120 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
121 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
122 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
123 };
124 typedef enum netdev_tx netdev_tx_t;
125 
126 /*
127  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
128  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
129  */
130 static inline bool dev_xmit_complete(int rc)
131 {
132 	/*
133 	 * Positive cases with an skb consumed by a driver:
134 	 * - successful transmission (rc == NETDEV_TX_OK)
135 	 * - error while transmitting (rc < 0)
136 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
137 	 */
138 	if (likely(rc < NET_XMIT_MASK))
139 		return true;
140 
141 	return false;
142 }
143 
144 /*
145  *	Compute the worst-case header length according to the protocols
146  *	used.
147  */
148 
149 #if defined(CONFIG_HYPERV_NET)
150 # define LL_MAX_HEADER 128
151 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
152 # if defined(CONFIG_MAC80211_MESH)
153 #  define LL_MAX_HEADER 128
154 # else
155 #  define LL_MAX_HEADER 96
156 # endif
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160 
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167 
168 /*
169  *	Old network device statistics. Fields are native words
170  *	(unsigned long) so they can be read and written atomically.
171  */
172 
173 struct net_device_stats {
174 	unsigned long	rx_packets;
175 	unsigned long	tx_packets;
176 	unsigned long	rx_bytes;
177 	unsigned long	tx_bytes;
178 	unsigned long	rx_errors;
179 	unsigned long	tx_errors;
180 	unsigned long	rx_dropped;
181 	unsigned long	tx_dropped;
182 	unsigned long	multicast;
183 	unsigned long	collisions;
184 	unsigned long	rx_length_errors;
185 	unsigned long	rx_over_errors;
186 	unsigned long	rx_crc_errors;
187 	unsigned long	rx_frame_errors;
188 	unsigned long	rx_fifo_errors;
189 	unsigned long	rx_missed_errors;
190 	unsigned long	tx_aborted_errors;
191 	unsigned long	tx_carrier_errors;
192 	unsigned long	tx_fifo_errors;
193 	unsigned long	tx_heartbeat_errors;
194 	unsigned long	tx_window_errors;
195 	unsigned long	rx_compressed;
196 	unsigned long	tx_compressed;
197 };
198 
199 /* per-cpu stats, allocated on demand.
200  * Try to fit them in a single cache line, for dev_get_stats() sake.
201  */
202 struct net_device_core_stats {
203 	local_t		rx_dropped;
204 	local_t		tx_dropped;
205 	local_t		rx_nohandler;
206 	local_t		rx_otherhost_dropped;
207 } __aligned(4 * sizeof(local_t));
208 
209 #include <linux/cache.h>
210 #include <linux/skbuff.h>
211 
212 #ifdef CONFIG_RPS
213 #include <linux/static_key.h>
214 extern struct static_key_false rps_needed;
215 extern struct static_key_false rfs_needed;
216 #endif
217 
218 struct neighbour;
219 struct neigh_parms;
220 struct sk_buff;
221 
222 struct netdev_hw_addr {
223 	struct list_head	list;
224 	struct rb_node		node;
225 	unsigned char		addr[MAX_ADDR_LEN];
226 	unsigned char		type;
227 #define NETDEV_HW_ADDR_T_LAN		1
228 #define NETDEV_HW_ADDR_T_SAN		2
229 #define NETDEV_HW_ADDR_T_UNICAST	3
230 #define NETDEV_HW_ADDR_T_MULTICAST	4
231 	bool			global_use;
232 	int			sync_cnt;
233 	int			refcount;
234 	int			synced;
235 	struct rcu_head		rcu_head;
236 };
237 
238 struct netdev_hw_addr_list {
239 	struct list_head	list;
240 	int			count;
241 
242 	/* Auxiliary tree for faster lookup on addition and deletion */
243 	struct rb_root		tree;
244 };
245 
246 #define netdev_hw_addr_list_count(l) ((l)->count)
247 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
248 #define netdev_hw_addr_list_for_each(ha, l) \
249 	list_for_each_entry(ha, &(l)->list, list)
250 
251 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
252 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
253 #define netdev_for_each_uc_addr(ha, dev) \
254 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
255 
256 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
257 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
258 #define netdev_for_each_mc_addr(ha, dev) \
259 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
260 
261 struct hh_cache {
262 	unsigned int	hh_len;
263 	seqlock_t	hh_lock;
264 
265 	/* cached hardware header; allow for machine alignment needs.        */
266 #define HH_DATA_MOD	16
267 #define HH_DATA_OFF(__len) \
268 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273 
274 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
275  * Alternative is:
276  *   dev->hard_header_len ? (dev->hard_header_len +
277  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278  *
279  * We could use other alignment values, but we must maintain the
280  * relationship HH alignment <= LL alignment.
281  */
282 #define LL_RESERVED_SPACE(dev) \
283 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 
287 struct header_ops {
288 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
289 			   unsigned short type, const void *daddr,
290 			   const void *saddr, unsigned int len);
291 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
293 	void	(*cache_update)(struct hh_cache *hh,
294 				const struct net_device *dev,
295 				const unsigned char *haddr);
296 	bool	(*validate)(const char *ll_header, unsigned int len);
297 	__be16	(*parse_protocol)(const struct sk_buff *skb);
298 };
299 
300 /* These flag bits are private to the generic network queueing
301  * layer; they may not be explicitly referenced by any other
302  * code.
303  */
304 
305 enum netdev_state_t {
306 	__LINK_STATE_START,
307 	__LINK_STATE_PRESENT,
308 	__LINK_STATE_NOCARRIER,
309 	__LINK_STATE_LINKWATCH_PENDING,
310 	__LINK_STATE_DORMANT,
311 	__LINK_STATE_TESTING,
312 };
313 
314 struct gro_list {
315 	struct list_head	list;
316 	int			count;
317 };
318 
319 /*
320  * size of gro hash buckets, must less than bit number of
321  * napi_struct::gro_bitmask
322  */
323 #define GRO_HASH_BUCKETS	8
324 
325 /*
326  * Structure for NAPI scheduling similar to tasklet but with weighting
327  */
328 struct napi_struct {
329 	/* The poll_list must only be managed by the entity which
330 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
331 	 * whoever atomically sets that bit can add this napi_struct
332 	 * to the per-CPU poll_list, and whoever clears that bit
333 	 * can remove from the list right before clearing the bit.
334 	 */
335 	struct list_head	poll_list;
336 
337 	unsigned long		state;
338 	int			weight;
339 	int			defer_hard_irqs_count;
340 	unsigned long		gro_bitmask;
341 	int			(*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 	int			poll_owner;
344 #endif
345 	struct net_device	*dev;
346 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
347 	struct sk_buff		*skb;
348 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
349 	int			rx_count; /* length of rx_list */
350 	struct hrtimer		timer;
351 	struct list_head	dev_list;
352 	struct hlist_node	napi_hash_node;
353 	unsigned int		napi_id;
354 	struct task_struct	*thread;
355 };
356 
357 enum {
358 	NAPI_STATE_SCHED,		/* Poll is scheduled */
359 	NAPI_STATE_MISSED,		/* reschedule a napi */
360 	NAPI_STATE_DISABLE,		/* Disable pending */
361 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
362 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
363 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
364 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
365 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
366 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
367 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
368 };
369 
370 enum {
371 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
372 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
373 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
374 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
375 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
376 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
377 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
378 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
379 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
380 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
381 };
382 
383 enum gro_result {
384 	GRO_MERGED,
385 	GRO_MERGED_FREE,
386 	GRO_HELD,
387 	GRO_NORMAL,
388 	GRO_CONSUMED,
389 };
390 typedef enum gro_result gro_result_t;
391 
392 /*
393  * enum rx_handler_result - Possible return values for rx_handlers.
394  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
395  * further.
396  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
397  * case skb->dev was changed by rx_handler.
398  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
399  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
400  *
401  * rx_handlers are functions called from inside __netif_receive_skb(), to do
402  * special processing of the skb, prior to delivery to protocol handlers.
403  *
404  * Currently, a net_device can only have a single rx_handler registered. Trying
405  * to register a second rx_handler will return -EBUSY.
406  *
407  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
408  * To unregister a rx_handler on a net_device, use
409  * netdev_rx_handler_unregister().
410  *
411  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
412  * do with the skb.
413  *
414  * If the rx_handler consumed the skb in some way, it should return
415  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
416  * the skb to be delivered in some other way.
417  *
418  * If the rx_handler changed skb->dev, to divert the skb to another
419  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
420  * new device will be called if it exists.
421  *
422  * If the rx_handler decides the skb should be ignored, it should return
423  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
424  * are registered on exact device (ptype->dev == skb->dev).
425  *
426  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
427  * delivered, it should return RX_HANDLER_PASS.
428  *
429  * A device without a registered rx_handler will behave as if rx_handler
430  * returned RX_HANDLER_PASS.
431  */
432 
433 enum rx_handler_result {
434 	RX_HANDLER_CONSUMED,
435 	RX_HANDLER_ANOTHER,
436 	RX_HANDLER_EXACT,
437 	RX_HANDLER_PASS,
438 };
439 typedef enum rx_handler_result rx_handler_result_t;
440 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
441 
442 void __napi_schedule(struct napi_struct *n);
443 void __napi_schedule_irqoff(struct napi_struct *n);
444 
445 static inline bool napi_disable_pending(struct napi_struct *n)
446 {
447 	return test_bit(NAPI_STATE_DISABLE, &n->state);
448 }
449 
450 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
451 {
452 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
453 }
454 
455 bool napi_schedule_prep(struct napi_struct *n);
456 
457 /**
458  *	napi_schedule - schedule NAPI poll
459  *	@n: NAPI context
460  *
461  * Schedule NAPI poll routine to be called if it is not already
462  * running.
463  */
464 static inline void napi_schedule(struct napi_struct *n)
465 {
466 	if (napi_schedule_prep(n))
467 		__napi_schedule(n);
468 }
469 
470 /**
471  *	napi_schedule_irqoff - schedule NAPI poll
472  *	@n: NAPI context
473  *
474  * Variant of napi_schedule(), assuming hard irqs are masked.
475  */
476 static inline void napi_schedule_irqoff(struct napi_struct *n)
477 {
478 	if (napi_schedule_prep(n))
479 		__napi_schedule_irqoff(n);
480 }
481 
482 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
483 static inline bool napi_reschedule(struct napi_struct *napi)
484 {
485 	if (napi_schedule_prep(napi)) {
486 		__napi_schedule(napi);
487 		return true;
488 	}
489 	return false;
490 }
491 
492 bool napi_complete_done(struct napi_struct *n, int work_done);
493 /**
494  *	napi_complete - NAPI processing complete
495  *	@n: NAPI context
496  *
497  * Mark NAPI processing as complete.
498  * Consider using napi_complete_done() instead.
499  * Return false if device should avoid rearming interrupts.
500  */
501 static inline bool napi_complete(struct napi_struct *n)
502 {
503 	return napi_complete_done(n, 0);
504 }
505 
506 int dev_set_threaded(struct net_device *dev, bool threaded);
507 
508 /**
509  *	napi_disable - prevent NAPI from scheduling
510  *	@n: NAPI context
511  *
512  * Stop NAPI from being scheduled on this context.
513  * Waits till any outstanding processing completes.
514  */
515 void napi_disable(struct napi_struct *n);
516 
517 void napi_enable(struct napi_struct *n);
518 
519 /**
520  *	napi_synchronize - wait until NAPI is not running
521  *	@n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 	if (IS_ENABLED(CONFIG_SMP))
530 		while (test_bit(NAPI_STATE_SCHED, &n->state))
531 			msleep(1);
532 	else
533 		barrier();
534 }
535 
536 /**
537  *	napi_if_scheduled_mark_missed - if napi is running, set the
538  *	NAPIF_STATE_MISSED
539  *	@n: NAPI context
540  *
541  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
542  * NAPI is scheduled.
543  **/
544 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
545 {
546 	unsigned long val, new;
547 
548 	do {
549 		val = READ_ONCE(n->state);
550 		if (val & NAPIF_STATE_DISABLE)
551 			return true;
552 
553 		if (!(val & NAPIF_STATE_SCHED))
554 			return false;
555 
556 		new = val | NAPIF_STATE_MISSED;
557 	} while (cmpxchg(&n->state, val, new) != val);
558 
559 	return true;
560 }
561 
562 enum netdev_queue_state_t {
563 	__QUEUE_STATE_DRV_XOFF,
564 	__QUEUE_STATE_STACK_XOFF,
565 	__QUEUE_STATE_FROZEN,
566 };
567 
568 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
569 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
570 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
571 
572 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
573 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
574 					QUEUE_STATE_FROZEN)
575 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
576 					QUEUE_STATE_FROZEN)
577 
578 /*
579  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
580  * netif_tx_* functions below are used to manipulate this flag.  The
581  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
582  * queue independently.  The netif_xmit_*stopped functions below are called
583  * to check if the queue has been stopped by the driver or stack (either
584  * of the XOFF bits are set in the state).  Drivers should not need to call
585  * netif_xmit*stopped functions, they should only be using netif_tx_*.
586  */
587 
588 struct netdev_queue {
589 /*
590  * read-mostly part
591  */
592 	struct net_device	*dev;
593 	netdevice_tracker	dev_tracker;
594 
595 	struct Qdisc __rcu	*qdisc;
596 	struct Qdisc		*qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598 	struct kobject		kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 	int			numa_node;
602 #endif
603 	unsigned long		tx_maxrate;
604 	/*
605 	 * Number of TX timeouts for this queue
606 	 * (/sys/class/net/DEV/Q/trans_timeout)
607 	 */
608 	atomic_long_t		trans_timeout;
609 
610 	/* Subordinate device that the queue has been assigned to */
611 	struct net_device	*sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613 	struct xsk_buff_pool    *pool;
614 #endif
615 /*
616  * write-mostly part
617  */
618 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
619 	int			xmit_lock_owner;
620 	/*
621 	 * Time (in jiffies) of last Tx
622 	 */
623 	unsigned long		trans_start;
624 
625 	unsigned long		state;
626 
627 #ifdef CONFIG_BQL
628 	struct dql		dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 extern int sysctl_devconf_inherit_init_net;
634 
635 /*
636  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
637  *                                     == 1 : For initns only
638  *                                     == 2 : For none.
639  */
640 static inline bool net_has_fallback_tunnels(const struct net *net)
641 {
642 	return !IS_ENABLED(CONFIG_SYSCTL) ||
643 	       !sysctl_fb_tunnels_only_for_init_net ||
644 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
645 }
646 
647 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
648 {
649 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
650 	return q->numa_node;
651 #else
652 	return NUMA_NO_NODE;
653 #endif
654 }
655 
656 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
657 {
658 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
659 	q->numa_node = node;
660 #endif
661 }
662 
663 #ifdef CONFIG_RPS
664 /*
665  * This structure holds an RPS map which can be of variable length.  The
666  * map is an array of CPUs.
667  */
668 struct rps_map {
669 	unsigned int len;
670 	struct rcu_head rcu;
671 	u16 cpus[];
672 };
673 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
674 
675 /*
676  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
677  * tail pointer for that CPU's input queue at the time of last enqueue, and
678  * a hardware filter index.
679  */
680 struct rps_dev_flow {
681 	u16 cpu;
682 	u16 filter;
683 	unsigned int last_qtail;
684 };
685 #define RPS_NO_FILTER 0xffff
686 
687 /*
688  * The rps_dev_flow_table structure contains a table of flow mappings.
689  */
690 struct rps_dev_flow_table {
691 	unsigned int mask;
692 	struct rcu_head rcu;
693 	struct rps_dev_flow flows[];
694 };
695 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
696     ((_num) * sizeof(struct rps_dev_flow)))
697 
698 /*
699  * The rps_sock_flow_table contains mappings of flows to the last CPU
700  * on which they were processed by the application (set in recvmsg).
701  * Each entry is a 32bit value. Upper part is the high-order bits
702  * of flow hash, lower part is CPU number.
703  * rps_cpu_mask is used to partition the space, depending on number of
704  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
705  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
706  * meaning we use 32-6=26 bits for the hash.
707  */
708 struct rps_sock_flow_table {
709 	u32	mask;
710 
711 	u32	ents[] ____cacheline_aligned_in_smp;
712 };
713 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
714 
715 #define RPS_NO_CPU 0xffff
716 
717 extern u32 rps_cpu_mask;
718 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
719 
720 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
721 					u32 hash)
722 {
723 	if (table && hash) {
724 		unsigned int index = hash & table->mask;
725 		u32 val = hash & ~rps_cpu_mask;
726 
727 		/* We only give a hint, preemption can change CPU under us */
728 		val |= raw_smp_processor_id();
729 
730 		if (table->ents[index] != val)
731 			table->ents[index] = val;
732 	}
733 }
734 
735 #ifdef CONFIG_RFS_ACCEL
736 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
737 			 u16 filter_id);
738 #endif
739 #endif /* CONFIG_RPS */
740 
741 /* This structure contains an instance of an RX queue. */
742 struct netdev_rx_queue {
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_RPS
745 	struct rps_map __rcu		*rps_map;
746 	struct rps_dev_flow_table __rcu	*rps_flow_table;
747 #endif
748 	struct kobject			kobj;
749 	struct net_device		*dev;
750 	netdevice_tracker		dev_tracker;
751 
752 #ifdef CONFIG_XDP_SOCKETS
753 	struct xsk_buff_pool            *pool;
754 #endif
755 } ____cacheline_aligned_in_smp;
756 
757 /*
758  * RX queue sysfs structures and functions.
759  */
760 struct rx_queue_attribute {
761 	struct attribute attr;
762 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
763 	ssize_t (*store)(struct netdev_rx_queue *queue,
764 			 const char *buf, size_t len);
765 };
766 
767 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
768 enum xps_map_type {
769 	XPS_CPUS = 0,
770 	XPS_RXQS,
771 	XPS_MAPS_MAX,
772 };
773 
774 #ifdef CONFIG_XPS
775 /*
776  * This structure holds an XPS map which can be of variable length.  The
777  * map is an array of queues.
778  */
779 struct xps_map {
780 	unsigned int len;
781 	unsigned int alloc_len;
782 	struct rcu_head rcu;
783 	u16 queues[];
784 };
785 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
786 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
787        - sizeof(struct xps_map)) / sizeof(u16))
788 
789 /*
790  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
791  *
792  * We keep track of the number of cpus/rxqs used when the struct is allocated,
793  * in nr_ids. This will help not accessing out-of-bound memory.
794  *
795  * We keep track of the number of traffic classes used when the struct is
796  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
797  * not crossing its upper bound, as the original dev->num_tc can be updated in
798  * the meantime.
799  */
800 struct xps_dev_maps {
801 	struct rcu_head rcu;
802 	unsigned int nr_ids;
803 	s16 num_tc;
804 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
805 };
806 
807 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
808 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
809 
810 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
811 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
812 
813 #endif /* CONFIG_XPS */
814 
815 #define TC_MAX_QUEUE	16
816 #define TC_BITMASK	15
817 /* HW offloaded queuing disciplines txq count and offset maps */
818 struct netdev_tc_txq {
819 	u16 count;
820 	u16 offset;
821 };
822 
823 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
824 /*
825  * This structure is to hold information about the device
826  * configured to run FCoE protocol stack.
827  */
828 struct netdev_fcoe_hbainfo {
829 	char	manufacturer[64];
830 	char	serial_number[64];
831 	char	hardware_version[64];
832 	char	driver_version[64];
833 	char	optionrom_version[64];
834 	char	firmware_version[64];
835 	char	model[256];
836 	char	model_description[256];
837 };
838 #endif
839 
840 #define MAX_PHYS_ITEM_ID_LEN 32
841 
842 /* This structure holds a unique identifier to identify some
843  * physical item (port for example) used by a netdevice.
844  */
845 struct netdev_phys_item_id {
846 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
847 	unsigned char id_len;
848 };
849 
850 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
851 					    struct netdev_phys_item_id *b)
852 {
853 	return a->id_len == b->id_len &&
854 	       memcmp(a->id, b->id, a->id_len) == 0;
855 }
856 
857 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
858 				       struct sk_buff *skb,
859 				       struct net_device *sb_dev);
860 
861 enum net_device_path_type {
862 	DEV_PATH_ETHERNET = 0,
863 	DEV_PATH_VLAN,
864 	DEV_PATH_BRIDGE,
865 	DEV_PATH_PPPOE,
866 	DEV_PATH_DSA,
867 	DEV_PATH_MTK_WDMA,
868 };
869 
870 struct net_device_path {
871 	enum net_device_path_type	type;
872 	const struct net_device		*dev;
873 	union {
874 		struct {
875 			u16		id;
876 			__be16		proto;
877 			u8		h_dest[ETH_ALEN];
878 		} encap;
879 		struct {
880 			enum {
881 				DEV_PATH_BR_VLAN_KEEP,
882 				DEV_PATH_BR_VLAN_TAG,
883 				DEV_PATH_BR_VLAN_UNTAG,
884 				DEV_PATH_BR_VLAN_UNTAG_HW,
885 			}		vlan_mode;
886 			u16		vlan_id;
887 			__be16		vlan_proto;
888 		} bridge;
889 		struct {
890 			int port;
891 			u16 proto;
892 		} dsa;
893 		struct {
894 			u8 wdma_idx;
895 			u8 queue;
896 			u16 wcid;
897 			u8 bss;
898 		} mtk_wdma;
899 	};
900 };
901 
902 #define NET_DEVICE_PATH_STACK_MAX	5
903 #define NET_DEVICE_PATH_VLAN_MAX	2
904 
905 struct net_device_path_stack {
906 	int			num_paths;
907 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
908 };
909 
910 struct net_device_path_ctx {
911 	const struct net_device *dev;
912 	const u8		*daddr;
913 
914 	int			num_vlans;
915 	struct {
916 		u16		id;
917 		__be16		proto;
918 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
919 };
920 
921 enum tc_setup_type {
922 	TC_SETUP_QDISC_MQPRIO,
923 	TC_SETUP_CLSU32,
924 	TC_SETUP_CLSFLOWER,
925 	TC_SETUP_CLSMATCHALL,
926 	TC_SETUP_CLSBPF,
927 	TC_SETUP_BLOCK,
928 	TC_SETUP_QDISC_CBS,
929 	TC_SETUP_QDISC_RED,
930 	TC_SETUP_QDISC_PRIO,
931 	TC_SETUP_QDISC_MQ,
932 	TC_SETUP_QDISC_ETF,
933 	TC_SETUP_ROOT_QDISC,
934 	TC_SETUP_QDISC_GRED,
935 	TC_SETUP_QDISC_TAPRIO,
936 	TC_SETUP_FT,
937 	TC_SETUP_QDISC_ETS,
938 	TC_SETUP_QDISC_TBF,
939 	TC_SETUP_QDISC_FIFO,
940 	TC_SETUP_QDISC_HTB,
941 	TC_SETUP_ACT,
942 };
943 
944 /* These structures hold the attributes of bpf state that are being passed
945  * to the netdevice through the bpf op.
946  */
947 enum bpf_netdev_command {
948 	/* Set or clear a bpf program used in the earliest stages of packet
949 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
950 	 * is responsible for calling bpf_prog_put on any old progs that are
951 	 * stored. In case of error, the callee need not release the new prog
952 	 * reference, but on success it takes ownership and must bpf_prog_put
953 	 * when it is no longer used.
954 	 */
955 	XDP_SETUP_PROG,
956 	XDP_SETUP_PROG_HW,
957 	/* BPF program for offload callbacks, invoked at program load time. */
958 	BPF_OFFLOAD_MAP_ALLOC,
959 	BPF_OFFLOAD_MAP_FREE,
960 	XDP_SETUP_XSK_POOL,
961 };
962 
963 struct bpf_prog_offload_ops;
964 struct netlink_ext_ack;
965 struct xdp_umem;
966 struct xdp_dev_bulk_queue;
967 struct bpf_xdp_link;
968 
969 enum bpf_xdp_mode {
970 	XDP_MODE_SKB = 0,
971 	XDP_MODE_DRV = 1,
972 	XDP_MODE_HW = 2,
973 	__MAX_XDP_MODE
974 };
975 
976 struct bpf_xdp_entity {
977 	struct bpf_prog *prog;
978 	struct bpf_xdp_link *link;
979 };
980 
981 struct netdev_bpf {
982 	enum bpf_netdev_command command;
983 	union {
984 		/* XDP_SETUP_PROG */
985 		struct {
986 			u32 flags;
987 			struct bpf_prog *prog;
988 			struct netlink_ext_ack *extack;
989 		};
990 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
991 		struct {
992 			struct bpf_offloaded_map *offmap;
993 		};
994 		/* XDP_SETUP_XSK_POOL */
995 		struct {
996 			struct xsk_buff_pool *pool;
997 			u16 queue_id;
998 		} xsk;
999 	};
1000 };
1001 
1002 /* Flags for ndo_xsk_wakeup. */
1003 #define XDP_WAKEUP_RX (1 << 0)
1004 #define XDP_WAKEUP_TX (1 << 1)
1005 
1006 #ifdef CONFIG_XFRM_OFFLOAD
1007 struct xfrmdev_ops {
1008 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1009 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1010 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1011 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1012 				       struct xfrm_state *x);
1013 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1014 };
1015 #endif
1016 
1017 struct dev_ifalias {
1018 	struct rcu_head rcuhead;
1019 	char ifalias[];
1020 };
1021 
1022 struct devlink;
1023 struct tlsdev_ops;
1024 
1025 struct netdev_net_notifier {
1026 	struct list_head list;
1027 	struct notifier_block *nb;
1028 };
1029 
1030 /*
1031  * This structure defines the management hooks for network devices.
1032  * The following hooks can be defined; unless noted otherwise, they are
1033  * optional and can be filled with a null pointer.
1034  *
1035  * int (*ndo_init)(struct net_device *dev);
1036  *     This function is called once when a network device is registered.
1037  *     The network device can use this for any late stage initialization
1038  *     or semantic validation. It can fail with an error code which will
1039  *     be propagated back to register_netdev.
1040  *
1041  * void (*ndo_uninit)(struct net_device *dev);
1042  *     This function is called when device is unregistered or when registration
1043  *     fails. It is not called if init fails.
1044  *
1045  * int (*ndo_open)(struct net_device *dev);
1046  *     This function is called when a network device transitions to the up
1047  *     state.
1048  *
1049  * int (*ndo_stop)(struct net_device *dev);
1050  *     This function is called when a network device transitions to the down
1051  *     state.
1052  *
1053  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1054  *                               struct net_device *dev);
1055  *	Called when a packet needs to be transmitted.
1056  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1057  *	the queue before that can happen; it's for obsolete devices and weird
1058  *	corner cases, but the stack really does a non-trivial amount
1059  *	of useless work if you return NETDEV_TX_BUSY.
1060  *	Required; cannot be NULL.
1061  *
1062  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1063  *					   struct net_device *dev
1064  *					   netdev_features_t features);
1065  *	Called by core transmit path to determine if device is capable of
1066  *	performing offload operations on a given packet. This is to give
1067  *	the device an opportunity to implement any restrictions that cannot
1068  *	be otherwise expressed by feature flags. The check is called with
1069  *	the set of features that the stack has calculated and it returns
1070  *	those the driver believes to be appropriate.
1071  *
1072  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1073  *                         struct net_device *sb_dev);
1074  *	Called to decide which queue to use when device supports multiple
1075  *	transmit queues.
1076  *
1077  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1078  *	This function is called to allow device receiver to make
1079  *	changes to configuration when multicast or promiscuous is enabled.
1080  *
1081  * void (*ndo_set_rx_mode)(struct net_device *dev);
1082  *	This function is called device changes address list filtering.
1083  *	If driver handles unicast address filtering, it should set
1084  *	IFF_UNICAST_FLT in its priv_flags.
1085  *
1086  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1087  *	This function  is called when the Media Access Control address
1088  *	needs to be changed. If this interface is not defined, the
1089  *	MAC address can not be changed.
1090  *
1091  * int (*ndo_validate_addr)(struct net_device *dev);
1092  *	Test if Media Access Control address is valid for the device.
1093  *
1094  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1095  *	Old-style ioctl entry point. This is used internally by the
1096  *	appletalk and ieee802154 subsystems but is no longer called by
1097  *	the device ioctl handler.
1098  *
1099  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1100  *	Used by the bonding driver for its device specific ioctls:
1101  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1102  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1103  *
1104  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1105  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1106  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1107  *
1108  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1109  *	Used to set network devices bus interface parameters. This interface
1110  *	is retained for legacy reasons; new devices should use the bus
1111  *	interface (PCI) for low level management.
1112  *
1113  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1114  *	Called when a user wants to change the Maximum Transfer Unit
1115  *	of a device.
1116  *
1117  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1118  *	Callback used when the transmitter has not made any progress
1119  *	for dev->watchdog ticks.
1120  *
1121  * void (*ndo_get_stats64)(struct net_device *dev,
1122  *                         struct rtnl_link_stats64 *storage);
1123  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1124  *	Called when a user wants to get the network device usage
1125  *	statistics. Drivers must do one of the following:
1126  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1127  *	   rtnl_link_stats64 structure passed by the caller.
1128  *	2. Define @ndo_get_stats to update a net_device_stats structure
1129  *	   (which should normally be dev->stats) and return a pointer to
1130  *	   it. The structure may be changed asynchronously only if each
1131  *	   field is written atomically.
1132  *	3. Update dev->stats asynchronously and atomically, and define
1133  *	   neither operation.
1134  *
1135  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1136  *	Return true if this device supports offload stats of this attr_id.
1137  *
1138  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1139  *	void *attr_data)
1140  *	Get statistics for offload operations by attr_id. Write it into the
1141  *	attr_data pointer.
1142  *
1143  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1144  *	If device supports VLAN filtering this function is called when a
1145  *	VLAN id is registered.
1146  *
1147  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1148  *	If device supports VLAN filtering this function is called when a
1149  *	VLAN id is unregistered.
1150  *
1151  * void (*ndo_poll_controller)(struct net_device *dev);
1152  *
1153  *	SR-IOV management functions.
1154  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1155  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1156  *			  u8 qos, __be16 proto);
1157  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1158  *			  int max_tx_rate);
1159  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1160  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1161  * int (*ndo_get_vf_config)(struct net_device *dev,
1162  *			    int vf, struct ifla_vf_info *ivf);
1163  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1164  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1165  *			  struct nlattr *port[]);
1166  *
1167  *      Enable or disable the VF ability to query its RSS Redirection Table and
1168  *      Hash Key. This is needed since on some devices VF share this information
1169  *      with PF and querying it may introduce a theoretical security risk.
1170  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1171  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1172  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1173  *		       void *type_data);
1174  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1175  *	This is always called from the stack with the rtnl lock held and netif
1176  *	tx queues stopped. This allows the netdevice to perform queue
1177  *	management safely.
1178  *
1179  *	Fiber Channel over Ethernet (FCoE) offload functions.
1180  * int (*ndo_fcoe_enable)(struct net_device *dev);
1181  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1182  *	so the underlying device can perform whatever needed configuration or
1183  *	initialization to support acceleration of FCoE traffic.
1184  *
1185  * int (*ndo_fcoe_disable)(struct net_device *dev);
1186  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1187  *	so the underlying device can perform whatever needed clean-ups to
1188  *	stop supporting acceleration of FCoE traffic.
1189  *
1190  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1191  *			     struct scatterlist *sgl, unsigned int sgc);
1192  *	Called when the FCoE Initiator wants to initialize an I/O that
1193  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1194  *	perform necessary setup and returns 1 to indicate the device is set up
1195  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1196  *
1197  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1198  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1199  *	indicated by the FC exchange id 'xid', so the underlying device can
1200  *	clean up and reuse resources for later DDP requests.
1201  *
1202  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1203  *			      struct scatterlist *sgl, unsigned int sgc);
1204  *	Called when the FCoE Target wants to initialize an I/O that
1205  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1206  *	perform necessary setup and returns 1 to indicate the device is set up
1207  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1208  *
1209  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1210  *			       struct netdev_fcoe_hbainfo *hbainfo);
1211  *	Called when the FCoE Protocol stack wants information on the underlying
1212  *	device. This information is utilized by the FCoE protocol stack to
1213  *	register attributes with Fiber Channel management service as per the
1214  *	FC-GS Fabric Device Management Information(FDMI) specification.
1215  *
1216  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1217  *	Called when the underlying device wants to override default World Wide
1218  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1219  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1220  *	protocol stack to use.
1221  *
1222  *	RFS acceleration.
1223  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1224  *			    u16 rxq_index, u32 flow_id);
1225  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1226  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1227  *	Return the filter ID on success, or a negative error code.
1228  *
1229  *	Slave management functions (for bridge, bonding, etc).
1230  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1231  *	Called to make another netdev an underling.
1232  *
1233  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1234  *	Called to release previously enslaved netdev.
1235  *
1236  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1237  *					    struct sk_buff *skb,
1238  *					    bool all_slaves);
1239  *	Get the xmit slave of master device. If all_slaves is true, function
1240  *	assume all the slaves can transmit.
1241  *
1242  *      Feature/offload setting functions.
1243  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1244  *		netdev_features_t features);
1245  *	Adjusts the requested feature flags according to device-specific
1246  *	constraints, and returns the resulting flags. Must not modify
1247  *	the device state.
1248  *
1249  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1250  *	Called to update device configuration to new features. Passed
1251  *	feature set might be less than what was returned by ndo_fix_features()).
1252  *	Must return >0 or -errno if it changed dev->features itself.
1253  *
1254  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1255  *		      struct net_device *dev,
1256  *		      const unsigned char *addr, u16 vid, u16 flags,
1257  *		      struct netlink_ext_ack *extack);
1258  *	Adds an FDB entry to dev for addr.
1259  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1260  *		      struct net_device *dev,
1261  *		      const unsigned char *addr, u16 vid)
1262  *	Deletes the FDB entry from dev coresponding to addr.
1263  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1264  *			   struct net_device *dev,
1265  *			   u16 vid,
1266  *			   struct netlink_ext_ack *extack);
1267  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1268  *		       struct net_device *dev, struct net_device *filter_dev,
1269  *		       int *idx)
1270  *	Used to add FDB entries to dump requests. Implementers should add
1271  *	entries to skb and update idx with the number of entries.
1272  *
1273  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1274  *			     u16 flags, struct netlink_ext_ack *extack)
1275  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1276  *			     struct net_device *dev, u32 filter_mask,
1277  *			     int nlflags)
1278  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1279  *			     u16 flags);
1280  *
1281  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1282  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1283  *	which do not represent real hardware may define this to allow their
1284  *	userspace components to manage their virtual carrier state. Devices
1285  *	that determine carrier state from physical hardware properties (eg
1286  *	network cables) or protocol-dependent mechanisms (eg
1287  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1288  *
1289  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1290  *			       struct netdev_phys_item_id *ppid);
1291  *	Called to get ID of physical port of this device. If driver does
1292  *	not implement this, it is assumed that the hw is not able to have
1293  *	multiple net devices on single physical port.
1294  *
1295  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1296  *				 struct netdev_phys_item_id *ppid)
1297  *	Called to get the parent ID of the physical port of this device.
1298  *
1299  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1300  *				 struct net_device *dev)
1301  *	Called by upper layer devices to accelerate switching or other
1302  *	station functionality into hardware. 'pdev is the lowerdev
1303  *	to use for the offload and 'dev' is the net device that will
1304  *	back the offload. Returns a pointer to the private structure
1305  *	the upper layer will maintain.
1306  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1307  *	Called by upper layer device to delete the station created
1308  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1309  *	the station and priv is the structure returned by the add
1310  *	operation.
1311  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1312  *			     int queue_index, u32 maxrate);
1313  *	Called when a user wants to set a max-rate limitation of specific
1314  *	TX queue.
1315  * int (*ndo_get_iflink)(const struct net_device *dev);
1316  *	Called to get the iflink value of this device.
1317  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1318  *	This function is used to get egress tunnel information for given skb.
1319  *	This is useful for retrieving outer tunnel header parameters while
1320  *	sampling packet.
1321  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1322  *	This function is used to specify the headroom that the skb must
1323  *	consider when allocation skb during packet reception. Setting
1324  *	appropriate rx headroom value allows avoiding skb head copy on
1325  *	forward. Setting a negative value resets the rx headroom to the
1326  *	default value.
1327  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1328  *	This function is used to set or query state related to XDP on the
1329  *	netdevice and manage BPF offload. See definition of
1330  *	enum bpf_netdev_command for details.
1331  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1332  *			u32 flags);
1333  *	This function is used to submit @n XDP packets for transmit on a
1334  *	netdevice. Returns number of frames successfully transmitted, frames
1335  *	that got dropped are freed/returned via xdp_return_frame().
1336  *	Returns negative number, means general error invoking ndo, meaning
1337  *	no frames were xmit'ed and core-caller will free all frames.
1338  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1339  *					        struct xdp_buff *xdp);
1340  *      Get the xmit slave of master device based on the xdp_buff.
1341  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1342  *      This function is used to wake up the softirq, ksoftirqd or kthread
1343  *	responsible for sending and/or receiving packets on a specific
1344  *	queue id bound to an AF_XDP socket. The flags field specifies if
1345  *	only RX, only Tx, or both should be woken up using the flags
1346  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1347  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1348  *	Get devlink port instance associated with a given netdev.
1349  *	Called with a reference on the netdevice and devlink locks only,
1350  *	rtnl_lock is not held.
1351  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1352  *			 int cmd);
1353  *	Add, change, delete or get information on an IPv4 tunnel.
1354  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1355  *	If a device is paired with a peer device, return the peer instance.
1356  *	The caller must be under RCU read context.
1357  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1358  *     Get the forwarding path to reach the real device from the HW destination address
1359  */
1360 struct net_device_ops {
1361 	int			(*ndo_init)(struct net_device *dev);
1362 	void			(*ndo_uninit)(struct net_device *dev);
1363 	int			(*ndo_open)(struct net_device *dev);
1364 	int			(*ndo_stop)(struct net_device *dev);
1365 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1366 						  struct net_device *dev);
1367 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1368 						      struct net_device *dev,
1369 						      netdev_features_t features);
1370 	u16			(*ndo_select_queue)(struct net_device *dev,
1371 						    struct sk_buff *skb,
1372 						    struct net_device *sb_dev);
1373 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1374 						       int flags);
1375 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1376 	int			(*ndo_set_mac_address)(struct net_device *dev,
1377 						       void *addr);
1378 	int			(*ndo_validate_addr)(struct net_device *dev);
1379 	int			(*ndo_do_ioctl)(struct net_device *dev,
1380 					        struct ifreq *ifr, int cmd);
1381 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1382 						 struct ifreq *ifr, int cmd);
1383 	int			(*ndo_siocbond)(struct net_device *dev,
1384 						struct ifreq *ifr, int cmd);
1385 	int			(*ndo_siocwandev)(struct net_device *dev,
1386 						  struct if_settings *ifs);
1387 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1388 						      struct ifreq *ifr,
1389 						      void __user *data, int cmd);
1390 	int			(*ndo_set_config)(struct net_device *dev,
1391 					          struct ifmap *map);
1392 	int			(*ndo_change_mtu)(struct net_device *dev,
1393 						  int new_mtu);
1394 	int			(*ndo_neigh_setup)(struct net_device *dev,
1395 						   struct neigh_parms *);
1396 	void			(*ndo_tx_timeout) (struct net_device *dev,
1397 						   unsigned int txqueue);
1398 
1399 	void			(*ndo_get_stats64)(struct net_device *dev,
1400 						   struct rtnl_link_stats64 *storage);
1401 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1402 	int			(*ndo_get_offload_stats)(int attr_id,
1403 							 const struct net_device *dev,
1404 							 void *attr_data);
1405 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1406 
1407 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1408 						       __be16 proto, u16 vid);
1409 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1410 						        __be16 proto, u16 vid);
1411 #ifdef CONFIG_NET_POLL_CONTROLLER
1412 	void                    (*ndo_poll_controller)(struct net_device *dev);
1413 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1414 						     struct netpoll_info *info);
1415 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1416 #endif
1417 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1418 						  int queue, u8 *mac);
1419 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1420 						   int queue, u16 vlan,
1421 						   u8 qos, __be16 proto);
1422 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1423 						   int vf, int min_tx_rate,
1424 						   int max_tx_rate);
1425 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1426 						       int vf, bool setting);
1427 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1428 						    int vf, bool setting);
1429 	int			(*ndo_get_vf_config)(struct net_device *dev,
1430 						     int vf,
1431 						     struct ifla_vf_info *ivf);
1432 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1433 							 int vf, int link_state);
1434 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1435 						    int vf,
1436 						    struct ifla_vf_stats
1437 						    *vf_stats);
1438 	int			(*ndo_set_vf_port)(struct net_device *dev,
1439 						   int vf,
1440 						   struct nlattr *port[]);
1441 	int			(*ndo_get_vf_port)(struct net_device *dev,
1442 						   int vf, struct sk_buff *skb);
1443 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1444 						   int vf,
1445 						   struct ifla_vf_guid *node_guid,
1446 						   struct ifla_vf_guid *port_guid);
1447 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1448 						   int vf, u64 guid,
1449 						   int guid_type);
1450 	int			(*ndo_set_vf_rss_query_en)(
1451 						   struct net_device *dev,
1452 						   int vf, bool setting);
1453 	int			(*ndo_setup_tc)(struct net_device *dev,
1454 						enum tc_setup_type type,
1455 						void *type_data);
1456 #if IS_ENABLED(CONFIG_FCOE)
1457 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1458 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1459 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1460 						      u16 xid,
1461 						      struct scatterlist *sgl,
1462 						      unsigned int sgc);
1463 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1464 						     u16 xid);
1465 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1466 						       u16 xid,
1467 						       struct scatterlist *sgl,
1468 						       unsigned int sgc);
1469 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1470 							struct netdev_fcoe_hbainfo *hbainfo);
1471 #endif
1472 
1473 #if IS_ENABLED(CONFIG_LIBFCOE)
1474 #define NETDEV_FCOE_WWNN 0
1475 #define NETDEV_FCOE_WWPN 1
1476 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1477 						    u64 *wwn, int type);
1478 #endif
1479 
1480 #ifdef CONFIG_RFS_ACCEL
1481 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1482 						     const struct sk_buff *skb,
1483 						     u16 rxq_index,
1484 						     u32 flow_id);
1485 #endif
1486 	int			(*ndo_add_slave)(struct net_device *dev,
1487 						 struct net_device *slave_dev,
1488 						 struct netlink_ext_ack *extack);
1489 	int			(*ndo_del_slave)(struct net_device *dev,
1490 						 struct net_device *slave_dev);
1491 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1492 						      struct sk_buff *skb,
1493 						      bool all_slaves);
1494 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1495 							struct sock *sk);
1496 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1497 						    netdev_features_t features);
1498 	int			(*ndo_set_features)(struct net_device *dev,
1499 						    netdev_features_t features);
1500 	int			(*ndo_neigh_construct)(struct net_device *dev,
1501 						       struct neighbour *n);
1502 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1503 						     struct neighbour *n);
1504 
1505 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1506 					       struct nlattr *tb[],
1507 					       struct net_device *dev,
1508 					       const unsigned char *addr,
1509 					       u16 vid,
1510 					       u16 flags,
1511 					       struct netlink_ext_ack *extack);
1512 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1513 					       struct nlattr *tb[],
1514 					       struct net_device *dev,
1515 					       const unsigned char *addr,
1516 					       u16 vid);
1517 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1518 						    struct nlattr *tb[],
1519 						    struct net_device *dev,
1520 						    u16 vid,
1521 						    struct netlink_ext_ack *extack);
1522 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1523 						struct netlink_callback *cb,
1524 						struct net_device *dev,
1525 						struct net_device *filter_dev,
1526 						int *idx);
1527 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1528 					       struct nlattr *tb[],
1529 					       struct net_device *dev,
1530 					       const unsigned char *addr,
1531 					       u16 vid, u32 portid, u32 seq,
1532 					       struct netlink_ext_ack *extack);
1533 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1534 						      struct nlmsghdr *nlh,
1535 						      u16 flags,
1536 						      struct netlink_ext_ack *extack);
1537 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1538 						      u32 pid, u32 seq,
1539 						      struct net_device *dev,
1540 						      u32 filter_mask,
1541 						      int nlflags);
1542 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1543 						      struct nlmsghdr *nlh,
1544 						      u16 flags);
1545 	int			(*ndo_change_carrier)(struct net_device *dev,
1546 						      bool new_carrier);
1547 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1548 							struct netdev_phys_item_id *ppid);
1549 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1550 							  struct netdev_phys_item_id *ppid);
1551 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1552 							  char *name, size_t len);
1553 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1554 							struct net_device *dev);
1555 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1556 							void *priv);
1557 
1558 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1559 						      int queue_index,
1560 						      u32 maxrate);
1561 	int			(*ndo_get_iflink)(const struct net_device *dev);
1562 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1563 						       struct sk_buff *skb);
1564 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1565 						       int needed_headroom);
1566 	int			(*ndo_bpf)(struct net_device *dev,
1567 					   struct netdev_bpf *bpf);
1568 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1569 						struct xdp_frame **xdp,
1570 						u32 flags);
1571 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1572 							  struct xdp_buff *xdp);
1573 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1574 						  u32 queue_id, u32 flags);
1575 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1576 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1577 						  struct ip_tunnel_parm *p, int cmd);
1578 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1579 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1580                                                          struct net_device_path *path);
1581 };
1582 
1583 /**
1584  * enum netdev_priv_flags - &struct net_device priv_flags
1585  *
1586  * These are the &struct net_device, they are only set internally
1587  * by drivers and used in the kernel. These flags are invisible to
1588  * userspace; this means that the order of these flags can change
1589  * during any kernel release.
1590  *
1591  * You should have a pretty good reason to be extending these flags.
1592  *
1593  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1594  * @IFF_EBRIDGE: Ethernet bridging device
1595  * @IFF_BONDING: bonding master or slave
1596  * @IFF_ISATAP: ISATAP interface (RFC4214)
1597  * @IFF_WAN_HDLC: WAN HDLC device
1598  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1599  *	release skb->dst
1600  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1601  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1602  * @IFF_MACVLAN_PORT: device used as macvlan port
1603  * @IFF_BRIDGE_PORT: device used as bridge port
1604  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1605  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1606  * @IFF_UNICAST_FLT: Supports unicast filtering
1607  * @IFF_TEAM_PORT: device used as team port
1608  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1609  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1610  *	change when it's running
1611  * @IFF_MACVLAN: Macvlan device
1612  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1613  *	underlying stacked devices
1614  * @IFF_L3MDEV_MASTER: device is an L3 master device
1615  * @IFF_NO_QUEUE: device can run without qdisc attached
1616  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1617  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1618  * @IFF_TEAM: device is a team device
1619  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1620  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1621  *	entity (i.e. the master device for bridged veth)
1622  * @IFF_MACSEC: device is a MACsec device
1623  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1624  * @IFF_FAILOVER: device is a failover master device
1625  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1626  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1627  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1628  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1629  *	skb_headlen(skb) == 0 (data starts from frag0)
1630  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1631  */
1632 enum netdev_priv_flags {
1633 	IFF_802_1Q_VLAN			= 1<<0,
1634 	IFF_EBRIDGE			= 1<<1,
1635 	IFF_BONDING			= 1<<2,
1636 	IFF_ISATAP			= 1<<3,
1637 	IFF_WAN_HDLC			= 1<<4,
1638 	IFF_XMIT_DST_RELEASE		= 1<<5,
1639 	IFF_DONT_BRIDGE			= 1<<6,
1640 	IFF_DISABLE_NETPOLL		= 1<<7,
1641 	IFF_MACVLAN_PORT		= 1<<8,
1642 	IFF_BRIDGE_PORT			= 1<<9,
1643 	IFF_OVS_DATAPATH		= 1<<10,
1644 	IFF_TX_SKB_SHARING		= 1<<11,
1645 	IFF_UNICAST_FLT			= 1<<12,
1646 	IFF_TEAM_PORT			= 1<<13,
1647 	IFF_SUPP_NOFCS			= 1<<14,
1648 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1649 	IFF_MACVLAN			= 1<<16,
1650 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1651 	IFF_L3MDEV_MASTER		= 1<<18,
1652 	IFF_NO_QUEUE			= 1<<19,
1653 	IFF_OPENVSWITCH			= 1<<20,
1654 	IFF_L3MDEV_SLAVE		= 1<<21,
1655 	IFF_TEAM			= 1<<22,
1656 	IFF_RXFH_CONFIGURED		= 1<<23,
1657 	IFF_PHONY_HEADROOM		= 1<<24,
1658 	IFF_MACSEC			= 1<<25,
1659 	IFF_NO_RX_HANDLER		= 1<<26,
1660 	IFF_FAILOVER			= 1<<27,
1661 	IFF_FAILOVER_SLAVE		= 1<<28,
1662 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1663 	IFF_LIVE_RENAME_OK		= 1<<30,
1664 	IFF_TX_SKB_NO_LINEAR		= 1<<31,
1665 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1666 };
1667 
1668 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1669 #define IFF_EBRIDGE			IFF_EBRIDGE
1670 #define IFF_BONDING			IFF_BONDING
1671 #define IFF_ISATAP			IFF_ISATAP
1672 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1673 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1674 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1675 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1676 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1677 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1678 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1679 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1680 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1681 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1682 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1683 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1684 #define IFF_MACVLAN			IFF_MACVLAN
1685 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1686 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1687 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1688 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1689 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1690 #define IFF_TEAM			IFF_TEAM
1691 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1692 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1693 #define IFF_MACSEC			IFF_MACSEC
1694 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1695 #define IFF_FAILOVER			IFF_FAILOVER
1696 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1697 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1698 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1699 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1700 
1701 /* Specifies the type of the struct net_device::ml_priv pointer */
1702 enum netdev_ml_priv_type {
1703 	ML_PRIV_NONE,
1704 	ML_PRIV_CAN,
1705 };
1706 
1707 /**
1708  *	struct net_device - The DEVICE structure.
1709  *
1710  *	Actually, this whole structure is a big mistake.  It mixes I/O
1711  *	data with strictly "high-level" data, and it has to know about
1712  *	almost every data structure used in the INET module.
1713  *
1714  *	@name:	This is the first field of the "visible" part of this structure
1715  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1716  *		of the interface.
1717  *
1718  *	@name_node:	Name hashlist node
1719  *	@ifalias:	SNMP alias
1720  *	@mem_end:	Shared memory end
1721  *	@mem_start:	Shared memory start
1722  *	@base_addr:	Device I/O address
1723  *	@irq:		Device IRQ number
1724  *
1725  *	@state:		Generic network queuing layer state, see netdev_state_t
1726  *	@dev_list:	The global list of network devices
1727  *	@napi_list:	List entry used for polling NAPI devices
1728  *	@unreg_list:	List entry  when we are unregistering the
1729  *			device; see the function unregister_netdev
1730  *	@close_list:	List entry used when we are closing the device
1731  *	@ptype_all:     Device-specific packet handlers for all protocols
1732  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1733  *
1734  *	@adj_list:	Directly linked devices, like slaves for bonding
1735  *	@features:	Currently active device features
1736  *	@hw_features:	User-changeable features
1737  *
1738  *	@wanted_features:	User-requested features
1739  *	@vlan_features:		Mask of features inheritable by VLAN devices
1740  *
1741  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1742  *				This field indicates what encapsulation
1743  *				offloads the hardware is capable of doing,
1744  *				and drivers will need to set them appropriately.
1745  *
1746  *	@mpls_features:	Mask of features inheritable by MPLS
1747  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1748  *
1749  *	@ifindex:	interface index
1750  *	@group:		The group the device belongs to
1751  *
1752  *	@stats:		Statistics struct, which was left as a legacy, use
1753  *			rtnl_link_stats64 instead
1754  *
1755  *	@core_stats:	core networking counters,
1756  *			do not use this in drivers
1757  *	@carrier_up_count:	Number of times the carrier has been up
1758  *	@carrier_down_count:	Number of times the carrier has been down
1759  *
1760  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1761  *				instead of ioctl,
1762  *				see <net/iw_handler.h> for details.
1763  *	@wireless_data:	Instance data managed by the core of wireless extensions
1764  *
1765  *	@netdev_ops:	Includes several pointers to callbacks,
1766  *			if one wants to override the ndo_*() functions
1767  *	@ethtool_ops:	Management operations
1768  *	@l3mdev_ops:	Layer 3 master device operations
1769  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1770  *			discovery handling. Necessary for e.g. 6LoWPAN.
1771  *	@xfrmdev_ops:	Transformation offload operations
1772  *	@tlsdev_ops:	Transport Layer Security offload operations
1773  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1774  *			of Layer 2 headers.
1775  *
1776  *	@flags:		Interface flags (a la BSD)
1777  *	@priv_flags:	Like 'flags' but invisible to userspace,
1778  *			see if.h for the definitions
1779  *	@gflags:	Global flags ( kept as legacy )
1780  *	@padded:	How much padding added by alloc_netdev()
1781  *	@operstate:	RFC2863 operstate
1782  *	@link_mode:	Mapping policy to operstate
1783  *	@if_port:	Selectable AUI, TP, ...
1784  *	@dma:		DMA channel
1785  *	@mtu:		Interface MTU value
1786  *	@min_mtu:	Interface Minimum MTU value
1787  *	@max_mtu:	Interface Maximum MTU value
1788  *	@type:		Interface hardware type
1789  *	@hard_header_len: Maximum hardware header length.
1790  *	@min_header_len:  Minimum hardware header length
1791  *
1792  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1793  *			  cases can this be guaranteed
1794  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1795  *			  cases can this be guaranteed. Some cases also use
1796  *			  LL_MAX_HEADER instead to allocate the skb
1797  *
1798  *	interface address info:
1799  *
1800  * 	@perm_addr:		Permanent hw address
1801  * 	@addr_assign_type:	Hw address assignment type
1802  * 	@addr_len:		Hardware address length
1803  *	@upper_level:		Maximum depth level of upper devices.
1804  *	@lower_level:		Maximum depth level of lower devices.
1805  *	@neigh_priv_len:	Used in neigh_alloc()
1806  * 	@dev_id:		Used to differentiate devices that share
1807  * 				the same link layer address
1808  * 	@dev_port:		Used to differentiate devices that share
1809  * 				the same function
1810  *	@addr_list_lock:	XXX: need comments on this one
1811  *	@name_assign_type:	network interface name assignment type
1812  *	@uc_promisc:		Counter that indicates promiscuous mode
1813  *				has been enabled due to the need to listen to
1814  *				additional unicast addresses in a device that
1815  *				does not implement ndo_set_rx_mode()
1816  *	@uc:			unicast mac addresses
1817  *	@mc:			multicast mac addresses
1818  *	@dev_addrs:		list of device hw addresses
1819  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1820  *	@promiscuity:		Number of times the NIC is told to work in
1821  *				promiscuous mode; if it becomes 0 the NIC will
1822  *				exit promiscuous mode
1823  *	@allmulti:		Counter, enables or disables allmulticast mode
1824  *
1825  *	@vlan_info:	VLAN info
1826  *	@dsa_ptr:	dsa specific data
1827  *	@tipc_ptr:	TIPC specific data
1828  *	@atalk_ptr:	AppleTalk link
1829  *	@ip_ptr:	IPv4 specific data
1830  *	@dn_ptr:	DECnet specific data
1831  *	@ip6_ptr:	IPv6 specific data
1832  *	@ax25_ptr:	AX.25 specific data
1833  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1834  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1835  *			 device struct
1836  *	@mpls_ptr:	mpls_dev struct pointer
1837  *	@mctp_ptr:	MCTP specific data
1838  *
1839  *	@dev_addr:	Hw address (before bcast,
1840  *			because most packets are unicast)
1841  *
1842  *	@_rx:			Array of RX queues
1843  *	@num_rx_queues:		Number of RX queues
1844  *				allocated at register_netdev() time
1845  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1846  *	@xdp_prog:		XDP sockets filter program pointer
1847  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1848  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1849  *				allow to avoid NIC hard IRQ, on busy queues.
1850  *
1851  *	@rx_handler:		handler for received packets
1852  *	@rx_handler_data: 	XXX: need comments on this one
1853  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1854  *				ingress processing
1855  *	@ingress_queue:		XXX: need comments on this one
1856  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1857  *	@broadcast:		hw bcast address
1858  *
1859  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1860  *			indexed by RX queue number. Assigned by driver.
1861  *			This must only be set if the ndo_rx_flow_steer
1862  *			operation is defined
1863  *	@index_hlist:		Device index hash chain
1864  *
1865  *	@_tx:			Array of TX queues
1866  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1867  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1868  *	@qdisc:			Root qdisc from userspace point of view
1869  *	@tx_queue_len:		Max frames per queue allowed
1870  *	@tx_global_lock: 	XXX: need comments on this one
1871  *	@xdp_bulkq:		XDP device bulk queue
1872  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1873  *
1874  *	@xps_maps:	XXX: need comments on this one
1875  *	@miniq_egress:		clsact qdisc specific data for
1876  *				egress processing
1877  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1878  *	@qdisc_hash:		qdisc hash table
1879  *	@watchdog_timeo:	Represents the timeout that is used by
1880  *				the watchdog (see dev_watchdog())
1881  *	@watchdog_timer:	List of timers
1882  *
1883  *	@proto_down_reason:	reason a netdev interface is held down
1884  *	@pcpu_refcnt:		Number of references to this device
1885  *	@dev_refcnt:		Number of references to this device
1886  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1887  *	@todo_list:		Delayed register/unregister
1888  *	@link_watch_list:	XXX: need comments on this one
1889  *
1890  *	@reg_state:		Register/unregister state machine
1891  *	@dismantle:		Device is going to be freed
1892  *	@rtnl_link_state:	This enum represents the phases of creating
1893  *				a new link
1894  *
1895  *	@needs_free_netdev:	Should unregister perform free_netdev?
1896  *	@priv_destructor:	Called from unregister
1897  *	@npinfo:		XXX: need comments on this one
1898  * 	@nd_net:		Network namespace this network device is inside
1899  *
1900  * 	@ml_priv:	Mid-layer private
1901  *	@ml_priv_type:  Mid-layer private type
1902  * 	@lstats:	Loopback statistics
1903  * 	@tstats:	Tunnel statistics
1904  * 	@dstats:	Dummy statistics
1905  * 	@vstats:	Virtual ethernet statistics
1906  *
1907  *	@garp_port:	GARP
1908  *	@mrp_port:	MRP
1909  *
1910  *	@dm_private:	Drop monitor private
1911  *
1912  *	@dev:		Class/net/name entry
1913  *	@sysfs_groups:	Space for optional device, statistics and wireless
1914  *			sysfs groups
1915  *
1916  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1917  *	@rtnl_link_ops:	Rtnl_link_ops
1918  *
1919  *	@gso_max_size:	Maximum size of generic segmentation offload
1920  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1921  *			NIC for GSO
1922  *
1923  *	@dcbnl_ops:	Data Center Bridging netlink ops
1924  *	@num_tc:	Number of traffic classes in the net device
1925  *	@tc_to_txq:	XXX: need comments on this one
1926  *	@prio_tc_map:	XXX: need comments on this one
1927  *
1928  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1929  *
1930  *	@priomap:	XXX: need comments on this one
1931  *	@phydev:	Physical device may attach itself
1932  *			for hardware timestamping
1933  *	@sfp_bus:	attached &struct sfp_bus structure.
1934  *
1935  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1936  *
1937  *	@proto_down:	protocol port state information can be sent to the
1938  *			switch driver and used to set the phys state of the
1939  *			switch port.
1940  *
1941  *	@wol_enabled:	Wake-on-LAN is enabled
1942  *
1943  *	@threaded:	napi threaded mode is enabled
1944  *
1945  *	@net_notifier_list:	List of per-net netdev notifier block
1946  *				that follow this device when it is moved
1947  *				to another network namespace.
1948  *
1949  *	@macsec_ops:    MACsec offloading ops
1950  *
1951  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1952  *				offload capabilities of the device
1953  *	@udp_tunnel_nic:	UDP tunnel offload state
1954  *	@xdp_state:		stores info on attached XDP BPF programs
1955  *
1956  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1957  *			dev->addr_list_lock.
1958  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1959  *			keep a list of interfaces to be deleted.
1960  *	@gro_max_size:	Maximum size of aggregated packet in generic
1961  *			receive offload (GRO)
1962  *
1963  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
1964  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
1965  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
1966  *	@dev_registered_tracker:	tracker for reference held while
1967  *					registered
1968  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
1969  *
1970  *	FIXME: cleanup struct net_device such that network protocol info
1971  *	moves out.
1972  */
1973 
1974 struct net_device {
1975 	char			name[IFNAMSIZ];
1976 	struct netdev_name_node	*name_node;
1977 	struct dev_ifalias	__rcu *ifalias;
1978 	/*
1979 	 *	I/O specific fields
1980 	 *	FIXME: Merge these and struct ifmap into one
1981 	 */
1982 	unsigned long		mem_end;
1983 	unsigned long		mem_start;
1984 	unsigned long		base_addr;
1985 
1986 	/*
1987 	 *	Some hardware also needs these fields (state,dev_list,
1988 	 *	napi_list,unreg_list,close_list) but they are not
1989 	 *	part of the usual set specified in Space.c.
1990 	 */
1991 
1992 	unsigned long		state;
1993 
1994 	struct list_head	dev_list;
1995 	struct list_head	napi_list;
1996 	struct list_head	unreg_list;
1997 	struct list_head	close_list;
1998 	struct list_head	ptype_all;
1999 	struct list_head	ptype_specific;
2000 
2001 	struct {
2002 		struct list_head upper;
2003 		struct list_head lower;
2004 	} adj_list;
2005 
2006 	/* Read-mostly cache-line for fast-path access */
2007 	unsigned int		flags;
2008 	unsigned long long	priv_flags;
2009 	const struct net_device_ops *netdev_ops;
2010 	int			ifindex;
2011 	unsigned short		gflags;
2012 	unsigned short		hard_header_len;
2013 
2014 	/* Note : dev->mtu is often read without holding a lock.
2015 	 * Writers usually hold RTNL.
2016 	 * It is recommended to use READ_ONCE() to annotate the reads,
2017 	 * and to use WRITE_ONCE() to annotate the writes.
2018 	 */
2019 	unsigned int		mtu;
2020 	unsigned short		needed_headroom;
2021 	unsigned short		needed_tailroom;
2022 
2023 	netdev_features_t	features;
2024 	netdev_features_t	hw_features;
2025 	netdev_features_t	wanted_features;
2026 	netdev_features_t	vlan_features;
2027 	netdev_features_t	hw_enc_features;
2028 	netdev_features_t	mpls_features;
2029 	netdev_features_t	gso_partial_features;
2030 
2031 	unsigned int		min_mtu;
2032 	unsigned int		max_mtu;
2033 	unsigned short		type;
2034 	unsigned char		min_header_len;
2035 	unsigned char		name_assign_type;
2036 
2037 	int			group;
2038 
2039 	struct net_device_stats	stats; /* not used by modern drivers */
2040 
2041 	struct net_device_core_stats __percpu *core_stats;
2042 
2043 	/* Stats to monitor link on/off, flapping */
2044 	atomic_t		carrier_up_count;
2045 	atomic_t		carrier_down_count;
2046 
2047 #ifdef CONFIG_WIRELESS_EXT
2048 	const struct iw_handler_def *wireless_handlers;
2049 	struct iw_public_data	*wireless_data;
2050 #endif
2051 	const struct ethtool_ops *ethtool_ops;
2052 #ifdef CONFIG_NET_L3_MASTER_DEV
2053 	const struct l3mdev_ops	*l3mdev_ops;
2054 #endif
2055 #if IS_ENABLED(CONFIG_IPV6)
2056 	const struct ndisc_ops *ndisc_ops;
2057 #endif
2058 
2059 #ifdef CONFIG_XFRM_OFFLOAD
2060 	const struct xfrmdev_ops *xfrmdev_ops;
2061 #endif
2062 
2063 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2064 	const struct tlsdev_ops *tlsdev_ops;
2065 #endif
2066 
2067 	const struct header_ops *header_ops;
2068 
2069 	unsigned char		operstate;
2070 	unsigned char		link_mode;
2071 
2072 	unsigned char		if_port;
2073 	unsigned char		dma;
2074 
2075 	/* Interface address info. */
2076 	unsigned char		perm_addr[MAX_ADDR_LEN];
2077 	unsigned char		addr_assign_type;
2078 	unsigned char		addr_len;
2079 	unsigned char		upper_level;
2080 	unsigned char		lower_level;
2081 
2082 	unsigned short		neigh_priv_len;
2083 	unsigned short          dev_id;
2084 	unsigned short          dev_port;
2085 	unsigned short		padded;
2086 
2087 	spinlock_t		addr_list_lock;
2088 	int			irq;
2089 
2090 	struct netdev_hw_addr_list	uc;
2091 	struct netdev_hw_addr_list	mc;
2092 	struct netdev_hw_addr_list	dev_addrs;
2093 
2094 #ifdef CONFIG_SYSFS
2095 	struct kset		*queues_kset;
2096 #endif
2097 #ifdef CONFIG_LOCKDEP
2098 	struct list_head	unlink_list;
2099 #endif
2100 	unsigned int		promiscuity;
2101 	unsigned int		allmulti;
2102 	bool			uc_promisc;
2103 #ifdef CONFIG_LOCKDEP
2104 	unsigned char		nested_level;
2105 #endif
2106 
2107 
2108 	/* Protocol-specific pointers */
2109 
2110 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2111 	struct vlan_info __rcu	*vlan_info;
2112 #endif
2113 #if IS_ENABLED(CONFIG_NET_DSA)
2114 	struct dsa_port		*dsa_ptr;
2115 #endif
2116 #if IS_ENABLED(CONFIG_TIPC)
2117 	struct tipc_bearer __rcu *tipc_ptr;
2118 #endif
2119 #if IS_ENABLED(CONFIG_ATALK)
2120 	void 			*atalk_ptr;
2121 #endif
2122 	struct in_device __rcu	*ip_ptr;
2123 #if IS_ENABLED(CONFIG_DECNET)
2124 	struct dn_dev __rcu     *dn_ptr;
2125 #endif
2126 	struct inet6_dev __rcu	*ip6_ptr;
2127 #if IS_ENABLED(CONFIG_AX25)
2128 	void			*ax25_ptr;
2129 #endif
2130 	struct wireless_dev	*ieee80211_ptr;
2131 	struct wpan_dev		*ieee802154_ptr;
2132 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2133 	struct mpls_dev __rcu	*mpls_ptr;
2134 #endif
2135 #if IS_ENABLED(CONFIG_MCTP)
2136 	struct mctp_dev __rcu	*mctp_ptr;
2137 #endif
2138 
2139 /*
2140  * Cache lines mostly used on receive path (including eth_type_trans())
2141  */
2142 	/* Interface address info used in eth_type_trans() */
2143 	const unsigned char	*dev_addr;
2144 
2145 	struct netdev_rx_queue	*_rx;
2146 	unsigned int		num_rx_queues;
2147 	unsigned int		real_num_rx_queues;
2148 
2149 	struct bpf_prog __rcu	*xdp_prog;
2150 	unsigned long		gro_flush_timeout;
2151 	int			napi_defer_hard_irqs;
2152 #define GRO_MAX_SIZE		65536
2153 	unsigned int		gro_max_size;
2154 	rx_handler_func_t __rcu	*rx_handler;
2155 	void __rcu		*rx_handler_data;
2156 
2157 #ifdef CONFIG_NET_CLS_ACT
2158 	struct mini_Qdisc __rcu	*miniq_ingress;
2159 #endif
2160 	struct netdev_queue __rcu *ingress_queue;
2161 #ifdef CONFIG_NETFILTER_INGRESS
2162 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2163 #endif
2164 
2165 	unsigned char		broadcast[MAX_ADDR_LEN];
2166 #ifdef CONFIG_RFS_ACCEL
2167 	struct cpu_rmap		*rx_cpu_rmap;
2168 #endif
2169 	struct hlist_node	index_hlist;
2170 
2171 /*
2172  * Cache lines mostly used on transmit path
2173  */
2174 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2175 	unsigned int		num_tx_queues;
2176 	unsigned int		real_num_tx_queues;
2177 	struct Qdisc __rcu	*qdisc;
2178 	unsigned int		tx_queue_len;
2179 	spinlock_t		tx_global_lock;
2180 
2181 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2182 
2183 #ifdef CONFIG_XPS
2184 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2185 #endif
2186 #ifdef CONFIG_NET_CLS_ACT
2187 	struct mini_Qdisc __rcu	*miniq_egress;
2188 #endif
2189 #ifdef CONFIG_NETFILTER_EGRESS
2190 	struct nf_hook_entries __rcu *nf_hooks_egress;
2191 #endif
2192 
2193 #ifdef CONFIG_NET_SCHED
2194 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2195 #endif
2196 	/* These may be needed for future network-power-down code. */
2197 	struct timer_list	watchdog_timer;
2198 	int			watchdog_timeo;
2199 
2200 	u32                     proto_down_reason;
2201 
2202 	struct list_head	todo_list;
2203 
2204 #ifdef CONFIG_PCPU_DEV_REFCNT
2205 	int __percpu		*pcpu_refcnt;
2206 #else
2207 	refcount_t		dev_refcnt;
2208 #endif
2209 	struct ref_tracker_dir	refcnt_tracker;
2210 
2211 	struct list_head	link_watch_list;
2212 
2213 	enum { NETREG_UNINITIALIZED=0,
2214 	       NETREG_REGISTERED,	/* completed register_netdevice */
2215 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2216 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2217 	       NETREG_RELEASED,		/* called free_netdev */
2218 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2219 	} reg_state:8;
2220 
2221 	bool dismantle;
2222 
2223 	enum {
2224 		RTNL_LINK_INITIALIZED,
2225 		RTNL_LINK_INITIALIZING,
2226 	} rtnl_link_state:16;
2227 
2228 	bool needs_free_netdev;
2229 	void (*priv_destructor)(struct net_device *dev);
2230 
2231 #ifdef CONFIG_NETPOLL
2232 	struct netpoll_info __rcu	*npinfo;
2233 #endif
2234 
2235 	possible_net_t			nd_net;
2236 
2237 	/* mid-layer private */
2238 	void				*ml_priv;
2239 	enum netdev_ml_priv_type	ml_priv_type;
2240 
2241 	union {
2242 		struct pcpu_lstats __percpu		*lstats;
2243 		struct pcpu_sw_netstats __percpu	*tstats;
2244 		struct pcpu_dstats __percpu		*dstats;
2245 	};
2246 
2247 #if IS_ENABLED(CONFIG_GARP)
2248 	struct garp_port __rcu	*garp_port;
2249 #endif
2250 #if IS_ENABLED(CONFIG_MRP)
2251 	struct mrp_port __rcu	*mrp_port;
2252 #endif
2253 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2254 	struct dm_hw_stat_delta __rcu *dm_private;
2255 #endif
2256 	struct device		dev;
2257 	const struct attribute_group *sysfs_groups[4];
2258 	const struct attribute_group *sysfs_rx_queue_group;
2259 
2260 	const struct rtnl_link_ops *rtnl_link_ops;
2261 
2262 	/* for setting kernel sock attribute on TCP connection setup */
2263 #define GSO_MAX_SIZE		65536
2264 	unsigned int		gso_max_size;
2265 #define GSO_MAX_SEGS		65535
2266 	u16			gso_max_segs;
2267 
2268 #ifdef CONFIG_DCB
2269 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2270 #endif
2271 	s16			num_tc;
2272 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2273 	u8			prio_tc_map[TC_BITMASK + 1];
2274 
2275 #if IS_ENABLED(CONFIG_FCOE)
2276 	unsigned int		fcoe_ddp_xid;
2277 #endif
2278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2279 	struct netprio_map __rcu *priomap;
2280 #endif
2281 	struct phy_device	*phydev;
2282 	struct sfp_bus		*sfp_bus;
2283 	struct lock_class_key	*qdisc_tx_busylock;
2284 	bool			proto_down;
2285 	unsigned		wol_enabled:1;
2286 	unsigned		threaded:1;
2287 
2288 	struct list_head	net_notifier_list;
2289 
2290 #if IS_ENABLED(CONFIG_MACSEC)
2291 	/* MACsec management functions */
2292 	const struct macsec_ops *macsec_ops;
2293 #endif
2294 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2295 	struct udp_tunnel_nic	*udp_tunnel_nic;
2296 
2297 	/* protected by rtnl_lock */
2298 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2299 
2300 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2301 	netdevice_tracker	linkwatch_dev_tracker;
2302 	netdevice_tracker	watchdog_dev_tracker;
2303 	netdevice_tracker	dev_registered_tracker;
2304 	struct rtnl_hw_stats64	*offload_xstats_l3;
2305 };
2306 #define to_net_dev(d) container_of(d, struct net_device, dev)
2307 
2308 static inline bool netif_elide_gro(const struct net_device *dev)
2309 {
2310 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2311 		return true;
2312 	return false;
2313 }
2314 
2315 #define	NETDEV_ALIGN		32
2316 
2317 static inline
2318 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2319 {
2320 	return dev->prio_tc_map[prio & TC_BITMASK];
2321 }
2322 
2323 static inline
2324 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2325 {
2326 	if (tc >= dev->num_tc)
2327 		return -EINVAL;
2328 
2329 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2330 	return 0;
2331 }
2332 
2333 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2334 void netdev_reset_tc(struct net_device *dev);
2335 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2336 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2337 
2338 static inline
2339 int netdev_get_num_tc(struct net_device *dev)
2340 {
2341 	return dev->num_tc;
2342 }
2343 
2344 static inline void net_prefetch(void *p)
2345 {
2346 	prefetch(p);
2347 #if L1_CACHE_BYTES < 128
2348 	prefetch((u8 *)p + L1_CACHE_BYTES);
2349 #endif
2350 }
2351 
2352 static inline void net_prefetchw(void *p)
2353 {
2354 	prefetchw(p);
2355 #if L1_CACHE_BYTES < 128
2356 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2357 #endif
2358 }
2359 
2360 void netdev_unbind_sb_channel(struct net_device *dev,
2361 			      struct net_device *sb_dev);
2362 int netdev_bind_sb_channel_queue(struct net_device *dev,
2363 				 struct net_device *sb_dev,
2364 				 u8 tc, u16 count, u16 offset);
2365 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2366 static inline int netdev_get_sb_channel(struct net_device *dev)
2367 {
2368 	return max_t(int, -dev->num_tc, 0);
2369 }
2370 
2371 static inline
2372 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2373 					 unsigned int index)
2374 {
2375 	return &dev->_tx[index];
2376 }
2377 
2378 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2379 						    const struct sk_buff *skb)
2380 {
2381 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2382 }
2383 
2384 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2385 					    void (*f)(struct net_device *,
2386 						      struct netdev_queue *,
2387 						      void *),
2388 					    void *arg)
2389 {
2390 	unsigned int i;
2391 
2392 	for (i = 0; i < dev->num_tx_queues; i++)
2393 		f(dev, &dev->_tx[i], arg);
2394 }
2395 
2396 #define netdev_lockdep_set_classes(dev)				\
2397 {								\
2398 	static struct lock_class_key qdisc_tx_busylock_key;	\
2399 	static struct lock_class_key qdisc_xmit_lock_key;	\
2400 	static struct lock_class_key dev_addr_list_lock_key;	\
2401 	unsigned int i;						\
2402 								\
2403 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2404 	lockdep_set_class(&(dev)->addr_list_lock,		\
2405 			  &dev_addr_list_lock_key);		\
2406 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2407 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2408 				  &qdisc_xmit_lock_key);	\
2409 }
2410 
2411 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2412 		     struct net_device *sb_dev);
2413 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2414 					 struct sk_buff *skb,
2415 					 struct net_device *sb_dev);
2416 
2417 /* returns the headroom that the master device needs to take in account
2418  * when forwarding to this dev
2419  */
2420 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2421 {
2422 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2423 }
2424 
2425 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2426 {
2427 	if (dev->netdev_ops->ndo_set_rx_headroom)
2428 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2429 }
2430 
2431 /* set the device rx headroom to the dev's default */
2432 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2433 {
2434 	netdev_set_rx_headroom(dev, -1);
2435 }
2436 
2437 static inline void *netdev_get_ml_priv(struct net_device *dev,
2438 				       enum netdev_ml_priv_type type)
2439 {
2440 	if (dev->ml_priv_type != type)
2441 		return NULL;
2442 
2443 	return dev->ml_priv;
2444 }
2445 
2446 static inline void netdev_set_ml_priv(struct net_device *dev,
2447 				      void *ml_priv,
2448 				      enum netdev_ml_priv_type type)
2449 {
2450 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2451 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2452 	     dev->ml_priv_type, type);
2453 	WARN(!dev->ml_priv_type && dev->ml_priv,
2454 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2455 
2456 	dev->ml_priv = ml_priv;
2457 	dev->ml_priv_type = type;
2458 }
2459 
2460 /*
2461  * Net namespace inlines
2462  */
2463 static inline
2464 struct net *dev_net(const struct net_device *dev)
2465 {
2466 	return read_pnet(&dev->nd_net);
2467 }
2468 
2469 static inline
2470 void dev_net_set(struct net_device *dev, struct net *net)
2471 {
2472 	write_pnet(&dev->nd_net, net);
2473 }
2474 
2475 /**
2476  *	netdev_priv - access network device private data
2477  *	@dev: network device
2478  *
2479  * Get network device private data
2480  */
2481 static inline void *netdev_priv(const struct net_device *dev)
2482 {
2483 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2484 }
2485 
2486 /* Set the sysfs physical device reference for the network logical device
2487  * if set prior to registration will cause a symlink during initialization.
2488  */
2489 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2490 
2491 /* Set the sysfs device type for the network logical device to allow
2492  * fine-grained identification of different network device types. For
2493  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2494  */
2495 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2496 
2497 /* Default NAPI poll() weight
2498  * Device drivers are strongly advised to not use bigger value
2499  */
2500 #define NAPI_POLL_WEIGHT 64
2501 
2502 /**
2503  *	netif_napi_add - initialize a NAPI context
2504  *	@dev:  network device
2505  *	@napi: NAPI context
2506  *	@poll: polling function
2507  *	@weight: default weight
2508  *
2509  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2510  * *any* of the other NAPI-related functions.
2511  */
2512 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2513 		    int (*poll)(struct napi_struct *, int), int weight);
2514 
2515 /**
2516  *	netif_tx_napi_add - initialize a NAPI context
2517  *	@dev:  network device
2518  *	@napi: NAPI context
2519  *	@poll: polling function
2520  *	@weight: default weight
2521  *
2522  * This variant of netif_napi_add() should be used from drivers using NAPI
2523  * to exclusively poll a TX queue.
2524  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2525  */
2526 static inline void netif_tx_napi_add(struct net_device *dev,
2527 				     struct napi_struct *napi,
2528 				     int (*poll)(struct napi_struct *, int),
2529 				     int weight)
2530 {
2531 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2532 	netif_napi_add(dev, napi, poll, weight);
2533 }
2534 
2535 /**
2536  *  __netif_napi_del - remove a NAPI context
2537  *  @napi: NAPI context
2538  *
2539  * Warning: caller must observe RCU grace period before freeing memory
2540  * containing @napi. Drivers might want to call this helper to combine
2541  * all the needed RCU grace periods into a single one.
2542  */
2543 void __netif_napi_del(struct napi_struct *napi);
2544 
2545 /**
2546  *  netif_napi_del - remove a NAPI context
2547  *  @napi: NAPI context
2548  *
2549  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2550  */
2551 static inline void netif_napi_del(struct napi_struct *napi)
2552 {
2553 	__netif_napi_del(napi);
2554 	synchronize_net();
2555 }
2556 
2557 struct packet_type {
2558 	__be16			type;	/* This is really htons(ether_type). */
2559 	bool			ignore_outgoing;
2560 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2561 	netdevice_tracker	dev_tracker;
2562 	int			(*func) (struct sk_buff *,
2563 					 struct net_device *,
2564 					 struct packet_type *,
2565 					 struct net_device *);
2566 	void			(*list_func) (struct list_head *,
2567 					      struct packet_type *,
2568 					      struct net_device *);
2569 	bool			(*id_match)(struct packet_type *ptype,
2570 					    struct sock *sk);
2571 	struct net		*af_packet_net;
2572 	void			*af_packet_priv;
2573 	struct list_head	list;
2574 };
2575 
2576 struct offload_callbacks {
2577 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2578 						netdev_features_t features);
2579 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2580 						struct sk_buff *skb);
2581 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2582 };
2583 
2584 struct packet_offload {
2585 	__be16			 type;	/* This is really htons(ether_type). */
2586 	u16			 priority;
2587 	struct offload_callbacks callbacks;
2588 	struct list_head	 list;
2589 };
2590 
2591 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2592 struct pcpu_sw_netstats {
2593 	u64     rx_packets;
2594 	u64     rx_bytes;
2595 	u64     tx_packets;
2596 	u64     tx_bytes;
2597 	struct u64_stats_sync   syncp;
2598 } __aligned(4 * sizeof(u64));
2599 
2600 struct pcpu_lstats {
2601 	u64_stats_t packets;
2602 	u64_stats_t bytes;
2603 	struct u64_stats_sync syncp;
2604 } __aligned(2 * sizeof(u64));
2605 
2606 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2607 
2608 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2609 {
2610 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2611 
2612 	u64_stats_update_begin(&tstats->syncp);
2613 	tstats->rx_bytes += len;
2614 	tstats->rx_packets++;
2615 	u64_stats_update_end(&tstats->syncp);
2616 }
2617 
2618 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2619 					  unsigned int packets,
2620 					  unsigned int len)
2621 {
2622 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2623 
2624 	u64_stats_update_begin(&tstats->syncp);
2625 	tstats->tx_bytes += len;
2626 	tstats->tx_packets += packets;
2627 	u64_stats_update_end(&tstats->syncp);
2628 }
2629 
2630 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2631 {
2632 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2633 
2634 	u64_stats_update_begin(&lstats->syncp);
2635 	u64_stats_add(&lstats->bytes, len);
2636 	u64_stats_inc(&lstats->packets);
2637 	u64_stats_update_end(&lstats->syncp);
2638 }
2639 
2640 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2641 ({									\
2642 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2643 	if (pcpu_stats)	{						\
2644 		int __cpu;						\
2645 		for_each_possible_cpu(__cpu) {				\
2646 			typeof(type) *stat;				\
2647 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2648 			u64_stats_init(&stat->syncp);			\
2649 		}							\
2650 	}								\
2651 	pcpu_stats;							\
2652 })
2653 
2654 #define netdev_alloc_pcpu_stats(type)					\
2655 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2656 
2657 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2658 ({									\
2659 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2660 	if (pcpu_stats) {						\
2661 		int __cpu;						\
2662 		for_each_possible_cpu(__cpu) {				\
2663 			typeof(type) *stat;				\
2664 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2665 			u64_stats_init(&stat->syncp);			\
2666 		}							\
2667 	}								\
2668 	pcpu_stats;							\
2669 })
2670 
2671 enum netdev_lag_tx_type {
2672 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2673 	NETDEV_LAG_TX_TYPE_RANDOM,
2674 	NETDEV_LAG_TX_TYPE_BROADCAST,
2675 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2676 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2677 	NETDEV_LAG_TX_TYPE_HASH,
2678 };
2679 
2680 enum netdev_lag_hash {
2681 	NETDEV_LAG_HASH_NONE,
2682 	NETDEV_LAG_HASH_L2,
2683 	NETDEV_LAG_HASH_L34,
2684 	NETDEV_LAG_HASH_L23,
2685 	NETDEV_LAG_HASH_E23,
2686 	NETDEV_LAG_HASH_E34,
2687 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2688 	NETDEV_LAG_HASH_UNKNOWN,
2689 };
2690 
2691 struct netdev_lag_upper_info {
2692 	enum netdev_lag_tx_type tx_type;
2693 	enum netdev_lag_hash hash_type;
2694 };
2695 
2696 struct netdev_lag_lower_state_info {
2697 	u8 link_up : 1,
2698 	   tx_enabled : 1;
2699 };
2700 
2701 #include <linux/notifier.h>
2702 
2703 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2704  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2705  * adding new types.
2706  */
2707 enum netdev_cmd {
2708 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2709 	NETDEV_DOWN,
2710 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2711 				   detected a hardware crash and restarted
2712 				   - we can use this eg to kick tcp sessions
2713 				   once done */
2714 	NETDEV_CHANGE,		/* Notify device state change */
2715 	NETDEV_REGISTER,
2716 	NETDEV_UNREGISTER,
2717 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2718 	NETDEV_CHANGEADDR,	/* notify after the address change */
2719 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2720 	NETDEV_GOING_DOWN,
2721 	NETDEV_CHANGENAME,
2722 	NETDEV_FEAT_CHANGE,
2723 	NETDEV_BONDING_FAILOVER,
2724 	NETDEV_PRE_UP,
2725 	NETDEV_PRE_TYPE_CHANGE,
2726 	NETDEV_POST_TYPE_CHANGE,
2727 	NETDEV_POST_INIT,
2728 	NETDEV_RELEASE,
2729 	NETDEV_NOTIFY_PEERS,
2730 	NETDEV_JOIN,
2731 	NETDEV_CHANGEUPPER,
2732 	NETDEV_RESEND_IGMP,
2733 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2734 	NETDEV_CHANGEINFODATA,
2735 	NETDEV_BONDING_INFO,
2736 	NETDEV_PRECHANGEUPPER,
2737 	NETDEV_CHANGELOWERSTATE,
2738 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2739 	NETDEV_UDP_TUNNEL_DROP_INFO,
2740 	NETDEV_CHANGE_TX_QUEUE_LEN,
2741 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2742 	NETDEV_CVLAN_FILTER_DROP_INFO,
2743 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2744 	NETDEV_SVLAN_FILTER_DROP_INFO,
2745 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2746 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2747 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2748 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2749 };
2750 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2751 
2752 int register_netdevice_notifier(struct notifier_block *nb);
2753 int unregister_netdevice_notifier(struct notifier_block *nb);
2754 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2755 int unregister_netdevice_notifier_net(struct net *net,
2756 				      struct notifier_block *nb);
2757 int register_netdevice_notifier_dev_net(struct net_device *dev,
2758 					struct notifier_block *nb,
2759 					struct netdev_net_notifier *nn);
2760 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2761 					  struct notifier_block *nb,
2762 					  struct netdev_net_notifier *nn);
2763 
2764 struct netdev_notifier_info {
2765 	struct net_device	*dev;
2766 	struct netlink_ext_ack	*extack;
2767 };
2768 
2769 struct netdev_notifier_info_ext {
2770 	struct netdev_notifier_info info; /* must be first */
2771 	union {
2772 		u32 mtu;
2773 	} ext;
2774 };
2775 
2776 struct netdev_notifier_change_info {
2777 	struct netdev_notifier_info info; /* must be first */
2778 	unsigned int flags_changed;
2779 };
2780 
2781 struct netdev_notifier_changeupper_info {
2782 	struct netdev_notifier_info info; /* must be first */
2783 	struct net_device *upper_dev; /* new upper dev */
2784 	bool master; /* is upper dev master */
2785 	bool linking; /* is the notification for link or unlink */
2786 	void *upper_info; /* upper dev info */
2787 };
2788 
2789 struct netdev_notifier_changelowerstate_info {
2790 	struct netdev_notifier_info info; /* must be first */
2791 	void *lower_state_info; /* is lower dev state */
2792 };
2793 
2794 struct netdev_notifier_pre_changeaddr_info {
2795 	struct netdev_notifier_info info; /* must be first */
2796 	const unsigned char *dev_addr;
2797 };
2798 
2799 enum netdev_offload_xstats_type {
2800 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2801 };
2802 
2803 struct netdev_notifier_offload_xstats_info {
2804 	struct netdev_notifier_info info; /* must be first */
2805 	enum netdev_offload_xstats_type type;
2806 
2807 	union {
2808 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2809 		struct netdev_notifier_offload_xstats_rd *report_delta;
2810 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2811 		struct netdev_notifier_offload_xstats_ru *report_used;
2812 	};
2813 };
2814 
2815 int netdev_offload_xstats_enable(struct net_device *dev,
2816 				 enum netdev_offload_xstats_type type,
2817 				 struct netlink_ext_ack *extack);
2818 int netdev_offload_xstats_disable(struct net_device *dev,
2819 				  enum netdev_offload_xstats_type type);
2820 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2821 				   enum netdev_offload_xstats_type type);
2822 int netdev_offload_xstats_get(struct net_device *dev,
2823 			      enum netdev_offload_xstats_type type,
2824 			      struct rtnl_hw_stats64 *stats, bool *used,
2825 			      struct netlink_ext_ack *extack);
2826 void
2827 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2828 				   const struct rtnl_hw_stats64 *stats);
2829 void
2830 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2831 void netdev_offload_xstats_push_delta(struct net_device *dev,
2832 				      enum netdev_offload_xstats_type type,
2833 				      const struct rtnl_hw_stats64 *stats);
2834 
2835 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2836 					     struct net_device *dev)
2837 {
2838 	info->dev = dev;
2839 	info->extack = NULL;
2840 }
2841 
2842 static inline struct net_device *
2843 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2844 {
2845 	return info->dev;
2846 }
2847 
2848 static inline struct netlink_ext_ack *
2849 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2850 {
2851 	return info->extack;
2852 }
2853 
2854 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2855 
2856 
2857 extern rwlock_t				dev_base_lock;		/* Device list lock */
2858 
2859 #define for_each_netdev(net, d)		\
2860 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2861 #define for_each_netdev_reverse(net, d)	\
2862 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2863 #define for_each_netdev_rcu(net, d)		\
2864 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2865 #define for_each_netdev_safe(net, d, n)	\
2866 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2867 #define for_each_netdev_continue(net, d)		\
2868 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2869 #define for_each_netdev_continue_reverse(net, d)		\
2870 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2871 						     dev_list)
2872 #define for_each_netdev_continue_rcu(net, d)		\
2873 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2874 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2875 		for_each_netdev_rcu(&init_net, slave)	\
2876 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2877 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2878 
2879 static inline struct net_device *next_net_device(struct net_device *dev)
2880 {
2881 	struct list_head *lh;
2882 	struct net *net;
2883 
2884 	net = dev_net(dev);
2885 	lh = dev->dev_list.next;
2886 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2887 }
2888 
2889 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2890 {
2891 	struct list_head *lh;
2892 	struct net *net;
2893 
2894 	net = dev_net(dev);
2895 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2896 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2897 }
2898 
2899 static inline struct net_device *first_net_device(struct net *net)
2900 {
2901 	return list_empty(&net->dev_base_head) ? NULL :
2902 		net_device_entry(net->dev_base_head.next);
2903 }
2904 
2905 static inline struct net_device *first_net_device_rcu(struct net *net)
2906 {
2907 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2908 
2909 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2910 }
2911 
2912 int netdev_boot_setup_check(struct net_device *dev);
2913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2914 				       const char *hwaddr);
2915 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2916 void dev_add_pack(struct packet_type *pt);
2917 void dev_remove_pack(struct packet_type *pt);
2918 void __dev_remove_pack(struct packet_type *pt);
2919 void dev_add_offload(struct packet_offload *po);
2920 void dev_remove_offload(struct packet_offload *po);
2921 
2922 int dev_get_iflink(const struct net_device *dev);
2923 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2924 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2925 			  struct net_device_path_stack *stack);
2926 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2927 				      unsigned short mask);
2928 struct net_device *dev_get_by_name(struct net *net, const char *name);
2929 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2930 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2931 bool netdev_name_in_use(struct net *net, const char *name);
2932 int dev_alloc_name(struct net_device *dev, const char *name);
2933 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2934 void dev_close(struct net_device *dev);
2935 void dev_close_many(struct list_head *head, bool unlink);
2936 void dev_disable_lro(struct net_device *dev);
2937 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2938 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2939 		     struct net_device *sb_dev);
2940 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2941 		       struct net_device *sb_dev);
2942 
2943 int dev_queue_xmit(struct sk_buff *skb);
2944 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2945 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2946 
2947 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2948 {
2949 	int ret;
2950 
2951 	ret = __dev_direct_xmit(skb, queue_id);
2952 	if (!dev_xmit_complete(ret))
2953 		kfree_skb(skb);
2954 	return ret;
2955 }
2956 
2957 int register_netdevice(struct net_device *dev);
2958 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2959 void unregister_netdevice_many(struct list_head *head);
2960 static inline void unregister_netdevice(struct net_device *dev)
2961 {
2962 	unregister_netdevice_queue(dev, NULL);
2963 }
2964 
2965 int netdev_refcnt_read(const struct net_device *dev);
2966 void free_netdev(struct net_device *dev);
2967 void netdev_freemem(struct net_device *dev);
2968 int init_dummy_netdev(struct net_device *dev);
2969 
2970 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2971 					 struct sk_buff *skb,
2972 					 bool all_slaves);
2973 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
2974 					    struct sock *sk);
2975 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2976 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2977 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2978 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2979 int dev_restart(struct net_device *dev);
2980 
2981 
2982 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2983 				  unsigned short type,
2984 				  const void *daddr, const void *saddr,
2985 				  unsigned int len)
2986 {
2987 	if (!dev->header_ops || !dev->header_ops->create)
2988 		return 0;
2989 
2990 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2991 }
2992 
2993 static inline int dev_parse_header(const struct sk_buff *skb,
2994 				   unsigned char *haddr)
2995 {
2996 	const struct net_device *dev = skb->dev;
2997 
2998 	if (!dev->header_ops || !dev->header_ops->parse)
2999 		return 0;
3000 	return dev->header_ops->parse(skb, haddr);
3001 }
3002 
3003 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3004 {
3005 	const struct net_device *dev = skb->dev;
3006 
3007 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3008 		return 0;
3009 	return dev->header_ops->parse_protocol(skb);
3010 }
3011 
3012 /* ll_header must have at least hard_header_len allocated */
3013 static inline bool dev_validate_header(const struct net_device *dev,
3014 				       char *ll_header, int len)
3015 {
3016 	if (likely(len >= dev->hard_header_len))
3017 		return true;
3018 	if (len < dev->min_header_len)
3019 		return false;
3020 
3021 	if (capable(CAP_SYS_RAWIO)) {
3022 		memset(ll_header + len, 0, dev->hard_header_len - len);
3023 		return true;
3024 	}
3025 
3026 	if (dev->header_ops && dev->header_ops->validate)
3027 		return dev->header_ops->validate(ll_header, len);
3028 
3029 	return false;
3030 }
3031 
3032 static inline bool dev_has_header(const struct net_device *dev)
3033 {
3034 	return dev->header_ops && dev->header_ops->create;
3035 }
3036 
3037 /*
3038  * Incoming packets are placed on per-CPU queues
3039  */
3040 struct softnet_data {
3041 	struct list_head	poll_list;
3042 	struct sk_buff_head	process_queue;
3043 
3044 	/* stats */
3045 	unsigned int		processed;
3046 	unsigned int		time_squeeze;
3047 	unsigned int		received_rps;
3048 #ifdef CONFIG_RPS
3049 	struct softnet_data	*rps_ipi_list;
3050 #endif
3051 #ifdef CONFIG_NET_FLOW_LIMIT
3052 	struct sd_flow_limit __rcu *flow_limit;
3053 #endif
3054 	struct Qdisc		*output_queue;
3055 	struct Qdisc		**output_queue_tailp;
3056 	struct sk_buff		*completion_queue;
3057 #ifdef CONFIG_XFRM_OFFLOAD
3058 	struct sk_buff_head	xfrm_backlog;
3059 #endif
3060 	/* written and read only by owning cpu: */
3061 	struct {
3062 		u16 recursion;
3063 		u8  more;
3064 #ifdef CONFIG_NET_EGRESS
3065 		u8  skip_txqueue;
3066 #endif
3067 	} xmit;
3068 #ifdef CONFIG_RPS
3069 	/* input_queue_head should be written by cpu owning this struct,
3070 	 * and only read by other cpus. Worth using a cache line.
3071 	 */
3072 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3073 
3074 	/* Elements below can be accessed between CPUs for RPS/RFS */
3075 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3076 	struct softnet_data	*rps_ipi_next;
3077 	unsigned int		cpu;
3078 	unsigned int		input_queue_tail;
3079 #endif
3080 	unsigned int		dropped;
3081 	struct sk_buff_head	input_pkt_queue;
3082 	struct napi_struct	backlog;
3083 
3084 };
3085 
3086 static inline void input_queue_head_incr(struct softnet_data *sd)
3087 {
3088 #ifdef CONFIG_RPS
3089 	sd->input_queue_head++;
3090 #endif
3091 }
3092 
3093 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3094 					      unsigned int *qtail)
3095 {
3096 #ifdef CONFIG_RPS
3097 	*qtail = ++sd->input_queue_tail;
3098 #endif
3099 }
3100 
3101 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3102 
3103 static inline int dev_recursion_level(void)
3104 {
3105 	return this_cpu_read(softnet_data.xmit.recursion);
3106 }
3107 
3108 #define XMIT_RECURSION_LIMIT	8
3109 static inline bool dev_xmit_recursion(void)
3110 {
3111 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3112 			XMIT_RECURSION_LIMIT);
3113 }
3114 
3115 static inline void dev_xmit_recursion_inc(void)
3116 {
3117 	__this_cpu_inc(softnet_data.xmit.recursion);
3118 }
3119 
3120 static inline void dev_xmit_recursion_dec(void)
3121 {
3122 	__this_cpu_dec(softnet_data.xmit.recursion);
3123 }
3124 
3125 void __netif_schedule(struct Qdisc *q);
3126 void netif_schedule_queue(struct netdev_queue *txq);
3127 
3128 static inline void netif_tx_schedule_all(struct net_device *dev)
3129 {
3130 	unsigned int i;
3131 
3132 	for (i = 0; i < dev->num_tx_queues; i++)
3133 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3134 }
3135 
3136 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3137 {
3138 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3139 }
3140 
3141 /**
3142  *	netif_start_queue - allow transmit
3143  *	@dev: network device
3144  *
3145  *	Allow upper layers to call the device hard_start_xmit routine.
3146  */
3147 static inline void netif_start_queue(struct net_device *dev)
3148 {
3149 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3150 }
3151 
3152 static inline void netif_tx_start_all_queues(struct net_device *dev)
3153 {
3154 	unsigned int i;
3155 
3156 	for (i = 0; i < dev->num_tx_queues; i++) {
3157 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3158 		netif_tx_start_queue(txq);
3159 	}
3160 }
3161 
3162 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3163 
3164 /**
3165  *	netif_wake_queue - restart transmit
3166  *	@dev: network device
3167  *
3168  *	Allow upper layers to call the device hard_start_xmit routine.
3169  *	Used for flow control when transmit resources are available.
3170  */
3171 static inline void netif_wake_queue(struct net_device *dev)
3172 {
3173 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3174 }
3175 
3176 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3177 {
3178 	unsigned int i;
3179 
3180 	for (i = 0; i < dev->num_tx_queues; i++) {
3181 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3182 		netif_tx_wake_queue(txq);
3183 	}
3184 }
3185 
3186 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3187 {
3188 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3189 }
3190 
3191 /**
3192  *	netif_stop_queue - stop transmitted packets
3193  *	@dev: network device
3194  *
3195  *	Stop upper layers calling the device hard_start_xmit routine.
3196  *	Used for flow control when transmit resources are unavailable.
3197  */
3198 static inline void netif_stop_queue(struct net_device *dev)
3199 {
3200 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3201 }
3202 
3203 void netif_tx_stop_all_queues(struct net_device *dev);
3204 
3205 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3206 {
3207 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3208 }
3209 
3210 /**
3211  *	netif_queue_stopped - test if transmit queue is flowblocked
3212  *	@dev: network device
3213  *
3214  *	Test if transmit queue on device is currently unable to send.
3215  */
3216 static inline bool netif_queue_stopped(const struct net_device *dev)
3217 {
3218 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3219 }
3220 
3221 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3222 {
3223 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3224 }
3225 
3226 static inline bool
3227 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3228 {
3229 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3230 }
3231 
3232 static inline bool
3233 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3234 {
3235 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3236 }
3237 
3238 /**
3239  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3240  *	@dev_queue: pointer to transmit queue
3241  *	@min_limit: dql minimum limit
3242  *
3243  * Forces xmit_more() to return true until the minimum threshold
3244  * defined by @min_limit is reached (or until the tx queue is
3245  * empty). Warning: to be use with care, misuse will impact the
3246  * latency.
3247  */
3248 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3249 						  unsigned int min_limit)
3250 {
3251 #ifdef CONFIG_BQL
3252 	dev_queue->dql.min_limit = min_limit;
3253 #endif
3254 }
3255 
3256 /**
3257  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3258  *	@dev_queue: pointer to transmit queue
3259  *
3260  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3261  * to give appropriate hint to the CPU.
3262  */
3263 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3264 {
3265 #ifdef CONFIG_BQL
3266 	prefetchw(&dev_queue->dql.num_queued);
3267 #endif
3268 }
3269 
3270 /**
3271  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3272  *	@dev_queue: pointer to transmit queue
3273  *
3274  * BQL enabled drivers might use this helper in their TX completion path,
3275  * to give appropriate hint to the CPU.
3276  */
3277 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3278 {
3279 #ifdef CONFIG_BQL
3280 	prefetchw(&dev_queue->dql.limit);
3281 #endif
3282 }
3283 
3284 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3285 					unsigned int bytes)
3286 {
3287 #ifdef CONFIG_BQL
3288 	dql_queued(&dev_queue->dql, bytes);
3289 
3290 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3291 		return;
3292 
3293 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3294 
3295 	/*
3296 	 * The XOFF flag must be set before checking the dql_avail below,
3297 	 * because in netdev_tx_completed_queue we update the dql_completed
3298 	 * before checking the XOFF flag.
3299 	 */
3300 	smp_mb();
3301 
3302 	/* check again in case another CPU has just made room avail */
3303 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3304 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3305 #endif
3306 }
3307 
3308 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3309  * that they should not test BQL status themselves.
3310  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3311  * skb of a batch.
3312  * Returns true if the doorbell must be used to kick the NIC.
3313  */
3314 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3315 					  unsigned int bytes,
3316 					  bool xmit_more)
3317 {
3318 	if (xmit_more) {
3319 #ifdef CONFIG_BQL
3320 		dql_queued(&dev_queue->dql, bytes);
3321 #endif
3322 		return netif_tx_queue_stopped(dev_queue);
3323 	}
3324 	netdev_tx_sent_queue(dev_queue, bytes);
3325 	return true;
3326 }
3327 
3328 /**
3329  * 	netdev_sent_queue - report the number of bytes queued to hardware
3330  * 	@dev: network device
3331  * 	@bytes: number of bytes queued to the hardware device queue
3332  *
3333  * 	Report the number of bytes queued for sending/completion to the network
3334  * 	device hardware queue. @bytes should be a good approximation and should
3335  * 	exactly match netdev_completed_queue() @bytes
3336  */
3337 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3338 {
3339 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3340 }
3341 
3342 static inline bool __netdev_sent_queue(struct net_device *dev,
3343 				       unsigned int bytes,
3344 				       bool xmit_more)
3345 {
3346 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3347 				      xmit_more);
3348 }
3349 
3350 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3351 					     unsigned int pkts, unsigned int bytes)
3352 {
3353 #ifdef CONFIG_BQL
3354 	if (unlikely(!bytes))
3355 		return;
3356 
3357 	dql_completed(&dev_queue->dql, bytes);
3358 
3359 	/*
3360 	 * Without the memory barrier there is a small possiblity that
3361 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3362 	 * be stopped forever
3363 	 */
3364 	smp_mb();
3365 
3366 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3367 		return;
3368 
3369 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3370 		netif_schedule_queue(dev_queue);
3371 #endif
3372 }
3373 
3374 /**
3375  * 	netdev_completed_queue - report bytes and packets completed by device
3376  * 	@dev: network device
3377  * 	@pkts: actual number of packets sent over the medium
3378  * 	@bytes: actual number of bytes sent over the medium
3379  *
3380  * 	Report the number of bytes and packets transmitted by the network device
3381  * 	hardware queue over the physical medium, @bytes must exactly match the
3382  * 	@bytes amount passed to netdev_sent_queue()
3383  */
3384 static inline void netdev_completed_queue(struct net_device *dev,
3385 					  unsigned int pkts, unsigned int bytes)
3386 {
3387 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3388 }
3389 
3390 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3391 {
3392 #ifdef CONFIG_BQL
3393 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3394 	dql_reset(&q->dql);
3395 #endif
3396 }
3397 
3398 /**
3399  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3400  * 	@dev_queue: network device
3401  *
3402  * 	Reset the bytes and packet count of a network device and clear the
3403  * 	software flow control OFF bit for this network device
3404  */
3405 static inline void netdev_reset_queue(struct net_device *dev_queue)
3406 {
3407 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3408 }
3409 
3410 /**
3411  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3412  * 	@dev: network device
3413  * 	@queue_index: given tx queue index
3414  *
3415  * 	Returns 0 if given tx queue index >= number of device tx queues,
3416  * 	otherwise returns the originally passed tx queue index.
3417  */
3418 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3419 {
3420 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3421 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3422 				     dev->name, queue_index,
3423 				     dev->real_num_tx_queues);
3424 		return 0;
3425 	}
3426 
3427 	return queue_index;
3428 }
3429 
3430 /**
3431  *	netif_running - test if up
3432  *	@dev: network device
3433  *
3434  *	Test if the device has been brought up.
3435  */
3436 static inline bool netif_running(const struct net_device *dev)
3437 {
3438 	return test_bit(__LINK_STATE_START, &dev->state);
3439 }
3440 
3441 /*
3442  * Routines to manage the subqueues on a device.  We only need start,
3443  * stop, and a check if it's stopped.  All other device management is
3444  * done at the overall netdevice level.
3445  * Also test the device if we're multiqueue.
3446  */
3447 
3448 /**
3449  *	netif_start_subqueue - allow sending packets on subqueue
3450  *	@dev: network device
3451  *	@queue_index: sub queue index
3452  *
3453  * Start individual transmit queue of a device with multiple transmit queues.
3454  */
3455 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3456 {
3457 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3458 
3459 	netif_tx_start_queue(txq);
3460 }
3461 
3462 /**
3463  *	netif_stop_subqueue - stop sending packets on subqueue
3464  *	@dev: network device
3465  *	@queue_index: sub queue index
3466  *
3467  * Stop individual transmit queue of a device with multiple transmit queues.
3468  */
3469 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3470 {
3471 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3472 	netif_tx_stop_queue(txq);
3473 }
3474 
3475 /**
3476  *	__netif_subqueue_stopped - test status of subqueue
3477  *	@dev: network device
3478  *	@queue_index: sub queue index
3479  *
3480  * Check individual transmit queue of a device with multiple transmit queues.
3481  */
3482 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3483 					    u16 queue_index)
3484 {
3485 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3486 
3487 	return netif_tx_queue_stopped(txq);
3488 }
3489 
3490 /**
3491  *	netif_subqueue_stopped - test status of subqueue
3492  *	@dev: network device
3493  *	@skb: sub queue buffer pointer
3494  *
3495  * Check individual transmit queue of a device with multiple transmit queues.
3496  */
3497 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3498 					  struct sk_buff *skb)
3499 {
3500 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3501 }
3502 
3503 /**
3504  *	netif_wake_subqueue - allow sending packets on subqueue
3505  *	@dev: network device
3506  *	@queue_index: sub queue index
3507  *
3508  * Resume individual transmit queue of a device with multiple transmit queues.
3509  */
3510 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3511 {
3512 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3513 
3514 	netif_tx_wake_queue(txq);
3515 }
3516 
3517 #ifdef CONFIG_XPS
3518 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3519 			u16 index);
3520 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3521 			  u16 index, enum xps_map_type type);
3522 
3523 /**
3524  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3525  *	@j: CPU/Rx queue index
3526  *	@mask: bitmask of all cpus/rx queues
3527  *	@nr_bits: number of bits in the bitmask
3528  *
3529  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3530  */
3531 static inline bool netif_attr_test_mask(unsigned long j,
3532 					const unsigned long *mask,
3533 					unsigned int nr_bits)
3534 {
3535 	cpu_max_bits_warn(j, nr_bits);
3536 	return test_bit(j, mask);
3537 }
3538 
3539 /**
3540  *	netif_attr_test_online - Test for online CPU/Rx queue
3541  *	@j: CPU/Rx queue index
3542  *	@online_mask: bitmask for CPUs/Rx queues that are online
3543  *	@nr_bits: number of bits in the bitmask
3544  *
3545  * Returns true if a CPU/Rx queue is online.
3546  */
3547 static inline bool netif_attr_test_online(unsigned long j,
3548 					  const unsigned long *online_mask,
3549 					  unsigned int nr_bits)
3550 {
3551 	cpu_max_bits_warn(j, nr_bits);
3552 
3553 	if (online_mask)
3554 		return test_bit(j, online_mask);
3555 
3556 	return (j < nr_bits);
3557 }
3558 
3559 /**
3560  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3561  *	@n: CPU/Rx queue index
3562  *	@srcp: the cpumask/Rx queue mask pointer
3563  *	@nr_bits: number of bits in the bitmask
3564  *
3565  * Returns >= nr_bits if no further CPUs/Rx queues set.
3566  */
3567 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3568 					       unsigned int nr_bits)
3569 {
3570 	/* -1 is a legal arg here. */
3571 	if (n != -1)
3572 		cpu_max_bits_warn(n, nr_bits);
3573 
3574 	if (srcp)
3575 		return find_next_bit(srcp, nr_bits, n + 1);
3576 
3577 	return n + 1;
3578 }
3579 
3580 /**
3581  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3582  *	@n: CPU/Rx queue index
3583  *	@src1p: the first CPUs/Rx queues mask pointer
3584  *	@src2p: the second CPUs/Rx queues mask pointer
3585  *	@nr_bits: number of bits in the bitmask
3586  *
3587  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3588  */
3589 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3590 					  const unsigned long *src2p,
3591 					  unsigned int nr_bits)
3592 {
3593 	/* -1 is a legal arg here. */
3594 	if (n != -1)
3595 		cpu_max_bits_warn(n, nr_bits);
3596 
3597 	if (src1p && src2p)
3598 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3599 	else if (src1p)
3600 		return find_next_bit(src1p, nr_bits, n + 1);
3601 	else if (src2p)
3602 		return find_next_bit(src2p, nr_bits, n + 1);
3603 
3604 	return n + 1;
3605 }
3606 #else
3607 static inline int netif_set_xps_queue(struct net_device *dev,
3608 				      const struct cpumask *mask,
3609 				      u16 index)
3610 {
3611 	return 0;
3612 }
3613 
3614 static inline int __netif_set_xps_queue(struct net_device *dev,
3615 					const unsigned long *mask,
3616 					u16 index, enum xps_map_type type)
3617 {
3618 	return 0;
3619 }
3620 #endif
3621 
3622 /**
3623  *	netif_is_multiqueue - test if device has multiple transmit queues
3624  *	@dev: network device
3625  *
3626  * Check if device has multiple transmit queues
3627  */
3628 static inline bool netif_is_multiqueue(const struct net_device *dev)
3629 {
3630 	return dev->num_tx_queues > 1;
3631 }
3632 
3633 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3634 
3635 #ifdef CONFIG_SYSFS
3636 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3637 #else
3638 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3639 						unsigned int rxqs)
3640 {
3641 	dev->real_num_rx_queues = rxqs;
3642 	return 0;
3643 }
3644 #endif
3645 int netif_set_real_num_queues(struct net_device *dev,
3646 			      unsigned int txq, unsigned int rxq);
3647 
3648 static inline struct netdev_rx_queue *
3649 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3650 {
3651 	return dev->_rx + rxq;
3652 }
3653 
3654 #ifdef CONFIG_SYSFS
3655 static inline unsigned int get_netdev_rx_queue_index(
3656 		struct netdev_rx_queue *queue)
3657 {
3658 	struct net_device *dev = queue->dev;
3659 	int index = queue - dev->_rx;
3660 
3661 	BUG_ON(index >= dev->num_rx_queues);
3662 	return index;
3663 }
3664 #endif
3665 
3666 int netif_get_num_default_rss_queues(void);
3667 
3668 enum skb_free_reason {
3669 	SKB_REASON_CONSUMED,
3670 	SKB_REASON_DROPPED,
3671 };
3672 
3673 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3674 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3675 
3676 /*
3677  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3678  * interrupt context or with hardware interrupts being disabled.
3679  * (in_hardirq() || irqs_disabled())
3680  *
3681  * We provide four helpers that can be used in following contexts :
3682  *
3683  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3684  *  replacing kfree_skb(skb)
3685  *
3686  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3687  *  Typically used in place of consume_skb(skb) in TX completion path
3688  *
3689  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3690  *  replacing kfree_skb(skb)
3691  *
3692  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3693  *  and consumed a packet. Used in place of consume_skb(skb)
3694  */
3695 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3696 {
3697 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3698 }
3699 
3700 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3701 {
3702 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3703 }
3704 
3705 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3706 {
3707 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3708 }
3709 
3710 static inline void dev_consume_skb_any(struct sk_buff *skb)
3711 {
3712 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3713 }
3714 
3715 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3716 			     struct bpf_prog *xdp_prog);
3717 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3718 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3719 int netif_rx(struct sk_buff *skb);
3720 int __netif_rx(struct sk_buff *skb);
3721 
3722 int netif_receive_skb(struct sk_buff *skb);
3723 int netif_receive_skb_core(struct sk_buff *skb);
3724 void netif_receive_skb_list_internal(struct list_head *head);
3725 void netif_receive_skb_list(struct list_head *head);
3726 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3727 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3728 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3729 gro_result_t napi_gro_frags(struct napi_struct *napi);
3730 struct packet_offload *gro_find_receive_by_type(__be16 type);
3731 struct packet_offload *gro_find_complete_by_type(__be16 type);
3732 
3733 static inline void napi_free_frags(struct napi_struct *napi)
3734 {
3735 	kfree_skb(napi->skb);
3736 	napi->skb = NULL;
3737 }
3738 
3739 bool netdev_is_rx_handler_busy(struct net_device *dev);
3740 int netdev_rx_handler_register(struct net_device *dev,
3741 			       rx_handler_func_t *rx_handler,
3742 			       void *rx_handler_data);
3743 void netdev_rx_handler_unregister(struct net_device *dev);
3744 
3745 bool dev_valid_name(const char *name);
3746 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3747 {
3748 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3749 }
3750 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3751 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3752 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3753 		void __user *data, bool *need_copyout);
3754 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3755 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3756 unsigned int dev_get_flags(const struct net_device *);
3757 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3758 		       struct netlink_ext_ack *extack);
3759 int dev_change_flags(struct net_device *dev, unsigned int flags,
3760 		     struct netlink_ext_ack *extack);
3761 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3762 			unsigned int gchanges);
3763 int dev_set_alias(struct net_device *, const char *, size_t);
3764 int dev_get_alias(const struct net_device *, char *, size_t);
3765 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3766 			       const char *pat, int new_ifindex);
3767 static inline
3768 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3769 			     const char *pat)
3770 {
3771 	return __dev_change_net_namespace(dev, net, pat, 0);
3772 }
3773 int __dev_set_mtu(struct net_device *, int);
3774 int dev_set_mtu(struct net_device *, int);
3775 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3776 			      struct netlink_ext_ack *extack);
3777 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3778 			struct netlink_ext_ack *extack);
3779 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3780 			     struct netlink_ext_ack *extack);
3781 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3782 int dev_get_port_parent_id(struct net_device *dev,
3783 			   struct netdev_phys_item_id *ppid, bool recurse);
3784 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3785 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3786 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3787 				    struct netdev_queue *txq, int *ret);
3788 
3789 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3790 u8 dev_xdp_prog_count(struct net_device *dev);
3791 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3792 
3793 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3794 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3795 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3796 bool is_skb_forwardable(const struct net_device *dev,
3797 			const struct sk_buff *skb);
3798 
3799 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3800 						 const struct sk_buff *skb,
3801 						 const bool check_mtu)
3802 {
3803 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3804 	unsigned int len;
3805 
3806 	if (!(dev->flags & IFF_UP))
3807 		return false;
3808 
3809 	if (!check_mtu)
3810 		return true;
3811 
3812 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3813 	if (skb->len <= len)
3814 		return true;
3815 
3816 	/* if TSO is enabled, we don't care about the length as the packet
3817 	 * could be forwarded without being segmented before
3818 	 */
3819 	if (skb_is_gso(skb))
3820 		return true;
3821 
3822 	return false;
3823 }
3824 
3825 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev);
3826 
3827 static inline struct net_device_core_stats *dev_core_stats(struct net_device *dev)
3828 {
3829 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3830 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3831 
3832 	if (likely(p))
3833 		return this_cpu_ptr(p);
3834 
3835 	return netdev_core_stats_alloc(dev);
3836 }
3837 
3838 #define DEV_CORE_STATS_INC(FIELD)						\
3839 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3840 {										\
3841 	struct net_device_core_stats *p;					\
3842 										\
3843 	preempt_disable();							\
3844 	p = dev_core_stats(dev);						\
3845 										\
3846 	if (p)									\
3847 		local_inc(&p->FIELD);						\
3848 	preempt_enable();							\
3849 }
3850 DEV_CORE_STATS_INC(rx_dropped)
3851 DEV_CORE_STATS_INC(tx_dropped)
3852 DEV_CORE_STATS_INC(rx_nohandler)
3853 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3854 
3855 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3856 					       struct sk_buff *skb,
3857 					       const bool check_mtu)
3858 {
3859 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3860 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3861 		dev_core_stats_rx_dropped_inc(dev);
3862 		kfree_skb(skb);
3863 		return NET_RX_DROP;
3864 	}
3865 
3866 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3867 	skb->priority = 0;
3868 	return 0;
3869 }
3870 
3871 bool dev_nit_active(struct net_device *dev);
3872 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3873 
3874 static inline void __dev_put(struct net_device *dev)
3875 {
3876 	if (dev) {
3877 #ifdef CONFIG_PCPU_DEV_REFCNT
3878 		this_cpu_dec(*dev->pcpu_refcnt);
3879 #else
3880 		refcount_dec(&dev->dev_refcnt);
3881 #endif
3882 	}
3883 }
3884 
3885 static inline void __dev_hold(struct net_device *dev)
3886 {
3887 	if (dev) {
3888 #ifdef CONFIG_PCPU_DEV_REFCNT
3889 		this_cpu_inc(*dev->pcpu_refcnt);
3890 #else
3891 		refcount_inc(&dev->dev_refcnt);
3892 #endif
3893 	}
3894 }
3895 
3896 static inline void __netdev_tracker_alloc(struct net_device *dev,
3897 					  netdevice_tracker *tracker,
3898 					  gfp_t gfp)
3899 {
3900 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3901 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3902 #endif
3903 }
3904 
3905 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3906  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3907  */
3908 static inline void netdev_tracker_alloc(struct net_device *dev,
3909 					netdevice_tracker *tracker, gfp_t gfp)
3910 {
3911 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3912 	refcount_dec(&dev->refcnt_tracker.no_tracker);
3913 	__netdev_tracker_alloc(dev, tracker, gfp);
3914 #endif
3915 }
3916 
3917 static inline void netdev_tracker_free(struct net_device *dev,
3918 				       netdevice_tracker *tracker)
3919 {
3920 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3921 	ref_tracker_free(&dev->refcnt_tracker, tracker);
3922 #endif
3923 }
3924 
3925 static inline void dev_hold_track(struct net_device *dev,
3926 				  netdevice_tracker *tracker, gfp_t gfp)
3927 {
3928 	if (dev) {
3929 		__dev_hold(dev);
3930 		__netdev_tracker_alloc(dev, tracker, gfp);
3931 	}
3932 }
3933 
3934 static inline void dev_put_track(struct net_device *dev,
3935 				 netdevice_tracker *tracker)
3936 {
3937 	if (dev) {
3938 		netdev_tracker_free(dev, tracker);
3939 		__dev_put(dev);
3940 	}
3941 }
3942 
3943 /**
3944  *	dev_hold - get reference to device
3945  *	@dev: network device
3946  *
3947  * Hold reference to device to keep it from being freed.
3948  * Try using dev_hold_track() instead.
3949  */
3950 static inline void dev_hold(struct net_device *dev)
3951 {
3952 	dev_hold_track(dev, NULL, GFP_ATOMIC);
3953 }
3954 
3955 /**
3956  *	dev_put - release reference to device
3957  *	@dev: network device
3958  *
3959  * Release reference to device to allow it to be freed.
3960  * Try using dev_put_track() instead.
3961  */
3962 static inline void dev_put(struct net_device *dev)
3963 {
3964 	dev_put_track(dev, NULL);
3965 }
3966 
3967 static inline void dev_replace_track(struct net_device *odev,
3968 				     struct net_device *ndev,
3969 				     netdevice_tracker *tracker,
3970 				     gfp_t gfp)
3971 {
3972 	if (odev)
3973 		netdev_tracker_free(odev, tracker);
3974 
3975 	__dev_hold(ndev);
3976 	__dev_put(odev);
3977 
3978 	if (ndev)
3979 		__netdev_tracker_alloc(ndev, tracker, gfp);
3980 }
3981 
3982 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3983  * and _off may be called from IRQ context, but it is caller
3984  * who is responsible for serialization of these calls.
3985  *
3986  * The name carrier is inappropriate, these functions should really be
3987  * called netif_lowerlayer_*() because they represent the state of any
3988  * kind of lower layer not just hardware media.
3989  */
3990 void linkwatch_fire_event(struct net_device *dev);
3991 
3992 /**
3993  *	netif_carrier_ok - test if carrier present
3994  *	@dev: network device
3995  *
3996  * Check if carrier is present on device
3997  */
3998 static inline bool netif_carrier_ok(const struct net_device *dev)
3999 {
4000 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4001 }
4002 
4003 unsigned long dev_trans_start(struct net_device *dev);
4004 
4005 void __netdev_watchdog_up(struct net_device *dev);
4006 
4007 void netif_carrier_on(struct net_device *dev);
4008 void netif_carrier_off(struct net_device *dev);
4009 void netif_carrier_event(struct net_device *dev);
4010 
4011 /**
4012  *	netif_dormant_on - mark device as dormant.
4013  *	@dev: network device
4014  *
4015  * Mark device as dormant (as per RFC2863).
4016  *
4017  * The dormant state indicates that the relevant interface is not
4018  * actually in a condition to pass packets (i.e., it is not 'up') but is
4019  * in a "pending" state, waiting for some external event.  For "on-
4020  * demand" interfaces, this new state identifies the situation where the
4021  * interface is waiting for events to place it in the up state.
4022  */
4023 static inline void netif_dormant_on(struct net_device *dev)
4024 {
4025 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4026 		linkwatch_fire_event(dev);
4027 }
4028 
4029 /**
4030  *	netif_dormant_off - set device as not dormant.
4031  *	@dev: network device
4032  *
4033  * Device is not in dormant state.
4034  */
4035 static inline void netif_dormant_off(struct net_device *dev)
4036 {
4037 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4038 		linkwatch_fire_event(dev);
4039 }
4040 
4041 /**
4042  *	netif_dormant - test if device is dormant
4043  *	@dev: network device
4044  *
4045  * Check if device is dormant.
4046  */
4047 static inline bool netif_dormant(const struct net_device *dev)
4048 {
4049 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4050 }
4051 
4052 
4053 /**
4054  *	netif_testing_on - mark device as under test.
4055  *	@dev: network device
4056  *
4057  * Mark device as under test (as per RFC2863).
4058  *
4059  * The testing state indicates that some test(s) must be performed on
4060  * the interface. After completion, of the test, the interface state
4061  * will change to up, dormant, or down, as appropriate.
4062  */
4063 static inline void netif_testing_on(struct net_device *dev)
4064 {
4065 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4066 		linkwatch_fire_event(dev);
4067 }
4068 
4069 /**
4070  *	netif_testing_off - set device as not under test.
4071  *	@dev: network device
4072  *
4073  * Device is not in testing state.
4074  */
4075 static inline void netif_testing_off(struct net_device *dev)
4076 {
4077 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4078 		linkwatch_fire_event(dev);
4079 }
4080 
4081 /**
4082  *	netif_testing - test if device is under test
4083  *	@dev: network device
4084  *
4085  * Check if device is under test
4086  */
4087 static inline bool netif_testing(const struct net_device *dev)
4088 {
4089 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4090 }
4091 
4092 
4093 /**
4094  *	netif_oper_up - test if device is operational
4095  *	@dev: network device
4096  *
4097  * Check if carrier is operational
4098  */
4099 static inline bool netif_oper_up(const struct net_device *dev)
4100 {
4101 	return (dev->operstate == IF_OPER_UP ||
4102 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4103 }
4104 
4105 /**
4106  *	netif_device_present - is device available or removed
4107  *	@dev: network device
4108  *
4109  * Check if device has not been removed from system.
4110  */
4111 static inline bool netif_device_present(const struct net_device *dev)
4112 {
4113 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4114 }
4115 
4116 void netif_device_detach(struct net_device *dev);
4117 
4118 void netif_device_attach(struct net_device *dev);
4119 
4120 /*
4121  * Network interface message level settings
4122  */
4123 
4124 enum {
4125 	NETIF_MSG_DRV_BIT,
4126 	NETIF_MSG_PROBE_BIT,
4127 	NETIF_MSG_LINK_BIT,
4128 	NETIF_MSG_TIMER_BIT,
4129 	NETIF_MSG_IFDOWN_BIT,
4130 	NETIF_MSG_IFUP_BIT,
4131 	NETIF_MSG_RX_ERR_BIT,
4132 	NETIF_MSG_TX_ERR_BIT,
4133 	NETIF_MSG_TX_QUEUED_BIT,
4134 	NETIF_MSG_INTR_BIT,
4135 	NETIF_MSG_TX_DONE_BIT,
4136 	NETIF_MSG_RX_STATUS_BIT,
4137 	NETIF_MSG_PKTDATA_BIT,
4138 	NETIF_MSG_HW_BIT,
4139 	NETIF_MSG_WOL_BIT,
4140 
4141 	/* When you add a new bit above, update netif_msg_class_names array
4142 	 * in net/ethtool/common.c
4143 	 */
4144 	NETIF_MSG_CLASS_COUNT,
4145 };
4146 /* Both ethtool_ops interface and internal driver implementation use u32 */
4147 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4148 
4149 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4150 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4151 
4152 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4153 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4154 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4155 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4156 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4157 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4158 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4159 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4160 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4161 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4162 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4163 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4164 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4165 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4166 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4167 
4168 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4169 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4170 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4171 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4172 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4173 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4174 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4175 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4176 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4177 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4178 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4179 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4180 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4181 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4182 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4183 
4184 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4185 {
4186 	/* use default */
4187 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4188 		return default_msg_enable_bits;
4189 	if (debug_value == 0)	/* no output */
4190 		return 0;
4191 	/* set low N bits */
4192 	return (1U << debug_value) - 1;
4193 }
4194 
4195 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4196 {
4197 	spin_lock(&txq->_xmit_lock);
4198 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4199 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4200 }
4201 
4202 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4203 {
4204 	__acquire(&txq->_xmit_lock);
4205 	return true;
4206 }
4207 
4208 static inline void __netif_tx_release(struct netdev_queue *txq)
4209 {
4210 	__release(&txq->_xmit_lock);
4211 }
4212 
4213 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4214 {
4215 	spin_lock_bh(&txq->_xmit_lock);
4216 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4217 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4218 }
4219 
4220 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4221 {
4222 	bool ok = spin_trylock(&txq->_xmit_lock);
4223 
4224 	if (likely(ok)) {
4225 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4226 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4227 	}
4228 	return ok;
4229 }
4230 
4231 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4232 {
4233 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4234 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4235 	spin_unlock(&txq->_xmit_lock);
4236 }
4237 
4238 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4239 {
4240 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4241 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4242 	spin_unlock_bh(&txq->_xmit_lock);
4243 }
4244 
4245 /*
4246  * txq->trans_start can be read locklessly from dev_watchdog()
4247  */
4248 static inline void txq_trans_update(struct netdev_queue *txq)
4249 {
4250 	if (txq->xmit_lock_owner != -1)
4251 		WRITE_ONCE(txq->trans_start, jiffies);
4252 }
4253 
4254 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4255 {
4256 	unsigned long now = jiffies;
4257 
4258 	if (READ_ONCE(txq->trans_start) != now)
4259 		WRITE_ONCE(txq->trans_start, now);
4260 }
4261 
4262 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4263 static inline void netif_trans_update(struct net_device *dev)
4264 {
4265 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4266 
4267 	txq_trans_cond_update(txq);
4268 }
4269 
4270 /**
4271  *	netif_tx_lock - grab network device transmit lock
4272  *	@dev: network device
4273  *
4274  * Get network device transmit lock
4275  */
4276 void netif_tx_lock(struct net_device *dev);
4277 
4278 static inline void netif_tx_lock_bh(struct net_device *dev)
4279 {
4280 	local_bh_disable();
4281 	netif_tx_lock(dev);
4282 }
4283 
4284 void netif_tx_unlock(struct net_device *dev);
4285 
4286 static inline void netif_tx_unlock_bh(struct net_device *dev)
4287 {
4288 	netif_tx_unlock(dev);
4289 	local_bh_enable();
4290 }
4291 
4292 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4293 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4294 		__netif_tx_lock(txq, cpu);		\
4295 	} else {					\
4296 		__netif_tx_acquire(txq);		\
4297 	}						\
4298 }
4299 
4300 #define HARD_TX_TRYLOCK(dev, txq)			\
4301 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4302 		__netif_tx_trylock(txq) :		\
4303 		__netif_tx_acquire(txq))
4304 
4305 #define HARD_TX_UNLOCK(dev, txq) {			\
4306 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4307 		__netif_tx_unlock(txq);			\
4308 	} else {					\
4309 		__netif_tx_release(txq);		\
4310 	}						\
4311 }
4312 
4313 static inline void netif_tx_disable(struct net_device *dev)
4314 {
4315 	unsigned int i;
4316 	int cpu;
4317 
4318 	local_bh_disable();
4319 	cpu = smp_processor_id();
4320 	spin_lock(&dev->tx_global_lock);
4321 	for (i = 0; i < dev->num_tx_queues; i++) {
4322 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4323 
4324 		__netif_tx_lock(txq, cpu);
4325 		netif_tx_stop_queue(txq);
4326 		__netif_tx_unlock(txq);
4327 	}
4328 	spin_unlock(&dev->tx_global_lock);
4329 	local_bh_enable();
4330 }
4331 
4332 static inline void netif_addr_lock(struct net_device *dev)
4333 {
4334 	unsigned char nest_level = 0;
4335 
4336 #ifdef CONFIG_LOCKDEP
4337 	nest_level = dev->nested_level;
4338 #endif
4339 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4340 }
4341 
4342 static inline void netif_addr_lock_bh(struct net_device *dev)
4343 {
4344 	unsigned char nest_level = 0;
4345 
4346 #ifdef CONFIG_LOCKDEP
4347 	nest_level = dev->nested_level;
4348 #endif
4349 	local_bh_disable();
4350 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4351 }
4352 
4353 static inline void netif_addr_unlock(struct net_device *dev)
4354 {
4355 	spin_unlock(&dev->addr_list_lock);
4356 }
4357 
4358 static inline void netif_addr_unlock_bh(struct net_device *dev)
4359 {
4360 	spin_unlock_bh(&dev->addr_list_lock);
4361 }
4362 
4363 /*
4364  * dev_addrs walker. Should be used only for read access. Call with
4365  * rcu_read_lock held.
4366  */
4367 #define for_each_dev_addr(dev, ha) \
4368 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4369 
4370 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4371 
4372 void ether_setup(struct net_device *dev);
4373 
4374 /* Support for loadable net-drivers */
4375 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4376 				    unsigned char name_assign_type,
4377 				    void (*setup)(struct net_device *),
4378 				    unsigned int txqs, unsigned int rxqs);
4379 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4380 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4381 
4382 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4383 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4384 			 count)
4385 
4386 int register_netdev(struct net_device *dev);
4387 void unregister_netdev(struct net_device *dev);
4388 
4389 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4390 
4391 /* General hardware address lists handling functions */
4392 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4393 		   struct netdev_hw_addr_list *from_list, int addr_len);
4394 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4395 		      struct netdev_hw_addr_list *from_list, int addr_len);
4396 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4397 		       struct net_device *dev,
4398 		       int (*sync)(struct net_device *, const unsigned char *),
4399 		       int (*unsync)(struct net_device *,
4400 				     const unsigned char *));
4401 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4402 			   struct net_device *dev,
4403 			   int (*sync)(struct net_device *,
4404 				       const unsigned char *, int),
4405 			   int (*unsync)(struct net_device *,
4406 					 const unsigned char *, int));
4407 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4408 			      struct net_device *dev,
4409 			      int (*unsync)(struct net_device *,
4410 					    const unsigned char *, int));
4411 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4412 			  struct net_device *dev,
4413 			  int (*unsync)(struct net_device *,
4414 					const unsigned char *));
4415 void __hw_addr_init(struct netdev_hw_addr_list *list);
4416 
4417 /* Functions used for device addresses handling */
4418 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4419 		  const void *addr, size_t len);
4420 
4421 static inline void
4422 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4423 {
4424 	dev_addr_mod(dev, 0, addr, len);
4425 }
4426 
4427 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4428 {
4429 	__dev_addr_set(dev, addr, dev->addr_len);
4430 }
4431 
4432 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4433 		 unsigned char addr_type);
4434 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4435 		 unsigned char addr_type);
4436 
4437 /* Functions used for unicast addresses handling */
4438 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4439 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4440 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4441 int dev_uc_sync(struct net_device *to, struct net_device *from);
4442 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4443 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4444 void dev_uc_flush(struct net_device *dev);
4445 void dev_uc_init(struct net_device *dev);
4446 
4447 /**
4448  *  __dev_uc_sync - Synchonize device's unicast list
4449  *  @dev:  device to sync
4450  *  @sync: function to call if address should be added
4451  *  @unsync: function to call if address should be removed
4452  *
4453  *  Add newly added addresses to the interface, and release
4454  *  addresses that have been deleted.
4455  */
4456 static inline int __dev_uc_sync(struct net_device *dev,
4457 				int (*sync)(struct net_device *,
4458 					    const unsigned char *),
4459 				int (*unsync)(struct net_device *,
4460 					      const unsigned char *))
4461 {
4462 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4463 }
4464 
4465 /**
4466  *  __dev_uc_unsync - Remove synchronized addresses from device
4467  *  @dev:  device to sync
4468  *  @unsync: function to call if address should be removed
4469  *
4470  *  Remove all addresses that were added to the device by dev_uc_sync().
4471  */
4472 static inline void __dev_uc_unsync(struct net_device *dev,
4473 				   int (*unsync)(struct net_device *,
4474 						 const unsigned char *))
4475 {
4476 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4477 }
4478 
4479 /* Functions used for multicast addresses handling */
4480 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4481 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4482 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4483 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4484 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4485 int dev_mc_sync(struct net_device *to, struct net_device *from);
4486 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4487 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4488 void dev_mc_flush(struct net_device *dev);
4489 void dev_mc_init(struct net_device *dev);
4490 
4491 /**
4492  *  __dev_mc_sync - Synchonize device's multicast list
4493  *  @dev:  device to sync
4494  *  @sync: function to call if address should be added
4495  *  @unsync: function to call if address should be removed
4496  *
4497  *  Add newly added addresses to the interface, and release
4498  *  addresses that have been deleted.
4499  */
4500 static inline int __dev_mc_sync(struct net_device *dev,
4501 				int (*sync)(struct net_device *,
4502 					    const unsigned char *),
4503 				int (*unsync)(struct net_device *,
4504 					      const unsigned char *))
4505 {
4506 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4507 }
4508 
4509 /**
4510  *  __dev_mc_unsync - Remove synchronized addresses from device
4511  *  @dev:  device to sync
4512  *  @unsync: function to call if address should be removed
4513  *
4514  *  Remove all addresses that were added to the device by dev_mc_sync().
4515  */
4516 static inline void __dev_mc_unsync(struct net_device *dev,
4517 				   int (*unsync)(struct net_device *,
4518 						 const unsigned char *))
4519 {
4520 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4521 }
4522 
4523 /* Functions used for secondary unicast and multicast support */
4524 void dev_set_rx_mode(struct net_device *dev);
4525 int dev_set_promiscuity(struct net_device *dev, int inc);
4526 int dev_set_allmulti(struct net_device *dev, int inc);
4527 void netdev_state_change(struct net_device *dev);
4528 void __netdev_notify_peers(struct net_device *dev);
4529 void netdev_notify_peers(struct net_device *dev);
4530 void netdev_features_change(struct net_device *dev);
4531 /* Load a device via the kmod */
4532 void dev_load(struct net *net, const char *name);
4533 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4534 					struct rtnl_link_stats64 *storage);
4535 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4536 			     const struct net_device_stats *netdev_stats);
4537 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4538 			   const struct pcpu_sw_netstats __percpu *netstats);
4539 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4540 
4541 extern int		netdev_max_backlog;
4542 extern int		dev_rx_weight;
4543 extern int		dev_tx_weight;
4544 extern int		gro_normal_batch;
4545 
4546 enum {
4547 	NESTED_SYNC_IMM_BIT,
4548 	NESTED_SYNC_TODO_BIT,
4549 };
4550 
4551 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4552 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4553 
4554 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4555 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4556 
4557 struct netdev_nested_priv {
4558 	unsigned char flags;
4559 	void *data;
4560 };
4561 
4562 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4563 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4564 						     struct list_head **iter);
4565 
4566 /* iterate through upper list, must be called under RCU read lock */
4567 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4568 	for (iter = &(dev)->adj_list.upper, \
4569 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4570 	     updev; \
4571 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4572 
4573 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4574 				  int (*fn)(struct net_device *upper_dev,
4575 					    struct netdev_nested_priv *priv),
4576 				  struct netdev_nested_priv *priv);
4577 
4578 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4579 				  struct net_device *upper_dev);
4580 
4581 bool netdev_has_any_upper_dev(struct net_device *dev);
4582 
4583 void *netdev_lower_get_next_private(struct net_device *dev,
4584 				    struct list_head **iter);
4585 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4586 					struct list_head **iter);
4587 
4588 #define netdev_for_each_lower_private(dev, priv, iter) \
4589 	for (iter = (dev)->adj_list.lower.next, \
4590 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4591 	     priv; \
4592 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4593 
4594 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4595 	for (iter = &(dev)->adj_list.lower, \
4596 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4597 	     priv; \
4598 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4599 
4600 void *netdev_lower_get_next(struct net_device *dev,
4601 				struct list_head **iter);
4602 
4603 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4604 	for (iter = (dev)->adj_list.lower.next, \
4605 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4606 	     ldev; \
4607 	     ldev = netdev_lower_get_next(dev, &(iter)))
4608 
4609 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4610 					     struct list_head **iter);
4611 int netdev_walk_all_lower_dev(struct net_device *dev,
4612 			      int (*fn)(struct net_device *lower_dev,
4613 					struct netdev_nested_priv *priv),
4614 			      struct netdev_nested_priv *priv);
4615 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4616 				  int (*fn)(struct net_device *lower_dev,
4617 					    struct netdev_nested_priv *priv),
4618 				  struct netdev_nested_priv *priv);
4619 
4620 void *netdev_adjacent_get_private(struct list_head *adj_list);
4621 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4622 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4623 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4624 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4625 			  struct netlink_ext_ack *extack);
4626 int netdev_master_upper_dev_link(struct net_device *dev,
4627 				 struct net_device *upper_dev,
4628 				 void *upper_priv, void *upper_info,
4629 				 struct netlink_ext_ack *extack);
4630 void netdev_upper_dev_unlink(struct net_device *dev,
4631 			     struct net_device *upper_dev);
4632 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4633 				   struct net_device *new_dev,
4634 				   struct net_device *dev,
4635 				   struct netlink_ext_ack *extack);
4636 void netdev_adjacent_change_commit(struct net_device *old_dev,
4637 				   struct net_device *new_dev,
4638 				   struct net_device *dev);
4639 void netdev_adjacent_change_abort(struct net_device *old_dev,
4640 				  struct net_device *new_dev,
4641 				  struct net_device *dev);
4642 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4643 void *netdev_lower_dev_get_private(struct net_device *dev,
4644 				   struct net_device *lower_dev);
4645 void netdev_lower_state_changed(struct net_device *lower_dev,
4646 				void *lower_state_info);
4647 
4648 /* RSS keys are 40 or 52 bytes long */
4649 #define NETDEV_RSS_KEY_LEN 52
4650 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4651 void netdev_rss_key_fill(void *buffer, size_t len);
4652 
4653 int skb_checksum_help(struct sk_buff *skb);
4654 int skb_crc32c_csum_help(struct sk_buff *skb);
4655 int skb_csum_hwoffload_help(struct sk_buff *skb,
4656 			    const netdev_features_t features);
4657 
4658 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4659 				  netdev_features_t features, bool tx_path);
4660 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4661 				    netdev_features_t features, __be16 type);
4662 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4663 				    netdev_features_t features);
4664 
4665 struct netdev_bonding_info {
4666 	ifslave	slave;
4667 	ifbond	master;
4668 };
4669 
4670 struct netdev_notifier_bonding_info {
4671 	struct netdev_notifier_info info; /* must be first */
4672 	struct netdev_bonding_info  bonding_info;
4673 };
4674 
4675 void netdev_bonding_info_change(struct net_device *dev,
4676 				struct netdev_bonding_info *bonding_info);
4677 
4678 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4679 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4680 #else
4681 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4682 				  const void *data)
4683 {
4684 }
4685 #endif
4686 
4687 static inline
4688 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4689 {
4690 	return __skb_gso_segment(skb, features, true);
4691 }
4692 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4693 
4694 static inline bool can_checksum_protocol(netdev_features_t features,
4695 					 __be16 protocol)
4696 {
4697 	if (protocol == htons(ETH_P_FCOE))
4698 		return !!(features & NETIF_F_FCOE_CRC);
4699 
4700 	/* Assume this is an IP checksum (not SCTP CRC) */
4701 
4702 	if (features & NETIF_F_HW_CSUM) {
4703 		/* Can checksum everything */
4704 		return true;
4705 	}
4706 
4707 	switch (protocol) {
4708 	case htons(ETH_P_IP):
4709 		return !!(features & NETIF_F_IP_CSUM);
4710 	case htons(ETH_P_IPV6):
4711 		return !!(features & NETIF_F_IPV6_CSUM);
4712 	default:
4713 		return false;
4714 	}
4715 }
4716 
4717 #ifdef CONFIG_BUG
4718 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4719 #else
4720 static inline void netdev_rx_csum_fault(struct net_device *dev,
4721 					struct sk_buff *skb)
4722 {
4723 }
4724 #endif
4725 /* rx skb timestamps */
4726 void net_enable_timestamp(void);
4727 void net_disable_timestamp(void);
4728 
4729 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4730 					      struct sk_buff *skb, struct net_device *dev,
4731 					      bool more)
4732 {
4733 	__this_cpu_write(softnet_data.xmit.more, more);
4734 	return ops->ndo_start_xmit(skb, dev);
4735 }
4736 
4737 static inline bool netdev_xmit_more(void)
4738 {
4739 	return __this_cpu_read(softnet_data.xmit.more);
4740 }
4741 
4742 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4743 					    struct netdev_queue *txq, bool more)
4744 {
4745 	const struct net_device_ops *ops = dev->netdev_ops;
4746 	netdev_tx_t rc;
4747 
4748 	rc = __netdev_start_xmit(ops, skb, dev, more);
4749 	if (rc == NETDEV_TX_OK)
4750 		txq_trans_update(txq);
4751 
4752 	return rc;
4753 }
4754 
4755 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4756 				const void *ns);
4757 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4758 				 const void *ns);
4759 
4760 extern const struct kobj_ns_type_operations net_ns_type_operations;
4761 
4762 const char *netdev_drivername(const struct net_device *dev);
4763 
4764 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4765 							  netdev_features_t f2)
4766 {
4767 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4768 		if (f1 & NETIF_F_HW_CSUM)
4769 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4770 		else
4771 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4772 	}
4773 
4774 	return f1 & f2;
4775 }
4776 
4777 static inline netdev_features_t netdev_get_wanted_features(
4778 	struct net_device *dev)
4779 {
4780 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4781 }
4782 netdev_features_t netdev_increment_features(netdev_features_t all,
4783 	netdev_features_t one, netdev_features_t mask);
4784 
4785 /* Allow TSO being used on stacked device :
4786  * Performing the GSO segmentation before last device
4787  * is a performance improvement.
4788  */
4789 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4790 							netdev_features_t mask)
4791 {
4792 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4793 }
4794 
4795 int __netdev_update_features(struct net_device *dev);
4796 void netdev_update_features(struct net_device *dev);
4797 void netdev_change_features(struct net_device *dev);
4798 
4799 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4800 					struct net_device *dev);
4801 
4802 netdev_features_t passthru_features_check(struct sk_buff *skb,
4803 					  struct net_device *dev,
4804 					  netdev_features_t features);
4805 netdev_features_t netif_skb_features(struct sk_buff *skb);
4806 
4807 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4808 {
4809 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4810 
4811 	/* check flags correspondence */
4812 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4813 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4814 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4815 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4816 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4817 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4818 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4819 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4820 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4821 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4822 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4823 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4824 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4825 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4826 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4827 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4828 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4829 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4830 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4831 
4832 	return (features & feature) == feature;
4833 }
4834 
4835 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4836 {
4837 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4838 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4839 }
4840 
4841 static inline bool netif_needs_gso(struct sk_buff *skb,
4842 				   netdev_features_t features)
4843 {
4844 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4845 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4846 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4847 }
4848 
4849 static inline void netif_set_gso_max_size(struct net_device *dev,
4850 					  unsigned int size)
4851 {
4852 	/* dev->gso_max_size is read locklessly from sk_setup_caps() */
4853 	WRITE_ONCE(dev->gso_max_size, size);
4854 }
4855 
4856 static inline void netif_set_gso_max_segs(struct net_device *dev,
4857 					  unsigned int segs)
4858 {
4859 	/* dev->gso_max_segs is read locklessly from sk_setup_caps() */
4860 	WRITE_ONCE(dev->gso_max_segs, segs);
4861 }
4862 
4863 static inline void netif_set_gro_max_size(struct net_device *dev,
4864 					  unsigned int size)
4865 {
4866 	/* This pairs with the READ_ONCE() in skb_gro_receive() */
4867 	WRITE_ONCE(dev->gro_max_size, size);
4868 }
4869 
4870 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4871 					int pulled_hlen, u16 mac_offset,
4872 					int mac_len)
4873 {
4874 	skb->protocol = protocol;
4875 	skb->encapsulation = 1;
4876 	skb_push(skb, pulled_hlen);
4877 	skb_reset_transport_header(skb);
4878 	skb->mac_header = mac_offset;
4879 	skb->network_header = skb->mac_header + mac_len;
4880 	skb->mac_len = mac_len;
4881 }
4882 
4883 static inline bool netif_is_macsec(const struct net_device *dev)
4884 {
4885 	return dev->priv_flags & IFF_MACSEC;
4886 }
4887 
4888 static inline bool netif_is_macvlan(const struct net_device *dev)
4889 {
4890 	return dev->priv_flags & IFF_MACVLAN;
4891 }
4892 
4893 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4894 {
4895 	return dev->priv_flags & IFF_MACVLAN_PORT;
4896 }
4897 
4898 static inline bool netif_is_bond_master(const struct net_device *dev)
4899 {
4900 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4901 }
4902 
4903 static inline bool netif_is_bond_slave(const struct net_device *dev)
4904 {
4905 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4906 }
4907 
4908 static inline bool netif_supports_nofcs(struct net_device *dev)
4909 {
4910 	return dev->priv_flags & IFF_SUPP_NOFCS;
4911 }
4912 
4913 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4914 {
4915 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4916 }
4917 
4918 static inline bool netif_is_l3_master(const struct net_device *dev)
4919 {
4920 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4921 }
4922 
4923 static inline bool netif_is_l3_slave(const struct net_device *dev)
4924 {
4925 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4926 }
4927 
4928 static inline bool netif_is_bridge_master(const struct net_device *dev)
4929 {
4930 	return dev->priv_flags & IFF_EBRIDGE;
4931 }
4932 
4933 static inline bool netif_is_bridge_port(const struct net_device *dev)
4934 {
4935 	return dev->priv_flags & IFF_BRIDGE_PORT;
4936 }
4937 
4938 static inline bool netif_is_ovs_master(const struct net_device *dev)
4939 {
4940 	return dev->priv_flags & IFF_OPENVSWITCH;
4941 }
4942 
4943 static inline bool netif_is_ovs_port(const struct net_device *dev)
4944 {
4945 	return dev->priv_flags & IFF_OVS_DATAPATH;
4946 }
4947 
4948 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4949 {
4950 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4951 }
4952 
4953 static inline bool netif_is_team_master(const struct net_device *dev)
4954 {
4955 	return dev->priv_flags & IFF_TEAM;
4956 }
4957 
4958 static inline bool netif_is_team_port(const struct net_device *dev)
4959 {
4960 	return dev->priv_flags & IFF_TEAM_PORT;
4961 }
4962 
4963 static inline bool netif_is_lag_master(const struct net_device *dev)
4964 {
4965 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4966 }
4967 
4968 static inline bool netif_is_lag_port(const struct net_device *dev)
4969 {
4970 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4971 }
4972 
4973 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4976 }
4977 
4978 static inline bool netif_is_failover(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_FAILOVER;
4981 }
4982 
4983 static inline bool netif_is_failover_slave(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4986 }
4987 
4988 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4989 static inline void netif_keep_dst(struct net_device *dev)
4990 {
4991 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4992 }
4993 
4994 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4995 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4996 {
4997 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4998 	return netif_is_macsec(dev);
4999 }
5000 
5001 extern struct pernet_operations __net_initdata loopback_net_ops;
5002 
5003 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5004 
5005 /* netdev_printk helpers, similar to dev_printk */
5006 
5007 static inline const char *netdev_name(const struct net_device *dev)
5008 {
5009 	if (!dev->name[0] || strchr(dev->name, '%'))
5010 		return "(unnamed net_device)";
5011 	return dev->name;
5012 }
5013 
5014 static inline bool netdev_unregistering(const struct net_device *dev)
5015 {
5016 	return dev->reg_state == NETREG_UNREGISTERING;
5017 }
5018 
5019 static inline const char *netdev_reg_state(const struct net_device *dev)
5020 {
5021 	switch (dev->reg_state) {
5022 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5023 	case NETREG_REGISTERED: return "";
5024 	case NETREG_UNREGISTERING: return " (unregistering)";
5025 	case NETREG_UNREGISTERED: return " (unregistered)";
5026 	case NETREG_RELEASED: return " (released)";
5027 	case NETREG_DUMMY: return " (dummy)";
5028 	}
5029 
5030 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5031 	return " (unknown)";
5032 }
5033 
5034 __printf(3, 4) __cold
5035 void netdev_printk(const char *level, const struct net_device *dev,
5036 		   const char *format, ...);
5037 __printf(2, 3) __cold
5038 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5039 __printf(2, 3) __cold
5040 void netdev_alert(const struct net_device *dev, const char *format, ...);
5041 __printf(2, 3) __cold
5042 void netdev_crit(const struct net_device *dev, const char *format, ...);
5043 __printf(2, 3) __cold
5044 void netdev_err(const struct net_device *dev, const char *format, ...);
5045 __printf(2, 3) __cold
5046 void netdev_warn(const struct net_device *dev, const char *format, ...);
5047 __printf(2, 3) __cold
5048 void netdev_notice(const struct net_device *dev, const char *format, ...);
5049 __printf(2, 3) __cold
5050 void netdev_info(const struct net_device *dev, const char *format, ...);
5051 
5052 #define netdev_level_once(level, dev, fmt, ...)			\
5053 do {								\
5054 	static bool __section(".data.once") __print_once;	\
5055 								\
5056 	if (!__print_once) {					\
5057 		__print_once = true;				\
5058 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5059 	}							\
5060 } while (0)
5061 
5062 #define netdev_emerg_once(dev, fmt, ...) \
5063 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5064 #define netdev_alert_once(dev, fmt, ...) \
5065 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5066 #define netdev_crit_once(dev, fmt, ...) \
5067 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5068 #define netdev_err_once(dev, fmt, ...) \
5069 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5070 #define netdev_warn_once(dev, fmt, ...) \
5071 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5072 #define netdev_notice_once(dev, fmt, ...) \
5073 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5074 #define netdev_info_once(dev, fmt, ...) \
5075 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5076 
5077 #define MODULE_ALIAS_NETDEV(device) \
5078 	MODULE_ALIAS("netdev-" device)
5079 
5080 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5081 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5082 #define netdev_dbg(__dev, format, args...)			\
5083 do {								\
5084 	dynamic_netdev_dbg(__dev, format, ##args);		\
5085 } while (0)
5086 #elif defined(DEBUG)
5087 #define netdev_dbg(__dev, format, args...)			\
5088 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5089 #else
5090 #define netdev_dbg(__dev, format, args...)			\
5091 ({								\
5092 	if (0)							\
5093 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5094 })
5095 #endif
5096 
5097 #if defined(VERBOSE_DEBUG)
5098 #define netdev_vdbg	netdev_dbg
5099 #else
5100 
5101 #define netdev_vdbg(dev, format, args...)			\
5102 ({								\
5103 	if (0)							\
5104 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5105 	0;							\
5106 })
5107 #endif
5108 
5109 /*
5110  * netdev_WARN() acts like dev_printk(), but with the key difference
5111  * of using a WARN/WARN_ON to get the message out, including the
5112  * file/line information and a backtrace.
5113  */
5114 #define netdev_WARN(dev, format, args...)			\
5115 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5116 	     netdev_reg_state(dev), ##args)
5117 
5118 #define netdev_WARN_ONCE(dev, format, args...)				\
5119 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5120 		  netdev_reg_state(dev), ##args)
5121 
5122 /* netif printk helpers, similar to netdev_printk */
5123 
5124 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5125 do {					  			\
5126 	if (netif_msg_##type(priv))				\
5127 		netdev_printk(level, (dev), fmt, ##args);	\
5128 } while (0)
5129 
5130 #define netif_level(level, priv, type, dev, fmt, args...)	\
5131 do {								\
5132 	if (netif_msg_##type(priv))				\
5133 		netdev_##level(dev, fmt, ##args);		\
5134 } while (0)
5135 
5136 #define netif_emerg(priv, type, dev, fmt, args...)		\
5137 	netif_level(emerg, priv, type, dev, fmt, ##args)
5138 #define netif_alert(priv, type, dev, fmt, args...)		\
5139 	netif_level(alert, priv, type, dev, fmt, ##args)
5140 #define netif_crit(priv, type, dev, fmt, args...)		\
5141 	netif_level(crit, priv, type, dev, fmt, ##args)
5142 #define netif_err(priv, type, dev, fmt, args...)		\
5143 	netif_level(err, priv, type, dev, fmt, ##args)
5144 #define netif_warn(priv, type, dev, fmt, args...)		\
5145 	netif_level(warn, priv, type, dev, fmt, ##args)
5146 #define netif_notice(priv, type, dev, fmt, args...)		\
5147 	netif_level(notice, priv, type, dev, fmt, ##args)
5148 #define netif_info(priv, type, dev, fmt, args...)		\
5149 	netif_level(info, priv, type, dev, fmt, ##args)
5150 
5151 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5152 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5153 #define netif_dbg(priv, type, netdev, format, args...)		\
5154 do {								\
5155 	if (netif_msg_##type(priv))				\
5156 		dynamic_netdev_dbg(netdev, format, ##args);	\
5157 } while (0)
5158 #elif defined(DEBUG)
5159 #define netif_dbg(priv, type, dev, format, args...)		\
5160 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5161 #else
5162 #define netif_dbg(priv, type, dev, format, args...)			\
5163 ({									\
5164 	if (0)								\
5165 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5166 	0;								\
5167 })
5168 #endif
5169 
5170 /* if @cond then downgrade to debug, else print at @level */
5171 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5172 	do {                                                              \
5173 		if (cond)                                                 \
5174 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5175 		else                                                      \
5176 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5177 	} while (0)
5178 
5179 #if defined(VERBOSE_DEBUG)
5180 #define netif_vdbg	netif_dbg
5181 #else
5182 #define netif_vdbg(priv, type, dev, format, args...)		\
5183 ({								\
5184 	if (0)							\
5185 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5186 	0;							\
5187 })
5188 #endif
5189 
5190 /*
5191  *	The list of packet types we will receive (as opposed to discard)
5192  *	and the routines to invoke.
5193  *
5194  *	Why 16. Because with 16 the only overlap we get on a hash of the
5195  *	low nibble of the protocol value is RARP/SNAP/X.25.
5196  *
5197  *		0800	IP
5198  *		0001	802.3
5199  *		0002	AX.25
5200  *		0004	802.2
5201  *		8035	RARP
5202  *		0005	SNAP
5203  *		0805	X.25
5204  *		0806	ARP
5205  *		8137	IPX
5206  *		0009	Localtalk
5207  *		86DD	IPv6
5208  */
5209 #define PTYPE_HASH_SIZE	(16)
5210 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5211 
5212 extern struct list_head ptype_all __read_mostly;
5213 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5214 
5215 extern struct net_device *blackhole_netdev;
5216 
5217 #endif	/* _LINUX_NETDEVICE_H */
5218