xref: /openbmc/linux/include/linux/netdevice.h (revision 078a55fc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 					/* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 	( (netdev)->ethtool_ops = (ops) )
62 
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 					   const struct ethtool_ops *ops);
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 #define NET_ADDR_SET		3	/* address is set using
71 					 * dev_set_mac_address() */
72 
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
75 #define NET_RX_DROP		1	/* packet dropped */
76 
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93 
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS	0x00
96 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
97 #define NET_XMIT_CN		0x02	/* congestion notification	*/
98 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *	Old network device statistics. Fields are native words
160  *	(unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164 	unsigned long	rx_packets;
165 	unsigned long	tx_packets;
166 	unsigned long	rx_bytes;
167 	unsigned long	tx_bytes;
168 	unsigned long	rx_errors;
169 	unsigned long	tx_errors;
170 	unsigned long	rx_dropped;
171 	unsigned long	tx_dropped;
172 	unsigned long	multicast;
173 	unsigned long	collisions;
174 	unsigned long	rx_length_errors;
175 	unsigned long	rx_over_errors;
176 	unsigned long	rx_crc_errors;
177 	unsigned long	rx_frame_errors;
178 	unsigned long	rx_fifo_errors;
179 	unsigned long	rx_missed_errors;
180 	unsigned long	tx_aborted_errors;
181 	unsigned long	tx_carrier_errors;
182 	unsigned long	tx_fifo_errors;
183 	unsigned long	tx_heartbeat_errors;
184 	unsigned long	tx_window_errors;
185 	unsigned long	rx_compressed;
186 	unsigned long	tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203 	struct list_head	list;
204 	unsigned char		addr[MAX_ADDR_LEN];
205 	unsigned char		type;
206 #define NETDEV_HW_ADDR_T_LAN		1
207 #define NETDEV_HW_ADDR_T_SAN		2
208 #define NETDEV_HW_ADDR_T_SLAVE		3
209 #define NETDEV_HW_ADDR_T_UNICAST	4
210 #define NETDEV_HW_ADDR_T_MULTICAST	5
211 	bool			global_use;
212 	int			sync_cnt;
213 	int			refcount;
214 	int			synced;
215 	struct rcu_head		rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219 	struct list_head	list;
220 	int			count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 	list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239 	u16		hh_len;
240 	u16		__pad;
241 	seqlock_t	hh_lock;
242 
243 	/* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD	16
245 #define HH_DATA_OFF(__len) \
246 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
267 			   unsigned short type, const void *daddr,
268 			   const void *saddr, unsigned int len);
269 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 	int	(*rebuild)(struct sk_buff *skb);
271 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 	void	(*cache_update)(struct hh_cache *hh,
273 				const struct net_device *dev,
274 				const unsigned char *haddr);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283 	__LINK_STATE_START,
284 	__LINK_STATE_PRESENT,
285 	__LINK_STATE_NOCARRIER,
286 	__LINK_STATE_LINKWATCH_PENDING,
287 	__LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296 	char name[IFNAMSIZ];
297 	struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 extern int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307 	/* The poll_list must only be managed by the entity which
308 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
309 	 * whoever atomically sets that bit can add this napi_struct
310 	 * to the per-cpu poll_list, and whoever clears that bit
311 	 * can remove from the list right before clearing the bit.
312 	 */
313 	struct list_head	poll_list;
314 
315 	unsigned long		state;
316 	int			weight;
317 	unsigned int		gro_count;
318 	int			(*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 	spinlock_t		poll_lock;
321 	int			poll_owner;
322 #endif
323 	struct net_device	*dev;
324 	struct sk_buff		*gro_list;
325 	struct sk_buff		*skb;
326 	struct list_head	dev_list;
327 	struct hlist_node	napi_hash_node;
328 	unsigned int		napi_id;
329 };
330 
331 enum {
332 	NAPI_STATE_SCHED,	/* Poll is scheduled */
333 	NAPI_STATE_DISABLE,	/* Disable pending */
334 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
335 	NAPI_STATE_HASHED,	/* In NAPI hash */
336 };
337 
338 enum gro_result {
339 	GRO_MERGED,
340 	GRO_MERGED_FREE,
341 	GRO_HELD,
342 	GRO_NORMAL,
343 	GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed to skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other ways.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler consider the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389 	RX_HANDLER_CONSUMED,
390 	RX_HANDLER_ANOTHER,
391 	RX_HANDLER_EXACT,
392 	RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 extern void __napi_schedule(struct napi_struct *n);
398 
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 	return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403 
404 /**
405  *	napi_schedule_prep - check if napi can be scheduled
406  *	@n: napi context
407  *
408  * Test if NAPI routine is already running, and if not mark
409  * it as running.  This is used as a condition variable
410  * insure only one NAPI poll instance runs.  We also make
411  * sure there is no pending NAPI disable.
412  */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 	return !napi_disable_pending(n) &&
416 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418 
419 /**
420  *	napi_schedule - schedule NAPI poll
421  *	@n: napi context
422  *
423  * Schedule NAPI poll routine to be called if it is not already
424  * running.
425  */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 	if (napi_schedule_prep(n))
429 		__napi_schedule(n);
430 }
431 
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 	if (napi_schedule_prep(napi)) {
436 		__napi_schedule(napi);
437 		return true;
438 	}
439 	return false;
440 }
441 
442 /**
443  *	napi_complete - NAPI processing complete
444  *	@n: napi context
445  *
446  * Mark NAPI processing as complete.
447  */
448 extern void __napi_complete(struct napi_struct *n);
449 extern void napi_complete(struct napi_struct *n);
450 
451 /**
452  *	napi_by_id - lookup a NAPI by napi_id
453  *	@napi_id: hashed napi_id
454  *
455  * lookup @napi_id in napi_hash table
456  * must be called under rcu_read_lock()
457  */
458 extern struct napi_struct *napi_by_id(unsigned int napi_id);
459 
460 /**
461  *	napi_hash_add - add a NAPI to global hashtable
462  *	@napi: napi context
463  *
464  * generate a new napi_id and store a @napi under it in napi_hash
465  */
466 extern void napi_hash_add(struct napi_struct *napi);
467 
468 /**
469  *	napi_hash_del - remove a NAPI from global table
470  *	@napi: napi context
471  *
472  * Warning: caller must observe rcu grace period
473  * before freeing memory containing @napi
474  */
475 extern void napi_hash_del(struct napi_struct *napi);
476 
477 /**
478  *	napi_disable - prevent NAPI from scheduling
479  *	@n: napi context
480  *
481  * Stop NAPI from being scheduled on this context.
482  * Waits till any outstanding processing completes.
483  */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 	set_bit(NAPI_STATE_DISABLE, &n->state);
487 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
488 		msleep(1);
489 	clear_bit(NAPI_STATE_DISABLE, &n->state);
490 }
491 
492 /**
493  *	napi_enable - enable NAPI scheduling
494  *	@n: napi context
495  *
496  * Resume NAPI from being scheduled on this context.
497  * Must be paired with napi_disable.
498  */
499 static inline void napi_enable(struct napi_struct *n)
500 {
501 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
502 	smp_mb__before_clear_bit();
503 	clear_bit(NAPI_STATE_SCHED, &n->state);
504 }
505 
506 #ifdef CONFIG_SMP
507 /**
508  *	napi_synchronize - wait until NAPI is not running
509  *	@n: napi context
510  *
511  * Wait until NAPI is done being scheduled on this context.
512  * Waits till any outstanding processing completes but
513  * does not disable future activations.
514  */
515 static inline void napi_synchronize(const struct napi_struct *n)
516 {
517 	while (test_bit(NAPI_STATE_SCHED, &n->state))
518 		msleep(1);
519 }
520 #else
521 # define napi_synchronize(n)	barrier()
522 #endif
523 
524 enum netdev_queue_state_t {
525 	__QUEUE_STATE_DRV_XOFF,
526 	__QUEUE_STATE_STACK_XOFF,
527 	__QUEUE_STATE_FROZEN,
528 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
529 			      (1 << __QUEUE_STATE_STACK_XOFF))
530 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
531 					(1 << __QUEUE_STATE_FROZEN))
532 };
533 /*
534  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
535  * netif_tx_* functions below are used to manipulate this flag.  The
536  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
537  * queue independently.  The netif_xmit_*stopped functions below are called
538  * to check if the queue has been stopped by the driver or stack (either
539  * of the XOFF bits are set in the state).  Drivers should not need to call
540  * netif_xmit*stopped functions, they should only be using netif_tx_*.
541  */
542 
543 struct netdev_queue {
544 /*
545  * read mostly part
546  */
547 	struct net_device	*dev;
548 	struct Qdisc		*qdisc;
549 	struct Qdisc		*qdisc_sleeping;
550 #ifdef CONFIG_SYSFS
551 	struct kobject		kobj;
552 #endif
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 	int			numa_node;
555 #endif
556 /*
557  * write mostly part
558  */
559 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
560 	int			xmit_lock_owner;
561 	/*
562 	 * please use this field instead of dev->trans_start
563 	 */
564 	unsigned long		trans_start;
565 
566 	/*
567 	 * Number of TX timeouts for this queue
568 	 * (/sys/class/net/DEV/Q/trans_timeout)
569 	 */
570 	unsigned long		trans_timeout;
571 
572 	unsigned long		state;
573 
574 #ifdef CONFIG_BQL
575 	struct dql		dql;
576 #endif
577 } ____cacheline_aligned_in_smp;
578 
579 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
580 {
581 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
582 	return q->numa_node;
583 #else
584 	return NUMA_NO_NODE;
585 #endif
586 }
587 
588 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 	q->numa_node = node;
592 #endif
593 }
594 
595 #ifdef CONFIG_RPS
596 /*
597  * This structure holds an RPS map which can be of variable length.  The
598  * map is an array of CPUs.
599  */
600 struct rps_map {
601 	unsigned int len;
602 	struct rcu_head rcu;
603 	u16 cpus[0];
604 };
605 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
606 
607 /*
608  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
609  * tail pointer for that CPU's input queue at the time of last enqueue, and
610  * a hardware filter index.
611  */
612 struct rps_dev_flow {
613 	u16 cpu;
614 	u16 filter;
615 	unsigned int last_qtail;
616 };
617 #define RPS_NO_FILTER 0xffff
618 
619 /*
620  * The rps_dev_flow_table structure contains a table of flow mappings.
621  */
622 struct rps_dev_flow_table {
623 	unsigned int mask;
624 	struct rcu_head rcu;
625 	struct rps_dev_flow flows[0];
626 };
627 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
628     ((_num) * sizeof(struct rps_dev_flow)))
629 
630 /*
631  * The rps_sock_flow_table contains mappings of flows to the last CPU
632  * on which they were processed by the application (set in recvmsg).
633  */
634 struct rps_sock_flow_table {
635 	unsigned int mask;
636 	u16 ents[0];
637 };
638 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
639     ((_num) * sizeof(u16)))
640 
641 #define RPS_NO_CPU 0xffff
642 
643 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
644 					u32 hash)
645 {
646 	if (table && hash) {
647 		unsigned int cpu, index = hash & table->mask;
648 
649 		/* We only give a hint, preemption can change cpu under us */
650 		cpu = raw_smp_processor_id();
651 
652 		if (table->ents[index] != cpu)
653 			table->ents[index] = cpu;
654 	}
655 }
656 
657 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
658 				       u32 hash)
659 {
660 	if (table && hash)
661 		table->ents[hash & table->mask] = RPS_NO_CPU;
662 }
663 
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 #ifdef CONFIG_RFS_ACCEL
667 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
668 				u32 flow_id, u16 filter_id);
669 #endif
670 
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 	struct rps_map __rcu		*rps_map;
674 	struct rps_dev_flow_table __rcu	*rps_flow_table;
675 	struct kobject			kobj;
676 	struct net_device		*dev;
677 } ____cacheline_aligned_in_smp;
678 #endif /* CONFIG_RPS */
679 
680 #ifdef CONFIG_XPS
681 /*
682  * This structure holds an XPS map which can be of variable length.  The
683  * map is an array of queues.
684  */
685 struct xps_map {
686 	unsigned int len;
687 	unsigned int alloc_len;
688 	struct rcu_head rcu;
689 	u16 queues[0];
690 };
691 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
692 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
693     / sizeof(u16))
694 
695 /*
696  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
697  */
698 struct xps_dev_maps {
699 	struct rcu_head rcu;
700 	struct xps_map __rcu *cpu_map[0];
701 };
702 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
703     (nr_cpu_ids * sizeof(struct xps_map *)))
704 #endif /* CONFIG_XPS */
705 
706 #define TC_MAX_QUEUE	16
707 #define TC_BITMASK	15
708 /* HW offloaded queuing disciplines txq count and offset maps */
709 struct netdev_tc_txq {
710 	u16 count;
711 	u16 offset;
712 };
713 
714 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
715 /*
716  * This structure is to hold information about the device
717  * configured to run FCoE protocol stack.
718  */
719 struct netdev_fcoe_hbainfo {
720 	char	manufacturer[64];
721 	char	serial_number[64];
722 	char	hardware_version[64];
723 	char	driver_version[64];
724 	char	optionrom_version[64];
725 	char	firmware_version[64];
726 	char	model[256];
727 	char	model_description[256];
728 };
729 #endif
730 
731 /*
732  * This structure defines the management hooks for network devices.
733  * The following hooks can be defined; unless noted otherwise, they are
734  * optional and can be filled with a null pointer.
735  *
736  * int (*ndo_init)(struct net_device *dev);
737  *     This function is called once when network device is registered.
738  *     The network device can use this to any late stage initializaton
739  *     or semantic validattion. It can fail with an error code which will
740  *     be propogated back to register_netdev
741  *
742  * void (*ndo_uninit)(struct net_device *dev);
743  *     This function is called when device is unregistered or when registration
744  *     fails. It is not called if init fails.
745  *
746  * int (*ndo_open)(struct net_device *dev);
747  *     This function is called when network device transistions to the up
748  *     state.
749  *
750  * int (*ndo_stop)(struct net_device *dev);
751  *     This function is called when network device transistions to the down
752  *     state.
753  *
754  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
755  *                               struct net_device *dev);
756  *	Called when a packet needs to be transmitted.
757  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
758  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
759  *	Required can not be NULL.
760  *
761  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
762  *	Called to decide which queue to when device supports multiple
763  *	transmit queues.
764  *
765  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
766  *	This function is called to allow device receiver to make
767  *	changes to configuration when multicast or promiscious is enabled.
768  *
769  * void (*ndo_set_rx_mode)(struct net_device *dev);
770  *	This function is called device changes address list filtering.
771  *	If driver handles unicast address filtering, it should set
772  *	IFF_UNICAST_FLT to its priv_flags.
773  *
774  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
775  *	This function  is called when the Media Access Control address
776  *	needs to be changed. If this interface is not defined, the
777  *	mac address can not be changed.
778  *
779  * int (*ndo_validate_addr)(struct net_device *dev);
780  *	Test if Media Access Control address is valid for the device.
781  *
782  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
783  *	Called when a user request an ioctl which can't be handled by
784  *	the generic interface code. If not defined ioctl's return
785  *	not supported error code.
786  *
787  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
788  *	Used to set network devices bus interface parameters. This interface
789  *	is retained for legacy reason, new devices should use the bus
790  *	interface (PCI) for low level management.
791  *
792  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
793  *	Called when a user wants to change the Maximum Transfer Unit
794  *	of a device. If not defined, any request to change MTU will
795  *	will return an error.
796  *
797  * void (*ndo_tx_timeout)(struct net_device *dev);
798  *	Callback uses when the transmitter has not made any progress
799  *	for dev->watchdog ticks.
800  *
801  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
802  *                      struct rtnl_link_stats64 *storage);
803  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
804  *	Called when a user wants to get the network device usage
805  *	statistics. Drivers must do one of the following:
806  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
807  *	   rtnl_link_stats64 structure passed by the caller.
808  *	2. Define @ndo_get_stats to update a net_device_stats structure
809  *	   (which should normally be dev->stats) and return a pointer to
810  *	   it. The structure may be changed asynchronously only if each
811  *	   field is written atomically.
812  *	3. Update dev->stats asynchronously and atomically, and define
813  *	   neither operation.
814  *
815  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
816  *	If device support VLAN filtering this function is called when a
817  *	VLAN id is registered.
818  *
819  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
820  *	If device support VLAN filtering this function is called when a
821  *	VLAN id is unregistered.
822  *
823  * void (*ndo_poll_controller)(struct net_device *dev);
824  *
825  *	SR-IOV management functions.
826  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
827  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
828  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
829  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
830  * int (*ndo_get_vf_config)(struct net_device *dev,
831  *			    int vf, struct ifla_vf_info *ivf);
832  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
833  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
834  *			  struct nlattr *port[]);
835  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
836  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
837  * 	Called to setup 'tc' number of traffic classes in the net device. This
838  * 	is always called from the stack with the rtnl lock held and netif tx
839  * 	queues stopped. This allows the netdevice to perform queue management
840  * 	safely.
841  *
842  *	Fiber Channel over Ethernet (FCoE) offload functions.
843  * int (*ndo_fcoe_enable)(struct net_device *dev);
844  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
845  *	so the underlying device can perform whatever needed configuration or
846  *	initialization to support acceleration of FCoE traffic.
847  *
848  * int (*ndo_fcoe_disable)(struct net_device *dev);
849  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
850  *	so the underlying device can perform whatever needed clean-ups to
851  *	stop supporting acceleration of FCoE traffic.
852  *
853  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
854  *			     struct scatterlist *sgl, unsigned int sgc);
855  *	Called when the FCoE Initiator wants to initialize an I/O that
856  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
857  *	perform necessary setup and returns 1 to indicate the device is set up
858  *	successfully to perform DDP on this I/O, otherwise this returns 0.
859  *
860  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
861  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
862  *	indicated by the FC exchange id 'xid', so the underlying device can
863  *	clean up and reuse resources for later DDP requests.
864  *
865  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
866  *			      struct scatterlist *sgl, unsigned int sgc);
867  *	Called when the FCoE Target wants to initialize an I/O that
868  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
869  *	perform necessary setup and returns 1 to indicate the device is set up
870  *	successfully to perform DDP on this I/O, otherwise this returns 0.
871  *
872  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
873  *			       struct netdev_fcoe_hbainfo *hbainfo);
874  *	Called when the FCoE Protocol stack wants information on the underlying
875  *	device. This information is utilized by the FCoE protocol stack to
876  *	register attributes with Fiber Channel management service as per the
877  *	FC-GS Fabric Device Management Information(FDMI) specification.
878  *
879  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
880  *	Called when the underlying device wants to override default World Wide
881  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
882  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
883  *	protocol stack to use.
884  *
885  *	RFS acceleration.
886  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
887  *			    u16 rxq_index, u32 flow_id);
888  *	Set hardware filter for RFS.  rxq_index is the target queue index;
889  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
890  *	Return the filter ID on success, or a negative error code.
891  *
892  *	Slave management functions (for bridge, bonding, etc).
893  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
894  *	Called to make another netdev an underling.
895  *
896  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
897  *	Called to release previously enslaved netdev.
898  *
899  *      Feature/offload setting functions.
900  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
901  *		netdev_features_t features);
902  *	Adjusts the requested feature flags according to device-specific
903  *	constraints, and returns the resulting flags. Must not modify
904  *	the device state.
905  *
906  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
907  *	Called to update device configuration to new features. Passed
908  *	feature set might be less than what was returned by ndo_fix_features()).
909  *	Must return >0 or -errno if it changed dev->features itself.
910  *
911  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
912  *		      struct net_device *dev,
913  *		      const unsigned char *addr, u16 flags)
914  *	Adds an FDB entry to dev for addr.
915  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
916  *		      struct net_device *dev,
917  *		      const unsigned char *addr)
918  *	Deletes the FDB entry from dev coresponding to addr.
919  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
920  *		       struct net_device *dev, int idx)
921  *	Used to add FDB entries to dump requests. Implementers should add
922  *	entries to skb and update idx with the number of entries.
923  *
924  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
925  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
926  *			     struct net_device *dev, u32 filter_mask)
927  *
928  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
929  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
930  *	which do not represent real hardware may define this to allow their
931  *	userspace components to manage their virtual carrier state. Devices
932  *	that determine carrier state from physical hardware properties (eg
933  *	network cables) or protocol-dependent mechanisms (eg
934  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
935  */
936 struct net_device_ops {
937 	int			(*ndo_init)(struct net_device *dev);
938 	void			(*ndo_uninit)(struct net_device *dev);
939 	int			(*ndo_open)(struct net_device *dev);
940 	int			(*ndo_stop)(struct net_device *dev);
941 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
942 						   struct net_device *dev);
943 	u16			(*ndo_select_queue)(struct net_device *dev,
944 						    struct sk_buff *skb);
945 	void			(*ndo_change_rx_flags)(struct net_device *dev,
946 						       int flags);
947 	void			(*ndo_set_rx_mode)(struct net_device *dev);
948 	int			(*ndo_set_mac_address)(struct net_device *dev,
949 						       void *addr);
950 	int			(*ndo_validate_addr)(struct net_device *dev);
951 	int			(*ndo_do_ioctl)(struct net_device *dev,
952 					        struct ifreq *ifr, int cmd);
953 	int			(*ndo_set_config)(struct net_device *dev,
954 					          struct ifmap *map);
955 	int			(*ndo_change_mtu)(struct net_device *dev,
956 						  int new_mtu);
957 	int			(*ndo_neigh_setup)(struct net_device *dev,
958 						   struct neigh_parms *);
959 	void			(*ndo_tx_timeout) (struct net_device *dev);
960 
961 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
962 						     struct rtnl_link_stats64 *storage);
963 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
964 
965 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
966 						       __be16 proto, u16 vid);
967 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
968 						        __be16 proto, u16 vid);
969 #ifdef CONFIG_NET_POLL_CONTROLLER
970 	void                    (*ndo_poll_controller)(struct net_device *dev);
971 	int			(*ndo_netpoll_setup)(struct net_device *dev,
972 						     struct netpoll_info *info,
973 						     gfp_t gfp);
974 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
975 #endif
976 #ifdef CONFIG_NET_LL_RX_POLL
977 	int			(*ndo_busy_poll)(struct napi_struct *dev);
978 #endif
979 	int			(*ndo_set_vf_mac)(struct net_device *dev,
980 						  int queue, u8 *mac);
981 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
982 						   int queue, u16 vlan, u8 qos);
983 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
984 						      int vf, int rate);
985 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
986 						       int vf, bool setting);
987 	int			(*ndo_get_vf_config)(struct net_device *dev,
988 						     int vf,
989 						     struct ifla_vf_info *ivf);
990 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
991 							 int vf, int link_state);
992 	int			(*ndo_set_vf_port)(struct net_device *dev,
993 						   int vf,
994 						   struct nlattr *port[]);
995 	int			(*ndo_get_vf_port)(struct net_device *dev,
996 						   int vf, struct sk_buff *skb);
997 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
998 #if IS_ENABLED(CONFIG_FCOE)
999 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1000 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1001 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1002 						      u16 xid,
1003 						      struct scatterlist *sgl,
1004 						      unsigned int sgc);
1005 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1006 						     u16 xid);
1007 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1008 						       u16 xid,
1009 						       struct scatterlist *sgl,
1010 						       unsigned int sgc);
1011 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1012 							struct netdev_fcoe_hbainfo *hbainfo);
1013 #endif
1014 
1015 #if IS_ENABLED(CONFIG_LIBFCOE)
1016 #define NETDEV_FCOE_WWNN 0
1017 #define NETDEV_FCOE_WWPN 1
1018 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1019 						    u64 *wwn, int type);
1020 #endif
1021 
1022 #ifdef CONFIG_RFS_ACCEL
1023 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1024 						     const struct sk_buff *skb,
1025 						     u16 rxq_index,
1026 						     u32 flow_id);
1027 #endif
1028 	int			(*ndo_add_slave)(struct net_device *dev,
1029 						 struct net_device *slave_dev);
1030 	int			(*ndo_del_slave)(struct net_device *dev,
1031 						 struct net_device *slave_dev);
1032 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1033 						    netdev_features_t features);
1034 	int			(*ndo_set_features)(struct net_device *dev,
1035 						    netdev_features_t features);
1036 	int			(*ndo_neigh_construct)(struct neighbour *n);
1037 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1038 
1039 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1040 					       struct nlattr *tb[],
1041 					       struct net_device *dev,
1042 					       const unsigned char *addr,
1043 					       u16 flags);
1044 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1045 					       struct nlattr *tb[],
1046 					       struct net_device *dev,
1047 					       const unsigned char *addr);
1048 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1049 						struct netlink_callback *cb,
1050 						struct net_device *dev,
1051 						int idx);
1052 
1053 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1054 						      struct nlmsghdr *nlh);
1055 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1056 						      u32 pid, u32 seq,
1057 						      struct net_device *dev,
1058 						      u32 filter_mask);
1059 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1060 						      struct nlmsghdr *nlh);
1061 	int			(*ndo_change_carrier)(struct net_device *dev,
1062 						      bool new_carrier);
1063 };
1064 
1065 /*
1066  *	The DEVICE structure.
1067  *	Actually, this whole structure is a big mistake.  It mixes I/O
1068  *	data with strictly "high-level" data, and it has to know about
1069  *	almost every data structure used in the INET module.
1070  *
1071  *	FIXME: cleanup struct net_device such that network protocol info
1072  *	moves out.
1073  */
1074 
1075 struct net_device {
1076 
1077 	/*
1078 	 * This is the first field of the "visible" part of this structure
1079 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1080 	 * of the interface.
1081 	 */
1082 	char			name[IFNAMSIZ];
1083 
1084 	/* device name hash chain, please keep it close to name[] */
1085 	struct hlist_node	name_hlist;
1086 
1087 	/* snmp alias */
1088 	char 			*ifalias;
1089 
1090 	/*
1091 	 *	I/O specific fields
1092 	 *	FIXME: Merge these and struct ifmap into one
1093 	 */
1094 	unsigned long		mem_end;	/* shared mem end	*/
1095 	unsigned long		mem_start;	/* shared mem start	*/
1096 	unsigned long		base_addr;	/* device I/O address	*/
1097 	unsigned int		irq;		/* device IRQ number	*/
1098 
1099 	/*
1100 	 *	Some hardware also needs these fields, but they are not
1101 	 *	part of the usual set specified in Space.c.
1102 	 */
1103 
1104 	unsigned long		state;
1105 
1106 	struct list_head	dev_list;
1107 	struct list_head	napi_list;
1108 	struct list_head	unreg_list;
1109 	struct list_head	upper_dev_list; /* List of upper devices */
1110 
1111 
1112 	/* currently active device features */
1113 	netdev_features_t	features;
1114 	/* user-changeable features */
1115 	netdev_features_t	hw_features;
1116 	/* user-requested features */
1117 	netdev_features_t	wanted_features;
1118 	/* mask of features inheritable by VLAN devices */
1119 	netdev_features_t	vlan_features;
1120 	/* mask of features inherited by encapsulating devices
1121 	 * This field indicates what encapsulation offloads
1122 	 * the hardware is capable of doing, and drivers will
1123 	 * need to set them appropriately.
1124 	 */
1125 	netdev_features_t	hw_enc_features;
1126 	/* mask of fetures inheritable by MPLS */
1127 	netdev_features_t	mpls_features;
1128 
1129 	/* Interface index. Unique device identifier	*/
1130 	int			ifindex;
1131 	int			iflink;
1132 
1133 	struct net_device_stats	stats;
1134 	atomic_long_t		rx_dropped; /* dropped packets by core network
1135 					     * Do not use this in drivers.
1136 					     */
1137 
1138 #ifdef CONFIG_WIRELESS_EXT
1139 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1140 	 * See <net/iw_handler.h> for details. Jean II */
1141 	const struct iw_handler_def *	wireless_handlers;
1142 	/* Instance data managed by the core of Wireless Extensions. */
1143 	struct iw_public_data *	wireless_data;
1144 #endif
1145 	/* Management operations */
1146 	const struct net_device_ops *netdev_ops;
1147 	const struct ethtool_ops *ethtool_ops;
1148 
1149 	/* Hardware header description */
1150 	const struct header_ops *header_ops;
1151 
1152 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1153 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1154 					     * See if.h for definitions. */
1155 	unsigned short		gflags;
1156 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1157 
1158 	unsigned char		operstate; /* RFC2863 operstate */
1159 	unsigned char		link_mode; /* mapping policy to operstate */
1160 
1161 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1162 	unsigned char		dma;		/* DMA channel		*/
1163 
1164 	unsigned int		mtu;	/* interface MTU value		*/
1165 	unsigned short		type;	/* interface hardware type	*/
1166 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1167 
1168 	/* extra head- and tailroom the hardware may need, but not in all cases
1169 	 * can this be guaranteed, especially tailroom. Some cases also use
1170 	 * LL_MAX_HEADER instead to allocate the skb.
1171 	 */
1172 	unsigned short		needed_headroom;
1173 	unsigned short		needed_tailroom;
1174 
1175 	/* Interface address info. */
1176 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1177 	unsigned char		addr_assign_type; /* hw address assignment type */
1178 	unsigned char		addr_len;	/* hardware address length	*/
1179 	unsigned char		neigh_priv_len;
1180 	unsigned short          dev_id;		/* Used to differentiate devices
1181 						 * that share the same link
1182 						 * layer address
1183 						 */
1184 	spinlock_t		addr_list_lock;
1185 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1186 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1187 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1188 						    * hw addresses
1189 						    */
1190 #ifdef CONFIG_SYSFS
1191 	struct kset		*queues_kset;
1192 #endif
1193 
1194 	bool			uc_promisc;
1195 	unsigned int		promiscuity;
1196 	unsigned int		allmulti;
1197 
1198 
1199 	/* Protocol specific pointers */
1200 
1201 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1202 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1203 #endif
1204 #if IS_ENABLED(CONFIG_NET_DSA)
1205 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1206 #endif
1207 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1208 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1209 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1210 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1211 	void			*ax25_ptr;	/* AX.25 specific data */
1212 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1213 						   assign before registering */
1214 
1215 /*
1216  * Cache lines mostly used on receive path (including eth_type_trans())
1217  */
1218 	unsigned long		last_rx;	/* Time of last Rx
1219 						 * This should not be set in
1220 						 * drivers, unless really needed,
1221 						 * because network stack (bonding)
1222 						 * use it if/when necessary, to
1223 						 * avoid dirtying this cache line.
1224 						 */
1225 
1226 	/* Interface address info used in eth_type_trans() */
1227 	unsigned char		*dev_addr;	/* hw address, (before bcast
1228 						   because most packets are
1229 						   unicast) */
1230 
1231 
1232 #ifdef CONFIG_RPS
1233 	struct netdev_rx_queue	*_rx;
1234 
1235 	/* Number of RX queues allocated at register_netdev() time */
1236 	unsigned int		num_rx_queues;
1237 
1238 	/* Number of RX queues currently active in device */
1239 	unsigned int		real_num_rx_queues;
1240 
1241 #endif
1242 
1243 	rx_handler_func_t __rcu	*rx_handler;
1244 	void __rcu		*rx_handler_data;
1245 
1246 	struct netdev_queue __rcu *ingress_queue;
1247 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1248 
1249 
1250 /*
1251  * Cache lines mostly used on transmit path
1252  */
1253 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1254 
1255 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1256 	unsigned int		num_tx_queues;
1257 
1258 	/* Number of TX queues currently active in device  */
1259 	unsigned int		real_num_tx_queues;
1260 
1261 	/* root qdisc from userspace point of view */
1262 	struct Qdisc		*qdisc;
1263 
1264 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1265 	spinlock_t		tx_global_lock;
1266 
1267 #ifdef CONFIG_XPS
1268 	struct xps_dev_maps __rcu *xps_maps;
1269 #endif
1270 #ifdef CONFIG_RFS_ACCEL
1271 	/* CPU reverse-mapping for RX completion interrupts, indexed
1272 	 * by RX queue number.  Assigned by driver.  This must only be
1273 	 * set if the ndo_rx_flow_steer operation is defined. */
1274 	struct cpu_rmap		*rx_cpu_rmap;
1275 #endif
1276 
1277 	/* These may be needed for future network-power-down code. */
1278 
1279 	/*
1280 	 * trans_start here is expensive for high speed devices on SMP,
1281 	 * please use netdev_queue->trans_start instead.
1282 	 */
1283 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1284 
1285 	int			watchdog_timeo; /* used by dev_watchdog() */
1286 	struct timer_list	watchdog_timer;
1287 
1288 	/* Number of references to this device */
1289 	int __percpu		*pcpu_refcnt;
1290 
1291 	/* delayed register/unregister */
1292 	struct list_head	todo_list;
1293 	/* device index hash chain */
1294 	struct hlist_node	index_hlist;
1295 
1296 	struct list_head	link_watch_list;
1297 
1298 	/* register/unregister state machine */
1299 	enum { NETREG_UNINITIALIZED=0,
1300 	       NETREG_REGISTERED,	/* completed register_netdevice */
1301 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1302 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1303 	       NETREG_RELEASED,		/* called free_netdev */
1304 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1305 	} reg_state:8;
1306 
1307 	bool dismantle; /* device is going do be freed */
1308 
1309 	enum {
1310 		RTNL_LINK_INITIALIZED,
1311 		RTNL_LINK_INITIALIZING,
1312 	} rtnl_link_state:16;
1313 
1314 	/* Called from unregister, can be used to call free_netdev */
1315 	void (*destructor)(struct net_device *dev);
1316 
1317 #ifdef CONFIG_NETPOLL
1318 	struct netpoll_info __rcu	*npinfo;
1319 #endif
1320 
1321 #ifdef CONFIG_NET_NS
1322 	/* Network namespace this network device is inside */
1323 	struct net		*nd_net;
1324 #endif
1325 
1326 	/* mid-layer private */
1327 	union {
1328 		void				*ml_priv;
1329 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1330 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1331 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1332 		struct pcpu_vstats __percpu	*vstats; /* veth stats */
1333 	};
1334 	/* GARP */
1335 	struct garp_port __rcu	*garp_port;
1336 	/* MRP */
1337 	struct mrp_port __rcu	*mrp_port;
1338 
1339 	/* class/net/name entry */
1340 	struct device		dev;
1341 	/* space for optional device, statistics, and wireless sysfs groups */
1342 	const struct attribute_group *sysfs_groups[4];
1343 
1344 	/* rtnetlink link ops */
1345 	const struct rtnl_link_ops *rtnl_link_ops;
1346 
1347 	/* for setting kernel sock attribute on TCP connection setup */
1348 #define GSO_MAX_SIZE		65536
1349 	unsigned int		gso_max_size;
1350 #define GSO_MAX_SEGS		65535
1351 	u16			gso_max_segs;
1352 
1353 #ifdef CONFIG_DCB
1354 	/* Data Center Bridging netlink ops */
1355 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1356 #endif
1357 	u8 num_tc;
1358 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1359 	u8 prio_tc_map[TC_BITMASK + 1];
1360 
1361 #if IS_ENABLED(CONFIG_FCOE)
1362 	/* max exchange id for FCoE LRO by ddp */
1363 	unsigned int		fcoe_ddp_xid;
1364 #endif
1365 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1366 	struct netprio_map __rcu *priomap;
1367 #endif
1368 	/* phy device may attach itself for hardware timestamping */
1369 	struct phy_device *phydev;
1370 
1371 	struct lock_class_key *qdisc_tx_busylock;
1372 
1373 	/* group the device belongs to */
1374 	int group;
1375 
1376 	struct pm_qos_request	pm_qos_req;
1377 };
1378 #define to_net_dev(d) container_of(d, struct net_device, dev)
1379 
1380 #define	NETDEV_ALIGN		32
1381 
1382 static inline
1383 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1384 {
1385 	return dev->prio_tc_map[prio & TC_BITMASK];
1386 }
1387 
1388 static inline
1389 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1390 {
1391 	if (tc >= dev->num_tc)
1392 		return -EINVAL;
1393 
1394 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1395 	return 0;
1396 }
1397 
1398 static inline
1399 void netdev_reset_tc(struct net_device *dev)
1400 {
1401 	dev->num_tc = 0;
1402 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1403 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1404 }
1405 
1406 static inline
1407 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1408 {
1409 	if (tc >= dev->num_tc)
1410 		return -EINVAL;
1411 
1412 	dev->tc_to_txq[tc].count = count;
1413 	dev->tc_to_txq[tc].offset = offset;
1414 	return 0;
1415 }
1416 
1417 static inline
1418 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1419 {
1420 	if (num_tc > TC_MAX_QUEUE)
1421 		return -EINVAL;
1422 
1423 	dev->num_tc = num_tc;
1424 	return 0;
1425 }
1426 
1427 static inline
1428 int netdev_get_num_tc(struct net_device *dev)
1429 {
1430 	return dev->num_tc;
1431 }
1432 
1433 static inline
1434 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1435 					 unsigned int index)
1436 {
1437 	return &dev->_tx[index];
1438 }
1439 
1440 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1441 					    void (*f)(struct net_device *,
1442 						      struct netdev_queue *,
1443 						      void *),
1444 					    void *arg)
1445 {
1446 	unsigned int i;
1447 
1448 	for (i = 0; i < dev->num_tx_queues; i++)
1449 		f(dev, &dev->_tx[i], arg);
1450 }
1451 
1452 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1453 					   struct sk_buff *skb);
1454 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1455 
1456 /*
1457  * Net namespace inlines
1458  */
1459 static inline
1460 struct net *dev_net(const struct net_device *dev)
1461 {
1462 	return read_pnet(&dev->nd_net);
1463 }
1464 
1465 static inline
1466 void dev_net_set(struct net_device *dev, struct net *net)
1467 {
1468 #ifdef CONFIG_NET_NS
1469 	release_net(dev->nd_net);
1470 	dev->nd_net = hold_net(net);
1471 #endif
1472 }
1473 
1474 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1475 {
1476 #ifdef CONFIG_NET_DSA_TAG_DSA
1477 	if (dev->dsa_ptr != NULL)
1478 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1479 #endif
1480 
1481 	return 0;
1482 }
1483 
1484 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1485 {
1486 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1487 	if (dev->dsa_ptr != NULL)
1488 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1489 #endif
1490 
1491 	return 0;
1492 }
1493 
1494 /**
1495  *	netdev_priv - access network device private data
1496  *	@dev: network device
1497  *
1498  * Get network device private data
1499  */
1500 static inline void *netdev_priv(const struct net_device *dev)
1501 {
1502 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1503 }
1504 
1505 /* Set the sysfs physical device reference for the network logical device
1506  * if set prior to registration will cause a symlink during initialization.
1507  */
1508 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1509 
1510 /* Set the sysfs device type for the network logical device to allow
1511  * fin grained indentification of different network device types. For
1512  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1513  */
1514 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1515 
1516 /* Default NAPI poll() weight
1517  * Device drivers are strongly advised to not use bigger value
1518  */
1519 #define NAPI_POLL_WEIGHT 64
1520 
1521 /**
1522  *	netif_napi_add - initialize a napi context
1523  *	@dev:  network device
1524  *	@napi: napi context
1525  *	@poll: polling function
1526  *	@weight: default weight
1527  *
1528  * netif_napi_add() must be used to initialize a napi context prior to calling
1529  * *any* of the other napi related functions.
1530  */
1531 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1532 		    int (*poll)(struct napi_struct *, int), int weight);
1533 
1534 /**
1535  *  netif_napi_del - remove a napi context
1536  *  @napi: napi context
1537  *
1538  *  netif_napi_del() removes a napi context from the network device napi list
1539  */
1540 void netif_napi_del(struct napi_struct *napi);
1541 
1542 struct napi_gro_cb {
1543 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1544 	void *frag0;
1545 
1546 	/* Length of frag0. */
1547 	unsigned int frag0_len;
1548 
1549 	/* This indicates where we are processing relative to skb->data. */
1550 	int data_offset;
1551 
1552 	/* This is non-zero if the packet cannot be merged with the new skb. */
1553 	int flush;
1554 
1555 	/* Number of segments aggregated. */
1556 	u16	count;
1557 
1558 	/* This is non-zero if the packet may be of the same flow. */
1559 	u8	same_flow;
1560 
1561 	/* Free the skb? */
1562 	u8	free;
1563 #define NAPI_GRO_FREE		  1
1564 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1565 
1566 	/* jiffies when first packet was created/queued */
1567 	unsigned long age;
1568 
1569 	/* Used in ipv6_gro_receive() */
1570 	int	proto;
1571 
1572 	/* used in skb_gro_receive() slow path */
1573 	struct sk_buff *last;
1574 };
1575 
1576 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1577 
1578 struct packet_type {
1579 	__be16			type;	/* This is really htons(ether_type). */
1580 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1581 	int			(*func) (struct sk_buff *,
1582 					 struct net_device *,
1583 					 struct packet_type *,
1584 					 struct net_device *);
1585 	bool			(*id_match)(struct packet_type *ptype,
1586 					    struct sock *sk);
1587 	void			*af_packet_priv;
1588 	struct list_head	list;
1589 };
1590 
1591 struct offload_callbacks {
1592 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1593 						netdev_features_t features);
1594 	int			(*gso_send_check)(struct sk_buff *skb);
1595 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1596 					       struct sk_buff *skb);
1597 	int			(*gro_complete)(struct sk_buff *skb);
1598 };
1599 
1600 struct packet_offload {
1601 	__be16			 type;	/* This is really htons(ether_type). */
1602 	struct offload_callbacks callbacks;
1603 	struct list_head	 list;
1604 };
1605 
1606 #include <linux/notifier.h>
1607 
1608 /* netdevice notifier chain. Please remember to update the rtnetlink
1609  * notification exclusion list in rtnetlink_event() when adding new
1610  * types.
1611  */
1612 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1613 #define NETDEV_DOWN	0x0002
1614 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1615 				   detected a hardware crash and restarted
1616 				   - we can use this eg to kick tcp sessions
1617 				   once done */
1618 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1619 #define NETDEV_REGISTER 0x0005
1620 #define NETDEV_UNREGISTER	0x0006
1621 #define NETDEV_CHANGEMTU	0x0007
1622 #define NETDEV_CHANGEADDR	0x0008
1623 #define NETDEV_GOING_DOWN	0x0009
1624 #define NETDEV_CHANGENAME	0x000A
1625 #define NETDEV_FEAT_CHANGE	0x000B
1626 #define NETDEV_BONDING_FAILOVER 0x000C
1627 #define NETDEV_PRE_UP		0x000D
1628 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1629 #define NETDEV_POST_TYPE_CHANGE	0x000F
1630 #define NETDEV_POST_INIT	0x0010
1631 #define NETDEV_UNREGISTER_FINAL 0x0011
1632 #define NETDEV_RELEASE		0x0012
1633 #define NETDEV_NOTIFY_PEERS	0x0013
1634 #define NETDEV_JOIN		0x0014
1635 #define NETDEV_CHANGEUPPER	0x0015
1636 
1637 extern int register_netdevice_notifier(struct notifier_block *nb);
1638 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1639 
1640 struct netdev_notifier_info {
1641 	struct net_device *dev;
1642 };
1643 
1644 struct netdev_notifier_change_info {
1645 	struct netdev_notifier_info info; /* must be first */
1646 	unsigned int flags_changed;
1647 };
1648 
1649 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1650 					     struct net_device *dev)
1651 {
1652 	info->dev = dev;
1653 }
1654 
1655 static inline struct net_device *
1656 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1657 {
1658 	return info->dev;
1659 }
1660 
1661 extern int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1662 					 struct netdev_notifier_info *info);
1663 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1664 
1665 
1666 extern rwlock_t				dev_base_lock;		/* Device list lock */
1667 
1668 extern seqcount_t	devnet_rename_seq;	/* Device rename seq */
1669 
1670 
1671 #define for_each_netdev(net, d)		\
1672 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1673 #define for_each_netdev_reverse(net, d)	\
1674 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1675 #define for_each_netdev_rcu(net, d)		\
1676 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1677 #define for_each_netdev_safe(net, d, n)	\
1678 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1679 #define for_each_netdev_continue(net, d)		\
1680 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1681 #define for_each_netdev_continue_rcu(net, d)		\
1682 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1683 #define for_each_netdev_in_bond_rcu(bond, slave)	\
1684 		for_each_netdev_rcu(&init_net, slave)	\
1685 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
1686 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1687 
1688 static inline struct net_device *next_net_device(struct net_device *dev)
1689 {
1690 	struct list_head *lh;
1691 	struct net *net;
1692 
1693 	net = dev_net(dev);
1694 	lh = dev->dev_list.next;
1695 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1696 }
1697 
1698 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1699 {
1700 	struct list_head *lh;
1701 	struct net *net;
1702 
1703 	net = dev_net(dev);
1704 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1705 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1706 }
1707 
1708 static inline struct net_device *first_net_device(struct net *net)
1709 {
1710 	return list_empty(&net->dev_base_head) ? NULL :
1711 		net_device_entry(net->dev_base_head.next);
1712 }
1713 
1714 static inline struct net_device *first_net_device_rcu(struct net *net)
1715 {
1716 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1717 
1718 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1719 }
1720 
1721 extern int 			netdev_boot_setup_check(struct net_device *dev);
1722 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1723 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1724 					      const char *hwaddr);
1725 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1726 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1727 extern void		dev_add_pack(struct packet_type *pt);
1728 extern void		dev_remove_pack(struct packet_type *pt);
1729 extern void		__dev_remove_pack(struct packet_type *pt);
1730 extern void		dev_add_offload(struct packet_offload *po);
1731 extern void		dev_remove_offload(struct packet_offload *po);
1732 extern void		__dev_remove_offload(struct packet_offload *po);
1733 
1734 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1735 						      unsigned short mask);
1736 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1737 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1738 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1739 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1740 extern int		dev_open(struct net_device *dev);
1741 extern int		dev_close(struct net_device *dev);
1742 extern void		dev_disable_lro(struct net_device *dev);
1743 extern int		dev_loopback_xmit(struct sk_buff *newskb);
1744 extern int		dev_queue_xmit(struct sk_buff *skb);
1745 extern int		register_netdevice(struct net_device *dev);
1746 extern void		unregister_netdevice_queue(struct net_device *dev,
1747 						   struct list_head *head);
1748 extern void		unregister_netdevice_many(struct list_head *head);
1749 static inline void unregister_netdevice(struct net_device *dev)
1750 {
1751 	unregister_netdevice_queue(dev, NULL);
1752 }
1753 
1754 extern int 		netdev_refcnt_read(const struct net_device *dev);
1755 extern void		free_netdev(struct net_device *dev);
1756 extern void		synchronize_net(void);
1757 extern int		init_dummy_netdev(struct net_device *dev);
1758 
1759 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1760 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1761 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1762 extern int		netdev_get_name(struct net *net, char *name, int ifindex);
1763 extern int		dev_restart(struct net_device *dev);
1764 #ifdef CONFIG_NETPOLL_TRAP
1765 extern int		netpoll_trap(void);
1766 #endif
1767 extern int	       skb_gro_receive(struct sk_buff **head,
1768 				       struct sk_buff *skb);
1769 
1770 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1771 {
1772 	return NAPI_GRO_CB(skb)->data_offset;
1773 }
1774 
1775 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1776 {
1777 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1778 }
1779 
1780 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1781 {
1782 	NAPI_GRO_CB(skb)->data_offset += len;
1783 }
1784 
1785 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1786 					unsigned int offset)
1787 {
1788 	return NAPI_GRO_CB(skb)->frag0 + offset;
1789 }
1790 
1791 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1792 {
1793 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1794 }
1795 
1796 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1797 					unsigned int offset)
1798 {
1799 	if (!pskb_may_pull(skb, hlen))
1800 		return NULL;
1801 
1802 	NAPI_GRO_CB(skb)->frag0 = NULL;
1803 	NAPI_GRO_CB(skb)->frag0_len = 0;
1804 	return skb->data + offset;
1805 }
1806 
1807 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1808 {
1809 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1810 }
1811 
1812 static inline void *skb_gro_network_header(struct sk_buff *skb)
1813 {
1814 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1815 	       skb_network_offset(skb);
1816 }
1817 
1818 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1819 				  unsigned short type,
1820 				  const void *daddr, const void *saddr,
1821 				  unsigned int len)
1822 {
1823 	if (!dev->header_ops || !dev->header_ops->create)
1824 		return 0;
1825 
1826 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1827 }
1828 
1829 static inline int dev_parse_header(const struct sk_buff *skb,
1830 				   unsigned char *haddr)
1831 {
1832 	const struct net_device *dev = skb->dev;
1833 
1834 	if (!dev->header_ops || !dev->header_ops->parse)
1835 		return 0;
1836 	return dev->header_ops->parse(skb, haddr);
1837 }
1838 
1839 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1840 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1841 static inline int unregister_gifconf(unsigned int family)
1842 {
1843 	return register_gifconf(family, NULL);
1844 }
1845 
1846 #ifdef CONFIG_NET_FLOW_LIMIT
1847 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
1848 struct sd_flow_limit {
1849 	u64			count;
1850 	unsigned int		num_buckets;
1851 	unsigned int		history_head;
1852 	u16			history[FLOW_LIMIT_HISTORY];
1853 	u8			buckets[];
1854 };
1855 
1856 extern int netdev_flow_limit_table_len;
1857 #endif /* CONFIG_NET_FLOW_LIMIT */
1858 
1859 /*
1860  * Incoming packets are placed on per-cpu queues
1861  */
1862 struct softnet_data {
1863 	struct Qdisc		*output_queue;
1864 	struct Qdisc		**output_queue_tailp;
1865 	struct list_head	poll_list;
1866 	struct sk_buff		*completion_queue;
1867 	struct sk_buff_head	process_queue;
1868 
1869 	/* stats */
1870 	unsigned int		processed;
1871 	unsigned int		time_squeeze;
1872 	unsigned int		cpu_collision;
1873 	unsigned int		received_rps;
1874 
1875 #ifdef CONFIG_RPS
1876 	struct softnet_data	*rps_ipi_list;
1877 
1878 	/* Elements below can be accessed between CPUs for RPS */
1879 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1880 	struct softnet_data	*rps_ipi_next;
1881 	unsigned int		cpu;
1882 	unsigned int		input_queue_head;
1883 	unsigned int		input_queue_tail;
1884 #endif
1885 	unsigned int		dropped;
1886 	struct sk_buff_head	input_pkt_queue;
1887 	struct napi_struct	backlog;
1888 
1889 #ifdef CONFIG_NET_FLOW_LIMIT
1890 	struct sd_flow_limit __rcu *flow_limit;
1891 #endif
1892 };
1893 
1894 static inline void input_queue_head_incr(struct softnet_data *sd)
1895 {
1896 #ifdef CONFIG_RPS
1897 	sd->input_queue_head++;
1898 #endif
1899 }
1900 
1901 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1902 					      unsigned int *qtail)
1903 {
1904 #ifdef CONFIG_RPS
1905 	*qtail = ++sd->input_queue_tail;
1906 #endif
1907 }
1908 
1909 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1910 
1911 extern void __netif_schedule(struct Qdisc *q);
1912 
1913 static inline void netif_schedule_queue(struct netdev_queue *txq)
1914 {
1915 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1916 		__netif_schedule(txq->qdisc);
1917 }
1918 
1919 static inline void netif_tx_schedule_all(struct net_device *dev)
1920 {
1921 	unsigned int i;
1922 
1923 	for (i = 0; i < dev->num_tx_queues; i++)
1924 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1925 }
1926 
1927 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1928 {
1929 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1930 }
1931 
1932 /**
1933  *	netif_start_queue - allow transmit
1934  *	@dev: network device
1935  *
1936  *	Allow upper layers to call the device hard_start_xmit routine.
1937  */
1938 static inline void netif_start_queue(struct net_device *dev)
1939 {
1940 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1941 }
1942 
1943 static inline void netif_tx_start_all_queues(struct net_device *dev)
1944 {
1945 	unsigned int i;
1946 
1947 	for (i = 0; i < dev->num_tx_queues; i++) {
1948 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1949 		netif_tx_start_queue(txq);
1950 	}
1951 }
1952 
1953 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1954 {
1955 #ifdef CONFIG_NETPOLL_TRAP
1956 	if (netpoll_trap()) {
1957 		netif_tx_start_queue(dev_queue);
1958 		return;
1959 	}
1960 #endif
1961 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1962 		__netif_schedule(dev_queue->qdisc);
1963 }
1964 
1965 /**
1966  *	netif_wake_queue - restart transmit
1967  *	@dev: network device
1968  *
1969  *	Allow upper layers to call the device hard_start_xmit routine.
1970  *	Used for flow control when transmit resources are available.
1971  */
1972 static inline void netif_wake_queue(struct net_device *dev)
1973 {
1974 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1975 }
1976 
1977 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1978 {
1979 	unsigned int i;
1980 
1981 	for (i = 0; i < dev->num_tx_queues; i++) {
1982 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1983 		netif_tx_wake_queue(txq);
1984 	}
1985 }
1986 
1987 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1988 {
1989 	if (WARN_ON(!dev_queue)) {
1990 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1991 		return;
1992 	}
1993 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1994 }
1995 
1996 /**
1997  *	netif_stop_queue - stop transmitted packets
1998  *	@dev: network device
1999  *
2000  *	Stop upper layers calling the device hard_start_xmit routine.
2001  *	Used for flow control when transmit resources are unavailable.
2002  */
2003 static inline void netif_stop_queue(struct net_device *dev)
2004 {
2005 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2006 }
2007 
2008 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2009 {
2010 	unsigned int i;
2011 
2012 	for (i = 0; i < dev->num_tx_queues; i++) {
2013 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2014 		netif_tx_stop_queue(txq);
2015 	}
2016 }
2017 
2018 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2019 {
2020 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2021 }
2022 
2023 /**
2024  *	netif_queue_stopped - test if transmit queue is flowblocked
2025  *	@dev: network device
2026  *
2027  *	Test if transmit queue on device is currently unable to send.
2028  */
2029 static inline bool netif_queue_stopped(const struct net_device *dev)
2030 {
2031 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2032 }
2033 
2034 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2035 {
2036 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2037 }
2038 
2039 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2040 {
2041 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2042 }
2043 
2044 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2045 					unsigned int bytes)
2046 {
2047 #ifdef CONFIG_BQL
2048 	dql_queued(&dev_queue->dql, bytes);
2049 
2050 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2051 		return;
2052 
2053 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2054 
2055 	/*
2056 	 * The XOFF flag must be set before checking the dql_avail below,
2057 	 * because in netdev_tx_completed_queue we update the dql_completed
2058 	 * before checking the XOFF flag.
2059 	 */
2060 	smp_mb();
2061 
2062 	/* check again in case another CPU has just made room avail */
2063 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2064 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2065 #endif
2066 }
2067 
2068 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2069 {
2070 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2071 }
2072 
2073 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2074 					     unsigned int pkts, unsigned int bytes)
2075 {
2076 #ifdef CONFIG_BQL
2077 	if (unlikely(!bytes))
2078 		return;
2079 
2080 	dql_completed(&dev_queue->dql, bytes);
2081 
2082 	/*
2083 	 * Without the memory barrier there is a small possiblity that
2084 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2085 	 * be stopped forever
2086 	 */
2087 	smp_mb();
2088 
2089 	if (dql_avail(&dev_queue->dql) < 0)
2090 		return;
2091 
2092 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2093 		netif_schedule_queue(dev_queue);
2094 #endif
2095 }
2096 
2097 static inline void netdev_completed_queue(struct net_device *dev,
2098 					  unsigned int pkts, unsigned int bytes)
2099 {
2100 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2101 }
2102 
2103 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2104 {
2105 #ifdef CONFIG_BQL
2106 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2107 	dql_reset(&q->dql);
2108 #endif
2109 }
2110 
2111 static inline void netdev_reset_queue(struct net_device *dev_queue)
2112 {
2113 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2114 }
2115 
2116 /**
2117  *	netif_running - test if up
2118  *	@dev: network device
2119  *
2120  *	Test if the device has been brought up.
2121  */
2122 static inline bool netif_running(const struct net_device *dev)
2123 {
2124 	return test_bit(__LINK_STATE_START, &dev->state);
2125 }
2126 
2127 /*
2128  * Routines to manage the subqueues on a device.  We only need start
2129  * stop, and a check if it's stopped.  All other device management is
2130  * done at the overall netdevice level.
2131  * Also test the device if we're multiqueue.
2132  */
2133 
2134 /**
2135  *	netif_start_subqueue - allow sending packets on subqueue
2136  *	@dev: network device
2137  *	@queue_index: sub queue index
2138  *
2139  * Start individual transmit queue of a device with multiple transmit queues.
2140  */
2141 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2142 {
2143 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2144 
2145 	netif_tx_start_queue(txq);
2146 }
2147 
2148 /**
2149  *	netif_stop_subqueue - stop sending packets on subqueue
2150  *	@dev: network device
2151  *	@queue_index: sub queue index
2152  *
2153  * Stop individual transmit queue of a device with multiple transmit queues.
2154  */
2155 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2156 {
2157 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2158 #ifdef CONFIG_NETPOLL_TRAP
2159 	if (netpoll_trap())
2160 		return;
2161 #endif
2162 	netif_tx_stop_queue(txq);
2163 }
2164 
2165 /**
2166  *	netif_subqueue_stopped - test status of subqueue
2167  *	@dev: network device
2168  *	@queue_index: sub queue index
2169  *
2170  * Check individual transmit queue of a device with multiple transmit queues.
2171  */
2172 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2173 					    u16 queue_index)
2174 {
2175 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2176 
2177 	return netif_tx_queue_stopped(txq);
2178 }
2179 
2180 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2181 					  struct sk_buff *skb)
2182 {
2183 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2184 }
2185 
2186 /**
2187  *	netif_wake_subqueue - allow sending packets on subqueue
2188  *	@dev: network device
2189  *	@queue_index: sub queue index
2190  *
2191  * Resume individual transmit queue of a device with multiple transmit queues.
2192  */
2193 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2194 {
2195 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2196 #ifdef CONFIG_NETPOLL_TRAP
2197 	if (netpoll_trap())
2198 		return;
2199 #endif
2200 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2201 		__netif_schedule(txq->qdisc);
2202 }
2203 
2204 #ifdef CONFIG_XPS
2205 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2206 			       u16 index);
2207 #else
2208 static inline int netif_set_xps_queue(struct net_device *dev,
2209 				      struct cpumask *mask,
2210 				      u16 index)
2211 {
2212 	return 0;
2213 }
2214 #endif
2215 
2216 /*
2217  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2218  * as a distribution range limit for the returned value.
2219  */
2220 static inline u16 skb_tx_hash(const struct net_device *dev,
2221 			      const struct sk_buff *skb)
2222 {
2223 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2224 }
2225 
2226 /**
2227  *	netif_is_multiqueue - test if device has multiple transmit queues
2228  *	@dev: network device
2229  *
2230  * Check if device has multiple transmit queues
2231  */
2232 static inline bool netif_is_multiqueue(const struct net_device *dev)
2233 {
2234 	return dev->num_tx_queues > 1;
2235 }
2236 
2237 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2238 					unsigned int txq);
2239 
2240 #ifdef CONFIG_RPS
2241 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2242 					unsigned int rxq);
2243 #else
2244 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2245 						unsigned int rxq)
2246 {
2247 	return 0;
2248 }
2249 #endif
2250 
2251 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2252 					     const struct net_device *from_dev)
2253 {
2254 	int err;
2255 
2256 	err = netif_set_real_num_tx_queues(to_dev,
2257 					   from_dev->real_num_tx_queues);
2258 	if (err)
2259 		return err;
2260 #ifdef CONFIG_RPS
2261 	return netif_set_real_num_rx_queues(to_dev,
2262 					    from_dev->real_num_rx_queues);
2263 #else
2264 	return 0;
2265 #endif
2266 }
2267 
2268 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2269 extern int netif_get_num_default_rss_queues(void);
2270 
2271 /* Use this variant when it is known for sure that it
2272  * is executing from hardware interrupt context or with hardware interrupts
2273  * disabled.
2274  */
2275 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2276 
2277 /* Use this variant in places where it could be invoked
2278  * from either hardware interrupt or other context, with hardware interrupts
2279  * either disabled or enabled.
2280  */
2281 extern void dev_kfree_skb_any(struct sk_buff *skb);
2282 
2283 extern int		netif_rx(struct sk_buff *skb);
2284 extern int		netif_rx_ni(struct sk_buff *skb);
2285 extern int		netif_receive_skb(struct sk_buff *skb);
2286 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2287 					 struct sk_buff *skb);
2288 extern void		napi_gro_flush(struct napi_struct *napi, bool flush_old);
2289 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2290 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2291 
2292 static inline void napi_free_frags(struct napi_struct *napi)
2293 {
2294 	kfree_skb(napi->skb);
2295 	napi->skb = NULL;
2296 }
2297 
2298 extern int netdev_rx_handler_register(struct net_device *dev,
2299 				      rx_handler_func_t *rx_handler,
2300 				      void *rx_handler_data);
2301 extern void netdev_rx_handler_unregister(struct net_device *dev);
2302 
2303 extern bool		dev_valid_name(const char *name);
2304 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2305 extern int		dev_ethtool(struct net *net, struct ifreq *);
2306 extern unsigned int	dev_get_flags(const struct net_device *);
2307 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2308 extern int		dev_change_flags(struct net_device *, unsigned int);
2309 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2310 extern int		dev_change_name(struct net_device *, const char *);
2311 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2312 extern int		dev_change_net_namespace(struct net_device *,
2313 						 struct net *, const char *);
2314 extern int		dev_set_mtu(struct net_device *, int);
2315 extern void		dev_set_group(struct net_device *, int);
2316 extern int		dev_set_mac_address(struct net_device *,
2317 					    struct sockaddr *);
2318 extern int		dev_change_carrier(struct net_device *,
2319 					   bool new_carrier);
2320 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2321 					    struct net_device *dev,
2322 					    struct netdev_queue *txq);
2323 extern int		dev_forward_skb(struct net_device *dev,
2324 					struct sk_buff *skb);
2325 
2326 extern int		netdev_budget;
2327 
2328 /* Called by rtnetlink.c:rtnl_unlock() */
2329 extern void netdev_run_todo(void);
2330 
2331 /**
2332  *	dev_put - release reference to device
2333  *	@dev: network device
2334  *
2335  * Release reference to device to allow it to be freed.
2336  */
2337 static inline void dev_put(struct net_device *dev)
2338 {
2339 	this_cpu_dec(*dev->pcpu_refcnt);
2340 }
2341 
2342 /**
2343  *	dev_hold - get reference to device
2344  *	@dev: network device
2345  *
2346  * Hold reference to device to keep it from being freed.
2347  */
2348 static inline void dev_hold(struct net_device *dev)
2349 {
2350 	this_cpu_inc(*dev->pcpu_refcnt);
2351 }
2352 
2353 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2354  * and _off may be called from IRQ context, but it is caller
2355  * who is responsible for serialization of these calls.
2356  *
2357  * The name carrier is inappropriate, these functions should really be
2358  * called netif_lowerlayer_*() because they represent the state of any
2359  * kind of lower layer not just hardware media.
2360  */
2361 
2362 extern void linkwatch_init_dev(struct net_device *dev);
2363 extern void linkwatch_fire_event(struct net_device *dev);
2364 extern void linkwatch_forget_dev(struct net_device *dev);
2365 
2366 /**
2367  *	netif_carrier_ok - test if carrier present
2368  *	@dev: network device
2369  *
2370  * Check if carrier is present on device
2371  */
2372 static inline bool netif_carrier_ok(const struct net_device *dev)
2373 {
2374 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2375 }
2376 
2377 extern unsigned long dev_trans_start(struct net_device *dev);
2378 
2379 extern void __netdev_watchdog_up(struct net_device *dev);
2380 
2381 extern void netif_carrier_on(struct net_device *dev);
2382 
2383 extern void netif_carrier_off(struct net_device *dev);
2384 
2385 /**
2386  *	netif_dormant_on - mark device as dormant.
2387  *	@dev: network device
2388  *
2389  * Mark device as dormant (as per RFC2863).
2390  *
2391  * The dormant state indicates that the relevant interface is not
2392  * actually in a condition to pass packets (i.e., it is not 'up') but is
2393  * in a "pending" state, waiting for some external event.  For "on-
2394  * demand" interfaces, this new state identifies the situation where the
2395  * interface is waiting for events to place it in the up state.
2396  *
2397  */
2398 static inline void netif_dormant_on(struct net_device *dev)
2399 {
2400 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2401 		linkwatch_fire_event(dev);
2402 }
2403 
2404 /**
2405  *	netif_dormant_off - set device as not dormant.
2406  *	@dev: network device
2407  *
2408  * Device is not in dormant state.
2409  */
2410 static inline void netif_dormant_off(struct net_device *dev)
2411 {
2412 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2413 		linkwatch_fire_event(dev);
2414 }
2415 
2416 /**
2417  *	netif_dormant - test if carrier present
2418  *	@dev: network device
2419  *
2420  * Check if carrier is present on device
2421  */
2422 static inline bool netif_dormant(const struct net_device *dev)
2423 {
2424 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2425 }
2426 
2427 
2428 /**
2429  *	netif_oper_up - test if device is operational
2430  *	@dev: network device
2431  *
2432  * Check if carrier is operational
2433  */
2434 static inline bool netif_oper_up(const struct net_device *dev)
2435 {
2436 	return (dev->operstate == IF_OPER_UP ||
2437 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2438 }
2439 
2440 /**
2441  *	netif_device_present - is device available or removed
2442  *	@dev: network device
2443  *
2444  * Check if device has not been removed from system.
2445  */
2446 static inline bool netif_device_present(struct net_device *dev)
2447 {
2448 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2449 }
2450 
2451 extern void netif_device_detach(struct net_device *dev);
2452 
2453 extern void netif_device_attach(struct net_device *dev);
2454 
2455 /*
2456  * Network interface message level settings
2457  */
2458 
2459 enum {
2460 	NETIF_MSG_DRV		= 0x0001,
2461 	NETIF_MSG_PROBE		= 0x0002,
2462 	NETIF_MSG_LINK		= 0x0004,
2463 	NETIF_MSG_TIMER		= 0x0008,
2464 	NETIF_MSG_IFDOWN	= 0x0010,
2465 	NETIF_MSG_IFUP		= 0x0020,
2466 	NETIF_MSG_RX_ERR	= 0x0040,
2467 	NETIF_MSG_TX_ERR	= 0x0080,
2468 	NETIF_MSG_TX_QUEUED	= 0x0100,
2469 	NETIF_MSG_INTR		= 0x0200,
2470 	NETIF_MSG_TX_DONE	= 0x0400,
2471 	NETIF_MSG_RX_STATUS	= 0x0800,
2472 	NETIF_MSG_PKTDATA	= 0x1000,
2473 	NETIF_MSG_HW		= 0x2000,
2474 	NETIF_MSG_WOL		= 0x4000,
2475 };
2476 
2477 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2478 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2479 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2480 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2481 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2482 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2483 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2484 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2485 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2486 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2487 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2488 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2489 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2490 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2491 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2492 
2493 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2494 {
2495 	/* use default */
2496 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2497 		return default_msg_enable_bits;
2498 	if (debug_value == 0)	/* no output */
2499 		return 0;
2500 	/* set low N bits */
2501 	return (1 << debug_value) - 1;
2502 }
2503 
2504 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2505 {
2506 	spin_lock(&txq->_xmit_lock);
2507 	txq->xmit_lock_owner = cpu;
2508 }
2509 
2510 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2511 {
2512 	spin_lock_bh(&txq->_xmit_lock);
2513 	txq->xmit_lock_owner = smp_processor_id();
2514 }
2515 
2516 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2517 {
2518 	bool ok = spin_trylock(&txq->_xmit_lock);
2519 	if (likely(ok))
2520 		txq->xmit_lock_owner = smp_processor_id();
2521 	return ok;
2522 }
2523 
2524 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2525 {
2526 	txq->xmit_lock_owner = -1;
2527 	spin_unlock(&txq->_xmit_lock);
2528 }
2529 
2530 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2531 {
2532 	txq->xmit_lock_owner = -1;
2533 	spin_unlock_bh(&txq->_xmit_lock);
2534 }
2535 
2536 static inline void txq_trans_update(struct netdev_queue *txq)
2537 {
2538 	if (txq->xmit_lock_owner != -1)
2539 		txq->trans_start = jiffies;
2540 }
2541 
2542 /**
2543  *	netif_tx_lock - grab network device transmit lock
2544  *	@dev: network device
2545  *
2546  * Get network device transmit lock
2547  */
2548 static inline void netif_tx_lock(struct net_device *dev)
2549 {
2550 	unsigned int i;
2551 	int cpu;
2552 
2553 	spin_lock(&dev->tx_global_lock);
2554 	cpu = smp_processor_id();
2555 	for (i = 0; i < dev->num_tx_queues; i++) {
2556 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2557 
2558 		/* We are the only thread of execution doing a
2559 		 * freeze, but we have to grab the _xmit_lock in
2560 		 * order to synchronize with threads which are in
2561 		 * the ->hard_start_xmit() handler and already
2562 		 * checked the frozen bit.
2563 		 */
2564 		__netif_tx_lock(txq, cpu);
2565 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2566 		__netif_tx_unlock(txq);
2567 	}
2568 }
2569 
2570 static inline void netif_tx_lock_bh(struct net_device *dev)
2571 {
2572 	local_bh_disable();
2573 	netif_tx_lock(dev);
2574 }
2575 
2576 static inline void netif_tx_unlock(struct net_device *dev)
2577 {
2578 	unsigned int i;
2579 
2580 	for (i = 0; i < dev->num_tx_queues; i++) {
2581 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2582 
2583 		/* No need to grab the _xmit_lock here.  If the
2584 		 * queue is not stopped for another reason, we
2585 		 * force a schedule.
2586 		 */
2587 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2588 		netif_schedule_queue(txq);
2589 	}
2590 	spin_unlock(&dev->tx_global_lock);
2591 }
2592 
2593 static inline void netif_tx_unlock_bh(struct net_device *dev)
2594 {
2595 	netif_tx_unlock(dev);
2596 	local_bh_enable();
2597 }
2598 
2599 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2600 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2601 		__netif_tx_lock(txq, cpu);		\
2602 	}						\
2603 }
2604 
2605 #define HARD_TX_UNLOCK(dev, txq) {			\
2606 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2607 		__netif_tx_unlock(txq);			\
2608 	}						\
2609 }
2610 
2611 static inline void netif_tx_disable(struct net_device *dev)
2612 {
2613 	unsigned int i;
2614 	int cpu;
2615 
2616 	local_bh_disable();
2617 	cpu = smp_processor_id();
2618 	for (i = 0; i < dev->num_tx_queues; i++) {
2619 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2620 
2621 		__netif_tx_lock(txq, cpu);
2622 		netif_tx_stop_queue(txq);
2623 		__netif_tx_unlock(txq);
2624 	}
2625 	local_bh_enable();
2626 }
2627 
2628 static inline void netif_addr_lock(struct net_device *dev)
2629 {
2630 	spin_lock(&dev->addr_list_lock);
2631 }
2632 
2633 static inline void netif_addr_lock_nested(struct net_device *dev)
2634 {
2635 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2636 }
2637 
2638 static inline void netif_addr_lock_bh(struct net_device *dev)
2639 {
2640 	spin_lock_bh(&dev->addr_list_lock);
2641 }
2642 
2643 static inline void netif_addr_unlock(struct net_device *dev)
2644 {
2645 	spin_unlock(&dev->addr_list_lock);
2646 }
2647 
2648 static inline void netif_addr_unlock_bh(struct net_device *dev)
2649 {
2650 	spin_unlock_bh(&dev->addr_list_lock);
2651 }
2652 
2653 /*
2654  * dev_addrs walker. Should be used only for read access. Call with
2655  * rcu_read_lock held.
2656  */
2657 #define for_each_dev_addr(dev, ha) \
2658 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2659 
2660 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2661 
2662 extern void		ether_setup(struct net_device *dev);
2663 
2664 /* Support for loadable net-drivers */
2665 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2666 				       void (*setup)(struct net_device *),
2667 				       unsigned int txqs, unsigned int rxqs);
2668 #define alloc_netdev(sizeof_priv, name, setup) \
2669 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2670 
2671 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2672 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2673 
2674 extern int		register_netdev(struct net_device *dev);
2675 extern void		unregister_netdev(struct net_device *dev);
2676 
2677 /* General hardware address lists handling functions */
2678 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2679 				  struct netdev_hw_addr_list *from_list,
2680 				  int addr_len, unsigned char addr_type);
2681 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2682 				   struct netdev_hw_addr_list *from_list,
2683 				   int addr_len, unsigned char addr_type);
2684 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2685 			  struct netdev_hw_addr_list *from_list,
2686 			  int addr_len);
2687 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2688 			     struct netdev_hw_addr_list *from_list,
2689 			     int addr_len);
2690 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2691 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2692 
2693 /* Functions used for device addresses handling */
2694 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2695 			unsigned char addr_type);
2696 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2697 			unsigned char addr_type);
2698 extern int dev_addr_add_multiple(struct net_device *to_dev,
2699 				 struct net_device *from_dev,
2700 				 unsigned char addr_type);
2701 extern int dev_addr_del_multiple(struct net_device *to_dev,
2702 				 struct net_device *from_dev,
2703 				 unsigned char addr_type);
2704 extern void dev_addr_flush(struct net_device *dev);
2705 extern int dev_addr_init(struct net_device *dev);
2706 
2707 /* Functions used for unicast addresses handling */
2708 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2709 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2710 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2711 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2712 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2713 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2714 extern void dev_uc_flush(struct net_device *dev);
2715 extern void dev_uc_init(struct net_device *dev);
2716 
2717 /* Functions used for multicast addresses handling */
2718 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2719 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2720 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2721 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2722 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2723 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2724 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2725 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2726 extern void dev_mc_flush(struct net_device *dev);
2727 extern void dev_mc_init(struct net_device *dev);
2728 
2729 /* Functions used for secondary unicast and multicast support */
2730 extern void		dev_set_rx_mode(struct net_device *dev);
2731 extern void		__dev_set_rx_mode(struct net_device *dev);
2732 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2733 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2734 extern void		netdev_state_change(struct net_device *dev);
2735 extern void		netdev_notify_peers(struct net_device *dev);
2736 extern void		netdev_features_change(struct net_device *dev);
2737 /* Load a device via the kmod */
2738 extern void		dev_load(struct net *net, const char *name);
2739 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2740 					       struct rtnl_link_stats64 *storage);
2741 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2742 				    const struct net_device_stats *netdev_stats);
2743 
2744 extern int		netdev_max_backlog;
2745 extern int		netdev_tstamp_prequeue;
2746 extern int		weight_p;
2747 extern int		bpf_jit_enable;
2748 
2749 extern bool netdev_has_upper_dev(struct net_device *dev,
2750 				 struct net_device *upper_dev);
2751 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2752 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2753 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2754 extern int netdev_upper_dev_link(struct net_device *dev,
2755 				 struct net_device *upper_dev);
2756 extern int netdev_master_upper_dev_link(struct net_device *dev,
2757 					struct net_device *upper_dev);
2758 extern void netdev_upper_dev_unlink(struct net_device *dev,
2759 				    struct net_device *upper_dev);
2760 extern int skb_checksum_help(struct sk_buff *skb);
2761 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2762 	netdev_features_t features, bool tx_path);
2763 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2764 					  netdev_features_t features);
2765 
2766 static inline
2767 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2768 {
2769 	return __skb_gso_segment(skb, features, true);
2770 }
2771 __be16 skb_network_protocol(struct sk_buff *skb);
2772 
2773 static inline bool can_checksum_protocol(netdev_features_t features,
2774 					 __be16 protocol)
2775 {
2776 	return ((features & NETIF_F_GEN_CSUM) ||
2777 		((features & NETIF_F_V4_CSUM) &&
2778 		 protocol == htons(ETH_P_IP)) ||
2779 		((features & NETIF_F_V6_CSUM) &&
2780 		 protocol == htons(ETH_P_IPV6)) ||
2781 		((features & NETIF_F_FCOE_CRC) &&
2782 		 protocol == htons(ETH_P_FCOE)));
2783 }
2784 
2785 #ifdef CONFIG_BUG
2786 extern void netdev_rx_csum_fault(struct net_device *dev);
2787 #else
2788 static inline void netdev_rx_csum_fault(struct net_device *dev)
2789 {
2790 }
2791 #endif
2792 /* rx skb timestamps */
2793 extern void		net_enable_timestamp(void);
2794 extern void		net_disable_timestamp(void);
2795 
2796 #ifdef CONFIG_PROC_FS
2797 extern int __init dev_proc_init(void);
2798 #else
2799 #define dev_proc_init() 0
2800 #endif
2801 
2802 extern int netdev_class_create_file(struct class_attribute *class_attr);
2803 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2804 
2805 extern struct kobj_ns_type_operations net_ns_type_operations;
2806 
2807 extern const char *netdev_drivername(const struct net_device *dev);
2808 
2809 extern void linkwatch_run_queue(void);
2810 
2811 static inline netdev_features_t netdev_get_wanted_features(
2812 	struct net_device *dev)
2813 {
2814 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2815 }
2816 netdev_features_t netdev_increment_features(netdev_features_t all,
2817 	netdev_features_t one, netdev_features_t mask);
2818 
2819 /* Allow TSO being used on stacked device :
2820  * Performing the GSO segmentation before last device
2821  * is a performance improvement.
2822  */
2823 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2824 							netdev_features_t mask)
2825 {
2826 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2827 }
2828 
2829 int __netdev_update_features(struct net_device *dev);
2830 void netdev_update_features(struct net_device *dev);
2831 void netdev_change_features(struct net_device *dev);
2832 
2833 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2834 					struct net_device *dev);
2835 
2836 netdev_features_t netif_skb_features(struct sk_buff *skb);
2837 
2838 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2839 {
2840 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2841 
2842 	/* check flags correspondence */
2843 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2844 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2845 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2846 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2847 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2848 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2849 
2850 	return (features & feature) == feature;
2851 }
2852 
2853 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2854 {
2855 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2856 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2857 }
2858 
2859 static inline bool netif_needs_gso(struct sk_buff *skb,
2860 				   netdev_features_t features)
2861 {
2862 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2863 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2864 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2865 }
2866 
2867 static inline void netif_set_gso_max_size(struct net_device *dev,
2868 					  unsigned int size)
2869 {
2870 	dev->gso_max_size = size;
2871 }
2872 
2873 static inline bool netif_is_bond_master(struct net_device *dev)
2874 {
2875 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2876 }
2877 
2878 static inline bool netif_is_bond_slave(struct net_device *dev)
2879 {
2880 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2881 }
2882 
2883 static inline bool netif_supports_nofcs(struct net_device *dev)
2884 {
2885 	return dev->priv_flags & IFF_SUPP_NOFCS;
2886 }
2887 
2888 extern struct pernet_operations __net_initdata loopback_net_ops;
2889 
2890 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2891 
2892 /* netdev_printk helpers, similar to dev_printk */
2893 
2894 static inline const char *netdev_name(const struct net_device *dev)
2895 {
2896 	if (dev->reg_state != NETREG_REGISTERED)
2897 		return "(unregistered net_device)";
2898 	return dev->name;
2899 }
2900 
2901 extern __printf(3, 4)
2902 int netdev_printk(const char *level, const struct net_device *dev,
2903 		  const char *format, ...);
2904 extern __printf(2, 3)
2905 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2906 extern __printf(2, 3)
2907 int netdev_alert(const struct net_device *dev, const char *format, ...);
2908 extern __printf(2, 3)
2909 int netdev_crit(const struct net_device *dev, const char *format, ...);
2910 extern __printf(2, 3)
2911 int netdev_err(const struct net_device *dev, const char *format, ...);
2912 extern __printf(2, 3)
2913 int netdev_warn(const struct net_device *dev, const char *format, ...);
2914 extern __printf(2, 3)
2915 int netdev_notice(const struct net_device *dev, const char *format, ...);
2916 extern __printf(2, 3)
2917 int netdev_info(const struct net_device *dev, const char *format, ...);
2918 
2919 #define MODULE_ALIAS_NETDEV(device) \
2920 	MODULE_ALIAS("netdev-" device)
2921 
2922 #if defined(CONFIG_DYNAMIC_DEBUG)
2923 #define netdev_dbg(__dev, format, args...)			\
2924 do {								\
2925 	dynamic_netdev_dbg(__dev, format, ##args);		\
2926 } while (0)
2927 #elif defined(DEBUG)
2928 #define netdev_dbg(__dev, format, args...)			\
2929 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2930 #else
2931 #define netdev_dbg(__dev, format, args...)			\
2932 ({								\
2933 	if (0)							\
2934 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2935 	0;							\
2936 })
2937 #endif
2938 
2939 #if defined(VERBOSE_DEBUG)
2940 #define netdev_vdbg	netdev_dbg
2941 #else
2942 
2943 #define netdev_vdbg(dev, format, args...)			\
2944 ({								\
2945 	if (0)							\
2946 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2947 	0;							\
2948 })
2949 #endif
2950 
2951 /*
2952  * netdev_WARN() acts like dev_printk(), but with the key difference
2953  * of using a WARN/WARN_ON to get the message out, including the
2954  * file/line information and a backtrace.
2955  */
2956 #define netdev_WARN(dev, format, args...)			\
2957 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2958 
2959 /* netif printk helpers, similar to netdev_printk */
2960 
2961 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2962 do {					  			\
2963 	if (netif_msg_##type(priv))				\
2964 		netdev_printk(level, (dev), fmt, ##args);	\
2965 } while (0)
2966 
2967 #define netif_level(level, priv, type, dev, fmt, args...)	\
2968 do {								\
2969 	if (netif_msg_##type(priv))				\
2970 		netdev_##level(dev, fmt, ##args);		\
2971 } while (0)
2972 
2973 #define netif_emerg(priv, type, dev, fmt, args...)		\
2974 	netif_level(emerg, priv, type, dev, fmt, ##args)
2975 #define netif_alert(priv, type, dev, fmt, args...)		\
2976 	netif_level(alert, priv, type, dev, fmt, ##args)
2977 #define netif_crit(priv, type, dev, fmt, args...)		\
2978 	netif_level(crit, priv, type, dev, fmt, ##args)
2979 #define netif_err(priv, type, dev, fmt, args...)		\
2980 	netif_level(err, priv, type, dev, fmt, ##args)
2981 #define netif_warn(priv, type, dev, fmt, args...)		\
2982 	netif_level(warn, priv, type, dev, fmt, ##args)
2983 #define netif_notice(priv, type, dev, fmt, args...)		\
2984 	netif_level(notice, priv, type, dev, fmt, ##args)
2985 #define netif_info(priv, type, dev, fmt, args...)		\
2986 	netif_level(info, priv, type, dev, fmt, ##args)
2987 
2988 #if defined(CONFIG_DYNAMIC_DEBUG)
2989 #define netif_dbg(priv, type, netdev, format, args...)		\
2990 do {								\
2991 	if (netif_msg_##type(priv))				\
2992 		dynamic_netdev_dbg(netdev, format, ##args);	\
2993 } while (0)
2994 #elif defined(DEBUG)
2995 #define netif_dbg(priv, type, dev, format, args...)		\
2996 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2997 #else
2998 #define netif_dbg(priv, type, dev, format, args...)			\
2999 ({									\
3000 	if (0)								\
3001 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3002 	0;								\
3003 })
3004 #endif
3005 
3006 #if defined(VERBOSE_DEBUG)
3007 #define netif_vdbg	netif_dbg
3008 #else
3009 #define netif_vdbg(priv, type, dev, format, args...)		\
3010 ({								\
3011 	if (0)							\
3012 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3013 	0;							\
3014 })
3015 #endif
3016 
3017 /*
3018  *	The list of packet types we will receive (as opposed to discard)
3019  *	and the routines to invoke.
3020  *
3021  *	Why 16. Because with 16 the only overlap we get on a hash of the
3022  *	low nibble of the protocol value is RARP/SNAP/X.25.
3023  *
3024  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3025  *             sure which should go first, but I bet it won't make much
3026  *             difference if we are running VLANs.  The good news is that
3027  *             this protocol won't be in the list unless compiled in, so
3028  *             the average user (w/out VLANs) will not be adversely affected.
3029  *             --BLG
3030  *
3031  *		0800	IP
3032  *		8100    802.1Q VLAN
3033  *		0001	802.3
3034  *		0002	AX.25
3035  *		0004	802.2
3036  *		8035	RARP
3037  *		0005	SNAP
3038  *		0805	X.25
3039  *		0806	ARP
3040  *		8137	IPX
3041  *		0009	Localtalk
3042  *		86DD	IPv6
3043  */
3044 #define PTYPE_HASH_SIZE	(16)
3045 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3046 
3047 #endif	/* _LINUX_NETDEVICE_H */
3048