xref: /openbmc/linux/include/linux/netdevice.h (revision 04295878beac396dae47ba93141cae0d9386e7ef)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 struct net_device_stats {
170 	unsigned long	rx_packets;
171 	unsigned long	tx_packets;
172 	unsigned long	rx_bytes;
173 	unsigned long	tx_bytes;
174 	unsigned long	rx_errors;
175 	unsigned long	tx_errors;
176 	unsigned long	rx_dropped;
177 	unsigned long	tx_dropped;
178 	unsigned long	multicast;
179 	unsigned long	collisions;
180 	unsigned long	rx_length_errors;
181 	unsigned long	rx_over_errors;
182 	unsigned long	rx_crc_errors;
183 	unsigned long	rx_frame_errors;
184 	unsigned long	rx_fifo_errors;
185 	unsigned long	rx_missed_errors;
186 	unsigned long	tx_aborted_errors;
187 	unsigned long	tx_carrier_errors;
188 	unsigned long	tx_fifo_errors;
189 	unsigned long	tx_heartbeat_errors;
190 	unsigned long	tx_window_errors;
191 	unsigned long	rx_compressed;
192 	unsigned long	tx_compressed;
193 };
194 
195 
196 #include <linux/cache.h>
197 #include <linux/skbuff.h>
198 
199 #ifdef CONFIG_RPS
200 #include <linux/static_key.h>
201 extern struct static_key_false rps_needed;
202 extern struct static_key_false rfs_needed;
203 #endif
204 
205 struct neighbour;
206 struct neigh_parms;
207 struct sk_buff;
208 
209 struct netdev_hw_addr {
210 	struct list_head	list;
211 	unsigned char		addr[MAX_ADDR_LEN];
212 	unsigned char		type;
213 #define NETDEV_HW_ADDR_T_LAN		1
214 #define NETDEV_HW_ADDR_T_SAN		2
215 #define NETDEV_HW_ADDR_T_UNICAST	3
216 #define NETDEV_HW_ADDR_T_MULTICAST	4
217 	bool			global_use;
218 	int			sync_cnt;
219 	int			refcount;
220 	int			synced;
221 	struct rcu_head		rcu_head;
222 };
223 
224 struct netdev_hw_addr_list {
225 	struct list_head	list;
226 	int			count;
227 };
228 
229 #define netdev_hw_addr_list_count(l) ((l)->count)
230 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231 #define netdev_hw_addr_list_for_each(ha, l) \
232 	list_for_each_entry(ha, &(l)->list, list)
233 
234 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236 #define netdev_for_each_uc_addr(ha, dev) \
237 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238 
239 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241 #define netdev_for_each_mc_addr(ha, dev) \
242 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243 
244 struct hh_cache {
245 	unsigned int	hh_len;
246 	seqlock_t	hh_lock;
247 
248 	/* cached hardware header; allow for machine alignment needs.        */
249 #define HH_DATA_MOD	16
250 #define HH_DATA_OFF(__len) \
251 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252 #define HH_DATA_ALIGN(__len) \
253 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255 };
256 
257 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258  * Alternative is:
259  *   dev->hard_header_len ? (dev->hard_header_len +
260  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261  *
262  * We could use other alignment values, but we must maintain the
263  * relationship HH alignment <= LL alignment.
264  */
265 #define LL_RESERVED_SPACE(dev) \
266 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 
270 struct header_ops {
271 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
272 			   unsigned short type, const void *daddr,
273 			   const void *saddr, unsigned int len);
274 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 	void	(*cache_update)(struct hh_cache *hh,
277 				const struct net_device *dev,
278 				const unsigned char *haddr);
279 	bool	(*validate)(const char *ll_header, unsigned int len);
280 	__be16	(*parse_protocol)(const struct sk_buff *skb);
281 };
282 
283 /* These flag bits are private to the generic network queueing
284  * layer; they may not be explicitly referenced by any other
285  * code.
286  */
287 
288 enum netdev_state_t {
289 	__LINK_STATE_START,
290 	__LINK_STATE_PRESENT,
291 	__LINK_STATE_NOCARRIER,
292 	__LINK_STATE_LINKWATCH_PENDING,
293 	__LINK_STATE_DORMANT,
294 	__LINK_STATE_TESTING,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	int			defer_hard_irqs_count;
336 	unsigned long		gro_bitmask;
337 	int			(*poll)(struct napi_struct *, int);
338 #ifdef CONFIG_NETPOLL
339 	int			poll_owner;
340 #endif
341 	struct net_device	*dev;
342 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
343 	struct sk_buff		*skb;
344 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
345 	int			rx_count; /* length of rx_list */
346 	struct hrtimer		timer;
347 	struct list_head	dev_list;
348 	struct hlist_node	napi_hash_node;
349 	unsigned int		napi_id;
350 };
351 
352 enum {
353 	NAPI_STATE_SCHED,	/* Poll is scheduled */
354 	NAPI_STATE_MISSED,	/* reschedule a napi */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
358 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360 };
361 
362 enum {
363 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
364 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
365 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
366 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
367 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
368 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370 };
371 
372 enum gro_result {
373 	GRO_MERGED,
374 	GRO_MERGED_FREE,
375 	GRO_HELD,
376 	GRO_NORMAL,
377 	GRO_DROP,
378 	GRO_CONSUMED,
379 };
380 typedef enum gro_result gro_result_t;
381 
382 /*
383  * enum rx_handler_result - Possible return values for rx_handlers.
384  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385  * further.
386  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387  * case skb->dev was changed by rx_handler.
388  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390  *
391  * rx_handlers are functions called from inside __netif_receive_skb(), to do
392  * special processing of the skb, prior to delivery to protocol handlers.
393  *
394  * Currently, a net_device can only have a single rx_handler registered. Trying
395  * to register a second rx_handler will return -EBUSY.
396  *
397  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398  * To unregister a rx_handler on a net_device, use
399  * netdev_rx_handler_unregister().
400  *
401  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402  * do with the skb.
403  *
404  * If the rx_handler consumed the skb in some way, it should return
405  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406  * the skb to be delivered in some other way.
407  *
408  * If the rx_handler changed skb->dev, to divert the skb to another
409  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410  * new device will be called if it exists.
411  *
412  * If the rx_handler decides the skb should be ignored, it should return
413  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414  * are registered on exact device (ptype->dev == skb->dev).
415  *
416  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417  * delivered, it should return RX_HANDLER_PASS.
418  *
419  * A device without a registered rx_handler will behave as if rx_handler
420  * returned RX_HANDLER_PASS.
421  */
422 
423 enum rx_handler_result {
424 	RX_HANDLER_CONSUMED,
425 	RX_HANDLER_ANOTHER,
426 	RX_HANDLER_EXACT,
427 	RX_HANDLER_PASS,
428 };
429 typedef enum rx_handler_result rx_handler_result_t;
430 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431 
432 void __napi_schedule(struct napi_struct *n);
433 void __napi_schedule_irqoff(struct napi_struct *n);
434 
435 static inline bool napi_disable_pending(struct napi_struct *n)
436 {
437 	return test_bit(NAPI_STATE_DISABLE, &n->state);
438 }
439 
440 bool napi_schedule_prep(struct napi_struct *n);
441 
442 /**
443  *	napi_schedule - schedule NAPI poll
444  *	@n: NAPI context
445  *
446  * Schedule NAPI poll routine to be called if it is not already
447  * running.
448  */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 	if (napi_schedule_prep(n))
452 		__napi_schedule(n);
453 }
454 
455 /**
456  *	napi_schedule_irqoff - schedule NAPI poll
457  *	@n: NAPI context
458  *
459  * Variant of napi_schedule(), assuming hard irqs are masked.
460  */
461 static inline void napi_schedule_irqoff(struct napi_struct *n)
462 {
463 	if (napi_schedule_prep(n))
464 		__napi_schedule_irqoff(n);
465 }
466 
467 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
468 static inline bool napi_reschedule(struct napi_struct *napi)
469 {
470 	if (napi_schedule_prep(napi)) {
471 		__napi_schedule(napi);
472 		return true;
473 	}
474 	return false;
475 }
476 
477 bool napi_complete_done(struct napi_struct *n, int work_done);
478 /**
479  *	napi_complete - NAPI processing complete
480  *	@n: NAPI context
481  *
482  * Mark NAPI processing as complete.
483  * Consider using napi_complete_done() instead.
484  * Return false if device should avoid rearming interrupts.
485  */
486 static inline bool napi_complete(struct napi_struct *n)
487 {
488 	return napi_complete_done(n, 0);
489 }
490 
491 /**
492  *	napi_disable - prevent NAPI from scheduling
493  *	@n: NAPI context
494  *
495  * Stop NAPI from being scheduled on this context.
496  * Waits till any outstanding processing completes.
497  */
498 void napi_disable(struct napi_struct *n);
499 
500 /**
501  *	napi_enable - enable NAPI scheduling
502  *	@n: NAPI context
503  *
504  * Resume NAPI from being scheduled on this context.
505  * Must be paired with napi_disable.
506  */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 	smp_mb__before_atomic();
511 	clear_bit(NAPI_STATE_SCHED, &n->state);
512 	clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514 
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: NAPI context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	if (IS_ENABLED(CONFIG_SMP))
526 		while (test_bit(NAPI_STATE_SCHED, &n->state))
527 			msleep(1);
528 	else
529 		barrier();
530 }
531 
532 /**
533  *	napi_if_scheduled_mark_missed - if napi is running, set the
534  *	NAPIF_STATE_MISSED
535  *	@n: NAPI context
536  *
537  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
538  * NAPI is scheduled.
539  **/
540 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
541 {
542 	unsigned long val, new;
543 
544 	do {
545 		val = READ_ONCE(n->state);
546 		if (val & NAPIF_STATE_DISABLE)
547 			return true;
548 
549 		if (!(val & NAPIF_STATE_SCHED))
550 			return false;
551 
552 		new = val | NAPIF_STATE_MISSED;
553 	} while (cmpxchg(&n->state, val, new) != val);
554 
555 	return true;
556 }
557 
558 enum netdev_queue_state_t {
559 	__QUEUE_STATE_DRV_XOFF,
560 	__QUEUE_STATE_STACK_XOFF,
561 	__QUEUE_STATE_FROZEN,
562 };
563 
564 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
565 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
566 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
567 
568 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
569 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
570 					QUEUE_STATE_FROZEN)
571 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
572 					QUEUE_STATE_FROZEN)
573 
574 /*
575  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
576  * netif_tx_* functions below are used to manipulate this flag.  The
577  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
578  * queue independently.  The netif_xmit_*stopped functions below are called
579  * to check if the queue has been stopped by the driver or stack (either
580  * of the XOFF bits are set in the state).  Drivers should not need to call
581  * netif_xmit*stopped functions, they should only be using netif_tx_*.
582  */
583 
584 struct netdev_queue {
585 /*
586  * read-mostly part
587  */
588 	struct net_device	*dev;
589 	struct Qdisc __rcu	*qdisc;
590 	struct Qdisc		*qdisc_sleeping;
591 #ifdef CONFIG_SYSFS
592 	struct kobject		kobj;
593 #endif
594 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
595 	int			numa_node;
596 #endif
597 	unsigned long		tx_maxrate;
598 	/*
599 	 * Number of TX timeouts for this queue
600 	 * (/sys/class/net/DEV/Q/trans_timeout)
601 	 */
602 	unsigned long		trans_timeout;
603 
604 	/* Subordinate device that the queue has been assigned to */
605 	struct net_device	*sb_dev;
606 #ifdef CONFIG_XDP_SOCKETS
607 	struct xsk_buff_pool    *pool;
608 #endif
609 /*
610  * write-mostly part
611  */
612 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
613 	int			xmit_lock_owner;
614 	/*
615 	 * Time (in jiffies) of last Tx
616 	 */
617 	unsigned long		trans_start;
618 
619 	unsigned long		state;
620 
621 #ifdef CONFIG_BQL
622 	struct dql		dql;
623 #endif
624 } ____cacheline_aligned_in_smp;
625 
626 extern int sysctl_fb_tunnels_only_for_init_net;
627 extern int sysctl_devconf_inherit_init_net;
628 
629 /*
630  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
631  *                                     == 1 : For initns only
632  *                                     == 2 : For none.
633  */
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return !IS_ENABLED(CONFIG_SYSCTL) ||
637 	       !sysctl_fb_tunnels_only_for_init_net ||
638 	       (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xsk_buff_pool            *pool;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 	TC_SETUP_FT,
852 	TC_SETUP_QDISC_ETS,
853 	TC_SETUP_QDISC_TBF,
854 	TC_SETUP_QDISC_FIFO,
855 };
856 
857 /* These structures hold the attributes of bpf state that are being passed
858  * to the netdevice through the bpf op.
859  */
860 enum bpf_netdev_command {
861 	/* Set or clear a bpf program used in the earliest stages of packet
862 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
863 	 * is responsible for calling bpf_prog_put on any old progs that are
864 	 * stored. In case of error, the callee need not release the new prog
865 	 * reference, but on success it takes ownership and must bpf_prog_put
866 	 * when it is no longer used.
867 	 */
868 	XDP_SETUP_PROG,
869 	XDP_SETUP_PROG_HW,
870 	/* BPF program for offload callbacks, invoked at program load time. */
871 	BPF_OFFLOAD_MAP_ALLOC,
872 	BPF_OFFLOAD_MAP_FREE,
873 	XDP_SETUP_XSK_POOL,
874 };
875 
876 struct bpf_prog_offload_ops;
877 struct netlink_ext_ack;
878 struct xdp_umem;
879 struct xdp_dev_bulk_queue;
880 struct bpf_xdp_link;
881 
882 enum bpf_xdp_mode {
883 	XDP_MODE_SKB = 0,
884 	XDP_MODE_DRV = 1,
885 	XDP_MODE_HW = 2,
886 	__MAX_XDP_MODE
887 };
888 
889 struct bpf_xdp_entity {
890 	struct bpf_prog *prog;
891 	struct bpf_xdp_link *link;
892 };
893 
894 struct netdev_bpf {
895 	enum bpf_netdev_command command;
896 	union {
897 		/* XDP_SETUP_PROG */
898 		struct {
899 			u32 flags;
900 			struct bpf_prog *prog;
901 			struct netlink_ext_ack *extack;
902 		};
903 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904 		struct {
905 			struct bpf_offloaded_map *offmap;
906 		};
907 		/* XDP_SETUP_XSK_POOL */
908 		struct {
909 			struct xsk_buff_pool *pool;
910 			u16 queue_id;
911 		} xsk;
912 	};
913 };
914 
915 /* Flags for ndo_xsk_wakeup. */
916 #define XDP_WAKEUP_RX (1 << 0)
917 #define XDP_WAKEUP_TX (1 << 1)
918 
919 #ifdef CONFIG_XFRM_OFFLOAD
920 struct xfrmdev_ops {
921 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
922 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
923 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
924 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
925 				       struct xfrm_state *x);
926 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
927 };
928 #endif
929 
930 struct dev_ifalias {
931 	struct rcu_head rcuhead;
932 	char ifalias[];
933 };
934 
935 struct devlink;
936 struct tlsdev_ops;
937 
938 struct netdev_name_node {
939 	struct hlist_node hlist;
940 	struct list_head list;
941 	struct net_device *dev;
942 	const char *name;
943 };
944 
945 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
946 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
947 
948 struct netdev_net_notifier {
949 	struct list_head list;
950 	struct notifier_block *nb;
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *	Called when a packet needs to be transmitted.
979  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *	the queue before that can happen; it's for obsolete devices and weird
981  *	corner cases, but the stack really does a non-trivial amount
982  *	of useless work if you return NETDEV_TX_BUSY.
983  *	Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *					   struct net_device *dev
987  *					   netdev_features_t features);
988  *	Called by core transmit path to determine if device is capable of
989  *	performing offload operations on a given packet. This is to give
990  *	the device an opportunity to implement any restrictions that cannot
991  *	be otherwise expressed by feature flags. The check is called with
992  *	the set of features that the stack has calculated and it returns
993  *	those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev);
997  *	Called to decide which queue to use when device supports multiple
998  *	transmit queues.
999  *
1000  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1001  *	This function is called to allow device receiver to make
1002  *	changes to configuration when multicast or promiscuous is enabled.
1003  *
1004  * void (*ndo_set_rx_mode)(struct net_device *dev);
1005  *	This function is called device changes address list filtering.
1006  *	If driver handles unicast address filtering, it should set
1007  *	IFF_UNICAST_FLT in its priv_flags.
1008  *
1009  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1010  *	This function  is called when the Media Access Control address
1011  *	needs to be changed. If this interface is not defined, the
1012  *	MAC address can not be changed.
1013  *
1014  * int (*ndo_validate_addr)(struct net_device *dev);
1015  *	Test if Media Access Control address is valid for the device.
1016  *
1017  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1018  *	Called when a user requests an ioctl which can't be handled by
1019  *	the generic interface code. If not defined ioctls return
1020  *	not supported error code.
1021  *
1022  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1023  *	Used to set network devices bus interface parameters. This interface
1024  *	is retained for legacy reasons; new devices should use the bus
1025  *	interface (PCI) for low level management.
1026  *
1027  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1028  *	Called when a user wants to change the Maximum Transfer Unit
1029  *	of a device.
1030  *
1031  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1032  *	Callback used when the transmitter has not made any progress
1033  *	for dev->watchdog ticks.
1034  *
1035  * void (*ndo_get_stats64)(struct net_device *dev,
1036  *                         struct rtnl_link_stats64 *storage);
1037  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038  *	Called when a user wants to get the network device usage
1039  *	statistics. Drivers must do one of the following:
1040  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1041  *	   rtnl_link_stats64 structure passed by the caller.
1042  *	2. Define @ndo_get_stats to update a net_device_stats structure
1043  *	   (which should normally be dev->stats) and return a pointer to
1044  *	   it. The structure may be changed asynchronously only if each
1045  *	   field is written atomically.
1046  *	3. Update dev->stats asynchronously and atomically, and define
1047  *	   neither operation.
1048  *
1049  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1050  *	Return true if this device supports offload stats of this attr_id.
1051  *
1052  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1053  *	void *attr_data)
1054  *	Get statistics for offload operations by attr_id. Write it into the
1055  *	attr_data pointer.
1056  *
1057  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1058  *	If device supports VLAN filtering this function is called when a
1059  *	VLAN id is registered.
1060  *
1061  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1062  *	If device supports VLAN filtering this function is called when a
1063  *	VLAN id is unregistered.
1064  *
1065  * void (*ndo_poll_controller)(struct net_device *dev);
1066  *
1067  *	SR-IOV management functions.
1068  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1069  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1070  *			  u8 qos, __be16 proto);
1071  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1072  *			  int max_tx_rate);
1073  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1074  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_get_vf_config)(struct net_device *dev,
1076  *			    int vf, struct ifla_vf_info *ivf);
1077  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1078  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1079  *			  struct nlattr *port[]);
1080  *
1081  *      Enable or disable the VF ability to query its RSS Redirection Table and
1082  *      Hash Key. This is needed since on some devices VF share this information
1083  *      with PF and querying it may introduce a theoretical security risk.
1084  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1085  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1086  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1087  *		       void *type_data);
1088  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1089  *	This is always called from the stack with the rtnl lock held and netif
1090  *	tx queues stopped. This allows the netdevice to perform queue
1091  *	management safely.
1092  *
1093  *	Fiber Channel over Ethernet (FCoE) offload functions.
1094  * int (*ndo_fcoe_enable)(struct net_device *dev);
1095  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1096  *	so the underlying device can perform whatever needed configuration or
1097  *	initialization to support acceleration of FCoE traffic.
1098  *
1099  * int (*ndo_fcoe_disable)(struct net_device *dev);
1100  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1101  *	so the underlying device can perform whatever needed clean-ups to
1102  *	stop supporting acceleration of FCoE traffic.
1103  *
1104  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1105  *			     struct scatterlist *sgl, unsigned int sgc);
1106  *	Called when the FCoE Initiator wants to initialize an I/O that
1107  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1108  *	perform necessary setup and returns 1 to indicate the device is set up
1109  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1110  *
1111  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1112  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1113  *	indicated by the FC exchange id 'xid', so the underlying device can
1114  *	clean up and reuse resources for later DDP requests.
1115  *
1116  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1117  *			      struct scatterlist *sgl, unsigned int sgc);
1118  *	Called when the FCoE Target wants to initialize an I/O that
1119  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1120  *	perform necessary setup and returns 1 to indicate the device is set up
1121  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1122  *
1123  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1124  *			       struct netdev_fcoe_hbainfo *hbainfo);
1125  *	Called when the FCoE Protocol stack wants information on the underlying
1126  *	device. This information is utilized by the FCoE protocol stack to
1127  *	register attributes with Fiber Channel management service as per the
1128  *	FC-GS Fabric Device Management Information(FDMI) specification.
1129  *
1130  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1131  *	Called when the underlying device wants to override default World Wide
1132  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1133  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1134  *	protocol stack to use.
1135  *
1136  *	RFS acceleration.
1137  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1138  *			    u16 rxq_index, u32 flow_id);
1139  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1140  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1141  *	Return the filter ID on success, or a negative error code.
1142  *
1143  *	Slave management functions (for bridge, bonding, etc).
1144  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1145  *	Called to make another netdev an underling.
1146  *
1147  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1148  *	Called to release previously enslaved netdev.
1149  *
1150  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1151  *					    struct sk_buff *skb,
1152  *					    bool all_slaves);
1153  *	Get the xmit slave of master device. If all_slaves is true, function
1154  *	assume all the slaves can transmit.
1155  *
1156  *      Feature/offload setting functions.
1157  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1158  *		netdev_features_t features);
1159  *	Adjusts the requested feature flags according to device-specific
1160  *	constraints, and returns the resulting flags. Must not modify
1161  *	the device state.
1162  *
1163  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1164  *	Called to update device configuration to new features. Passed
1165  *	feature set might be less than what was returned by ndo_fix_features()).
1166  *	Must return >0 or -errno if it changed dev->features itself.
1167  *
1168  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1169  *		      struct net_device *dev,
1170  *		      const unsigned char *addr, u16 vid, u16 flags,
1171  *		      struct netlink_ext_ack *extack);
1172  *	Adds an FDB entry to dev for addr.
1173  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1174  *		      struct net_device *dev,
1175  *		      const unsigned char *addr, u16 vid)
1176  *	Deletes the FDB entry from dev coresponding to addr.
1177  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1178  *		       struct net_device *dev, struct net_device *filter_dev,
1179  *		       int *idx)
1180  *	Used to add FDB entries to dump requests. Implementers should add
1181  *	entries to skb and update idx with the number of entries.
1182  *
1183  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1184  *			     u16 flags, struct netlink_ext_ack *extack)
1185  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1186  *			     struct net_device *dev, u32 filter_mask,
1187  *			     int nlflags)
1188  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1189  *			     u16 flags);
1190  *
1191  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1192  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1193  *	which do not represent real hardware may define this to allow their
1194  *	userspace components to manage their virtual carrier state. Devices
1195  *	that determine carrier state from physical hardware properties (eg
1196  *	network cables) or protocol-dependent mechanisms (eg
1197  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1198  *
1199  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1200  *			       struct netdev_phys_item_id *ppid);
1201  *	Called to get ID of physical port of this device. If driver does
1202  *	not implement this, it is assumed that the hw is not able to have
1203  *	multiple net devices on single physical port.
1204  *
1205  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1206  *				 struct netdev_phys_item_id *ppid)
1207  *	Called to get the parent ID of the physical port of this device.
1208  *
1209  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1210  *			      struct udp_tunnel_info *ti);
1211  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1212  *	address family that a UDP tunnel is listnening to. It is called only
1213  *	when a new port starts listening. The operation is protected by the
1214  *	RTNL.
1215  *
1216  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1217  *			      struct udp_tunnel_info *ti);
1218  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1219  *	address family that the UDP tunnel is not listening to anymore. The
1220  *	operation is protected by the RTNL.
1221  *
1222  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1223  *				 struct net_device *dev)
1224  *	Called by upper layer devices to accelerate switching or other
1225  *	station functionality into hardware. 'pdev is the lowerdev
1226  *	to use for the offload and 'dev' is the net device that will
1227  *	back the offload. Returns a pointer to the private structure
1228  *	the upper layer will maintain.
1229  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1230  *	Called by upper layer device to delete the station created
1231  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1232  *	the station and priv is the structure returned by the add
1233  *	operation.
1234  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1235  *			     int queue_index, u32 maxrate);
1236  *	Called when a user wants to set a max-rate limitation of specific
1237  *	TX queue.
1238  * int (*ndo_get_iflink)(const struct net_device *dev);
1239  *	Called to get the iflink value of this device.
1240  * void (*ndo_change_proto_down)(struct net_device *dev,
1241  *				 bool proto_down);
1242  *	This function is used to pass protocol port error state information
1243  *	to the switch driver. The switch driver can react to the proto_down
1244  *      by doing a phys down on the associated switch port.
1245  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1246  *	This function is used to get egress tunnel information for given skb.
1247  *	This is useful for retrieving outer tunnel header parameters while
1248  *	sampling packet.
1249  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1250  *	This function is used to specify the headroom that the skb must
1251  *	consider when allocation skb during packet reception. Setting
1252  *	appropriate rx headroom value allows avoiding skb head copy on
1253  *	forward. Setting a negative value resets the rx headroom to the
1254  *	default value.
1255  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1256  *	This function is used to set or query state related to XDP on the
1257  *	netdevice and manage BPF offload. See definition of
1258  *	enum bpf_netdev_command for details.
1259  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1260  *			u32 flags);
1261  *	This function is used to submit @n XDP packets for transmit on a
1262  *	netdevice. Returns number of frames successfully transmitted, frames
1263  *	that got dropped are freed/returned via xdp_return_frame().
1264  *	Returns negative number, means general error invoking ndo, meaning
1265  *	no frames were xmit'ed and core-caller will free all frames.
1266  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1267  *      This function is used to wake up the softirq, ksoftirqd or kthread
1268  *	responsible for sending and/or receiving packets on a specific
1269  *	queue id bound to an AF_XDP socket. The flags field specifies if
1270  *	only RX, only Tx, or both should be woken up using the flags
1271  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1272  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1273  *	Get devlink port instance associated with a given netdev.
1274  *	Called with a reference on the netdevice and devlink locks only,
1275  *	rtnl_lock is not held.
1276  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1277  *			 int cmd);
1278  *	Add, change, delete or get information on an IPv4 tunnel.
1279  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1280  *	If a device is paired with a peer device, return the peer instance.
1281  *	The caller must be under RCU read context.
1282  */
1283 struct net_device_ops {
1284 	int			(*ndo_init)(struct net_device *dev);
1285 	void			(*ndo_uninit)(struct net_device *dev);
1286 	int			(*ndo_open)(struct net_device *dev);
1287 	int			(*ndo_stop)(struct net_device *dev);
1288 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1289 						  struct net_device *dev);
1290 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1291 						      struct net_device *dev,
1292 						      netdev_features_t features);
1293 	u16			(*ndo_select_queue)(struct net_device *dev,
1294 						    struct sk_buff *skb,
1295 						    struct net_device *sb_dev);
1296 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1297 						       int flags);
1298 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1299 	int			(*ndo_set_mac_address)(struct net_device *dev,
1300 						       void *addr);
1301 	int			(*ndo_validate_addr)(struct net_device *dev);
1302 	int			(*ndo_do_ioctl)(struct net_device *dev,
1303 					        struct ifreq *ifr, int cmd);
1304 	int			(*ndo_set_config)(struct net_device *dev,
1305 					          struct ifmap *map);
1306 	int			(*ndo_change_mtu)(struct net_device *dev,
1307 						  int new_mtu);
1308 	int			(*ndo_neigh_setup)(struct net_device *dev,
1309 						   struct neigh_parms *);
1310 	void			(*ndo_tx_timeout) (struct net_device *dev,
1311 						   unsigned int txqueue);
1312 
1313 	void			(*ndo_get_stats64)(struct net_device *dev,
1314 						   struct rtnl_link_stats64 *storage);
1315 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1316 	int			(*ndo_get_offload_stats)(int attr_id,
1317 							 const struct net_device *dev,
1318 							 void *attr_data);
1319 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1320 
1321 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1322 						       __be16 proto, u16 vid);
1323 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1324 						        __be16 proto, u16 vid);
1325 #ifdef CONFIG_NET_POLL_CONTROLLER
1326 	void                    (*ndo_poll_controller)(struct net_device *dev);
1327 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1328 						     struct netpoll_info *info);
1329 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1330 #endif
1331 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1332 						  int queue, u8 *mac);
1333 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1334 						   int queue, u16 vlan,
1335 						   u8 qos, __be16 proto);
1336 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1337 						   int vf, int min_tx_rate,
1338 						   int max_tx_rate);
1339 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1340 						       int vf, bool setting);
1341 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1342 						    int vf, bool setting);
1343 	int			(*ndo_get_vf_config)(struct net_device *dev,
1344 						     int vf,
1345 						     struct ifla_vf_info *ivf);
1346 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1347 							 int vf, int link_state);
1348 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1349 						    int vf,
1350 						    struct ifla_vf_stats
1351 						    *vf_stats);
1352 	int			(*ndo_set_vf_port)(struct net_device *dev,
1353 						   int vf,
1354 						   struct nlattr *port[]);
1355 	int			(*ndo_get_vf_port)(struct net_device *dev,
1356 						   int vf, struct sk_buff *skb);
1357 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1358 						   int vf,
1359 						   struct ifla_vf_guid *node_guid,
1360 						   struct ifla_vf_guid *port_guid);
1361 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1362 						   int vf, u64 guid,
1363 						   int guid_type);
1364 	int			(*ndo_set_vf_rss_query_en)(
1365 						   struct net_device *dev,
1366 						   int vf, bool setting);
1367 	int			(*ndo_setup_tc)(struct net_device *dev,
1368 						enum tc_setup_type type,
1369 						void *type_data);
1370 #if IS_ENABLED(CONFIG_FCOE)
1371 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1372 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1373 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1374 						      u16 xid,
1375 						      struct scatterlist *sgl,
1376 						      unsigned int sgc);
1377 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1378 						     u16 xid);
1379 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1380 						       u16 xid,
1381 						       struct scatterlist *sgl,
1382 						       unsigned int sgc);
1383 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1384 							struct netdev_fcoe_hbainfo *hbainfo);
1385 #endif
1386 
1387 #if IS_ENABLED(CONFIG_LIBFCOE)
1388 #define NETDEV_FCOE_WWNN 0
1389 #define NETDEV_FCOE_WWPN 1
1390 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1391 						    u64 *wwn, int type);
1392 #endif
1393 
1394 #ifdef CONFIG_RFS_ACCEL
1395 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1396 						     const struct sk_buff *skb,
1397 						     u16 rxq_index,
1398 						     u32 flow_id);
1399 #endif
1400 	int			(*ndo_add_slave)(struct net_device *dev,
1401 						 struct net_device *slave_dev,
1402 						 struct netlink_ext_ack *extack);
1403 	int			(*ndo_del_slave)(struct net_device *dev,
1404 						 struct net_device *slave_dev);
1405 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1406 						      struct sk_buff *skb,
1407 						      bool all_slaves);
1408 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1409 						    netdev_features_t features);
1410 	int			(*ndo_set_features)(struct net_device *dev,
1411 						    netdev_features_t features);
1412 	int			(*ndo_neigh_construct)(struct net_device *dev,
1413 						       struct neighbour *n);
1414 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1415 						     struct neighbour *n);
1416 
1417 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1418 					       struct nlattr *tb[],
1419 					       struct net_device *dev,
1420 					       const unsigned char *addr,
1421 					       u16 vid,
1422 					       u16 flags,
1423 					       struct netlink_ext_ack *extack);
1424 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1425 					       struct nlattr *tb[],
1426 					       struct net_device *dev,
1427 					       const unsigned char *addr,
1428 					       u16 vid);
1429 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1430 						struct netlink_callback *cb,
1431 						struct net_device *dev,
1432 						struct net_device *filter_dev,
1433 						int *idx);
1434 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1435 					       struct nlattr *tb[],
1436 					       struct net_device *dev,
1437 					       const unsigned char *addr,
1438 					       u16 vid, u32 portid, u32 seq,
1439 					       struct netlink_ext_ack *extack);
1440 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1441 						      struct nlmsghdr *nlh,
1442 						      u16 flags,
1443 						      struct netlink_ext_ack *extack);
1444 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1445 						      u32 pid, u32 seq,
1446 						      struct net_device *dev,
1447 						      u32 filter_mask,
1448 						      int nlflags);
1449 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1450 						      struct nlmsghdr *nlh,
1451 						      u16 flags);
1452 	int			(*ndo_change_carrier)(struct net_device *dev,
1453 						      bool new_carrier);
1454 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1455 							struct netdev_phys_item_id *ppid);
1456 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1457 							  struct netdev_phys_item_id *ppid);
1458 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1459 							  char *name, size_t len);
1460 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1461 						      struct udp_tunnel_info *ti);
1462 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1463 						      struct udp_tunnel_info *ti);
1464 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1465 							struct net_device *dev);
1466 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1467 							void *priv);
1468 
1469 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1470 						      int queue_index,
1471 						      u32 maxrate);
1472 	int			(*ndo_get_iflink)(const struct net_device *dev);
1473 	int			(*ndo_change_proto_down)(struct net_device *dev,
1474 							 bool proto_down);
1475 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1476 						       struct sk_buff *skb);
1477 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1478 						       int needed_headroom);
1479 	int			(*ndo_bpf)(struct net_device *dev,
1480 					   struct netdev_bpf *bpf);
1481 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1482 						struct xdp_frame **xdp,
1483 						u32 flags);
1484 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1485 						  u32 queue_id, u32 flags);
1486 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1487 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1488 						  struct ip_tunnel_parm *p, int cmd);
1489 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1490 };
1491 
1492 /**
1493  * enum netdev_priv_flags - &struct net_device priv_flags
1494  *
1495  * These are the &struct net_device, they are only set internally
1496  * by drivers and used in the kernel. These flags are invisible to
1497  * userspace; this means that the order of these flags can change
1498  * during any kernel release.
1499  *
1500  * You should have a pretty good reason to be extending these flags.
1501  *
1502  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1503  * @IFF_EBRIDGE: Ethernet bridging device
1504  * @IFF_BONDING: bonding master or slave
1505  * @IFF_ISATAP: ISATAP interface (RFC4214)
1506  * @IFF_WAN_HDLC: WAN HDLC device
1507  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1508  *	release skb->dst
1509  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1510  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1511  * @IFF_MACVLAN_PORT: device used as macvlan port
1512  * @IFF_BRIDGE_PORT: device used as bridge port
1513  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1514  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1515  * @IFF_UNICAST_FLT: Supports unicast filtering
1516  * @IFF_TEAM_PORT: device used as team port
1517  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1518  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1519  *	change when it's running
1520  * @IFF_MACVLAN: Macvlan device
1521  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1522  *	underlying stacked devices
1523  * @IFF_L3MDEV_MASTER: device is an L3 master device
1524  * @IFF_NO_QUEUE: device can run without qdisc attached
1525  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1526  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1527  * @IFF_TEAM: device is a team device
1528  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1529  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1530  *	entity (i.e. the master device for bridged veth)
1531  * @IFF_MACSEC: device is a MACsec device
1532  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1533  * @IFF_FAILOVER: device is a failover master device
1534  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1535  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1536  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1537  */
1538 enum netdev_priv_flags {
1539 	IFF_802_1Q_VLAN			= 1<<0,
1540 	IFF_EBRIDGE			= 1<<1,
1541 	IFF_BONDING			= 1<<2,
1542 	IFF_ISATAP			= 1<<3,
1543 	IFF_WAN_HDLC			= 1<<4,
1544 	IFF_XMIT_DST_RELEASE		= 1<<5,
1545 	IFF_DONT_BRIDGE			= 1<<6,
1546 	IFF_DISABLE_NETPOLL		= 1<<7,
1547 	IFF_MACVLAN_PORT		= 1<<8,
1548 	IFF_BRIDGE_PORT			= 1<<9,
1549 	IFF_OVS_DATAPATH		= 1<<10,
1550 	IFF_TX_SKB_SHARING		= 1<<11,
1551 	IFF_UNICAST_FLT			= 1<<12,
1552 	IFF_TEAM_PORT			= 1<<13,
1553 	IFF_SUPP_NOFCS			= 1<<14,
1554 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1555 	IFF_MACVLAN			= 1<<16,
1556 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1557 	IFF_L3MDEV_MASTER		= 1<<18,
1558 	IFF_NO_QUEUE			= 1<<19,
1559 	IFF_OPENVSWITCH			= 1<<20,
1560 	IFF_L3MDEV_SLAVE		= 1<<21,
1561 	IFF_TEAM			= 1<<22,
1562 	IFF_RXFH_CONFIGURED		= 1<<23,
1563 	IFF_PHONY_HEADROOM		= 1<<24,
1564 	IFF_MACSEC			= 1<<25,
1565 	IFF_NO_RX_HANDLER		= 1<<26,
1566 	IFF_FAILOVER			= 1<<27,
1567 	IFF_FAILOVER_SLAVE		= 1<<28,
1568 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1569 	IFF_LIVE_RENAME_OK		= 1<<30,
1570 };
1571 
1572 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1573 #define IFF_EBRIDGE			IFF_EBRIDGE
1574 #define IFF_BONDING			IFF_BONDING
1575 #define IFF_ISATAP			IFF_ISATAP
1576 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1577 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1578 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1579 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1580 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1581 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1582 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1583 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1584 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1585 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1586 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1587 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1588 #define IFF_MACVLAN			IFF_MACVLAN
1589 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1590 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1591 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1592 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1593 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1594 #define IFF_TEAM			IFF_TEAM
1595 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1596 #define IFF_MACSEC			IFF_MACSEC
1597 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1598 #define IFF_FAILOVER			IFF_FAILOVER
1599 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1600 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1601 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1602 
1603 /**
1604  *	struct net_device - The DEVICE structure.
1605  *
1606  *	Actually, this whole structure is a big mistake.  It mixes I/O
1607  *	data with strictly "high-level" data, and it has to know about
1608  *	almost every data structure used in the INET module.
1609  *
1610  *	@name:	This is the first field of the "visible" part of this structure
1611  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1612  *		of the interface.
1613  *
1614  *	@name_node:	Name hashlist node
1615  *	@ifalias:	SNMP alias
1616  *	@mem_end:	Shared memory end
1617  *	@mem_start:	Shared memory start
1618  *	@base_addr:	Device I/O address
1619  *	@irq:		Device IRQ number
1620  *
1621  *	@state:		Generic network queuing layer state, see netdev_state_t
1622  *	@dev_list:	The global list of network devices
1623  *	@napi_list:	List entry used for polling NAPI devices
1624  *	@unreg_list:	List entry  when we are unregistering the
1625  *			device; see the function unregister_netdev
1626  *	@close_list:	List entry used when we are closing the device
1627  *	@ptype_all:     Device-specific packet handlers for all protocols
1628  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1629  *
1630  *	@adj_list:	Directly linked devices, like slaves for bonding
1631  *	@features:	Currently active device features
1632  *	@hw_features:	User-changeable features
1633  *
1634  *	@wanted_features:	User-requested features
1635  *	@vlan_features:		Mask of features inheritable by VLAN devices
1636  *
1637  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1638  *				This field indicates what encapsulation
1639  *				offloads the hardware is capable of doing,
1640  *				and drivers will need to set them appropriately.
1641  *
1642  *	@mpls_features:	Mask of features inheritable by MPLS
1643  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1644  *
1645  *	@ifindex:	interface index
1646  *	@group:		The group the device belongs to
1647  *
1648  *	@stats:		Statistics struct, which was left as a legacy, use
1649  *			rtnl_link_stats64 instead
1650  *
1651  *	@rx_dropped:	Dropped packets by core network,
1652  *			do not use this in drivers
1653  *	@tx_dropped:	Dropped packets by core network,
1654  *			do not use this in drivers
1655  *	@rx_nohandler:	nohandler dropped packets by core network on
1656  *			inactive devices, do not use this in drivers
1657  *	@carrier_up_count:	Number of times the carrier has been up
1658  *	@carrier_down_count:	Number of times the carrier has been down
1659  *
1660  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1661  *				instead of ioctl,
1662  *				see <net/iw_handler.h> for details.
1663  *	@wireless_data:	Instance data managed by the core of wireless extensions
1664  *
1665  *	@netdev_ops:	Includes several pointers to callbacks,
1666  *			if one wants to override the ndo_*() functions
1667  *	@ethtool_ops:	Management operations
1668  *	@l3mdev_ops:	Layer 3 master device operations
1669  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1670  *			discovery handling. Necessary for e.g. 6LoWPAN.
1671  *	@xfrmdev_ops:	Transformation offload operations
1672  *	@tlsdev_ops:	Transport Layer Security offload operations
1673  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1674  *			of Layer 2 headers.
1675  *
1676  *	@flags:		Interface flags (a la BSD)
1677  *	@priv_flags:	Like 'flags' but invisible to userspace,
1678  *			see if.h for the definitions
1679  *	@gflags:	Global flags ( kept as legacy )
1680  *	@padded:	How much padding added by alloc_netdev()
1681  *	@operstate:	RFC2863 operstate
1682  *	@link_mode:	Mapping policy to operstate
1683  *	@if_port:	Selectable AUI, TP, ...
1684  *	@dma:		DMA channel
1685  *	@mtu:		Interface MTU value
1686  *	@min_mtu:	Interface Minimum MTU value
1687  *	@max_mtu:	Interface Maximum MTU value
1688  *	@type:		Interface hardware type
1689  *	@hard_header_len: Maximum hardware header length.
1690  *	@min_header_len:  Minimum hardware header length
1691  *
1692  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1693  *			  cases can this be guaranteed
1694  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1695  *			  cases can this be guaranteed. Some cases also use
1696  *			  LL_MAX_HEADER instead to allocate the skb
1697  *
1698  *	interface address info:
1699  *
1700  * 	@perm_addr:		Permanent hw address
1701  * 	@addr_assign_type:	Hw address assignment type
1702  * 	@addr_len:		Hardware address length
1703  *	@upper_level:		Maximum depth level of upper devices.
1704  *	@lower_level:		Maximum depth level of lower devices.
1705  *	@neigh_priv_len:	Used in neigh_alloc()
1706  * 	@dev_id:		Used to differentiate devices that share
1707  * 				the same link layer address
1708  * 	@dev_port:		Used to differentiate devices that share
1709  * 				the same function
1710  *	@addr_list_lock:	XXX: need comments on this one
1711  *	@name_assign_type:	network interface name assignment type
1712  *	@uc_promisc:		Counter that indicates promiscuous mode
1713  *				has been enabled due to the need to listen to
1714  *				additional unicast addresses in a device that
1715  *				does not implement ndo_set_rx_mode()
1716  *	@uc:			unicast mac addresses
1717  *	@mc:			multicast mac addresses
1718  *	@dev_addrs:		list of device hw addresses
1719  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1720  *	@promiscuity:		Number of times the NIC is told to work in
1721  *				promiscuous mode; if it becomes 0 the NIC will
1722  *				exit promiscuous mode
1723  *	@allmulti:		Counter, enables or disables allmulticast mode
1724  *
1725  *	@vlan_info:	VLAN info
1726  *	@dsa_ptr:	dsa specific data
1727  *	@tipc_ptr:	TIPC specific data
1728  *	@atalk_ptr:	AppleTalk link
1729  *	@ip_ptr:	IPv4 specific data
1730  *	@dn_ptr:	DECnet specific data
1731  *	@ip6_ptr:	IPv6 specific data
1732  *	@ax25_ptr:	AX.25 specific data
1733  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1734  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1735  *			 device struct
1736  *	@mpls_ptr:	mpls_dev struct pointer
1737  *
1738  *	@dev_addr:	Hw address (before bcast,
1739  *			because most packets are unicast)
1740  *
1741  *	@_rx:			Array of RX queues
1742  *	@num_rx_queues:		Number of RX queues
1743  *				allocated at register_netdev() time
1744  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1745  *	@xdp_prog:		XDP sockets filter program pointer
1746  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1747  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1748  *				allow to avoid NIC hard IRQ, on busy queues.
1749  *
1750  *	@rx_handler:		handler for received packets
1751  *	@rx_handler_data: 	XXX: need comments on this one
1752  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1753  *				ingress processing
1754  *	@ingress_queue:		XXX: need comments on this one
1755  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1756  *	@broadcast:		hw bcast address
1757  *
1758  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1759  *			indexed by RX queue number. Assigned by driver.
1760  *			This must only be set if the ndo_rx_flow_steer
1761  *			operation is defined
1762  *	@index_hlist:		Device index hash chain
1763  *
1764  *	@_tx:			Array of TX queues
1765  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1766  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1767  *	@qdisc:			Root qdisc from userspace point of view
1768  *	@tx_queue_len:		Max frames per queue allowed
1769  *	@tx_global_lock: 	XXX: need comments on this one
1770  *	@xdp_bulkq:		XDP device bulk queue
1771  *	@xps_cpus_map:		all CPUs map for XPS device
1772  *	@xps_rxqs_map:		all RXQs map for XPS device
1773  *
1774  *	@xps_maps:	XXX: need comments on this one
1775  *	@miniq_egress:		clsact qdisc specific data for
1776  *				egress processing
1777  *	@qdisc_hash:		qdisc hash table
1778  *	@watchdog_timeo:	Represents the timeout that is used by
1779  *				the watchdog (see dev_watchdog())
1780  *	@watchdog_timer:	List of timers
1781  *
1782  *	@proto_down_reason:	reason a netdev interface is held down
1783  *	@pcpu_refcnt:		Number of references to this device
1784  *	@todo_list:		Delayed register/unregister
1785  *	@link_watch_list:	XXX: need comments on this one
1786  *
1787  *	@reg_state:		Register/unregister state machine
1788  *	@dismantle:		Device is going to be freed
1789  *	@rtnl_link_state:	This enum represents the phases of creating
1790  *				a new link
1791  *
1792  *	@needs_free_netdev:	Should unregister perform free_netdev?
1793  *	@priv_destructor:	Called from unregister
1794  *	@npinfo:		XXX: need comments on this one
1795  * 	@nd_net:		Network namespace this network device is inside
1796  *
1797  * 	@ml_priv:	Mid-layer private
1798  * 	@lstats:	Loopback statistics
1799  * 	@tstats:	Tunnel statistics
1800  * 	@dstats:	Dummy statistics
1801  * 	@vstats:	Virtual ethernet statistics
1802  *
1803  *	@garp_port:	GARP
1804  *	@mrp_port:	MRP
1805  *
1806  *	@dev:		Class/net/name entry
1807  *	@sysfs_groups:	Space for optional device, statistics and wireless
1808  *			sysfs groups
1809  *
1810  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1811  *	@rtnl_link_ops:	Rtnl_link_ops
1812  *
1813  *	@gso_max_size:	Maximum size of generic segmentation offload
1814  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1815  *			NIC for GSO
1816  *
1817  *	@dcbnl_ops:	Data Center Bridging netlink ops
1818  *	@num_tc:	Number of traffic classes in the net device
1819  *	@tc_to_txq:	XXX: need comments on this one
1820  *	@prio_tc_map:	XXX: need comments on this one
1821  *
1822  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1823  *
1824  *	@priomap:	XXX: need comments on this one
1825  *	@phydev:	Physical device may attach itself
1826  *			for hardware timestamping
1827  *	@sfp_bus:	attached &struct sfp_bus structure.
1828  *
1829  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1830  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1831  *
1832  *	@proto_down:	protocol port state information can be sent to the
1833  *			switch driver and used to set the phys state of the
1834  *			switch port.
1835  *
1836  *	@wol_enabled:	Wake-on-LAN is enabled
1837  *
1838  *	@net_notifier_list:	List of per-net netdev notifier block
1839  *				that follow this device when it is moved
1840  *				to another network namespace.
1841  *
1842  *	@macsec_ops:    MACsec offloading ops
1843  *
1844  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1845  *				offload capabilities of the device
1846  *	@udp_tunnel_nic:	UDP tunnel offload state
1847  *	@xdp_state:		stores info on attached XDP BPF programs
1848  *
1849  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1850  *			dev->addr_list_lock.
1851  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1852  *			keep a list of interfaces to be deleted.
1853  *
1854  *	FIXME: cleanup struct net_device such that network protocol info
1855  *	moves out.
1856  */
1857 
1858 struct net_device {
1859 	char			name[IFNAMSIZ];
1860 	struct netdev_name_node	*name_node;
1861 	struct dev_ifalias	__rcu *ifalias;
1862 	/*
1863 	 *	I/O specific fields
1864 	 *	FIXME: Merge these and struct ifmap into one
1865 	 */
1866 	unsigned long		mem_end;
1867 	unsigned long		mem_start;
1868 	unsigned long		base_addr;
1869 	int			irq;
1870 
1871 	/*
1872 	 *	Some hardware also needs these fields (state,dev_list,
1873 	 *	napi_list,unreg_list,close_list) but they are not
1874 	 *	part of the usual set specified in Space.c.
1875 	 */
1876 
1877 	unsigned long		state;
1878 
1879 	struct list_head	dev_list;
1880 	struct list_head	napi_list;
1881 	struct list_head	unreg_list;
1882 	struct list_head	close_list;
1883 	struct list_head	ptype_all;
1884 	struct list_head	ptype_specific;
1885 
1886 	struct {
1887 		struct list_head upper;
1888 		struct list_head lower;
1889 	} adj_list;
1890 
1891 	netdev_features_t	features;
1892 	netdev_features_t	hw_features;
1893 	netdev_features_t	wanted_features;
1894 	netdev_features_t	vlan_features;
1895 	netdev_features_t	hw_enc_features;
1896 	netdev_features_t	mpls_features;
1897 	netdev_features_t	gso_partial_features;
1898 
1899 	int			ifindex;
1900 	int			group;
1901 
1902 	struct net_device_stats	stats;
1903 
1904 	atomic_long_t		rx_dropped;
1905 	atomic_long_t		tx_dropped;
1906 	atomic_long_t		rx_nohandler;
1907 
1908 	/* Stats to monitor link on/off, flapping */
1909 	atomic_t		carrier_up_count;
1910 	atomic_t		carrier_down_count;
1911 
1912 #ifdef CONFIG_WIRELESS_EXT
1913 	const struct iw_handler_def *wireless_handlers;
1914 	struct iw_public_data	*wireless_data;
1915 #endif
1916 	const struct net_device_ops *netdev_ops;
1917 	const struct ethtool_ops *ethtool_ops;
1918 #ifdef CONFIG_NET_L3_MASTER_DEV
1919 	const struct l3mdev_ops	*l3mdev_ops;
1920 #endif
1921 #if IS_ENABLED(CONFIG_IPV6)
1922 	const struct ndisc_ops *ndisc_ops;
1923 #endif
1924 
1925 #ifdef CONFIG_XFRM_OFFLOAD
1926 	const struct xfrmdev_ops *xfrmdev_ops;
1927 #endif
1928 
1929 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1930 	const struct tlsdev_ops *tlsdev_ops;
1931 #endif
1932 
1933 	const struct header_ops *header_ops;
1934 
1935 	unsigned int		flags;
1936 	unsigned int		priv_flags;
1937 
1938 	unsigned short		gflags;
1939 	unsigned short		padded;
1940 
1941 	unsigned char		operstate;
1942 	unsigned char		link_mode;
1943 
1944 	unsigned char		if_port;
1945 	unsigned char		dma;
1946 
1947 	/* Note : dev->mtu is often read without holding a lock.
1948 	 * Writers usually hold RTNL.
1949 	 * It is recommended to use READ_ONCE() to annotate the reads,
1950 	 * and to use WRITE_ONCE() to annotate the writes.
1951 	 */
1952 	unsigned int		mtu;
1953 	unsigned int		min_mtu;
1954 	unsigned int		max_mtu;
1955 	unsigned short		type;
1956 	unsigned short		hard_header_len;
1957 	unsigned char		min_header_len;
1958 	unsigned char		name_assign_type;
1959 
1960 	unsigned short		needed_headroom;
1961 	unsigned short		needed_tailroom;
1962 
1963 	/* Interface address info. */
1964 	unsigned char		perm_addr[MAX_ADDR_LEN];
1965 	unsigned char		addr_assign_type;
1966 	unsigned char		addr_len;
1967 	unsigned char		upper_level;
1968 	unsigned char		lower_level;
1969 
1970 	unsigned short		neigh_priv_len;
1971 	unsigned short          dev_id;
1972 	unsigned short          dev_port;
1973 	spinlock_t		addr_list_lock;
1974 
1975 	struct netdev_hw_addr_list	uc;
1976 	struct netdev_hw_addr_list	mc;
1977 	struct netdev_hw_addr_list	dev_addrs;
1978 
1979 #ifdef CONFIG_SYSFS
1980 	struct kset		*queues_kset;
1981 #endif
1982 #ifdef CONFIG_LOCKDEP
1983 	struct list_head	unlink_list;
1984 #endif
1985 	unsigned int		promiscuity;
1986 	unsigned int		allmulti;
1987 	bool			uc_promisc;
1988 #ifdef CONFIG_LOCKDEP
1989 	unsigned char		nested_level;
1990 #endif
1991 
1992 
1993 	/* Protocol-specific pointers */
1994 
1995 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1996 	struct vlan_info __rcu	*vlan_info;
1997 #endif
1998 #if IS_ENABLED(CONFIG_NET_DSA)
1999 	struct dsa_port		*dsa_ptr;
2000 #endif
2001 #if IS_ENABLED(CONFIG_TIPC)
2002 	struct tipc_bearer __rcu *tipc_ptr;
2003 #endif
2004 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2005 	void 			*atalk_ptr;
2006 #endif
2007 	struct in_device __rcu	*ip_ptr;
2008 #if IS_ENABLED(CONFIG_DECNET)
2009 	struct dn_dev __rcu     *dn_ptr;
2010 #endif
2011 	struct inet6_dev __rcu	*ip6_ptr;
2012 #if IS_ENABLED(CONFIG_AX25)
2013 	void			*ax25_ptr;
2014 #endif
2015 	struct wireless_dev	*ieee80211_ptr;
2016 	struct wpan_dev		*ieee802154_ptr;
2017 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2018 	struct mpls_dev __rcu	*mpls_ptr;
2019 #endif
2020 
2021 /*
2022  * Cache lines mostly used on receive path (including eth_type_trans())
2023  */
2024 	/* Interface address info used in eth_type_trans() */
2025 	unsigned char		*dev_addr;
2026 
2027 	struct netdev_rx_queue	*_rx;
2028 	unsigned int		num_rx_queues;
2029 	unsigned int		real_num_rx_queues;
2030 
2031 	struct bpf_prog __rcu	*xdp_prog;
2032 	unsigned long		gro_flush_timeout;
2033 	int			napi_defer_hard_irqs;
2034 	rx_handler_func_t __rcu	*rx_handler;
2035 	void __rcu		*rx_handler_data;
2036 
2037 #ifdef CONFIG_NET_CLS_ACT
2038 	struct mini_Qdisc __rcu	*miniq_ingress;
2039 #endif
2040 	struct netdev_queue __rcu *ingress_queue;
2041 #ifdef CONFIG_NETFILTER_INGRESS
2042 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2043 #endif
2044 
2045 	unsigned char		broadcast[MAX_ADDR_LEN];
2046 #ifdef CONFIG_RFS_ACCEL
2047 	struct cpu_rmap		*rx_cpu_rmap;
2048 #endif
2049 	struct hlist_node	index_hlist;
2050 
2051 /*
2052  * Cache lines mostly used on transmit path
2053  */
2054 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2055 	unsigned int		num_tx_queues;
2056 	unsigned int		real_num_tx_queues;
2057 	struct Qdisc		*qdisc;
2058 	unsigned int		tx_queue_len;
2059 	spinlock_t		tx_global_lock;
2060 
2061 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2062 
2063 #ifdef CONFIG_XPS
2064 	struct xps_dev_maps __rcu *xps_cpus_map;
2065 	struct xps_dev_maps __rcu *xps_rxqs_map;
2066 #endif
2067 #ifdef CONFIG_NET_CLS_ACT
2068 	struct mini_Qdisc __rcu	*miniq_egress;
2069 #endif
2070 
2071 #ifdef CONFIG_NET_SCHED
2072 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2073 #endif
2074 	/* These may be needed for future network-power-down code. */
2075 	struct timer_list	watchdog_timer;
2076 	int			watchdog_timeo;
2077 
2078 	u32                     proto_down_reason;
2079 
2080 	struct list_head	todo_list;
2081 	int __percpu		*pcpu_refcnt;
2082 
2083 	struct list_head	link_watch_list;
2084 
2085 	enum { NETREG_UNINITIALIZED=0,
2086 	       NETREG_REGISTERED,	/* completed register_netdevice */
2087 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2088 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2089 	       NETREG_RELEASED,		/* called free_netdev */
2090 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2091 	} reg_state:8;
2092 
2093 	bool dismantle;
2094 
2095 	enum {
2096 		RTNL_LINK_INITIALIZED,
2097 		RTNL_LINK_INITIALIZING,
2098 	} rtnl_link_state:16;
2099 
2100 	bool needs_free_netdev;
2101 	void (*priv_destructor)(struct net_device *dev);
2102 
2103 #ifdef CONFIG_NETPOLL
2104 	struct netpoll_info __rcu	*npinfo;
2105 #endif
2106 
2107 	possible_net_t			nd_net;
2108 
2109 	/* mid-layer private */
2110 	union {
2111 		void					*ml_priv;
2112 		struct pcpu_lstats __percpu		*lstats;
2113 		struct pcpu_sw_netstats __percpu	*tstats;
2114 		struct pcpu_dstats __percpu		*dstats;
2115 	};
2116 
2117 #if IS_ENABLED(CONFIG_GARP)
2118 	struct garp_port __rcu	*garp_port;
2119 #endif
2120 #if IS_ENABLED(CONFIG_MRP)
2121 	struct mrp_port __rcu	*mrp_port;
2122 #endif
2123 
2124 	struct device		dev;
2125 	const struct attribute_group *sysfs_groups[4];
2126 	const struct attribute_group *sysfs_rx_queue_group;
2127 
2128 	const struct rtnl_link_ops *rtnl_link_ops;
2129 
2130 	/* for setting kernel sock attribute on TCP connection setup */
2131 #define GSO_MAX_SIZE		65536
2132 	unsigned int		gso_max_size;
2133 #define GSO_MAX_SEGS		65535
2134 	u16			gso_max_segs;
2135 
2136 #ifdef CONFIG_DCB
2137 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2138 #endif
2139 	s16			num_tc;
2140 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2141 	u8			prio_tc_map[TC_BITMASK + 1];
2142 
2143 #if IS_ENABLED(CONFIG_FCOE)
2144 	unsigned int		fcoe_ddp_xid;
2145 #endif
2146 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2147 	struct netprio_map __rcu *priomap;
2148 #endif
2149 	struct phy_device	*phydev;
2150 	struct sfp_bus		*sfp_bus;
2151 	struct lock_class_key	*qdisc_tx_busylock;
2152 	struct lock_class_key	*qdisc_running_key;
2153 	bool			proto_down;
2154 	unsigned		wol_enabled:1;
2155 
2156 	struct list_head	net_notifier_list;
2157 
2158 #if IS_ENABLED(CONFIG_MACSEC)
2159 	/* MACsec management functions */
2160 	const struct macsec_ops *macsec_ops;
2161 #endif
2162 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2163 	struct udp_tunnel_nic	*udp_tunnel_nic;
2164 
2165 	/* protected by rtnl_lock */
2166 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2167 };
2168 #define to_net_dev(d) container_of(d, struct net_device, dev)
2169 
2170 static inline bool netif_elide_gro(const struct net_device *dev)
2171 {
2172 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2173 		return true;
2174 	return false;
2175 }
2176 
2177 #define	NETDEV_ALIGN		32
2178 
2179 static inline
2180 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2181 {
2182 	return dev->prio_tc_map[prio & TC_BITMASK];
2183 }
2184 
2185 static inline
2186 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2187 {
2188 	if (tc >= dev->num_tc)
2189 		return -EINVAL;
2190 
2191 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2192 	return 0;
2193 }
2194 
2195 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2196 void netdev_reset_tc(struct net_device *dev);
2197 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2198 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2199 
2200 static inline
2201 int netdev_get_num_tc(struct net_device *dev)
2202 {
2203 	return dev->num_tc;
2204 }
2205 
2206 static inline void net_prefetch(void *p)
2207 {
2208 	prefetch(p);
2209 #if L1_CACHE_BYTES < 128
2210 	prefetch((u8 *)p + L1_CACHE_BYTES);
2211 #endif
2212 }
2213 
2214 static inline void net_prefetchw(void *p)
2215 {
2216 	prefetchw(p);
2217 #if L1_CACHE_BYTES < 128
2218 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2219 #endif
2220 }
2221 
2222 void netdev_unbind_sb_channel(struct net_device *dev,
2223 			      struct net_device *sb_dev);
2224 int netdev_bind_sb_channel_queue(struct net_device *dev,
2225 				 struct net_device *sb_dev,
2226 				 u8 tc, u16 count, u16 offset);
2227 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2228 static inline int netdev_get_sb_channel(struct net_device *dev)
2229 {
2230 	return max_t(int, -dev->num_tc, 0);
2231 }
2232 
2233 static inline
2234 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2235 					 unsigned int index)
2236 {
2237 	return &dev->_tx[index];
2238 }
2239 
2240 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2241 						    const struct sk_buff *skb)
2242 {
2243 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2244 }
2245 
2246 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2247 					    void (*f)(struct net_device *,
2248 						      struct netdev_queue *,
2249 						      void *),
2250 					    void *arg)
2251 {
2252 	unsigned int i;
2253 
2254 	for (i = 0; i < dev->num_tx_queues; i++)
2255 		f(dev, &dev->_tx[i], arg);
2256 }
2257 
2258 #define netdev_lockdep_set_classes(dev)				\
2259 {								\
2260 	static struct lock_class_key qdisc_tx_busylock_key;	\
2261 	static struct lock_class_key qdisc_running_key;		\
2262 	static struct lock_class_key qdisc_xmit_lock_key;	\
2263 	static struct lock_class_key dev_addr_list_lock_key;	\
2264 	unsigned int i;						\
2265 								\
2266 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2267 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2268 	lockdep_set_class(&(dev)->addr_list_lock,		\
2269 			  &dev_addr_list_lock_key);		\
2270 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2271 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2272 				  &qdisc_xmit_lock_key);	\
2273 }
2274 
2275 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2276 		     struct net_device *sb_dev);
2277 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2278 					 struct sk_buff *skb,
2279 					 struct net_device *sb_dev);
2280 
2281 /* returns the headroom that the master device needs to take in account
2282  * when forwarding to this dev
2283  */
2284 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2285 {
2286 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2287 }
2288 
2289 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2290 {
2291 	if (dev->netdev_ops->ndo_set_rx_headroom)
2292 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2293 }
2294 
2295 /* set the device rx headroom to the dev's default */
2296 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2297 {
2298 	netdev_set_rx_headroom(dev, -1);
2299 }
2300 
2301 /*
2302  * Net namespace inlines
2303  */
2304 static inline
2305 struct net *dev_net(const struct net_device *dev)
2306 {
2307 	return read_pnet(&dev->nd_net);
2308 }
2309 
2310 static inline
2311 void dev_net_set(struct net_device *dev, struct net *net)
2312 {
2313 	write_pnet(&dev->nd_net, net);
2314 }
2315 
2316 /**
2317  *	netdev_priv - access network device private data
2318  *	@dev: network device
2319  *
2320  * Get network device private data
2321  */
2322 static inline void *netdev_priv(const struct net_device *dev)
2323 {
2324 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2325 }
2326 
2327 /* Set the sysfs physical device reference for the network logical device
2328  * if set prior to registration will cause a symlink during initialization.
2329  */
2330 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2331 
2332 /* Set the sysfs device type for the network logical device to allow
2333  * fine-grained identification of different network device types. For
2334  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2335  */
2336 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2337 
2338 /* Default NAPI poll() weight
2339  * Device drivers are strongly advised to not use bigger value
2340  */
2341 #define NAPI_POLL_WEIGHT 64
2342 
2343 /**
2344  *	netif_napi_add - initialize a NAPI context
2345  *	@dev:  network device
2346  *	@napi: NAPI context
2347  *	@poll: polling function
2348  *	@weight: default weight
2349  *
2350  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2351  * *any* of the other NAPI-related functions.
2352  */
2353 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2354 		    int (*poll)(struct napi_struct *, int), int weight);
2355 
2356 /**
2357  *	netif_tx_napi_add - initialize a NAPI context
2358  *	@dev:  network device
2359  *	@napi: NAPI context
2360  *	@poll: polling function
2361  *	@weight: default weight
2362  *
2363  * This variant of netif_napi_add() should be used from drivers using NAPI
2364  * to exclusively poll a TX queue.
2365  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2366  */
2367 static inline void netif_tx_napi_add(struct net_device *dev,
2368 				     struct napi_struct *napi,
2369 				     int (*poll)(struct napi_struct *, int),
2370 				     int weight)
2371 {
2372 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2373 	netif_napi_add(dev, napi, poll, weight);
2374 }
2375 
2376 /**
2377  *  __netif_napi_del - remove a NAPI context
2378  *  @napi: NAPI context
2379  *
2380  * Warning: caller must observe RCU grace period before freeing memory
2381  * containing @napi. Drivers might want to call this helper to combine
2382  * all the needed RCU grace periods into a single one.
2383  */
2384 void __netif_napi_del(struct napi_struct *napi);
2385 
2386 /**
2387  *  netif_napi_del - remove a NAPI context
2388  *  @napi: NAPI context
2389  *
2390  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2391  */
2392 static inline void netif_napi_del(struct napi_struct *napi)
2393 {
2394 	__netif_napi_del(napi);
2395 	synchronize_net();
2396 }
2397 
2398 struct napi_gro_cb {
2399 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2400 	void	*frag0;
2401 
2402 	/* Length of frag0. */
2403 	unsigned int frag0_len;
2404 
2405 	/* This indicates where we are processing relative to skb->data. */
2406 	int	data_offset;
2407 
2408 	/* This is non-zero if the packet cannot be merged with the new skb. */
2409 	u16	flush;
2410 
2411 	/* Save the IP ID here and check when we get to the transport layer */
2412 	u16	flush_id;
2413 
2414 	/* Number of segments aggregated. */
2415 	u16	count;
2416 
2417 	/* Start offset for remote checksum offload */
2418 	u16	gro_remcsum_start;
2419 
2420 	/* jiffies when first packet was created/queued */
2421 	unsigned long age;
2422 
2423 	/* Used in ipv6_gro_receive() and foo-over-udp */
2424 	u16	proto;
2425 
2426 	/* This is non-zero if the packet may be of the same flow. */
2427 	u8	same_flow:1;
2428 
2429 	/* Used in tunnel GRO receive */
2430 	u8	encap_mark:1;
2431 
2432 	/* GRO checksum is valid */
2433 	u8	csum_valid:1;
2434 
2435 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2436 	u8	csum_cnt:3;
2437 
2438 	/* Free the skb? */
2439 	u8	free:2;
2440 #define NAPI_GRO_FREE		  1
2441 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2442 
2443 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2444 	u8	is_ipv6:1;
2445 
2446 	/* Used in GRE, set in fou/gue_gro_receive */
2447 	u8	is_fou:1;
2448 
2449 	/* Used to determine if flush_id can be ignored */
2450 	u8	is_atomic:1;
2451 
2452 	/* Number of gro_receive callbacks this packet already went through */
2453 	u8 recursion_counter:4;
2454 
2455 	/* GRO is done by frag_list pointer chaining. */
2456 	u8	is_flist:1;
2457 
2458 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2459 	__wsum	csum;
2460 
2461 	/* used in skb_gro_receive() slow path */
2462 	struct sk_buff *last;
2463 };
2464 
2465 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2466 
2467 #define GRO_RECURSION_LIMIT 15
2468 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2469 {
2470 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2471 }
2472 
2473 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2474 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2475 					       struct list_head *head,
2476 					       struct sk_buff *skb)
2477 {
2478 	if (unlikely(gro_recursion_inc_test(skb))) {
2479 		NAPI_GRO_CB(skb)->flush |= 1;
2480 		return NULL;
2481 	}
2482 
2483 	return cb(head, skb);
2484 }
2485 
2486 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2487 					    struct sk_buff *);
2488 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2489 						  struct sock *sk,
2490 						  struct list_head *head,
2491 						  struct sk_buff *skb)
2492 {
2493 	if (unlikely(gro_recursion_inc_test(skb))) {
2494 		NAPI_GRO_CB(skb)->flush |= 1;
2495 		return NULL;
2496 	}
2497 
2498 	return cb(sk, head, skb);
2499 }
2500 
2501 struct packet_type {
2502 	__be16			type;	/* This is really htons(ether_type). */
2503 	bool			ignore_outgoing;
2504 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2505 	int			(*func) (struct sk_buff *,
2506 					 struct net_device *,
2507 					 struct packet_type *,
2508 					 struct net_device *);
2509 	void			(*list_func) (struct list_head *,
2510 					      struct packet_type *,
2511 					      struct net_device *);
2512 	bool			(*id_match)(struct packet_type *ptype,
2513 					    struct sock *sk);
2514 	void			*af_packet_priv;
2515 	struct list_head	list;
2516 };
2517 
2518 struct offload_callbacks {
2519 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2520 						netdev_features_t features);
2521 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2522 						struct sk_buff *skb);
2523 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2524 };
2525 
2526 struct packet_offload {
2527 	__be16			 type;	/* This is really htons(ether_type). */
2528 	u16			 priority;
2529 	struct offload_callbacks callbacks;
2530 	struct list_head	 list;
2531 };
2532 
2533 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2534 struct pcpu_sw_netstats {
2535 	u64     rx_packets;
2536 	u64     rx_bytes;
2537 	u64     tx_packets;
2538 	u64     tx_bytes;
2539 	struct u64_stats_sync   syncp;
2540 } __aligned(4 * sizeof(u64));
2541 
2542 struct pcpu_lstats {
2543 	u64_stats_t packets;
2544 	u64_stats_t bytes;
2545 	struct u64_stats_sync syncp;
2546 } __aligned(2 * sizeof(u64));
2547 
2548 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2549 
2550 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2551 {
2552 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2553 
2554 	u64_stats_update_begin(&tstats->syncp);
2555 	tstats->rx_bytes += len;
2556 	tstats->rx_packets++;
2557 	u64_stats_update_end(&tstats->syncp);
2558 }
2559 
2560 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2561 					  unsigned int packets,
2562 					  unsigned int len)
2563 {
2564 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2565 
2566 	u64_stats_update_begin(&tstats->syncp);
2567 	tstats->tx_bytes += len;
2568 	tstats->tx_packets += packets;
2569 	u64_stats_update_end(&tstats->syncp);
2570 }
2571 
2572 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2573 {
2574 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2575 
2576 	u64_stats_update_begin(&lstats->syncp);
2577 	u64_stats_add(&lstats->bytes, len);
2578 	u64_stats_inc(&lstats->packets);
2579 	u64_stats_update_end(&lstats->syncp);
2580 }
2581 
2582 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2583 ({									\
2584 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2585 	if (pcpu_stats)	{						\
2586 		int __cpu;						\
2587 		for_each_possible_cpu(__cpu) {				\
2588 			typeof(type) *stat;				\
2589 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2590 			u64_stats_init(&stat->syncp);			\
2591 		}							\
2592 	}								\
2593 	pcpu_stats;							\
2594 })
2595 
2596 #define netdev_alloc_pcpu_stats(type)					\
2597 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2598 
2599 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2600 ({									\
2601 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2602 	if (pcpu_stats) {						\
2603 		int __cpu;						\
2604 		for_each_possible_cpu(__cpu) {				\
2605 			typeof(type) *stat;				\
2606 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2607 			u64_stats_init(&stat->syncp);			\
2608 		}							\
2609 	}								\
2610 	pcpu_stats;							\
2611 })
2612 
2613 enum netdev_lag_tx_type {
2614 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2615 	NETDEV_LAG_TX_TYPE_RANDOM,
2616 	NETDEV_LAG_TX_TYPE_BROADCAST,
2617 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2618 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2619 	NETDEV_LAG_TX_TYPE_HASH,
2620 };
2621 
2622 enum netdev_lag_hash {
2623 	NETDEV_LAG_HASH_NONE,
2624 	NETDEV_LAG_HASH_L2,
2625 	NETDEV_LAG_HASH_L34,
2626 	NETDEV_LAG_HASH_L23,
2627 	NETDEV_LAG_HASH_E23,
2628 	NETDEV_LAG_HASH_E34,
2629 	NETDEV_LAG_HASH_UNKNOWN,
2630 };
2631 
2632 struct netdev_lag_upper_info {
2633 	enum netdev_lag_tx_type tx_type;
2634 	enum netdev_lag_hash hash_type;
2635 };
2636 
2637 struct netdev_lag_lower_state_info {
2638 	u8 link_up : 1,
2639 	   tx_enabled : 1;
2640 };
2641 
2642 #include <linux/notifier.h>
2643 
2644 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2645  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2646  * adding new types.
2647  */
2648 enum netdev_cmd {
2649 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2650 	NETDEV_DOWN,
2651 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2652 				   detected a hardware crash and restarted
2653 				   - we can use this eg to kick tcp sessions
2654 				   once done */
2655 	NETDEV_CHANGE,		/* Notify device state change */
2656 	NETDEV_REGISTER,
2657 	NETDEV_UNREGISTER,
2658 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2659 	NETDEV_CHANGEADDR,	/* notify after the address change */
2660 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2661 	NETDEV_GOING_DOWN,
2662 	NETDEV_CHANGENAME,
2663 	NETDEV_FEAT_CHANGE,
2664 	NETDEV_BONDING_FAILOVER,
2665 	NETDEV_PRE_UP,
2666 	NETDEV_PRE_TYPE_CHANGE,
2667 	NETDEV_POST_TYPE_CHANGE,
2668 	NETDEV_POST_INIT,
2669 	NETDEV_RELEASE,
2670 	NETDEV_NOTIFY_PEERS,
2671 	NETDEV_JOIN,
2672 	NETDEV_CHANGEUPPER,
2673 	NETDEV_RESEND_IGMP,
2674 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2675 	NETDEV_CHANGEINFODATA,
2676 	NETDEV_BONDING_INFO,
2677 	NETDEV_PRECHANGEUPPER,
2678 	NETDEV_CHANGELOWERSTATE,
2679 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2680 	NETDEV_UDP_TUNNEL_DROP_INFO,
2681 	NETDEV_CHANGE_TX_QUEUE_LEN,
2682 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2683 	NETDEV_CVLAN_FILTER_DROP_INFO,
2684 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2685 	NETDEV_SVLAN_FILTER_DROP_INFO,
2686 };
2687 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2688 
2689 int register_netdevice_notifier(struct notifier_block *nb);
2690 int unregister_netdevice_notifier(struct notifier_block *nb);
2691 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2692 int unregister_netdevice_notifier_net(struct net *net,
2693 				      struct notifier_block *nb);
2694 int register_netdevice_notifier_dev_net(struct net_device *dev,
2695 					struct notifier_block *nb,
2696 					struct netdev_net_notifier *nn);
2697 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2698 					  struct notifier_block *nb,
2699 					  struct netdev_net_notifier *nn);
2700 
2701 struct netdev_notifier_info {
2702 	struct net_device	*dev;
2703 	struct netlink_ext_ack	*extack;
2704 };
2705 
2706 struct netdev_notifier_info_ext {
2707 	struct netdev_notifier_info info; /* must be first */
2708 	union {
2709 		u32 mtu;
2710 	} ext;
2711 };
2712 
2713 struct netdev_notifier_change_info {
2714 	struct netdev_notifier_info info; /* must be first */
2715 	unsigned int flags_changed;
2716 };
2717 
2718 struct netdev_notifier_changeupper_info {
2719 	struct netdev_notifier_info info; /* must be first */
2720 	struct net_device *upper_dev; /* new upper dev */
2721 	bool master; /* is upper dev master */
2722 	bool linking; /* is the notification for link or unlink */
2723 	void *upper_info; /* upper dev info */
2724 };
2725 
2726 struct netdev_notifier_changelowerstate_info {
2727 	struct netdev_notifier_info info; /* must be first */
2728 	void *lower_state_info; /* is lower dev state */
2729 };
2730 
2731 struct netdev_notifier_pre_changeaddr_info {
2732 	struct netdev_notifier_info info; /* must be first */
2733 	const unsigned char *dev_addr;
2734 };
2735 
2736 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2737 					     struct net_device *dev)
2738 {
2739 	info->dev = dev;
2740 	info->extack = NULL;
2741 }
2742 
2743 static inline struct net_device *
2744 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2745 {
2746 	return info->dev;
2747 }
2748 
2749 static inline struct netlink_ext_ack *
2750 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2751 {
2752 	return info->extack;
2753 }
2754 
2755 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2756 
2757 
2758 extern rwlock_t				dev_base_lock;		/* Device list lock */
2759 
2760 #define for_each_netdev(net, d)		\
2761 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2762 #define for_each_netdev_reverse(net, d)	\
2763 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2764 #define for_each_netdev_rcu(net, d)		\
2765 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2766 #define for_each_netdev_safe(net, d, n)	\
2767 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2768 #define for_each_netdev_continue(net, d)		\
2769 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2770 #define for_each_netdev_continue_reverse(net, d)		\
2771 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2772 						     dev_list)
2773 #define for_each_netdev_continue_rcu(net, d)		\
2774 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2775 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2776 		for_each_netdev_rcu(&init_net, slave)	\
2777 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2778 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2779 
2780 static inline struct net_device *next_net_device(struct net_device *dev)
2781 {
2782 	struct list_head *lh;
2783 	struct net *net;
2784 
2785 	net = dev_net(dev);
2786 	lh = dev->dev_list.next;
2787 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2788 }
2789 
2790 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2791 {
2792 	struct list_head *lh;
2793 	struct net *net;
2794 
2795 	net = dev_net(dev);
2796 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2797 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2798 }
2799 
2800 static inline struct net_device *first_net_device(struct net *net)
2801 {
2802 	return list_empty(&net->dev_base_head) ? NULL :
2803 		net_device_entry(net->dev_base_head.next);
2804 }
2805 
2806 static inline struct net_device *first_net_device_rcu(struct net *net)
2807 {
2808 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2809 
2810 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2811 }
2812 
2813 int netdev_boot_setup_check(struct net_device *dev);
2814 unsigned long netdev_boot_base(const char *prefix, int unit);
2815 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2816 				       const char *hwaddr);
2817 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2818 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2819 void dev_add_pack(struct packet_type *pt);
2820 void dev_remove_pack(struct packet_type *pt);
2821 void __dev_remove_pack(struct packet_type *pt);
2822 void dev_add_offload(struct packet_offload *po);
2823 void dev_remove_offload(struct packet_offload *po);
2824 
2825 int dev_get_iflink(const struct net_device *dev);
2826 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2827 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2828 				      unsigned short mask);
2829 struct net_device *dev_get_by_name(struct net *net, const char *name);
2830 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2831 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2832 int dev_alloc_name(struct net_device *dev, const char *name);
2833 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2834 void dev_close(struct net_device *dev);
2835 void dev_close_many(struct list_head *head, bool unlink);
2836 void dev_disable_lro(struct net_device *dev);
2837 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2838 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2839 		     struct net_device *sb_dev);
2840 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2841 		       struct net_device *sb_dev);
2842 int dev_queue_xmit(struct sk_buff *skb);
2843 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2844 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2845 int register_netdevice(struct net_device *dev);
2846 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2847 void unregister_netdevice_many(struct list_head *head);
2848 static inline void unregister_netdevice(struct net_device *dev)
2849 {
2850 	unregister_netdevice_queue(dev, NULL);
2851 }
2852 
2853 int netdev_refcnt_read(const struct net_device *dev);
2854 void free_netdev(struct net_device *dev);
2855 void netdev_freemem(struct net_device *dev);
2856 int init_dummy_netdev(struct net_device *dev);
2857 
2858 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2859 					 struct sk_buff *skb,
2860 					 bool all_slaves);
2861 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2862 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2863 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2864 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2865 int netdev_get_name(struct net *net, char *name, int ifindex);
2866 int dev_restart(struct net_device *dev);
2867 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2868 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2869 
2870 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2871 {
2872 	return NAPI_GRO_CB(skb)->data_offset;
2873 }
2874 
2875 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2876 {
2877 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2878 }
2879 
2880 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2881 {
2882 	NAPI_GRO_CB(skb)->data_offset += len;
2883 }
2884 
2885 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2886 					unsigned int offset)
2887 {
2888 	return NAPI_GRO_CB(skb)->frag0 + offset;
2889 }
2890 
2891 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2892 {
2893 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2894 }
2895 
2896 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2897 {
2898 	NAPI_GRO_CB(skb)->frag0 = NULL;
2899 	NAPI_GRO_CB(skb)->frag0_len = 0;
2900 }
2901 
2902 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2903 					unsigned int offset)
2904 {
2905 	if (!pskb_may_pull(skb, hlen))
2906 		return NULL;
2907 
2908 	skb_gro_frag0_invalidate(skb);
2909 	return skb->data + offset;
2910 }
2911 
2912 static inline void *skb_gro_network_header(struct sk_buff *skb)
2913 {
2914 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2915 	       skb_network_offset(skb);
2916 }
2917 
2918 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2919 					const void *start, unsigned int len)
2920 {
2921 	if (NAPI_GRO_CB(skb)->csum_valid)
2922 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2923 						  csum_partial(start, len, 0));
2924 }
2925 
2926 /* GRO checksum functions. These are logical equivalents of the normal
2927  * checksum functions (in skbuff.h) except that they operate on the GRO
2928  * offsets and fields in sk_buff.
2929  */
2930 
2931 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2932 
2933 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2934 {
2935 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2936 }
2937 
2938 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2939 						      bool zero_okay,
2940 						      __sum16 check)
2941 {
2942 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2943 		skb_checksum_start_offset(skb) <
2944 		 skb_gro_offset(skb)) &&
2945 		!skb_at_gro_remcsum_start(skb) &&
2946 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2947 		(!zero_okay || check));
2948 }
2949 
2950 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2951 							   __wsum psum)
2952 {
2953 	if (NAPI_GRO_CB(skb)->csum_valid &&
2954 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2955 		return 0;
2956 
2957 	NAPI_GRO_CB(skb)->csum = psum;
2958 
2959 	return __skb_gro_checksum_complete(skb);
2960 }
2961 
2962 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2963 {
2964 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2965 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2966 		NAPI_GRO_CB(skb)->csum_cnt--;
2967 	} else {
2968 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2969 		 * verified a new top level checksum or an encapsulated one
2970 		 * during GRO. This saves work if we fallback to normal path.
2971 		 */
2972 		__skb_incr_checksum_unnecessary(skb);
2973 	}
2974 }
2975 
2976 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2977 				    compute_pseudo)			\
2978 ({									\
2979 	__sum16 __ret = 0;						\
2980 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2981 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2982 				compute_pseudo(skb, proto));		\
2983 	if (!__ret)							\
2984 		skb_gro_incr_csum_unnecessary(skb);			\
2985 	__ret;								\
2986 })
2987 
2988 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2989 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2990 
2991 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2992 					     compute_pseudo)		\
2993 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2994 
2995 #define skb_gro_checksum_simple_validate(skb)				\
2996 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2997 
2998 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2999 {
3000 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3001 		!NAPI_GRO_CB(skb)->csum_valid);
3002 }
3003 
3004 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3005 					      __wsum pseudo)
3006 {
3007 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3008 	NAPI_GRO_CB(skb)->csum_valid = 1;
3009 }
3010 
3011 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3012 do {									\
3013 	if (__skb_gro_checksum_convert_check(skb))			\
3014 		__skb_gro_checksum_convert(skb, 			\
3015 					   compute_pseudo(skb, proto));	\
3016 } while (0)
3017 
3018 struct gro_remcsum {
3019 	int offset;
3020 	__wsum delta;
3021 };
3022 
3023 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3024 {
3025 	grc->offset = 0;
3026 	grc->delta = 0;
3027 }
3028 
3029 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3030 					    unsigned int off, size_t hdrlen,
3031 					    int start, int offset,
3032 					    struct gro_remcsum *grc,
3033 					    bool nopartial)
3034 {
3035 	__wsum delta;
3036 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3037 
3038 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3039 
3040 	if (!nopartial) {
3041 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3042 		return ptr;
3043 	}
3044 
3045 	ptr = skb_gro_header_fast(skb, off);
3046 	if (skb_gro_header_hard(skb, off + plen)) {
3047 		ptr = skb_gro_header_slow(skb, off + plen, off);
3048 		if (!ptr)
3049 			return NULL;
3050 	}
3051 
3052 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3053 			       start, offset);
3054 
3055 	/* Adjust skb->csum since we changed the packet */
3056 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3057 
3058 	grc->offset = off + hdrlen + offset;
3059 	grc->delta = delta;
3060 
3061 	return ptr;
3062 }
3063 
3064 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3065 					   struct gro_remcsum *grc)
3066 {
3067 	void *ptr;
3068 	size_t plen = grc->offset + sizeof(u16);
3069 
3070 	if (!grc->delta)
3071 		return;
3072 
3073 	ptr = skb_gro_header_fast(skb, grc->offset);
3074 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3075 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3076 		if (!ptr)
3077 			return;
3078 	}
3079 
3080 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3081 }
3082 
3083 #ifdef CONFIG_XFRM_OFFLOAD
3084 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3085 {
3086 	if (PTR_ERR(pp) != -EINPROGRESS)
3087 		NAPI_GRO_CB(skb)->flush |= flush;
3088 }
3089 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3090 					       struct sk_buff *pp,
3091 					       int flush,
3092 					       struct gro_remcsum *grc)
3093 {
3094 	if (PTR_ERR(pp) != -EINPROGRESS) {
3095 		NAPI_GRO_CB(skb)->flush |= flush;
3096 		skb_gro_remcsum_cleanup(skb, grc);
3097 		skb->remcsum_offload = 0;
3098 	}
3099 }
3100 #else
3101 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3102 {
3103 	NAPI_GRO_CB(skb)->flush |= flush;
3104 }
3105 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3106 					       struct sk_buff *pp,
3107 					       int flush,
3108 					       struct gro_remcsum *grc)
3109 {
3110 	NAPI_GRO_CB(skb)->flush |= flush;
3111 	skb_gro_remcsum_cleanup(skb, grc);
3112 	skb->remcsum_offload = 0;
3113 }
3114 #endif
3115 
3116 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3117 				  unsigned short type,
3118 				  const void *daddr, const void *saddr,
3119 				  unsigned int len)
3120 {
3121 	if (!dev->header_ops || !dev->header_ops->create)
3122 		return 0;
3123 
3124 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3125 }
3126 
3127 static inline int dev_parse_header(const struct sk_buff *skb,
3128 				   unsigned char *haddr)
3129 {
3130 	const struct net_device *dev = skb->dev;
3131 
3132 	if (!dev->header_ops || !dev->header_ops->parse)
3133 		return 0;
3134 	return dev->header_ops->parse(skb, haddr);
3135 }
3136 
3137 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3138 {
3139 	const struct net_device *dev = skb->dev;
3140 
3141 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3142 		return 0;
3143 	return dev->header_ops->parse_protocol(skb);
3144 }
3145 
3146 /* ll_header must have at least hard_header_len allocated */
3147 static inline bool dev_validate_header(const struct net_device *dev,
3148 				       char *ll_header, int len)
3149 {
3150 	if (likely(len >= dev->hard_header_len))
3151 		return true;
3152 	if (len < dev->min_header_len)
3153 		return false;
3154 
3155 	if (capable(CAP_SYS_RAWIO)) {
3156 		memset(ll_header + len, 0, dev->hard_header_len - len);
3157 		return true;
3158 	}
3159 
3160 	if (dev->header_ops && dev->header_ops->validate)
3161 		return dev->header_ops->validate(ll_header, len);
3162 
3163 	return false;
3164 }
3165 
3166 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3167 			   int len, int size);
3168 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3169 static inline int unregister_gifconf(unsigned int family)
3170 {
3171 	return register_gifconf(family, NULL);
3172 }
3173 
3174 #ifdef CONFIG_NET_FLOW_LIMIT
3175 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3176 struct sd_flow_limit {
3177 	u64			count;
3178 	unsigned int		num_buckets;
3179 	unsigned int		history_head;
3180 	u16			history[FLOW_LIMIT_HISTORY];
3181 	u8			buckets[];
3182 };
3183 
3184 extern int netdev_flow_limit_table_len;
3185 #endif /* CONFIG_NET_FLOW_LIMIT */
3186 
3187 /*
3188  * Incoming packets are placed on per-CPU queues
3189  */
3190 struct softnet_data {
3191 	struct list_head	poll_list;
3192 	struct sk_buff_head	process_queue;
3193 
3194 	/* stats */
3195 	unsigned int		processed;
3196 	unsigned int		time_squeeze;
3197 	unsigned int		received_rps;
3198 #ifdef CONFIG_RPS
3199 	struct softnet_data	*rps_ipi_list;
3200 #endif
3201 #ifdef CONFIG_NET_FLOW_LIMIT
3202 	struct sd_flow_limit __rcu *flow_limit;
3203 #endif
3204 	struct Qdisc		*output_queue;
3205 	struct Qdisc		**output_queue_tailp;
3206 	struct sk_buff		*completion_queue;
3207 #ifdef CONFIG_XFRM_OFFLOAD
3208 	struct sk_buff_head	xfrm_backlog;
3209 #endif
3210 	/* written and read only by owning cpu: */
3211 	struct {
3212 		u16 recursion;
3213 		u8  more;
3214 	} xmit;
3215 #ifdef CONFIG_RPS
3216 	/* input_queue_head should be written by cpu owning this struct,
3217 	 * and only read by other cpus. Worth using a cache line.
3218 	 */
3219 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3220 
3221 	/* Elements below can be accessed between CPUs for RPS/RFS */
3222 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3223 	struct softnet_data	*rps_ipi_next;
3224 	unsigned int		cpu;
3225 	unsigned int		input_queue_tail;
3226 #endif
3227 	unsigned int		dropped;
3228 	struct sk_buff_head	input_pkt_queue;
3229 	struct napi_struct	backlog;
3230 
3231 };
3232 
3233 static inline void input_queue_head_incr(struct softnet_data *sd)
3234 {
3235 #ifdef CONFIG_RPS
3236 	sd->input_queue_head++;
3237 #endif
3238 }
3239 
3240 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3241 					      unsigned int *qtail)
3242 {
3243 #ifdef CONFIG_RPS
3244 	*qtail = ++sd->input_queue_tail;
3245 #endif
3246 }
3247 
3248 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3249 
3250 static inline int dev_recursion_level(void)
3251 {
3252 	return this_cpu_read(softnet_data.xmit.recursion);
3253 }
3254 
3255 #define XMIT_RECURSION_LIMIT	8
3256 static inline bool dev_xmit_recursion(void)
3257 {
3258 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3259 			XMIT_RECURSION_LIMIT);
3260 }
3261 
3262 static inline void dev_xmit_recursion_inc(void)
3263 {
3264 	__this_cpu_inc(softnet_data.xmit.recursion);
3265 }
3266 
3267 static inline void dev_xmit_recursion_dec(void)
3268 {
3269 	__this_cpu_dec(softnet_data.xmit.recursion);
3270 }
3271 
3272 void __netif_schedule(struct Qdisc *q);
3273 void netif_schedule_queue(struct netdev_queue *txq);
3274 
3275 static inline void netif_tx_schedule_all(struct net_device *dev)
3276 {
3277 	unsigned int i;
3278 
3279 	for (i = 0; i < dev->num_tx_queues; i++)
3280 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3281 }
3282 
3283 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3284 {
3285 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3286 }
3287 
3288 /**
3289  *	netif_start_queue - allow transmit
3290  *	@dev: network device
3291  *
3292  *	Allow upper layers to call the device hard_start_xmit routine.
3293  */
3294 static inline void netif_start_queue(struct net_device *dev)
3295 {
3296 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3297 }
3298 
3299 static inline void netif_tx_start_all_queues(struct net_device *dev)
3300 {
3301 	unsigned int i;
3302 
3303 	for (i = 0; i < dev->num_tx_queues; i++) {
3304 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3305 		netif_tx_start_queue(txq);
3306 	}
3307 }
3308 
3309 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3310 
3311 /**
3312  *	netif_wake_queue - restart transmit
3313  *	@dev: network device
3314  *
3315  *	Allow upper layers to call the device hard_start_xmit routine.
3316  *	Used for flow control when transmit resources are available.
3317  */
3318 static inline void netif_wake_queue(struct net_device *dev)
3319 {
3320 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3321 }
3322 
3323 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3324 {
3325 	unsigned int i;
3326 
3327 	for (i = 0; i < dev->num_tx_queues; i++) {
3328 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3329 		netif_tx_wake_queue(txq);
3330 	}
3331 }
3332 
3333 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3334 {
3335 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3336 }
3337 
3338 /**
3339  *	netif_stop_queue - stop transmitted packets
3340  *	@dev: network device
3341  *
3342  *	Stop upper layers calling the device hard_start_xmit routine.
3343  *	Used for flow control when transmit resources are unavailable.
3344  */
3345 static inline void netif_stop_queue(struct net_device *dev)
3346 {
3347 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3348 }
3349 
3350 void netif_tx_stop_all_queues(struct net_device *dev);
3351 
3352 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3353 {
3354 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3355 }
3356 
3357 /**
3358  *	netif_queue_stopped - test if transmit queue is flowblocked
3359  *	@dev: network device
3360  *
3361  *	Test if transmit queue on device is currently unable to send.
3362  */
3363 static inline bool netif_queue_stopped(const struct net_device *dev)
3364 {
3365 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3366 }
3367 
3368 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3369 {
3370 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3371 }
3372 
3373 static inline bool
3374 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3375 {
3376 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3377 }
3378 
3379 static inline bool
3380 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3381 {
3382 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3383 }
3384 
3385 /**
3386  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3387  *	@dev_queue: pointer to transmit queue
3388  *
3389  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3390  * to give appropriate hint to the CPU.
3391  */
3392 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3393 {
3394 #ifdef CONFIG_BQL
3395 	prefetchw(&dev_queue->dql.num_queued);
3396 #endif
3397 }
3398 
3399 /**
3400  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3401  *	@dev_queue: pointer to transmit queue
3402  *
3403  * BQL enabled drivers might use this helper in their TX completion path,
3404  * to give appropriate hint to the CPU.
3405  */
3406 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3407 {
3408 #ifdef CONFIG_BQL
3409 	prefetchw(&dev_queue->dql.limit);
3410 #endif
3411 }
3412 
3413 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3414 					unsigned int bytes)
3415 {
3416 #ifdef CONFIG_BQL
3417 	dql_queued(&dev_queue->dql, bytes);
3418 
3419 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3420 		return;
3421 
3422 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3423 
3424 	/*
3425 	 * The XOFF flag must be set before checking the dql_avail below,
3426 	 * because in netdev_tx_completed_queue we update the dql_completed
3427 	 * before checking the XOFF flag.
3428 	 */
3429 	smp_mb();
3430 
3431 	/* check again in case another CPU has just made room avail */
3432 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3433 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3434 #endif
3435 }
3436 
3437 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3438  * that they should not test BQL status themselves.
3439  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3440  * skb of a batch.
3441  * Returns true if the doorbell must be used to kick the NIC.
3442  */
3443 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3444 					  unsigned int bytes,
3445 					  bool xmit_more)
3446 {
3447 	if (xmit_more) {
3448 #ifdef CONFIG_BQL
3449 		dql_queued(&dev_queue->dql, bytes);
3450 #endif
3451 		return netif_tx_queue_stopped(dev_queue);
3452 	}
3453 	netdev_tx_sent_queue(dev_queue, bytes);
3454 	return true;
3455 }
3456 
3457 /**
3458  * 	netdev_sent_queue - report the number of bytes queued to hardware
3459  * 	@dev: network device
3460  * 	@bytes: number of bytes queued to the hardware device queue
3461  *
3462  * 	Report the number of bytes queued for sending/completion to the network
3463  * 	device hardware queue. @bytes should be a good approximation and should
3464  * 	exactly match netdev_completed_queue() @bytes
3465  */
3466 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3467 {
3468 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3469 }
3470 
3471 static inline bool __netdev_sent_queue(struct net_device *dev,
3472 				       unsigned int bytes,
3473 				       bool xmit_more)
3474 {
3475 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3476 				      xmit_more);
3477 }
3478 
3479 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3480 					     unsigned int pkts, unsigned int bytes)
3481 {
3482 #ifdef CONFIG_BQL
3483 	if (unlikely(!bytes))
3484 		return;
3485 
3486 	dql_completed(&dev_queue->dql, bytes);
3487 
3488 	/*
3489 	 * Without the memory barrier there is a small possiblity that
3490 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3491 	 * be stopped forever
3492 	 */
3493 	smp_mb();
3494 
3495 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3496 		return;
3497 
3498 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3499 		netif_schedule_queue(dev_queue);
3500 #endif
3501 }
3502 
3503 /**
3504  * 	netdev_completed_queue - report bytes and packets completed by device
3505  * 	@dev: network device
3506  * 	@pkts: actual number of packets sent over the medium
3507  * 	@bytes: actual number of bytes sent over the medium
3508  *
3509  * 	Report the number of bytes and packets transmitted by the network device
3510  * 	hardware queue over the physical medium, @bytes must exactly match the
3511  * 	@bytes amount passed to netdev_sent_queue()
3512  */
3513 static inline void netdev_completed_queue(struct net_device *dev,
3514 					  unsigned int pkts, unsigned int bytes)
3515 {
3516 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3517 }
3518 
3519 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3520 {
3521 #ifdef CONFIG_BQL
3522 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3523 	dql_reset(&q->dql);
3524 #endif
3525 }
3526 
3527 /**
3528  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3529  * 	@dev_queue: network device
3530  *
3531  * 	Reset the bytes and packet count of a network device and clear the
3532  * 	software flow control OFF bit for this network device
3533  */
3534 static inline void netdev_reset_queue(struct net_device *dev_queue)
3535 {
3536 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3537 }
3538 
3539 /**
3540  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3541  * 	@dev: network device
3542  * 	@queue_index: given tx queue index
3543  *
3544  * 	Returns 0 if given tx queue index >= number of device tx queues,
3545  * 	otherwise returns the originally passed tx queue index.
3546  */
3547 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3548 {
3549 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3550 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3551 				     dev->name, queue_index,
3552 				     dev->real_num_tx_queues);
3553 		return 0;
3554 	}
3555 
3556 	return queue_index;
3557 }
3558 
3559 /**
3560  *	netif_running - test if up
3561  *	@dev: network device
3562  *
3563  *	Test if the device has been brought up.
3564  */
3565 static inline bool netif_running(const struct net_device *dev)
3566 {
3567 	return test_bit(__LINK_STATE_START, &dev->state);
3568 }
3569 
3570 /*
3571  * Routines to manage the subqueues on a device.  We only need start,
3572  * stop, and a check if it's stopped.  All other device management is
3573  * done at the overall netdevice level.
3574  * Also test the device if we're multiqueue.
3575  */
3576 
3577 /**
3578  *	netif_start_subqueue - allow sending packets on subqueue
3579  *	@dev: network device
3580  *	@queue_index: sub queue index
3581  *
3582  * Start individual transmit queue of a device with multiple transmit queues.
3583  */
3584 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3585 {
3586 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3587 
3588 	netif_tx_start_queue(txq);
3589 }
3590 
3591 /**
3592  *	netif_stop_subqueue - stop sending packets on subqueue
3593  *	@dev: network device
3594  *	@queue_index: sub queue index
3595  *
3596  * Stop individual transmit queue of a device with multiple transmit queues.
3597  */
3598 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3599 {
3600 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3601 	netif_tx_stop_queue(txq);
3602 }
3603 
3604 /**
3605  *	__netif_subqueue_stopped - test status of subqueue
3606  *	@dev: network device
3607  *	@queue_index: sub queue index
3608  *
3609  * Check individual transmit queue of a device with multiple transmit queues.
3610  */
3611 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3612 					    u16 queue_index)
3613 {
3614 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3615 
3616 	return netif_tx_queue_stopped(txq);
3617 }
3618 
3619 /**
3620  *	netif_subqueue_stopped - test status of subqueue
3621  *	@dev: network device
3622  *	@skb: sub queue buffer pointer
3623  *
3624  * Check individual transmit queue of a device with multiple transmit queues.
3625  */
3626 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3627 					  struct sk_buff *skb)
3628 {
3629 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3630 }
3631 
3632 /**
3633  *	netif_wake_subqueue - allow sending packets on subqueue
3634  *	@dev: network device
3635  *	@queue_index: sub queue index
3636  *
3637  * Resume individual transmit queue of a device with multiple transmit queues.
3638  */
3639 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3640 {
3641 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3642 
3643 	netif_tx_wake_queue(txq);
3644 }
3645 
3646 #ifdef CONFIG_XPS
3647 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3648 			u16 index);
3649 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3650 			  u16 index, bool is_rxqs_map);
3651 
3652 /**
3653  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3654  *	@j: CPU/Rx queue index
3655  *	@mask: bitmask of all cpus/rx queues
3656  *	@nr_bits: number of bits in the bitmask
3657  *
3658  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3659  */
3660 static inline bool netif_attr_test_mask(unsigned long j,
3661 					const unsigned long *mask,
3662 					unsigned int nr_bits)
3663 {
3664 	cpu_max_bits_warn(j, nr_bits);
3665 	return test_bit(j, mask);
3666 }
3667 
3668 /**
3669  *	netif_attr_test_online - Test for online CPU/Rx queue
3670  *	@j: CPU/Rx queue index
3671  *	@online_mask: bitmask for CPUs/Rx queues that are online
3672  *	@nr_bits: number of bits in the bitmask
3673  *
3674  * Returns true if a CPU/Rx queue is online.
3675  */
3676 static inline bool netif_attr_test_online(unsigned long j,
3677 					  const unsigned long *online_mask,
3678 					  unsigned int nr_bits)
3679 {
3680 	cpu_max_bits_warn(j, nr_bits);
3681 
3682 	if (online_mask)
3683 		return test_bit(j, online_mask);
3684 
3685 	return (j < nr_bits);
3686 }
3687 
3688 /**
3689  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3690  *	@n: CPU/Rx queue index
3691  *	@srcp: the cpumask/Rx queue mask pointer
3692  *	@nr_bits: number of bits in the bitmask
3693  *
3694  * Returns >= nr_bits if no further CPUs/Rx queues set.
3695  */
3696 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3697 					       unsigned int nr_bits)
3698 {
3699 	/* -1 is a legal arg here. */
3700 	if (n != -1)
3701 		cpu_max_bits_warn(n, nr_bits);
3702 
3703 	if (srcp)
3704 		return find_next_bit(srcp, nr_bits, n + 1);
3705 
3706 	return n + 1;
3707 }
3708 
3709 /**
3710  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3711  *	@n: CPU/Rx queue index
3712  *	@src1p: the first CPUs/Rx queues mask pointer
3713  *	@src2p: the second CPUs/Rx queues mask pointer
3714  *	@nr_bits: number of bits in the bitmask
3715  *
3716  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3717  */
3718 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3719 					  const unsigned long *src2p,
3720 					  unsigned int nr_bits)
3721 {
3722 	/* -1 is a legal arg here. */
3723 	if (n != -1)
3724 		cpu_max_bits_warn(n, nr_bits);
3725 
3726 	if (src1p && src2p)
3727 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3728 	else if (src1p)
3729 		return find_next_bit(src1p, nr_bits, n + 1);
3730 	else if (src2p)
3731 		return find_next_bit(src2p, nr_bits, n + 1);
3732 
3733 	return n + 1;
3734 }
3735 #else
3736 static inline int netif_set_xps_queue(struct net_device *dev,
3737 				      const struct cpumask *mask,
3738 				      u16 index)
3739 {
3740 	return 0;
3741 }
3742 
3743 static inline int __netif_set_xps_queue(struct net_device *dev,
3744 					const unsigned long *mask,
3745 					u16 index, bool is_rxqs_map)
3746 {
3747 	return 0;
3748 }
3749 #endif
3750 
3751 /**
3752  *	netif_is_multiqueue - test if device has multiple transmit queues
3753  *	@dev: network device
3754  *
3755  * Check if device has multiple transmit queues
3756  */
3757 static inline bool netif_is_multiqueue(const struct net_device *dev)
3758 {
3759 	return dev->num_tx_queues > 1;
3760 }
3761 
3762 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3763 
3764 #ifdef CONFIG_SYSFS
3765 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3766 #else
3767 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3768 						unsigned int rxqs)
3769 {
3770 	dev->real_num_rx_queues = rxqs;
3771 	return 0;
3772 }
3773 #endif
3774 
3775 static inline struct netdev_rx_queue *
3776 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3777 {
3778 	return dev->_rx + rxq;
3779 }
3780 
3781 #ifdef CONFIG_SYSFS
3782 static inline unsigned int get_netdev_rx_queue_index(
3783 		struct netdev_rx_queue *queue)
3784 {
3785 	struct net_device *dev = queue->dev;
3786 	int index = queue - dev->_rx;
3787 
3788 	BUG_ON(index >= dev->num_rx_queues);
3789 	return index;
3790 }
3791 #endif
3792 
3793 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3794 int netif_get_num_default_rss_queues(void);
3795 
3796 enum skb_free_reason {
3797 	SKB_REASON_CONSUMED,
3798 	SKB_REASON_DROPPED,
3799 };
3800 
3801 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3802 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3803 
3804 /*
3805  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3806  * interrupt context or with hardware interrupts being disabled.
3807  * (in_irq() || irqs_disabled())
3808  *
3809  * We provide four helpers that can be used in following contexts :
3810  *
3811  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3812  *  replacing kfree_skb(skb)
3813  *
3814  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3815  *  Typically used in place of consume_skb(skb) in TX completion path
3816  *
3817  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3818  *  replacing kfree_skb(skb)
3819  *
3820  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3821  *  and consumed a packet. Used in place of consume_skb(skb)
3822  */
3823 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3824 {
3825 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3826 }
3827 
3828 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3829 {
3830 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3831 }
3832 
3833 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3834 {
3835 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3836 }
3837 
3838 static inline void dev_consume_skb_any(struct sk_buff *skb)
3839 {
3840 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3841 }
3842 
3843 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3844 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3845 int netif_rx(struct sk_buff *skb);
3846 int netif_rx_ni(struct sk_buff *skb);
3847 int netif_rx_any_context(struct sk_buff *skb);
3848 int netif_receive_skb(struct sk_buff *skb);
3849 int netif_receive_skb_core(struct sk_buff *skb);
3850 void netif_receive_skb_list(struct list_head *head);
3851 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3852 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3853 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3854 gro_result_t napi_gro_frags(struct napi_struct *napi);
3855 struct packet_offload *gro_find_receive_by_type(__be16 type);
3856 struct packet_offload *gro_find_complete_by_type(__be16 type);
3857 
3858 static inline void napi_free_frags(struct napi_struct *napi)
3859 {
3860 	kfree_skb(napi->skb);
3861 	napi->skb = NULL;
3862 }
3863 
3864 bool netdev_is_rx_handler_busy(struct net_device *dev);
3865 int netdev_rx_handler_register(struct net_device *dev,
3866 			       rx_handler_func_t *rx_handler,
3867 			       void *rx_handler_data);
3868 void netdev_rx_handler_unregister(struct net_device *dev);
3869 
3870 bool dev_valid_name(const char *name);
3871 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3872 		bool *need_copyout);
3873 int dev_ifconf(struct net *net, struct ifconf *, int);
3874 int dev_ethtool(struct net *net, struct ifreq *);
3875 unsigned int dev_get_flags(const struct net_device *);
3876 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3877 		       struct netlink_ext_ack *extack);
3878 int dev_change_flags(struct net_device *dev, unsigned int flags,
3879 		     struct netlink_ext_ack *extack);
3880 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3881 			unsigned int gchanges);
3882 int dev_change_name(struct net_device *, const char *);
3883 int dev_set_alias(struct net_device *, const char *, size_t);
3884 int dev_get_alias(const struct net_device *, char *, size_t);
3885 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3886 int __dev_set_mtu(struct net_device *, int);
3887 int dev_validate_mtu(struct net_device *dev, int mtu,
3888 		     struct netlink_ext_ack *extack);
3889 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3890 		    struct netlink_ext_ack *extack);
3891 int dev_set_mtu(struct net_device *, int);
3892 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3893 void dev_set_group(struct net_device *, int);
3894 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3895 			      struct netlink_ext_ack *extack);
3896 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3897 			struct netlink_ext_ack *extack);
3898 int dev_change_carrier(struct net_device *, bool new_carrier);
3899 int dev_get_phys_port_id(struct net_device *dev,
3900 			 struct netdev_phys_item_id *ppid);
3901 int dev_get_phys_port_name(struct net_device *dev,
3902 			   char *name, size_t len);
3903 int dev_get_port_parent_id(struct net_device *dev,
3904 			   struct netdev_phys_item_id *ppid, bool recurse);
3905 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3906 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3907 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3908 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3909 				  u32 value);
3910 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3911 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3912 				    struct netdev_queue *txq, int *ret);
3913 
3914 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3915 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3916 		      int fd, int expected_fd, u32 flags);
3917 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3918 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3919 
3920 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3921 
3922 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3923 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3924 bool is_skb_forwardable(const struct net_device *dev,
3925 			const struct sk_buff *skb);
3926 
3927 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3928 					       struct sk_buff *skb)
3929 {
3930 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3931 	    unlikely(!is_skb_forwardable(dev, skb))) {
3932 		atomic_long_inc(&dev->rx_dropped);
3933 		kfree_skb(skb);
3934 		return NET_RX_DROP;
3935 	}
3936 
3937 	skb_scrub_packet(skb, true);
3938 	skb->priority = 0;
3939 	return 0;
3940 }
3941 
3942 bool dev_nit_active(struct net_device *dev);
3943 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3944 
3945 extern int		netdev_budget;
3946 extern unsigned int	netdev_budget_usecs;
3947 
3948 /* Called by rtnetlink.c:rtnl_unlock() */
3949 void netdev_run_todo(void);
3950 
3951 /**
3952  *	dev_put - release reference to device
3953  *	@dev: network device
3954  *
3955  * Release reference to device to allow it to be freed.
3956  */
3957 static inline void dev_put(struct net_device *dev)
3958 {
3959 	this_cpu_dec(*dev->pcpu_refcnt);
3960 }
3961 
3962 /**
3963  *	dev_hold - get reference to device
3964  *	@dev: network device
3965  *
3966  * Hold reference to device to keep it from being freed.
3967  */
3968 static inline void dev_hold(struct net_device *dev)
3969 {
3970 	this_cpu_inc(*dev->pcpu_refcnt);
3971 }
3972 
3973 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3974  * and _off may be called from IRQ context, but it is caller
3975  * who is responsible for serialization of these calls.
3976  *
3977  * The name carrier is inappropriate, these functions should really be
3978  * called netif_lowerlayer_*() because they represent the state of any
3979  * kind of lower layer not just hardware media.
3980  */
3981 
3982 void linkwatch_init_dev(struct net_device *dev);
3983 void linkwatch_fire_event(struct net_device *dev);
3984 void linkwatch_forget_dev(struct net_device *dev);
3985 
3986 /**
3987  *	netif_carrier_ok - test if carrier present
3988  *	@dev: network device
3989  *
3990  * Check if carrier is present on device
3991  */
3992 static inline bool netif_carrier_ok(const struct net_device *dev)
3993 {
3994 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3995 }
3996 
3997 unsigned long dev_trans_start(struct net_device *dev);
3998 
3999 void __netdev_watchdog_up(struct net_device *dev);
4000 
4001 void netif_carrier_on(struct net_device *dev);
4002 
4003 void netif_carrier_off(struct net_device *dev);
4004 
4005 /**
4006  *	netif_dormant_on - mark device as dormant.
4007  *	@dev: network device
4008  *
4009  * Mark device as dormant (as per RFC2863).
4010  *
4011  * The dormant state indicates that the relevant interface is not
4012  * actually in a condition to pass packets (i.e., it is not 'up') but is
4013  * in a "pending" state, waiting for some external event.  For "on-
4014  * demand" interfaces, this new state identifies the situation where the
4015  * interface is waiting for events to place it in the up state.
4016  */
4017 static inline void netif_dormant_on(struct net_device *dev)
4018 {
4019 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4020 		linkwatch_fire_event(dev);
4021 }
4022 
4023 /**
4024  *	netif_dormant_off - set device as not dormant.
4025  *	@dev: network device
4026  *
4027  * Device is not in dormant state.
4028  */
4029 static inline void netif_dormant_off(struct net_device *dev)
4030 {
4031 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4032 		linkwatch_fire_event(dev);
4033 }
4034 
4035 /**
4036  *	netif_dormant - test if device is dormant
4037  *	@dev: network device
4038  *
4039  * Check if device is dormant.
4040  */
4041 static inline bool netif_dormant(const struct net_device *dev)
4042 {
4043 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4044 }
4045 
4046 
4047 /**
4048  *	netif_testing_on - mark device as under test.
4049  *	@dev: network device
4050  *
4051  * Mark device as under test (as per RFC2863).
4052  *
4053  * The testing state indicates that some test(s) must be performed on
4054  * the interface. After completion, of the test, the interface state
4055  * will change to up, dormant, or down, as appropriate.
4056  */
4057 static inline void netif_testing_on(struct net_device *dev)
4058 {
4059 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4060 		linkwatch_fire_event(dev);
4061 }
4062 
4063 /**
4064  *	netif_testing_off - set device as not under test.
4065  *	@dev: network device
4066  *
4067  * Device is not in testing state.
4068  */
4069 static inline void netif_testing_off(struct net_device *dev)
4070 {
4071 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4072 		linkwatch_fire_event(dev);
4073 }
4074 
4075 /**
4076  *	netif_testing - test if device is under test
4077  *	@dev: network device
4078  *
4079  * Check if device is under test
4080  */
4081 static inline bool netif_testing(const struct net_device *dev)
4082 {
4083 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4084 }
4085 
4086 
4087 /**
4088  *	netif_oper_up - test if device is operational
4089  *	@dev: network device
4090  *
4091  * Check if carrier is operational
4092  */
4093 static inline bool netif_oper_up(const struct net_device *dev)
4094 {
4095 	return (dev->operstate == IF_OPER_UP ||
4096 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4097 }
4098 
4099 /**
4100  *	netif_device_present - is device available or removed
4101  *	@dev: network device
4102  *
4103  * Check if device has not been removed from system.
4104  */
4105 static inline bool netif_device_present(struct net_device *dev)
4106 {
4107 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4108 }
4109 
4110 void netif_device_detach(struct net_device *dev);
4111 
4112 void netif_device_attach(struct net_device *dev);
4113 
4114 /*
4115  * Network interface message level settings
4116  */
4117 
4118 enum {
4119 	NETIF_MSG_DRV_BIT,
4120 	NETIF_MSG_PROBE_BIT,
4121 	NETIF_MSG_LINK_BIT,
4122 	NETIF_MSG_TIMER_BIT,
4123 	NETIF_MSG_IFDOWN_BIT,
4124 	NETIF_MSG_IFUP_BIT,
4125 	NETIF_MSG_RX_ERR_BIT,
4126 	NETIF_MSG_TX_ERR_BIT,
4127 	NETIF_MSG_TX_QUEUED_BIT,
4128 	NETIF_MSG_INTR_BIT,
4129 	NETIF_MSG_TX_DONE_BIT,
4130 	NETIF_MSG_RX_STATUS_BIT,
4131 	NETIF_MSG_PKTDATA_BIT,
4132 	NETIF_MSG_HW_BIT,
4133 	NETIF_MSG_WOL_BIT,
4134 
4135 	/* When you add a new bit above, update netif_msg_class_names array
4136 	 * in net/ethtool/common.c
4137 	 */
4138 	NETIF_MSG_CLASS_COUNT,
4139 };
4140 /* Both ethtool_ops interface and internal driver implementation use u32 */
4141 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4142 
4143 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4144 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4145 
4146 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4147 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4148 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4149 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4150 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4151 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4152 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4153 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4154 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4155 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4156 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4157 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4158 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4159 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4160 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4161 
4162 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4163 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4164 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4165 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4166 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4167 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4168 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4169 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4170 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4171 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4172 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4173 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4174 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4175 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4176 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4177 
4178 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4179 {
4180 	/* use default */
4181 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4182 		return default_msg_enable_bits;
4183 	if (debug_value == 0)	/* no output */
4184 		return 0;
4185 	/* set low N bits */
4186 	return (1U << debug_value) - 1;
4187 }
4188 
4189 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4190 {
4191 	spin_lock(&txq->_xmit_lock);
4192 	txq->xmit_lock_owner = cpu;
4193 }
4194 
4195 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4196 {
4197 	__acquire(&txq->_xmit_lock);
4198 	return true;
4199 }
4200 
4201 static inline void __netif_tx_release(struct netdev_queue *txq)
4202 {
4203 	__release(&txq->_xmit_lock);
4204 }
4205 
4206 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4207 {
4208 	spin_lock_bh(&txq->_xmit_lock);
4209 	txq->xmit_lock_owner = smp_processor_id();
4210 }
4211 
4212 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4213 {
4214 	bool ok = spin_trylock(&txq->_xmit_lock);
4215 	if (likely(ok))
4216 		txq->xmit_lock_owner = smp_processor_id();
4217 	return ok;
4218 }
4219 
4220 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4221 {
4222 	txq->xmit_lock_owner = -1;
4223 	spin_unlock(&txq->_xmit_lock);
4224 }
4225 
4226 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4227 {
4228 	txq->xmit_lock_owner = -1;
4229 	spin_unlock_bh(&txq->_xmit_lock);
4230 }
4231 
4232 static inline void txq_trans_update(struct netdev_queue *txq)
4233 {
4234 	if (txq->xmit_lock_owner != -1)
4235 		txq->trans_start = jiffies;
4236 }
4237 
4238 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4239 static inline void netif_trans_update(struct net_device *dev)
4240 {
4241 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4242 
4243 	if (txq->trans_start != jiffies)
4244 		txq->trans_start = jiffies;
4245 }
4246 
4247 /**
4248  *	netif_tx_lock - grab network device transmit lock
4249  *	@dev: network device
4250  *
4251  * Get network device transmit lock
4252  */
4253 static inline void netif_tx_lock(struct net_device *dev)
4254 {
4255 	unsigned int i;
4256 	int cpu;
4257 
4258 	spin_lock(&dev->tx_global_lock);
4259 	cpu = smp_processor_id();
4260 	for (i = 0; i < dev->num_tx_queues; i++) {
4261 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4262 
4263 		/* We are the only thread of execution doing a
4264 		 * freeze, but we have to grab the _xmit_lock in
4265 		 * order to synchronize with threads which are in
4266 		 * the ->hard_start_xmit() handler and already
4267 		 * checked the frozen bit.
4268 		 */
4269 		__netif_tx_lock(txq, cpu);
4270 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4271 		__netif_tx_unlock(txq);
4272 	}
4273 }
4274 
4275 static inline void netif_tx_lock_bh(struct net_device *dev)
4276 {
4277 	local_bh_disable();
4278 	netif_tx_lock(dev);
4279 }
4280 
4281 static inline void netif_tx_unlock(struct net_device *dev)
4282 {
4283 	unsigned int i;
4284 
4285 	for (i = 0; i < dev->num_tx_queues; i++) {
4286 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4287 
4288 		/* No need to grab the _xmit_lock here.  If the
4289 		 * queue is not stopped for another reason, we
4290 		 * force a schedule.
4291 		 */
4292 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4293 		netif_schedule_queue(txq);
4294 	}
4295 	spin_unlock(&dev->tx_global_lock);
4296 }
4297 
4298 static inline void netif_tx_unlock_bh(struct net_device *dev)
4299 {
4300 	netif_tx_unlock(dev);
4301 	local_bh_enable();
4302 }
4303 
4304 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4305 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4306 		__netif_tx_lock(txq, cpu);		\
4307 	} else {					\
4308 		__netif_tx_acquire(txq);		\
4309 	}						\
4310 }
4311 
4312 #define HARD_TX_TRYLOCK(dev, txq)			\
4313 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4314 		__netif_tx_trylock(txq) :		\
4315 		__netif_tx_acquire(txq))
4316 
4317 #define HARD_TX_UNLOCK(dev, txq) {			\
4318 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4319 		__netif_tx_unlock(txq);			\
4320 	} else {					\
4321 		__netif_tx_release(txq);		\
4322 	}						\
4323 }
4324 
4325 static inline void netif_tx_disable(struct net_device *dev)
4326 {
4327 	unsigned int i;
4328 	int cpu;
4329 
4330 	local_bh_disable();
4331 	cpu = smp_processor_id();
4332 	for (i = 0; i < dev->num_tx_queues; i++) {
4333 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4334 
4335 		__netif_tx_lock(txq, cpu);
4336 		netif_tx_stop_queue(txq);
4337 		__netif_tx_unlock(txq);
4338 	}
4339 	local_bh_enable();
4340 }
4341 
4342 static inline void netif_addr_lock(struct net_device *dev)
4343 {
4344 	unsigned char nest_level = 0;
4345 
4346 #ifdef CONFIG_LOCKDEP
4347 	nest_level = dev->nested_level;
4348 #endif
4349 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4350 }
4351 
4352 static inline void netif_addr_lock_bh(struct net_device *dev)
4353 {
4354 	unsigned char nest_level = 0;
4355 
4356 #ifdef CONFIG_LOCKDEP
4357 	nest_level = dev->nested_level;
4358 #endif
4359 	local_bh_disable();
4360 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4361 }
4362 
4363 static inline void netif_addr_unlock(struct net_device *dev)
4364 {
4365 	spin_unlock(&dev->addr_list_lock);
4366 }
4367 
4368 static inline void netif_addr_unlock_bh(struct net_device *dev)
4369 {
4370 	spin_unlock_bh(&dev->addr_list_lock);
4371 }
4372 
4373 /*
4374  * dev_addrs walker. Should be used only for read access. Call with
4375  * rcu_read_lock held.
4376  */
4377 #define for_each_dev_addr(dev, ha) \
4378 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4379 
4380 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4381 
4382 void ether_setup(struct net_device *dev);
4383 
4384 /* Support for loadable net-drivers */
4385 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4386 				    unsigned char name_assign_type,
4387 				    void (*setup)(struct net_device *),
4388 				    unsigned int txqs, unsigned int rxqs);
4389 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4390 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4391 
4392 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4393 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4394 			 count)
4395 
4396 int register_netdev(struct net_device *dev);
4397 void unregister_netdev(struct net_device *dev);
4398 
4399 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4400 
4401 /* General hardware address lists handling functions */
4402 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4403 		   struct netdev_hw_addr_list *from_list, int addr_len);
4404 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4405 		      struct netdev_hw_addr_list *from_list, int addr_len);
4406 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4407 		       struct net_device *dev,
4408 		       int (*sync)(struct net_device *, const unsigned char *),
4409 		       int (*unsync)(struct net_device *,
4410 				     const unsigned char *));
4411 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4412 			   struct net_device *dev,
4413 			   int (*sync)(struct net_device *,
4414 				       const unsigned char *, int),
4415 			   int (*unsync)(struct net_device *,
4416 					 const unsigned char *, int));
4417 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4418 			      struct net_device *dev,
4419 			      int (*unsync)(struct net_device *,
4420 					    const unsigned char *, int));
4421 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4422 			  struct net_device *dev,
4423 			  int (*unsync)(struct net_device *,
4424 					const unsigned char *));
4425 void __hw_addr_init(struct netdev_hw_addr_list *list);
4426 
4427 /* Functions used for device addresses handling */
4428 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4429 		 unsigned char addr_type);
4430 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4431 		 unsigned char addr_type);
4432 void dev_addr_flush(struct net_device *dev);
4433 int dev_addr_init(struct net_device *dev);
4434 
4435 /* Functions used for unicast addresses handling */
4436 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4437 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4438 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4439 int dev_uc_sync(struct net_device *to, struct net_device *from);
4440 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4441 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4442 void dev_uc_flush(struct net_device *dev);
4443 void dev_uc_init(struct net_device *dev);
4444 
4445 /**
4446  *  __dev_uc_sync - Synchonize device's unicast list
4447  *  @dev:  device to sync
4448  *  @sync: function to call if address should be added
4449  *  @unsync: function to call if address should be removed
4450  *
4451  *  Add newly added addresses to the interface, and release
4452  *  addresses that have been deleted.
4453  */
4454 static inline int __dev_uc_sync(struct net_device *dev,
4455 				int (*sync)(struct net_device *,
4456 					    const unsigned char *),
4457 				int (*unsync)(struct net_device *,
4458 					      const unsigned char *))
4459 {
4460 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4461 }
4462 
4463 /**
4464  *  __dev_uc_unsync - Remove synchronized addresses from device
4465  *  @dev:  device to sync
4466  *  @unsync: function to call if address should be removed
4467  *
4468  *  Remove all addresses that were added to the device by dev_uc_sync().
4469  */
4470 static inline void __dev_uc_unsync(struct net_device *dev,
4471 				   int (*unsync)(struct net_device *,
4472 						 const unsigned char *))
4473 {
4474 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4475 }
4476 
4477 /* Functions used for multicast addresses handling */
4478 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4479 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4480 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4481 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4482 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4483 int dev_mc_sync(struct net_device *to, struct net_device *from);
4484 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4485 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4486 void dev_mc_flush(struct net_device *dev);
4487 void dev_mc_init(struct net_device *dev);
4488 
4489 /**
4490  *  __dev_mc_sync - Synchonize device's multicast list
4491  *  @dev:  device to sync
4492  *  @sync: function to call if address should be added
4493  *  @unsync: function to call if address should be removed
4494  *
4495  *  Add newly added addresses to the interface, and release
4496  *  addresses that have been deleted.
4497  */
4498 static inline int __dev_mc_sync(struct net_device *dev,
4499 				int (*sync)(struct net_device *,
4500 					    const unsigned char *),
4501 				int (*unsync)(struct net_device *,
4502 					      const unsigned char *))
4503 {
4504 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4505 }
4506 
4507 /**
4508  *  __dev_mc_unsync - Remove synchronized addresses from device
4509  *  @dev:  device to sync
4510  *  @unsync: function to call if address should be removed
4511  *
4512  *  Remove all addresses that were added to the device by dev_mc_sync().
4513  */
4514 static inline void __dev_mc_unsync(struct net_device *dev,
4515 				   int (*unsync)(struct net_device *,
4516 						 const unsigned char *))
4517 {
4518 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4519 }
4520 
4521 /* Functions used for secondary unicast and multicast support */
4522 void dev_set_rx_mode(struct net_device *dev);
4523 void __dev_set_rx_mode(struct net_device *dev);
4524 int dev_set_promiscuity(struct net_device *dev, int inc);
4525 int dev_set_allmulti(struct net_device *dev, int inc);
4526 void netdev_state_change(struct net_device *dev);
4527 void netdev_notify_peers(struct net_device *dev);
4528 void netdev_features_change(struct net_device *dev);
4529 /* Load a device via the kmod */
4530 void dev_load(struct net *net, const char *name);
4531 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4532 					struct rtnl_link_stats64 *storage);
4533 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4534 			     const struct net_device_stats *netdev_stats);
4535 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4536 			   const struct pcpu_sw_netstats __percpu *netstats);
4537 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4538 
4539 extern int		netdev_max_backlog;
4540 extern int		netdev_tstamp_prequeue;
4541 extern int		weight_p;
4542 extern int		dev_weight_rx_bias;
4543 extern int		dev_weight_tx_bias;
4544 extern int		dev_rx_weight;
4545 extern int		dev_tx_weight;
4546 extern int		gro_normal_batch;
4547 
4548 enum {
4549 	NESTED_SYNC_IMM_BIT,
4550 	NESTED_SYNC_TODO_BIT,
4551 };
4552 
4553 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4554 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4555 
4556 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4557 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4558 
4559 struct netdev_nested_priv {
4560 	unsigned char flags;
4561 	void *data;
4562 };
4563 
4564 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4565 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4566 						     struct list_head **iter);
4567 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4568 						     struct list_head **iter);
4569 
4570 #ifdef CONFIG_LOCKDEP
4571 static LIST_HEAD(net_unlink_list);
4572 
4573 static inline void net_unlink_todo(struct net_device *dev)
4574 {
4575 	if (list_empty(&dev->unlink_list))
4576 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4577 }
4578 #endif
4579 
4580 /* iterate through upper list, must be called under RCU read lock */
4581 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4582 	for (iter = &(dev)->adj_list.upper, \
4583 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4584 	     updev; \
4585 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4586 
4587 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4588 				  int (*fn)(struct net_device *upper_dev,
4589 					    struct netdev_nested_priv *priv),
4590 				  struct netdev_nested_priv *priv);
4591 
4592 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4593 				  struct net_device *upper_dev);
4594 
4595 bool netdev_has_any_upper_dev(struct net_device *dev);
4596 
4597 void *netdev_lower_get_next_private(struct net_device *dev,
4598 				    struct list_head **iter);
4599 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4600 					struct list_head **iter);
4601 
4602 #define netdev_for_each_lower_private(dev, priv, iter) \
4603 	for (iter = (dev)->adj_list.lower.next, \
4604 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4605 	     priv; \
4606 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4607 
4608 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4609 	for (iter = &(dev)->adj_list.lower, \
4610 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4611 	     priv; \
4612 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4613 
4614 void *netdev_lower_get_next(struct net_device *dev,
4615 				struct list_head **iter);
4616 
4617 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4618 	for (iter = (dev)->adj_list.lower.next, \
4619 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4620 	     ldev; \
4621 	     ldev = netdev_lower_get_next(dev, &(iter)))
4622 
4623 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4624 					     struct list_head **iter);
4625 int netdev_walk_all_lower_dev(struct net_device *dev,
4626 			      int (*fn)(struct net_device *lower_dev,
4627 					struct netdev_nested_priv *priv),
4628 			      struct netdev_nested_priv *priv);
4629 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4630 				  int (*fn)(struct net_device *lower_dev,
4631 					    struct netdev_nested_priv *priv),
4632 				  struct netdev_nested_priv *priv);
4633 
4634 void *netdev_adjacent_get_private(struct list_head *adj_list);
4635 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4636 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4637 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4638 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4639 			  struct netlink_ext_ack *extack);
4640 int netdev_master_upper_dev_link(struct net_device *dev,
4641 				 struct net_device *upper_dev,
4642 				 void *upper_priv, void *upper_info,
4643 				 struct netlink_ext_ack *extack);
4644 void netdev_upper_dev_unlink(struct net_device *dev,
4645 			     struct net_device *upper_dev);
4646 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4647 				   struct net_device *new_dev,
4648 				   struct net_device *dev,
4649 				   struct netlink_ext_ack *extack);
4650 void netdev_adjacent_change_commit(struct net_device *old_dev,
4651 				   struct net_device *new_dev,
4652 				   struct net_device *dev);
4653 void netdev_adjacent_change_abort(struct net_device *old_dev,
4654 				  struct net_device *new_dev,
4655 				  struct net_device *dev);
4656 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4657 void *netdev_lower_dev_get_private(struct net_device *dev,
4658 				   struct net_device *lower_dev);
4659 void netdev_lower_state_changed(struct net_device *lower_dev,
4660 				void *lower_state_info);
4661 
4662 /* RSS keys are 40 or 52 bytes long */
4663 #define NETDEV_RSS_KEY_LEN 52
4664 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4665 void netdev_rss_key_fill(void *buffer, size_t len);
4666 
4667 int skb_checksum_help(struct sk_buff *skb);
4668 int skb_crc32c_csum_help(struct sk_buff *skb);
4669 int skb_csum_hwoffload_help(struct sk_buff *skb,
4670 			    const netdev_features_t features);
4671 
4672 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4673 				  netdev_features_t features, bool tx_path);
4674 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4675 				    netdev_features_t features);
4676 
4677 struct netdev_bonding_info {
4678 	ifslave	slave;
4679 	ifbond	master;
4680 };
4681 
4682 struct netdev_notifier_bonding_info {
4683 	struct netdev_notifier_info info; /* must be first */
4684 	struct netdev_bonding_info  bonding_info;
4685 };
4686 
4687 void netdev_bonding_info_change(struct net_device *dev,
4688 				struct netdev_bonding_info *bonding_info);
4689 
4690 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4691 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4692 #else
4693 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4694 				  const void *data)
4695 {
4696 }
4697 #endif
4698 
4699 static inline
4700 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4701 {
4702 	return __skb_gso_segment(skb, features, true);
4703 }
4704 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4705 
4706 static inline bool can_checksum_protocol(netdev_features_t features,
4707 					 __be16 protocol)
4708 {
4709 	if (protocol == htons(ETH_P_FCOE))
4710 		return !!(features & NETIF_F_FCOE_CRC);
4711 
4712 	/* Assume this is an IP checksum (not SCTP CRC) */
4713 
4714 	if (features & NETIF_F_HW_CSUM) {
4715 		/* Can checksum everything */
4716 		return true;
4717 	}
4718 
4719 	switch (protocol) {
4720 	case htons(ETH_P_IP):
4721 		return !!(features & NETIF_F_IP_CSUM);
4722 	case htons(ETH_P_IPV6):
4723 		return !!(features & NETIF_F_IPV6_CSUM);
4724 	default:
4725 		return false;
4726 	}
4727 }
4728 
4729 #ifdef CONFIG_BUG
4730 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4731 #else
4732 static inline void netdev_rx_csum_fault(struct net_device *dev,
4733 					struct sk_buff *skb)
4734 {
4735 }
4736 #endif
4737 /* rx skb timestamps */
4738 void net_enable_timestamp(void);
4739 void net_disable_timestamp(void);
4740 
4741 #ifdef CONFIG_PROC_FS
4742 int __init dev_proc_init(void);
4743 #else
4744 #define dev_proc_init() 0
4745 #endif
4746 
4747 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4748 					      struct sk_buff *skb, struct net_device *dev,
4749 					      bool more)
4750 {
4751 	__this_cpu_write(softnet_data.xmit.more, more);
4752 	return ops->ndo_start_xmit(skb, dev);
4753 }
4754 
4755 static inline bool netdev_xmit_more(void)
4756 {
4757 	return __this_cpu_read(softnet_data.xmit.more);
4758 }
4759 
4760 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4761 					    struct netdev_queue *txq, bool more)
4762 {
4763 	const struct net_device_ops *ops = dev->netdev_ops;
4764 	netdev_tx_t rc;
4765 
4766 	rc = __netdev_start_xmit(ops, skb, dev, more);
4767 	if (rc == NETDEV_TX_OK)
4768 		txq_trans_update(txq);
4769 
4770 	return rc;
4771 }
4772 
4773 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4774 				const void *ns);
4775 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4776 				 const void *ns);
4777 
4778 extern const struct kobj_ns_type_operations net_ns_type_operations;
4779 
4780 const char *netdev_drivername(const struct net_device *dev);
4781 
4782 void linkwatch_run_queue(void);
4783 
4784 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4785 							  netdev_features_t f2)
4786 {
4787 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4788 		if (f1 & NETIF_F_HW_CSUM)
4789 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4790 		else
4791 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4792 	}
4793 
4794 	return f1 & f2;
4795 }
4796 
4797 static inline netdev_features_t netdev_get_wanted_features(
4798 	struct net_device *dev)
4799 {
4800 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4801 }
4802 netdev_features_t netdev_increment_features(netdev_features_t all,
4803 	netdev_features_t one, netdev_features_t mask);
4804 
4805 /* Allow TSO being used on stacked device :
4806  * Performing the GSO segmentation before last device
4807  * is a performance improvement.
4808  */
4809 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4810 							netdev_features_t mask)
4811 {
4812 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4813 }
4814 
4815 int __netdev_update_features(struct net_device *dev);
4816 void netdev_update_features(struct net_device *dev);
4817 void netdev_change_features(struct net_device *dev);
4818 
4819 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4820 					struct net_device *dev);
4821 
4822 netdev_features_t passthru_features_check(struct sk_buff *skb,
4823 					  struct net_device *dev,
4824 					  netdev_features_t features);
4825 netdev_features_t netif_skb_features(struct sk_buff *skb);
4826 
4827 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4828 {
4829 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4830 
4831 	/* check flags correspondence */
4832 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4833 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4834 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4835 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4836 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4837 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4838 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4839 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4840 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4841 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4842 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4843 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4844 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4845 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4846 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4847 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4848 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4849 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4850 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4851 
4852 	return (features & feature) == feature;
4853 }
4854 
4855 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4856 {
4857 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4858 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4859 }
4860 
4861 static inline bool netif_needs_gso(struct sk_buff *skb,
4862 				   netdev_features_t features)
4863 {
4864 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4865 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4866 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4867 }
4868 
4869 static inline void netif_set_gso_max_size(struct net_device *dev,
4870 					  unsigned int size)
4871 {
4872 	dev->gso_max_size = size;
4873 }
4874 
4875 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4876 					int pulled_hlen, u16 mac_offset,
4877 					int mac_len)
4878 {
4879 	skb->protocol = protocol;
4880 	skb->encapsulation = 1;
4881 	skb_push(skb, pulled_hlen);
4882 	skb_reset_transport_header(skb);
4883 	skb->mac_header = mac_offset;
4884 	skb->network_header = skb->mac_header + mac_len;
4885 	skb->mac_len = mac_len;
4886 }
4887 
4888 static inline bool netif_is_macsec(const struct net_device *dev)
4889 {
4890 	return dev->priv_flags & IFF_MACSEC;
4891 }
4892 
4893 static inline bool netif_is_macvlan(const struct net_device *dev)
4894 {
4895 	return dev->priv_flags & IFF_MACVLAN;
4896 }
4897 
4898 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4899 {
4900 	return dev->priv_flags & IFF_MACVLAN_PORT;
4901 }
4902 
4903 static inline bool netif_is_bond_master(const struct net_device *dev)
4904 {
4905 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4906 }
4907 
4908 static inline bool netif_is_bond_slave(const struct net_device *dev)
4909 {
4910 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4911 }
4912 
4913 static inline bool netif_supports_nofcs(struct net_device *dev)
4914 {
4915 	return dev->priv_flags & IFF_SUPP_NOFCS;
4916 }
4917 
4918 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4919 {
4920 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4921 }
4922 
4923 static inline bool netif_is_l3_master(const struct net_device *dev)
4924 {
4925 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4926 }
4927 
4928 static inline bool netif_is_l3_slave(const struct net_device *dev)
4929 {
4930 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4931 }
4932 
4933 static inline bool netif_is_bridge_master(const struct net_device *dev)
4934 {
4935 	return dev->priv_flags & IFF_EBRIDGE;
4936 }
4937 
4938 static inline bool netif_is_bridge_port(const struct net_device *dev)
4939 {
4940 	return dev->priv_flags & IFF_BRIDGE_PORT;
4941 }
4942 
4943 static inline bool netif_is_ovs_master(const struct net_device *dev)
4944 {
4945 	return dev->priv_flags & IFF_OPENVSWITCH;
4946 }
4947 
4948 static inline bool netif_is_ovs_port(const struct net_device *dev)
4949 {
4950 	return dev->priv_flags & IFF_OVS_DATAPATH;
4951 }
4952 
4953 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4954 {
4955 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4956 }
4957 
4958 static inline bool netif_is_team_master(const struct net_device *dev)
4959 {
4960 	return dev->priv_flags & IFF_TEAM;
4961 }
4962 
4963 static inline bool netif_is_team_port(const struct net_device *dev)
4964 {
4965 	return dev->priv_flags & IFF_TEAM_PORT;
4966 }
4967 
4968 static inline bool netif_is_lag_master(const struct net_device *dev)
4969 {
4970 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4971 }
4972 
4973 static inline bool netif_is_lag_port(const struct net_device *dev)
4974 {
4975 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4976 }
4977 
4978 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4981 }
4982 
4983 static inline bool netif_is_failover(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_FAILOVER;
4986 }
4987 
4988 static inline bool netif_is_failover_slave(const struct net_device *dev)
4989 {
4990 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4991 }
4992 
4993 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4994 static inline void netif_keep_dst(struct net_device *dev)
4995 {
4996 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4997 }
4998 
4999 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5000 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5001 {
5002 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5003 	return dev->priv_flags & IFF_MACSEC;
5004 }
5005 
5006 extern struct pernet_operations __net_initdata loopback_net_ops;
5007 
5008 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5009 
5010 /* netdev_printk helpers, similar to dev_printk */
5011 
5012 static inline const char *netdev_name(const struct net_device *dev)
5013 {
5014 	if (!dev->name[0] || strchr(dev->name, '%'))
5015 		return "(unnamed net_device)";
5016 	return dev->name;
5017 }
5018 
5019 static inline bool netdev_unregistering(const struct net_device *dev)
5020 {
5021 	return dev->reg_state == NETREG_UNREGISTERING;
5022 }
5023 
5024 static inline const char *netdev_reg_state(const struct net_device *dev)
5025 {
5026 	switch (dev->reg_state) {
5027 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5028 	case NETREG_REGISTERED: return "";
5029 	case NETREG_UNREGISTERING: return " (unregistering)";
5030 	case NETREG_UNREGISTERED: return " (unregistered)";
5031 	case NETREG_RELEASED: return " (released)";
5032 	case NETREG_DUMMY: return " (dummy)";
5033 	}
5034 
5035 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5036 	return " (unknown)";
5037 }
5038 
5039 __printf(3, 4) __cold
5040 void netdev_printk(const char *level, const struct net_device *dev,
5041 		   const char *format, ...);
5042 __printf(2, 3) __cold
5043 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5044 __printf(2, 3) __cold
5045 void netdev_alert(const struct net_device *dev, const char *format, ...);
5046 __printf(2, 3) __cold
5047 void netdev_crit(const struct net_device *dev, const char *format, ...);
5048 __printf(2, 3) __cold
5049 void netdev_err(const struct net_device *dev, const char *format, ...);
5050 __printf(2, 3) __cold
5051 void netdev_warn(const struct net_device *dev, const char *format, ...);
5052 __printf(2, 3) __cold
5053 void netdev_notice(const struct net_device *dev, const char *format, ...);
5054 __printf(2, 3) __cold
5055 void netdev_info(const struct net_device *dev, const char *format, ...);
5056 
5057 #define netdev_level_once(level, dev, fmt, ...)			\
5058 do {								\
5059 	static bool __print_once __read_mostly;			\
5060 								\
5061 	if (!__print_once) {					\
5062 		__print_once = true;				\
5063 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5064 	}							\
5065 } while (0)
5066 
5067 #define netdev_emerg_once(dev, fmt, ...) \
5068 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5069 #define netdev_alert_once(dev, fmt, ...) \
5070 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5071 #define netdev_crit_once(dev, fmt, ...) \
5072 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5073 #define netdev_err_once(dev, fmt, ...) \
5074 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5075 #define netdev_warn_once(dev, fmt, ...) \
5076 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5077 #define netdev_notice_once(dev, fmt, ...) \
5078 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5079 #define netdev_info_once(dev, fmt, ...) \
5080 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5081 
5082 #define MODULE_ALIAS_NETDEV(device) \
5083 	MODULE_ALIAS("netdev-" device)
5084 
5085 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5086 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5087 #define netdev_dbg(__dev, format, args...)			\
5088 do {								\
5089 	dynamic_netdev_dbg(__dev, format, ##args);		\
5090 } while (0)
5091 #elif defined(DEBUG)
5092 #define netdev_dbg(__dev, format, args...)			\
5093 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5094 #else
5095 #define netdev_dbg(__dev, format, args...)			\
5096 ({								\
5097 	if (0)							\
5098 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5099 })
5100 #endif
5101 
5102 #if defined(VERBOSE_DEBUG)
5103 #define netdev_vdbg	netdev_dbg
5104 #else
5105 
5106 #define netdev_vdbg(dev, format, args...)			\
5107 ({								\
5108 	if (0)							\
5109 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5110 	0;							\
5111 })
5112 #endif
5113 
5114 /*
5115  * netdev_WARN() acts like dev_printk(), but with the key difference
5116  * of using a WARN/WARN_ON to get the message out, including the
5117  * file/line information and a backtrace.
5118  */
5119 #define netdev_WARN(dev, format, args...)			\
5120 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5121 	     netdev_reg_state(dev), ##args)
5122 
5123 #define netdev_WARN_ONCE(dev, format, args...)				\
5124 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5125 		  netdev_reg_state(dev), ##args)
5126 
5127 /* netif printk helpers, similar to netdev_printk */
5128 
5129 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5130 do {					  			\
5131 	if (netif_msg_##type(priv))				\
5132 		netdev_printk(level, (dev), fmt, ##args);	\
5133 } while (0)
5134 
5135 #define netif_level(level, priv, type, dev, fmt, args...)	\
5136 do {								\
5137 	if (netif_msg_##type(priv))				\
5138 		netdev_##level(dev, fmt, ##args);		\
5139 } while (0)
5140 
5141 #define netif_emerg(priv, type, dev, fmt, args...)		\
5142 	netif_level(emerg, priv, type, dev, fmt, ##args)
5143 #define netif_alert(priv, type, dev, fmt, args...)		\
5144 	netif_level(alert, priv, type, dev, fmt, ##args)
5145 #define netif_crit(priv, type, dev, fmt, args...)		\
5146 	netif_level(crit, priv, type, dev, fmt, ##args)
5147 #define netif_err(priv, type, dev, fmt, args...)		\
5148 	netif_level(err, priv, type, dev, fmt, ##args)
5149 #define netif_warn(priv, type, dev, fmt, args...)		\
5150 	netif_level(warn, priv, type, dev, fmt, ##args)
5151 #define netif_notice(priv, type, dev, fmt, args...)		\
5152 	netif_level(notice, priv, type, dev, fmt, ##args)
5153 #define netif_info(priv, type, dev, fmt, args...)		\
5154 	netif_level(info, priv, type, dev, fmt, ##args)
5155 
5156 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5157 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5158 #define netif_dbg(priv, type, netdev, format, args...)		\
5159 do {								\
5160 	if (netif_msg_##type(priv))				\
5161 		dynamic_netdev_dbg(netdev, format, ##args);	\
5162 } while (0)
5163 #elif defined(DEBUG)
5164 #define netif_dbg(priv, type, dev, format, args...)		\
5165 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5166 #else
5167 #define netif_dbg(priv, type, dev, format, args...)			\
5168 ({									\
5169 	if (0)								\
5170 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5171 	0;								\
5172 })
5173 #endif
5174 
5175 /* if @cond then downgrade to debug, else print at @level */
5176 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5177 	do {                                                              \
5178 		if (cond)                                                 \
5179 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5180 		else                                                      \
5181 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5182 	} while (0)
5183 
5184 #if defined(VERBOSE_DEBUG)
5185 #define netif_vdbg	netif_dbg
5186 #else
5187 #define netif_vdbg(priv, type, dev, format, args...)		\
5188 ({								\
5189 	if (0)							\
5190 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5191 	0;							\
5192 })
5193 #endif
5194 
5195 /*
5196  *	The list of packet types we will receive (as opposed to discard)
5197  *	and the routines to invoke.
5198  *
5199  *	Why 16. Because with 16 the only overlap we get on a hash of the
5200  *	low nibble of the protocol value is RARP/SNAP/X.25.
5201  *
5202  *		0800	IP
5203  *		0001	802.3
5204  *		0002	AX.25
5205  *		0004	802.2
5206  *		8035	RARP
5207  *		0005	SNAP
5208  *		0805	X.25
5209  *		0806	ARP
5210  *		8137	IPX
5211  *		0009	Localtalk
5212  *		86DD	IPv6
5213  */
5214 #define PTYPE_HASH_SIZE	(16)
5215 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5216 
5217 extern struct net_device *blackhole_netdev;
5218 
5219 #endif	/* _LINUX_NETDEVICE_H */
5220