xref: /openbmc/linux/include/linux/netdevice.h (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_SLAVE		3
216 #define NETDEV_HW_ADDR_T_UNICAST	4
217 #define NETDEV_HW_ADDR_T_MULTICAST	5
218 	bool			global_use;
219 	int			sync_cnt;
220 	int			refcount;
221 	int			synced;
222 	struct rcu_head		rcu_head;
223 };
224 
225 struct netdev_hw_addr_list {
226 	struct list_head	list;
227 	int			count;
228 };
229 
230 #define netdev_hw_addr_list_count(l) ((l)->count)
231 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
232 #define netdev_hw_addr_list_for_each(ha, l) \
233 	list_for_each_entry(ha, &(l)->list, list)
234 
235 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
236 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
237 #define netdev_for_each_uc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
239 
240 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
241 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
242 #define netdev_for_each_mc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
244 
245 struct hh_cache {
246 	unsigned int	hh_len;
247 	seqlock_t	hh_lock;
248 
249 	/* cached hardware header; allow for machine alignment needs.        */
250 #define HH_DATA_MOD	16
251 #define HH_DATA_OFF(__len) \
252 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
253 #define HH_DATA_ALIGN(__len) \
254 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
255 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
256 };
257 
258 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
259  * Alternative is:
260  *   dev->hard_header_len ? (dev->hard_header_len +
261  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
262  *
263  * We could use other alignment values, but we must maintain the
264  * relationship HH alignment <= LL alignment.
265  */
266 #define LL_RESERVED_SPACE(dev) \
267 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
268 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
269 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
270 
271 struct header_ops {
272 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
273 			   unsigned short type, const void *daddr,
274 			   const void *saddr, unsigned int len);
275 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
276 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
277 	void	(*cache_update)(struct hh_cache *hh,
278 				const struct net_device *dev,
279 				const unsigned char *haddr);
280 	bool	(*validate)(const char *ll_header, unsigned int len);
281 	__be16	(*parse_protocol)(const struct sk_buff *skb);
282 };
283 
284 /* These flag bits are private to the generic network queueing
285  * layer; they may not be explicitly referenced by any other
286  * code.
287  */
288 
289 enum netdev_state_t {
290 	__LINK_STATE_START,
291 	__LINK_STATE_PRESENT,
292 	__LINK_STATE_NOCARRIER,
293 	__LINK_STATE_LINKWATCH_PENDING,
294 	__LINK_STATE_DORMANT,
295 	__LINK_STATE_TESTING,
296 };
297 
298 
299 /*
300  * This structure holds boot-time configured netdevice settings. They
301  * are then used in the device probing.
302  */
303 struct netdev_boot_setup {
304 	char name[IFNAMSIZ];
305 	struct ifmap map;
306 };
307 #define NETDEV_BOOT_SETUP_MAX 8
308 
309 int __init netdev_boot_setup(char *str);
310 
311 struct gro_list {
312 	struct list_head	list;
313 	int			count;
314 };
315 
316 /*
317  * size of gro hash buckets, must less than bit number of
318  * napi_struct::gro_bitmask
319  */
320 #define GRO_HASH_BUCKETS	8
321 
322 /*
323  * Structure for NAPI scheduling similar to tasklet but with weighting
324  */
325 struct napi_struct {
326 	/* The poll_list must only be managed by the entity which
327 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
328 	 * whoever atomically sets that bit can add this napi_struct
329 	 * to the per-CPU poll_list, and whoever clears that bit
330 	 * can remove from the list right before clearing the bit.
331 	 */
332 	struct list_head	poll_list;
333 
334 	unsigned long		state;
335 	int			weight;
336 	int			defer_hard_irqs_count;
337 	unsigned long		gro_bitmask;
338 	int			(*poll)(struct napi_struct *, int);
339 #ifdef CONFIG_NETPOLL
340 	int			poll_owner;
341 #endif
342 	struct net_device	*dev;
343 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
344 	struct sk_buff		*skb;
345 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
346 	int			rx_count; /* length of rx_list */
347 	struct hrtimer		timer;
348 	struct list_head	dev_list;
349 	struct hlist_node	napi_hash_node;
350 	unsigned int		napi_id;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,	/* Poll is scheduled */
355 	NAPI_STATE_MISSED,	/* reschedule a napi */
356 	NAPI_STATE_DISABLE,	/* Disable pending */
357 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
358 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
359 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
360 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
361 };
362 
363 enum {
364 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
365 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
366 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
367 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
368 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
369 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
370 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
371 };
372 
373 enum gro_result {
374 	GRO_MERGED,
375 	GRO_MERGED_FREE,
376 	GRO_HELD,
377 	GRO_NORMAL,
378 	GRO_DROP,
379 	GRO_CONSUMED,
380 };
381 typedef enum gro_result gro_result_t;
382 
383 /*
384  * enum rx_handler_result - Possible return values for rx_handlers.
385  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
386  * further.
387  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
388  * case skb->dev was changed by rx_handler.
389  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
390  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
391  *
392  * rx_handlers are functions called from inside __netif_receive_skb(), to do
393  * special processing of the skb, prior to delivery to protocol handlers.
394  *
395  * Currently, a net_device can only have a single rx_handler registered. Trying
396  * to register a second rx_handler will return -EBUSY.
397  *
398  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
399  * To unregister a rx_handler on a net_device, use
400  * netdev_rx_handler_unregister().
401  *
402  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
403  * do with the skb.
404  *
405  * If the rx_handler consumed the skb in some way, it should return
406  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
407  * the skb to be delivered in some other way.
408  *
409  * If the rx_handler changed skb->dev, to divert the skb to another
410  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
411  * new device will be called if it exists.
412  *
413  * If the rx_handler decides the skb should be ignored, it should return
414  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
415  * are registered on exact device (ptype->dev == skb->dev).
416  *
417  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
418  * delivered, it should return RX_HANDLER_PASS.
419  *
420  * A device without a registered rx_handler will behave as if rx_handler
421  * returned RX_HANDLER_PASS.
422  */
423 
424 enum rx_handler_result {
425 	RX_HANDLER_CONSUMED,
426 	RX_HANDLER_ANOTHER,
427 	RX_HANDLER_EXACT,
428 	RX_HANDLER_PASS,
429 };
430 typedef enum rx_handler_result rx_handler_result_t;
431 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
432 
433 void __napi_schedule(struct napi_struct *n);
434 void __napi_schedule_irqoff(struct napi_struct *n);
435 
436 static inline bool napi_disable_pending(struct napi_struct *n)
437 {
438 	return test_bit(NAPI_STATE_DISABLE, &n->state);
439 }
440 
441 bool napi_schedule_prep(struct napi_struct *n);
442 
443 /**
444  *	napi_schedule - schedule NAPI poll
445  *	@n: NAPI context
446  *
447  * Schedule NAPI poll routine to be called if it is not already
448  * running.
449  */
450 static inline void napi_schedule(struct napi_struct *n)
451 {
452 	if (napi_schedule_prep(n))
453 		__napi_schedule(n);
454 }
455 
456 /**
457  *	napi_schedule_irqoff - schedule NAPI poll
458  *	@n: NAPI context
459  *
460  * Variant of napi_schedule(), assuming hard irqs are masked.
461  */
462 static inline void napi_schedule_irqoff(struct napi_struct *n)
463 {
464 	if (napi_schedule_prep(n))
465 		__napi_schedule_irqoff(n);
466 }
467 
468 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
469 static inline bool napi_reschedule(struct napi_struct *napi)
470 {
471 	if (napi_schedule_prep(napi)) {
472 		__napi_schedule(napi);
473 		return true;
474 	}
475 	return false;
476 }
477 
478 bool napi_complete_done(struct napi_struct *n, int work_done);
479 /**
480  *	napi_complete - NAPI processing complete
481  *	@n: NAPI context
482  *
483  * Mark NAPI processing as complete.
484  * Consider using napi_complete_done() instead.
485  * Return false if device should avoid rearming interrupts.
486  */
487 static inline bool napi_complete(struct napi_struct *n)
488 {
489 	return napi_complete_done(n, 0);
490 }
491 
492 /**
493  *	napi_disable - prevent NAPI from scheduling
494  *	@n: NAPI context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500 
501 /**
502  *	napi_enable - enable NAPI scheduling
503  *	@n: NAPI context
504  *
505  * Resume NAPI from being scheduled on this context.
506  * Must be paired with napi_disable.
507  */
508 static inline void napi_enable(struct napi_struct *n)
509 {
510 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
511 	smp_mb__before_atomic();
512 	clear_bit(NAPI_STATE_SCHED, &n->state);
513 	clear_bit(NAPI_STATE_NPSVC, &n->state);
514 }
515 
516 /**
517  *	napi_synchronize - wait until NAPI is not running
518  *	@n: NAPI context
519  *
520  * Wait until NAPI is done being scheduled on this context.
521  * Waits till any outstanding processing completes but
522  * does not disable future activations.
523  */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526 	if (IS_ENABLED(CONFIG_SMP))
527 		while (test_bit(NAPI_STATE_SCHED, &n->state))
528 			msleep(1);
529 	else
530 		barrier();
531 }
532 
533 /**
534  *	napi_if_scheduled_mark_missed - if napi is running, set the
535  *	NAPIF_STATE_MISSED
536  *	@n: NAPI context
537  *
538  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
539  * NAPI is scheduled.
540  **/
541 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
542 {
543 	unsigned long val, new;
544 
545 	do {
546 		val = READ_ONCE(n->state);
547 		if (val & NAPIF_STATE_DISABLE)
548 			return true;
549 
550 		if (!(val & NAPIF_STATE_SCHED))
551 			return false;
552 
553 		new = val | NAPIF_STATE_MISSED;
554 	} while (cmpxchg(&n->state, val, new) != val);
555 
556 	return true;
557 }
558 
559 enum netdev_queue_state_t {
560 	__QUEUE_STATE_DRV_XOFF,
561 	__QUEUE_STATE_STACK_XOFF,
562 	__QUEUE_STATE_FROZEN,
563 };
564 
565 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
566 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
567 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
568 
569 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
570 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
571 					QUEUE_STATE_FROZEN)
572 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
573 					QUEUE_STATE_FROZEN)
574 
575 /*
576  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
577  * netif_tx_* functions below are used to manipulate this flag.  The
578  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
579  * queue independently.  The netif_xmit_*stopped functions below are called
580  * to check if the queue has been stopped by the driver or stack (either
581  * of the XOFF bits are set in the state).  Drivers should not need to call
582  * netif_xmit*stopped functions, they should only be using netif_tx_*.
583  */
584 
585 struct netdev_queue {
586 /*
587  * read-mostly part
588  */
589 	struct net_device	*dev;
590 	struct Qdisc __rcu	*qdisc;
591 	struct Qdisc		*qdisc_sleeping;
592 #ifdef CONFIG_SYSFS
593 	struct kobject		kobj;
594 #endif
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	int			numa_node;
597 #endif
598 	unsigned long		tx_maxrate;
599 	/*
600 	 * Number of TX timeouts for this queue
601 	 * (/sys/class/net/DEV/Q/trans_timeout)
602 	 */
603 	unsigned long		trans_timeout;
604 
605 	/* Subordinate device that the queue has been assigned to */
606 	struct net_device	*sb_dev;
607 #ifdef CONFIG_XDP_SOCKETS
608 	struct xsk_buff_pool    *pool;
609 #endif
610 /*
611  * write-mostly part
612  */
613 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
614 	int			xmit_lock_owner;
615 	/*
616 	 * Time (in jiffies) of last Tx
617 	 */
618 	unsigned long		trans_start;
619 
620 	unsigned long		state;
621 
622 #ifdef CONFIG_BQL
623 	struct dql		dql;
624 #endif
625 } ____cacheline_aligned_in_smp;
626 
627 extern int sysctl_fb_tunnels_only_for_init_net;
628 extern int sysctl_devconf_inherit_init_net;
629 
630 /*
631  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
632  *                                     == 1 : For initns only
633  *                                     == 2 : For none.
634  */
635 static inline bool net_has_fallback_tunnels(const struct net *net)
636 {
637 	return (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 	TC_SETUP_QDISC_FIFO,
855 };
856 
857 /* These structures hold the attributes of bpf state that are being passed
858  * to the netdevice through the bpf op.
859  */
860 enum bpf_netdev_command {
861 	/* Set or clear a bpf program used in the earliest stages of packet
862 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 	 * is responsible for calling bpf_prog_put on any old progs that are
864 	 * stored. In case of error, the callee need not release the new prog
865 	 * reference, but on success it takes ownership and must bpf_prog_put
866 	 * when it is no longer used.
867 	 */
868 	XDP_SETUP_PROG,
869 	XDP_SETUP_PROG_HW,
870 	/* BPF program for offload callbacks, invoked at program load time. */
871 	BPF_OFFLOAD_MAP_ALLOC,
872 	BPF_OFFLOAD_MAP_FREE,
873 	XDP_SETUP_XSK_POOL,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881 
882 enum bpf_xdp_mode {
883 	XDP_MODE_SKB = 0,
884 	XDP_MODE_DRV = 1,
885 	XDP_MODE_HW = 2,
886 	__MAX_XDP_MODE
887 };
888 
889 struct bpf_xdp_entity {
890 	struct bpf_prog *prog;
891 	struct bpf_xdp_link *link;
892 };
893 
894 struct netdev_bpf {
895 	enum bpf_netdev_command command;
896 	union {
897 		/* XDP_SETUP_PROG */
898 		struct {
899 			u32 flags;
900 			struct bpf_prog *prog;
901 			struct netlink_ext_ack *extack;
902 		};
903 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 		struct {
905 			struct bpf_offloaded_map *offmap;
906 		};
907 		/* XDP_SETUP_XSK_POOL */
908 		struct {
909 			struct xsk_buff_pool *pool;
910 			u16 queue_id;
911 		} xsk;
912 	};
913 };
914 
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918 
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
924 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
925 				       struct xfrm_state *x);
926 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929 
930 struct dev_ifalias {
931 	struct rcu_head rcuhead;
932 	char ifalias[];
933 };
934 
935 struct devlink;
936 struct tlsdev_ops;
937 
938 struct netdev_name_node {
939 	struct hlist_node hlist;
940 	struct list_head list;
941 	struct net_device *dev;
942 	const char *name;
943 };
944 
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947 
948 struct netdev_net_notifier {
949 	struct list_head list;
950 	struct notifier_block *nb;
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *	Called when a packet needs to be transmitted.
979  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *	the queue before that can happen; it's for obsolete devices and weird
981  *	corner cases, but the stack really does a non-trivial amount
982  *	of useless work if you return NETDEV_TX_BUSY.
983  *	Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *					   struct net_device *dev
987  *					   netdev_features_t features);
988  *	Called by core transmit path to determine if device is capable of
989  *	performing offload operations on a given packet. This is to give
990  *	the device an opportunity to implement any restrictions that cannot
991  *	be otherwise expressed by feature flags. The check is called with
992  *	the set of features that the stack has calculated and it returns
993  *	those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev);
997  *	Called to decide which queue to use when device supports multiple
998  *	transmit queues.
999  *
1000  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001  *	This function is called to allow device receiver to make
1002  *	changes to configuration when multicast or promiscuous is enabled.
1003  *
1004  * void (*ndo_set_rx_mode)(struct net_device *dev);
1005  *	This function is called device changes address list filtering.
1006  *	If driver handles unicast address filtering, it should set
1007  *	IFF_UNICAST_FLT in its priv_flags.
1008  *
1009  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010  *	This function  is called when the Media Access Control address
1011  *	needs to be changed. If this interface is not defined, the
1012  *	MAC address can not be changed.
1013  *
1014  * int (*ndo_validate_addr)(struct net_device *dev);
1015  *	Test if Media Access Control address is valid for the device.
1016  *
1017  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018  *	Called when a user requests an ioctl which can't be handled by
1019  *	the generic interface code. If not defined ioctls return
1020  *	not supported error code.
1021  *
1022  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023  *	Used to set network devices bus interface parameters. This interface
1024  *	is retained for legacy reasons; new devices should use the bus
1025  *	interface (PCI) for low level management.
1026  *
1027  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028  *	Called when a user wants to change the Maximum Transfer Unit
1029  *	of a device.
1030  *
1031  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032  *	Callback used when the transmitter has not made any progress
1033  *	for dev->watchdog ticks.
1034  *
1035  * void (*ndo_get_stats64)(struct net_device *dev,
1036  *                         struct rtnl_link_stats64 *storage);
1037  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038  *	Called when a user wants to get the network device usage
1039  *	statistics. Drivers must do one of the following:
1040  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1041  *	   rtnl_link_stats64 structure passed by the caller.
1042  *	2. Define @ndo_get_stats to update a net_device_stats structure
1043  *	   (which should normally be dev->stats) and return a pointer to
1044  *	   it. The structure may be changed asynchronously only if each
1045  *	   field is written atomically.
1046  *	3. Update dev->stats asynchronously and atomically, and define
1047  *	   neither operation.
1048  *
1049  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050  *	Return true if this device supports offload stats of this attr_id.
1051  *
1052  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053  *	void *attr_data)
1054  *	Get statistics for offload operations by attr_id. Write it into the
1055  *	attr_data pointer.
1056  *
1057  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058  *	If device supports VLAN filtering this function is called when a
1059  *	VLAN id is registered.
1060  *
1061  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062  *	If device supports VLAN filtering this function is called when a
1063  *	VLAN id is unregistered.
1064  *
1065  * void (*ndo_poll_controller)(struct net_device *dev);
1066  *
1067  *	SR-IOV management functions.
1068  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070  *			  u8 qos, __be16 proto);
1071  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072  *			  int max_tx_rate);
1073  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_get_vf_config)(struct net_device *dev,
1076  *			    int vf, struct ifla_vf_info *ivf);
1077  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079  *			  struct nlattr *port[]);
1080  *
1081  *      Enable or disable the VF ability to query its RSS Redirection Table and
1082  *      Hash Key. This is needed since on some devices VF share this information
1083  *      with PF and querying it may introduce a theoretical security risk.
1084  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087  *		       void *type_data);
1088  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1089  *	This is always called from the stack with the rtnl lock held and netif
1090  *	tx queues stopped. This allows the netdevice to perform queue
1091  *	management safely.
1092  *
1093  *	Fiber Channel over Ethernet (FCoE) offload functions.
1094  * int (*ndo_fcoe_enable)(struct net_device *dev);
1095  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1096  *	so the underlying device can perform whatever needed configuration or
1097  *	initialization to support acceleration of FCoE traffic.
1098  *
1099  * int (*ndo_fcoe_disable)(struct net_device *dev);
1100  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101  *	so the underlying device can perform whatever needed clean-ups to
1102  *	stop supporting acceleration of FCoE traffic.
1103  *
1104  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105  *			     struct scatterlist *sgl, unsigned int sgc);
1106  *	Called when the FCoE Initiator wants to initialize an I/O that
1107  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1108  *	perform necessary setup and returns 1 to indicate the device is set up
1109  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1110  *
1111  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1112  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113  *	indicated by the FC exchange id 'xid', so the underlying device can
1114  *	clean up and reuse resources for later DDP requests.
1115  *
1116  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117  *			      struct scatterlist *sgl, unsigned int sgc);
1118  *	Called when the FCoE Target wants to initialize an I/O that
1119  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1120  *	perform necessary setup and returns 1 to indicate the device is set up
1121  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1122  *
1123  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124  *			       struct netdev_fcoe_hbainfo *hbainfo);
1125  *	Called when the FCoE Protocol stack wants information on the underlying
1126  *	device. This information is utilized by the FCoE protocol stack to
1127  *	register attributes with Fiber Channel management service as per the
1128  *	FC-GS Fabric Device Management Information(FDMI) specification.
1129  *
1130  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131  *	Called when the underlying device wants to override default World Wide
1132  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134  *	protocol stack to use.
1135  *
1136  *	RFS acceleration.
1137  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138  *			    u16 rxq_index, u32 flow_id);
1139  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1140  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141  *	Return the filter ID on success, or a negative error code.
1142  *
1143  *	Slave management functions (for bridge, bonding, etc).
1144  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145  *	Called to make another netdev an underling.
1146  *
1147  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148  *	Called to release previously enslaved netdev.
1149  *
1150  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151  *					    struct sk_buff *skb,
1152  *					    bool all_slaves);
1153  *	Get the xmit slave of master device. If all_slaves is true, function
1154  *	assume all the slaves can transmit.
1155  *
1156  *      Feature/offload setting functions.
1157  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158  *		netdev_features_t features);
1159  *	Adjusts the requested feature flags according to device-specific
1160  *	constraints, and returns the resulting flags. Must not modify
1161  *	the device state.
1162  *
1163  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164  *	Called to update device configuration to new features. Passed
1165  *	feature set might be less than what was returned by ndo_fix_features()).
1166  *	Must return >0 or -errno if it changed dev->features itself.
1167  *
1168  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid, u16 flags,
1171  *		      struct netlink_ext_ack *extack);
1172  *	Adds an FDB entry to dev for addr.
1173  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174  *		      struct net_device *dev,
1175  *		      const unsigned char *addr, u16 vid)
1176  *	Deletes the FDB entry from dev coresponding to addr.
1177  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178  *		       struct net_device *dev, struct net_device *filter_dev,
1179  *		       int *idx)
1180  *	Used to add FDB entries to dump requests. Implementers should add
1181  *	entries to skb and update idx with the number of entries.
1182  *
1183  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags, struct netlink_ext_ack *extack)
1185  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186  *			     struct net_device *dev, u32 filter_mask,
1187  *			     int nlflags)
1188  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189  *			     u16 flags);
1190  *
1191  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1193  *	which do not represent real hardware may define this to allow their
1194  *	userspace components to manage their virtual carrier state. Devices
1195  *	that determine carrier state from physical hardware properties (eg
1196  *	network cables) or protocol-dependent mechanisms (eg
1197  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198  *
1199  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200  *			       struct netdev_phys_item_id *ppid);
1201  *	Called to get ID of physical port of this device. If driver does
1202  *	not implement this, it is assumed that the hw is not able to have
1203  *	multiple net devices on single physical port.
1204  *
1205  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206  *				 struct netdev_phys_item_id *ppid)
1207  *	Called to get the parent ID of the physical port of this device.
1208  *
1209  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210  *			      struct udp_tunnel_info *ti);
1211  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1212  *	address family that a UDP tunnel is listnening to. It is called only
1213  *	when a new port starts listening. The operation is protected by the
1214  *	RTNL.
1215  *
1216  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217  *			      struct udp_tunnel_info *ti);
1218  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1219  *	address family that the UDP tunnel is not listening to anymore. The
1220  *	operation is protected by the RTNL.
1221  *
1222  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223  *				 struct net_device *dev)
1224  *	Called by upper layer devices to accelerate switching or other
1225  *	station functionality into hardware. 'pdev is the lowerdev
1226  *	to use for the offload and 'dev' is the net device that will
1227  *	back the offload. Returns a pointer to the private structure
1228  *	the upper layer will maintain.
1229  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230  *	Called by upper layer device to delete the station created
1231  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232  *	the station and priv is the structure returned by the add
1233  *	operation.
1234  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235  *			     int queue_index, u32 maxrate);
1236  *	Called when a user wants to set a max-rate limitation of specific
1237  *	TX queue.
1238  * int (*ndo_get_iflink)(const struct net_device *dev);
1239  *	Called to get the iflink value of this device.
1240  * void (*ndo_change_proto_down)(struct net_device *dev,
1241  *				 bool proto_down);
1242  *	This function is used to pass protocol port error state information
1243  *	to the switch driver. The switch driver can react to the proto_down
1244  *      by doing a phys down on the associated switch port.
1245  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246  *	This function is used to get egress tunnel information for given skb.
1247  *	This is useful for retrieving outer tunnel header parameters while
1248  *	sampling packet.
1249  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250  *	This function is used to specify the headroom that the skb must
1251  *	consider when allocation skb during packet reception. Setting
1252  *	appropriate rx headroom value allows avoiding skb head copy on
1253  *	forward. Setting a negative value resets the rx headroom to the
1254  *	default value.
1255  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256  *	This function is used to set or query state related to XDP on the
1257  *	netdevice and manage BPF offload. See definition of
1258  *	enum bpf_netdev_command for details.
1259  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260  *			u32 flags);
1261  *	This function is used to submit @n XDP packets for transmit on a
1262  *	netdevice. Returns number of frames successfully transmitted, frames
1263  *	that got dropped are freed/returned via xdp_return_frame().
1264  *	Returns negative number, means general error invoking ndo, meaning
1265  *	no frames were xmit'ed and core-caller will free all frames.
1266  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267  *      This function is used to wake up the softirq, ksoftirqd or kthread
1268  *	responsible for sending and/or receiving packets on a specific
1269  *	queue id bound to an AF_XDP socket. The flags field specifies if
1270  *	only RX, only Tx, or both should be woken up using the flags
1271  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273  *	Get devlink port instance associated with a given netdev.
1274  *	Called with a reference on the netdevice and devlink locks only,
1275  *	rtnl_lock is not held.
1276  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277  *			 int cmd);
1278  *	Add, change, delete or get information on an IPv4 tunnel.
1279  */
1280 struct net_device_ops {
1281 	int			(*ndo_init)(struct net_device *dev);
1282 	void			(*ndo_uninit)(struct net_device *dev);
1283 	int			(*ndo_open)(struct net_device *dev);
1284 	int			(*ndo_stop)(struct net_device *dev);
1285 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1286 						  struct net_device *dev);
1287 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1288 						      struct net_device *dev,
1289 						      netdev_features_t features);
1290 	u16			(*ndo_select_queue)(struct net_device *dev,
1291 						    struct sk_buff *skb,
1292 						    struct net_device *sb_dev);
1293 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1294 						       int flags);
1295 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1296 	int			(*ndo_set_mac_address)(struct net_device *dev,
1297 						       void *addr);
1298 	int			(*ndo_validate_addr)(struct net_device *dev);
1299 	int			(*ndo_do_ioctl)(struct net_device *dev,
1300 					        struct ifreq *ifr, int cmd);
1301 	int			(*ndo_set_config)(struct net_device *dev,
1302 					          struct ifmap *map);
1303 	int			(*ndo_change_mtu)(struct net_device *dev,
1304 						  int new_mtu);
1305 	int			(*ndo_neigh_setup)(struct net_device *dev,
1306 						   struct neigh_parms *);
1307 	void			(*ndo_tx_timeout) (struct net_device *dev,
1308 						   unsigned int txqueue);
1309 
1310 	void			(*ndo_get_stats64)(struct net_device *dev,
1311 						   struct rtnl_link_stats64 *storage);
1312 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1313 	int			(*ndo_get_offload_stats)(int attr_id,
1314 							 const struct net_device *dev,
1315 							 void *attr_data);
1316 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1317 
1318 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1319 						       __be16 proto, u16 vid);
1320 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1321 						        __be16 proto, u16 vid);
1322 #ifdef CONFIG_NET_POLL_CONTROLLER
1323 	void                    (*ndo_poll_controller)(struct net_device *dev);
1324 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1325 						     struct netpoll_info *info);
1326 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1327 #endif
1328 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1329 						  int queue, u8 *mac);
1330 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1331 						   int queue, u16 vlan,
1332 						   u8 qos, __be16 proto);
1333 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1334 						   int vf, int min_tx_rate,
1335 						   int max_tx_rate);
1336 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1337 						       int vf, bool setting);
1338 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1339 						    int vf, bool setting);
1340 	int			(*ndo_get_vf_config)(struct net_device *dev,
1341 						     int vf,
1342 						     struct ifla_vf_info *ivf);
1343 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1344 							 int vf, int link_state);
1345 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1346 						    int vf,
1347 						    struct ifla_vf_stats
1348 						    *vf_stats);
1349 	int			(*ndo_set_vf_port)(struct net_device *dev,
1350 						   int vf,
1351 						   struct nlattr *port[]);
1352 	int			(*ndo_get_vf_port)(struct net_device *dev,
1353 						   int vf, struct sk_buff *skb);
1354 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1355 						   int vf,
1356 						   struct ifla_vf_guid *node_guid,
1357 						   struct ifla_vf_guid *port_guid);
1358 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1359 						   int vf, u64 guid,
1360 						   int guid_type);
1361 	int			(*ndo_set_vf_rss_query_en)(
1362 						   struct net_device *dev,
1363 						   int vf, bool setting);
1364 	int			(*ndo_setup_tc)(struct net_device *dev,
1365 						enum tc_setup_type type,
1366 						void *type_data);
1367 #if IS_ENABLED(CONFIG_FCOE)
1368 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1369 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1370 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1371 						      u16 xid,
1372 						      struct scatterlist *sgl,
1373 						      unsigned int sgc);
1374 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1375 						     u16 xid);
1376 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1377 						       u16 xid,
1378 						       struct scatterlist *sgl,
1379 						       unsigned int sgc);
1380 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1381 							struct netdev_fcoe_hbainfo *hbainfo);
1382 #endif
1383 
1384 #if IS_ENABLED(CONFIG_LIBFCOE)
1385 #define NETDEV_FCOE_WWNN 0
1386 #define NETDEV_FCOE_WWPN 1
1387 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1388 						    u64 *wwn, int type);
1389 #endif
1390 
1391 #ifdef CONFIG_RFS_ACCEL
1392 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1393 						     const struct sk_buff *skb,
1394 						     u16 rxq_index,
1395 						     u32 flow_id);
1396 #endif
1397 	int			(*ndo_add_slave)(struct net_device *dev,
1398 						 struct net_device *slave_dev,
1399 						 struct netlink_ext_ack *extack);
1400 	int			(*ndo_del_slave)(struct net_device *dev,
1401 						 struct net_device *slave_dev);
1402 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1403 						      struct sk_buff *skb,
1404 						      bool all_slaves);
1405 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1406 						    netdev_features_t features);
1407 	int			(*ndo_set_features)(struct net_device *dev,
1408 						    netdev_features_t features);
1409 	int			(*ndo_neigh_construct)(struct net_device *dev,
1410 						       struct neighbour *n);
1411 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1412 						     struct neighbour *n);
1413 
1414 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1415 					       struct nlattr *tb[],
1416 					       struct net_device *dev,
1417 					       const unsigned char *addr,
1418 					       u16 vid,
1419 					       u16 flags,
1420 					       struct netlink_ext_ack *extack);
1421 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1422 					       struct nlattr *tb[],
1423 					       struct net_device *dev,
1424 					       const unsigned char *addr,
1425 					       u16 vid);
1426 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1427 						struct netlink_callback *cb,
1428 						struct net_device *dev,
1429 						struct net_device *filter_dev,
1430 						int *idx);
1431 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1432 					       struct nlattr *tb[],
1433 					       struct net_device *dev,
1434 					       const unsigned char *addr,
1435 					       u16 vid, u32 portid, u32 seq,
1436 					       struct netlink_ext_ack *extack);
1437 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1438 						      struct nlmsghdr *nlh,
1439 						      u16 flags,
1440 						      struct netlink_ext_ack *extack);
1441 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1442 						      u32 pid, u32 seq,
1443 						      struct net_device *dev,
1444 						      u32 filter_mask,
1445 						      int nlflags);
1446 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1447 						      struct nlmsghdr *nlh,
1448 						      u16 flags);
1449 	int			(*ndo_change_carrier)(struct net_device *dev,
1450 						      bool new_carrier);
1451 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1452 							struct netdev_phys_item_id *ppid);
1453 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1454 							  struct netdev_phys_item_id *ppid);
1455 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1456 							  char *name, size_t len);
1457 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1458 						      struct udp_tunnel_info *ti);
1459 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1460 						      struct udp_tunnel_info *ti);
1461 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1462 							struct net_device *dev);
1463 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1464 							void *priv);
1465 
1466 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1467 						      int queue_index,
1468 						      u32 maxrate);
1469 	int			(*ndo_get_iflink)(const struct net_device *dev);
1470 	int			(*ndo_change_proto_down)(struct net_device *dev,
1471 							 bool proto_down);
1472 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1473 						       struct sk_buff *skb);
1474 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1475 						       int needed_headroom);
1476 	int			(*ndo_bpf)(struct net_device *dev,
1477 					   struct netdev_bpf *bpf);
1478 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1479 						struct xdp_frame **xdp,
1480 						u32 flags);
1481 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1482 						  u32 queue_id, u32 flags);
1483 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1484 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1485 						  struct ip_tunnel_parm *p, int cmd);
1486 };
1487 
1488 /**
1489  * enum net_device_priv_flags - &struct net_device priv_flags
1490  *
1491  * These are the &struct net_device, they are only set internally
1492  * by drivers and used in the kernel. These flags are invisible to
1493  * userspace; this means that the order of these flags can change
1494  * during any kernel release.
1495  *
1496  * You should have a pretty good reason to be extending these flags.
1497  *
1498  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1499  * @IFF_EBRIDGE: Ethernet bridging device
1500  * @IFF_BONDING: bonding master or slave
1501  * @IFF_ISATAP: ISATAP interface (RFC4214)
1502  * @IFF_WAN_HDLC: WAN HDLC device
1503  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1504  *	release skb->dst
1505  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1506  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1507  * @IFF_MACVLAN_PORT: device used as macvlan port
1508  * @IFF_BRIDGE_PORT: device used as bridge port
1509  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1510  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1511  * @IFF_UNICAST_FLT: Supports unicast filtering
1512  * @IFF_TEAM_PORT: device used as team port
1513  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1514  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1515  *	change when it's running
1516  * @IFF_MACVLAN: Macvlan device
1517  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1518  *	underlying stacked devices
1519  * @IFF_L3MDEV_MASTER: device is an L3 master device
1520  * @IFF_NO_QUEUE: device can run without qdisc attached
1521  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1522  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1523  * @IFF_TEAM: device is a team device
1524  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1525  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1526  *	entity (i.e. the master device for bridged veth)
1527  * @IFF_MACSEC: device is a MACsec device
1528  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1529  * @IFF_FAILOVER: device is a failover master device
1530  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1531  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1532  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1533  */
1534 enum netdev_priv_flags {
1535 	IFF_802_1Q_VLAN			= 1<<0,
1536 	IFF_EBRIDGE			= 1<<1,
1537 	IFF_BONDING			= 1<<2,
1538 	IFF_ISATAP			= 1<<3,
1539 	IFF_WAN_HDLC			= 1<<4,
1540 	IFF_XMIT_DST_RELEASE		= 1<<5,
1541 	IFF_DONT_BRIDGE			= 1<<6,
1542 	IFF_DISABLE_NETPOLL		= 1<<7,
1543 	IFF_MACVLAN_PORT		= 1<<8,
1544 	IFF_BRIDGE_PORT			= 1<<9,
1545 	IFF_OVS_DATAPATH		= 1<<10,
1546 	IFF_TX_SKB_SHARING		= 1<<11,
1547 	IFF_UNICAST_FLT			= 1<<12,
1548 	IFF_TEAM_PORT			= 1<<13,
1549 	IFF_SUPP_NOFCS			= 1<<14,
1550 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1551 	IFF_MACVLAN			= 1<<16,
1552 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1553 	IFF_L3MDEV_MASTER		= 1<<18,
1554 	IFF_NO_QUEUE			= 1<<19,
1555 	IFF_OPENVSWITCH			= 1<<20,
1556 	IFF_L3MDEV_SLAVE		= 1<<21,
1557 	IFF_TEAM			= 1<<22,
1558 	IFF_RXFH_CONFIGURED		= 1<<23,
1559 	IFF_PHONY_HEADROOM		= 1<<24,
1560 	IFF_MACSEC			= 1<<25,
1561 	IFF_NO_RX_HANDLER		= 1<<26,
1562 	IFF_FAILOVER			= 1<<27,
1563 	IFF_FAILOVER_SLAVE		= 1<<28,
1564 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1565 	IFF_LIVE_RENAME_OK		= 1<<30,
1566 };
1567 
1568 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1569 #define IFF_EBRIDGE			IFF_EBRIDGE
1570 #define IFF_BONDING			IFF_BONDING
1571 #define IFF_ISATAP			IFF_ISATAP
1572 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1573 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1574 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1575 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1576 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1577 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1578 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1579 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1580 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1581 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1582 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1583 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1584 #define IFF_MACVLAN			IFF_MACVLAN
1585 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1586 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1587 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1588 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1589 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1590 #define IFF_TEAM			IFF_TEAM
1591 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1592 #define IFF_MACSEC			IFF_MACSEC
1593 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1594 #define IFF_FAILOVER			IFF_FAILOVER
1595 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1596 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1597 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1598 
1599 /**
1600  *	struct net_device - The DEVICE structure.
1601  *
1602  *	Actually, this whole structure is a big mistake.  It mixes I/O
1603  *	data with strictly "high-level" data, and it has to know about
1604  *	almost every data structure used in the INET module.
1605  *
1606  *	@name:	This is the first field of the "visible" part of this structure
1607  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1608  *		of the interface.
1609  *
1610  *	@name_node:	Name hashlist node
1611  *	@ifalias:	SNMP alias
1612  *	@mem_end:	Shared memory end
1613  *	@mem_start:	Shared memory start
1614  *	@base_addr:	Device I/O address
1615  *	@irq:		Device IRQ number
1616  *
1617  *	@state:		Generic network queuing layer state, see netdev_state_t
1618  *	@dev_list:	The global list of network devices
1619  *	@napi_list:	List entry used for polling NAPI devices
1620  *	@unreg_list:	List entry  when we are unregistering the
1621  *			device; see the function unregister_netdev
1622  *	@close_list:	List entry used when we are closing the device
1623  *	@ptype_all:     Device-specific packet handlers for all protocols
1624  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1625  *
1626  *	@adj_list:	Directly linked devices, like slaves for bonding
1627  *	@features:	Currently active device features
1628  *	@hw_features:	User-changeable features
1629  *
1630  *	@wanted_features:	User-requested features
1631  *	@vlan_features:		Mask of features inheritable by VLAN devices
1632  *
1633  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1634  *				This field indicates what encapsulation
1635  *				offloads the hardware is capable of doing,
1636  *				and drivers will need to set them appropriately.
1637  *
1638  *	@mpls_features:	Mask of features inheritable by MPLS
1639  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1640  *
1641  *	@ifindex:	interface index
1642  *	@group:		The group the device belongs to
1643  *
1644  *	@stats:		Statistics struct, which was left as a legacy, use
1645  *			rtnl_link_stats64 instead
1646  *
1647  *	@rx_dropped:	Dropped packets by core network,
1648  *			do not use this in drivers
1649  *	@tx_dropped:	Dropped packets by core network,
1650  *			do not use this in drivers
1651  *	@rx_nohandler:	nohandler dropped packets by core network on
1652  *			inactive devices, do not use this in drivers
1653  *	@carrier_up_count:	Number of times the carrier has been up
1654  *	@carrier_down_count:	Number of times the carrier has been down
1655  *
1656  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1657  *				instead of ioctl,
1658  *				see <net/iw_handler.h> for details.
1659  *	@wireless_data:	Instance data managed by the core of wireless extensions
1660  *
1661  *	@netdev_ops:	Includes several pointers to callbacks,
1662  *			if one wants to override the ndo_*() functions
1663  *	@ethtool_ops:	Management operations
1664  *	@l3mdev_ops:	Layer 3 master device operations
1665  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1666  *			discovery handling. Necessary for e.g. 6LoWPAN.
1667  *	@xfrmdev_ops:	Transformation offload operations
1668  *	@tlsdev_ops:	Transport Layer Security offload operations
1669  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1670  *			of Layer 2 headers.
1671  *
1672  *	@flags:		Interface flags (a la BSD)
1673  *	@priv_flags:	Like 'flags' but invisible to userspace,
1674  *			see if.h for the definitions
1675  *	@gflags:	Global flags ( kept as legacy )
1676  *	@padded:	How much padding added by alloc_netdev()
1677  *	@operstate:	RFC2863 operstate
1678  *	@link_mode:	Mapping policy to operstate
1679  *	@if_port:	Selectable AUI, TP, ...
1680  *	@dma:		DMA channel
1681  *	@mtu:		Interface MTU value
1682  *	@min_mtu:	Interface Minimum MTU value
1683  *	@max_mtu:	Interface Maximum MTU value
1684  *	@type:		Interface hardware type
1685  *	@hard_header_len: Maximum hardware header length.
1686  *	@min_header_len:  Minimum hardware header length
1687  *
1688  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1689  *			  cases can this be guaranteed
1690  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1691  *			  cases can this be guaranteed. Some cases also use
1692  *			  LL_MAX_HEADER instead to allocate the skb
1693  *
1694  *	interface address info:
1695  *
1696  * 	@perm_addr:		Permanent hw address
1697  * 	@addr_assign_type:	Hw address assignment type
1698  * 	@addr_len:		Hardware address length
1699  *	@upper_level:		Maximum depth level of upper devices.
1700  *	@lower_level:		Maximum depth level of lower devices.
1701  *	@neigh_priv_len:	Used in neigh_alloc()
1702  * 	@dev_id:		Used to differentiate devices that share
1703  * 				the same link layer address
1704  * 	@dev_port:		Used to differentiate devices that share
1705  * 				the same function
1706  *	@addr_list_lock:	XXX: need comments on this one
1707  *	@name_assign_type:	network interface name assignment type
1708  *	@uc_promisc:		Counter that indicates promiscuous mode
1709  *				has been enabled due to the need to listen to
1710  *				additional unicast addresses in a device that
1711  *				does not implement ndo_set_rx_mode()
1712  *	@uc:			unicast mac addresses
1713  *	@mc:			multicast mac addresses
1714  *	@dev_addrs:		list of device hw addresses
1715  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1716  *	@promiscuity:		Number of times the NIC is told to work in
1717  *				promiscuous mode; if it becomes 0 the NIC will
1718  *				exit promiscuous mode
1719  *	@allmulti:		Counter, enables or disables allmulticast mode
1720  *
1721  *	@vlan_info:	VLAN info
1722  *	@dsa_ptr:	dsa specific data
1723  *	@tipc_ptr:	TIPC specific data
1724  *	@atalk_ptr:	AppleTalk link
1725  *	@ip_ptr:	IPv4 specific data
1726  *	@dn_ptr:	DECnet specific data
1727  *	@ip6_ptr:	IPv6 specific data
1728  *	@ax25_ptr:	AX.25 specific data
1729  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1730  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1731  *			 device struct
1732  *	@mpls_ptr:	mpls_dev struct pointer
1733  *
1734  *	@dev_addr:	Hw address (before bcast,
1735  *			because most packets are unicast)
1736  *
1737  *	@_rx:			Array of RX queues
1738  *	@num_rx_queues:		Number of RX queues
1739  *				allocated at register_netdev() time
1740  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1741  *	@xdp_prog:		XDP sockets filter program pointer
1742  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1743  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1744  *				allow to avoid NIC hard IRQ, on busy queues.
1745  *
1746  *	@rx_handler:		handler for received packets
1747  *	@rx_handler_data: 	XXX: need comments on this one
1748  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1749  *				ingress processing
1750  *	@ingress_queue:		XXX: need comments on this one
1751  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1752  *	@broadcast:		hw bcast address
1753  *
1754  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1755  *			indexed by RX queue number. Assigned by driver.
1756  *			This must only be set if the ndo_rx_flow_steer
1757  *			operation is defined
1758  *	@index_hlist:		Device index hash chain
1759  *
1760  *	@_tx:			Array of TX queues
1761  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1762  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1763  *	@qdisc:			Root qdisc from userspace point of view
1764  *	@tx_queue_len:		Max frames per queue allowed
1765  *	@tx_global_lock: 	XXX: need comments on this one
1766  *	@xdp_bulkq:		XDP device bulk queue
1767  *	@xps_cpus_map:		all CPUs map for XPS device
1768  *	@xps_rxqs_map:		all RXQs map for XPS device
1769  *
1770  *	@xps_maps:	XXX: need comments on this one
1771  *	@miniq_egress:		clsact qdisc specific data for
1772  *				egress processing
1773  *	@qdisc_hash:		qdisc hash table
1774  *	@watchdog_timeo:	Represents the timeout that is used by
1775  *				the watchdog (see dev_watchdog())
1776  *	@watchdog_timer:	List of timers
1777  *
1778  *	@pcpu_refcnt:		Number of references to this device
1779  *	@todo_list:		Delayed register/unregister
1780  *	@link_watch_list:	XXX: need comments on this one
1781  *
1782  *	@reg_state:		Register/unregister state machine
1783  *	@dismantle:		Device is going to be freed
1784  *	@rtnl_link_state:	This enum represents the phases of creating
1785  *				a new link
1786  *
1787  *	@needs_free_netdev:	Should unregister perform free_netdev?
1788  *	@priv_destructor:	Called from unregister
1789  *	@npinfo:		XXX: need comments on this one
1790  * 	@nd_net:		Network namespace this network device is inside
1791  *
1792  * 	@ml_priv:	Mid-layer private
1793  * 	@lstats:	Loopback statistics
1794  * 	@tstats:	Tunnel statistics
1795  * 	@dstats:	Dummy statistics
1796  * 	@vstats:	Virtual ethernet statistics
1797  *
1798  *	@garp_port:	GARP
1799  *	@mrp_port:	MRP
1800  *
1801  *	@dev:		Class/net/name entry
1802  *	@sysfs_groups:	Space for optional device, statistics and wireless
1803  *			sysfs groups
1804  *
1805  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1806  *	@rtnl_link_ops:	Rtnl_link_ops
1807  *
1808  *	@gso_max_size:	Maximum size of generic segmentation offload
1809  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1810  *			NIC for GSO
1811  *
1812  *	@dcbnl_ops:	Data Center Bridging netlink ops
1813  *	@num_tc:	Number of traffic classes in the net device
1814  *	@tc_to_txq:	XXX: need comments on this one
1815  *	@prio_tc_map:	XXX: need comments on this one
1816  *
1817  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1818  *
1819  *	@priomap:	XXX: need comments on this one
1820  *	@phydev:	Physical device may attach itself
1821  *			for hardware timestamping
1822  *	@sfp_bus:	attached &struct sfp_bus structure.
1823  *
1824  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1825  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1826  *
1827  *	@proto_down:	protocol port state information can be sent to the
1828  *			switch driver and used to set the phys state of the
1829  *			switch port.
1830  *
1831  *	@wol_enabled:	Wake-on-LAN is enabled
1832  *
1833  *	@net_notifier_list:	List of per-net netdev notifier block
1834  *				that follow this device when it is moved
1835  *				to another network namespace.
1836  *
1837  *	@macsec_ops:    MACsec offloading ops
1838  *
1839  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1840  *				offload capabilities of the device
1841  *	@udp_tunnel_nic:	UDP tunnel offload state
1842  *
1843  *	FIXME: cleanup struct net_device such that network protocol info
1844  *	moves out.
1845  */
1846 
1847 struct net_device {
1848 	char			name[IFNAMSIZ];
1849 	struct netdev_name_node	*name_node;
1850 	struct dev_ifalias	__rcu *ifalias;
1851 	/*
1852 	 *	I/O specific fields
1853 	 *	FIXME: Merge these and struct ifmap into one
1854 	 */
1855 	unsigned long		mem_end;
1856 	unsigned long		mem_start;
1857 	unsigned long		base_addr;
1858 	int			irq;
1859 
1860 	/*
1861 	 *	Some hardware also needs these fields (state,dev_list,
1862 	 *	napi_list,unreg_list,close_list) but they are not
1863 	 *	part of the usual set specified in Space.c.
1864 	 */
1865 
1866 	unsigned long		state;
1867 
1868 	struct list_head	dev_list;
1869 	struct list_head	napi_list;
1870 	struct list_head	unreg_list;
1871 	struct list_head	close_list;
1872 	struct list_head	ptype_all;
1873 	struct list_head	ptype_specific;
1874 
1875 	struct {
1876 		struct list_head upper;
1877 		struct list_head lower;
1878 	} adj_list;
1879 
1880 	netdev_features_t	features;
1881 	netdev_features_t	hw_features;
1882 	netdev_features_t	wanted_features;
1883 	netdev_features_t	vlan_features;
1884 	netdev_features_t	hw_enc_features;
1885 	netdev_features_t	mpls_features;
1886 	netdev_features_t	gso_partial_features;
1887 
1888 	int			ifindex;
1889 	int			group;
1890 
1891 	struct net_device_stats	stats;
1892 
1893 	atomic_long_t		rx_dropped;
1894 	atomic_long_t		tx_dropped;
1895 	atomic_long_t		rx_nohandler;
1896 
1897 	/* Stats to monitor link on/off, flapping */
1898 	atomic_t		carrier_up_count;
1899 	atomic_t		carrier_down_count;
1900 
1901 #ifdef CONFIG_WIRELESS_EXT
1902 	const struct iw_handler_def *wireless_handlers;
1903 	struct iw_public_data	*wireless_data;
1904 #endif
1905 	const struct net_device_ops *netdev_ops;
1906 	const struct ethtool_ops *ethtool_ops;
1907 #ifdef CONFIG_NET_L3_MASTER_DEV
1908 	const struct l3mdev_ops	*l3mdev_ops;
1909 #endif
1910 #if IS_ENABLED(CONFIG_IPV6)
1911 	const struct ndisc_ops *ndisc_ops;
1912 #endif
1913 
1914 #ifdef CONFIG_XFRM_OFFLOAD
1915 	const struct xfrmdev_ops *xfrmdev_ops;
1916 #endif
1917 
1918 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1919 	const struct tlsdev_ops *tlsdev_ops;
1920 #endif
1921 
1922 	const struct header_ops *header_ops;
1923 
1924 	unsigned int		flags;
1925 	unsigned int		priv_flags;
1926 
1927 	unsigned short		gflags;
1928 	unsigned short		padded;
1929 
1930 	unsigned char		operstate;
1931 	unsigned char		link_mode;
1932 
1933 	unsigned char		if_port;
1934 	unsigned char		dma;
1935 
1936 	/* Note : dev->mtu is often read without holding a lock.
1937 	 * Writers usually hold RTNL.
1938 	 * It is recommended to use READ_ONCE() to annotate the reads,
1939 	 * and to use WRITE_ONCE() to annotate the writes.
1940 	 */
1941 	unsigned int		mtu;
1942 	unsigned int		min_mtu;
1943 	unsigned int		max_mtu;
1944 	unsigned short		type;
1945 	unsigned short		hard_header_len;
1946 	unsigned char		min_header_len;
1947 
1948 	unsigned short		needed_headroom;
1949 	unsigned short		needed_tailroom;
1950 
1951 	/* Interface address info. */
1952 	unsigned char		perm_addr[MAX_ADDR_LEN];
1953 	unsigned char		addr_assign_type;
1954 	unsigned char		addr_len;
1955 	unsigned char		upper_level;
1956 	unsigned char		lower_level;
1957 	unsigned short		neigh_priv_len;
1958 	unsigned short          dev_id;
1959 	unsigned short          dev_port;
1960 	spinlock_t		addr_list_lock;
1961 	unsigned char		name_assign_type;
1962 	bool			uc_promisc;
1963 	struct netdev_hw_addr_list	uc;
1964 	struct netdev_hw_addr_list	mc;
1965 	struct netdev_hw_addr_list	dev_addrs;
1966 
1967 #ifdef CONFIG_SYSFS
1968 	struct kset		*queues_kset;
1969 #endif
1970 	unsigned int		promiscuity;
1971 	unsigned int		allmulti;
1972 
1973 
1974 	/* Protocol-specific pointers */
1975 
1976 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1977 	struct vlan_info __rcu	*vlan_info;
1978 #endif
1979 #if IS_ENABLED(CONFIG_NET_DSA)
1980 	struct dsa_port		*dsa_ptr;
1981 #endif
1982 #if IS_ENABLED(CONFIG_TIPC)
1983 	struct tipc_bearer __rcu *tipc_ptr;
1984 #endif
1985 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1986 	void 			*atalk_ptr;
1987 #endif
1988 	struct in_device __rcu	*ip_ptr;
1989 #if IS_ENABLED(CONFIG_DECNET)
1990 	struct dn_dev __rcu     *dn_ptr;
1991 #endif
1992 	struct inet6_dev __rcu	*ip6_ptr;
1993 #if IS_ENABLED(CONFIG_AX25)
1994 	void			*ax25_ptr;
1995 #endif
1996 	struct wireless_dev	*ieee80211_ptr;
1997 	struct wpan_dev		*ieee802154_ptr;
1998 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1999 	struct mpls_dev __rcu	*mpls_ptr;
2000 #endif
2001 
2002 /*
2003  * Cache lines mostly used on receive path (including eth_type_trans())
2004  */
2005 	/* Interface address info used in eth_type_trans() */
2006 	unsigned char		*dev_addr;
2007 
2008 	struct netdev_rx_queue	*_rx;
2009 	unsigned int		num_rx_queues;
2010 	unsigned int		real_num_rx_queues;
2011 
2012 	struct bpf_prog __rcu	*xdp_prog;
2013 	unsigned long		gro_flush_timeout;
2014 	int			napi_defer_hard_irqs;
2015 	rx_handler_func_t __rcu	*rx_handler;
2016 	void __rcu		*rx_handler_data;
2017 
2018 #ifdef CONFIG_NET_CLS_ACT
2019 	struct mini_Qdisc __rcu	*miniq_ingress;
2020 #endif
2021 	struct netdev_queue __rcu *ingress_queue;
2022 #ifdef CONFIG_NETFILTER_INGRESS
2023 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2024 #endif
2025 
2026 	unsigned char		broadcast[MAX_ADDR_LEN];
2027 #ifdef CONFIG_RFS_ACCEL
2028 	struct cpu_rmap		*rx_cpu_rmap;
2029 #endif
2030 	struct hlist_node	index_hlist;
2031 
2032 /*
2033  * Cache lines mostly used on transmit path
2034  */
2035 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2036 	unsigned int		num_tx_queues;
2037 	unsigned int		real_num_tx_queues;
2038 	struct Qdisc		*qdisc;
2039 	unsigned int		tx_queue_len;
2040 	spinlock_t		tx_global_lock;
2041 
2042 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2043 
2044 #ifdef CONFIG_XPS
2045 	struct xps_dev_maps __rcu *xps_cpus_map;
2046 	struct xps_dev_maps __rcu *xps_rxqs_map;
2047 #endif
2048 #ifdef CONFIG_NET_CLS_ACT
2049 	struct mini_Qdisc __rcu	*miniq_egress;
2050 #endif
2051 
2052 #ifdef CONFIG_NET_SCHED
2053 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2054 #endif
2055 	/* These may be needed for future network-power-down code. */
2056 	struct timer_list	watchdog_timer;
2057 	int			watchdog_timeo;
2058 
2059 	u32                     proto_down_reason;
2060 
2061 	struct list_head	todo_list;
2062 	int __percpu		*pcpu_refcnt;
2063 
2064 	struct list_head	link_watch_list;
2065 
2066 	enum { NETREG_UNINITIALIZED=0,
2067 	       NETREG_REGISTERED,	/* completed register_netdevice */
2068 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2069 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2070 	       NETREG_RELEASED,		/* called free_netdev */
2071 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2072 	} reg_state:8;
2073 
2074 	bool dismantle;
2075 
2076 	enum {
2077 		RTNL_LINK_INITIALIZED,
2078 		RTNL_LINK_INITIALIZING,
2079 	} rtnl_link_state:16;
2080 
2081 	bool needs_free_netdev;
2082 	void (*priv_destructor)(struct net_device *dev);
2083 
2084 #ifdef CONFIG_NETPOLL
2085 	struct netpoll_info __rcu	*npinfo;
2086 #endif
2087 
2088 	possible_net_t			nd_net;
2089 
2090 	/* mid-layer private */
2091 	union {
2092 		void					*ml_priv;
2093 		struct pcpu_lstats __percpu		*lstats;
2094 		struct pcpu_sw_netstats __percpu	*tstats;
2095 		struct pcpu_dstats __percpu		*dstats;
2096 	};
2097 
2098 #if IS_ENABLED(CONFIG_GARP)
2099 	struct garp_port __rcu	*garp_port;
2100 #endif
2101 #if IS_ENABLED(CONFIG_MRP)
2102 	struct mrp_port __rcu	*mrp_port;
2103 #endif
2104 
2105 	struct device		dev;
2106 	const struct attribute_group *sysfs_groups[4];
2107 	const struct attribute_group *sysfs_rx_queue_group;
2108 
2109 	const struct rtnl_link_ops *rtnl_link_ops;
2110 
2111 	/* for setting kernel sock attribute on TCP connection setup */
2112 #define GSO_MAX_SIZE		65536
2113 	unsigned int		gso_max_size;
2114 #define GSO_MAX_SEGS		65535
2115 	u16			gso_max_segs;
2116 
2117 #ifdef CONFIG_DCB
2118 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2119 #endif
2120 	s16			num_tc;
2121 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2122 	u8			prio_tc_map[TC_BITMASK + 1];
2123 
2124 #if IS_ENABLED(CONFIG_FCOE)
2125 	unsigned int		fcoe_ddp_xid;
2126 #endif
2127 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2128 	struct netprio_map __rcu *priomap;
2129 #endif
2130 	struct phy_device	*phydev;
2131 	struct sfp_bus		*sfp_bus;
2132 	struct lock_class_key	*qdisc_tx_busylock;
2133 	struct lock_class_key	*qdisc_running_key;
2134 	bool			proto_down;
2135 	unsigned		wol_enabled:1;
2136 
2137 	struct list_head	net_notifier_list;
2138 
2139 #if IS_ENABLED(CONFIG_MACSEC)
2140 	/* MACsec management functions */
2141 	const struct macsec_ops *macsec_ops;
2142 #endif
2143 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2144 	struct udp_tunnel_nic	*udp_tunnel_nic;
2145 
2146 	/* protected by rtnl_lock */
2147 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2148 };
2149 #define to_net_dev(d) container_of(d, struct net_device, dev)
2150 
2151 static inline bool netif_elide_gro(const struct net_device *dev)
2152 {
2153 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2154 		return true;
2155 	return false;
2156 }
2157 
2158 #define	NETDEV_ALIGN		32
2159 
2160 static inline
2161 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2162 {
2163 	return dev->prio_tc_map[prio & TC_BITMASK];
2164 }
2165 
2166 static inline
2167 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2168 {
2169 	if (tc >= dev->num_tc)
2170 		return -EINVAL;
2171 
2172 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2173 	return 0;
2174 }
2175 
2176 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2177 void netdev_reset_tc(struct net_device *dev);
2178 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2179 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2180 
2181 static inline
2182 int netdev_get_num_tc(struct net_device *dev)
2183 {
2184 	return dev->num_tc;
2185 }
2186 
2187 static inline void net_prefetch(void *p)
2188 {
2189 	prefetch(p);
2190 #if L1_CACHE_BYTES < 128
2191 	prefetch((u8 *)p + L1_CACHE_BYTES);
2192 #endif
2193 }
2194 
2195 static inline void net_prefetchw(void *p)
2196 {
2197 	prefetchw(p);
2198 #if L1_CACHE_BYTES < 128
2199 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2200 #endif
2201 }
2202 
2203 void netdev_unbind_sb_channel(struct net_device *dev,
2204 			      struct net_device *sb_dev);
2205 int netdev_bind_sb_channel_queue(struct net_device *dev,
2206 				 struct net_device *sb_dev,
2207 				 u8 tc, u16 count, u16 offset);
2208 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2209 static inline int netdev_get_sb_channel(struct net_device *dev)
2210 {
2211 	return max_t(int, -dev->num_tc, 0);
2212 }
2213 
2214 static inline
2215 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2216 					 unsigned int index)
2217 {
2218 	return &dev->_tx[index];
2219 }
2220 
2221 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2222 						    const struct sk_buff *skb)
2223 {
2224 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2225 }
2226 
2227 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2228 					    void (*f)(struct net_device *,
2229 						      struct netdev_queue *,
2230 						      void *),
2231 					    void *arg)
2232 {
2233 	unsigned int i;
2234 
2235 	for (i = 0; i < dev->num_tx_queues; i++)
2236 		f(dev, &dev->_tx[i], arg);
2237 }
2238 
2239 #define netdev_lockdep_set_classes(dev)				\
2240 {								\
2241 	static struct lock_class_key qdisc_tx_busylock_key;	\
2242 	static struct lock_class_key qdisc_running_key;		\
2243 	static struct lock_class_key qdisc_xmit_lock_key;	\
2244 	static struct lock_class_key dev_addr_list_lock_key;	\
2245 	unsigned int i;						\
2246 								\
2247 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2248 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2249 	lockdep_set_class(&(dev)->addr_list_lock,		\
2250 			  &dev_addr_list_lock_key);		\
2251 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2252 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2253 				  &qdisc_xmit_lock_key);	\
2254 }
2255 
2256 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2257 		     struct net_device *sb_dev);
2258 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2259 					 struct sk_buff *skb,
2260 					 struct net_device *sb_dev);
2261 
2262 /* returns the headroom that the master device needs to take in account
2263  * when forwarding to this dev
2264  */
2265 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2266 {
2267 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2268 }
2269 
2270 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2271 {
2272 	if (dev->netdev_ops->ndo_set_rx_headroom)
2273 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2274 }
2275 
2276 /* set the device rx headroom to the dev's default */
2277 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2278 {
2279 	netdev_set_rx_headroom(dev, -1);
2280 }
2281 
2282 /*
2283  * Net namespace inlines
2284  */
2285 static inline
2286 struct net *dev_net(const struct net_device *dev)
2287 {
2288 	return read_pnet(&dev->nd_net);
2289 }
2290 
2291 static inline
2292 void dev_net_set(struct net_device *dev, struct net *net)
2293 {
2294 	write_pnet(&dev->nd_net, net);
2295 }
2296 
2297 /**
2298  *	netdev_priv - access network device private data
2299  *	@dev: network device
2300  *
2301  * Get network device private data
2302  */
2303 static inline void *netdev_priv(const struct net_device *dev)
2304 {
2305 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2306 }
2307 
2308 /* Set the sysfs physical device reference for the network logical device
2309  * if set prior to registration will cause a symlink during initialization.
2310  */
2311 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2312 
2313 /* Set the sysfs device type for the network logical device to allow
2314  * fine-grained identification of different network device types. For
2315  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2316  */
2317 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2318 
2319 /* Default NAPI poll() weight
2320  * Device drivers are strongly advised to not use bigger value
2321  */
2322 #define NAPI_POLL_WEIGHT 64
2323 
2324 /**
2325  *	netif_napi_add - initialize a NAPI context
2326  *	@dev:  network device
2327  *	@napi: NAPI context
2328  *	@poll: polling function
2329  *	@weight: default weight
2330  *
2331  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2332  * *any* of the other NAPI-related functions.
2333  */
2334 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2335 		    int (*poll)(struct napi_struct *, int), int weight);
2336 
2337 /**
2338  *	netif_tx_napi_add - initialize a NAPI context
2339  *	@dev:  network device
2340  *	@napi: NAPI context
2341  *	@poll: polling function
2342  *	@weight: default weight
2343  *
2344  * This variant of netif_napi_add() should be used from drivers using NAPI
2345  * to exclusively poll a TX queue.
2346  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2347  */
2348 static inline void netif_tx_napi_add(struct net_device *dev,
2349 				     struct napi_struct *napi,
2350 				     int (*poll)(struct napi_struct *, int),
2351 				     int weight)
2352 {
2353 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2354 	netif_napi_add(dev, napi, poll, weight);
2355 }
2356 
2357 /**
2358  *  __netif_napi_del - remove a NAPI context
2359  *  @napi: NAPI context
2360  *
2361  * Warning: caller must observe RCU grace period before freeing memory
2362  * containing @napi. Drivers might want to call this helper to combine
2363  * all the needed RCU grace periods into a single one.
2364  */
2365 void __netif_napi_del(struct napi_struct *napi);
2366 
2367 /**
2368  *  netif_napi_del - remove a NAPI context
2369  *  @napi: NAPI context
2370  *
2371  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2372  */
2373 static inline void netif_napi_del(struct napi_struct *napi)
2374 {
2375 	__netif_napi_del(napi);
2376 	synchronize_net();
2377 }
2378 
2379 struct napi_gro_cb {
2380 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2381 	void	*frag0;
2382 
2383 	/* Length of frag0. */
2384 	unsigned int frag0_len;
2385 
2386 	/* This indicates where we are processing relative to skb->data. */
2387 	int	data_offset;
2388 
2389 	/* This is non-zero if the packet cannot be merged with the new skb. */
2390 	u16	flush;
2391 
2392 	/* Save the IP ID here and check when we get to the transport layer */
2393 	u16	flush_id;
2394 
2395 	/* Number of segments aggregated. */
2396 	u16	count;
2397 
2398 	/* Start offset for remote checksum offload */
2399 	u16	gro_remcsum_start;
2400 
2401 	/* jiffies when first packet was created/queued */
2402 	unsigned long age;
2403 
2404 	/* Used in ipv6_gro_receive() and foo-over-udp */
2405 	u16	proto;
2406 
2407 	/* This is non-zero if the packet may be of the same flow. */
2408 	u8	same_flow:1;
2409 
2410 	/* Used in tunnel GRO receive */
2411 	u8	encap_mark:1;
2412 
2413 	/* GRO checksum is valid */
2414 	u8	csum_valid:1;
2415 
2416 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2417 	u8	csum_cnt:3;
2418 
2419 	/* Free the skb? */
2420 	u8	free:2;
2421 #define NAPI_GRO_FREE		  1
2422 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2423 
2424 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2425 	u8	is_ipv6:1;
2426 
2427 	/* Used in GRE, set in fou/gue_gro_receive */
2428 	u8	is_fou:1;
2429 
2430 	/* Used to determine if flush_id can be ignored */
2431 	u8	is_atomic:1;
2432 
2433 	/* Number of gro_receive callbacks this packet already went through */
2434 	u8 recursion_counter:4;
2435 
2436 	/* GRO is done by frag_list pointer chaining. */
2437 	u8	is_flist:1;
2438 
2439 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2440 	__wsum	csum;
2441 
2442 	/* used in skb_gro_receive() slow path */
2443 	struct sk_buff *last;
2444 };
2445 
2446 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2447 
2448 #define GRO_RECURSION_LIMIT 15
2449 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2450 {
2451 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2452 }
2453 
2454 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2455 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2456 					       struct list_head *head,
2457 					       struct sk_buff *skb)
2458 {
2459 	if (unlikely(gro_recursion_inc_test(skb))) {
2460 		NAPI_GRO_CB(skb)->flush |= 1;
2461 		return NULL;
2462 	}
2463 
2464 	return cb(head, skb);
2465 }
2466 
2467 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2468 					    struct sk_buff *);
2469 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2470 						  struct sock *sk,
2471 						  struct list_head *head,
2472 						  struct sk_buff *skb)
2473 {
2474 	if (unlikely(gro_recursion_inc_test(skb))) {
2475 		NAPI_GRO_CB(skb)->flush |= 1;
2476 		return NULL;
2477 	}
2478 
2479 	return cb(sk, head, skb);
2480 }
2481 
2482 struct packet_type {
2483 	__be16			type;	/* This is really htons(ether_type). */
2484 	bool			ignore_outgoing;
2485 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2486 	int			(*func) (struct sk_buff *,
2487 					 struct net_device *,
2488 					 struct packet_type *,
2489 					 struct net_device *);
2490 	void			(*list_func) (struct list_head *,
2491 					      struct packet_type *,
2492 					      struct net_device *);
2493 	bool			(*id_match)(struct packet_type *ptype,
2494 					    struct sock *sk);
2495 	void			*af_packet_priv;
2496 	struct list_head	list;
2497 };
2498 
2499 struct offload_callbacks {
2500 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2501 						netdev_features_t features);
2502 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2503 						struct sk_buff *skb);
2504 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2505 };
2506 
2507 struct packet_offload {
2508 	__be16			 type;	/* This is really htons(ether_type). */
2509 	u16			 priority;
2510 	struct offload_callbacks callbacks;
2511 	struct list_head	 list;
2512 };
2513 
2514 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2515 struct pcpu_sw_netstats {
2516 	u64     rx_packets;
2517 	u64     rx_bytes;
2518 	u64     tx_packets;
2519 	u64     tx_bytes;
2520 	struct u64_stats_sync   syncp;
2521 } __aligned(4 * sizeof(u64));
2522 
2523 struct pcpu_lstats {
2524 	u64_stats_t packets;
2525 	u64_stats_t bytes;
2526 	struct u64_stats_sync syncp;
2527 } __aligned(2 * sizeof(u64));
2528 
2529 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2530 
2531 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2532 {
2533 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2534 
2535 	u64_stats_update_begin(&lstats->syncp);
2536 	u64_stats_add(&lstats->bytes, len);
2537 	u64_stats_inc(&lstats->packets);
2538 	u64_stats_update_end(&lstats->syncp);
2539 }
2540 
2541 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2542 ({									\
2543 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2544 	if (pcpu_stats)	{						\
2545 		int __cpu;						\
2546 		for_each_possible_cpu(__cpu) {				\
2547 			typeof(type) *stat;				\
2548 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2549 			u64_stats_init(&stat->syncp);			\
2550 		}							\
2551 	}								\
2552 	pcpu_stats;							\
2553 })
2554 
2555 #define netdev_alloc_pcpu_stats(type)					\
2556 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2557 
2558 enum netdev_lag_tx_type {
2559 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2560 	NETDEV_LAG_TX_TYPE_RANDOM,
2561 	NETDEV_LAG_TX_TYPE_BROADCAST,
2562 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2563 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2564 	NETDEV_LAG_TX_TYPE_HASH,
2565 };
2566 
2567 enum netdev_lag_hash {
2568 	NETDEV_LAG_HASH_NONE,
2569 	NETDEV_LAG_HASH_L2,
2570 	NETDEV_LAG_HASH_L34,
2571 	NETDEV_LAG_HASH_L23,
2572 	NETDEV_LAG_HASH_E23,
2573 	NETDEV_LAG_HASH_E34,
2574 	NETDEV_LAG_HASH_UNKNOWN,
2575 };
2576 
2577 struct netdev_lag_upper_info {
2578 	enum netdev_lag_tx_type tx_type;
2579 	enum netdev_lag_hash hash_type;
2580 };
2581 
2582 struct netdev_lag_lower_state_info {
2583 	u8 link_up : 1,
2584 	   tx_enabled : 1;
2585 };
2586 
2587 #include <linux/notifier.h>
2588 
2589 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2590  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2591  * adding new types.
2592  */
2593 enum netdev_cmd {
2594 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2595 	NETDEV_DOWN,
2596 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2597 				   detected a hardware crash and restarted
2598 				   - we can use this eg to kick tcp sessions
2599 				   once done */
2600 	NETDEV_CHANGE,		/* Notify device state change */
2601 	NETDEV_REGISTER,
2602 	NETDEV_UNREGISTER,
2603 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2604 	NETDEV_CHANGEADDR,	/* notify after the address change */
2605 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2606 	NETDEV_GOING_DOWN,
2607 	NETDEV_CHANGENAME,
2608 	NETDEV_FEAT_CHANGE,
2609 	NETDEV_BONDING_FAILOVER,
2610 	NETDEV_PRE_UP,
2611 	NETDEV_PRE_TYPE_CHANGE,
2612 	NETDEV_POST_TYPE_CHANGE,
2613 	NETDEV_POST_INIT,
2614 	NETDEV_RELEASE,
2615 	NETDEV_NOTIFY_PEERS,
2616 	NETDEV_JOIN,
2617 	NETDEV_CHANGEUPPER,
2618 	NETDEV_RESEND_IGMP,
2619 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2620 	NETDEV_CHANGEINFODATA,
2621 	NETDEV_BONDING_INFO,
2622 	NETDEV_PRECHANGEUPPER,
2623 	NETDEV_CHANGELOWERSTATE,
2624 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2625 	NETDEV_UDP_TUNNEL_DROP_INFO,
2626 	NETDEV_CHANGE_TX_QUEUE_LEN,
2627 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2628 	NETDEV_CVLAN_FILTER_DROP_INFO,
2629 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2630 	NETDEV_SVLAN_FILTER_DROP_INFO,
2631 };
2632 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2633 
2634 int register_netdevice_notifier(struct notifier_block *nb);
2635 int unregister_netdevice_notifier(struct notifier_block *nb);
2636 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2637 int unregister_netdevice_notifier_net(struct net *net,
2638 				      struct notifier_block *nb);
2639 int register_netdevice_notifier_dev_net(struct net_device *dev,
2640 					struct notifier_block *nb,
2641 					struct netdev_net_notifier *nn);
2642 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2643 					  struct notifier_block *nb,
2644 					  struct netdev_net_notifier *nn);
2645 
2646 struct netdev_notifier_info {
2647 	struct net_device	*dev;
2648 	struct netlink_ext_ack	*extack;
2649 };
2650 
2651 struct netdev_notifier_info_ext {
2652 	struct netdev_notifier_info info; /* must be first */
2653 	union {
2654 		u32 mtu;
2655 	} ext;
2656 };
2657 
2658 struct netdev_notifier_change_info {
2659 	struct netdev_notifier_info info; /* must be first */
2660 	unsigned int flags_changed;
2661 };
2662 
2663 struct netdev_notifier_changeupper_info {
2664 	struct netdev_notifier_info info; /* must be first */
2665 	struct net_device *upper_dev; /* new upper dev */
2666 	bool master; /* is upper dev master */
2667 	bool linking; /* is the notification for link or unlink */
2668 	void *upper_info; /* upper dev info */
2669 };
2670 
2671 struct netdev_notifier_changelowerstate_info {
2672 	struct netdev_notifier_info info; /* must be first */
2673 	void *lower_state_info; /* is lower dev state */
2674 };
2675 
2676 struct netdev_notifier_pre_changeaddr_info {
2677 	struct netdev_notifier_info info; /* must be first */
2678 	const unsigned char *dev_addr;
2679 };
2680 
2681 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2682 					     struct net_device *dev)
2683 {
2684 	info->dev = dev;
2685 	info->extack = NULL;
2686 }
2687 
2688 static inline struct net_device *
2689 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2690 {
2691 	return info->dev;
2692 }
2693 
2694 static inline struct netlink_ext_ack *
2695 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2696 {
2697 	return info->extack;
2698 }
2699 
2700 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2701 
2702 
2703 extern rwlock_t				dev_base_lock;		/* Device list lock */
2704 
2705 #define for_each_netdev(net, d)		\
2706 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2707 #define for_each_netdev_reverse(net, d)	\
2708 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2709 #define for_each_netdev_rcu(net, d)		\
2710 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2711 #define for_each_netdev_safe(net, d, n)	\
2712 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2713 #define for_each_netdev_continue(net, d)		\
2714 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2715 #define for_each_netdev_continue_reverse(net, d)		\
2716 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2717 						     dev_list)
2718 #define for_each_netdev_continue_rcu(net, d)		\
2719 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2720 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2721 		for_each_netdev_rcu(&init_net, slave)	\
2722 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2723 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2724 
2725 static inline struct net_device *next_net_device(struct net_device *dev)
2726 {
2727 	struct list_head *lh;
2728 	struct net *net;
2729 
2730 	net = dev_net(dev);
2731 	lh = dev->dev_list.next;
2732 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2733 }
2734 
2735 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2736 {
2737 	struct list_head *lh;
2738 	struct net *net;
2739 
2740 	net = dev_net(dev);
2741 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2742 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2743 }
2744 
2745 static inline struct net_device *first_net_device(struct net *net)
2746 {
2747 	return list_empty(&net->dev_base_head) ? NULL :
2748 		net_device_entry(net->dev_base_head.next);
2749 }
2750 
2751 static inline struct net_device *first_net_device_rcu(struct net *net)
2752 {
2753 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2754 
2755 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2756 }
2757 
2758 int netdev_boot_setup_check(struct net_device *dev);
2759 unsigned long netdev_boot_base(const char *prefix, int unit);
2760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2761 				       const char *hwaddr);
2762 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2763 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2764 void dev_add_pack(struct packet_type *pt);
2765 void dev_remove_pack(struct packet_type *pt);
2766 void __dev_remove_pack(struct packet_type *pt);
2767 void dev_add_offload(struct packet_offload *po);
2768 void dev_remove_offload(struct packet_offload *po);
2769 
2770 int dev_get_iflink(const struct net_device *dev);
2771 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2772 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2773 				      unsigned short mask);
2774 struct net_device *dev_get_by_name(struct net *net, const char *name);
2775 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2776 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2777 int dev_alloc_name(struct net_device *dev, const char *name);
2778 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2779 void dev_close(struct net_device *dev);
2780 void dev_close_many(struct list_head *head, bool unlink);
2781 void dev_disable_lro(struct net_device *dev);
2782 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2783 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2784 		     struct net_device *sb_dev);
2785 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2786 		       struct net_device *sb_dev);
2787 int dev_queue_xmit(struct sk_buff *skb);
2788 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2789 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2790 int register_netdevice(struct net_device *dev);
2791 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2792 void unregister_netdevice_many(struct list_head *head);
2793 static inline void unregister_netdevice(struct net_device *dev)
2794 {
2795 	unregister_netdevice_queue(dev, NULL);
2796 }
2797 
2798 int netdev_refcnt_read(const struct net_device *dev);
2799 void free_netdev(struct net_device *dev);
2800 void netdev_freemem(struct net_device *dev);
2801 int init_dummy_netdev(struct net_device *dev);
2802 
2803 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2804 					 struct sk_buff *skb,
2805 					 bool all_slaves);
2806 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2807 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2808 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2809 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2810 int netdev_get_name(struct net *net, char *name, int ifindex);
2811 int dev_restart(struct net_device *dev);
2812 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2813 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2814 
2815 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2816 {
2817 	return NAPI_GRO_CB(skb)->data_offset;
2818 }
2819 
2820 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2821 {
2822 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2823 }
2824 
2825 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2826 {
2827 	NAPI_GRO_CB(skb)->data_offset += len;
2828 }
2829 
2830 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2831 					unsigned int offset)
2832 {
2833 	return NAPI_GRO_CB(skb)->frag0 + offset;
2834 }
2835 
2836 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2837 {
2838 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2839 }
2840 
2841 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2842 {
2843 	NAPI_GRO_CB(skb)->frag0 = NULL;
2844 	NAPI_GRO_CB(skb)->frag0_len = 0;
2845 }
2846 
2847 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2848 					unsigned int offset)
2849 {
2850 	if (!pskb_may_pull(skb, hlen))
2851 		return NULL;
2852 
2853 	skb_gro_frag0_invalidate(skb);
2854 	return skb->data + offset;
2855 }
2856 
2857 static inline void *skb_gro_network_header(struct sk_buff *skb)
2858 {
2859 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2860 	       skb_network_offset(skb);
2861 }
2862 
2863 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2864 					const void *start, unsigned int len)
2865 {
2866 	if (NAPI_GRO_CB(skb)->csum_valid)
2867 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2868 						  csum_partial(start, len, 0));
2869 }
2870 
2871 /* GRO checksum functions. These are logical equivalents of the normal
2872  * checksum functions (in skbuff.h) except that they operate on the GRO
2873  * offsets and fields in sk_buff.
2874  */
2875 
2876 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2877 
2878 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2879 {
2880 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2881 }
2882 
2883 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2884 						      bool zero_okay,
2885 						      __sum16 check)
2886 {
2887 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2888 		skb_checksum_start_offset(skb) <
2889 		 skb_gro_offset(skb)) &&
2890 		!skb_at_gro_remcsum_start(skb) &&
2891 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2892 		(!zero_okay || check));
2893 }
2894 
2895 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2896 							   __wsum psum)
2897 {
2898 	if (NAPI_GRO_CB(skb)->csum_valid &&
2899 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2900 		return 0;
2901 
2902 	NAPI_GRO_CB(skb)->csum = psum;
2903 
2904 	return __skb_gro_checksum_complete(skb);
2905 }
2906 
2907 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2908 {
2909 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2910 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2911 		NAPI_GRO_CB(skb)->csum_cnt--;
2912 	} else {
2913 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2914 		 * verified a new top level checksum or an encapsulated one
2915 		 * during GRO. This saves work if we fallback to normal path.
2916 		 */
2917 		__skb_incr_checksum_unnecessary(skb);
2918 	}
2919 }
2920 
2921 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2922 				    compute_pseudo)			\
2923 ({									\
2924 	__sum16 __ret = 0;						\
2925 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2926 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2927 				compute_pseudo(skb, proto));		\
2928 	if (!__ret)							\
2929 		skb_gro_incr_csum_unnecessary(skb);			\
2930 	__ret;								\
2931 })
2932 
2933 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2934 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2935 
2936 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2937 					     compute_pseudo)		\
2938 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2939 
2940 #define skb_gro_checksum_simple_validate(skb)				\
2941 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2942 
2943 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2944 {
2945 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2946 		!NAPI_GRO_CB(skb)->csum_valid);
2947 }
2948 
2949 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2950 					      __wsum pseudo)
2951 {
2952 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2953 	NAPI_GRO_CB(skb)->csum_valid = 1;
2954 }
2955 
2956 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
2957 do {									\
2958 	if (__skb_gro_checksum_convert_check(skb))			\
2959 		__skb_gro_checksum_convert(skb, 			\
2960 					   compute_pseudo(skb, proto));	\
2961 } while (0)
2962 
2963 struct gro_remcsum {
2964 	int offset;
2965 	__wsum delta;
2966 };
2967 
2968 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2969 {
2970 	grc->offset = 0;
2971 	grc->delta = 0;
2972 }
2973 
2974 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2975 					    unsigned int off, size_t hdrlen,
2976 					    int start, int offset,
2977 					    struct gro_remcsum *grc,
2978 					    bool nopartial)
2979 {
2980 	__wsum delta;
2981 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2982 
2983 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2984 
2985 	if (!nopartial) {
2986 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2987 		return ptr;
2988 	}
2989 
2990 	ptr = skb_gro_header_fast(skb, off);
2991 	if (skb_gro_header_hard(skb, off + plen)) {
2992 		ptr = skb_gro_header_slow(skb, off + plen, off);
2993 		if (!ptr)
2994 			return NULL;
2995 	}
2996 
2997 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2998 			       start, offset);
2999 
3000 	/* Adjust skb->csum since we changed the packet */
3001 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3002 
3003 	grc->offset = off + hdrlen + offset;
3004 	grc->delta = delta;
3005 
3006 	return ptr;
3007 }
3008 
3009 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3010 					   struct gro_remcsum *grc)
3011 {
3012 	void *ptr;
3013 	size_t plen = grc->offset + sizeof(u16);
3014 
3015 	if (!grc->delta)
3016 		return;
3017 
3018 	ptr = skb_gro_header_fast(skb, grc->offset);
3019 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3020 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3021 		if (!ptr)
3022 			return;
3023 	}
3024 
3025 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3026 }
3027 
3028 #ifdef CONFIG_XFRM_OFFLOAD
3029 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3030 {
3031 	if (PTR_ERR(pp) != -EINPROGRESS)
3032 		NAPI_GRO_CB(skb)->flush |= flush;
3033 }
3034 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3035 					       struct sk_buff *pp,
3036 					       int flush,
3037 					       struct gro_remcsum *grc)
3038 {
3039 	if (PTR_ERR(pp) != -EINPROGRESS) {
3040 		NAPI_GRO_CB(skb)->flush |= flush;
3041 		skb_gro_remcsum_cleanup(skb, grc);
3042 		skb->remcsum_offload = 0;
3043 	}
3044 }
3045 #else
3046 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3047 {
3048 	NAPI_GRO_CB(skb)->flush |= flush;
3049 }
3050 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3051 					       struct sk_buff *pp,
3052 					       int flush,
3053 					       struct gro_remcsum *grc)
3054 {
3055 	NAPI_GRO_CB(skb)->flush |= flush;
3056 	skb_gro_remcsum_cleanup(skb, grc);
3057 	skb->remcsum_offload = 0;
3058 }
3059 #endif
3060 
3061 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3062 				  unsigned short type,
3063 				  const void *daddr, const void *saddr,
3064 				  unsigned int len)
3065 {
3066 	if (!dev->header_ops || !dev->header_ops->create)
3067 		return 0;
3068 
3069 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3070 }
3071 
3072 static inline int dev_parse_header(const struct sk_buff *skb,
3073 				   unsigned char *haddr)
3074 {
3075 	const struct net_device *dev = skb->dev;
3076 
3077 	if (!dev->header_ops || !dev->header_ops->parse)
3078 		return 0;
3079 	return dev->header_ops->parse(skb, haddr);
3080 }
3081 
3082 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3083 {
3084 	const struct net_device *dev = skb->dev;
3085 
3086 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3087 		return 0;
3088 	return dev->header_ops->parse_protocol(skb);
3089 }
3090 
3091 /* ll_header must have at least hard_header_len allocated */
3092 static inline bool dev_validate_header(const struct net_device *dev,
3093 				       char *ll_header, int len)
3094 {
3095 	if (likely(len >= dev->hard_header_len))
3096 		return true;
3097 	if (len < dev->min_header_len)
3098 		return false;
3099 
3100 	if (capable(CAP_SYS_RAWIO)) {
3101 		memset(ll_header + len, 0, dev->hard_header_len - len);
3102 		return true;
3103 	}
3104 
3105 	if (dev->header_ops && dev->header_ops->validate)
3106 		return dev->header_ops->validate(ll_header, len);
3107 
3108 	return false;
3109 }
3110 
3111 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3112 			   int len, int size);
3113 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3114 static inline int unregister_gifconf(unsigned int family)
3115 {
3116 	return register_gifconf(family, NULL);
3117 }
3118 
3119 #ifdef CONFIG_NET_FLOW_LIMIT
3120 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3121 struct sd_flow_limit {
3122 	u64			count;
3123 	unsigned int		num_buckets;
3124 	unsigned int		history_head;
3125 	u16			history[FLOW_LIMIT_HISTORY];
3126 	u8			buckets[];
3127 };
3128 
3129 extern int netdev_flow_limit_table_len;
3130 #endif /* CONFIG_NET_FLOW_LIMIT */
3131 
3132 /*
3133  * Incoming packets are placed on per-CPU queues
3134  */
3135 struct softnet_data {
3136 	struct list_head	poll_list;
3137 	struct sk_buff_head	process_queue;
3138 
3139 	/* stats */
3140 	unsigned int		processed;
3141 	unsigned int		time_squeeze;
3142 	unsigned int		received_rps;
3143 #ifdef CONFIG_RPS
3144 	struct softnet_data	*rps_ipi_list;
3145 #endif
3146 #ifdef CONFIG_NET_FLOW_LIMIT
3147 	struct sd_flow_limit __rcu *flow_limit;
3148 #endif
3149 	struct Qdisc		*output_queue;
3150 	struct Qdisc		**output_queue_tailp;
3151 	struct sk_buff		*completion_queue;
3152 #ifdef CONFIG_XFRM_OFFLOAD
3153 	struct sk_buff_head	xfrm_backlog;
3154 #endif
3155 	/* written and read only by owning cpu: */
3156 	struct {
3157 		u16 recursion;
3158 		u8  more;
3159 	} xmit;
3160 #ifdef CONFIG_RPS
3161 	/* input_queue_head should be written by cpu owning this struct,
3162 	 * and only read by other cpus. Worth using a cache line.
3163 	 */
3164 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3165 
3166 	/* Elements below can be accessed between CPUs for RPS/RFS */
3167 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3168 	struct softnet_data	*rps_ipi_next;
3169 	unsigned int		cpu;
3170 	unsigned int		input_queue_tail;
3171 #endif
3172 	unsigned int		dropped;
3173 	struct sk_buff_head	input_pkt_queue;
3174 	struct napi_struct	backlog;
3175 
3176 };
3177 
3178 static inline void input_queue_head_incr(struct softnet_data *sd)
3179 {
3180 #ifdef CONFIG_RPS
3181 	sd->input_queue_head++;
3182 #endif
3183 }
3184 
3185 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3186 					      unsigned int *qtail)
3187 {
3188 #ifdef CONFIG_RPS
3189 	*qtail = ++sd->input_queue_tail;
3190 #endif
3191 }
3192 
3193 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3194 
3195 static inline int dev_recursion_level(void)
3196 {
3197 	return this_cpu_read(softnet_data.xmit.recursion);
3198 }
3199 
3200 #define XMIT_RECURSION_LIMIT	8
3201 static inline bool dev_xmit_recursion(void)
3202 {
3203 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3204 			XMIT_RECURSION_LIMIT);
3205 }
3206 
3207 static inline void dev_xmit_recursion_inc(void)
3208 {
3209 	__this_cpu_inc(softnet_data.xmit.recursion);
3210 }
3211 
3212 static inline void dev_xmit_recursion_dec(void)
3213 {
3214 	__this_cpu_dec(softnet_data.xmit.recursion);
3215 }
3216 
3217 void __netif_schedule(struct Qdisc *q);
3218 void netif_schedule_queue(struct netdev_queue *txq);
3219 
3220 static inline void netif_tx_schedule_all(struct net_device *dev)
3221 {
3222 	unsigned int i;
3223 
3224 	for (i = 0; i < dev->num_tx_queues; i++)
3225 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3226 }
3227 
3228 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3229 {
3230 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3231 }
3232 
3233 /**
3234  *	netif_start_queue - allow transmit
3235  *	@dev: network device
3236  *
3237  *	Allow upper layers to call the device hard_start_xmit routine.
3238  */
3239 static inline void netif_start_queue(struct net_device *dev)
3240 {
3241 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3242 }
3243 
3244 static inline void netif_tx_start_all_queues(struct net_device *dev)
3245 {
3246 	unsigned int i;
3247 
3248 	for (i = 0; i < dev->num_tx_queues; i++) {
3249 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3250 		netif_tx_start_queue(txq);
3251 	}
3252 }
3253 
3254 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3255 
3256 /**
3257  *	netif_wake_queue - restart transmit
3258  *	@dev: network device
3259  *
3260  *	Allow upper layers to call the device hard_start_xmit routine.
3261  *	Used for flow control when transmit resources are available.
3262  */
3263 static inline void netif_wake_queue(struct net_device *dev)
3264 {
3265 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3266 }
3267 
3268 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3269 {
3270 	unsigned int i;
3271 
3272 	for (i = 0; i < dev->num_tx_queues; i++) {
3273 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3274 		netif_tx_wake_queue(txq);
3275 	}
3276 }
3277 
3278 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3279 {
3280 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3281 }
3282 
3283 /**
3284  *	netif_stop_queue - stop transmitted packets
3285  *	@dev: network device
3286  *
3287  *	Stop upper layers calling the device hard_start_xmit routine.
3288  *	Used for flow control when transmit resources are unavailable.
3289  */
3290 static inline void netif_stop_queue(struct net_device *dev)
3291 {
3292 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3293 }
3294 
3295 void netif_tx_stop_all_queues(struct net_device *dev);
3296 
3297 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3298 {
3299 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3300 }
3301 
3302 /**
3303  *	netif_queue_stopped - test if transmit queue is flowblocked
3304  *	@dev: network device
3305  *
3306  *	Test if transmit queue on device is currently unable to send.
3307  */
3308 static inline bool netif_queue_stopped(const struct net_device *dev)
3309 {
3310 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3311 }
3312 
3313 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3314 {
3315 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3316 }
3317 
3318 static inline bool
3319 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3320 {
3321 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3322 }
3323 
3324 static inline bool
3325 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3326 {
3327 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3328 }
3329 
3330 /**
3331  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3332  *	@dev_queue: pointer to transmit queue
3333  *
3334  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3335  * to give appropriate hint to the CPU.
3336  */
3337 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3338 {
3339 #ifdef CONFIG_BQL
3340 	prefetchw(&dev_queue->dql.num_queued);
3341 #endif
3342 }
3343 
3344 /**
3345  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3346  *	@dev_queue: pointer to transmit queue
3347  *
3348  * BQL enabled drivers might use this helper in their TX completion path,
3349  * to give appropriate hint to the CPU.
3350  */
3351 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3352 {
3353 #ifdef CONFIG_BQL
3354 	prefetchw(&dev_queue->dql.limit);
3355 #endif
3356 }
3357 
3358 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3359 					unsigned int bytes)
3360 {
3361 #ifdef CONFIG_BQL
3362 	dql_queued(&dev_queue->dql, bytes);
3363 
3364 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3365 		return;
3366 
3367 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3368 
3369 	/*
3370 	 * The XOFF flag must be set before checking the dql_avail below,
3371 	 * because in netdev_tx_completed_queue we update the dql_completed
3372 	 * before checking the XOFF flag.
3373 	 */
3374 	smp_mb();
3375 
3376 	/* check again in case another CPU has just made room avail */
3377 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3378 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3379 #endif
3380 }
3381 
3382 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3383  * that they should not test BQL status themselves.
3384  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3385  * skb of a batch.
3386  * Returns true if the doorbell must be used to kick the NIC.
3387  */
3388 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3389 					  unsigned int bytes,
3390 					  bool xmit_more)
3391 {
3392 	if (xmit_more) {
3393 #ifdef CONFIG_BQL
3394 		dql_queued(&dev_queue->dql, bytes);
3395 #endif
3396 		return netif_tx_queue_stopped(dev_queue);
3397 	}
3398 	netdev_tx_sent_queue(dev_queue, bytes);
3399 	return true;
3400 }
3401 
3402 /**
3403  * 	netdev_sent_queue - report the number of bytes queued to hardware
3404  * 	@dev: network device
3405  * 	@bytes: number of bytes queued to the hardware device queue
3406  *
3407  * 	Report the number of bytes queued for sending/completion to the network
3408  * 	device hardware queue. @bytes should be a good approximation and should
3409  * 	exactly match netdev_completed_queue() @bytes
3410  */
3411 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3412 {
3413 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3414 }
3415 
3416 static inline bool __netdev_sent_queue(struct net_device *dev,
3417 				       unsigned int bytes,
3418 				       bool xmit_more)
3419 {
3420 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3421 				      xmit_more);
3422 }
3423 
3424 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3425 					     unsigned int pkts, unsigned int bytes)
3426 {
3427 #ifdef CONFIG_BQL
3428 	if (unlikely(!bytes))
3429 		return;
3430 
3431 	dql_completed(&dev_queue->dql, bytes);
3432 
3433 	/*
3434 	 * Without the memory barrier there is a small possiblity that
3435 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3436 	 * be stopped forever
3437 	 */
3438 	smp_mb();
3439 
3440 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3441 		return;
3442 
3443 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3444 		netif_schedule_queue(dev_queue);
3445 #endif
3446 }
3447 
3448 /**
3449  * 	netdev_completed_queue - report bytes and packets completed by device
3450  * 	@dev: network device
3451  * 	@pkts: actual number of packets sent over the medium
3452  * 	@bytes: actual number of bytes sent over the medium
3453  *
3454  * 	Report the number of bytes and packets transmitted by the network device
3455  * 	hardware queue over the physical medium, @bytes must exactly match the
3456  * 	@bytes amount passed to netdev_sent_queue()
3457  */
3458 static inline void netdev_completed_queue(struct net_device *dev,
3459 					  unsigned int pkts, unsigned int bytes)
3460 {
3461 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3462 }
3463 
3464 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3465 {
3466 #ifdef CONFIG_BQL
3467 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3468 	dql_reset(&q->dql);
3469 #endif
3470 }
3471 
3472 /**
3473  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3474  * 	@dev_queue: network device
3475  *
3476  * 	Reset the bytes and packet count of a network device and clear the
3477  * 	software flow control OFF bit for this network device
3478  */
3479 static inline void netdev_reset_queue(struct net_device *dev_queue)
3480 {
3481 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3482 }
3483 
3484 /**
3485  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3486  * 	@dev: network device
3487  * 	@queue_index: given tx queue index
3488  *
3489  * 	Returns 0 if given tx queue index >= number of device tx queues,
3490  * 	otherwise returns the originally passed tx queue index.
3491  */
3492 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3493 {
3494 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3495 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3496 				     dev->name, queue_index,
3497 				     dev->real_num_tx_queues);
3498 		return 0;
3499 	}
3500 
3501 	return queue_index;
3502 }
3503 
3504 /**
3505  *	netif_running - test if up
3506  *	@dev: network device
3507  *
3508  *	Test if the device has been brought up.
3509  */
3510 static inline bool netif_running(const struct net_device *dev)
3511 {
3512 	return test_bit(__LINK_STATE_START, &dev->state);
3513 }
3514 
3515 /*
3516  * Routines to manage the subqueues on a device.  We only need start,
3517  * stop, and a check if it's stopped.  All other device management is
3518  * done at the overall netdevice level.
3519  * Also test the device if we're multiqueue.
3520  */
3521 
3522 /**
3523  *	netif_start_subqueue - allow sending packets on subqueue
3524  *	@dev: network device
3525  *	@queue_index: sub queue index
3526  *
3527  * Start individual transmit queue of a device with multiple transmit queues.
3528  */
3529 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3530 {
3531 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3532 
3533 	netif_tx_start_queue(txq);
3534 }
3535 
3536 /**
3537  *	netif_stop_subqueue - stop sending packets on subqueue
3538  *	@dev: network device
3539  *	@queue_index: sub queue index
3540  *
3541  * Stop individual transmit queue of a device with multiple transmit queues.
3542  */
3543 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3544 {
3545 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3546 	netif_tx_stop_queue(txq);
3547 }
3548 
3549 /**
3550  *	netif_subqueue_stopped - test status of subqueue
3551  *	@dev: network device
3552  *	@queue_index: sub queue index
3553  *
3554  * Check individual transmit queue of a device with multiple transmit queues.
3555  */
3556 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3557 					    u16 queue_index)
3558 {
3559 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3560 
3561 	return netif_tx_queue_stopped(txq);
3562 }
3563 
3564 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3565 					  struct sk_buff *skb)
3566 {
3567 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3568 }
3569 
3570 /**
3571  *	netif_wake_subqueue - allow sending packets on subqueue
3572  *	@dev: network device
3573  *	@queue_index: sub queue index
3574  *
3575  * Resume individual transmit queue of a device with multiple transmit queues.
3576  */
3577 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3578 {
3579 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3580 
3581 	netif_tx_wake_queue(txq);
3582 }
3583 
3584 #ifdef CONFIG_XPS
3585 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3586 			u16 index);
3587 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3588 			  u16 index, bool is_rxqs_map);
3589 
3590 /**
3591  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3592  *	@j: CPU/Rx queue index
3593  *	@mask: bitmask of all cpus/rx queues
3594  *	@nr_bits: number of bits in the bitmask
3595  *
3596  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3597  */
3598 static inline bool netif_attr_test_mask(unsigned long j,
3599 					const unsigned long *mask,
3600 					unsigned int nr_bits)
3601 {
3602 	cpu_max_bits_warn(j, nr_bits);
3603 	return test_bit(j, mask);
3604 }
3605 
3606 /**
3607  *	netif_attr_test_online - Test for online CPU/Rx queue
3608  *	@j: CPU/Rx queue index
3609  *	@online_mask: bitmask for CPUs/Rx queues that are online
3610  *	@nr_bits: number of bits in the bitmask
3611  *
3612  * Returns true if a CPU/Rx queue is online.
3613  */
3614 static inline bool netif_attr_test_online(unsigned long j,
3615 					  const unsigned long *online_mask,
3616 					  unsigned int nr_bits)
3617 {
3618 	cpu_max_bits_warn(j, nr_bits);
3619 
3620 	if (online_mask)
3621 		return test_bit(j, online_mask);
3622 
3623 	return (j < nr_bits);
3624 }
3625 
3626 /**
3627  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3628  *	@n: CPU/Rx queue index
3629  *	@srcp: the cpumask/Rx queue mask pointer
3630  *	@nr_bits: number of bits in the bitmask
3631  *
3632  * Returns >= nr_bits if no further CPUs/Rx queues set.
3633  */
3634 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3635 					       unsigned int nr_bits)
3636 {
3637 	/* -1 is a legal arg here. */
3638 	if (n != -1)
3639 		cpu_max_bits_warn(n, nr_bits);
3640 
3641 	if (srcp)
3642 		return find_next_bit(srcp, nr_bits, n + 1);
3643 
3644 	return n + 1;
3645 }
3646 
3647 /**
3648  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3649  *	@n: CPU/Rx queue index
3650  *	@src1p: the first CPUs/Rx queues mask pointer
3651  *	@src2p: the second CPUs/Rx queues mask pointer
3652  *	@nr_bits: number of bits in the bitmask
3653  *
3654  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3655  */
3656 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3657 					  const unsigned long *src2p,
3658 					  unsigned int nr_bits)
3659 {
3660 	/* -1 is a legal arg here. */
3661 	if (n != -1)
3662 		cpu_max_bits_warn(n, nr_bits);
3663 
3664 	if (src1p && src2p)
3665 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3666 	else if (src1p)
3667 		return find_next_bit(src1p, nr_bits, n + 1);
3668 	else if (src2p)
3669 		return find_next_bit(src2p, nr_bits, n + 1);
3670 
3671 	return n + 1;
3672 }
3673 #else
3674 static inline int netif_set_xps_queue(struct net_device *dev,
3675 				      const struct cpumask *mask,
3676 				      u16 index)
3677 {
3678 	return 0;
3679 }
3680 
3681 static inline int __netif_set_xps_queue(struct net_device *dev,
3682 					const unsigned long *mask,
3683 					u16 index, bool is_rxqs_map)
3684 {
3685 	return 0;
3686 }
3687 #endif
3688 
3689 /**
3690  *	netif_is_multiqueue - test if device has multiple transmit queues
3691  *	@dev: network device
3692  *
3693  * Check if device has multiple transmit queues
3694  */
3695 static inline bool netif_is_multiqueue(const struct net_device *dev)
3696 {
3697 	return dev->num_tx_queues > 1;
3698 }
3699 
3700 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3701 
3702 #ifdef CONFIG_SYSFS
3703 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3704 #else
3705 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3706 						unsigned int rxqs)
3707 {
3708 	dev->real_num_rx_queues = rxqs;
3709 	return 0;
3710 }
3711 #endif
3712 
3713 static inline struct netdev_rx_queue *
3714 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3715 {
3716 	return dev->_rx + rxq;
3717 }
3718 
3719 #ifdef CONFIG_SYSFS
3720 static inline unsigned int get_netdev_rx_queue_index(
3721 		struct netdev_rx_queue *queue)
3722 {
3723 	struct net_device *dev = queue->dev;
3724 	int index = queue - dev->_rx;
3725 
3726 	BUG_ON(index >= dev->num_rx_queues);
3727 	return index;
3728 }
3729 #endif
3730 
3731 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3732 int netif_get_num_default_rss_queues(void);
3733 
3734 enum skb_free_reason {
3735 	SKB_REASON_CONSUMED,
3736 	SKB_REASON_DROPPED,
3737 };
3738 
3739 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3740 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3741 
3742 /*
3743  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3744  * interrupt context or with hardware interrupts being disabled.
3745  * (in_irq() || irqs_disabled())
3746  *
3747  * We provide four helpers that can be used in following contexts :
3748  *
3749  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3750  *  replacing kfree_skb(skb)
3751  *
3752  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3753  *  Typically used in place of consume_skb(skb) in TX completion path
3754  *
3755  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3756  *  replacing kfree_skb(skb)
3757  *
3758  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3759  *  and consumed a packet. Used in place of consume_skb(skb)
3760  */
3761 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3762 {
3763 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3764 }
3765 
3766 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3767 {
3768 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3769 }
3770 
3771 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3772 {
3773 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3774 }
3775 
3776 static inline void dev_consume_skb_any(struct sk_buff *skb)
3777 {
3778 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3779 }
3780 
3781 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3782 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3783 int netif_rx(struct sk_buff *skb);
3784 int netif_rx_ni(struct sk_buff *skb);
3785 int netif_receive_skb(struct sk_buff *skb);
3786 int netif_receive_skb_core(struct sk_buff *skb);
3787 void netif_receive_skb_list(struct list_head *head);
3788 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3790 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3791 gro_result_t napi_gro_frags(struct napi_struct *napi);
3792 struct packet_offload *gro_find_receive_by_type(__be16 type);
3793 struct packet_offload *gro_find_complete_by_type(__be16 type);
3794 
3795 static inline void napi_free_frags(struct napi_struct *napi)
3796 {
3797 	kfree_skb(napi->skb);
3798 	napi->skb = NULL;
3799 }
3800 
3801 bool netdev_is_rx_handler_busy(struct net_device *dev);
3802 int netdev_rx_handler_register(struct net_device *dev,
3803 			       rx_handler_func_t *rx_handler,
3804 			       void *rx_handler_data);
3805 void netdev_rx_handler_unregister(struct net_device *dev);
3806 
3807 bool dev_valid_name(const char *name);
3808 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3809 		bool *need_copyout);
3810 int dev_ifconf(struct net *net, struct ifconf *, int);
3811 int dev_ethtool(struct net *net, struct ifreq *);
3812 unsigned int dev_get_flags(const struct net_device *);
3813 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3814 		       struct netlink_ext_ack *extack);
3815 int dev_change_flags(struct net_device *dev, unsigned int flags,
3816 		     struct netlink_ext_ack *extack);
3817 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3818 			unsigned int gchanges);
3819 int dev_change_name(struct net_device *, const char *);
3820 int dev_set_alias(struct net_device *, const char *, size_t);
3821 int dev_get_alias(const struct net_device *, char *, size_t);
3822 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3823 int __dev_set_mtu(struct net_device *, int);
3824 int dev_validate_mtu(struct net_device *dev, int mtu,
3825 		     struct netlink_ext_ack *extack);
3826 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3827 		    struct netlink_ext_ack *extack);
3828 int dev_set_mtu(struct net_device *, int);
3829 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3830 void dev_set_group(struct net_device *, int);
3831 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3832 			      struct netlink_ext_ack *extack);
3833 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3834 			struct netlink_ext_ack *extack);
3835 int dev_change_carrier(struct net_device *, bool new_carrier);
3836 int dev_get_phys_port_id(struct net_device *dev,
3837 			 struct netdev_phys_item_id *ppid);
3838 int dev_get_phys_port_name(struct net_device *dev,
3839 			   char *name, size_t len);
3840 int dev_get_port_parent_id(struct net_device *dev,
3841 			   struct netdev_phys_item_id *ppid, bool recurse);
3842 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3843 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3844 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3845 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3846 				  u32 value);
3847 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3848 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3849 				    struct netdev_queue *txq, int *ret);
3850 
3851 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3852 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3853 		      int fd, int expected_fd, u32 flags);
3854 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3855 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3856 
3857 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3858 
3859 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3860 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3861 bool is_skb_forwardable(const struct net_device *dev,
3862 			const struct sk_buff *skb);
3863 
3864 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3865 					       struct sk_buff *skb)
3866 {
3867 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3868 	    unlikely(!is_skb_forwardable(dev, skb))) {
3869 		atomic_long_inc(&dev->rx_dropped);
3870 		kfree_skb(skb);
3871 		return NET_RX_DROP;
3872 	}
3873 
3874 	skb_scrub_packet(skb, true);
3875 	skb->priority = 0;
3876 	return 0;
3877 }
3878 
3879 bool dev_nit_active(struct net_device *dev);
3880 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3881 
3882 extern int		netdev_budget;
3883 extern unsigned int	netdev_budget_usecs;
3884 
3885 /* Called by rtnetlink.c:rtnl_unlock() */
3886 void netdev_run_todo(void);
3887 
3888 /**
3889  *	dev_put - release reference to device
3890  *	@dev: network device
3891  *
3892  * Release reference to device to allow it to be freed.
3893  */
3894 static inline void dev_put(struct net_device *dev)
3895 {
3896 	this_cpu_dec(*dev->pcpu_refcnt);
3897 }
3898 
3899 /**
3900  *	dev_hold - get reference to device
3901  *	@dev: network device
3902  *
3903  * Hold reference to device to keep it from being freed.
3904  */
3905 static inline void dev_hold(struct net_device *dev)
3906 {
3907 	this_cpu_inc(*dev->pcpu_refcnt);
3908 }
3909 
3910 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3911  * and _off may be called from IRQ context, but it is caller
3912  * who is responsible for serialization of these calls.
3913  *
3914  * The name carrier is inappropriate, these functions should really be
3915  * called netif_lowerlayer_*() because they represent the state of any
3916  * kind of lower layer not just hardware media.
3917  */
3918 
3919 void linkwatch_init_dev(struct net_device *dev);
3920 void linkwatch_fire_event(struct net_device *dev);
3921 void linkwatch_forget_dev(struct net_device *dev);
3922 
3923 /**
3924  *	netif_carrier_ok - test if carrier present
3925  *	@dev: network device
3926  *
3927  * Check if carrier is present on device
3928  */
3929 static inline bool netif_carrier_ok(const struct net_device *dev)
3930 {
3931 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3932 }
3933 
3934 unsigned long dev_trans_start(struct net_device *dev);
3935 
3936 void __netdev_watchdog_up(struct net_device *dev);
3937 
3938 void netif_carrier_on(struct net_device *dev);
3939 
3940 void netif_carrier_off(struct net_device *dev);
3941 
3942 /**
3943  *	netif_dormant_on - mark device as dormant.
3944  *	@dev: network device
3945  *
3946  * Mark device as dormant (as per RFC2863).
3947  *
3948  * The dormant state indicates that the relevant interface is not
3949  * actually in a condition to pass packets (i.e., it is not 'up') but is
3950  * in a "pending" state, waiting for some external event.  For "on-
3951  * demand" interfaces, this new state identifies the situation where the
3952  * interface is waiting for events to place it in the up state.
3953  */
3954 static inline void netif_dormant_on(struct net_device *dev)
3955 {
3956 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3957 		linkwatch_fire_event(dev);
3958 }
3959 
3960 /**
3961  *	netif_dormant_off - set device as not dormant.
3962  *	@dev: network device
3963  *
3964  * Device is not in dormant state.
3965  */
3966 static inline void netif_dormant_off(struct net_device *dev)
3967 {
3968 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3969 		linkwatch_fire_event(dev);
3970 }
3971 
3972 /**
3973  *	netif_dormant - test if device is dormant
3974  *	@dev: network device
3975  *
3976  * Check if device is dormant.
3977  */
3978 static inline bool netif_dormant(const struct net_device *dev)
3979 {
3980 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3981 }
3982 
3983 
3984 /**
3985  *	netif_testing_on - mark device as under test.
3986  *	@dev: network device
3987  *
3988  * Mark device as under test (as per RFC2863).
3989  *
3990  * The testing state indicates that some test(s) must be performed on
3991  * the interface. After completion, of the test, the interface state
3992  * will change to up, dormant, or down, as appropriate.
3993  */
3994 static inline void netif_testing_on(struct net_device *dev)
3995 {
3996 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3997 		linkwatch_fire_event(dev);
3998 }
3999 
4000 /**
4001  *	netif_testing_off - set device as not under test.
4002  *	@dev: network device
4003  *
4004  * Device is not in testing state.
4005  */
4006 static inline void netif_testing_off(struct net_device *dev)
4007 {
4008 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4009 		linkwatch_fire_event(dev);
4010 }
4011 
4012 /**
4013  *	netif_testing - test if device is under test
4014  *	@dev: network device
4015  *
4016  * Check if device is under test
4017  */
4018 static inline bool netif_testing(const struct net_device *dev)
4019 {
4020 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4021 }
4022 
4023 
4024 /**
4025  *	netif_oper_up - test if device is operational
4026  *	@dev: network device
4027  *
4028  * Check if carrier is operational
4029  */
4030 static inline bool netif_oper_up(const struct net_device *dev)
4031 {
4032 	return (dev->operstate == IF_OPER_UP ||
4033 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4034 }
4035 
4036 /**
4037  *	netif_device_present - is device available or removed
4038  *	@dev: network device
4039  *
4040  * Check if device has not been removed from system.
4041  */
4042 static inline bool netif_device_present(struct net_device *dev)
4043 {
4044 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4045 }
4046 
4047 void netif_device_detach(struct net_device *dev);
4048 
4049 void netif_device_attach(struct net_device *dev);
4050 
4051 /*
4052  * Network interface message level settings
4053  */
4054 
4055 enum {
4056 	NETIF_MSG_DRV_BIT,
4057 	NETIF_MSG_PROBE_BIT,
4058 	NETIF_MSG_LINK_BIT,
4059 	NETIF_MSG_TIMER_BIT,
4060 	NETIF_MSG_IFDOWN_BIT,
4061 	NETIF_MSG_IFUP_BIT,
4062 	NETIF_MSG_RX_ERR_BIT,
4063 	NETIF_MSG_TX_ERR_BIT,
4064 	NETIF_MSG_TX_QUEUED_BIT,
4065 	NETIF_MSG_INTR_BIT,
4066 	NETIF_MSG_TX_DONE_BIT,
4067 	NETIF_MSG_RX_STATUS_BIT,
4068 	NETIF_MSG_PKTDATA_BIT,
4069 	NETIF_MSG_HW_BIT,
4070 	NETIF_MSG_WOL_BIT,
4071 
4072 	/* When you add a new bit above, update netif_msg_class_names array
4073 	 * in net/ethtool/common.c
4074 	 */
4075 	NETIF_MSG_CLASS_COUNT,
4076 };
4077 /* Both ethtool_ops interface and internal driver implementation use u32 */
4078 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4079 
4080 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4081 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4082 
4083 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4084 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4085 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4086 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4087 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4088 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4089 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4090 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4091 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4092 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4093 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4094 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4095 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4096 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4097 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4098 
4099 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4100 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4101 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4102 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4103 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4104 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4105 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4106 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4107 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4108 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4109 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4110 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4111 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4112 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4113 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4114 
4115 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4116 {
4117 	/* use default */
4118 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4119 		return default_msg_enable_bits;
4120 	if (debug_value == 0)	/* no output */
4121 		return 0;
4122 	/* set low N bits */
4123 	return (1U << debug_value) - 1;
4124 }
4125 
4126 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4127 {
4128 	spin_lock(&txq->_xmit_lock);
4129 	txq->xmit_lock_owner = cpu;
4130 }
4131 
4132 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4133 {
4134 	__acquire(&txq->_xmit_lock);
4135 	return true;
4136 }
4137 
4138 static inline void __netif_tx_release(struct netdev_queue *txq)
4139 {
4140 	__release(&txq->_xmit_lock);
4141 }
4142 
4143 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4144 {
4145 	spin_lock_bh(&txq->_xmit_lock);
4146 	txq->xmit_lock_owner = smp_processor_id();
4147 }
4148 
4149 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4150 {
4151 	bool ok = spin_trylock(&txq->_xmit_lock);
4152 	if (likely(ok))
4153 		txq->xmit_lock_owner = smp_processor_id();
4154 	return ok;
4155 }
4156 
4157 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4158 {
4159 	txq->xmit_lock_owner = -1;
4160 	spin_unlock(&txq->_xmit_lock);
4161 }
4162 
4163 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4164 {
4165 	txq->xmit_lock_owner = -1;
4166 	spin_unlock_bh(&txq->_xmit_lock);
4167 }
4168 
4169 static inline void txq_trans_update(struct netdev_queue *txq)
4170 {
4171 	if (txq->xmit_lock_owner != -1)
4172 		txq->trans_start = jiffies;
4173 }
4174 
4175 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4176 static inline void netif_trans_update(struct net_device *dev)
4177 {
4178 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4179 
4180 	if (txq->trans_start != jiffies)
4181 		txq->trans_start = jiffies;
4182 }
4183 
4184 /**
4185  *	netif_tx_lock - grab network device transmit lock
4186  *	@dev: network device
4187  *
4188  * Get network device transmit lock
4189  */
4190 static inline void netif_tx_lock(struct net_device *dev)
4191 {
4192 	unsigned int i;
4193 	int cpu;
4194 
4195 	spin_lock(&dev->tx_global_lock);
4196 	cpu = smp_processor_id();
4197 	for (i = 0; i < dev->num_tx_queues; i++) {
4198 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4199 
4200 		/* We are the only thread of execution doing a
4201 		 * freeze, but we have to grab the _xmit_lock in
4202 		 * order to synchronize with threads which are in
4203 		 * the ->hard_start_xmit() handler and already
4204 		 * checked the frozen bit.
4205 		 */
4206 		__netif_tx_lock(txq, cpu);
4207 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4208 		__netif_tx_unlock(txq);
4209 	}
4210 }
4211 
4212 static inline void netif_tx_lock_bh(struct net_device *dev)
4213 {
4214 	local_bh_disable();
4215 	netif_tx_lock(dev);
4216 }
4217 
4218 static inline void netif_tx_unlock(struct net_device *dev)
4219 {
4220 	unsigned int i;
4221 
4222 	for (i = 0; i < dev->num_tx_queues; i++) {
4223 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4224 
4225 		/* No need to grab the _xmit_lock here.  If the
4226 		 * queue is not stopped for another reason, we
4227 		 * force a schedule.
4228 		 */
4229 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4230 		netif_schedule_queue(txq);
4231 	}
4232 	spin_unlock(&dev->tx_global_lock);
4233 }
4234 
4235 static inline void netif_tx_unlock_bh(struct net_device *dev)
4236 {
4237 	netif_tx_unlock(dev);
4238 	local_bh_enable();
4239 }
4240 
4241 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4242 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4243 		__netif_tx_lock(txq, cpu);		\
4244 	} else {					\
4245 		__netif_tx_acquire(txq);		\
4246 	}						\
4247 }
4248 
4249 #define HARD_TX_TRYLOCK(dev, txq)			\
4250 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4251 		__netif_tx_trylock(txq) :		\
4252 		__netif_tx_acquire(txq))
4253 
4254 #define HARD_TX_UNLOCK(dev, txq) {			\
4255 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4256 		__netif_tx_unlock(txq);			\
4257 	} else {					\
4258 		__netif_tx_release(txq);		\
4259 	}						\
4260 }
4261 
4262 static inline void netif_tx_disable(struct net_device *dev)
4263 {
4264 	unsigned int i;
4265 	int cpu;
4266 
4267 	local_bh_disable();
4268 	cpu = smp_processor_id();
4269 	for (i = 0; i < dev->num_tx_queues; i++) {
4270 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4271 
4272 		__netif_tx_lock(txq, cpu);
4273 		netif_tx_stop_queue(txq);
4274 		__netif_tx_unlock(txq);
4275 	}
4276 	local_bh_enable();
4277 }
4278 
4279 static inline void netif_addr_lock(struct net_device *dev)
4280 {
4281 	spin_lock(&dev->addr_list_lock);
4282 }
4283 
4284 static inline void netif_addr_lock_nested(struct net_device *dev)
4285 {
4286 	spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4287 }
4288 
4289 static inline void netif_addr_lock_bh(struct net_device *dev)
4290 {
4291 	spin_lock_bh(&dev->addr_list_lock);
4292 }
4293 
4294 static inline void netif_addr_unlock(struct net_device *dev)
4295 {
4296 	spin_unlock(&dev->addr_list_lock);
4297 }
4298 
4299 static inline void netif_addr_unlock_bh(struct net_device *dev)
4300 {
4301 	spin_unlock_bh(&dev->addr_list_lock);
4302 }
4303 
4304 /*
4305  * dev_addrs walker. Should be used only for read access. Call with
4306  * rcu_read_lock held.
4307  */
4308 #define for_each_dev_addr(dev, ha) \
4309 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4310 
4311 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4312 
4313 void ether_setup(struct net_device *dev);
4314 
4315 /* Support for loadable net-drivers */
4316 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4317 				    unsigned char name_assign_type,
4318 				    void (*setup)(struct net_device *),
4319 				    unsigned int txqs, unsigned int rxqs);
4320 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4321 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4322 
4323 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4324 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4325 			 count)
4326 
4327 int register_netdev(struct net_device *dev);
4328 void unregister_netdev(struct net_device *dev);
4329 
4330 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4331 
4332 /* General hardware address lists handling functions */
4333 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4334 		   struct netdev_hw_addr_list *from_list, int addr_len);
4335 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4336 		      struct netdev_hw_addr_list *from_list, int addr_len);
4337 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4338 		       struct net_device *dev,
4339 		       int (*sync)(struct net_device *, const unsigned char *),
4340 		       int (*unsync)(struct net_device *,
4341 				     const unsigned char *));
4342 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4343 			   struct net_device *dev,
4344 			   int (*sync)(struct net_device *,
4345 				       const unsigned char *, int),
4346 			   int (*unsync)(struct net_device *,
4347 					 const unsigned char *, int));
4348 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4349 			      struct net_device *dev,
4350 			      int (*unsync)(struct net_device *,
4351 					    const unsigned char *, int));
4352 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4353 			  struct net_device *dev,
4354 			  int (*unsync)(struct net_device *,
4355 					const unsigned char *));
4356 void __hw_addr_init(struct netdev_hw_addr_list *list);
4357 
4358 /* Functions used for device addresses handling */
4359 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4360 		 unsigned char addr_type);
4361 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4362 		 unsigned char addr_type);
4363 void dev_addr_flush(struct net_device *dev);
4364 int dev_addr_init(struct net_device *dev);
4365 
4366 /* Functions used for unicast addresses handling */
4367 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4368 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4369 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4370 int dev_uc_sync(struct net_device *to, struct net_device *from);
4371 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4372 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4373 void dev_uc_flush(struct net_device *dev);
4374 void dev_uc_init(struct net_device *dev);
4375 
4376 /**
4377  *  __dev_uc_sync - Synchonize device's unicast list
4378  *  @dev:  device to sync
4379  *  @sync: function to call if address should be added
4380  *  @unsync: function to call if address should be removed
4381  *
4382  *  Add newly added addresses to the interface, and release
4383  *  addresses that have been deleted.
4384  */
4385 static inline int __dev_uc_sync(struct net_device *dev,
4386 				int (*sync)(struct net_device *,
4387 					    const unsigned char *),
4388 				int (*unsync)(struct net_device *,
4389 					      const unsigned char *))
4390 {
4391 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4392 }
4393 
4394 /**
4395  *  __dev_uc_unsync - Remove synchronized addresses from device
4396  *  @dev:  device to sync
4397  *  @unsync: function to call if address should be removed
4398  *
4399  *  Remove all addresses that were added to the device by dev_uc_sync().
4400  */
4401 static inline void __dev_uc_unsync(struct net_device *dev,
4402 				   int (*unsync)(struct net_device *,
4403 						 const unsigned char *))
4404 {
4405 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4406 }
4407 
4408 /* Functions used for multicast addresses handling */
4409 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4410 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4411 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4412 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4413 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4414 int dev_mc_sync(struct net_device *to, struct net_device *from);
4415 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4416 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4417 void dev_mc_flush(struct net_device *dev);
4418 void dev_mc_init(struct net_device *dev);
4419 
4420 /**
4421  *  __dev_mc_sync - Synchonize device's multicast list
4422  *  @dev:  device to sync
4423  *  @sync: function to call if address should be added
4424  *  @unsync: function to call if address should be removed
4425  *
4426  *  Add newly added addresses to the interface, and release
4427  *  addresses that have been deleted.
4428  */
4429 static inline int __dev_mc_sync(struct net_device *dev,
4430 				int (*sync)(struct net_device *,
4431 					    const unsigned char *),
4432 				int (*unsync)(struct net_device *,
4433 					      const unsigned char *))
4434 {
4435 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4436 }
4437 
4438 /**
4439  *  __dev_mc_unsync - Remove synchronized addresses from device
4440  *  @dev:  device to sync
4441  *  @unsync: function to call if address should be removed
4442  *
4443  *  Remove all addresses that were added to the device by dev_mc_sync().
4444  */
4445 static inline void __dev_mc_unsync(struct net_device *dev,
4446 				   int (*unsync)(struct net_device *,
4447 						 const unsigned char *))
4448 {
4449 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4450 }
4451 
4452 /* Functions used for secondary unicast and multicast support */
4453 void dev_set_rx_mode(struct net_device *dev);
4454 void __dev_set_rx_mode(struct net_device *dev);
4455 int dev_set_promiscuity(struct net_device *dev, int inc);
4456 int dev_set_allmulti(struct net_device *dev, int inc);
4457 void netdev_state_change(struct net_device *dev);
4458 void netdev_notify_peers(struct net_device *dev);
4459 void netdev_features_change(struct net_device *dev);
4460 /* Load a device via the kmod */
4461 void dev_load(struct net *net, const char *name);
4462 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4463 					struct rtnl_link_stats64 *storage);
4464 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4465 			     const struct net_device_stats *netdev_stats);
4466 
4467 extern int		netdev_max_backlog;
4468 extern int		netdev_tstamp_prequeue;
4469 extern int		weight_p;
4470 extern int		dev_weight_rx_bias;
4471 extern int		dev_weight_tx_bias;
4472 extern int		dev_rx_weight;
4473 extern int		dev_tx_weight;
4474 extern int		gro_normal_batch;
4475 
4476 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4477 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4478 						     struct list_head **iter);
4479 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4480 						     struct list_head **iter);
4481 
4482 /* iterate through upper list, must be called under RCU read lock */
4483 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4484 	for (iter = &(dev)->adj_list.upper, \
4485 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4486 	     updev; \
4487 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4488 
4489 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4490 				  int (*fn)(struct net_device *upper_dev,
4491 					    void *data),
4492 				  void *data);
4493 
4494 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4495 				  struct net_device *upper_dev);
4496 
4497 bool netdev_has_any_upper_dev(struct net_device *dev);
4498 
4499 void *netdev_lower_get_next_private(struct net_device *dev,
4500 				    struct list_head **iter);
4501 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4502 					struct list_head **iter);
4503 
4504 #define netdev_for_each_lower_private(dev, priv, iter) \
4505 	for (iter = (dev)->adj_list.lower.next, \
4506 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4507 	     priv; \
4508 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4509 
4510 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4511 	for (iter = &(dev)->adj_list.lower, \
4512 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4513 	     priv; \
4514 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4515 
4516 void *netdev_lower_get_next(struct net_device *dev,
4517 				struct list_head **iter);
4518 
4519 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4520 	for (iter = (dev)->adj_list.lower.next, \
4521 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4522 	     ldev; \
4523 	     ldev = netdev_lower_get_next(dev, &(iter)))
4524 
4525 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4526 					     struct list_head **iter);
4527 int netdev_walk_all_lower_dev(struct net_device *dev,
4528 			      int (*fn)(struct net_device *lower_dev,
4529 					void *data),
4530 			      void *data);
4531 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4532 				  int (*fn)(struct net_device *lower_dev,
4533 					    void *data),
4534 				  void *data);
4535 
4536 void *netdev_adjacent_get_private(struct list_head *adj_list);
4537 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4538 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4539 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4540 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4541 			  struct netlink_ext_ack *extack);
4542 int netdev_master_upper_dev_link(struct net_device *dev,
4543 				 struct net_device *upper_dev,
4544 				 void *upper_priv, void *upper_info,
4545 				 struct netlink_ext_ack *extack);
4546 void netdev_upper_dev_unlink(struct net_device *dev,
4547 			     struct net_device *upper_dev);
4548 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4549 				   struct net_device *new_dev,
4550 				   struct net_device *dev,
4551 				   struct netlink_ext_ack *extack);
4552 void netdev_adjacent_change_commit(struct net_device *old_dev,
4553 				   struct net_device *new_dev,
4554 				   struct net_device *dev);
4555 void netdev_adjacent_change_abort(struct net_device *old_dev,
4556 				  struct net_device *new_dev,
4557 				  struct net_device *dev);
4558 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4559 void *netdev_lower_dev_get_private(struct net_device *dev,
4560 				   struct net_device *lower_dev);
4561 void netdev_lower_state_changed(struct net_device *lower_dev,
4562 				void *lower_state_info);
4563 
4564 /* RSS keys are 40 or 52 bytes long */
4565 #define NETDEV_RSS_KEY_LEN 52
4566 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4567 void netdev_rss_key_fill(void *buffer, size_t len);
4568 
4569 int skb_checksum_help(struct sk_buff *skb);
4570 int skb_crc32c_csum_help(struct sk_buff *skb);
4571 int skb_csum_hwoffload_help(struct sk_buff *skb,
4572 			    const netdev_features_t features);
4573 
4574 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4575 				  netdev_features_t features, bool tx_path);
4576 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4577 				    netdev_features_t features);
4578 
4579 struct netdev_bonding_info {
4580 	ifslave	slave;
4581 	ifbond	master;
4582 };
4583 
4584 struct netdev_notifier_bonding_info {
4585 	struct netdev_notifier_info info; /* must be first */
4586 	struct netdev_bonding_info  bonding_info;
4587 };
4588 
4589 void netdev_bonding_info_change(struct net_device *dev,
4590 				struct netdev_bonding_info *bonding_info);
4591 
4592 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4593 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4594 #else
4595 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4596 				  const void *data)
4597 {
4598 }
4599 #endif
4600 
4601 static inline
4602 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4603 {
4604 	return __skb_gso_segment(skb, features, true);
4605 }
4606 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4607 
4608 static inline bool can_checksum_protocol(netdev_features_t features,
4609 					 __be16 protocol)
4610 {
4611 	if (protocol == htons(ETH_P_FCOE))
4612 		return !!(features & NETIF_F_FCOE_CRC);
4613 
4614 	/* Assume this is an IP checksum (not SCTP CRC) */
4615 
4616 	if (features & NETIF_F_HW_CSUM) {
4617 		/* Can checksum everything */
4618 		return true;
4619 	}
4620 
4621 	switch (protocol) {
4622 	case htons(ETH_P_IP):
4623 		return !!(features & NETIF_F_IP_CSUM);
4624 	case htons(ETH_P_IPV6):
4625 		return !!(features & NETIF_F_IPV6_CSUM);
4626 	default:
4627 		return false;
4628 	}
4629 }
4630 
4631 #ifdef CONFIG_BUG
4632 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4633 #else
4634 static inline void netdev_rx_csum_fault(struct net_device *dev,
4635 					struct sk_buff *skb)
4636 {
4637 }
4638 #endif
4639 /* rx skb timestamps */
4640 void net_enable_timestamp(void);
4641 void net_disable_timestamp(void);
4642 
4643 #ifdef CONFIG_PROC_FS
4644 int __init dev_proc_init(void);
4645 #else
4646 #define dev_proc_init() 0
4647 #endif
4648 
4649 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4650 					      struct sk_buff *skb, struct net_device *dev,
4651 					      bool more)
4652 {
4653 	__this_cpu_write(softnet_data.xmit.more, more);
4654 	return ops->ndo_start_xmit(skb, dev);
4655 }
4656 
4657 static inline bool netdev_xmit_more(void)
4658 {
4659 	return __this_cpu_read(softnet_data.xmit.more);
4660 }
4661 
4662 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4663 					    struct netdev_queue *txq, bool more)
4664 {
4665 	const struct net_device_ops *ops = dev->netdev_ops;
4666 	netdev_tx_t rc;
4667 
4668 	rc = __netdev_start_xmit(ops, skb, dev, more);
4669 	if (rc == NETDEV_TX_OK)
4670 		txq_trans_update(txq);
4671 
4672 	return rc;
4673 }
4674 
4675 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4676 				const void *ns);
4677 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4678 				 const void *ns);
4679 
4680 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4681 {
4682 	return netdev_class_create_file_ns(class_attr, NULL);
4683 }
4684 
4685 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4686 {
4687 	netdev_class_remove_file_ns(class_attr, NULL);
4688 }
4689 
4690 extern const struct kobj_ns_type_operations net_ns_type_operations;
4691 
4692 const char *netdev_drivername(const struct net_device *dev);
4693 
4694 void linkwatch_run_queue(void);
4695 
4696 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4697 							  netdev_features_t f2)
4698 {
4699 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4700 		if (f1 & NETIF_F_HW_CSUM)
4701 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4702 		else
4703 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4704 	}
4705 
4706 	return f1 & f2;
4707 }
4708 
4709 static inline netdev_features_t netdev_get_wanted_features(
4710 	struct net_device *dev)
4711 {
4712 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4713 }
4714 netdev_features_t netdev_increment_features(netdev_features_t all,
4715 	netdev_features_t one, netdev_features_t mask);
4716 
4717 /* Allow TSO being used on stacked device :
4718  * Performing the GSO segmentation before last device
4719  * is a performance improvement.
4720  */
4721 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4722 							netdev_features_t mask)
4723 {
4724 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4725 }
4726 
4727 int __netdev_update_features(struct net_device *dev);
4728 void netdev_update_features(struct net_device *dev);
4729 void netdev_change_features(struct net_device *dev);
4730 
4731 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4732 					struct net_device *dev);
4733 
4734 netdev_features_t passthru_features_check(struct sk_buff *skb,
4735 					  struct net_device *dev,
4736 					  netdev_features_t features);
4737 netdev_features_t netif_skb_features(struct sk_buff *skb);
4738 
4739 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4740 {
4741 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4742 
4743 	/* check flags correspondence */
4744 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4745 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4746 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4747 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4748 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4749 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4750 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4751 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4752 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4753 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4754 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4755 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4756 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4757 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4758 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4759 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4760 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4761 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4762 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4763 
4764 	return (features & feature) == feature;
4765 }
4766 
4767 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4768 {
4769 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4770 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4771 }
4772 
4773 static inline bool netif_needs_gso(struct sk_buff *skb,
4774 				   netdev_features_t features)
4775 {
4776 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4777 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4778 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4779 }
4780 
4781 static inline void netif_set_gso_max_size(struct net_device *dev,
4782 					  unsigned int size)
4783 {
4784 	dev->gso_max_size = size;
4785 }
4786 
4787 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4788 					int pulled_hlen, u16 mac_offset,
4789 					int mac_len)
4790 {
4791 	skb->protocol = protocol;
4792 	skb->encapsulation = 1;
4793 	skb_push(skb, pulled_hlen);
4794 	skb_reset_transport_header(skb);
4795 	skb->mac_header = mac_offset;
4796 	skb->network_header = skb->mac_header + mac_len;
4797 	skb->mac_len = mac_len;
4798 }
4799 
4800 static inline bool netif_is_macsec(const struct net_device *dev)
4801 {
4802 	return dev->priv_flags & IFF_MACSEC;
4803 }
4804 
4805 static inline bool netif_is_macvlan(const struct net_device *dev)
4806 {
4807 	return dev->priv_flags & IFF_MACVLAN;
4808 }
4809 
4810 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4811 {
4812 	return dev->priv_flags & IFF_MACVLAN_PORT;
4813 }
4814 
4815 static inline bool netif_is_bond_master(const struct net_device *dev)
4816 {
4817 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4818 }
4819 
4820 static inline bool netif_is_bond_slave(const struct net_device *dev)
4821 {
4822 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4823 }
4824 
4825 static inline bool netif_supports_nofcs(struct net_device *dev)
4826 {
4827 	return dev->priv_flags & IFF_SUPP_NOFCS;
4828 }
4829 
4830 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4831 {
4832 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4833 }
4834 
4835 static inline bool netif_is_l3_master(const struct net_device *dev)
4836 {
4837 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4838 }
4839 
4840 static inline bool netif_is_l3_slave(const struct net_device *dev)
4841 {
4842 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4843 }
4844 
4845 static inline bool netif_is_bridge_master(const struct net_device *dev)
4846 {
4847 	return dev->priv_flags & IFF_EBRIDGE;
4848 }
4849 
4850 static inline bool netif_is_bridge_port(const struct net_device *dev)
4851 {
4852 	return dev->priv_flags & IFF_BRIDGE_PORT;
4853 }
4854 
4855 static inline bool netif_is_ovs_master(const struct net_device *dev)
4856 {
4857 	return dev->priv_flags & IFF_OPENVSWITCH;
4858 }
4859 
4860 static inline bool netif_is_ovs_port(const struct net_device *dev)
4861 {
4862 	return dev->priv_flags & IFF_OVS_DATAPATH;
4863 }
4864 
4865 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4866 {
4867 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4868 }
4869 
4870 static inline bool netif_is_team_master(const struct net_device *dev)
4871 {
4872 	return dev->priv_flags & IFF_TEAM;
4873 }
4874 
4875 static inline bool netif_is_team_port(const struct net_device *dev)
4876 {
4877 	return dev->priv_flags & IFF_TEAM_PORT;
4878 }
4879 
4880 static inline bool netif_is_lag_master(const struct net_device *dev)
4881 {
4882 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4883 }
4884 
4885 static inline bool netif_is_lag_port(const struct net_device *dev)
4886 {
4887 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4888 }
4889 
4890 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4891 {
4892 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4893 }
4894 
4895 static inline bool netif_is_failover(const struct net_device *dev)
4896 {
4897 	return dev->priv_flags & IFF_FAILOVER;
4898 }
4899 
4900 static inline bool netif_is_failover_slave(const struct net_device *dev)
4901 {
4902 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4903 }
4904 
4905 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4906 static inline void netif_keep_dst(struct net_device *dev)
4907 {
4908 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4909 }
4910 
4911 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4912 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4913 {
4914 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4915 	return dev->priv_flags & IFF_MACSEC;
4916 }
4917 
4918 extern struct pernet_operations __net_initdata loopback_net_ops;
4919 
4920 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4921 
4922 /* netdev_printk helpers, similar to dev_printk */
4923 
4924 static inline const char *netdev_name(const struct net_device *dev)
4925 {
4926 	if (!dev->name[0] || strchr(dev->name, '%'))
4927 		return "(unnamed net_device)";
4928 	return dev->name;
4929 }
4930 
4931 static inline bool netdev_unregistering(const struct net_device *dev)
4932 {
4933 	return dev->reg_state == NETREG_UNREGISTERING;
4934 }
4935 
4936 static inline const char *netdev_reg_state(const struct net_device *dev)
4937 {
4938 	switch (dev->reg_state) {
4939 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4940 	case NETREG_REGISTERED: return "";
4941 	case NETREG_UNREGISTERING: return " (unregistering)";
4942 	case NETREG_UNREGISTERED: return " (unregistered)";
4943 	case NETREG_RELEASED: return " (released)";
4944 	case NETREG_DUMMY: return " (dummy)";
4945 	}
4946 
4947 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4948 	return " (unknown)";
4949 }
4950 
4951 __printf(3, 4) __cold
4952 void netdev_printk(const char *level, const struct net_device *dev,
4953 		   const char *format, ...);
4954 __printf(2, 3) __cold
4955 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4956 __printf(2, 3) __cold
4957 void netdev_alert(const struct net_device *dev, const char *format, ...);
4958 __printf(2, 3) __cold
4959 void netdev_crit(const struct net_device *dev, const char *format, ...);
4960 __printf(2, 3) __cold
4961 void netdev_err(const struct net_device *dev, const char *format, ...);
4962 __printf(2, 3) __cold
4963 void netdev_warn(const struct net_device *dev, const char *format, ...);
4964 __printf(2, 3) __cold
4965 void netdev_notice(const struct net_device *dev, const char *format, ...);
4966 __printf(2, 3) __cold
4967 void netdev_info(const struct net_device *dev, const char *format, ...);
4968 
4969 #define netdev_level_once(level, dev, fmt, ...)			\
4970 do {								\
4971 	static bool __print_once __read_mostly;			\
4972 								\
4973 	if (!__print_once) {					\
4974 		__print_once = true;				\
4975 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4976 	}							\
4977 } while (0)
4978 
4979 #define netdev_emerg_once(dev, fmt, ...) \
4980 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4981 #define netdev_alert_once(dev, fmt, ...) \
4982 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4983 #define netdev_crit_once(dev, fmt, ...) \
4984 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4985 #define netdev_err_once(dev, fmt, ...) \
4986 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4987 #define netdev_warn_once(dev, fmt, ...) \
4988 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4989 #define netdev_notice_once(dev, fmt, ...) \
4990 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4991 #define netdev_info_once(dev, fmt, ...) \
4992 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4993 
4994 #define MODULE_ALIAS_NETDEV(device) \
4995 	MODULE_ALIAS("netdev-" device)
4996 
4997 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4998 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4999 #define netdev_dbg(__dev, format, args...)			\
5000 do {								\
5001 	dynamic_netdev_dbg(__dev, format, ##args);		\
5002 } while (0)
5003 #elif defined(DEBUG)
5004 #define netdev_dbg(__dev, format, args...)			\
5005 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5006 #else
5007 #define netdev_dbg(__dev, format, args...)			\
5008 ({								\
5009 	if (0)							\
5010 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5011 })
5012 #endif
5013 
5014 #if defined(VERBOSE_DEBUG)
5015 #define netdev_vdbg	netdev_dbg
5016 #else
5017 
5018 #define netdev_vdbg(dev, format, args...)			\
5019 ({								\
5020 	if (0)							\
5021 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5022 	0;							\
5023 })
5024 #endif
5025 
5026 /*
5027  * netdev_WARN() acts like dev_printk(), but with the key difference
5028  * of using a WARN/WARN_ON to get the message out, including the
5029  * file/line information and a backtrace.
5030  */
5031 #define netdev_WARN(dev, format, args...)			\
5032 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5033 	     netdev_reg_state(dev), ##args)
5034 
5035 #define netdev_WARN_ONCE(dev, format, args...)				\
5036 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5037 		  netdev_reg_state(dev), ##args)
5038 
5039 /* netif printk helpers, similar to netdev_printk */
5040 
5041 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5042 do {					  			\
5043 	if (netif_msg_##type(priv))				\
5044 		netdev_printk(level, (dev), fmt, ##args);	\
5045 } while (0)
5046 
5047 #define netif_level(level, priv, type, dev, fmt, args...)	\
5048 do {								\
5049 	if (netif_msg_##type(priv))				\
5050 		netdev_##level(dev, fmt, ##args);		\
5051 } while (0)
5052 
5053 #define netif_emerg(priv, type, dev, fmt, args...)		\
5054 	netif_level(emerg, priv, type, dev, fmt, ##args)
5055 #define netif_alert(priv, type, dev, fmt, args...)		\
5056 	netif_level(alert, priv, type, dev, fmt, ##args)
5057 #define netif_crit(priv, type, dev, fmt, args...)		\
5058 	netif_level(crit, priv, type, dev, fmt, ##args)
5059 #define netif_err(priv, type, dev, fmt, args...)		\
5060 	netif_level(err, priv, type, dev, fmt, ##args)
5061 #define netif_warn(priv, type, dev, fmt, args...)		\
5062 	netif_level(warn, priv, type, dev, fmt, ##args)
5063 #define netif_notice(priv, type, dev, fmt, args...)		\
5064 	netif_level(notice, priv, type, dev, fmt, ##args)
5065 #define netif_info(priv, type, dev, fmt, args...)		\
5066 	netif_level(info, priv, type, dev, fmt, ##args)
5067 
5068 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5069 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5070 #define netif_dbg(priv, type, netdev, format, args...)		\
5071 do {								\
5072 	if (netif_msg_##type(priv))				\
5073 		dynamic_netdev_dbg(netdev, format, ##args);	\
5074 } while (0)
5075 #elif defined(DEBUG)
5076 #define netif_dbg(priv, type, dev, format, args...)		\
5077 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5078 #else
5079 #define netif_dbg(priv, type, dev, format, args...)			\
5080 ({									\
5081 	if (0)								\
5082 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5083 	0;								\
5084 })
5085 #endif
5086 
5087 /* if @cond then downgrade to debug, else print at @level */
5088 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5089 	do {                                                              \
5090 		if (cond)                                                 \
5091 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5092 		else                                                      \
5093 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5094 	} while (0)
5095 
5096 #if defined(VERBOSE_DEBUG)
5097 #define netif_vdbg	netif_dbg
5098 #else
5099 #define netif_vdbg(priv, type, dev, format, args...)		\
5100 ({								\
5101 	if (0)							\
5102 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5103 	0;							\
5104 })
5105 #endif
5106 
5107 /*
5108  *	The list of packet types we will receive (as opposed to discard)
5109  *	and the routines to invoke.
5110  *
5111  *	Why 16. Because with 16 the only overlap we get on a hash of the
5112  *	low nibble of the protocol value is RARP/SNAP/X.25.
5113  *
5114  *		0800	IP
5115  *		0001	802.3
5116  *		0002	AX.25
5117  *		0004	802.2
5118  *		8035	RARP
5119  *		0005	SNAP
5120  *		0805	X.25
5121  *		0806	ARP
5122  *		8137	IPX
5123  *		0009	Localtalk
5124  *		86DD	IPv6
5125  */
5126 #define PTYPE_HASH_SIZE	(16)
5127 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5128 
5129 extern struct net_device *blackhole_netdev;
5130 
5131 #endif	/* _LINUX_NETDEVICE_H */
5132