1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 struct ip_tunnel_parm; 57 struct macsec_context; 58 struct macsec_ops; 59 60 struct sfp_bus; 61 /* 802.11 specific */ 62 struct wireless_dev; 63 /* 802.15.4 specific */ 64 struct wpan_dev; 65 struct mpls_dev; 66 /* UDP Tunnel offloads */ 67 struct udp_tunnel_info; 68 struct udp_tunnel_nic_info; 69 struct udp_tunnel_nic; 70 struct bpf_prog; 71 struct xdp_buff; 72 73 void synchronize_net(void); 74 void netdev_set_default_ethtool_ops(struct net_device *dev, 75 const struct ethtool_ops *ops); 76 77 /* Backlog congestion levels */ 78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 79 #define NET_RX_DROP 1 /* packet dropped */ 80 81 #define MAX_NEST_DEV 8 82 83 /* 84 * Transmit return codes: transmit return codes originate from three different 85 * namespaces: 86 * 87 * - qdisc return codes 88 * - driver transmit return codes 89 * - errno values 90 * 91 * Drivers are allowed to return any one of those in their hard_start_xmit() 92 * function. Real network devices commonly used with qdiscs should only return 93 * the driver transmit return codes though - when qdiscs are used, the actual 94 * transmission happens asynchronously, so the value is not propagated to 95 * higher layers. Virtual network devices transmit synchronously; in this case 96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 97 * others are propagated to higher layers. 98 */ 99 100 /* qdisc ->enqueue() return codes. */ 101 #define NET_XMIT_SUCCESS 0x00 102 #define NET_XMIT_DROP 0x01 /* skb dropped */ 103 #define NET_XMIT_CN 0x02 /* congestion notification */ 104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 105 106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 107 * indicates that the device will soon be dropping packets, or already drops 108 * some packets of the same priority; prompting us to send less aggressively. */ 109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 111 112 /* Driver transmit return codes */ 113 #define NETDEV_TX_MASK 0xf0 114 115 enum netdev_tx { 116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 117 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 119 }; 120 typedef enum netdev_tx netdev_tx_t; 121 122 /* 123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 125 */ 126 static inline bool dev_xmit_complete(int rc) 127 { 128 /* 129 * Positive cases with an skb consumed by a driver: 130 * - successful transmission (rc == NETDEV_TX_OK) 131 * - error while transmitting (rc < 0) 132 * - error while queueing to a different device (rc & NET_XMIT_MASK) 133 */ 134 if (likely(rc < NET_XMIT_MASK)) 135 return true; 136 137 return false; 138 } 139 140 /* 141 * Compute the worst-case header length according to the protocols 142 * used. 143 */ 144 145 #if defined(CONFIG_HYPERV_NET) 146 # define LL_MAX_HEADER 128 147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 148 # if defined(CONFIG_MAC80211_MESH) 149 # define LL_MAX_HEADER 128 150 # else 151 # define LL_MAX_HEADER 96 152 # endif 153 #else 154 # define LL_MAX_HEADER 32 155 #endif 156 157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 159 #define MAX_HEADER LL_MAX_HEADER 160 #else 161 #define MAX_HEADER (LL_MAX_HEADER + 48) 162 #endif 163 164 /* 165 * Old network device statistics. Fields are native words 166 * (unsigned long) so they can be read and written atomically. 167 */ 168 169 struct net_device_stats { 170 unsigned long rx_packets; 171 unsigned long tx_packets; 172 unsigned long rx_bytes; 173 unsigned long tx_bytes; 174 unsigned long rx_errors; 175 unsigned long tx_errors; 176 unsigned long rx_dropped; 177 unsigned long tx_dropped; 178 unsigned long multicast; 179 unsigned long collisions; 180 unsigned long rx_length_errors; 181 unsigned long rx_over_errors; 182 unsigned long rx_crc_errors; 183 unsigned long rx_frame_errors; 184 unsigned long rx_fifo_errors; 185 unsigned long rx_missed_errors; 186 unsigned long tx_aborted_errors; 187 unsigned long tx_carrier_errors; 188 unsigned long tx_fifo_errors; 189 unsigned long tx_heartbeat_errors; 190 unsigned long tx_window_errors; 191 unsigned long rx_compressed; 192 unsigned long tx_compressed; 193 }; 194 195 196 #include <linux/cache.h> 197 #include <linux/skbuff.h> 198 199 #ifdef CONFIG_RPS 200 #include <linux/static_key.h> 201 extern struct static_key_false rps_needed; 202 extern struct static_key_false rfs_needed; 203 #endif 204 205 struct neighbour; 206 struct neigh_parms; 207 struct sk_buff; 208 209 struct netdev_hw_addr { 210 struct list_head list; 211 unsigned char addr[MAX_ADDR_LEN]; 212 unsigned char type; 213 #define NETDEV_HW_ADDR_T_LAN 1 214 #define NETDEV_HW_ADDR_T_SAN 2 215 #define NETDEV_HW_ADDR_T_SLAVE 3 216 #define NETDEV_HW_ADDR_T_UNICAST 4 217 #define NETDEV_HW_ADDR_T_MULTICAST 5 218 bool global_use; 219 int sync_cnt; 220 int refcount; 221 int synced; 222 struct rcu_head rcu_head; 223 }; 224 225 struct netdev_hw_addr_list { 226 struct list_head list; 227 int count; 228 }; 229 230 #define netdev_hw_addr_list_count(l) ((l)->count) 231 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 232 #define netdev_hw_addr_list_for_each(ha, l) \ 233 list_for_each_entry(ha, &(l)->list, list) 234 235 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 236 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 237 #define netdev_for_each_uc_addr(ha, dev) \ 238 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 239 240 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 241 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 242 #define netdev_for_each_mc_addr(ha, dev) \ 243 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 244 245 struct hh_cache { 246 unsigned int hh_len; 247 seqlock_t hh_lock; 248 249 /* cached hardware header; allow for machine alignment needs. */ 250 #define HH_DATA_MOD 16 251 #define HH_DATA_OFF(__len) \ 252 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 253 #define HH_DATA_ALIGN(__len) \ 254 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 255 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 256 }; 257 258 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 259 * Alternative is: 260 * dev->hard_header_len ? (dev->hard_header_len + 261 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 262 * 263 * We could use other alignment values, but we must maintain the 264 * relationship HH alignment <= LL alignment. 265 */ 266 #define LL_RESERVED_SPACE(dev) \ 267 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 268 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 269 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 270 271 struct header_ops { 272 int (*create) (struct sk_buff *skb, struct net_device *dev, 273 unsigned short type, const void *daddr, 274 const void *saddr, unsigned int len); 275 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 276 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 277 void (*cache_update)(struct hh_cache *hh, 278 const struct net_device *dev, 279 const unsigned char *haddr); 280 bool (*validate)(const char *ll_header, unsigned int len); 281 __be16 (*parse_protocol)(const struct sk_buff *skb); 282 }; 283 284 /* These flag bits are private to the generic network queueing 285 * layer; they may not be explicitly referenced by any other 286 * code. 287 */ 288 289 enum netdev_state_t { 290 __LINK_STATE_START, 291 __LINK_STATE_PRESENT, 292 __LINK_STATE_NOCARRIER, 293 __LINK_STATE_LINKWATCH_PENDING, 294 __LINK_STATE_DORMANT, 295 __LINK_STATE_TESTING, 296 }; 297 298 299 /* 300 * This structure holds boot-time configured netdevice settings. They 301 * are then used in the device probing. 302 */ 303 struct netdev_boot_setup { 304 char name[IFNAMSIZ]; 305 struct ifmap map; 306 }; 307 #define NETDEV_BOOT_SETUP_MAX 8 308 309 int __init netdev_boot_setup(char *str); 310 311 struct gro_list { 312 struct list_head list; 313 int count; 314 }; 315 316 /* 317 * size of gro hash buckets, must less than bit number of 318 * napi_struct::gro_bitmask 319 */ 320 #define GRO_HASH_BUCKETS 8 321 322 /* 323 * Structure for NAPI scheduling similar to tasklet but with weighting 324 */ 325 struct napi_struct { 326 /* The poll_list must only be managed by the entity which 327 * changes the state of the NAPI_STATE_SCHED bit. This means 328 * whoever atomically sets that bit can add this napi_struct 329 * to the per-CPU poll_list, and whoever clears that bit 330 * can remove from the list right before clearing the bit. 331 */ 332 struct list_head poll_list; 333 334 unsigned long state; 335 int weight; 336 int defer_hard_irqs_count; 337 unsigned long gro_bitmask; 338 int (*poll)(struct napi_struct *, int); 339 #ifdef CONFIG_NETPOLL 340 int poll_owner; 341 #endif 342 struct net_device *dev; 343 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 344 struct sk_buff *skb; 345 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 346 int rx_count; /* length of rx_list */ 347 struct hrtimer timer; 348 struct list_head dev_list; 349 struct hlist_node napi_hash_node; 350 unsigned int napi_id; 351 }; 352 353 enum { 354 NAPI_STATE_SCHED, /* Poll is scheduled */ 355 NAPI_STATE_MISSED, /* reschedule a napi */ 356 NAPI_STATE_DISABLE, /* Disable pending */ 357 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 358 NAPI_STATE_LISTED, /* NAPI added to system lists */ 359 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 360 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 361 }; 362 363 enum { 364 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 365 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 366 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 367 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 368 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 369 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 370 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 371 }; 372 373 enum gro_result { 374 GRO_MERGED, 375 GRO_MERGED_FREE, 376 GRO_HELD, 377 GRO_NORMAL, 378 GRO_DROP, 379 GRO_CONSUMED, 380 }; 381 typedef enum gro_result gro_result_t; 382 383 /* 384 * enum rx_handler_result - Possible return values for rx_handlers. 385 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 386 * further. 387 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 388 * case skb->dev was changed by rx_handler. 389 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 390 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 391 * 392 * rx_handlers are functions called from inside __netif_receive_skb(), to do 393 * special processing of the skb, prior to delivery to protocol handlers. 394 * 395 * Currently, a net_device can only have a single rx_handler registered. Trying 396 * to register a second rx_handler will return -EBUSY. 397 * 398 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 399 * To unregister a rx_handler on a net_device, use 400 * netdev_rx_handler_unregister(). 401 * 402 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 403 * do with the skb. 404 * 405 * If the rx_handler consumed the skb in some way, it should return 406 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 407 * the skb to be delivered in some other way. 408 * 409 * If the rx_handler changed skb->dev, to divert the skb to another 410 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 411 * new device will be called if it exists. 412 * 413 * If the rx_handler decides the skb should be ignored, it should return 414 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 415 * are registered on exact device (ptype->dev == skb->dev). 416 * 417 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 418 * delivered, it should return RX_HANDLER_PASS. 419 * 420 * A device without a registered rx_handler will behave as if rx_handler 421 * returned RX_HANDLER_PASS. 422 */ 423 424 enum rx_handler_result { 425 RX_HANDLER_CONSUMED, 426 RX_HANDLER_ANOTHER, 427 RX_HANDLER_EXACT, 428 RX_HANDLER_PASS, 429 }; 430 typedef enum rx_handler_result rx_handler_result_t; 431 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 432 433 void __napi_schedule(struct napi_struct *n); 434 void __napi_schedule_irqoff(struct napi_struct *n); 435 436 static inline bool napi_disable_pending(struct napi_struct *n) 437 { 438 return test_bit(NAPI_STATE_DISABLE, &n->state); 439 } 440 441 bool napi_schedule_prep(struct napi_struct *n); 442 443 /** 444 * napi_schedule - schedule NAPI poll 445 * @n: NAPI context 446 * 447 * Schedule NAPI poll routine to be called if it is not already 448 * running. 449 */ 450 static inline void napi_schedule(struct napi_struct *n) 451 { 452 if (napi_schedule_prep(n)) 453 __napi_schedule(n); 454 } 455 456 /** 457 * napi_schedule_irqoff - schedule NAPI poll 458 * @n: NAPI context 459 * 460 * Variant of napi_schedule(), assuming hard irqs are masked. 461 */ 462 static inline void napi_schedule_irqoff(struct napi_struct *n) 463 { 464 if (napi_schedule_prep(n)) 465 __napi_schedule_irqoff(n); 466 } 467 468 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 469 static inline bool napi_reschedule(struct napi_struct *napi) 470 { 471 if (napi_schedule_prep(napi)) { 472 __napi_schedule(napi); 473 return true; 474 } 475 return false; 476 } 477 478 bool napi_complete_done(struct napi_struct *n, int work_done); 479 /** 480 * napi_complete - NAPI processing complete 481 * @n: NAPI context 482 * 483 * Mark NAPI processing as complete. 484 * Consider using napi_complete_done() instead. 485 * Return false if device should avoid rearming interrupts. 486 */ 487 static inline bool napi_complete(struct napi_struct *n) 488 { 489 return napi_complete_done(n, 0); 490 } 491 492 /** 493 * napi_disable - prevent NAPI from scheduling 494 * @n: NAPI context 495 * 496 * Stop NAPI from being scheduled on this context. 497 * Waits till any outstanding processing completes. 498 */ 499 void napi_disable(struct napi_struct *n); 500 501 /** 502 * napi_enable - enable NAPI scheduling 503 * @n: NAPI context 504 * 505 * Resume NAPI from being scheduled on this context. 506 * Must be paired with napi_disable. 507 */ 508 static inline void napi_enable(struct napi_struct *n) 509 { 510 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 511 smp_mb__before_atomic(); 512 clear_bit(NAPI_STATE_SCHED, &n->state); 513 clear_bit(NAPI_STATE_NPSVC, &n->state); 514 } 515 516 /** 517 * napi_synchronize - wait until NAPI is not running 518 * @n: NAPI context 519 * 520 * Wait until NAPI is done being scheduled on this context. 521 * Waits till any outstanding processing completes but 522 * does not disable future activations. 523 */ 524 static inline void napi_synchronize(const struct napi_struct *n) 525 { 526 if (IS_ENABLED(CONFIG_SMP)) 527 while (test_bit(NAPI_STATE_SCHED, &n->state)) 528 msleep(1); 529 else 530 barrier(); 531 } 532 533 /** 534 * napi_if_scheduled_mark_missed - if napi is running, set the 535 * NAPIF_STATE_MISSED 536 * @n: NAPI context 537 * 538 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 539 * NAPI is scheduled. 540 **/ 541 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 542 { 543 unsigned long val, new; 544 545 do { 546 val = READ_ONCE(n->state); 547 if (val & NAPIF_STATE_DISABLE) 548 return true; 549 550 if (!(val & NAPIF_STATE_SCHED)) 551 return false; 552 553 new = val | NAPIF_STATE_MISSED; 554 } while (cmpxchg(&n->state, val, new) != val); 555 556 return true; 557 } 558 559 enum netdev_queue_state_t { 560 __QUEUE_STATE_DRV_XOFF, 561 __QUEUE_STATE_STACK_XOFF, 562 __QUEUE_STATE_FROZEN, 563 }; 564 565 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 566 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 567 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 568 569 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 570 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 571 QUEUE_STATE_FROZEN) 572 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 573 QUEUE_STATE_FROZEN) 574 575 /* 576 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 577 * netif_tx_* functions below are used to manipulate this flag. The 578 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 579 * queue independently. The netif_xmit_*stopped functions below are called 580 * to check if the queue has been stopped by the driver or stack (either 581 * of the XOFF bits are set in the state). Drivers should not need to call 582 * netif_xmit*stopped functions, they should only be using netif_tx_*. 583 */ 584 585 struct netdev_queue { 586 /* 587 * read-mostly part 588 */ 589 struct net_device *dev; 590 struct Qdisc __rcu *qdisc; 591 struct Qdisc *qdisc_sleeping; 592 #ifdef CONFIG_SYSFS 593 struct kobject kobj; 594 #endif 595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 596 int numa_node; 597 #endif 598 unsigned long tx_maxrate; 599 /* 600 * Number of TX timeouts for this queue 601 * (/sys/class/net/DEV/Q/trans_timeout) 602 */ 603 unsigned long trans_timeout; 604 605 /* Subordinate device that the queue has been assigned to */ 606 struct net_device *sb_dev; 607 #ifdef CONFIG_XDP_SOCKETS 608 struct xsk_buff_pool *pool; 609 #endif 610 /* 611 * write-mostly part 612 */ 613 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 614 int xmit_lock_owner; 615 /* 616 * Time (in jiffies) of last Tx 617 */ 618 unsigned long trans_start; 619 620 unsigned long state; 621 622 #ifdef CONFIG_BQL 623 struct dql dql; 624 #endif 625 } ____cacheline_aligned_in_smp; 626 627 extern int sysctl_fb_tunnels_only_for_init_net; 628 extern int sysctl_devconf_inherit_init_net; 629 630 /* 631 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 632 * == 1 : For initns only 633 * == 2 : For none. 634 */ 635 static inline bool net_has_fallback_tunnels(const struct net *net) 636 { 637 return (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1) || 638 !sysctl_fb_tunnels_only_for_init_net; 639 } 640 641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642 { 643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645 #else 646 return NUMA_NO_NODE; 647 #endif 648 } 649 650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651 { 652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654 #endif 655 } 656 657 #ifdef CONFIG_RPS 658 /* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662 struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[]; 666 }; 667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669 /* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674 struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678 }; 679 #define RPS_NO_FILTER 0xffff 680 681 /* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684 struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[]; 688 }; 689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692 /* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702 struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[] ____cacheline_aligned_in_smp; 706 }; 707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709 #define RPS_NO_CPU 0xffff 710 711 extern u32 rps_cpu_mask; 712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716 { 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 #endif /* CONFIG_RPS */ 734 735 /* This structure contains an instance of an RX queue. */ 736 struct netdev_rx_queue { 737 #ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740 #endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744 #ifdef CONFIG_XDP_SOCKETS 745 struct xsk_buff_pool *pool; 746 #endif 747 } ____cacheline_aligned_in_smp; 748 749 /* 750 * RX queue sysfs structures and functions. 751 */ 752 struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757 }; 758 759 #ifdef CONFIG_XPS 760 /* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764 struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[]; 769 }; 770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774 /* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777 struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 780 }; 781 782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788 #endif /* CONFIG_XPS */ 789 790 #define TC_MAX_QUEUE 16 791 #define TC_BITMASK 15 792 /* HW offloaded queuing disciplines txq count and offset maps */ 793 struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796 }; 797 798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799 /* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803 struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812 }; 813 #endif 814 815 #define MAX_PHYS_ITEM_ID_LEN 32 816 817 /* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820 struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823 }; 824 825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827 { 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830 } 831 832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836 enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 TC_SETUP_QDISC_TAPRIO, 851 TC_SETUP_FT, 852 TC_SETUP_QDISC_ETS, 853 TC_SETUP_QDISC_TBF, 854 TC_SETUP_QDISC_FIFO, 855 }; 856 857 /* These structures hold the attributes of bpf state that are being passed 858 * to the netdevice through the bpf op. 859 */ 860 enum bpf_netdev_command { 861 /* Set or clear a bpf program used in the earliest stages of packet 862 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 863 * is responsible for calling bpf_prog_put on any old progs that are 864 * stored. In case of error, the callee need not release the new prog 865 * reference, but on success it takes ownership and must bpf_prog_put 866 * when it is no longer used. 867 */ 868 XDP_SETUP_PROG, 869 XDP_SETUP_PROG_HW, 870 /* BPF program for offload callbacks, invoked at program load time. */ 871 BPF_OFFLOAD_MAP_ALLOC, 872 BPF_OFFLOAD_MAP_FREE, 873 XDP_SETUP_XSK_POOL, 874 }; 875 876 struct bpf_prog_offload_ops; 877 struct netlink_ext_ack; 878 struct xdp_umem; 879 struct xdp_dev_bulk_queue; 880 struct bpf_xdp_link; 881 882 enum bpf_xdp_mode { 883 XDP_MODE_SKB = 0, 884 XDP_MODE_DRV = 1, 885 XDP_MODE_HW = 2, 886 __MAX_XDP_MODE 887 }; 888 889 struct bpf_xdp_entity { 890 struct bpf_prog *prog; 891 struct bpf_xdp_link *link; 892 }; 893 894 struct netdev_bpf { 895 enum bpf_netdev_command command; 896 union { 897 /* XDP_SETUP_PROG */ 898 struct { 899 u32 flags; 900 struct bpf_prog *prog; 901 struct netlink_ext_ack *extack; 902 }; 903 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 904 struct { 905 struct bpf_offloaded_map *offmap; 906 }; 907 /* XDP_SETUP_XSK_POOL */ 908 struct { 909 struct xsk_buff_pool *pool; 910 u16 queue_id; 911 } xsk; 912 }; 913 }; 914 915 /* Flags for ndo_xsk_wakeup. */ 916 #define XDP_WAKEUP_RX (1 << 0) 917 #define XDP_WAKEUP_TX (1 << 1) 918 919 #ifdef CONFIG_XFRM_OFFLOAD 920 struct xfrmdev_ops { 921 int (*xdo_dev_state_add) (struct xfrm_state *x); 922 void (*xdo_dev_state_delete) (struct xfrm_state *x); 923 void (*xdo_dev_state_free) (struct xfrm_state *x); 924 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 925 struct xfrm_state *x); 926 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 927 }; 928 #endif 929 930 struct dev_ifalias { 931 struct rcu_head rcuhead; 932 char ifalias[]; 933 }; 934 935 struct devlink; 936 struct tlsdev_ops; 937 938 struct netdev_name_node { 939 struct hlist_node hlist; 940 struct list_head list; 941 struct net_device *dev; 942 const char *name; 943 }; 944 945 int netdev_name_node_alt_create(struct net_device *dev, const char *name); 946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); 947 948 struct netdev_net_notifier { 949 struct list_head list; 950 struct notifier_block *nb; 951 }; 952 953 /* 954 * This structure defines the management hooks for network devices. 955 * The following hooks can be defined; unless noted otherwise, they are 956 * optional and can be filled with a null pointer. 957 * 958 * int (*ndo_init)(struct net_device *dev); 959 * This function is called once when a network device is registered. 960 * The network device can use this for any late stage initialization 961 * or semantic validation. It can fail with an error code which will 962 * be propagated back to register_netdev. 963 * 964 * void (*ndo_uninit)(struct net_device *dev); 965 * This function is called when device is unregistered or when registration 966 * fails. It is not called if init fails. 967 * 968 * int (*ndo_open)(struct net_device *dev); 969 * This function is called when a network device transitions to the up 970 * state. 971 * 972 * int (*ndo_stop)(struct net_device *dev); 973 * This function is called when a network device transitions to the down 974 * state. 975 * 976 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 977 * struct net_device *dev); 978 * Called when a packet needs to be transmitted. 979 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 980 * the queue before that can happen; it's for obsolete devices and weird 981 * corner cases, but the stack really does a non-trivial amount 982 * of useless work if you return NETDEV_TX_BUSY. 983 * Required; cannot be NULL. 984 * 985 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 986 * struct net_device *dev 987 * netdev_features_t features); 988 * Called by core transmit path to determine if device is capable of 989 * performing offload operations on a given packet. This is to give 990 * the device an opportunity to implement any restrictions that cannot 991 * be otherwise expressed by feature flags. The check is called with 992 * the set of features that the stack has calculated and it returns 993 * those the driver believes to be appropriate. 994 * 995 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 996 * struct net_device *sb_dev); 997 * Called to decide which queue to use when device supports multiple 998 * transmit queues. 999 * 1000 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1001 * This function is called to allow device receiver to make 1002 * changes to configuration when multicast or promiscuous is enabled. 1003 * 1004 * void (*ndo_set_rx_mode)(struct net_device *dev); 1005 * This function is called device changes address list filtering. 1006 * If driver handles unicast address filtering, it should set 1007 * IFF_UNICAST_FLT in its priv_flags. 1008 * 1009 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1010 * This function is called when the Media Access Control address 1011 * needs to be changed. If this interface is not defined, the 1012 * MAC address can not be changed. 1013 * 1014 * int (*ndo_validate_addr)(struct net_device *dev); 1015 * Test if Media Access Control address is valid for the device. 1016 * 1017 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1018 * Called when a user requests an ioctl which can't be handled by 1019 * the generic interface code. If not defined ioctls return 1020 * not supported error code. 1021 * 1022 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1023 * Used to set network devices bus interface parameters. This interface 1024 * is retained for legacy reasons; new devices should use the bus 1025 * interface (PCI) for low level management. 1026 * 1027 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1028 * Called when a user wants to change the Maximum Transfer Unit 1029 * of a device. 1030 * 1031 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1032 * Callback used when the transmitter has not made any progress 1033 * for dev->watchdog ticks. 1034 * 1035 * void (*ndo_get_stats64)(struct net_device *dev, 1036 * struct rtnl_link_stats64 *storage); 1037 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1038 * Called when a user wants to get the network device usage 1039 * statistics. Drivers must do one of the following: 1040 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1041 * rtnl_link_stats64 structure passed by the caller. 1042 * 2. Define @ndo_get_stats to update a net_device_stats structure 1043 * (which should normally be dev->stats) and return a pointer to 1044 * it. The structure may be changed asynchronously only if each 1045 * field is written atomically. 1046 * 3. Update dev->stats asynchronously and atomically, and define 1047 * neither operation. 1048 * 1049 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1050 * Return true if this device supports offload stats of this attr_id. 1051 * 1052 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1053 * void *attr_data) 1054 * Get statistics for offload operations by attr_id. Write it into the 1055 * attr_data pointer. 1056 * 1057 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1058 * If device supports VLAN filtering this function is called when a 1059 * VLAN id is registered. 1060 * 1061 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1062 * If device supports VLAN filtering this function is called when a 1063 * VLAN id is unregistered. 1064 * 1065 * void (*ndo_poll_controller)(struct net_device *dev); 1066 * 1067 * SR-IOV management functions. 1068 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1069 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1070 * u8 qos, __be16 proto); 1071 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1072 * int max_tx_rate); 1073 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1074 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1075 * int (*ndo_get_vf_config)(struct net_device *dev, 1076 * int vf, struct ifla_vf_info *ivf); 1077 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1078 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1079 * struct nlattr *port[]); 1080 * 1081 * Enable or disable the VF ability to query its RSS Redirection Table and 1082 * Hash Key. This is needed since on some devices VF share this information 1083 * with PF and querying it may introduce a theoretical security risk. 1084 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1085 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1086 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1087 * void *type_data); 1088 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1089 * This is always called from the stack with the rtnl lock held and netif 1090 * tx queues stopped. This allows the netdevice to perform queue 1091 * management safely. 1092 * 1093 * Fiber Channel over Ethernet (FCoE) offload functions. 1094 * int (*ndo_fcoe_enable)(struct net_device *dev); 1095 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1096 * so the underlying device can perform whatever needed configuration or 1097 * initialization to support acceleration of FCoE traffic. 1098 * 1099 * int (*ndo_fcoe_disable)(struct net_device *dev); 1100 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1101 * so the underlying device can perform whatever needed clean-ups to 1102 * stop supporting acceleration of FCoE traffic. 1103 * 1104 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1105 * struct scatterlist *sgl, unsigned int sgc); 1106 * Called when the FCoE Initiator wants to initialize an I/O that 1107 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1108 * perform necessary setup and returns 1 to indicate the device is set up 1109 * successfully to perform DDP on this I/O, otherwise this returns 0. 1110 * 1111 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1112 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1113 * indicated by the FC exchange id 'xid', so the underlying device can 1114 * clean up and reuse resources for later DDP requests. 1115 * 1116 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1117 * struct scatterlist *sgl, unsigned int sgc); 1118 * Called when the FCoE Target wants to initialize an I/O that 1119 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1120 * perform necessary setup and returns 1 to indicate the device is set up 1121 * successfully to perform DDP on this I/O, otherwise this returns 0. 1122 * 1123 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1124 * struct netdev_fcoe_hbainfo *hbainfo); 1125 * Called when the FCoE Protocol stack wants information on the underlying 1126 * device. This information is utilized by the FCoE protocol stack to 1127 * register attributes with Fiber Channel management service as per the 1128 * FC-GS Fabric Device Management Information(FDMI) specification. 1129 * 1130 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1131 * Called when the underlying device wants to override default World Wide 1132 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1133 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1134 * protocol stack to use. 1135 * 1136 * RFS acceleration. 1137 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1138 * u16 rxq_index, u32 flow_id); 1139 * Set hardware filter for RFS. rxq_index is the target queue index; 1140 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1141 * Return the filter ID on success, or a negative error code. 1142 * 1143 * Slave management functions (for bridge, bonding, etc). 1144 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1145 * Called to make another netdev an underling. 1146 * 1147 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1148 * Called to release previously enslaved netdev. 1149 * 1150 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1151 * struct sk_buff *skb, 1152 * bool all_slaves); 1153 * Get the xmit slave of master device. If all_slaves is true, function 1154 * assume all the slaves can transmit. 1155 * 1156 * Feature/offload setting functions. 1157 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1158 * netdev_features_t features); 1159 * Adjusts the requested feature flags according to device-specific 1160 * constraints, and returns the resulting flags. Must not modify 1161 * the device state. 1162 * 1163 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1164 * Called to update device configuration to new features. Passed 1165 * feature set might be less than what was returned by ndo_fix_features()). 1166 * Must return >0 or -errno if it changed dev->features itself. 1167 * 1168 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1169 * struct net_device *dev, 1170 * const unsigned char *addr, u16 vid, u16 flags, 1171 * struct netlink_ext_ack *extack); 1172 * Adds an FDB entry to dev for addr. 1173 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1174 * struct net_device *dev, 1175 * const unsigned char *addr, u16 vid) 1176 * Deletes the FDB entry from dev coresponding to addr. 1177 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1178 * struct net_device *dev, struct net_device *filter_dev, 1179 * int *idx) 1180 * Used to add FDB entries to dump requests. Implementers should add 1181 * entries to skb and update idx with the number of entries. 1182 * 1183 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1184 * u16 flags, struct netlink_ext_ack *extack) 1185 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1186 * struct net_device *dev, u32 filter_mask, 1187 * int nlflags) 1188 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1189 * u16 flags); 1190 * 1191 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1192 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1193 * which do not represent real hardware may define this to allow their 1194 * userspace components to manage their virtual carrier state. Devices 1195 * that determine carrier state from physical hardware properties (eg 1196 * network cables) or protocol-dependent mechanisms (eg 1197 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1198 * 1199 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1200 * struct netdev_phys_item_id *ppid); 1201 * Called to get ID of physical port of this device. If driver does 1202 * not implement this, it is assumed that the hw is not able to have 1203 * multiple net devices on single physical port. 1204 * 1205 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1206 * struct netdev_phys_item_id *ppid) 1207 * Called to get the parent ID of the physical port of this device. 1208 * 1209 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1210 * struct udp_tunnel_info *ti); 1211 * Called by UDP tunnel to notify a driver about the UDP port and socket 1212 * address family that a UDP tunnel is listnening to. It is called only 1213 * when a new port starts listening. The operation is protected by the 1214 * RTNL. 1215 * 1216 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1217 * struct udp_tunnel_info *ti); 1218 * Called by UDP tunnel to notify the driver about a UDP port and socket 1219 * address family that the UDP tunnel is not listening to anymore. The 1220 * operation is protected by the RTNL. 1221 * 1222 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1223 * struct net_device *dev) 1224 * Called by upper layer devices to accelerate switching or other 1225 * station functionality into hardware. 'pdev is the lowerdev 1226 * to use for the offload and 'dev' is the net device that will 1227 * back the offload. Returns a pointer to the private structure 1228 * the upper layer will maintain. 1229 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1230 * Called by upper layer device to delete the station created 1231 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1232 * the station and priv is the structure returned by the add 1233 * operation. 1234 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1235 * int queue_index, u32 maxrate); 1236 * Called when a user wants to set a max-rate limitation of specific 1237 * TX queue. 1238 * int (*ndo_get_iflink)(const struct net_device *dev); 1239 * Called to get the iflink value of this device. 1240 * void (*ndo_change_proto_down)(struct net_device *dev, 1241 * bool proto_down); 1242 * This function is used to pass protocol port error state information 1243 * to the switch driver. The switch driver can react to the proto_down 1244 * by doing a phys down on the associated switch port. 1245 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1246 * This function is used to get egress tunnel information for given skb. 1247 * This is useful for retrieving outer tunnel header parameters while 1248 * sampling packet. 1249 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1250 * This function is used to specify the headroom that the skb must 1251 * consider when allocation skb during packet reception. Setting 1252 * appropriate rx headroom value allows avoiding skb head copy on 1253 * forward. Setting a negative value resets the rx headroom to the 1254 * default value. 1255 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1256 * This function is used to set or query state related to XDP on the 1257 * netdevice and manage BPF offload. See definition of 1258 * enum bpf_netdev_command for details. 1259 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1260 * u32 flags); 1261 * This function is used to submit @n XDP packets for transmit on a 1262 * netdevice. Returns number of frames successfully transmitted, frames 1263 * that got dropped are freed/returned via xdp_return_frame(). 1264 * Returns negative number, means general error invoking ndo, meaning 1265 * no frames were xmit'ed and core-caller will free all frames. 1266 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1267 * This function is used to wake up the softirq, ksoftirqd or kthread 1268 * responsible for sending and/or receiving packets on a specific 1269 * queue id bound to an AF_XDP socket. The flags field specifies if 1270 * only RX, only Tx, or both should be woken up using the flags 1271 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1272 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1273 * Get devlink port instance associated with a given netdev. 1274 * Called with a reference on the netdevice and devlink locks only, 1275 * rtnl_lock is not held. 1276 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1277 * int cmd); 1278 * Add, change, delete or get information on an IPv4 tunnel. 1279 */ 1280 struct net_device_ops { 1281 int (*ndo_init)(struct net_device *dev); 1282 void (*ndo_uninit)(struct net_device *dev); 1283 int (*ndo_open)(struct net_device *dev); 1284 int (*ndo_stop)(struct net_device *dev); 1285 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1286 struct net_device *dev); 1287 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1288 struct net_device *dev, 1289 netdev_features_t features); 1290 u16 (*ndo_select_queue)(struct net_device *dev, 1291 struct sk_buff *skb, 1292 struct net_device *sb_dev); 1293 void (*ndo_change_rx_flags)(struct net_device *dev, 1294 int flags); 1295 void (*ndo_set_rx_mode)(struct net_device *dev); 1296 int (*ndo_set_mac_address)(struct net_device *dev, 1297 void *addr); 1298 int (*ndo_validate_addr)(struct net_device *dev); 1299 int (*ndo_do_ioctl)(struct net_device *dev, 1300 struct ifreq *ifr, int cmd); 1301 int (*ndo_set_config)(struct net_device *dev, 1302 struct ifmap *map); 1303 int (*ndo_change_mtu)(struct net_device *dev, 1304 int new_mtu); 1305 int (*ndo_neigh_setup)(struct net_device *dev, 1306 struct neigh_parms *); 1307 void (*ndo_tx_timeout) (struct net_device *dev, 1308 unsigned int txqueue); 1309 1310 void (*ndo_get_stats64)(struct net_device *dev, 1311 struct rtnl_link_stats64 *storage); 1312 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1313 int (*ndo_get_offload_stats)(int attr_id, 1314 const struct net_device *dev, 1315 void *attr_data); 1316 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1317 1318 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1319 __be16 proto, u16 vid); 1320 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1321 __be16 proto, u16 vid); 1322 #ifdef CONFIG_NET_POLL_CONTROLLER 1323 void (*ndo_poll_controller)(struct net_device *dev); 1324 int (*ndo_netpoll_setup)(struct net_device *dev, 1325 struct netpoll_info *info); 1326 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1327 #endif 1328 int (*ndo_set_vf_mac)(struct net_device *dev, 1329 int queue, u8 *mac); 1330 int (*ndo_set_vf_vlan)(struct net_device *dev, 1331 int queue, u16 vlan, 1332 u8 qos, __be16 proto); 1333 int (*ndo_set_vf_rate)(struct net_device *dev, 1334 int vf, int min_tx_rate, 1335 int max_tx_rate); 1336 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1337 int vf, bool setting); 1338 int (*ndo_set_vf_trust)(struct net_device *dev, 1339 int vf, bool setting); 1340 int (*ndo_get_vf_config)(struct net_device *dev, 1341 int vf, 1342 struct ifla_vf_info *ivf); 1343 int (*ndo_set_vf_link_state)(struct net_device *dev, 1344 int vf, int link_state); 1345 int (*ndo_get_vf_stats)(struct net_device *dev, 1346 int vf, 1347 struct ifla_vf_stats 1348 *vf_stats); 1349 int (*ndo_set_vf_port)(struct net_device *dev, 1350 int vf, 1351 struct nlattr *port[]); 1352 int (*ndo_get_vf_port)(struct net_device *dev, 1353 int vf, struct sk_buff *skb); 1354 int (*ndo_get_vf_guid)(struct net_device *dev, 1355 int vf, 1356 struct ifla_vf_guid *node_guid, 1357 struct ifla_vf_guid *port_guid); 1358 int (*ndo_set_vf_guid)(struct net_device *dev, 1359 int vf, u64 guid, 1360 int guid_type); 1361 int (*ndo_set_vf_rss_query_en)( 1362 struct net_device *dev, 1363 int vf, bool setting); 1364 int (*ndo_setup_tc)(struct net_device *dev, 1365 enum tc_setup_type type, 1366 void *type_data); 1367 #if IS_ENABLED(CONFIG_FCOE) 1368 int (*ndo_fcoe_enable)(struct net_device *dev); 1369 int (*ndo_fcoe_disable)(struct net_device *dev); 1370 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1371 u16 xid, 1372 struct scatterlist *sgl, 1373 unsigned int sgc); 1374 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1375 u16 xid); 1376 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1377 u16 xid, 1378 struct scatterlist *sgl, 1379 unsigned int sgc); 1380 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1381 struct netdev_fcoe_hbainfo *hbainfo); 1382 #endif 1383 1384 #if IS_ENABLED(CONFIG_LIBFCOE) 1385 #define NETDEV_FCOE_WWNN 0 1386 #define NETDEV_FCOE_WWPN 1 1387 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1388 u64 *wwn, int type); 1389 #endif 1390 1391 #ifdef CONFIG_RFS_ACCEL 1392 int (*ndo_rx_flow_steer)(struct net_device *dev, 1393 const struct sk_buff *skb, 1394 u16 rxq_index, 1395 u32 flow_id); 1396 #endif 1397 int (*ndo_add_slave)(struct net_device *dev, 1398 struct net_device *slave_dev, 1399 struct netlink_ext_ack *extack); 1400 int (*ndo_del_slave)(struct net_device *dev, 1401 struct net_device *slave_dev); 1402 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1403 struct sk_buff *skb, 1404 bool all_slaves); 1405 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1406 netdev_features_t features); 1407 int (*ndo_set_features)(struct net_device *dev, 1408 netdev_features_t features); 1409 int (*ndo_neigh_construct)(struct net_device *dev, 1410 struct neighbour *n); 1411 void (*ndo_neigh_destroy)(struct net_device *dev, 1412 struct neighbour *n); 1413 1414 int (*ndo_fdb_add)(struct ndmsg *ndm, 1415 struct nlattr *tb[], 1416 struct net_device *dev, 1417 const unsigned char *addr, 1418 u16 vid, 1419 u16 flags, 1420 struct netlink_ext_ack *extack); 1421 int (*ndo_fdb_del)(struct ndmsg *ndm, 1422 struct nlattr *tb[], 1423 struct net_device *dev, 1424 const unsigned char *addr, 1425 u16 vid); 1426 int (*ndo_fdb_dump)(struct sk_buff *skb, 1427 struct netlink_callback *cb, 1428 struct net_device *dev, 1429 struct net_device *filter_dev, 1430 int *idx); 1431 int (*ndo_fdb_get)(struct sk_buff *skb, 1432 struct nlattr *tb[], 1433 struct net_device *dev, 1434 const unsigned char *addr, 1435 u16 vid, u32 portid, u32 seq, 1436 struct netlink_ext_ack *extack); 1437 int (*ndo_bridge_setlink)(struct net_device *dev, 1438 struct nlmsghdr *nlh, 1439 u16 flags, 1440 struct netlink_ext_ack *extack); 1441 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1442 u32 pid, u32 seq, 1443 struct net_device *dev, 1444 u32 filter_mask, 1445 int nlflags); 1446 int (*ndo_bridge_dellink)(struct net_device *dev, 1447 struct nlmsghdr *nlh, 1448 u16 flags); 1449 int (*ndo_change_carrier)(struct net_device *dev, 1450 bool new_carrier); 1451 int (*ndo_get_phys_port_id)(struct net_device *dev, 1452 struct netdev_phys_item_id *ppid); 1453 int (*ndo_get_port_parent_id)(struct net_device *dev, 1454 struct netdev_phys_item_id *ppid); 1455 int (*ndo_get_phys_port_name)(struct net_device *dev, 1456 char *name, size_t len); 1457 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1458 struct udp_tunnel_info *ti); 1459 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1460 struct udp_tunnel_info *ti); 1461 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1462 struct net_device *dev); 1463 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1464 void *priv); 1465 1466 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1467 int queue_index, 1468 u32 maxrate); 1469 int (*ndo_get_iflink)(const struct net_device *dev); 1470 int (*ndo_change_proto_down)(struct net_device *dev, 1471 bool proto_down); 1472 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1473 struct sk_buff *skb); 1474 void (*ndo_set_rx_headroom)(struct net_device *dev, 1475 int needed_headroom); 1476 int (*ndo_bpf)(struct net_device *dev, 1477 struct netdev_bpf *bpf); 1478 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1479 struct xdp_frame **xdp, 1480 u32 flags); 1481 int (*ndo_xsk_wakeup)(struct net_device *dev, 1482 u32 queue_id, u32 flags); 1483 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1484 int (*ndo_tunnel_ctl)(struct net_device *dev, 1485 struct ip_tunnel_parm *p, int cmd); 1486 }; 1487 1488 /** 1489 * enum net_device_priv_flags - &struct net_device priv_flags 1490 * 1491 * These are the &struct net_device, they are only set internally 1492 * by drivers and used in the kernel. These flags are invisible to 1493 * userspace; this means that the order of these flags can change 1494 * during any kernel release. 1495 * 1496 * You should have a pretty good reason to be extending these flags. 1497 * 1498 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1499 * @IFF_EBRIDGE: Ethernet bridging device 1500 * @IFF_BONDING: bonding master or slave 1501 * @IFF_ISATAP: ISATAP interface (RFC4214) 1502 * @IFF_WAN_HDLC: WAN HDLC device 1503 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1504 * release skb->dst 1505 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1506 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1507 * @IFF_MACVLAN_PORT: device used as macvlan port 1508 * @IFF_BRIDGE_PORT: device used as bridge port 1509 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1510 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1511 * @IFF_UNICAST_FLT: Supports unicast filtering 1512 * @IFF_TEAM_PORT: device used as team port 1513 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1514 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1515 * change when it's running 1516 * @IFF_MACVLAN: Macvlan device 1517 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1518 * underlying stacked devices 1519 * @IFF_L3MDEV_MASTER: device is an L3 master device 1520 * @IFF_NO_QUEUE: device can run without qdisc attached 1521 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1522 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1523 * @IFF_TEAM: device is a team device 1524 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1525 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1526 * entity (i.e. the master device for bridged veth) 1527 * @IFF_MACSEC: device is a MACsec device 1528 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1529 * @IFF_FAILOVER: device is a failover master device 1530 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1531 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1532 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1533 */ 1534 enum netdev_priv_flags { 1535 IFF_802_1Q_VLAN = 1<<0, 1536 IFF_EBRIDGE = 1<<1, 1537 IFF_BONDING = 1<<2, 1538 IFF_ISATAP = 1<<3, 1539 IFF_WAN_HDLC = 1<<4, 1540 IFF_XMIT_DST_RELEASE = 1<<5, 1541 IFF_DONT_BRIDGE = 1<<6, 1542 IFF_DISABLE_NETPOLL = 1<<7, 1543 IFF_MACVLAN_PORT = 1<<8, 1544 IFF_BRIDGE_PORT = 1<<9, 1545 IFF_OVS_DATAPATH = 1<<10, 1546 IFF_TX_SKB_SHARING = 1<<11, 1547 IFF_UNICAST_FLT = 1<<12, 1548 IFF_TEAM_PORT = 1<<13, 1549 IFF_SUPP_NOFCS = 1<<14, 1550 IFF_LIVE_ADDR_CHANGE = 1<<15, 1551 IFF_MACVLAN = 1<<16, 1552 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1553 IFF_L3MDEV_MASTER = 1<<18, 1554 IFF_NO_QUEUE = 1<<19, 1555 IFF_OPENVSWITCH = 1<<20, 1556 IFF_L3MDEV_SLAVE = 1<<21, 1557 IFF_TEAM = 1<<22, 1558 IFF_RXFH_CONFIGURED = 1<<23, 1559 IFF_PHONY_HEADROOM = 1<<24, 1560 IFF_MACSEC = 1<<25, 1561 IFF_NO_RX_HANDLER = 1<<26, 1562 IFF_FAILOVER = 1<<27, 1563 IFF_FAILOVER_SLAVE = 1<<28, 1564 IFF_L3MDEV_RX_HANDLER = 1<<29, 1565 IFF_LIVE_RENAME_OK = 1<<30, 1566 }; 1567 1568 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1569 #define IFF_EBRIDGE IFF_EBRIDGE 1570 #define IFF_BONDING IFF_BONDING 1571 #define IFF_ISATAP IFF_ISATAP 1572 #define IFF_WAN_HDLC IFF_WAN_HDLC 1573 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1574 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1575 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1576 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1577 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1578 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1579 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1580 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1581 #define IFF_TEAM_PORT IFF_TEAM_PORT 1582 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1583 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1584 #define IFF_MACVLAN IFF_MACVLAN 1585 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1586 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1587 #define IFF_NO_QUEUE IFF_NO_QUEUE 1588 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1589 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1590 #define IFF_TEAM IFF_TEAM 1591 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1592 #define IFF_MACSEC IFF_MACSEC 1593 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1594 #define IFF_FAILOVER IFF_FAILOVER 1595 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1596 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1597 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1598 1599 /** 1600 * struct net_device - The DEVICE structure. 1601 * 1602 * Actually, this whole structure is a big mistake. It mixes I/O 1603 * data with strictly "high-level" data, and it has to know about 1604 * almost every data structure used in the INET module. 1605 * 1606 * @name: This is the first field of the "visible" part of this structure 1607 * (i.e. as seen by users in the "Space.c" file). It is the name 1608 * of the interface. 1609 * 1610 * @name_node: Name hashlist node 1611 * @ifalias: SNMP alias 1612 * @mem_end: Shared memory end 1613 * @mem_start: Shared memory start 1614 * @base_addr: Device I/O address 1615 * @irq: Device IRQ number 1616 * 1617 * @state: Generic network queuing layer state, see netdev_state_t 1618 * @dev_list: The global list of network devices 1619 * @napi_list: List entry used for polling NAPI devices 1620 * @unreg_list: List entry when we are unregistering the 1621 * device; see the function unregister_netdev 1622 * @close_list: List entry used when we are closing the device 1623 * @ptype_all: Device-specific packet handlers for all protocols 1624 * @ptype_specific: Device-specific, protocol-specific packet handlers 1625 * 1626 * @adj_list: Directly linked devices, like slaves for bonding 1627 * @features: Currently active device features 1628 * @hw_features: User-changeable features 1629 * 1630 * @wanted_features: User-requested features 1631 * @vlan_features: Mask of features inheritable by VLAN devices 1632 * 1633 * @hw_enc_features: Mask of features inherited by encapsulating devices 1634 * This field indicates what encapsulation 1635 * offloads the hardware is capable of doing, 1636 * and drivers will need to set them appropriately. 1637 * 1638 * @mpls_features: Mask of features inheritable by MPLS 1639 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1640 * 1641 * @ifindex: interface index 1642 * @group: The group the device belongs to 1643 * 1644 * @stats: Statistics struct, which was left as a legacy, use 1645 * rtnl_link_stats64 instead 1646 * 1647 * @rx_dropped: Dropped packets by core network, 1648 * do not use this in drivers 1649 * @tx_dropped: Dropped packets by core network, 1650 * do not use this in drivers 1651 * @rx_nohandler: nohandler dropped packets by core network on 1652 * inactive devices, do not use this in drivers 1653 * @carrier_up_count: Number of times the carrier has been up 1654 * @carrier_down_count: Number of times the carrier has been down 1655 * 1656 * @wireless_handlers: List of functions to handle Wireless Extensions, 1657 * instead of ioctl, 1658 * see <net/iw_handler.h> for details. 1659 * @wireless_data: Instance data managed by the core of wireless extensions 1660 * 1661 * @netdev_ops: Includes several pointers to callbacks, 1662 * if one wants to override the ndo_*() functions 1663 * @ethtool_ops: Management operations 1664 * @l3mdev_ops: Layer 3 master device operations 1665 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1666 * discovery handling. Necessary for e.g. 6LoWPAN. 1667 * @xfrmdev_ops: Transformation offload operations 1668 * @tlsdev_ops: Transport Layer Security offload operations 1669 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1670 * of Layer 2 headers. 1671 * 1672 * @flags: Interface flags (a la BSD) 1673 * @priv_flags: Like 'flags' but invisible to userspace, 1674 * see if.h for the definitions 1675 * @gflags: Global flags ( kept as legacy ) 1676 * @padded: How much padding added by alloc_netdev() 1677 * @operstate: RFC2863 operstate 1678 * @link_mode: Mapping policy to operstate 1679 * @if_port: Selectable AUI, TP, ... 1680 * @dma: DMA channel 1681 * @mtu: Interface MTU value 1682 * @min_mtu: Interface Minimum MTU value 1683 * @max_mtu: Interface Maximum MTU value 1684 * @type: Interface hardware type 1685 * @hard_header_len: Maximum hardware header length. 1686 * @min_header_len: Minimum hardware header length 1687 * 1688 * @needed_headroom: Extra headroom the hardware may need, but not in all 1689 * cases can this be guaranteed 1690 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1691 * cases can this be guaranteed. Some cases also use 1692 * LL_MAX_HEADER instead to allocate the skb 1693 * 1694 * interface address info: 1695 * 1696 * @perm_addr: Permanent hw address 1697 * @addr_assign_type: Hw address assignment type 1698 * @addr_len: Hardware address length 1699 * @upper_level: Maximum depth level of upper devices. 1700 * @lower_level: Maximum depth level of lower devices. 1701 * @neigh_priv_len: Used in neigh_alloc() 1702 * @dev_id: Used to differentiate devices that share 1703 * the same link layer address 1704 * @dev_port: Used to differentiate devices that share 1705 * the same function 1706 * @addr_list_lock: XXX: need comments on this one 1707 * @name_assign_type: network interface name assignment type 1708 * @uc_promisc: Counter that indicates promiscuous mode 1709 * has been enabled due to the need to listen to 1710 * additional unicast addresses in a device that 1711 * does not implement ndo_set_rx_mode() 1712 * @uc: unicast mac addresses 1713 * @mc: multicast mac addresses 1714 * @dev_addrs: list of device hw addresses 1715 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1716 * @promiscuity: Number of times the NIC is told to work in 1717 * promiscuous mode; if it becomes 0 the NIC will 1718 * exit promiscuous mode 1719 * @allmulti: Counter, enables or disables allmulticast mode 1720 * 1721 * @vlan_info: VLAN info 1722 * @dsa_ptr: dsa specific data 1723 * @tipc_ptr: TIPC specific data 1724 * @atalk_ptr: AppleTalk link 1725 * @ip_ptr: IPv4 specific data 1726 * @dn_ptr: DECnet specific data 1727 * @ip6_ptr: IPv6 specific data 1728 * @ax25_ptr: AX.25 specific data 1729 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1730 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1731 * device struct 1732 * @mpls_ptr: mpls_dev struct pointer 1733 * 1734 * @dev_addr: Hw address (before bcast, 1735 * because most packets are unicast) 1736 * 1737 * @_rx: Array of RX queues 1738 * @num_rx_queues: Number of RX queues 1739 * allocated at register_netdev() time 1740 * @real_num_rx_queues: Number of RX queues currently active in device 1741 * @xdp_prog: XDP sockets filter program pointer 1742 * @gro_flush_timeout: timeout for GRO layer in NAPI 1743 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1744 * allow to avoid NIC hard IRQ, on busy queues. 1745 * 1746 * @rx_handler: handler for received packets 1747 * @rx_handler_data: XXX: need comments on this one 1748 * @miniq_ingress: ingress/clsact qdisc specific data for 1749 * ingress processing 1750 * @ingress_queue: XXX: need comments on this one 1751 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1752 * @broadcast: hw bcast address 1753 * 1754 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1755 * indexed by RX queue number. Assigned by driver. 1756 * This must only be set if the ndo_rx_flow_steer 1757 * operation is defined 1758 * @index_hlist: Device index hash chain 1759 * 1760 * @_tx: Array of TX queues 1761 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1762 * @real_num_tx_queues: Number of TX queues currently active in device 1763 * @qdisc: Root qdisc from userspace point of view 1764 * @tx_queue_len: Max frames per queue allowed 1765 * @tx_global_lock: XXX: need comments on this one 1766 * @xdp_bulkq: XDP device bulk queue 1767 * @xps_cpus_map: all CPUs map for XPS device 1768 * @xps_rxqs_map: all RXQs map for XPS device 1769 * 1770 * @xps_maps: XXX: need comments on this one 1771 * @miniq_egress: clsact qdisc specific data for 1772 * egress processing 1773 * @qdisc_hash: qdisc hash table 1774 * @watchdog_timeo: Represents the timeout that is used by 1775 * the watchdog (see dev_watchdog()) 1776 * @watchdog_timer: List of timers 1777 * 1778 * @pcpu_refcnt: Number of references to this device 1779 * @todo_list: Delayed register/unregister 1780 * @link_watch_list: XXX: need comments on this one 1781 * 1782 * @reg_state: Register/unregister state machine 1783 * @dismantle: Device is going to be freed 1784 * @rtnl_link_state: This enum represents the phases of creating 1785 * a new link 1786 * 1787 * @needs_free_netdev: Should unregister perform free_netdev? 1788 * @priv_destructor: Called from unregister 1789 * @npinfo: XXX: need comments on this one 1790 * @nd_net: Network namespace this network device is inside 1791 * 1792 * @ml_priv: Mid-layer private 1793 * @lstats: Loopback statistics 1794 * @tstats: Tunnel statistics 1795 * @dstats: Dummy statistics 1796 * @vstats: Virtual ethernet statistics 1797 * 1798 * @garp_port: GARP 1799 * @mrp_port: MRP 1800 * 1801 * @dev: Class/net/name entry 1802 * @sysfs_groups: Space for optional device, statistics and wireless 1803 * sysfs groups 1804 * 1805 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1806 * @rtnl_link_ops: Rtnl_link_ops 1807 * 1808 * @gso_max_size: Maximum size of generic segmentation offload 1809 * @gso_max_segs: Maximum number of segments that can be passed to the 1810 * NIC for GSO 1811 * 1812 * @dcbnl_ops: Data Center Bridging netlink ops 1813 * @num_tc: Number of traffic classes in the net device 1814 * @tc_to_txq: XXX: need comments on this one 1815 * @prio_tc_map: XXX: need comments on this one 1816 * 1817 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1818 * 1819 * @priomap: XXX: need comments on this one 1820 * @phydev: Physical device may attach itself 1821 * for hardware timestamping 1822 * @sfp_bus: attached &struct sfp_bus structure. 1823 * 1824 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1825 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1826 * 1827 * @proto_down: protocol port state information can be sent to the 1828 * switch driver and used to set the phys state of the 1829 * switch port. 1830 * 1831 * @wol_enabled: Wake-on-LAN is enabled 1832 * 1833 * @net_notifier_list: List of per-net netdev notifier block 1834 * that follow this device when it is moved 1835 * to another network namespace. 1836 * 1837 * @macsec_ops: MACsec offloading ops 1838 * 1839 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 1840 * offload capabilities of the device 1841 * @udp_tunnel_nic: UDP tunnel offload state 1842 * 1843 * FIXME: cleanup struct net_device such that network protocol info 1844 * moves out. 1845 */ 1846 1847 struct net_device { 1848 char name[IFNAMSIZ]; 1849 struct netdev_name_node *name_node; 1850 struct dev_ifalias __rcu *ifalias; 1851 /* 1852 * I/O specific fields 1853 * FIXME: Merge these and struct ifmap into one 1854 */ 1855 unsigned long mem_end; 1856 unsigned long mem_start; 1857 unsigned long base_addr; 1858 int irq; 1859 1860 /* 1861 * Some hardware also needs these fields (state,dev_list, 1862 * napi_list,unreg_list,close_list) but they are not 1863 * part of the usual set specified in Space.c. 1864 */ 1865 1866 unsigned long state; 1867 1868 struct list_head dev_list; 1869 struct list_head napi_list; 1870 struct list_head unreg_list; 1871 struct list_head close_list; 1872 struct list_head ptype_all; 1873 struct list_head ptype_specific; 1874 1875 struct { 1876 struct list_head upper; 1877 struct list_head lower; 1878 } adj_list; 1879 1880 netdev_features_t features; 1881 netdev_features_t hw_features; 1882 netdev_features_t wanted_features; 1883 netdev_features_t vlan_features; 1884 netdev_features_t hw_enc_features; 1885 netdev_features_t mpls_features; 1886 netdev_features_t gso_partial_features; 1887 1888 int ifindex; 1889 int group; 1890 1891 struct net_device_stats stats; 1892 1893 atomic_long_t rx_dropped; 1894 atomic_long_t tx_dropped; 1895 atomic_long_t rx_nohandler; 1896 1897 /* Stats to monitor link on/off, flapping */ 1898 atomic_t carrier_up_count; 1899 atomic_t carrier_down_count; 1900 1901 #ifdef CONFIG_WIRELESS_EXT 1902 const struct iw_handler_def *wireless_handlers; 1903 struct iw_public_data *wireless_data; 1904 #endif 1905 const struct net_device_ops *netdev_ops; 1906 const struct ethtool_ops *ethtool_ops; 1907 #ifdef CONFIG_NET_L3_MASTER_DEV 1908 const struct l3mdev_ops *l3mdev_ops; 1909 #endif 1910 #if IS_ENABLED(CONFIG_IPV6) 1911 const struct ndisc_ops *ndisc_ops; 1912 #endif 1913 1914 #ifdef CONFIG_XFRM_OFFLOAD 1915 const struct xfrmdev_ops *xfrmdev_ops; 1916 #endif 1917 1918 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1919 const struct tlsdev_ops *tlsdev_ops; 1920 #endif 1921 1922 const struct header_ops *header_ops; 1923 1924 unsigned int flags; 1925 unsigned int priv_flags; 1926 1927 unsigned short gflags; 1928 unsigned short padded; 1929 1930 unsigned char operstate; 1931 unsigned char link_mode; 1932 1933 unsigned char if_port; 1934 unsigned char dma; 1935 1936 /* Note : dev->mtu is often read without holding a lock. 1937 * Writers usually hold RTNL. 1938 * It is recommended to use READ_ONCE() to annotate the reads, 1939 * and to use WRITE_ONCE() to annotate the writes. 1940 */ 1941 unsigned int mtu; 1942 unsigned int min_mtu; 1943 unsigned int max_mtu; 1944 unsigned short type; 1945 unsigned short hard_header_len; 1946 unsigned char min_header_len; 1947 1948 unsigned short needed_headroom; 1949 unsigned short needed_tailroom; 1950 1951 /* Interface address info. */ 1952 unsigned char perm_addr[MAX_ADDR_LEN]; 1953 unsigned char addr_assign_type; 1954 unsigned char addr_len; 1955 unsigned char upper_level; 1956 unsigned char lower_level; 1957 unsigned short neigh_priv_len; 1958 unsigned short dev_id; 1959 unsigned short dev_port; 1960 spinlock_t addr_list_lock; 1961 unsigned char name_assign_type; 1962 bool uc_promisc; 1963 struct netdev_hw_addr_list uc; 1964 struct netdev_hw_addr_list mc; 1965 struct netdev_hw_addr_list dev_addrs; 1966 1967 #ifdef CONFIG_SYSFS 1968 struct kset *queues_kset; 1969 #endif 1970 unsigned int promiscuity; 1971 unsigned int allmulti; 1972 1973 1974 /* Protocol-specific pointers */ 1975 1976 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1977 struct vlan_info __rcu *vlan_info; 1978 #endif 1979 #if IS_ENABLED(CONFIG_NET_DSA) 1980 struct dsa_port *dsa_ptr; 1981 #endif 1982 #if IS_ENABLED(CONFIG_TIPC) 1983 struct tipc_bearer __rcu *tipc_ptr; 1984 #endif 1985 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1986 void *atalk_ptr; 1987 #endif 1988 struct in_device __rcu *ip_ptr; 1989 #if IS_ENABLED(CONFIG_DECNET) 1990 struct dn_dev __rcu *dn_ptr; 1991 #endif 1992 struct inet6_dev __rcu *ip6_ptr; 1993 #if IS_ENABLED(CONFIG_AX25) 1994 void *ax25_ptr; 1995 #endif 1996 struct wireless_dev *ieee80211_ptr; 1997 struct wpan_dev *ieee802154_ptr; 1998 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1999 struct mpls_dev __rcu *mpls_ptr; 2000 #endif 2001 2002 /* 2003 * Cache lines mostly used on receive path (including eth_type_trans()) 2004 */ 2005 /* Interface address info used in eth_type_trans() */ 2006 unsigned char *dev_addr; 2007 2008 struct netdev_rx_queue *_rx; 2009 unsigned int num_rx_queues; 2010 unsigned int real_num_rx_queues; 2011 2012 struct bpf_prog __rcu *xdp_prog; 2013 unsigned long gro_flush_timeout; 2014 int napi_defer_hard_irqs; 2015 rx_handler_func_t __rcu *rx_handler; 2016 void __rcu *rx_handler_data; 2017 2018 #ifdef CONFIG_NET_CLS_ACT 2019 struct mini_Qdisc __rcu *miniq_ingress; 2020 #endif 2021 struct netdev_queue __rcu *ingress_queue; 2022 #ifdef CONFIG_NETFILTER_INGRESS 2023 struct nf_hook_entries __rcu *nf_hooks_ingress; 2024 #endif 2025 2026 unsigned char broadcast[MAX_ADDR_LEN]; 2027 #ifdef CONFIG_RFS_ACCEL 2028 struct cpu_rmap *rx_cpu_rmap; 2029 #endif 2030 struct hlist_node index_hlist; 2031 2032 /* 2033 * Cache lines mostly used on transmit path 2034 */ 2035 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2036 unsigned int num_tx_queues; 2037 unsigned int real_num_tx_queues; 2038 struct Qdisc *qdisc; 2039 unsigned int tx_queue_len; 2040 spinlock_t tx_global_lock; 2041 2042 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2043 2044 #ifdef CONFIG_XPS 2045 struct xps_dev_maps __rcu *xps_cpus_map; 2046 struct xps_dev_maps __rcu *xps_rxqs_map; 2047 #endif 2048 #ifdef CONFIG_NET_CLS_ACT 2049 struct mini_Qdisc __rcu *miniq_egress; 2050 #endif 2051 2052 #ifdef CONFIG_NET_SCHED 2053 DECLARE_HASHTABLE (qdisc_hash, 4); 2054 #endif 2055 /* These may be needed for future network-power-down code. */ 2056 struct timer_list watchdog_timer; 2057 int watchdog_timeo; 2058 2059 u32 proto_down_reason; 2060 2061 struct list_head todo_list; 2062 int __percpu *pcpu_refcnt; 2063 2064 struct list_head link_watch_list; 2065 2066 enum { NETREG_UNINITIALIZED=0, 2067 NETREG_REGISTERED, /* completed register_netdevice */ 2068 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2069 NETREG_UNREGISTERED, /* completed unregister todo */ 2070 NETREG_RELEASED, /* called free_netdev */ 2071 NETREG_DUMMY, /* dummy device for NAPI poll */ 2072 } reg_state:8; 2073 2074 bool dismantle; 2075 2076 enum { 2077 RTNL_LINK_INITIALIZED, 2078 RTNL_LINK_INITIALIZING, 2079 } rtnl_link_state:16; 2080 2081 bool needs_free_netdev; 2082 void (*priv_destructor)(struct net_device *dev); 2083 2084 #ifdef CONFIG_NETPOLL 2085 struct netpoll_info __rcu *npinfo; 2086 #endif 2087 2088 possible_net_t nd_net; 2089 2090 /* mid-layer private */ 2091 union { 2092 void *ml_priv; 2093 struct pcpu_lstats __percpu *lstats; 2094 struct pcpu_sw_netstats __percpu *tstats; 2095 struct pcpu_dstats __percpu *dstats; 2096 }; 2097 2098 #if IS_ENABLED(CONFIG_GARP) 2099 struct garp_port __rcu *garp_port; 2100 #endif 2101 #if IS_ENABLED(CONFIG_MRP) 2102 struct mrp_port __rcu *mrp_port; 2103 #endif 2104 2105 struct device dev; 2106 const struct attribute_group *sysfs_groups[4]; 2107 const struct attribute_group *sysfs_rx_queue_group; 2108 2109 const struct rtnl_link_ops *rtnl_link_ops; 2110 2111 /* for setting kernel sock attribute on TCP connection setup */ 2112 #define GSO_MAX_SIZE 65536 2113 unsigned int gso_max_size; 2114 #define GSO_MAX_SEGS 65535 2115 u16 gso_max_segs; 2116 2117 #ifdef CONFIG_DCB 2118 const struct dcbnl_rtnl_ops *dcbnl_ops; 2119 #endif 2120 s16 num_tc; 2121 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2122 u8 prio_tc_map[TC_BITMASK + 1]; 2123 2124 #if IS_ENABLED(CONFIG_FCOE) 2125 unsigned int fcoe_ddp_xid; 2126 #endif 2127 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2128 struct netprio_map __rcu *priomap; 2129 #endif 2130 struct phy_device *phydev; 2131 struct sfp_bus *sfp_bus; 2132 struct lock_class_key *qdisc_tx_busylock; 2133 struct lock_class_key *qdisc_running_key; 2134 bool proto_down; 2135 unsigned wol_enabled:1; 2136 2137 struct list_head net_notifier_list; 2138 2139 #if IS_ENABLED(CONFIG_MACSEC) 2140 /* MACsec management functions */ 2141 const struct macsec_ops *macsec_ops; 2142 #endif 2143 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2144 struct udp_tunnel_nic *udp_tunnel_nic; 2145 2146 /* protected by rtnl_lock */ 2147 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2148 }; 2149 #define to_net_dev(d) container_of(d, struct net_device, dev) 2150 2151 static inline bool netif_elide_gro(const struct net_device *dev) 2152 { 2153 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2154 return true; 2155 return false; 2156 } 2157 2158 #define NETDEV_ALIGN 32 2159 2160 static inline 2161 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2162 { 2163 return dev->prio_tc_map[prio & TC_BITMASK]; 2164 } 2165 2166 static inline 2167 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2168 { 2169 if (tc >= dev->num_tc) 2170 return -EINVAL; 2171 2172 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2173 return 0; 2174 } 2175 2176 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2177 void netdev_reset_tc(struct net_device *dev); 2178 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2179 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2180 2181 static inline 2182 int netdev_get_num_tc(struct net_device *dev) 2183 { 2184 return dev->num_tc; 2185 } 2186 2187 static inline void net_prefetch(void *p) 2188 { 2189 prefetch(p); 2190 #if L1_CACHE_BYTES < 128 2191 prefetch((u8 *)p + L1_CACHE_BYTES); 2192 #endif 2193 } 2194 2195 static inline void net_prefetchw(void *p) 2196 { 2197 prefetchw(p); 2198 #if L1_CACHE_BYTES < 128 2199 prefetchw((u8 *)p + L1_CACHE_BYTES); 2200 #endif 2201 } 2202 2203 void netdev_unbind_sb_channel(struct net_device *dev, 2204 struct net_device *sb_dev); 2205 int netdev_bind_sb_channel_queue(struct net_device *dev, 2206 struct net_device *sb_dev, 2207 u8 tc, u16 count, u16 offset); 2208 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2209 static inline int netdev_get_sb_channel(struct net_device *dev) 2210 { 2211 return max_t(int, -dev->num_tc, 0); 2212 } 2213 2214 static inline 2215 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2216 unsigned int index) 2217 { 2218 return &dev->_tx[index]; 2219 } 2220 2221 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2222 const struct sk_buff *skb) 2223 { 2224 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2225 } 2226 2227 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2228 void (*f)(struct net_device *, 2229 struct netdev_queue *, 2230 void *), 2231 void *arg) 2232 { 2233 unsigned int i; 2234 2235 for (i = 0; i < dev->num_tx_queues; i++) 2236 f(dev, &dev->_tx[i], arg); 2237 } 2238 2239 #define netdev_lockdep_set_classes(dev) \ 2240 { \ 2241 static struct lock_class_key qdisc_tx_busylock_key; \ 2242 static struct lock_class_key qdisc_running_key; \ 2243 static struct lock_class_key qdisc_xmit_lock_key; \ 2244 static struct lock_class_key dev_addr_list_lock_key; \ 2245 unsigned int i; \ 2246 \ 2247 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2248 (dev)->qdisc_running_key = &qdisc_running_key; \ 2249 lockdep_set_class(&(dev)->addr_list_lock, \ 2250 &dev_addr_list_lock_key); \ 2251 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2252 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2253 &qdisc_xmit_lock_key); \ 2254 } 2255 2256 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2257 struct net_device *sb_dev); 2258 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2259 struct sk_buff *skb, 2260 struct net_device *sb_dev); 2261 2262 /* returns the headroom that the master device needs to take in account 2263 * when forwarding to this dev 2264 */ 2265 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2266 { 2267 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2268 } 2269 2270 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2271 { 2272 if (dev->netdev_ops->ndo_set_rx_headroom) 2273 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2274 } 2275 2276 /* set the device rx headroom to the dev's default */ 2277 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2278 { 2279 netdev_set_rx_headroom(dev, -1); 2280 } 2281 2282 /* 2283 * Net namespace inlines 2284 */ 2285 static inline 2286 struct net *dev_net(const struct net_device *dev) 2287 { 2288 return read_pnet(&dev->nd_net); 2289 } 2290 2291 static inline 2292 void dev_net_set(struct net_device *dev, struct net *net) 2293 { 2294 write_pnet(&dev->nd_net, net); 2295 } 2296 2297 /** 2298 * netdev_priv - access network device private data 2299 * @dev: network device 2300 * 2301 * Get network device private data 2302 */ 2303 static inline void *netdev_priv(const struct net_device *dev) 2304 { 2305 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2306 } 2307 2308 /* Set the sysfs physical device reference for the network logical device 2309 * if set prior to registration will cause a symlink during initialization. 2310 */ 2311 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2312 2313 /* Set the sysfs device type for the network logical device to allow 2314 * fine-grained identification of different network device types. For 2315 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2316 */ 2317 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2318 2319 /* Default NAPI poll() weight 2320 * Device drivers are strongly advised to not use bigger value 2321 */ 2322 #define NAPI_POLL_WEIGHT 64 2323 2324 /** 2325 * netif_napi_add - initialize a NAPI context 2326 * @dev: network device 2327 * @napi: NAPI context 2328 * @poll: polling function 2329 * @weight: default weight 2330 * 2331 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2332 * *any* of the other NAPI-related functions. 2333 */ 2334 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2335 int (*poll)(struct napi_struct *, int), int weight); 2336 2337 /** 2338 * netif_tx_napi_add - initialize a NAPI context 2339 * @dev: network device 2340 * @napi: NAPI context 2341 * @poll: polling function 2342 * @weight: default weight 2343 * 2344 * This variant of netif_napi_add() should be used from drivers using NAPI 2345 * to exclusively poll a TX queue. 2346 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2347 */ 2348 static inline void netif_tx_napi_add(struct net_device *dev, 2349 struct napi_struct *napi, 2350 int (*poll)(struct napi_struct *, int), 2351 int weight) 2352 { 2353 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2354 netif_napi_add(dev, napi, poll, weight); 2355 } 2356 2357 /** 2358 * __netif_napi_del - remove a NAPI context 2359 * @napi: NAPI context 2360 * 2361 * Warning: caller must observe RCU grace period before freeing memory 2362 * containing @napi. Drivers might want to call this helper to combine 2363 * all the needed RCU grace periods into a single one. 2364 */ 2365 void __netif_napi_del(struct napi_struct *napi); 2366 2367 /** 2368 * netif_napi_del - remove a NAPI context 2369 * @napi: NAPI context 2370 * 2371 * netif_napi_del() removes a NAPI context from the network device NAPI list 2372 */ 2373 static inline void netif_napi_del(struct napi_struct *napi) 2374 { 2375 __netif_napi_del(napi); 2376 synchronize_net(); 2377 } 2378 2379 struct napi_gro_cb { 2380 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2381 void *frag0; 2382 2383 /* Length of frag0. */ 2384 unsigned int frag0_len; 2385 2386 /* This indicates where we are processing relative to skb->data. */ 2387 int data_offset; 2388 2389 /* This is non-zero if the packet cannot be merged with the new skb. */ 2390 u16 flush; 2391 2392 /* Save the IP ID here and check when we get to the transport layer */ 2393 u16 flush_id; 2394 2395 /* Number of segments aggregated. */ 2396 u16 count; 2397 2398 /* Start offset for remote checksum offload */ 2399 u16 gro_remcsum_start; 2400 2401 /* jiffies when first packet was created/queued */ 2402 unsigned long age; 2403 2404 /* Used in ipv6_gro_receive() and foo-over-udp */ 2405 u16 proto; 2406 2407 /* This is non-zero if the packet may be of the same flow. */ 2408 u8 same_flow:1; 2409 2410 /* Used in tunnel GRO receive */ 2411 u8 encap_mark:1; 2412 2413 /* GRO checksum is valid */ 2414 u8 csum_valid:1; 2415 2416 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2417 u8 csum_cnt:3; 2418 2419 /* Free the skb? */ 2420 u8 free:2; 2421 #define NAPI_GRO_FREE 1 2422 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2423 2424 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2425 u8 is_ipv6:1; 2426 2427 /* Used in GRE, set in fou/gue_gro_receive */ 2428 u8 is_fou:1; 2429 2430 /* Used to determine if flush_id can be ignored */ 2431 u8 is_atomic:1; 2432 2433 /* Number of gro_receive callbacks this packet already went through */ 2434 u8 recursion_counter:4; 2435 2436 /* GRO is done by frag_list pointer chaining. */ 2437 u8 is_flist:1; 2438 2439 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2440 __wsum csum; 2441 2442 /* used in skb_gro_receive() slow path */ 2443 struct sk_buff *last; 2444 }; 2445 2446 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2447 2448 #define GRO_RECURSION_LIMIT 15 2449 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2450 { 2451 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2452 } 2453 2454 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2455 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2456 struct list_head *head, 2457 struct sk_buff *skb) 2458 { 2459 if (unlikely(gro_recursion_inc_test(skb))) { 2460 NAPI_GRO_CB(skb)->flush |= 1; 2461 return NULL; 2462 } 2463 2464 return cb(head, skb); 2465 } 2466 2467 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2468 struct sk_buff *); 2469 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2470 struct sock *sk, 2471 struct list_head *head, 2472 struct sk_buff *skb) 2473 { 2474 if (unlikely(gro_recursion_inc_test(skb))) { 2475 NAPI_GRO_CB(skb)->flush |= 1; 2476 return NULL; 2477 } 2478 2479 return cb(sk, head, skb); 2480 } 2481 2482 struct packet_type { 2483 __be16 type; /* This is really htons(ether_type). */ 2484 bool ignore_outgoing; 2485 struct net_device *dev; /* NULL is wildcarded here */ 2486 int (*func) (struct sk_buff *, 2487 struct net_device *, 2488 struct packet_type *, 2489 struct net_device *); 2490 void (*list_func) (struct list_head *, 2491 struct packet_type *, 2492 struct net_device *); 2493 bool (*id_match)(struct packet_type *ptype, 2494 struct sock *sk); 2495 void *af_packet_priv; 2496 struct list_head list; 2497 }; 2498 2499 struct offload_callbacks { 2500 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2501 netdev_features_t features); 2502 struct sk_buff *(*gro_receive)(struct list_head *head, 2503 struct sk_buff *skb); 2504 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2505 }; 2506 2507 struct packet_offload { 2508 __be16 type; /* This is really htons(ether_type). */ 2509 u16 priority; 2510 struct offload_callbacks callbacks; 2511 struct list_head list; 2512 }; 2513 2514 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2515 struct pcpu_sw_netstats { 2516 u64 rx_packets; 2517 u64 rx_bytes; 2518 u64 tx_packets; 2519 u64 tx_bytes; 2520 struct u64_stats_sync syncp; 2521 } __aligned(4 * sizeof(u64)); 2522 2523 struct pcpu_lstats { 2524 u64_stats_t packets; 2525 u64_stats_t bytes; 2526 struct u64_stats_sync syncp; 2527 } __aligned(2 * sizeof(u64)); 2528 2529 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2530 2531 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2532 { 2533 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2534 2535 u64_stats_update_begin(&lstats->syncp); 2536 u64_stats_add(&lstats->bytes, len); 2537 u64_stats_inc(&lstats->packets); 2538 u64_stats_update_end(&lstats->syncp); 2539 } 2540 2541 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2542 ({ \ 2543 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2544 if (pcpu_stats) { \ 2545 int __cpu; \ 2546 for_each_possible_cpu(__cpu) { \ 2547 typeof(type) *stat; \ 2548 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2549 u64_stats_init(&stat->syncp); \ 2550 } \ 2551 } \ 2552 pcpu_stats; \ 2553 }) 2554 2555 #define netdev_alloc_pcpu_stats(type) \ 2556 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2557 2558 enum netdev_lag_tx_type { 2559 NETDEV_LAG_TX_TYPE_UNKNOWN, 2560 NETDEV_LAG_TX_TYPE_RANDOM, 2561 NETDEV_LAG_TX_TYPE_BROADCAST, 2562 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2563 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2564 NETDEV_LAG_TX_TYPE_HASH, 2565 }; 2566 2567 enum netdev_lag_hash { 2568 NETDEV_LAG_HASH_NONE, 2569 NETDEV_LAG_HASH_L2, 2570 NETDEV_LAG_HASH_L34, 2571 NETDEV_LAG_HASH_L23, 2572 NETDEV_LAG_HASH_E23, 2573 NETDEV_LAG_HASH_E34, 2574 NETDEV_LAG_HASH_UNKNOWN, 2575 }; 2576 2577 struct netdev_lag_upper_info { 2578 enum netdev_lag_tx_type tx_type; 2579 enum netdev_lag_hash hash_type; 2580 }; 2581 2582 struct netdev_lag_lower_state_info { 2583 u8 link_up : 1, 2584 tx_enabled : 1; 2585 }; 2586 2587 #include <linux/notifier.h> 2588 2589 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2590 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2591 * adding new types. 2592 */ 2593 enum netdev_cmd { 2594 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2595 NETDEV_DOWN, 2596 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2597 detected a hardware crash and restarted 2598 - we can use this eg to kick tcp sessions 2599 once done */ 2600 NETDEV_CHANGE, /* Notify device state change */ 2601 NETDEV_REGISTER, 2602 NETDEV_UNREGISTER, 2603 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2604 NETDEV_CHANGEADDR, /* notify after the address change */ 2605 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2606 NETDEV_GOING_DOWN, 2607 NETDEV_CHANGENAME, 2608 NETDEV_FEAT_CHANGE, 2609 NETDEV_BONDING_FAILOVER, 2610 NETDEV_PRE_UP, 2611 NETDEV_PRE_TYPE_CHANGE, 2612 NETDEV_POST_TYPE_CHANGE, 2613 NETDEV_POST_INIT, 2614 NETDEV_RELEASE, 2615 NETDEV_NOTIFY_PEERS, 2616 NETDEV_JOIN, 2617 NETDEV_CHANGEUPPER, 2618 NETDEV_RESEND_IGMP, 2619 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2620 NETDEV_CHANGEINFODATA, 2621 NETDEV_BONDING_INFO, 2622 NETDEV_PRECHANGEUPPER, 2623 NETDEV_CHANGELOWERSTATE, 2624 NETDEV_UDP_TUNNEL_PUSH_INFO, 2625 NETDEV_UDP_TUNNEL_DROP_INFO, 2626 NETDEV_CHANGE_TX_QUEUE_LEN, 2627 NETDEV_CVLAN_FILTER_PUSH_INFO, 2628 NETDEV_CVLAN_FILTER_DROP_INFO, 2629 NETDEV_SVLAN_FILTER_PUSH_INFO, 2630 NETDEV_SVLAN_FILTER_DROP_INFO, 2631 }; 2632 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2633 2634 int register_netdevice_notifier(struct notifier_block *nb); 2635 int unregister_netdevice_notifier(struct notifier_block *nb); 2636 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2637 int unregister_netdevice_notifier_net(struct net *net, 2638 struct notifier_block *nb); 2639 int register_netdevice_notifier_dev_net(struct net_device *dev, 2640 struct notifier_block *nb, 2641 struct netdev_net_notifier *nn); 2642 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2643 struct notifier_block *nb, 2644 struct netdev_net_notifier *nn); 2645 2646 struct netdev_notifier_info { 2647 struct net_device *dev; 2648 struct netlink_ext_ack *extack; 2649 }; 2650 2651 struct netdev_notifier_info_ext { 2652 struct netdev_notifier_info info; /* must be first */ 2653 union { 2654 u32 mtu; 2655 } ext; 2656 }; 2657 2658 struct netdev_notifier_change_info { 2659 struct netdev_notifier_info info; /* must be first */ 2660 unsigned int flags_changed; 2661 }; 2662 2663 struct netdev_notifier_changeupper_info { 2664 struct netdev_notifier_info info; /* must be first */ 2665 struct net_device *upper_dev; /* new upper dev */ 2666 bool master; /* is upper dev master */ 2667 bool linking; /* is the notification for link or unlink */ 2668 void *upper_info; /* upper dev info */ 2669 }; 2670 2671 struct netdev_notifier_changelowerstate_info { 2672 struct netdev_notifier_info info; /* must be first */ 2673 void *lower_state_info; /* is lower dev state */ 2674 }; 2675 2676 struct netdev_notifier_pre_changeaddr_info { 2677 struct netdev_notifier_info info; /* must be first */ 2678 const unsigned char *dev_addr; 2679 }; 2680 2681 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2682 struct net_device *dev) 2683 { 2684 info->dev = dev; 2685 info->extack = NULL; 2686 } 2687 2688 static inline struct net_device * 2689 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2690 { 2691 return info->dev; 2692 } 2693 2694 static inline struct netlink_ext_ack * 2695 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2696 { 2697 return info->extack; 2698 } 2699 2700 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2701 2702 2703 extern rwlock_t dev_base_lock; /* Device list lock */ 2704 2705 #define for_each_netdev(net, d) \ 2706 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2707 #define for_each_netdev_reverse(net, d) \ 2708 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2709 #define for_each_netdev_rcu(net, d) \ 2710 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2711 #define for_each_netdev_safe(net, d, n) \ 2712 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2713 #define for_each_netdev_continue(net, d) \ 2714 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2715 #define for_each_netdev_continue_reverse(net, d) \ 2716 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 2717 dev_list) 2718 #define for_each_netdev_continue_rcu(net, d) \ 2719 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2720 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2721 for_each_netdev_rcu(&init_net, slave) \ 2722 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2723 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2724 2725 static inline struct net_device *next_net_device(struct net_device *dev) 2726 { 2727 struct list_head *lh; 2728 struct net *net; 2729 2730 net = dev_net(dev); 2731 lh = dev->dev_list.next; 2732 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2733 } 2734 2735 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2736 { 2737 struct list_head *lh; 2738 struct net *net; 2739 2740 net = dev_net(dev); 2741 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2742 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2743 } 2744 2745 static inline struct net_device *first_net_device(struct net *net) 2746 { 2747 return list_empty(&net->dev_base_head) ? NULL : 2748 net_device_entry(net->dev_base_head.next); 2749 } 2750 2751 static inline struct net_device *first_net_device_rcu(struct net *net) 2752 { 2753 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2754 2755 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2756 } 2757 2758 int netdev_boot_setup_check(struct net_device *dev); 2759 unsigned long netdev_boot_base(const char *prefix, int unit); 2760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2761 const char *hwaddr); 2762 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2763 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2764 void dev_add_pack(struct packet_type *pt); 2765 void dev_remove_pack(struct packet_type *pt); 2766 void __dev_remove_pack(struct packet_type *pt); 2767 void dev_add_offload(struct packet_offload *po); 2768 void dev_remove_offload(struct packet_offload *po); 2769 2770 int dev_get_iflink(const struct net_device *dev); 2771 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2772 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2773 unsigned short mask); 2774 struct net_device *dev_get_by_name(struct net *net, const char *name); 2775 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2776 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2777 int dev_alloc_name(struct net_device *dev, const char *name); 2778 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2779 void dev_close(struct net_device *dev); 2780 void dev_close_many(struct list_head *head, bool unlink); 2781 void dev_disable_lro(struct net_device *dev); 2782 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2783 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2784 struct net_device *sb_dev); 2785 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2786 struct net_device *sb_dev); 2787 int dev_queue_xmit(struct sk_buff *skb); 2788 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2789 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2790 int register_netdevice(struct net_device *dev); 2791 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2792 void unregister_netdevice_many(struct list_head *head); 2793 static inline void unregister_netdevice(struct net_device *dev) 2794 { 2795 unregister_netdevice_queue(dev, NULL); 2796 } 2797 2798 int netdev_refcnt_read(const struct net_device *dev); 2799 void free_netdev(struct net_device *dev); 2800 void netdev_freemem(struct net_device *dev); 2801 int init_dummy_netdev(struct net_device *dev); 2802 2803 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 2804 struct sk_buff *skb, 2805 bool all_slaves); 2806 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2807 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2808 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2809 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2810 int netdev_get_name(struct net *net, char *name, int ifindex); 2811 int dev_restart(struct net_device *dev); 2812 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2813 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); 2814 2815 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2816 { 2817 return NAPI_GRO_CB(skb)->data_offset; 2818 } 2819 2820 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2821 { 2822 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2823 } 2824 2825 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2826 { 2827 NAPI_GRO_CB(skb)->data_offset += len; 2828 } 2829 2830 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2831 unsigned int offset) 2832 { 2833 return NAPI_GRO_CB(skb)->frag0 + offset; 2834 } 2835 2836 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2837 { 2838 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2839 } 2840 2841 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2842 { 2843 NAPI_GRO_CB(skb)->frag0 = NULL; 2844 NAPI_GRO_CB(skb)->frag0_len = 0; 2845 } 2846 2847 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2848 unsigned int offset) 2849 { 2850 if (!pskb_may_pull(skb, hlen)) 2851 return NULL; 2852 2853 skb_gro_frag0_invalidate(skb); 2854 return skb->data + offset; 2855 } 2856 2857 static inline void *skb_gro_network_header(struct sk_buff *skb) 2858 { 2859 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2860 skb_network_offset(skb); 2861 } 2862 2863 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2864 const void *start, unsigned int len) 2865 { 2866 if (NAPI_GRO_CB(skb)->csum_valid) 2867 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2868 csum_partial(start, len, 0)); 2869 } 2870 2871 /* GRO checksum functions. These are logical equivalents of the normal 2872 * checksum functions (in skbuff.h) except that they operate on the GRO 2873 * offsets and fields in sk_buff. 2874 */ 2875 2876 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2877 2878 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2879 { 2880 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2881 } 2882 2883 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2884 bool zero_okay, 2885 __sum16 check) 2886 { 2887 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2888 skb_checksum_start_offset(skb) < 2889 skb_gro_offset(skb)) && 2890 !skb_at_gro_remcsum_start(skb) && 2891 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2892 (!zero_okay || check)); 2893 } 2894 2895 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2896 __wsum psum) 2897 { 2898 if (NAPI_GRO_CB(skb)->csum_valid && 2899 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2900 return 0; 2901 2902 NAPI_GRO_CB(skb)->csum = psum; 2903 2904 return __skb_gro_checksum_complete(skb); 2905 } 2906 2907 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2908 { 2909 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2910 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2911 NAPI_GRO_CB(skb)->csum_cnt--; 2912 } else { 2913 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2914 * verified a new top level checksum or an encapsulated one 2915 * during GRO. This saves work if we fallback to normal path. 2916 */ 2917 __skb_incr_checksum_unnecessary(skb); 2918 } 2919 } 2920 2921 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2922 compute_pseudo) \ 2923 ({ \ 2924 __sum16 __ret = 0; \ 2925 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2926 __ret = __skb_gro_checksum_validate_complete(skb, \ 2927 compute_pseudo(skb, proto)); \ 2928 if (!__ret) \ 2929 skb_gro_incr_csum_unnecessary(skb); \ 2930 __ret; \ 2931 }) 2932 2933 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2934 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2935 2936 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2937 compute_pseudo) \ 2938 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2939 2940 #define skb_gro_checksum_simple_validate(skb) \ 2941 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2942 2943 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2944 { 2945 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2946 !NAPI_GRO_CB(skb)->csum_valid); 2947 } 2948 2949 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2950 __wsum pseudo) 2951 { 2952 NAPI_GRO_CB(skb)->csum = ~pseudo; 2953 NAPI_GRO_CB(skb)->csum_valid = 1; 2954 } 2955 2956 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ 2957 do { \ 2958 if (__skb_gro_checksum_convert_check(skb)) \ 2959 __skb_gro_checksum_convert(skb, \ 2960 compute_pseudo(skb, proto)); \ 2961 } while (0) 2962 2963 struct gro_remcsum { 2964 int offset; 2965 __wsum delta; 2966 }; 2967 2968 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2969 { 2970 grc->offset = 0; 2971 grc->delta = 0; 2972 } 2973 2974 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2975 unsigned int off, size_t hdrlen, 2976 int start, int offset, 2977 struct gro_remcsum *grc, 2978 bool nopartial) 2979 { 2980 __wsum delta; 2981 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2982 2983 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2984 2985 if (!nopartial) { 2986 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2987 return ptr; 2988 } 2989 2990 ptr = skb_gro_header_fast(skb, off); 2991 if (skb_gro_header_hard(skb, off + plen)) { 2992 ptr = skb_gro_header_slow(skb, off + plen, off); 2993 if (!ptr) 2994 return NULL; 2995 } 2996 2997 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2998 start, offset); 2999 3000 /* Adjust skb->csum since we changed the packet */ 3001 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 3002 3003 grc->offset = off + hdrlen + offset; 3004 grc->delta = delta; 3005 3006 return ptr; 3007 } 3008 3009 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 3010 struct gro_remcsum *grc) 3011 { 3012 void *ptr; 3013 size_t plen = grc->offset + sizeof(u16); 3014 3015 if (!grc->delta) 3016 return; 3017 3018 ptr = skb_gro_header_fast(skb, grc->offset); 3019 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 3020 ptr = skb_gro_header_slow(skb, plen, grc->offset); 3021 if (!ptr) 3022 return; 3023 } 3024 3025 remcsum_unadjust((__sum16 *)ptr, grc->delta); 3026 } 3027 3028 #ifdef CONFIG_XFRM_OFFLOAD 3029 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3030 { 3031 if (PTR_ERR(pp) != -EINPROGRESS) 3032 NAPI_GRO_CB(skb)->flush |= flush; 3033 } 3034 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3035 struct sk_buff *pp, 3036 int flush, 3037 struct gro_remcsum *grc) 3038 { 3039 if (PTR_ERR(pp) != -EINPROGRESS) { 3040 NAPI_GRO_CB(skb)->flush |= flush; 3041 skb_gro_remcsum_cleanup(skb, grc); 3042 skb->remcsum_offload = 0; 3043 } 3044 } 3045 #else 3046 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 3047 { 3048 NAPI_GRO_CB(skb)->flush |= flush; 3049 } 3050 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 3051 struct sk_buff *pp, 3052 int flush, 3053 struct gro_remcsum *grc) 3054 { 3055 NAPI_GRO_CB(skb)->flush |= flush; 3056 skb_gro_remcsum_cleanup(skb, grc); 3057 skb->remcsum_offload = 0; 3058 } 3059 #endif 3060 3061 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3062 unsigned short type, 3063 const void *daddr, const void *saddr, 3064 unsigned int len) 3065 { 3066 if (!dev->header_ops || !dev->header_ops->create) 3067 return 0; 3068 3069 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3070 } 3071 3072 static inline int dev_parse_header(const struct sk_buff *skb, 3073 unsigned char *haddr) 3074 { 3075 const struct net_device *dev = skb->dev; 3076 3077 if (!dev->header_ops || !dev->header_ops->parse) 3078 return 0; 3079 return dev->header_ops->parse(skb, haddr); 3080 } 3081 3082 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3083 { 3084 const struct net_device *dev = skb->dev; 3085 3086 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3087 return 0; 3088 return dev->header_ops->parse_protocol(skb); 3089 } 3090 3091 /* ll_header must have at least hard_header_len allocated */ 3092 static inline bool dev_validate_header(const struct net_device *dev, 3093 char *ll_header, int len) 3094 { 3095 if (likely(len >= dev->hard_header_len)) 3096 return true; 3097 if (len < dev->min_header_len) 3098 return false; 3099 3100 if (capable(CAP_SYS_RAWIO)) { 3101 memset(ll_header + len, 0, dev->hard_header_len - len); 3102 return true; 3103 } 3104 3105 if (dev->header_ops && dev->header_ops->validate) 3106 return dev->header_ops->validate(ll_header, len); 3107 3108 return false; 3109 } 3110 3111 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 3112 int len, int size); 3113 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 3114 static inline int unregister_gifconf(unsigned int family) 3115 { 3116 return register_gifconf(family, NULL); 3117 } 3118 3119 #ifdef CONFIG_NET_FLOW_LIMIT 3120 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 3121 struct sd_flow_limit { 3122 u64 count; 3123 unsigned int num_buckets; 3124 unsigned int history_head; 3125 u16 history[FLOW_LIMIT_HISTORY]; 3126 u8 buckets[]; 3127 }; 3128 3129 extern int netdev_flow_limit_table_len; 3130 #endif /* CONFIG_NET_FLOW_LIMIT */ 3131 3132 /* 3133 * Incoming packets are placed on per-CPU queues 3134 */ 3135 struct softnet_data { 3136 struct list_head poll_list; 3137 struct sk_buff_head process_queue; 3138 3139 /* stats */ 3140 unsigned int processed; 3141 unsigned int time_squeeze; 3142 unsigned int received_rps; 3143 #ifdef CONFIG_RPS 3144 struct softnet_data *rps_ipi_list; 3145 #endif 3146 #ifdef CONFIG_NET_FLOW_LIMIT 3147 struct sd_flow_limit __rcu *flow_limit; 3148 #endif 3149 struct Qdisc *output_queue; 3150 struct Qdisc **output_queue_tailp; 3151 struct sk_buff *completion_queue; 3152 #ifdef CONFIG_XFRM_OFFLOAD 3153 struct sk_buff_head xfrm_backlog; 3154 #endif 3155 /* written and read only by owning cpu: */ 3156 struct { 3157 u16 recursion; 3158 u8 more; 3159 } xmit; 3160 #ifdef CONFIG_RPS 3161 /* input_queue_head should be written by cpu owning this struct, 3162 * and only read by other cpus. Worth using a cache line. 3163 */ 3164 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3165 3166 /* Elements below can be accessed between CPUs for RPS/RFS */ 3167 call_single_data_t csd ____cacheline_aligned_in_smp; 3168 struct softnet_data *rps_ipi_next; 3169 unsigned int cpu; 3170 unsigned int input_queue_tail; 3171 #endif 3172 unsigned int dropped; 3173 struct sk_buff_head input_pkt_queue; 3174 struct napi_struct backlog; 3175 3176 }; 3177 3178 static inline void input_queue_head_incr(struct softnet_data *sd) 3179 { 3180 #ifdef CONFIG_RPS 3181 sd->input_queue_head++; 3182 #endif 3183 } 3184 3185 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3186 unsigned int *qtail) 3187 { 3188 #ifdef CONFIG_RPS 3189 *qtail = ++sd->input_queue_tail; 3190 #endif 3191 } 3192 3193 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3194 3195 static inline int dev_recursion_level(void) 3196 { 3197 return this_cpu_read(softnet_data.xmit.recursion); 3198 } 3199 3200 #define XMIT_RECURSION_LIMIT 8 3201 static inline bool dev_xmit_recursion(void) 3202 { 3203 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3204 XMIT_RECURSION_LIMIT); 3205 } 3206 3207 static inline void dev_xmit_recursion_inc(void) 3208 { 3209 __this_cpu_inc(softnet_data.xmit.recursion); 3210 } 3211 3212 static inline void dev_xmit_recursion_dec(void) 3213 { 3214 __this_cpu_dec(softnet_data.xmit.recursion); 3215 } 3216 3217 void __netif_schedule(struct Qdisc *q); 3218 void netif_schedule_queue(struct netdev_queue *txq); 3219 3220 static inline void netif_tx_schedule_all(struct net_device *dev) 3221 { 3222 unsigned int i; 3223 3224 for (i = 0; i < dev->num_tx_queues; i++) 3225 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3226 } 3227 3228 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3229 { 3230 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3231 } 3232 3233 /** 3234 * netif_start_queue - allow transmit 3235 * @dev: network device 3236 * 3237 * Allow upper layers to call the device hard_start_xmit routine. 3238 */ 3239 static inline void netif_start_queue(struct net_device *dev) 3240 { 3241 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3242 } 3243 3244 static inline void netif_tx_start_all_queues(struct net_device *dev) 3245 { 3246 unsigned int i; 3247 3248 for (i = 0; i < dev->num_tx_queues; i++) { 3249 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3250 netif_tx_start_queue(txq); 3251 } 3252 } 3253 3254 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3255 3256 /** 3257 * netif_wake_queue - restart transmit 3258 * @dev: network device 3259 * 3260 * Allow upper layers to call the device hard_start_xmit routine. 3261 * Used for flow control when transmit resources are available. 3262 */ 3263 static inline void netif_wake_queue(struct net_device *dev) 3264 { 3265 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3266 } 3267 3268 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3269 { 3270 unsigned int i; 3271 3272 for (i = 0; i < dev->num_tx_queues; i++) { 3273 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3274 netif_tx_wake_queue(txq); 3275 } 3276 } 3277 3278 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3279 { 3280 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3281 } 3282 3283 /** 3284 * netif_stop_queue - stop transmitted packets 3285 * @dev: network device 3286 * 3287 * Stop upper layers calling the device hard_start_xmit routine. 3288 * Used for flow control when transmit resources are unavailable. 3289 */ 3290 static inline void netif_stop_queue(struct net_device *dev) 3291 { 3292 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3293 } 3294 3295 void netif_tx_stop_all_queues(struct net_device *dev); 3296 3297 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3298 { 3299 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3300 } 3301 3302 /** 3303 * netif_queue_stopped - test if transmit queue is flowblocked 3304 * @dev: network device 3305 * 3306 * Test if transmit queue on device is currently unable to send. 3307 */ 3308 static inline bool netif_queue_stopped(const struct net_device *dev) 3309 { 3310 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3311 } 3312 3313 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3314 { 3315 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3316 } 3317 3318 static inline bool 3319 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3320 { 3321 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3322 } 3323 3324 static inline bool 3325 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3326 { 3327 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3328 } 3329 3330 /** 3331 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3332 * @dev_queue: pointer to transmit queue 3333 * 3334 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3335 * to give appropriate hint to the CPU. 3336 */ 3337 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3338 { 3339 #ifdef CONFIG_BQL 3340 prefetchw(&dev_queue->dql.num_queued); 3341 #endif 3342 } 3343 3344 /** 3345 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3346 * @dev_queue: pointer to transmit queue 3347 * 3348 * BQL enabled drivers might use this helper in their TX completion path, 3349 * to give appropriate hint to the CPU. 3350 */ 3351 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3352 { 3353 #ifdef CONFIG_BQL 3354 prefetchw(&dev_queue->dql.limit); 3355 #endif 3356 } 3357 3358 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3359 unsigned int bytes) 3360 { 3361 #ifdef CONFIG_BQL 3362 dql_queued(&dev_queue->dql, bytes); 3363 3364 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3365 return; 3366 3367 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3368 3369 /* 3370 * The XOFF flag must be set before checking the dql_avail below, 3371 * because in netdev_tx_completed_queue we update the dql_completed 3372 * before checking the XOFF flag. 3373 */ 3374 smp_mb(); 3375 3376 /* check again in case another CPU has just made room avail */ 3377 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3378 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3379 #endif 3380 } 3381 3382 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3383 * that they should not test BQL status themselves. 3384 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3385 * skb of a batch. 3386 * Returns true if the doorbell must be used to kick the NIC. 3387 */ 3388 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3389 unsigned int bytes, 3390 bool xmit_more) 3391 { 3392 if (xmit_more) { 3393 #ifdef CONFIG_BQL 3394 dql_queued(&dev_queue->dql, bytes); 3395 #endif 3396 return netif_tx_queue_stopped(dev_queue); 3397 } 3398 netdev_tx_sent_queue(dev_queue, bytes); 3399 return true; 3400 } 3401 3402 /** 3403 * netdev_sent_queue - report the number of bytes queued to hardware 3404 * @dev: network device 3405 * @bytes: number of bytes queued to the hardware device queue 3406 * 3407 * Report the number of bytes queued for sending/completion to the network 3408 * device hardware queue. @bytes should be a good approximation and should 3409 * exactly match netdev_completed_queue() @bytes 3410 */ 3411 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3412 { 3413 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3414 } 3415 3416 static inline bool __netdev_sent_queue(struct net_device *dev, 3417 unsigned int bytes, 3418 bool xmit_more) 3419 { 3420 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3421 xmit_more); 3422 } 3423 3424 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3425 unsigned int pkts, unsigned int bytes) 3426 { 3427 #ifdef CONFIG_BQL 3428 if (unlikely(!bytes)) 3429 return; 3430 3431 dql_completed(&dev_queue->dql, bytes); 3432 3433 /* 3434 * Without the memory barrier there is a small possiblity that 3435 * netdev_tx_sent_queue will miss the update and cause the queue to 3436 * be stopped forever 3437 */ 3438 smp_mb(); 3439 3440 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3441 return; 3442 3443 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3444 netif_schedule_queue(dev_queue); 3445 #endif 3446 } 3447 3448 /** 3449 * netdev_completed_queue - report bytes and packets completed by device 3450 * @dev: network device 3451 * @pkts: actual number of packets sent over the medium 3452 * @bytes: actual number of bytes sent over the medium 3453 * 3454 * Report the number of bytes and packets transmitted by the network device 3455 * hardware queue over the physical medium, @bytes must exactly match the 3456 * @bytes amount passed to netdev_sent_queue() 3457 */ 3458 static inline void netdev_completed_queue(struct net_device *dev, 3459 unsigned int pkts, unsigned int bytes) 3460 { 3461 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3462 } 3463 3464 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3465 { 3466 #ifdef CONFIG_BQL 3467 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3468 dql_reset(&q->dql); 3469 #endif 3470 } 3471 3472 /** 3473 * netdev_reset_queue - reset the packets and bytes count of a network device 3474 * @dev_queue: network device 3475 * 3476 * Reset the bytes and packet count of a network device and clear the 3477 * software flow control OFF bit for this network device 3478 */ 3479 static inline void netdev_reset_queue(struct net_device *dev_queue) 3480 { 3481 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3482 } 3483 3484 /** 3485 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3486 * @dev: network device 3487 * @queue_index: given tx queue index 3488 * 3489 * Returns 0 if given tx queue index >= number of device tx queues, 3490 * otherwise returns the originally passed tx queue index. 3491 */ 3492 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3493 { 3494 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3495 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3496 dev->name, queue_index, 3497 dev->real_num_tx_queues); 3498 return 0; 3499 } 3500 3501 return queue_index; 3502 } 3503 3504 /** 3505 * netif_running - test if up 3506 * @dev: network device 3507 * 3508 * Test if the device has been brought up. 3509 */ 3510 static inline bool netif_running(const struct net_device *dev) 3511 { 3512 return test_bit(__LINK_STATE_START, &dev->state); 3513 } 3514 3515 /* 3516 * Routines to manage the subqueues on a device. We only need start, 3517 * stop, and a check if it's stopped. All other device management is 3518 * done at the overall netdevice level. 3519 * Also test the device if we're multiqueue. 3520 */ 3521 3522 /** 3523 * netif_start_subqueue - allow sending packets on subqueue 3524 * @dev: network device 3525 * @queue_index: sub queue index 3526 * 3527 * Start individual transmit queue of a device with multiple transmit queues. 3528 */ 3529 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3530 { 3531 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3532 3533 netif_tx_start_queue(txq); 3534 } 3535 3536 /** 3537 * netif_stop_subqueue - stop sending packets on subqueue 3538 * @dev: network device 3539 * @queue_index: sub queue index 3540 * 3541 * Stop individual transmit queue of a device with multiple transmit queues. 3542 */ 3543 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3544 { 3545 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3546 netif_tx_stop_queue(txq); 3547 } 3548 3549 /** 3550 * netif_subqueue_stopped - test status of subqueue 3551 * @dev: network device 3552 * @queue_index: sub queue index 3553 * 3554 * Check individual transmit queue of a device with multiple transmit queues. 3555 */ 3556 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3557 u16 queue_index) 3558 { 3559 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3560 3561 return netif_tx_queue_stopped(txq); 3562 } 3563 3564 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3565 struct sk_buff *skb) 3566 { 3567 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3568 } 3569 3570 /** 3571 * netif_wake_subqueue - allow sending packets on subqueue 3572 * @dev: network device 3573 * @queue_index: sub queue index 3574 * 3575 * Resume individual transmit queue of a device with multiple transmit queues. 3576 */ 3577 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3578 { 3579 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3580 3581 netif_tx_wake_queue(txq); 3582 } 3583 3584 #ifdef CONFIG_XPS 3585 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3586 u16 index); 3587 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3588 u16 index, bool is_rxqs_map); 3589 3590 /** 3591 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3592 * @j: CPU/Rx queue index 3593 * @mask: bitmask of all cpus/rx queues 3594 * @nr_bits: number of bits in the bitmask 3595 * 3596 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3597 */ 3598 static inline bool netif_attr_test_mask(unsigned long j, 3599 const unsigned long *mask, 3600 unsigned int nr_bits) 3601 { 3602 cpu_max_bits_warn(j, nr_bits); 3603 return test_bit(j, mask); 3604 } 3605 3606 /** 3607 * netif_attr_test_online - Test for online CPU/Rx queue 3608 * @j: CPU/Rx queue index 3609 * @online_mask: bitmask for CPUs/Rx queues that are online 3610 * @nr_bits: number of bits in the bitmask 3611 * 3612 * Returns true if a CPU/Rx queue is online. 3613 */ 3614 static inline bool netif_attr_test_online(unsigned long j, 3615 const unsigned long *online_mask, 3616 unsigned int nr_bits) 3617 { 3618 cpu_max_bits_warn(j, nr_bits); 3619 3620 if (online_mask) 3621 return test_bit(j, online_mask); 3622 3623 return (j < nr_bits); 3624 } 3625 3626 /** 3627 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3628 * @n: CPU/Rx queue index 3629 * @srcp: the cpumask/Rx queue mask pointer 3630 * @nr_bits: number of bits in the bitmask 3631 * 3632 * Returns >= nr_bits if no further CPUs/Rx queues set. 3633 */ 3634 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3635 unsigned int nr_bits) 3636 { 3637 /* -1 is a legal arg here. */ 3638 if (n != -1) 3639 cpu_max_bits_warn(n, nr_bits); 3640 3641 if (srcp) 3642 return find_next_bit(srcp, nr_bits, n + 1); 3643 3644 return n + 1; 3645 } 3646 3647 /** 3648 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3649 * @n: CPU/Rx queue index 3650 * @src1p: the first CPUs/Rx queues mask pointer 3651 * @src2p: the second CPUs/Rx queues mask pointer 3652 * @nr_bits: number of bits in the bitmask 3653 * 3654 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3655 */ 3656 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3657 const unsigned long *src2p, 3658 unsigned int nr_bits) 3659 { 3660 /* -1 is a legal arg here. */ 3661 if (n != -1) 3662 cpu_max_bits_warn(n, nr_bits); 3663 3664 if (src1p && src2p) 3665 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3666 else if (src1p) 3667 return find_next_bit(src1p, nr_bits, n + 1); 3668 else if (src2p) 3669 return find_next_bit(src2p, nr_bits, n + 1); 3670 3671 return n + 1; 3672 } 3673 #else 3674 static inline int netif_set_xps_queue(struct net_device *dev, 3675 const struct cpumask *mask, 3676 u16 index) 3677 { 3678 return 0; 3679 } 3680 3681 static inline int __netif_set_xps_queue(struct net_device *dev, 3682 const unsigned long *mask, 3683 u16 index, bool is_rxqs_map) 3684 { 3685 return 0; 3686 } 3687 #endif 3688 3689 /** 3690 * netif_is_multiqueue - test if device has multiple transmit queues 3691 * @dev: network device 3692 * 3693 * Check if device has multiple transmit queues 3694 */ 3695 static inline bool netif_is_multiqueue(const struct net_device *dev) 3696 { 3697 return dev->num_tx_queues > 1; 3698 } 3699 3700 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3701 3702 #ifdef CONFIG_SYSFS 3703 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3704 #else 3705 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3706 unsigned int rxqs) 3707 { 3708 dev->real_num_rx_queues = rxqs; 3709 return 0; 3710 } 3711 #endif 3712 3713 static inline struct netdev_rx_queue * 3714 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3715 { 3716 return dev->_rx + rxq; 3717 } 3718 3719 #ifdef CONFIG_SYSFS 3720 static inline unsigned int get_netdev_rx_queue_index( 3721 struct netdev_rx_queue *queue) 3722 { 3723 struct net_device *dev = queue->dev; 3724 int index = queue - dev->_rx; 3725 3726 BUG_ON(index >= dev->num_rx_queues); 3727 return index; 3728 } 3729 #endif 3730 3731 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3732 int netif_get_num_default_rss_queues(void); 3733 3734 enum skb_free_reason { 3735 SKB_REASON_CONSUMED, 3736 SKB_REASON_DROPPED, 3737 }; 3738 3739 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3740 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3741 3742 /* 3743 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3744 * interrupt context or with hardware interrupts being disabled. 3745 * (in_irq() || irqs_disabled()) 3746 * 3747 * We provide four helpers that can be used in following contexts : 3748 * 3749 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3750 * replacing kfree_skb(skb) 3751 * 3752 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3753 * Typically used in place of consume_skb(skb) in TX completion path 3754 * 3755 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3756 * replacing kfree_skb(skb) 3757 * 3758 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3759 * and consumed a packet. Used in place of consume_skb(skb) 3760 */ 3761 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3762 { 3763 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3764 } 3765 3766 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3767 { 3768 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3769 } 3770 3771 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3772 { 3773 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3774 } 3775 3776 static inline void dev_consume_skb_any(struct sk_buff *skb) 3777 { 3778 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3779 } 3780 3781 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3782 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3783 int netif_rx(struct sk_buff *skb); 3784 int netif_rx_ni(struct sk_buff *skb); 3785 int netif_receive_skb(struct sk_buff *skb); 3786 int netif_receive_skb_core(struct sk_buff *skb); 3787 void netif_receive_skb_list(struct list_head *head); 3788 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3789 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3790 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3791 gro_result_t napi_gro_frags(struct napi_struct *napi); 3792 struct packet_offload *gro_find_receive_by_type(__be16 type); 3793 struct packet_offload *gro_find_complete_by_type(__be16 type); 3794 3795 static inline void napi_free_frags(struct napi_struct *napi) 3796 { 3797 kfree_skb(napi->skb); 3798 napi->skb = NULL; 3799 } 3800 3801 bool netdev_is_rx_handler_busy(struct net_device *dev); 3802 int netdev_rx_handler_register(struct net_device *dev, 3803 rx_handler_func_t *rx_handler, 3804 void *rx_handler_data); 3805 void netdev_rx_handler_unregister(struct net_device *dev); 3806 3807 bool dev_valid_name(const char *name); 3808 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3809 bool *need_copyout); 3810 int dev_ifconf(struct net *net, struct ifconf *, int); 3811 int dev_ethtool(struct net *net, struct ifreq *); 3812 unsigned int dev_get_flags(const struct net_device *); 3813 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3814 struct netlink_ext_ack *extack); 3815 int dev_change_flags(struct net_device *dev, unsigned int flags, 3816 struct netlink_ext_ack *extack); 3817 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3818 unsigned int gchanges); 3819 int dev_change_name(struct net_device *, const char *); 3820 int dev_set_alias(struct net_device *, const char *, size_t); 3821 int dev_get_alias(const struct net_device *, char *, size_t); 3822 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3823 int __dev_set_mtu(struct net_device *, int); 3824 int dev_validate_mtu(struct net_device *dev, int mtu, 3825 struct netlink_ext_ack *extack); 3826 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3827 struct netlink_ext_ack *extack); 3828 int dev_set_mtu(struct net_device *, int); 3829 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3830 void dev_set_group(struct net_device *, int); 3831 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3832 struct netlink_ext_ack *extack); 3833 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3834 struct netlink_ext_ack *extack); 3835 int dev_change_carrier(struct net_device *, bool new_carrier); 3836 int dev_get_phys_port_id(struct net_device *dev, 3837 struct netdev_phys_item_id *ppid); 3838 int dev_get_phys_port_name(struct net_device *dev, 3839 char *name, size_t len); 3840 int dev_get_port_parent_id(struct net_device *dev, 3841 struct netdev_phys_item_id *ppid, bool recurse); 3842 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3843 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3844 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3845 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 3846 u32 value); 3847 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3848 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3849 struct netdev_queue *txq, int *ret); 3850 3851 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3852 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3853 int fd, int expected_fd, u32 flags); 3854 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3855 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3856 3857 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3858 3859 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3860 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3861 bool is_skb_forwardable(const struct net_device *dev, 3862 const struct sk_buff *skb); 3863 3864 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3865 struct sk_buff *skb) 3866 { 3867 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3868 unlikely(!is_skb_forwardable(dev, skb))) { 3869 atomic_long_inc(&dev->rx_dropped); 3870 kfree_skb(skb); 3871 return NET_RX_DROP; 3872 } 3873 3874 skb_scrub_packet(skb, true); 3875 skb->priority = 0; 3876 return 0; 3877 } 3878 3879 bool dev_nit_active(struct net_device *dev); 3880 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3881 3882 extern int netdev_budget; 3883 extern unsigned int netdev_budget_usecs; 3884 3885 /* Called by rtnetlink.c:rtnl_unlock() */ 3886 void netdev_run_todo(void); 3887 3888 /** 3889 * dev_put - release reference to device 3890 * @dev: network device 3891 * 3892 * Release reference to device to allow it to be freed. 3893 */ 3894 static inline void dev_put(struct net_device *dev) 3895 { 3896 this_cpu_dec(*dev->pcpu_refcnt); 3897 } 3898 3899 /** 3900 * dev_hold - get reference to device 3901 * @dev: network device 3902 * 3903 * Hold reference to device to keep it from being freed. 3904 */ 3905 static inline void dev_hold(struct net_device *dev) 3906 { 3907 this_cpu_inc(*dev->pcpu_refcnt); 3908 } 3909 3910 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3911 * and _off may be called from IRQ context, but it is caller 3912 * who is responsible for serialization of these calls. 3913 * 3914 * The name carrier is inappropriate, these functions should really be 3915 * called netif_lowerlayer_*() because they represent the state of any 3916 * kind of lower layer not just hardware media. 3917 */ 3918 3919 void linkwatch_init_dev(struct net_device *dev); 3920 void linkwatch_fire_event(struct net_device *dev); 3921 void linkwatch_forget_dev(struct net_device *dev); 3922 3923 /** 3924 * netif_carrier_ok - test if carrier present 3925 * @dev: network device 3926 * 3927 * Check if carrier is present on device 3928 */ 3929 static inline bool netif_carrier_ok(const struct net_device *dev) 3930 { 3931 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3932 } 3933 3934 unsigned long dev_trans_start(struct net_device *dev); 3935 3936 void __netdev_watchdog_up(struct net_device *dev); 3937 3938 void netif_carrier_on(struct net_device *dev); 3939 3940 void netif_carrier_off(struct net_device *dev); 3941 3942 /** 3943 * netif_dormant_on - mark device as dormant. 3944 * @dev: network device 3945 * 3946 * Mark device as dormant (as per RFC2863). 3947 * 3948 * The dormant state indicates that the relevant interface is not 3949 * actually in a condition to pass packets (i.e., it is not 'up') but is 3950 * in a "pending" state, waiting for some external event. For "on- 3951 * demand" interfaces, this new state identifies the situation where the 3952 * interface is waiting for events to place it in the up state. 3953 */ 3954 static inline void netif_dormant_on(struct net_device *dev) 3955 { 3956 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3957 linkwatch_fire_event(dev); 3958 } 3959 3960 /** 3961 * netif_dormant_off - set device as not dormant. 3962 * @dev: network device 3963 * 3964 * Device is not in dormant state. 3965 */ 3966 static inline void netif_dormant_off(struct net_device *dev) 3967 { 3968 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3969 linkwatch_fire_event(dev); 3970 } 3971 3972 /** 3973 * netif_dormant - test if device is dormant 3974 * @dev: network device 3975 * 3976 * Check if device is dormant. 3977 */ 3978 static inline bool netif_dormant(const struct net_device *dev) 3979 { 3980 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3981 } 3982 3983 3984 /** 3985 * netif_testing_on - mark device as under test. 3986 * @dev: network device 3987 * 3988 * Mark device as under test (as per RFC2863). 3989 * 3990 * The testing state indicates that some test(s) must be performed on 3991 * the interface. After completion, of the test, the interface state 3992 * will change to up, dormant, or down, as appropriate. 3993 */ 3994 static inline void netif_testing_on(struct net_device *dev) 3995 { 3996 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 3997 linkwatch_fire_event(dev); 3998 } 3999 4000 /** 4001 * netif_testing_off - set device as not under test. 4002 * @dev: network device 4003 * 4004 * Device is not in testing state. 4005 */ 4006 static inline void netif_testing_off(struct net_device *dev) 4007 { 4008 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4009 linkwatch_fire_event(dev); 4010 } 4011 4012 /** 4013 * netif_testing - test if device is under test 4014 * @dev: network device 4015 * 4016 * Check if device is under test 4017 */ 4018 static inline bool netif_testing(const struct net_device *dev) 4019 { 4020 return test_bit(__LINK_STATE_TESTING, &dev->state); 4021 } 4022 4023 4024 /** 4025 * netif_oper_up - test if device is operational 4026 * @dev: network device 4027 * 4028 * Check if carrier is operational 4029 */ 4030 static inline bool netif_oper_up(const struct net_device *dev) 4031 { 4032 return (dev->operstate == IF_OPER_UP || 4033 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4034 } 4035 4036 /** 4037 * netif_device_present - is device available or removed 4038 * @dev: network device 4039 * 4040 * Check if device has not been removed from system. 4041 */ 4042 static inline bool netif_device_present(struct net_device *dev) 4043 { 4044 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4045 } 4046 4047 void netif_device_detach(struct net_device *dev); 4048 4049 void netif_device_attach(struct net_device *dev); 4050 4051 /* 4052 * Network interface message level settings 4053 */ 4054 4055 enum { 4056 NETIF_MSG_DRV_BIT, 4057 NETIF_MSG_PROBE_BIT, 4058 NETIF_MSG_LINK_BIT, 4059 NETIF_MSG_TIMER_BIT, 4060 NETIF_MSG_IFDOWN_BIT, 4061 NETIF_MSG_IFUP_BIT, 4062 NETIF_MSG_RX_ERR_BIT, 4063 NETIF_MSG_TX_ERR_BIT, 4064 NETIF_MSG_TX_QUEUED_BIT, 4065 NETIF_MSG_INTR_BIT, 4066 NETIF_MSG_TX_DONE_BIT, 4067 NETIF_MSG_RX_STATUS_BIT, 4068 NETIF_MSG_PKTDATA_BIT, 4069 NETIF_MSG_HW_BIT, 4070 NETIF_MSG_WOL_BIT, 4071 4072 /* When you add a new bit above, update netif_msg_class_names array 4073 * in net/ethtool/common.c 4074 */ 4075 NETIF_MSG_CLASS_COUNT, 4076 }; 4077 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4078 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4079 4080 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4081 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4082 4083 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4084 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4085 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4086 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4087 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4088 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4089 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4090 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4091 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4092 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4093 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4094 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4095 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4096 #define NETIF_MSG_HW __NETIF_MSG(HW) 4097 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4098 4099 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4100 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4101 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4102 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4103 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4104 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4105 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4106 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4107 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4108 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4109 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4110 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4111 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4112 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4113 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4114 4115 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4116 { 4117 /* use default */ 4118 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4119 return default_msg_enable_bits; 4120 if (debug_value == 0) /* no output */ 4121 return 0; 4122 /* set low N bits */ 4123 return (1U << debug_value) - 1; 4124 } 4125 4126 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4127 { 4128 spin_lock(&txq->_xmit_lock); 4129 txq->xmit_lock_owner = cpu; 4130 } 4131 4132 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4133 { 4134 __acquire(&txq->_xmit_lock); 4135 return true; 4136 } 4137 4138 static inline void __netif_tx_release(struct netdev_queue *txq) 4139 { 4140 __release(&txq->_xmit_lock); 4141 } 4142 4143 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4144 { 4145 spin_lock_bh(&txq->_xmit_lock); 4146 txq->xmit_lock_owner = smp_processor_id(); 4147 } 4148 4149 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4150 { 4151 bool ok = spin_trylock(&txq->_xmit_lock); 4152 if (likely(ok)) 4153 txq->xmit_lock_owner = smp_processor_id(); 4154 return ok; 4155 } 4156 4157 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4158 { 4159 txq->xmit_lock_owner = -1; 4160 spin_unlock(&txq->_xmit_lock); 4161 } 4162 4163 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4164 { 4165 txq->xmit_lock_owner = -1; 4166 spin_unlock_bh(&txq->_xmit_lock); 4167 } 4168 4169 static inline void txq_trans_update(struct netdev_queue *txq) 4170 { 4171 if (txq->xmit_lock_owner != -1) 4172 txq->trans_start = jiffies; 4173 } 4174 4175 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4176 static inline void netif_trans_update(struct net_device *dev) 4177 { 4178 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4179 4180 if (txq->trans_start != jiffies) 4181 txq->trans_start = jiffies; 4182 } 4183 4184 /** 4185 * netif_tx_lock - grab network device transmit lock 4186 * @dev: network device 4187 * 4188 * Get network device transmit lock 4189 */ 4190 static inline void netif_tx_lock(struct net_device *dev) 4191 { 4192 unsigned int i; 4193 int cpu; 4194 4195 spin_lock(&dev->tx_global_lock); 4196 cpu = smp_processor_id(); 4197 for (i = 0; i < dev->num_tx_queues; i++) { 4198 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4199 4200 /* We are the only thread of execution doing a 4201 * freeze, but we have to grab the _xmit_lock in 4202 * order to synchronize with threads which are in 4203 * the ->hard_start_xmit() handler and already 4204 * checked the frozen bit. 4205 */ 4206 __netif_tx_lock(txq, cpu); 4207 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 4208 __netif_tx_unlock(txq); 4209 } 4210 } 4211 4212 static inline void netif_tx_lock_bh(struct net_device *dev) 4213 { 4214 local_bh_disable(); 4215 netif_tx_lock(dev); 4216 } 4217 4218 static inline void netif_tx_unlock(struct net_device *dev) 4219 { 4220 unsigned int i; 4221 4222 for (i = 0; i < dev->num_tx_queues; i++) { 4223 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4224 4225 /* No need to grab the _xmit_lock here. If the 4226 * queue is not stopped for another reason, we 4227 * force a schedule. 4228 */ 4229 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 4230 netif_schedule_queue(txq); 4231 } 4232 spin_unlock(&dev->tx_global_lock); 4233 } 4234 4235 static inline void netif_tx_unlock_bh(struct net_device *dev) 4236 { 4237 netif_tx_unlock(dev); 4238 local_bh_enable(); 4239 } 4240 4241 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4242 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4243 __netif_tx_lock(txq, cpu); \ 4244 } else { \ 4245 __netif_tx_acquire(txq); \ 4246 } \ 4247 } 4248 4249 #define HARD_TX_TRYLOCK(dev, txq) \ 4250 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4251 __netif_tx_trylock(txq) : \ 4252 __netif_tx_acquire(txq)) 4253 4254 #define HARD_TX_UNLOCK(dev, txq) { \ 4255 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4256 __netif_tx_unlock(txq); \ 4257 } else { \ 4258 __netif_tx_release(txq); \ 4259 } \ 4260 } 4261 4262 static inline void netif_tx_disable(struct net_device *dev) 4263 { 4264 unsigned int i; 4265 int cpu; 4266 4267 local_bh_disable(); 4268 cpu = smp_processor_id(); 4269 for (i = 0; i < dev->num_tx_queues; i++) { 4270 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4271 4272 __netif_tx_lock(txq, cpu); 4273 netif_tx_stop_queue(txq); 4274 __netif_tx_unlock(txq); 4275 } 4276 local_bh_enable(); 4277 } 4278 4279 static inline void netif_addr_lock(struct net_device *dev) 4280 { 4281 spin_lock(&dev->addr_list_lock); 4282 } 4283 4284 static inline void netif_addr_lock_nested(struct net_device *dev) 4285 { 4286 spin_lock_nested(&dev->addr_list_lock, dev->lower_level); 4287 } 4288 4289 static inline void netif_addr_lock_bh(struct net_device *dev) 4290 { 4291 spin_lock_bh(&dev->addr_list_lock); 4292 } 4293 4294 static inline void netif_addr_unlock(struct net_device *dev) 4295 { 4296 spin_unlock(&dev->addr_list_lock); 4297 } 4298 4299 static inline void netif_addr_unlock_bh(struct net_device *dev) 4300 { 4301 spin_unlock_bh(&dev->addr_list_lock); 4302 } 4303 4304 /* 4305 * dev_addrs walker. Should be used only for read access. Call with 4306 * rcu_read_lock held. 4307 */ 4308 #define for_each_dev_addr(dev, ha) \ 4309 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4310 4311 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4312 4313 void ether_setup(struct net_device *dev); 4314 4315 /* Support for loadable net-drivers */ 4316 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4317 unsigned char name_assign_type, 4318 void (*setup)(struct net_device *), 4319 unsigned int txqs, unsigned int rxqs); 4320 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4321 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4322 4323 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4324 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4325 count) 4326 4327 int register_netdev(struct net_device *dev); 4328 void unregister_netdev(struct net_device *dev); 4329 4330 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4331 4332 /* General hardware address lists handling functions */ 4333 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4334 struct netdev_hw_addr_list *from_list, int addr_len); 4335 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4336 struct netdev_hw_addr_list *from_list, int addr_len); 4337 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4338 struct net_device *dev, 4339 int (*sync)(struct net_device *, const unsigned char *), 4340 int (*unsync)(struct net_device *, 4341 const unsigned char *)); 4342 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4343 struct net_device *dev, 4344 int (*sync)(struct net_device *, 4345 const unsigned char *, int), 4346 int (*unsync)(struct net_device *, 4347 const unsigned char *, int)); 4348 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4349 struct net_device *dev, 4350 int (*unsync)(struct net_device *, 4351 const unsigned char *, int)); 4352 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4353 struct net_device *dev, 4354 int (*unsync)(struct net_device *, 4355 const unsigned char *)); 4356 void __hw_addr_init(struct netdev_hw_addr_list *list); 4357 4358 /* Functions used for device addresses handling */ 4359 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4360 unsigned char addr_type); 4361 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4362 unsigned char addr_type); 4363 void dev_addr_flush(struct net_device *dev); 4364 int dev_addr_init(struct net_device *dev); 4365 4366 /* Functions used for unicast addresses handling */ 4367 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4368 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4369 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4370 int dev_uc_sync(struct net_device *to, struct net_device *from); 4371 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4372 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4373 void dev_uc_flush(struct net_device *dev); 4374 void dev_uc_init(struct net_device *dev); 4375 4376 /** 4377 * __dev_uc_sync - Synchonize device's unicast list 4378 * @dev: device to sync 4379 * @sync: function to call if address should be added 4380 * @unsync: function to call if address should be removed 4381 * 4382 * Add newly added addresses to the interface, and release 4383 * addresses that have been deleted. 4384 */ 4385 static inline int __dev_uc_sync(struct net_device *dev, 4386 int (*sync)(struct net_device *, 4387 const unsigned char *), 4388 int (*unsync)(struct net_device *, 4389 const unsigned char *)) 4390 { 4391 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4392 } 4393 4394 /** 4395 * __dev_uc_unsync - Remove synchronized addresses from device 4396 * @dev: device to sync 4397 * @unsync: function to call if address should be removed 4398 * 4399 * Remove all addresses that were added to the device by dev_uc_sync(). 4400 */ 4401 static inline void __dev_uc_unsync(struct net_device *dev, 4402 int (*unsync)(struct net_device *, 4403 const unsigned char *)) 4404 { 4405 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4406 } 4407 4408 /* Functions used for multicast addresses handling */ 4409 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4410 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4411 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4412 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4413 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4414 int dev_mc_sync(struct net_device *to, struct net_device *from); 4415 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4416 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4417 void dev_mc_flush(struct net_device *dev); 4418 void dev_mc_init(struct net_device *dev); 4419 4420 /** 4421 * __dev_mc_sync - Synchonize device's multicast list 4422 * @dev: device to sync 4423 * @sync: function to call if address should be added 4424 * @unsync: function to call if address should be removed 4425 * 4426 * Add newly added addresses to the interface, and release 4427 * addresses that have been deleted. 4428 */ 4429 static inline int __dev_mc_sync(struct net_device *dev, 4430 int (*sync)(struct net_device *, 4431 const unsigned char *), 4432 int (*unsync)(struct net_device *, 4433 const unsigned char *)) 4434 { 4435 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4436 } 4437 4438 /** 4439 * __dev_mc_unsync - Remove synchronized addresses from device 4440 * @dev: device to sync 4441 * @unsync: function to call if address should be removed 4442 * 4443 * Remove all addresses that were added to the device by dev_mc_sync(). 4444 */ 4445 static inline void __dev_mc_unsync(struct net_device *dev, 4446 int (*unsync)(struct net_device *, 4447 const unsigned char *)) 4448 { 4449 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4450 } 4451 4452 /* Functions used for secondary unicast and multicast support */ 4453 void dev_set_rx_mode(struct net_device *dev); 4454 void __dev_set_rx_mode(struct net_device *dev); 4455 int dev_set_promiscuity(struct net_device *dev, int inc); 4456 int dev_set_allmulti(struct net_device *dev, int inc); 4457 void netdev_state_change(struct net_device *dev); 4458 void netdev_notify_peers(struct net_device *dev); 4459 void netdev_features_change(struct net_device *dev); 4460 /* Load a device via the kmod */ 4461 void dev_load(struct net *net, const char *name); 4462 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4463 struct rtnl_link_stats64 *storage); 4464 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4465 const struct net_device_stats *netdev_stats); 4466 4467 extern int netdev_max_backlog; 4468 extern int netdev_tstamp_prequeue; 4469 extern int weight_p; 4470 extern int dev_weight_rx_bias; 4471 extern int dev_weight_tx_bias; 4472 extern int dev_rx_weight; 4473 extern int dev_tx_weight; 4474 extern int gro_normal_batch; 4475 4476 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4477 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4478 struct list_head **iter); 4479 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4480 struct list_head **iter); 4481 4482 /* iterate through upper list, must be called under RCU read lock */ 4483 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4484 for (iter = &(dev)->adj_list.upper, \ 4485 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4486 updev; \ 4487 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4488 4489 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4490 int (*fn)(struct net_device *upper_dev, 4491 void *data), 4492 void *data); 4493 4494 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4495 struct net_device *upper_dev); 4496 4497 bool netdev_has_any_upper_dev(struct net_device *dev); 4498 4499 void *netdev_lower_get_next_private(struct net_device *dev, 4500 struct list_head **iter); 4501 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4502 struct list_head **iter); 4503 4504 #define netdev_for_each_lower_private(dev, priv, iter) \ 4505 for (iter = (dev)->adj_list.lower.next, \ 4506 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4507 priv; \ 4508 priv = netdev_lower_get_next_private(dev, &(iter))) 4509 4510 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4511 for (iter = &(dev)->adj_list.lower, \ 4512 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4513 priv; \ 4514 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4515 4516 void *netdev_lower_get_next(struct net_device *dev, 4517 struct list_head **iter); 4518 4519 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4520 for (iter = (dev)->adj_list.lower.next, \ 4521 ldev = netdev_lower_get_next(dev, &(iter)); \ 4522 ldev; \ 4523 ldev = netdev_lower_get_next(dev, &(iter))) 4524 4525 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4526 struct list_head **iter); 4527 int netdev_walk_all_lower_dev(struct net_device *dev, 4528 int (*fn)(struct net_device *lower_dev, 4529 void *data), 4530 void *data); 4531 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4532 int (*fn)(struct net_device *lower_dev, 4533 void *data), 4534 void *data); 4535 4536 void *netdev_adjacent_get_private(struct list_head *adj_list); 4537 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4538 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4539 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4540 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4541 struct netlink_ext_ack *extack); 4542 int netdev_master_upper_dev_link(struct net_device *dev, 4543 struct net_device *upper_dev, 4544 void *upper_priv, void *upper_info, 4545 struct netlink_ext_ack *extack); 4546 void netdev_upper_dev_unlink(struct net_device *dev, 4547 struct net_device *upper_dev); 4548 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4549 struct net_device *new_dev, 4550 struct net_device *dev, 4551 struct netlink_ext_ack *extack); 4552 void netdev_adjacent_change_commit(struct net_device *old_dev, 4553 struct net_device *new_dev, 4554 struct net_device *dev); 4555 void netdev_adjacent_change_abort(struct net_device *old_dev, 4556 struct net_device *new_dev, 4557 struct net_device *dev); 4558 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4559 void *netdev_lower_dev_get_private(struct net_device *dev, 4560 struct net_device *lower_dev); 4561 void netdev_lower_state_changed(struct net_device *lower_dev, 4562 void *lower_state_info); 4563 4564 /* RSS keys are 40 or 52 bytes long */ 4565 #define NETDEV_RSS_KEY_LEN 52 4566 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4567 void netdev_rss_key_fill(void *buffer, size_t len); 4568 4569 int skb_checksum_help(struct sk_buff *skb); 4570 int skb_crc32c_csum_help(struct sk_buff *skb); 4571 int skb_csum_hwoffload_help(struct sk_buff *skb, 4572 const netdev_features_t features); 4573 4574 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4575 netdev_features_t features, bool tx_path); 4576 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4577 netdev_features_t features); 4578 4579 struct netdev_bonding_info { 4580 ifslave slave; 4581 ifbond master; 4582 }; 4583 4584 struct netdev_notifier_bonding_info { 4585 struct netdev_notifier_info info; /* must be first */ 4586 struct netdev_bonding_info bonding_info; 4587 }; 4588 4589 void netdev_bonding_info_change(struct net_device *dev, 4590 struct netdev_bonding_info *bonding_info); 4591 4592 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4593 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4594 #else 4595 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4596 const void *data) 4597 { 4598 } 4599 #endif 4600 4601 static inline 4602 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4603 { 4604 return __skb_gso_segment(skb, features, true); 4605 } 4606 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4607 4608 static inline bool can_checksum_protocol(netdev_features_t features, 4609 __be16 protocol) 4610 { 4611 if (protocol == htons(ETH_P_FCOE)) 4612 return !!(features & NETIF_F_FCOE_CRC); 4613 4614 /* Assume this is an IP checksum (not SCTP CRC) */ 4615 4616 if (features & NETIF_F_HW_CSUM) { 4617 /* Can checksum everything */ 4618 return true; 4619 } 4620 4621 switch (protocol) { 4622 case htons(ETH_P_IP): 4623 return !!(features & NETIF_F_IP_CSUM); 4624 case htons(ETH_P_IPV6): 4625 return !!(features & NETIF_F_IPV6_CSUM); 4626 default: 4627 return false; 4628 } 4629 } 4630 4631 #ifdef CONFIG_BUG 4632 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4633 #else 4634 static inline void netdev_rx_csum_fault(struct net_device *dev, 4635 struct sk_buff *skb) 4636 { 4637 } 4638 #endif 4639 /* rx skb timestamps */ 4640 void net_enable_timestamp(void); 4641 void net_disable_timestamp(void); 4642 4643 #ifdef CONFIG_PROC_FS 4644 int __init dev_proc_init(void); 4645 #else 4646 #define dev_proc_init() 0 4647 #endif 4648 4649 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4650 struct sk_buff *skb, struct net_device *dev, 4651 bool more) 4652 { 4653 __this_cpu_write(softnet_data.xmit.more, more); 4654 return ops->ndo_start_xmit(skb, dev); 4655 } 4656 4657 static inline bool netdev_xmit_more(void) 4658 { 4659 return __this_cpu_read(softnet_data.xmit.more); 4660 } 4661 4662 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4663 struct netdev_queue *txq, bool more) 4664 { 4665 const struct net_device_ops *ops = dev->netdev_ops; 4666 netdev_tx_t rc; 4667 4668 rc = __netdev_start_xmit(ops, skb, dev, more); 4669 if (rc == NETDEV_TX_OK) 4670 txq_trans_update(txq); 4671 4672 return rc; 4673 } 4674 4675 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4676 const void *ns); 4677 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4678 const void *ns); 4679 4680 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4681 { 4682 return netdev_class_create_file_ns(class_attr, NULL); 4683 } 4684 4685 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4686 { 4687 netdev_class_remove_file_ns(class_attr, NULL); 4688 } 4689 4690 extern const struct kobj_ns_type_operations net_ns_type_operations; 4691 4692 const char *netdev_drivername(const struct net_device *dev); 4693 4694 void linkwatch_run_queue(void); 4695 4696 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4697 netdev_features_t f2) 4698 { 4699 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4700 if (f1 & NETIF_F_HW_CSUM) 4701 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4702 else 4703 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4704 } 4705 4706 return f1 & f2; 4707 } 4708 4709 static inline netdev_features_t netdev_get_wanted_features( 4710 struct net_device *dev) 4711 { 4712 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4713 } 4714 netdev_features_t netdev_increment_features(netdev_features_t all, 4715 netdev_features_t one, netdev_features_t mask); 4716 4717 /* Allow TSO being used on stacked device : 4718 * Performing the GSO segmentation before last device 4719 * is a performance improvement. 4720 */ 4721 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4722 netdev_features_t mask) 4723 { 4724 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4725 } 4726 4727 int __netdev_update_features(struct net_device *dev); 4728 void netdev_update_features(struct net_device *dev); 4729 void netdev_change_features(struct net_device *dev); 4730 4731 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4732 struct net_device *dev); 4733 4734 netdev_features_t passthru_features_check(struct sk_buff *skb, 4735 struct net_device *dev, 4736 netdev_features_t features); 4737 netdev_features_t netif_skb_features(struct sk_buff *skb); 4738 4739 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4740 { 4741 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4742 4743 /* check flags correspondence */ 4744 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4745 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4746 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4747 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4748 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4749 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4750 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4751 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4752 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4753 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4754 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4755 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4756 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4757 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4758 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4759 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4760 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4761 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4762 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 4763 4764 return (features & feature) == feature; 4765 } 4766 4767 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4768 { 4769 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4770 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4771 } 4772 4773 static inline bool netif_needs_gso(struct sk_buff *skb, 4774 netdev_features_t features) 4775 { 4776 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4777 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4778 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4779 } 4780 4781 static inline void netif_set_gso_max_size(struct net_device *dev, 4782 unsigned int size) 4783 { 4784 dev->gso_max_size = size; 4785 } 4786 4787 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4788 int pulled_hlen, u16 mac_offset, 4789 int mac_len) 4790 { 4791 skb->protocol = protocol; 4792 skb->encapsulation = 1; 4793 skb_push(skb, pulled_hlen); 4794 skb_reset_transport_header(skb); 4795 skb->mac_header = mac_offset; 4796 skb->network_header = skb->mac_header + mac_len; 4797 skb->mac_len = mac_len; 4798 } 4799 4800 static inline bool netif_is_macsec(const struct net_device *dev) 4801 { 4802 return dev->priv_flags & IFF_MACSEC; 4803 } 4804 4805 static inline bool netif_is_macvlan(const struct net_device *dev) 4806 { 4807 return dev->priv_flags & IFF_MACVLAN; 4808 } 4809 4810 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4811 { 4812 return dev->priv_flags & IFF_MACVLAN_PORT; 4813 } 4814 4815 static inline bool netif_is_bond_master(const struct net_device *dev) 4816 { 4817 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4818 } 4819 4820 static inline bool netif_is_bond_slave(const struct net_device *dev) 4821 { 4822 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4823 } 4824 4825 static inline bool netif_supports_nofcs(struct net_device *dev) 4826 { 4827 return dev->priv_flags & IFF_SUPP_NOFCS; 4828 } 4829 4830 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4831 { 4832 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4833 } 4834 4835 static inline bool netif_is_l3_master(const struct net_device *dev) 4836 { 4837 return dev->priv_flags & IFF_L3MDEV_MASTER; 4838 } 4839 4840 static inline bool netif_is_l3_slave(const struct net_device *dev) 4841 { 4842 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4843 } 4844 4845 static inline bool netif_is_bridge_master(const struct net_device *dev) 4846 { 4847 return dev->priv_flags & IFF_EBRIDGE; 4848 } 4849 4850 static inline bool netif_is_bridge_port(const struct net_device *dev) 4851 { 4852 return dev->priv_flags & IFF_BRIDGE_PORT; 4853 } 4854 4855 static inline bool netif_is_ovs_master(const struct net_device *dev) 4856 { 4857 return dev->priv_flags & IFF_OPENVSWITCH; 4858 } 4859 4860 static inline bool netif_is_ovs_port(const struct net_device *dev) 4861 { 4862 return dev->priv_flags & IFF_OVS_DATAPATH; 4863 } 4864 4865 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 4866 { 4867 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 4868 } 4869 4870 static inline bool netif_is_team_master(const struct net_device *dev) 4871 { 4872 return dev->priv_flags & IFF_TEAM; 4873 } 4874 4875 static inline bool netif_is_team_port(const struct net_device *dev) 4876 { 4877 return dev->priv_flags & IFF_TEAM_PORT; 4878 } 4879 4880 static inline bool netif_is_lag_master(const struct net_device *dev) 4881 { 4882 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4883 } 4884 4885 static inline bool netif_is_lag_port(const struct net_device *dev) 4886 { 4887 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4888 } 4889 4890 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4891 { 4892 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4893 } 4894 4895 static inline bool netif_is_failover(const struct net_device *dev) 4896 { 4897 return dev->priv_flags & IFF_FAILOVER; 4898 } 4899 4900 static inline bool netif_is_failover_slave(const struct net_device *dev) 4901 { 4902 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4903 } 4904 4905 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4906 static inline void netif_keep_dst(struct net_device *dev) 4907 { 4908 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4909 } 4910 4911 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4912 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4913 { 4914 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4915 return dev->priv_flags & IFF_MACSEC; 4916 } 4917 4918 extern struct pernet_operations __net_initdata loopback_net_ops; 4919 4920 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4921 4922 /* netdev_printk helpers, similar to dev_printk */ 4923 4924 static inline const char *netdev_name(const struct net_device *dev) 4925 { 4926 if (!dev->name[0] || strchr(dev->name, '%')) 4927 return "(unnamed net_device)"; 4928 return dev->name; 4929 } 4930 4931 static inline bool netdev_unregistering(const struct net_device *dev) 4932 { 4933 return dev->reg_state == NETREG_UNREGISTERING; 4934 } 4935 4936 static inline const char *netdev_reg_state(const struct net_device *dev) 4937 { 4938 switch (dev->reg_state) { 4939 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4940 case NETREG_REGISTERED: return ""; 4941 case NETREG_UNREGISTERING: return " (unregistering)"; 4942 case NETREG_UNREGISTERED: return " (unregistered)"; 4943 case NETREG_RELEASED: return " (released)"; 4944 case NETREG_DUMMY: return " (dummy)"; 4945 } 4946 4947 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4948 return " (unknown)"; 4949 } 4950 4951 __printf(3, 4) __cold 4952 void netdev_printk(const char *level, const struct net_device *dev, 4953 const char *format, ...); 4954 __printf(2, 3) __cold 4955 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4956 __printf(2, 3) __cold 4957 void netdev_alert(const struct net_device *dev, const char *format, ...); 4958 __printf(2, 3) __cold 4959 void netdev_crit(const struct net_device *dev, const char *format, ...); 4960 __printf(2, 3) __cold 4961 void netdev_err(const struct net_device *dev, const char *format, ...); 4962 __printf(2, 3) __cold 4963 void netdev_warn(const struct net_device *dev, const char *format, ...); 4964 __printf(2, 3) __cold 4965 void netdev_notice(const struct net_device *dev, const char *format, ...); 4966 __printf(2, 3) __cold 4967 void netdev_info(const struct net_device *dev, const char *format, ...); 4968 4969 #define netdev_level_once(level, dev, fmt, ...) \ 4970 do { \ 4971 static bool __print_once __read_mostly; \ 4972 \ 4973 if (!__print_once) { \ 4974 __print_once = true; \ 4975 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4976 } \ 4977 } while (0) 4978 4979 #define netdev_emerg_once(dev, fmt, ...) \ 4980 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4981 #define netdev_alert_once(dev, fmt, ...) \ 4982 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4983 #define netdev_crit_once(dev, fmt, ...) \ 4984 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4985 #define netdev_err_once(dev, fmt, ...) \ 4986 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4987 #define netdev_warn_once(dev, fmt, ...) \ 4988 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4989 #define netdev_notice_once(dev, fmt, ...) \ 4990 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4991 #define netdev_info_once(dev, fmt, ...) \ 4992 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4993 4994 #define MODULE_ALIAS_NETDEV(device) \ 4995 MODULE_ALIAS("netdev-" device) 4996 4997 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 4998 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 4999 #define netdev_dbg(__dev, format, args...) \ 5000 do { \ 5001 dynamic_netdev_dbg(__dev, format, ##args); \ 5002 } while (0) 5003 #elif defined(DEBUG) 5004 #define netdev_dbg(__dev, format, args...) \ 5005 netdev_printk(KERN_DEBUG, __dev, format, ##args) 5006 #else 5007 #define netdev_dbg(__dev, format, args...) \ 5008 ({ \ 5009 if (0) \ 5010 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 5011 }) 5012 #endif 5013 5014 #if defined(VERBOSE_DEBUG) 5015 #define netdev_vdbg netdev_dbg 5016 #else 5017 5018 #define netdev_vdbg(dev, format, args...) \ 5019 ({ \ 5020 if (0) \ 5021 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 5022 0; \ 5023 }) 5024 #endif 5025 5026 /* 5027 * netdev_WARN() acts like dev_printk(), but with the key difference 5028 * of using a WARN/WARN_ON to get the message out, including the 5029 * file/line information and a backtrace. 5030 */ 5031 #define netdev_WARN(dev, format, args...) \ 5032 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5033 netdev_reg_state(dev), ##args) 5034 5035 #define netdev_WARN_ONCE(dev, format, args...) \ 5036 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5037 netdev_reg_state(dev), ##args) 5038 5039 /* netif printk helpers, similar to netdev_printk */ 5040 5041 #define netif_printk(priv, type, level, dev, fmt, args...) \ 5042 do { \ 5043 if (netif_msg_##type(priv)) \ 5044 netdev_printk(level, (dev), fmt, ##args); \ 5045 } while (0) 5046 5047 #define netif_level(level, priv, type, dev, fmt, args...) \ 5048 do { \ 5049 if (netif_msg_##type(priv)) \ 5050 netdev_##level(dev, fmt, ##args); \ 5051 } while (0) 5052 5053 #define netif_emerg(priv, type, dev, fmt, args...) \ 5054 netif_level(emerg, priv, type, dev, fmt, ##args) 5055 #define netif_alert(priv, type, dev, fmt, args...) \ 5056 netif_level(alert, priv, type, dev, fmt, ##args) 5057 #define netif_crit(priv, type, dev, fmt, args...) \ 5058 netif_level(crit, priv, type, dev, fmt, ##args) 5059 #define netif_err(priv, type, dev, fmt, args...) \ 5060 netif_level(err, priv, type, dev, fmt, ##args) 5061 #define netif_warn(priv, type, dev, fmt, args...) \ 5062 netif_level(warn, priv, type, dev, fmt, ##args) 5063 #define netif_notice(priv, type, dev, fmt, args...) \ 5064 netif_level(notice, priv, type, dev, fmt, ##args) 5065 #define netif_info(priv, type, dev, fmt, args...) \ 5066 netif_level(info, priv, type, dev, fmt, ##args) 5067 5068 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 5069 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 5070 #define netif_dbg(priv, type, netdev, format, args...) \ 5071 do { \ 5072 if (netif_msg_##type(priv)) \ 5073 dynamic_netdev_dbg(netdev, format, ##args); \ 5074 } while (0) 5075 #elif defined(DEBUG) 5076 #define netif_dbg(priv, type, dev, format, args...) \ 5077 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 5078 #else 5079 #define netif_dbg(priv, type, dev, format, args...) \ 5080 ({ \ 5081 if (0) \ 5082 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5083 0; \ 5084 }) 5085 #endif 5086 5087 /* if @cond then downgrade to debug, else print at @level */ 5088 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 5089 do { \ 5090 if (cond) \ 5091 netif_dbg(priv, type, netdev, fmt, ##args); \ 5092 else \ 5093 netif_ ## level(priv, type, netdev, fmt, ##args); \ 5094 } while (0) 5095 5096 #if defined(VERBOSE_DEBUG) 5097 #define netif_vdbg netif_dbg 5098 #else 5099 #define netif_vdbg(priv, type, dev, format, args...) \ 5100 ({ \ 5101 if (0) \ 5102 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 5103 0; \ 5104 }) 5105 #endif 5106 5107 /* 5108 * The list of packet types we will receive (as opposed to discard) 5109 * and the routines to invoke. 5110 * 5111 * Why 16. Because with 16 the only overlap we get on a hash of the 5112 * low nibble of the protocol value is RARP/SNAP/X.25. 5113 * 5114 * 0800 IP 5115 * 0001 802.3 5116 * 0002 AX.25 5117 * 0004 802.2 5118 * 8035 RARP 5119 * 0005 SNAP 5120 * 0805 X.25 5121 * 0806 ARP 5122 * 8137 IPX 5123 * 0009 Localtalk 5124 * 86DD IPv6 5125 */ 5126 #define PTYPE_HASH_SIZE (16) 5127 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5128 5129 extern struct net_device *blackhole_netdev; 5130 5131 #endif /* _LINUX_NETDEVICE_H */ 5132