xref: /openbmc/linux/include/linux/netdevice.h (revision 0382e4e1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
336 	int			rx_count; /* length of rx_list */
337 	struct hrtimer		timer;
338 	struct list_head	dev_list;
339 	struct hlist_node	napi_hash_node;
340 	unsigned int		napi_id;
341 };
342 
343 enum {
344 	NAPI_STATE_SCHED,	/* Poll is scheduled */
345 	NAPI_STATE_MISSED,	/* reschedule a napi */
346 	NAPI_STATE_DISABLE,	/* Disable pending */
347 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
348 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
349 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352 
353 enum {
354 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
355 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
356 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
357 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
358 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
359 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362 
363 enum gro_result {
364 	GRO_MERGED,
365 	GRO_MERGED_FREE,
366 	GRO_HELD,
367 	GRO_NORMAL,
368 	GRO_DROP,
369 	GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372 
373 /*
374  * enum rx_handler_result - Possible return values for rx_handlers.
375  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376  * further.
377  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378  * case skb->dev was changed by rx_handler.
379  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381  *
382  * rx_handlers are functions called from inside __netif_receive_skb(), to do
383  * special processing of the skb, prior to delivery to protocol handlers.
384  *
385  * Currently, a net_device can only have a single rx_handler registered. Trying
386  * to register a second rx_handler will return -EBUSY.
387  *
388  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389  * To unregister a rx_handler on a net_device, use
390  * netdev_rx_handler_unregister().
391  *
392  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393  * do with the skb.
394  *
395  * If the rx_handler consumed the skb in some way, it should return
396  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397  * the skb to be delivered in some other way.
398  *
399  * If the rx_handler changed skb->dev, to divert the skb to another
400  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401  * new device will be called if it exists.
402  *
403  * If the rx_handler decides the skb should be ignored, it should return
404  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405  * are registered on exact device (ptype->dev == skb->dev).
406  *
407  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408  * delivered, it should return RX_HANDLER_PASS.
409  *
410  * A device without a registered rx_handler will behave as if rx_handler
411  * returned RX_HANDLER_PASS.
412  */
413 
414 enum rx_handler_result {
415 	RX_HANDLER_CONSUMED,
416 	RX_HANDLER_ANOTHER,
417 	RX_HANDLER_EXACT,
418 	RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422 
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425 
426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 	return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430 
431 bool napi_schedule_prep(struct napi_struct *n);
432 
433 /**
434  *	napi_schedule - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Schedule NAPI poll routine to be called if it is not already
438  * running.
439  */
440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule(n);
444 }
445 
446 /**
447  *	napi_schedule_irqoff - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Variant of napi_schedule(), assuming hard irqs are masked.
451  */
452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 	if (napi_schedule_prep(n))
455 		__napi_schedule_irqoff(n);
456 }
457 
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 	if (napi_schedule_prep(napi)) {
462 		__napi_schedule(napi);
463 		return true;
464 	}
465 	return false;
466 }
467 
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470  *	napi_complete - NAPI processing complete
471  *	@n: NAPI context
472  *
473  * Mark NAPI processing as complete.
474  * Consider using napi_complete_done() instead.
475  * Return false if device should avoid rearming interrupts.
476  */
477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 	return napi_complete_done(n, 0);
480 }
481 
482 /**
483  *	napi_hash_del - remove a NAPI from global table
484  *	@napi: NAPI context
485  *
486  * Warning: caller must observe RCU grace period
487  * before freeing memory containing @napi, if
488  * this function returns true.
489  * Note: core networking stack automatically calls it
490  * from netif_napi_del().
491  * Drivers might want to call this helper to combine all
492  * the needed RCU grace periods into a single one.
493  */
494 bool napi_hash_del(struct napi_struct *napi);
495 
496 /**
497  *	napi_disable - prevent NAPI from scheduling
498  *	@n: NAPI context
499  *
500  * Stop NAPI from being scheduled on this context.
501  * Waits till any outstanding processing completes.
502  */
503 void napi_disable(struct napi_struct *n);
504 
505 /**
506  *	napi_enable - enable NAPI scheduling
507  *	@n: NAPI context
508  *
509  * Resume NAPI from being scheduled on this context.
510  * Must be paired with napi_disable.
511  */
512 static inline void napi_enable(struct napi_struct *n)
513 {
514 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 	smp_mb__before_atomic();
516 	clear_bit(NAPI_STATE_SCHED, &n->state);
517 	clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	struct Qdisc __rcu	*qdisc;
595 	struct Qdisc		*qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 	struct kobject		kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	int			numa_node;
601 #endif
602 	unsigned long		tx_maxrate;
603 	/*
604 	 * Number of TX timeouts for this queue
605 	 * (/sys/class/net/DEV/Q/trans_timeout)
606 	 */
607 	unsigned long		trans_timeout;
608 
609 	/* Subordinate device that the queue has been assigned to */
610 	struct net_device	*sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 	struct xdp_umem         *umem;
613 #endif
614 /*
615  * write-mostly part
616  */
617 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
618 	int			xmit_lock_owner;
619 	/*
620 	 * Time (in jiffies) of last Tx
621 	 */
622 	unsigned long		trans_start;
623 
624 	unsigned long		state;
625 
626 #ifdef CONFIG_BQL
627 	struct dql		dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630 
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 };
852 
853 /* These structures hold the attributes of bpf state that are being passed
854  * to the netdevice through the bpf op.
855  */
856 enum bpf_netdev_command {
857 	/* Set or clear a bpf program used in the earliest stages of packet
858 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
859 	 * is responsible for calling bpf_prog_put on any old progs that are
860 	 * stored. In case of error, the callee need not release the new prog
861 	 * reference, but on success it takes ownership and must bpf_prog_put
862 	 * when it is no longer used.
863 	 */
864 	XDP_SETUP_PROG,
865 	XDP_SETUP_PROG_HW,
866 	XDP_QUERY_PROG,
867 	XDP_QUERY_PROG_HW,
868 	/* BPF program for offload callbacks, invoked at program load time. */
869 	BPF_OFFLOAD_MAP_ALLOC,
870 	BPF_OFFLOAD_MAP_FREE,
871 	XDP_SETUP_XSK_UMEM,
872 };
873 
874 struct bpf_prog_offload_ops;
875 struct netlink_ext_ack;
876 struct xdp_umem;
877 
878 struct netdev_bpf {
879 	enum bpf_netdev_command command;
880 	union {
881 		/* XDP_SETUP_PROG */
882 		struct {
883 			u32 flags;
884 			struct bpf_prog *prog;
885 			struct netlink_ext_ack *extack;
886 		};
887 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
888 		struct {
889 			u32 prog_id;
890 			/* flags with which program was installed */
891 			u32 prog_flags;
892 		};
893 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
894 		struct {
895 			struct bpf_offloaded_map *offmap;
896 		};
897 		/* XDP_SETUP_XSK_UMEM */
898 		struct {
899 			struct xdp_umem *umem;
900 			u16 queue_id;
901 		} xsk;
902 	};
903 };
904 
905 /* Flags for ndo_xsk_wakeup. */
906 #define XDP_WAKEUP_RX (1 << 0)
907 #define XDP_WAKEUP_TX (1 << 1)
908 
909 #ifdef CONFIG_XFRM_OFFLOAD
910 struct xfrmdev_ops {
911 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
912 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
913 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
914 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
915 				       struct xfrm_state *x);
916 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
917 };
918 #endif
919 
920 struct dev_ifalias {
921 	struct rcu_head rcuhead;
922 	char ifalias[];
923 };
924 
925 struct devlink;
926 struct tlsdev_ops;
927 
928 /*
929  * This structure defines the management hooks for network devices.
930  * The following hooks can be defined; unless noted otherwise, they are
931  * optional and can be filled with a null pointer.
932  *
933  * int (*ndo_init)(struct net_device *dev);
934  *     This function is called once when a network device is registered.
935  *     The network device can use this for any late stage initialization
936  *     or semantic validation. It can fail with an error code which will
937  *     be propagated back to register_netdev.
938  *
939  * void (*ndo_uninit)(struct net_device *dev);
940  *     This function is called when device is unregistered or when registration
941  *     fails. It is not called if init fails.
942  *
943  * int (*ndo_open)(struct net_device *dev);
944  *     This function is called when a network device transitions to the up
945  *     state.
946  *
947  * int (*ndo_stop)(struct net_device *dev);
948  *     This function is called when a network device transitions to the down
949  *     state.
950  *
951  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
952  *                               struct net_device *dev);
953  *	Called when a packet needs to be transmitted.
954  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
955  *	the queue before that can happen; it's for obsolete devices and weird
956  *	corner cases, but the stack really does a non-trivial amount
957  *	of useless work if you return NETDEV_TX_BUSY.
958  *	Required; cannot be NULL.
959  *
960  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
961  *					   struct net_device *dev
962  *					   netdev_features_t features);
963  *	Called by core transmit path to determine if device is capable of
964  *	performing offload operations on a given packet. This is to give
965  *	the device an opportunity to implement any restrictions that cannot
966  *	be otherwise expressed by feature flags. The check is called with
967  *	the set of features that the stack has calculated and it returns
968  *	those the driver believes to be appropriate.
969  *
970  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
971  *                         struct net_device *sb_dev);
972  *	Called to decide which queue to use when device supports multiple
973  *	transmit queues.
974  *
975  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
976  *	This function is called to allow device receiver to make
977  *	changes to configuration when multicast or promiscuous is enabled.
978  *
979  * void (*ndo_set_rx_mode)(struct net_device *dev);
980  *	This function is called device changes address list filtering.
981  *	If driver handles unicast address filtering, it should set
982  *	IFF_UNICAST_FLT in its priv_flags.
983  *
984  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
985  *	This function  is called when the Media Access Control address
986  *	needs to be changed. If this interface is not defined, the
987  *	MAC address can not be changed.
988  *
989  * int (*ndo_validate_addr)(struct net_device *dev);
990  *	Test if Media Access Control address is valid for the device.
991  *
992  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
993  *	Called when a user requests an ioctl which can't be handled by
994  *	the generic interface code. If not defined ioctls return
995  *	not supported error code.
996  *
997  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
998  *	Used to set network devices bus interface parameters. This interface
999  *	is retained for legacy reasons; new devices should use the bus
1000  *	interface (PCI) for low level management.
1001  *
1002  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1003  *	Called when a user wants to change the Maximum Transfer Unit
1004  *	of a device.
1005  *
1006  * void (*ndo_tx_timeout)(struct net_device *dev);
1007  *	Callback used when the transmitter has not made any progress
1008  *	for dev->watchdog ticks.
1009  *
1010  * void (*ndo_get_stats64)(struct net_device *dev,
1011  *                         struct rtnl_link_stats64 *storage);
1012  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1013  *	Called when a user wants to get the network device usage
1014  *	statistics. Drivers must do one of the following:
1015  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1016  *	   rtnl_link_stats64 structure passed by the caller.
1017  *	2. Define @ndo_get_stats to update a net_device_stats structure
1018  *	   (which should normally be dev->stats) and return a pointer to
1019  *	   it. The structure may be changed asynchronously only if each
1020  *	   field is written atomically.
1021  *	3. Update dev->stats asynchronously and atomically, and define
1022  *	   neither operation.
1023  *
1024  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1025  *	Return true if this device supports offload stats of this attr_id.
1026  *
1027  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1028  *	void *attr_data)
1029  *	Get statistics for offload operations by attr_id. Write it into the
1030  *	attr_data pointer.
1031  *
1032  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1033  *	If device supports VLAN filtering this function is called when a
1034  *	VLAN id is registered.
1035  *
1036  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1037  *	If device supports VLAN filtering this function is called when a
1038  *	VLAN id is unregistered.
1039  *
1040  * void (*ndo_poll_controller)(struct net_device *dev);
1041  *
1042  *	SR-IOV management functions.
1043  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1044  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1045  *			  u8 qos, __be16 proto);
1046  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1047  *			  int max_tx_rate);
1048  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1049  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1050  * int (*ndo_get_vf_config)(struct net_device *dev,
1051  *			    int vf, struct ifla_vf_info *ivf);
1052  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1053  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1054  *			  struct nlattr *port[]);
1055  *
1056  *      Enable or disable the VF ability to query its RSS Redirection Table and
1057  *      Hash Key. This is needed since on some devices VF share this information
1058  *      with PF and querying it may introduce a theoretical security risk.
1059  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1060  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1061  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1062  *		       void *type_data);
1063  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1064  *	This is always called from the stack with the rtnl lock held and netif
1065  *	tx queues stopped. This allows the netdevice to perform queue
1066  *	management safely.
1067  *
1068  *	Fiber Channel over Ethernet (FCoE) offload functions.
1069  * int (*ndo_fcoe_enable)(struct net_device *dev);
1070  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1071  *	so the underlying device can perform whatever needed configuration or
1072  *	initialization to support acceleration of FCoE traffic.
1073  *
1074  * int (*ndo_fcoe_disable)(struct net_device *dev);
1075  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1076  *	so the underlying device can perform whatever needed clean-ups to
1077  *	stop supporting acceleration of FCoE traffic.
1078  *
1079  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1080  *			     struct scatterlist *sgl, unsigned int sgc);
1081  *	Called when the FCoE Initiator wants to initialize an I/O that
1082  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1083  *	perform necessary setup and returns 1 to indicate the device is set up
1084  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1085  *
1086  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1087  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1088  *	indicated by the FC exchange id 'xid', so the underlying device can
1089  *	clean up and reuse resources for later DDP requests.
1090  *
1091  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1092  *			      struct scatterlist *sgl, unsigned int sgc);
1093  *	Called when the FCoE Target wants to initialize an I/O that
1094  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1095  *	perform necessary setup and returns 1 to indicate the device is set up
1096  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1097  *
1098  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1099  *			       struct netdev_fcoe_hbainfo *hbainfo);
1100  *	Called when the FCoE Protocol stack wants information on the underlying
1101  *	device. This information is utilized by the FCoE protocol stack to
1102  *	register attributes with Fiber Channel management service as per the
1103  *	FC-GS Fabric Device Management Information(FDMI) specification.
1104  *
1105  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1106  *	Called when the underlying device wants to override default World Wide
1107  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1108  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1109  *	protocol stack to use.
1110  *
1111  *	RFS acceleration.
1112  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1113  *			    u16 rxq_index, u32 flow_id);
1114  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1115  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1116  *	Return the filter ID on success, or a negative error code.
1117  *
1118  *	Slave management functions (for bridge, bonding, etc).
1119  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1120  *	Called to make another netdev an underling.
1121  *
1122  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1123  *	Called to release previously enslaved netdev.
1124  *
1125  *      Feature/offload setting functions.
1126  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1127  *		netdev_features_t features);
1128  *	Adjusts the requested feature flags according to device-specific
1129  *	constraints, and returns the resulting flags. Must not modify
1130  *	the device state.
1131  *
1132  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1133  *	Called to update device configuration to new features. Passed
1134  *	feature set might be less than what was returned by ndo_fix_features()).
1135  *	Must return >0 or -errno if it changed dev->features itself.
1136  *
1137  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1138  *		      struct net_device *dev,
1139  *		      const unsigned char *addr, u16 vid, u16 flags,
1140  *		      struct netlink_ext_ack *extack);
1141  *	Adds an FDB entry to dev for addr.
1142  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1143  *		      struct net_device *dev,
1144  *		      const unsigned char *addr, u16 vid)
1145  *	Deletes the FDB entry from dev coresponding to addr.
1146  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1147  *		       struct net_device *dev, struct net_device *filter_dev,
1148  *		       int *idx)
1149  *	Used to add FDB entries to dump requests. Implementers should add
1150  *	entries to skb and update idx with the number of entries.
1151  *
1152  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1153  *			     u16 flags, struct netlink_ext_ack *extack)
1154  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1155  *			     struct net_device *dev, u32 filter_mask,
1156  *			     int nlflags)
1157  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1158  *			     u16 flags);
1159  *
1160  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1161  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1162  *	which do not represent real hardware may define this to allow their
1163  *	userspace components to manage their virtual carrier state. Devices
1164  *	that determine carrier state from physical hardware properties (eg
1165  *	network cables) or protocol-dependent mechanisms (eg
1166  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1167  *
1168  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1169  *			       struct netdev_phys_item_id *ppid);
1170  *	Called to get ID of physical port of this device. If driver does
1171  *	not implement this, it is assumed that the hw is not able to have
1172  *	multiple net devices on single physical port.
1173  *
1174  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1175  *				 struct netdev_phys_item_id *ppid)
1176  *	Called to get the parent ID of the physical port of this device.
1177  *
1178  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1179  *			      struct udp_tunnel_info *ti);
1180  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1181  *	address family that a UDP tunnel is listnening to. It is called only
1182  *	when a new port starts listening. The operation is protected by the
1183  *	RTNL.
1184  *
1185  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1186  *			      struct udp_tunnel_info *ti);
1187  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1188  *	address family that the UDP tunnel is not listening to anymore. The
1189  *	operation is protected by the RTNL.
1190  *
1191  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1192  *				 struct net_device *dev)
1193  *	Called by upper layer devices to accelerate switching or other
1194  *	station functionality into hardware. 'pdev is the lowerdev
1195  *	to use for the offload and 'dev' is the net device that will
1196  *	back the offload. Returns a pointer to the private structure
1197  *	the upper layer will maintain.
1198  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1199  *	Called by upper layer device to delete the station created
1200  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1201  *	the station and priv is the structure returned by the add
1202  *	operation.
1203  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1204  *			     int queue_index, u32 maxrate);
1205  *	Called when a user wants to set a max-rate limitation of specific
1206  *	TX queue.
1207  * int (*ndo_get_iflink)(const struct net_device *dev);
1208  *	Called to get the iflink value of this device.
1209  * void (*ndo_change_proto_down)(struct net_device *dev,
1210  *				 bool proto_down);
1211  *	This function is used to pass protocol port error state information
1212  *	to the switch driver. The switch driver can react to the proto_down
1213  *      by doing a phys down on the associated switch port.
1214  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1215  *	This function is used to get egress tunnel information for given skb.
1216  *	This is useful for retrieving outer tunnel header parameters while
1217  *	sampling packet.
1218  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1219  *	This function is used to specify the headroom that the skb must
1220  *	consider when allocation skb during packet reception. Setting
1221  *	appropriate rx headroom value allows avoiding skb head copy on
1222  *	forward. Setting a negative value resets the rx headroom to the
1223  *	default value.
1224  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1225  *	This function is used to set or query state related to XDP on the
1226  *	netdevice and manage BPF offload. See definition of
1227  *	enum bpf_netdev_command for details.
1228  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1229  *			u32 flags);
1230  *	This function is used to submit @n XDP packets for transmit on a
1231  *	netdevice. Returns number of frames successfully transmitted, frames
1232  *	that got dropped are freed/returned via xdp_return_frame().
1233  *	Returns negative number, means general error invoking ndo, meaning
1234  *	no frames were xmit'ed and core-caller will free all frames.
1235  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1236  *      This function is used to wake up the softirq, ksoftirqd or kthread
1237  *	responsible for sending and/or receiving packets on a specific
1238  *	queue id bound to an AF_XDP socket. The flags field specifies if
1239  *	only RX, only Tx, or both should be woken up using the flags
1240  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1241  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1242  *	Get devlink port instance associated with a given netdev.
1243  *	Called with a reference on the netdevice and devlink locks only,
1244  *	rtnl_lock is not held.
1245  */
1246 struct net_device_ops {
1247 	int			(*ndo_init)(struct net_device *dev);
1248 	void			(*ndo_uninit)(struct net_device *dev);
1249 	int			(*ndo_open)(struct net_device *dev);
1250 	int			(*ndo_stop)(struct net_device *dev);
1251 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1252 						  struct net_device *dev);
1253 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1254 						      struct net_device *dev,
1255 						      netdev_features_t features);
1256 	u16			(*ndo_select_queue)(struct net_device *dev,
1257 						    struct sk_buff *skb,
1258 						    struct net_device *sb_dev);
1259 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1260 						       int flags);
1261 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1262 	int			(*ndo_set_mac_address)(struct net_device *dev,
1263 						       void *addr);
1264 	int			(*ndo_validate_addr)(struct net_device *dev);
1265 	int			(*ndo_do_ioctl)(struct net_device *dev,
1266 					        struct ifreq *ifr, int cmd);
1267 	int			(*ndo_set_config)(struct net_device *dev,
1268 					          struct ifmap *map);
1269 	int			(*ndo_change_mtu)(struct net_device *dev,
1270 						  int new_mtu);
1271 	int			(*ndo_neigh_setup)(struct net_device *dev,
1272 						   struct neigh_parms *);
1273 	void			(*ndo_tx_timeout) (struct net_device *dev);
1274 
1275 	void			(*ndo_get_stats64)(struct net_device *dev,
1276 						   struct rtnl_link_stats64 *storage);
1277 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1278 	int			(*ndo_get_offload_stats)(int attr_id,
1279 							 const struct net_device *dev,
1280 							 void *attr_data);
1281 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1282 
1283 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1284 						       __be16 proto, u16 vid);
1285 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1286 						        __be16 proto, u16 vid);
1287 #ifdef CONFIG_NET_POLL_CONTROLLER
1288 	void                    (*ndo_poll_controller)(struct net_device *dev);
1289 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1290 						     struct netpoll_info *info);
1291 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1292 #endif
1293 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1294 						  int queue, u8 *mac);
1295 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1296 						   int queue, u16 vlan,
1297 						   u8 qos, __be16 proto);
1298 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1299 						   int vf, int min_tx_rate,
1300 						   int max_tx_rate);
1301 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1302 						       int vf, bool setting);
1303 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1304 						    int vf, bool setting);
1305 	int			(*ndo_get_vf_config)(struct net_device *dev,
1306 						     int vf,
1307 						     struct ifla_vf_info *ivf);
1308 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1309 							 int vf, int link_state);
1310 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1311 						    int vf,
1312 						    struct ifla_vf_stats
1313 						    *vf_stats);
1314 	int			(*ndo_set_vf_port)(struct net_device *dev,
1315 						   int vf,
1316 						   struct nlattr *port[]);
1317 	int			(*ndo_get_vf_port)(struct net_device *dev,
1318 						   int vf, struct sk_buff *skb);
1319 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1320 						   int vf, u64 guid,
1321 						   int guid_type);
1322 	int			(*ndo_set_vf_rss_query_en)(
1323 						   struct net_device *dev,
1324 						   int vf, bool setting);
1325 	int			(*ndo_setup_tc)(struct net_device *dev,
1326 						enum tc_setup_type type,
1327 						void *type_data);
1328 #if IS_ENABLED(CONFIG_FCOE)
1329 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1330 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1331 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1332 						      u16 xid,
1333 						      struct scatterlist *sgl,
1334 						      unsigned int sgc);
1335 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1336 						     u16 xid);
1337 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1338 						       u16 xid,
1339 						       struct scatterlist *sgl,
1340 						       unsigned int sgc);
1341 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1342 							struct netdev_fcoe_hbainfo *hbainfo);
1343 #endif
1344 
1345 #if IS_ENABLED(CONFIG_LIBFCOE)
1346 #define NETDEV_FCOE_WWNN 0
1347 #define NETDEV_FCOE_WWPN 1
1348 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1349 						    u64 *wwn, int type);
1350 #endif
1351 
1352 #ifdef CONFIG_RFS_ACCEL
1353 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1354 						     const struct sk_buff *skb,
1355 						     u16 rxq_index,
1356 						     u32 flow_id);
1357 #endif
1358 	int			(*ndo_add_slave)(struct net_device *dev,
1359 						 struct net_device *slave_dev,
1360 						 struct netlink_ext_ack *extack);
1361 	int			(*ndo_del_slave)(struct net_device *dev,
1362 						 struct net_device *slave_dev);
1363 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1364 						    netdev_features_t features);
1365 	int			(*ndo_set_features)(struct net_device *dev,
1366 						    netdev_features_t features);
1367 	int			(*ndo_neigh_construct)(struct net_device *dev,
1368 						       struct neighbour *n);
1369 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1370 						     struct neighbour *n);
1371 
1372 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1373 					       struct nlattr *tb[],
1374 					       struct net_device *dev,
1375 					       const unsigned char *addr,
1376 					       u16 vid,
1377 					       u16 flags,
1378 					       struct netlink_ext_ack *extack);
1379 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1380 					       struct nlattr *tb[],
1381 					       struct net_device *dev,
1382 					       const unsigned char *addr,
1383 					       u16 vid);
1384 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1385 						struct netlink_callback *cb,
1386 						struct net_device *dev,
1387 						struct net_device *filter_dev,
1388 						int *idx);
1389 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1390 					       struct nlattr *tb[],
1391 					       struct net_device *dev,
1392 					       const unsigned char *addr,
1393 					       u16 vid, u32 portid, u32 seq,
1394 					       struct netlink_ext_ack *extack);
1395 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1396 						      struct nlmsghdr *nlh,
1397 						      u16 flags,
1398 						      struct netlink_ext_ack *extack);
1399 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1400 						      u32 pid, u32 seq,
1401 						      struct net_device *dev,
1402 						      u32 filter_mask,
1403 						      int nlflags);
1404 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1405 						      struct nlmsghdr *nlh,
1406 						      u16 flags);
1407 	int			(*ndo_change_carrier)(struct net_device *dev,
1408 						      bool new_carrier);
1409 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1410 							struct netdev_phys_item_id *ppid);
1411 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1412 							  struct netdev_phys_item_id *ppid);
1413 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1414 							  char *name, size_t len);
1415 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1416 						      struct udp_tunnel_info *ti);
1417 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1418 						      struct udp_tunnel_info *ti);
1419 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1420 							struct net_device *dev);
1421 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1422 							void *priv);
1423 
1424 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1425 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1426 						      int queue_index,
1427 						      u32 maxrate);
1428 	int			(*ndo_get_iflink)(const struct net_device *dev);
1429 	int			(*ndo_change_proto_down)(struct net_device *dev,
1430 							 bool proto_down);
1431 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1432 						       struct sk_buff *skb);
1433 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1434 						       int needed_headroom);
1435 	int			(*ndo_bpf)(struct net_device *dev,
1436 					   struct netdev_bpf *bpf);
1437 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1438 						struct xdp_frame **xdp,
1439 						u32 flags);
1440 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1441 						  u32 queue_id, u32 flags);
1442 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1443 };
1444 
1445 /**
1446  * enum net_device_priv_flags - &struct net_device priv_flags
1447  *
1448  * These are the &struct net_device, they are only set internally
1449  * by drivers and used in the kernel. These flags are invisible to
1450  * userspace; this means that the order of these flags can change
1451  * during any kernel release.
1452  *
1453  * You should have a pretty good reason to be extending these flags.
1454  *
1455  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1456  * @IFF_EBRIDGE: Ethernet bridging device
1457  * @IFF_BONDING: bonding master or slave
1458  * @IFF_ISATAP: ISATAP interface (RFC4214)
1459  * @IFF_WAN_HDLC: WAN HDLC device
1460  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1461  *	release skb->dst
1462  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1463  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1464  * @IFF_MACVLAN_PORT: device used as macvlan port
1465  * @IFF_BRIDGE_PORT: device used as bridge port
1466  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1467  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1468  * @IFF_UNICAST_FLT: Supports unicast filtering
1469  * @IFF_TEAM_PORT: device used as team port
1470  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1471  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1472  *	change when it's running
1473  * @IFF_MACVLAN: Macvlan device
1474  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1475  *	underlying stacked devices
1476  * @IFF_L3MDEV_MASTER: device is an L3 master device
1477  * @IFF_NO_QUEUE: device can run without qdisc attached
1478  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1479  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1480  * @IFF_TEAM: device is a team device
1481  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1482  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1483  *	entity (i.e. the master device for bridged veth)
1484  * @IFF_MACSEC: device is a MACsec device
1485  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1486  * @IFF_FAILOVER: device is a failover master device
1487  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1488  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1489  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1490  */
1491 enum netdev_priv_flags {
1492 	IFF_802_1Q_VLAN			= 1<<0,
1493 	IFF_EBRIDGE			= 1<<1,
1494 	IFF_BONDING			= 1<<2,
1495 	IFF_ISATAP			= 1<<3,
1496 	IFF_WAN_HDLC			= 1<<4,
1497 	IFF_XMIT_DST_RELEASE		= 1<<5,
1498 	IFF_DONT_BRIDGE			= 1<<6,
1499 	IFF_DISABLE_NETPOLL		= 1<<7,
1500 	IFF_MACVLAN_PORT		= 1<<8,
1501 	IFF_BRIDGE_PORT			= 1<<9,
1502 	IFF_OVS_DATAPATH		= 1<<10,
1503 	IFF_TX_SKB_SHARING		= 1<<11,
1504 	IFF_UNICAST_FLT			= 1<<12,
1505 	IFF_TEAM_PORT			= 1<<13,
1506 	IFF_SUPP_NOFCS			= 1<<14,
1507 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1508 	IFF_MACVLAN			= 1<<16,
1509 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1510 	IFF_L3MDEV_MASTER		= 1<<18,
1511 	IFF_NO_QUEUE			= 1<<19,
1512 	IFF_OPENVSWITCH			= 1<<20,
1513 	IFF_L3MDEV_SLAVE		= 1<<21,
1514 	IFF_TEAM			= 1<<22,
1515 	IFF_RXFH_CONFIGURED		= 1<<23,
1516 	IFF_PHONY_HEADROOM		= 1<<24,
1517 	IFF_MACSEC			= 1<<25,
1518 	IFF_NO_RX_HANDLER		= 1<<26,
1519 	IFF_FAILOVER			= 1<<27,
1520 	IFF_FAILOVER_SLAVE		= 1<<28,
1521 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1522 	IFF_LIVE_RENAME_OK		= 1<<30,
1523 };
1524 
1525 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1526 #define IFF_EBRIDGE			IFF_EBRIDGE
1527 #define IFF_BONDING			IFF_BONDING
1528 #define IFF_ISATAP			IFF_ISATAP
1529 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1530 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1531 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1532 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1533 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1534 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1535 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1536 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1537 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1538 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1539 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1540 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1541 #define IFF_MACVLAN			IFF_MACVLAN
1542 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1543 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1544 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1545 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1546 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1547 #define IFF_TEAM			IFF_TEAM
1548 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1549 #define IFF_MACSEC			IFF_MACSEC
1550 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1551 #define IFF_FAILOVER			IFF_FAILOVER
1552 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1553 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1554 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1555 
1556 /**
1557  *	struct net_device - The DEVICE structure.
1558  *
1559  *	Actually, this whole structure is a big mistake.  It mixes I/O
1560  *	data with strictly "high-level" data, and it has to know about
1561  *	almost every data structure used in the INET module.
1562  *
1563  *	@name:	This is the first field of the "visible" part of this structure
1564  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1565  *		of the interface.
1566  *
1567  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1568  *	@ifalias:	SNMP alias
1569  *	@mem_end:	Shared memory end
1570  *	@mem_start:	Shared memory start
1571  *	@base_addr:	Device I/O address
1572  *	@irq:		Device IRQ number
1573  *
1574  *	@state:		Generic network queuing layer state, see netdev_state_t
1575  *	@dev_list:	The global list of network devices
1576  *	@napi_list:	List entry used for polling NAPI devices
1577  *	@unreg_list:	List entry  when we are unregistering the
1578  *			device; see the function unregister_netdev
1579  *	@close_list:	List entry used when we are closing the device
1580  *	@ptype_all:     Device-specific packet handlers for all protocols
1581  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1582  *
1583  *	@adj_list:	Directly linked devices, like slaves for bonding
1584  *	@features:	Currently active device features
1585  *	@hw_features:	User-changeable features
1586  *
1587  *	@wanted_features:	User-requested features
1588  *	@vlan_features:		Mask of features inheritable by VLAN devices
1589  *
1590  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1591  *				This field indicates what encapsulation
1592  *				offloads the hardware is capable of doing,
1593  *				and drivers will need to set them appropriately.
1594  *
1595  *	@mpls_features:	Mask of features inheritable by MPLS
1596  *
1597  *	@ifindex:	interface index
1598  *	@group:		The group the device belongs to
1599  *
1600  *	@stats:		Statistics struct, which was left as a legacy, use
1601  *			rtnl_link_stats64 instead
1602  *
1603  *	@rx_dropped:	Dropped packets by core network,
1604  *			do not use this in drivers
1605  *	@tx_dropped:	Dropped packets by core network,
1606  *			do not use this in drivers
1607  *	@rx_nohandler:	nohandler dropped packets by core network on
1608  *			inactive devices, do not use this in drivers
1609  *	@carrier_up_count:	Number of times the carrier has been up
1610  *	@carrier_down_count:	Number of times the carrier has been down
1611  *
1612  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1613  *				instead of ioctl,
1614  *				see <net/iw_handler.h> for details.
1615  *	@wireless_data:	Instance data managed by the core of wireless extensions
1616  *
1617  *	@netdev_ops:	Includes several pointers to callbacks,
1618  *			if one wants to override the ndo_*() functions
1619  *	@ethtool_ops:	Management operations
1620  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1621  *			discovery handling. Necessary for e.g. 6LoWPAN.
1622  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1623  *			of Layer 2 headers.
1624  *
1625  *	@flags:		Interface flags (a la BSD)
1626  *	@priv_flags:	Like 'flags' but invisible to userspace,
1627  *			see if.h for the definitions
1628  *	@gflags:	Global flags ( kept as legacy )
1629  *	@padded:	How much padding added by alloc_netdev()
1630  *	@operstate:	RFC2863 operstate
1631  *	@link_mode:	Mapping policy to operstate
1632  *	@if_port:	Selectable AUI, TP, ...
1633  *	@dma:		DMA channel
1634  *	@mtu:		Interface MTU value
1635  *	@min_mtu:	Interface Minimum MTU value
1636  *	@max_mtu:	Interface Maximum MTU value
1637  *	@type:		Interface hardware type
1638  *	@hard_header_len: Maximum hardware header length.
1639  *	@min_header_len:  Minimum hardware header length
1640  *
1641  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1642  *			  cases can this be guaranteed
1643  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1644  *			  cases can this be guaranteed. Some cases also use
1645  *			  LL_MAX_HEADER instead to allocate the skb
1646  *
1647  *	interface address info:
1648  *
1649  * 	@perm_addr:		Permanent hw address
1650  * 	@addr_assign_type:	Hw address assignment type
1651  * 	@addr_len:		Hardware address length
1652  *	@neigh_priv_len:	Used in neigh_alloc()
1653  * 	@dev_id:		Used to differentiate devices that share
1654  * 				the same link layer address
1655  * 	@dev_port:		Used to differentiate devices that share
1656  * 				the same function
1657  *	@addr_list_lock:	XXX: need comments on this one
1658  *	@uc_promisc:		Counter that indicates promiscuous mode
1659  *				has been enabled due to the need to listen to
1660  *				additional unicast addresses in a device that
1661  *				does not implement ndo_set_rx_mode()
1662  *	@uc:			unicast mac addresses
1663  *	@mc:			multicast mac addresses
1664  *	@dev_addrs:		list of device hw addresses
1665  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1666  *	@promiscuity:		Number of times the NIC is told to work in
1667  *				promiscuous mode; if it becomes 0 the NIC will
1668  *				exit promiscuous mode
1669  *	@allmulti:		Counter, enables or disables allmulticast mode
1670  *
1671  *	@vlan_info:	VLAN info
1672  *	@dsa_ptr:	dsa specific data
1673  *	@tipc_ptr:	TIPC specific data
1674  *	@atalk_ptr:	AppleTalk link
1675  *	@ip_ptr:	IPv4 specific data
1676  *	@dn_ptr:	DECnet specific data
1677  *	@ip6_ptr:	IPv6 specific data
1678  *	@ax25_ptr:	AX.25 specific data
1679  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1680  *
1681  *	@dev_addr:	Hw address (before bcast,
1682  *			because most packets are unicast)
1683  *
1684  *	@_rx:			Array of RX queues
1685  *	@num_rx_queues:		Number of RX queues
1686  *				allocated at register_netdev() time
1687  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1688  *
1689  *	@rx_handler:		handler for received packets
1690  *	@rx_handler_data: 	XXX: need comments on this one
1691  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1692  *				ingress processing
1693  *	@ingress_queue:		XXX: need comments on this one
1694  *	@broadcast:		hw bcast address
1695  *
1696  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1697  *			indexed by RX queue number. Assigned by driver.
1698  *			This must only be set if the ndo_rx_flow_steer
1699  *			operation is defined
1700  *	@index_hlist:		Device index hash chain
1701  *
1702  *	@_tx:			Array of TX queues
1703  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1704  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1705  *	@qdisc:			Root qdisc from userspace point of view
1706  *	@tx_queue_len:		Max frames per queue allowed
1707  *	@tx_global_lock: 	XXX: need comments on this one
1708  *
1709  *	@xps_maps:	XXX: need comments on this one
1710  *	@miniq_egress:		clsact qdisc specific data for
1711  *				egress processing
1712  *	@watchdog_timeo:	Represents the timeout that is used by
1713  *				the watchdog (see dev_watchdog())
1714  *	@watchdog_timer:	List of timers
1715  *
1716  *	@pcpu_refcnt:		Number of references to this device
1717  *	@todo_list:		Delayed register/unregister
1718  *	@link_watch_list:	XXX: need comments on this one
1719  *
1720  *	@reg_state:		Register/unregister state machine
1721  *	@dismantle:		Device is going to be freed
1722  *	@rtnl_link_state:	This enum represents the phases of creating
1723  *				a new link
1724  *
1725  *	@needs_free_netdev:	Should unregister perform free_netdev?
1726  *	@priv_destructor:	Called from unregister
1727  *	@npinfo:		XXX: need comments on this one
1728  * 	@nd_net:		Network namespace this network device is inside
1729  *
1730  * 	@ml_priv:	Mid-layer private
1731  * 	@lstats:	Loopback statistics
1732  * 	@tstats:	Tunnel statistics
1733  * 	@dstats:	Dummy statistics
1734  * 	@vstats:	Virtual ethernet statistics
1735  *
1736  *	@garp_port:	GARP
1737  *	@mrp_port:	MRP
1738  *
1739  *	@dev:		Class/net/name entry
1740  *	@sysfs_groups:	Space for optional device, statistics and wireless
1741  *			sysfs groups
1742  *
1743  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1744  *	@rtnl_link_ops:	Rtnl_link_ops
1745  *
1746  *	@gso_max_size:	Maximum size of generic segmentation offload
1747  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1748  *			NIC for GSO
1749  *
1750  *	@dcbnl_ops:	Data Center Bridging netlink ops
1751  *	@num_tc:	Number of traffic classes in the net device
1752  *	@tc_to_txq:	XXX: need comments on this one
1753  *	@prio_tc_map:	XXX: need comments on this one
1754  *
1755  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1756  *
1757  *	@priomap:	XXX: need comments on this one
1758  *	@phydev:	Physical device may attach itself
1759  *			for hardware timestamping
1760  *	@sfp_bus:	attached &struct sfp_bus structure.
1761  *
1762  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1763  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1764  *
1765  *	@proto_down:	protocol port state information can be sent to the
1766  *			switch driver and used to set the phys state of the
1767  *			switch port.
1768  *
1769  *	@wol_enabled:	Wake-on-LAN is enabled
1770  *
1771  *	FIXME: cleanup struct net_device such that network protocol info
1772  *	moves out.
1773  */
1774 
1775 struct net_device {
1776 	char			name[IFNAMSIZ];
1777 	struct hlist_node	name_hlist;
1778 	struct dev_ifalias	__rcu *ifalias;
1779 	/*
1780 	 *	I/O specific fields
1781 	 *	FIXME: Merge these and struct ifmap into one
1782 	 */
1783 	unsigned long		mem_end;
1784 	unsigned long		mem_start;
1785 	unsigned long		base_addr;
1786 	int			irq;
1787 
1788 	/*
1789 	 *	Some hardware also needs these fields (state,dev_list,
1790 	 *	napi_list,unreg_list,close_list) but they are not
1791 	 *	part of the usual set specified in Space.c.
1792 	 */
1793 
1794 	unsigned long		state;
1795 
1796 	struct list_head	dev_list;
1797 	struct list_head	napi_list;
1798 	struct list_head	unreg_list;
1799 	struct list_head	close_list;
1800 	struct list_head	ptype_all;
1801 	struct list_head	ptype_specific;
1802 
1803 	struct {
1804 		struct list_head upper;
1805 		struct list_head lower;
1806 	} adj_list;
1807 
1808 	netdev_features_t	features;
1809 	netdev_features_t	hw_features;
1810 	netdev_features_t	wanted_features;
1811 	netdev_features_t	vlan_features;
1812 	netdev_features_t	hw_enc_features;
1813 	netdev_features_t	mpls_features;
1814 	netdev_features_t	gso_partial_features;
1815 
1816 	int			ifindex;
1817 	int			group;
1818 
1819 	struct net_device_stats	stats;
1820 
1821 	atomic_long_t		rx_dropped;
1822 	atomic_long_t		tx_dropped;
1823 	atomic_long_t		rx_nohandler;
1824 
1825 	/* Stats to monitor link on/off, flapping */
1826 	atomic_t		carrier_up_count;
1827 	atomic_t		carrier_down_count;
1828 
1829 #ifdef CONFIG_WIRELESS_EXT
1830 	const struct iw_handler_def *wireless_handlers;
1831 	struct iw_public_data	*wireless_data;
1832 #endif
1833 	const struct net_device_ops *netdev_ops;
1834 	const struct ethtool_ops *ethtool_ops;
1835 #ifdef CONFIG_NET_L3_MASTER_DEV
1836 	const struct l3mdev_ops	*l3mdev_ops;
1837 #endif
1838 #if IS_ENABLED(CONFIG_IPV6)
1839 	const struct ndisc_ops *ndisc_ops;
1840 #endif
1841 
1842 #ifdef CONFIG_XFRM_OFFLOAD
1843 	const struct xfrmdev_ops *xfrmdev_ops;
1844 #endif
1845 
1846 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1847 	const struct tlsdev_ops *tlsdev_ops;
1848 #endif
1849 
1850 	const struct header_ops *header_ops;
1851 
1852 	unsigned int		flags;
1853 	unsigned int		priv_flags;
1854 
1855 	unsigned short		gflags;
1856 	unsigned short		padded;
1857 
1858 	unsigned char		operstate;
1859 	unsigned char		link_mode;
1860 
1861 	unsigned char		if_port;
1862 	unsigned char		dma;
1863 
1864 	unsigned int		mtu;
1865 	unsigned int		min_mtu;
1866 	unsigned int		max_mtu;
1867 	unsigned short		type;
1868 	unsigned short		hard_header_len;
1869 	unsigned char		min_header_len;
1870 
1871 	unsigned short		needed_headroom;
1872 	unsigned short		needed_tailroom;
1873 
1874 	/* Interface address info. */
1875 	unsigned char		perm_addr[MAX_ADDR_LEN];
1876 	unsigned char		addr_assign_type;
1877 	unsigned char		addr_len;
1878 	unsigned short		neigh_priv_len;
1879 	unsigned short          dev_id;
1880 	unsigned short          dev_port;
1881 	spinlock_t		addr_list_lock;
1882 	unsigned char		name_assign_type;
1883 	bool			uc_promisc;
1884 	struct netdev_hw_addr_list	uc;
1885 	struct netdev_hw_addr_list	mc;
1886 	struct netdev_hw_addr_list	dev_addrs;
1887 
1888 #ifdef CONFIG_SYSFS
1889 	struct kset		*queues_kset;
1890 #endif
1891 	unsigned int		promiscuity;
1892 	unsigned int		allmulti;
1893 
1894 
1895 	/* Protocol-specific pointers */
1896 
1897 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1898 	struct vlan_info __rcu	*vlan_info;
1899 #endif
1900 #if IS_ENABLED(CONFIG_NET_DSA)
1901 	struct dsa_port		*dsa_ptr;
1902 #endif
1903 #if IS_ENABLED(CONFIG_TIPC)
1904 	struct tipc_bearer __rcu *tipc_ptr;
1905 #endif
1906 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1907 	void 			*atalk_ptr;
1908 #endif
1909 	struct in_device __rcu	*ip_ptr;
1910 #if IS_ENABLED(CONFIG_DECNET)
1911 	struct dn_dev __rcu     *dn_ptr;
1912 #endif
1913 	struct inet6_dev __rcu	*ip6_ptr;
1914 #if IS_ENABLED(CONFIG_AX25)
1915 	void			*ax25_ptr;
1916 #endif
1917 	struct wireless_dev	*ieee80211_ptr;
1918 	struct wpan_dev		*ieee802154_ptr;
1919 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1920 	struct mpls_dev __rcu	*mpls_ptr;
1921 #endif
1922 
1923 /*
1924  * Cache lines mostly used on receive path (including eth_type_trans())
1925  */
1926 	/* Interface address info used in eth_type_trans() */
1927 	unsigned char		*dev_addr;
1928 
1929 	struct netdev_rx_queue	*_rx;
1930 	unsigned int		num_rx_queues;
1931 	unsigned int		real_num_rx_queues;
1932 
1933 	struct bpf_prog __rcu	*xdp_prog;
1934 	unsigned long		gro_flush_timeout;
1935 	rx_handler_func_t __rcu	*rx_handler;
1936 	void __rcu		*rx_handler_data;
1937 
1938 #ifdef CONFIG_NET_CLS_ACT
1939 	struct mini_Qdisc __rcu	*miniq_ingress;
1940 #endif
1941 	struct netdev_queue __rcu *ingress_queue;
1942 #ifdef CONFIG_NETFILTER_INGRESS
1943 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1944 #endif
1945 
1946 	unsigned char		broadcast[MAX_ADDR_LEN];
1947 #ifdef CONFIG_RFS_ACCEL
1948 	struct cpu_rmap		*rx_cpu_rmap;
1949 #endif
1950 	struct hlist_node	index_hlist;
1951 
1952 /*
1953  * Cache lines mostly used on transmit path
1954  */
1955 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1956 	unsigned int		num_tx_queues;
1957 	unsigned int		real_num_tx_queues;
1958 	struct Qdisc		*qdisc;
1959 #ifdef CONFIG_NET_SCHED
1960 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1961 #endif
1962 	unsigned int		tx_queue_len;
1963 	spinlock_t		tx_global_lock;
1964 	int			watchdog_timeo;
1965 
1966 #ifdef CONFIG_XPS
1967 	struct xps_dev_maps __rcu *xps_cpus_map;
1968 	struct xps_dev_maps __rcu *xps_rxqs_map;
1969 #endif
1970 #ifdef CONFIG_NET_CLS_ACT
1971 	struct mini_Qdisc __rcu	*miniq_egress;
1972 #endif
1973 
1974 	/* These may be needed for future network-power-down code. */
1975 	struct timer_list	watchdog_timer;
1976 
1977 	int __percpu		*pcpu_refcnt;
1978 	struct list_head	todo_list;
1979 
1980 	struct list_head	link_watch_list;
1981 
1982 	enum { NETREG_UNINITIALIZED=0,
1983 	       NETREG_REGISTERED,	/* completed register_netdevice */
1984 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1985 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1986 	       NETREG_RELEASED,		/* called free_netdev */
1987 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1988 	} reg_state:8;
1989 
1990 	bool dismantle;
1991 
1992 	enum {
1993 		RTNL_LINK_INITIALIZED,
1994 		RTNL_LINK_INITIALIZING,
1995 	} rtnl_link_state:16;
1996 
1997 	bool needs_free_netdev;
1998 	void (*priv_destructor)(struct net_device *dev);
1999 
2000 #ifdef CONFIG_NETPOLL
2001 	struct netpoll_info __rcu	*npinfo;
2002 #endif
2003 
2004 	possible_net_t			nd_net;
2005 
2006 	/* mid-layer private */
2007 	union {
2008 		void					*ml_priv;
2009 		struct pcpu_lstats __percpu		*lstats;
2010 		struct pcpu_sw_netstats __percpu	*tstats;
2011 		struct pcpu_dstats __percpu		*dstats;
2012 	};
2013 
2014 #if IS_ENABLED(CONFIG_GARP)
2015 	struct garp_port __rcu	*garp_port;
2016 #endif
2017 #if IS_ENABLED(CONFIG_MRP)
2018 	struct mrp_port __rcu	*mrp_port;
2019 #endif
2020 
2021 	struct device		dev;
2022 	const struct attribute_group *sysfs_groups[4];
2023 	const struct attribute_group *sysfs_rx_queue_group;
2024 
2025 	const struct rtnl_link_ops *rtnl_link_ops;
2026 
2027 	/* for setting kernel sock attribute on TCP connection setup */
2028 #define GSO_MAX_SIZE		65536
2029 	unsigned int		gso_max_size;
2030 #define GSO_MAX_SEGS		65535
2031 	u16			gso_max_segs;
2032 
2033 #ifdef CONFIG_DCB
2034 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2035 #endif
2036 	s16			num_tc;
2037 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2038 	u8			prio_tc_map[TC_BITMASK + 1];
2039 
2040 #if IS_ENABLED(CONFIG_FCOE)
2041 	unsigned int		fcoe_ddp_xid;
2042 #endif
2043 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2044 	struct netprio_map __rcu *priomap;
2045 #endif
2046 	struct phy_device	*phydev;
2047 	struct sfp_bus		*sfp_bus;
2048 	struct lock_class_key	*qdisc_tx_busylock;
2049 	struct lock_class_key	*qdisc_running_key;
2050 	bool			proto_down;
2051 	unsigned		wol_enabled:1;
2052 };
2053 #define to_net_dev(d) container_of(d, struct net_device, dev)
2054 
2055 static inline bool netif_elide_gro(const struct net_device *dev)
2056 {
2057 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2058 		return true;
2059 	return false;
2060 }
2061 
2062 #define	NETDEV_ALIGN		32
2063 
2064 static inline
2065 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2066 {
2067 	return dev->prio_tc_map[prio & TC_BITMASK];
2068 }
2069 
2070 static inline
2071 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2072 {
2073 	if (tc >= dev->num_tc)
2074 		return -EINVAL;
2075 
2076 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2077 	return 0;
2078 }
2079 
2080 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2081 void netdev_reset_tc(struct net_device *dev);
2082 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2083 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2084 
2085 static inline
2086 int netdev_get_num_tc(struct net_device *dev)
2087 {
2088 	return dev->num_tc;
2089 }
2090 
2091 void netdev_unbind_sb_channel(struct net_device *dev,
2092 			      struct net_device *sb_dev);
2093 int netdev_bind_sb_channel_queue(struct net_device *dev,
2094 				 struct net_device *sb_dev,
2095 				 u8 tc, u16 count, u16 offset);
2096 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2097 static inline int netdev_get_sb_channel(struct net_device *dev)
2098 {
2099 	return max_t(int, -dev->num_tc, 0);
2100 }
2101 
2102 static inline
2103 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2104 					 unsigned int index)
2105 {
2106 	return &dev->_tx[index];
2107 }
2108 
2109 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2110 						    const struct sk_buff *skb)
2111 {
2112 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2113 }
2114 
2115 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2116 					    void (*f)(struct net_device *,
2117 						      struct netdev_queue *,
2118 						      void *),
2119 					    void *arg)
2120 {
2121 	unsigned int i;
2122 
2123 	for (i = 0; i < dev->num_tx_queues; i++)
2124 		f(dev, &dev->_tx[i], arg);
2125 }
2126 
2127 #define netdev_lockdep_set_classes(dev)				\
2128 {								\
2129 	static struct lock_class_key qdisc_tx_busylock_key;	\
2130 	static struct lock_class_key qdisc_running_key;		\
2131 	static struct lock_class_key qdisc_xmit_lock_key;	\
2132 	static struct lock_class_key dev_addr_list_lock_key;	\
2133 	unsigned int i;						\
2134 								\
2135 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2136 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2137 	lockdep_set_class(&(dev)->addr_list_lock,		\
2138 			  &dev_addr_list_lock_key); 		\
2139 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2140 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2141 				  &qdisc_xmit_lock_key);	\
2142 }
2143 
2144 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2145 		     struct net_device *sb_dev);
2146 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2147 					 struct sk_buff *skb,
2148 					 struct net_device *sb_dev);
2149 
2150 /* returns the headroom that the master device needs to take in account
2151  * when forwarding to this dev
2152  */
2153 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2154 {
2155 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2156 }
2157 
2158 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2159 {
2160 	if (dev->netdev_ops->ndo_set_rx_headroom)
2161 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2162 }
2163 
2164 /* set the device rx headroom to the dev's default */
2165 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2166 {
2167 	netdev_set_rx_headroom(dev, -1);
2168 }
2169 
2170 /*
2171  * Net namespace inlines
2172  */
2173 static inline
2174 struct net *dev_net(const struct net_device *dev)
2175 {
2176 	return read_pnet(&dev->nd_net);
2177 }
2178 
2179 static inline
2180 void dev_net_set(struct net_device *dev, struct net *net)
2181 {
2182 	write_pnet(&dev->nd_net, net);
2183 }
2184 
2185 /**
2186  *	netdev_priv - access network device private data
2187  *	@dev: network device
2188  *
2189  * Get network device private data
2190  */
2191 static inline void *netdev_priv(const struct net_device *dev)
2192 {
2193 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2194 }
2195 
2196 /* Set the sysfs physical device reference for the network logical device
2197  * if set prior to registration will cause a symlink during initialization.
2198  */
2199 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2200 
2201 /* Set the sysfs device type for the network logical device to allow
2202  * fine-grained identification of different network device types. For
2203  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2204  */
2205 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2206 
2207 /* Default NAPI poll() weight
2208  * Device drivers are strongly advised to not use bigger value
2209  */
2210 #define NAPI_POLL_WEIGHT 64
2211 
2212 /**
2213  *	netif_napi_add - initialize a NAPI context
2214  *	@dev:  network device
2215  *	@napi: NAPI context
2216  *	@poll: polling function
2217  *	@weight: default weight
2218  *
2219  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2220  * *any* of the other NAPI-related functions.
2221  */
2222 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2223 		    int (*poll)(struct napi_struct *, int), int weight);
2224 
2225 /**
2226  *	netif_tx_napi_add - initialize a NAPI context
2227  *	@dev:  network device
2228  *	@napi: NAPI context
2229  *	@poll: polling function
2230  *	@weight: default weight
2231  *
2232  * This variant of netif_napi_add() should be used from drivers using NAPI
2233  * to exclusively poll a TX queue.
2234  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2235  */
2236 static inline void netif_tx_napi_add(struct net_device *dev,
2237 				     struct napi_struct *napi,
2238 				     int (*poll)(struct napi_struct *, int),
2239 				     int weight)
2240 {
2241 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2242 	netif_napi_add(dev, napi, poll, weight);
2243 }
2244 
2245 /**
2246  *  netif_napi_del - remove a NAPI context
2247  *  @napi: NAPI context
2248  *
2249  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2250  */
2251 void netif_napi_del(struct napi_struct *napi);
2252 
2253 struct napi_gro_cb {
2254 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2255 	void	*frag0;
2256 
2257 	/* Length of frag0. */
2258 	unsigned int frag0_len;
2259 
2260 	/* This indicates where we are processing relative to skb->data. */
2261 	int	data_offset;
2262 
2263 	/* This is non-zero if the packet cannot be merged with the new skb. */
2264 	u16	flush;
2265 
2266 	/* Save the IP ID here and check when we get to the transport layer */
2267 	u16	flush_id;
2268 
2269 	/* Number of segments aggregated. */
2270 	u16	count;
2271 
2272 	/* Start offset for remote checksum offload */
2273 	u16	gro_remcsum_start;
2274 
2275 	/* jiffies when first packet was created/queued */
2276 	unsigned long age;
2277 
2278 	/* Used in ipv6_gro_receive() and foo-over-udp */
2279 	u16	proto;
2280 
2281 	/* This is non-zero if the packet may be of the same flow. */
2282 	u8	same_flow:1;
2283 
2284 	/* Used in tunnel GRO receive */
2285 	u8	encap_mark:1;
2286 
2287 	/* GRO checksum is valid */
2288 	u8	csum_valid:1;
2289 
2290 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2291 	u8	csum_cnt:3;
2292 
2293 	/* Free the skb? */
2294 	u8	free:2;
2295 #define NAPI_GRO_FREE		  1
2296 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2297 
2298 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2299 	u8	is_ipv6:1;
2300 
2301 	/* Used in GRE, set in fou/gue_gro_receive */
2302 	u8	is_fou:1;
2303 
2304 	/* Used to determine if flush_id can be ignored */
2305 	u8	is_atomic:1;
2306 
2307 	/* Number of gro_receive callbacks this packet already went through */
2308 	u8 recursion_counter:4;
2309 
2310 	/* 1 bit hole */
2311 
2312 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2313 	__wsum	csum;
2314 
2315 	/* used in skb_gro_receive() slow path */
2316 	struct sk_buff *last;
2317 };
2318 
2319 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2320 
2321 #define GRO_RECURSION_LIMIT 15
2322 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2323 {
2324 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2325 }
2326 
2327 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2328 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2329 					       struct list_head *head,
2330 					       struct sk_buff *skb)
2331 {
2332 	if (unlikely(gro_recursion_inc_test(skb))) {
2333 		NAPI_GRO_CB(skb)->flush |= 1;
2334 		return NULL;
2335 	}
2336 
2337 	return cb(head, skb);
2338 }
2339 
2340 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2341 					    struct sk_buff *);
2342 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2343 						  struct sock *sk,
2344 						  struct list_head *head,
2345 						  struct sk_buff *skb)
2346 {
2347 	if (unlikely(gro_recursion_inc_test(skb))) {
2348 		NAPI_GRO_CB(skb)->flush |= 1;
2349 		return NULL;
2350 	}
2351 
2352 	return cb(sk, head, skb);
2353 }
2354 
2355 struct packet_type {
2356 	__be16			type;	/* This is really htons(ether_type). */
2357 	bool			ignore_outgoing;
2358 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2359 	int			(*func) (struct sk_buff *,
2360 					 struct net_device *,
2361 					 struct packet_type *,
2362 					 struct net_device *);
2363 	void			(*list_func) (struct list_head *,
2364 					      struct packet_type *,
2365 					      struct net_device *);
2366 	bool			(*id_match)(struct packet_type *ptype,
2367 					    struct sock *sk);
2368 	void			*af_packet_priv;
2369 	struct list_head	list;
2370 };
2371 
2372 struct offload_callbacks {
2373 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2374 						netdev_features_t features);
2375 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2376 						struct sk_buff *skb);
2377 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2378 };
2379 
2380 struct packet_offload {
2381 	__be16			 type;	/* This is really htons(ether_type). */
2382 	u16			 priority;
2383 	struct offload_callbacks callbacks;
2384 	struct list_head	 list;
2385 };
2386 
2387 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2388 struct pcpu_sw_netstats {
2389 	u64     rx_packets;
2390 	u64     rx_bytes;
2391 	u64     tx_packets;
2392 	u64     tx_bytes;
2393 	struct u64_stats_sync   syncp;
2394 } __aligned(4 * sizeof(u64));
2395 
2396 struct pcpu_lstats {
2397 	u64 packets;
2398 	u64 bytes;
2399 	struct u64_stats_sync syncp;
2400 } __aligned(2 * sizeof(u64));
2401 
2402 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2403 ({									\
2404 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2405 	if (pcpu_stats)	{						\
2406 		int __cpu;						\
2407 		for_each_possible_cpu(__cpu) {				\
2408 			typeof(type) *stat;				\
2409 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2410 			u64_stats_init(&stat->syncp);			\
2411 		}							\
2412 	}								\
2413 	pcpu_stats;							\
2414 })
2415 
2416 #define netdev_alloc_pcpu_stats(type)					\
2417 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2418 
2419 enum netdev_lag_tx_type {
2420 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2421 	NETDEV_LAG_TX_TYPE_RANDOM,
2422 	NETDEV_LAG_TX_TYPE_BROADCAST,
2423 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2424 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2425 	NETDEV_LAG_TX_TYPE_HASH,
2426 };
2427 
2428 enum netdev_lag_hash {
2429 	NETDEV_LAG_HASH_NONE,
2430 	NETDEV_LAG_HASH_L2,
2431 	NETDEV_LAG_HASH_L34,
2432 	NETDEV_LAG_HASH_L23,
2433 	NETDEV_LAG_HASH_E23,
2434 	NETDEV_LAG_HASH_E34,
2435 	NETDEV_LAG_HASH_UNKNOWN,
2436 };
2437 
2438 struct netdev_lag_upper_info {
2439 	enum netdev_lag_tx_type tx_type;
2440 	enum netdev_lag_hash hash_type;
2441 };
2442 
2443 struct netdev_lag_lower_state_info {
2444 	u8 link_up : 1,
2445 	   tx_enabled : 1;
2446 };
2447 
2448 #include <linux/notifier.h>
2449 
2450 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2451  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2452  * adding new types.
2453  */
2454 enum netdev_cmd {
2455 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2456 	NETDEV_DOWN,
2457 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2458 				   detected a hardware crash and restarted
2459 				   - we can use this eg to kick tcp sessions
2460 				   once done */
2461 	NETDEV_CHANGE,		/* Notify device state change */
2462 	NETDEV_REGISTER,
2463 	NETDEV_UNREGISTER,
2464 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2465 	NETDEV_CHANGEADDR,	/* notify after the address change */
2466 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2467 	NETDEV_GOING_DOWN,
2468 	NETDEV_CHANGENAME,
2469 	NETDEV_FEAT_CHANGE,
2470 	NETDEV_BONDING_FAILOVER,
2471 	NETDEV_PRE_UP,
2472 	NETDEV_PRE_TYPE_CHANGE,
2473 	NETDEV_POST_TYPE_CHANGE,
2474 	NETDEV_POST_INIT,
2475 	NETDEV_RELEASE,
2476 	NETDEV_NOTIFY_PEERS,
2477 	NETDEV_JOIN,
2478 	NETDEV_CHANGEUPPER,
2479 	NETDEV_RESEND_IGMP,
2480 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2481 	NETDEV_CHANGEINFODATA,
2482 	NETDEV_BONDING_INFO,
2483 	NETDEV_PRECHANGEUPPER,
2484 	NETDEV_CHANGELOWERSTATE,
2485 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2486 	NETDEV_UDP_TUNNEL_DROP_INFO,
2487 	NETDEV_CHANGE_TX_QUEUE_LEN,
2488 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2489 	NETDEV_CVLAN_FILTER_DROP_INFO,
2490 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2491 	NETDEV_SVLAN_FILTER_DROP_INFO,
2492 };
2493 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2494 
2495 int register_netdevice_notifier(struct notifier_block *nb);
2496 int unregister_netdevice_notifier(struct notifier_block *nb);
2497 
2498 struct netdev_notifier_info {
2499 	struct net_device	*dev;
2500 	struct netlink_ext_ack	*extack;
2501 };
2502 
2503 struct netdev_notifier_info_ext {
2504 	struct netdev_notifier_info info; /* must be first */
2505 	union {
2506 		u32 mtu;
2507 	} ext;
2508 };
2509 
2510 struct netdev_notifier_change_info {
2511 	struct netdev_notifier_info info; /* must be first */
2512 	unsigned int flags_changed;
2513 };
2514 
2515 struct netdev_notifier_changeupper_info {
2516 	struct netdev_notifier_info info; /* must be first */
2517 	struct net_device *upper_dev; /* new upper dev */
2518 	bool master; /* is upper dev master */
2519 	bool linking; /* is the notification for link or unlink */
2520 	void *upper_info; /* upper dev info */
2521 };
2522 
2523 struct netdev_notifier_changelowerstate_info {
2524 	struct netdev_notifier_info info; /* must be first */
2525 	void *lower_state_info; /* is lower dev state */
2526 };
2527 
2528 struct netdev_notifier_pre_changeaddr_info {
2529 	struct netdev_notifier_info info; /* must be first */
2530 	const unsigned char *dev_addr;
2531 };
2532 
2533 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2534 					     struct net_device *dev)
2535 {
2536 	info->dev = dev;
2537 	info->extack = NULL;
2538 }
2539 
2540 static inline struct net_device *
2541 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2542 {
2543 	return info->dev;
2544 }
2545 
2546 static inline struct netlink_ext_ack *
2547 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2548 {
2549 	return info->extack;
2550 }
2551 
2552 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2553 
2554 
2555 extern rwlock_t				dev_base_lock;		/* Device list lock */
2556 
2557 #define for_each_netdev(net, d)		\
2558 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2559 #define for_each_netdev_reverse(net, d)	\
2560 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2561 #define for_each_netdev_rcu(net, d)		\
2562 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2563 #define for_each_netdev_safe(net, d, n)	\
2564 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2565 #define for_each_netdev_continue(net, d)		\
2566 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2567 #define for_each_netdev_continue_rcu(net, d)		\
2568 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2569 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2570 		for_each_netdev_rcu(&init_net, slave)	\
2571 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2572 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2573 
2574 static inline struct net_device *next_net_device(struct net_device *dev)
2575 {
2576 	struct list_head *lh;
2577 	struct net *net;
2578 
2579 	net = dev_net(dev);
2580 	lh = dev->dev_list.next;
2581 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2582 }
2583 
2584 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2585 {
2586 	struct list_head *lh;
2587 	struct net *net;
2588 
2589 	net = dev_net(dev);
2590 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2591 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2592 }
2593 
2594 static inline struct net_device *first_net_device(struct net *net)
2595 {
2596 	return list_empty(&net->dev_base_head) ? NULL :
2597 		net_device_entry(net->dev_base_head.next);
2598 }
2599 
2600 static inline struct net_device *first_net_device_rcu(struct net *net)
2601 {
2602 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2603 
2604 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2605 }
2606 
2607 int netdev_boot_setup_check(struct net_device *dev);
2608 unsigned long netdev_boot_base(const char *prefix, int unit);
2609 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2610 				       const char *hwaddr);
2611 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2612 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2613 void dev_add_pack(struct packet_type *pt);
2614 void dev_remove_pack(struct packet_type *pt);
2615 void __dev_remove_pack(struct packet_type *pt);
2616 void dev_add_offload(struct packet_offload *po);
2617 void dev_remove_offload(struct packet_offload *po);
2618 
2619 int dev_get_iflink(const struct net_device *dev);
2620 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2621 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2622 				      unsigned short mask);
2623 struct net_device *dev_get_by_name(struct net *net, const char *name);
2624 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2625 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2626 int dev_alloc_name(struct net_device *dev, const char *name);
2627 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2628 void dev_close(struct net_device *dev);
2629 void dev_close_many(struct list_head *head, bool unlink);
2630 void dev_disable_lro(struct net_device *dev);
2631 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2632 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2633 		     struct net_device *sb_dev);
2634 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2635 		       struct net_device *sb_dev);
2636 int dev_queue_xmit(struct sk_buff *skb);
2637 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2638 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2639 int register_netdevice(struct net_device *dev);
2640 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2641 void unregister_netdevice_many(struct list_head *head);
2642 static inline void unregister_netdevice(struct net_device *dev)
2643 {
2644 	unregister_netdevice_queue(dev, NULL);
2645 }
2646 
2647 int netdev_refcnt_read(const struct net_device *dev);
2648 void free_netdev(struct net_device *dev);
2649 void netdev_freemem(struct net_device *dev);
2650 void synchronize_net(void);
2651 int init_dummy_netdev(struct net_device *dev);
2652 
2653 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2654 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2655 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2656 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2657 int netdev_get_name(struct net *net, char *name, int ifindex);
2658 int dev_restart(struct net_device *dev);
2659 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2660 
2661 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2662 {
2663 	return NAPI_GRO_CB(skb)->data_offset;
2664 }
2665 
2666 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2667 {
2668 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2669 }
2670 
2671 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2672 {
2673 	NAPI_GRO_CB(skb)->data_offset += len;
2674 }
2675 
2676 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2677 					unsigned int offset)
2678 {
2679 	return NAPI_GRO_CB(skb)->frag0 + offset;
2680 }
2681 
2682 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2683 {
2684 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2685 }
2686 
2687 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2688 {
2689 	NAPI_GRO_CB(skb)->frag0 = NULL;
2690 	NAPI_GRO_CB(skb)->frag0_len = 0;
2691 }
2692 
2693 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2694 					unsigned int offset)
2695 {
2696 	if (!pskb_may_pull(skb, hlen))
2697 		return NULL;
2698 
2699 	skb_gro_frag0_invalidate(skb);
2700 	return skb->data + offset;
2701 }
2702 
2703 static inline void *skb_gro_network_header(struct sk_buff *skb)
2704 {
2705 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2706 	       skb_network_offset(skb);
2707 }
2708 
2709 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2710 					const void *start, unsigned int len)
2711 {
2712 	if (NAPI_GRO_CB(skb)->csum_valid)
2713 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2714 						  csum_partial(start, len, 0));
2715 }
2716 
2717 /* GRO checksum functions. These are logical equivalents of the normal
2718  * checksum functions (in skbuff.h) except that they operate on the GRO
2719  * offsets and fields in sk_buff.
2720  */
2721 
2722 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2723 
2724 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2725 {
2726 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2727 }
2728 
2729 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2730 						      bool zero_okay,
2731 						      __sum16 check)
2732 {
2733 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2734 		skb_checksum_start_offset(skb) <
2735 		 skb_gro_offset(skb)) &&
2736 		!skb_at_gro_remcsum_start(skb) &&
2737 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2738 		(!zero_okay || check));
2739 }
2740 
2741 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2742 							   __wsum psum)
2743 {
2744 	if (NAPI_GRO_CB(skb)->csum_valid &&
2745 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2746 		return 0;
2747 
2748 	NAPI_GRO_CB(skb)->csum = psum;
2749 
2750 	return __skb_gro_checksum_complete(skb);
2751 }
2752 
2753 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2754 {
2755 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2756 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2757 		NAPI_GRO_CB(skb)->csum_cnt--;
2758 	} else {
2759 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2760 		 * verified a new top level checksum or an encapsulated one
2761 		 * during GRO. This saves work if we fallback to normal path.
2762 		 */
2763 		__skb_incr_checksum_unnecessary(skb);
2764 	}
2765 }
2766 
2767 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2768 				    compute_pseudo)			\
2769 ({									\
2770 	__sum16 __ret = 0;						\
2771 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2772 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2773 				compute_pseudo(skb, proto));		\
2774 	if (!__ret)							\
2775 		skb_gro_incr_csum_unnecessary(skb);			\
2776 	__ret;								\
2777 })
2778 
2779 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2780 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2781 
2782 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2783 					     compute_pseudo)		\
2784 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2785 
2786 #define skb_gro_checksum_simple_validate(skb)				\
2787 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2788 
2789 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2790 {
2791 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2792 		!NAPI_GRO_CB(skb)->csum_valid);
2793 }
2794 
2795 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2796 					      __sum16 check, __wsum pseudo)
2797 {
2798 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2799 	NAPI_GRO_CB(skb)->csum_valid = 1;
2800 }
2801 
2802 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2803 do {									\
2804 	if (__skb_gro_checksum_convert_check(skb))			\
2805 		__skb_gro_checksum_convert(skb, check,			\
2806 					   compute_pseudo(skb, proto));	\
2807 } while (0)
2808 
2809 struct gro_remcsum {
2810 	int offset;
2811 	__wsum delta;
2812 };
2813 
2814 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2815 {
2816 	grc->offset = 0;
2817 	grc->delta = 0;
2818 }
2819 
2820 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2821 					    unsigned int off, size_t hdrlen,
2822 					    int start, int offset,
2823 					    struct gro_remcsum *grc,
2824 					    bool nopartial)
2825 {
2826 	__wsum delta;
2827 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2828 
2829 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2830 
2831 	if (!nopartial) {
2832 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2833 		return ptr;
2834 	}
2835 
2836 	ptr = skb_gro_header_fast(skb, off);
2837 	if (skb_gro_header_hard(skb, off + plen)) {
2838 		ptr = skb_gro_header_slow(skb, off + plen, off);
2839 		if (!ptr)
2840 			return NULL;
2841 	}
2842 
2843 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2844 			       start, offset);
2845 
2846 	/* Adjust skb->csum since we changed the packet */
2847 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2848 
2849 	grc->offset = off + hdrlen + offset;
2850 	grc->delta = delta;
2851 
2852 	return ptr;
2853 }
2854 
2855 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2856 					   struct gro_remcsum *grc)
2857 {
2858 	void *ptr;
2859 	size_t plen = grc->offset + sizeof(u16);
2860 
2861 	if (!grc->delta)
2862 		return;
2863 
2864 	ptr = skb_gro_header_fast(skb, grc->offset);
2865 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2866 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2867 		if (!ptr)
2868 			return;
2869 	}
2870 
2871 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2872 }
2873 
2874 #ifdef CONFIG_XFRM_OFFLOAD
2875 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2876 {
2877 	if (PTR_ERR(pp) != -EINPROGRESS)
2878 		NAPI_GRO_CB(skb)->flush |= flush;
2879 }
2880 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2881 					       struct sk_buff *pp,
2882 					       int flush,
2883 					       struct gro_remcsum *grc)
2884 {
2885 	if (PTR_ERR(pp) != -EINPROGRESS) {
2886 		NAPI_GRO_CB(skb)->flush |= flush;
2887 		skb_gro_remcsum_cleanup(skb, grc);
2888 		skb->remcsum_offload = 0;
2889 	}
2890 }
2891 #else
2892 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2893 {
2894 	NAPI_GRO_CB(skb)->flush |= flush;
2895 }
2896 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2897 					       struct sk_buff *pp,
2898 					       int flush,
2899 					       struct gro_remcsum *grc)
2900 {
2901 	NAPI_GRO_CB(skb)->flush |= flush;
2902 	skb_gro_remcsum_cleanup(skb, grc);
2903 	skb->remcsum_offload = 0;
2904 }
2905 #endif
2906 
2907 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2908 				  unsigned short type,
2909 				  const void *daddr, const void *saddr,
2910 				  unsigned int len)
2911 {
2912 	if (!dev->header_ops || !dev->header_ops->create)
2913 		return 0;
2914 
2915 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2916 }
2917 
2918 static inline int dev_parse_header(const struct sk_buff *skb,
2919 				   unsigned char *haddr)
2920 {
2921 	const struct net_device *dev = skb->dev;
2922 
2923 	if (!dev->header_ops || !dev->header_ops->parse)
2924 		return 0;
2925 	return dev->header_ops->parse(skb, haddr);
2926 }
2927 
2928 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2929 {
2930 	const struct net_device *dev = skb->dev;
2931 
2932 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2933 		return 0;
2934 	return dev->header_ops->parse_protocol(skb);
2935 }
2936 
2937 /* ll_header must have at least hard_header_len allocated */
2938 static inline bool dev_validate_header(const struct net_device *dev,
2939 				       char *ll_header, int len)
2940 {
2941 	if (likely(len >= dev->hard_header_len))
2942 		return true;
2943 	if (len < dev->min_header_len)
2944 		return false;
2945 
2946 	if (capable(CAP_SYS_RAWIO)) {
2947 		memset(ll_header + len, 0, dev->hard_header_len - len);
2948 		return true;
2949 	}
2950 
2951 	if (dev->header_ops && dev->header_ops->validate)
2952 		return dev->header_ops->validate(ll_header, len);
2953 
2954 	return false;
2955 }
2956 
2957 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2958 			   int len, int size);
2959 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2960 static inline int unregister_gifconf(unsigned int family)
2961 {
2962 	return register_gifconf(family, NULL);
2963 }
2964 
2965 #ifdef CONFIG_NET_FLOW_LIMIT
2966 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2967 struct sd_flow_limit {
2968 	u64			count;
2969 	unsigned int		num_buckets;
2970 	unsigned int		history_head;
2971 	u16			history[FLOW_LIMIT_HISTORY];
2972 	u8			buckets[];
2973 };
2974 
2975 extern int netdev_flow_limit_table_len;
2976 #endif /* CONFIG_NET_FLOW_LIMIT */
2977 
2978 /*
2979  * Incoming packets are placed on per-CPU queues
2980  */
2981 struct softnet_data {
2982 	struct list_head	poll_list;
2983 	struct sk_buff_head	process_queue;
2984 
2985 	/* stats */
2986 	unsigned int		processed;
2987 	unsigned int		time_squeeze;
2988 	unsigned int		received_rps;
2989 #ifdef CONFIG_RPS
2990 	struct softnet_data	*rps_ipi_list;
2991 #endif
2992 #ifdef CONFIG_NET_FLOW_LIMIT
2993 	struct sd_flow_limit __rcu *flow_limit;
2994 #endif
2995 	struct Qdisc		*output_queue;
2996 	struct Qdisc		**output_queue_tailp;
2997 	struct sk_buff		*completion_queue;
2998 #ifdef CONFIG_XFRM_OFFLOAD
2999 	struct sk_buff_head	xfrm_backlog;
3000 #endif
3001 	/* written and read only by owning cpu: */
3002 	struct {
3003 		u16 recursion;
3004 		u8  more;
3005 	} xmit;
3006 #ifdef CONFIG_RPS
3007 	/* input_queue_head should be written by cpu owning this struct,
3008 	 * and only read by other cpus. Worth using a cache line.
3009 	 */
3010 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3011 
3012 	/* Elements below can be accessed between CPUs for RPS/RFS */
3013 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3014 	struct softnet_data	*rps_ipi_next;
3015 	unsigned int		cpu;
3016 	unsigned int		input_queue_tail;
3017 #endif
3018 	unsigned int		dropped;
3019 	struct sk_buff_head	input_pkt_queue;
3020 	struct napi_struct	backlog;
3021 
3022 };
3023 
3024 static inline void input_queue_head_incr(struct softnet_data *sd)
3025 {
3026 #ifdef CONFIG_RPS
3027 	sd->input_queue_head++;
3028 #endif
3029 }
3030 
3031 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3032 					      unsigned int *qtail)
3033 {
3034 #ifdef CONFIG_RPS
3035 	*qtail = ++sd->input_queue_tail;
3036 #endif
3037 }
3038 
3039 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3040 
3041 static inline int dev_recursion_level(void)
3042 {
3043 	return this_cpu_read(softnet_data.xmit.recursion);
3044 }
3045 
3046 #define XMIT_RECURSION_LIMIT	10
3047 static inline bool dev_xmit_recursion(void)
3048 {
3049 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3050 			XMIT_RECURSION_LIMIT);
3051 }
3052 
3053 static inline void dev_xmit_recursion_inc(void)
3054 {
3055 	__this_cpu_inc(softnet_data.xmit.recursion);
3056 }
3057 
3058 static inline void dev_xmit_recursion_dec(void)
3059 {
3060 	__this_cpu_dec(softnet_data.xmit.recursion);
3061 }
3062 
3063 void __netif_schedule(struct Qdisc *q);
3064 void netif_schedule_queue(struct netdev_queue *txq);
3065 
3066 static inline void netif_tx_schedule_all(struct net_device *dev)
3067 {
3068 	unsigned int i;
3069 
3070 	for (i = 0; i < dev->num_tx_queues; i++)
3071 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3072 }
3073 
3074 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3075 {
3076 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3077 }
3078 
3079 /**
3080  *	netif_start_queue - allow transmit
3081  *	@dev: network device
3082  *
3083  *	Allow upper layers to call the device hard_start_xmit routine.
3084  */
3085 static inline void netif_start_queue(struct net_device *dev)
3086 {
3087 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3088 }
3089 
3090 static inline void netif_tx_start_all_queues(struct net_device *dev)
3091 {
3092 	unsigned int i;
3093 
3094 	for (i = 0; i < dev->num_tx_queues; i++) {
3095 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3096 		netif_tx_start_queue(txq);
3097 	}
3098 }
3099 
3100 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3101 
3102 /**
3103  *	netif_wake_queue - restart transmit
3104  *	@dev: network device
3105  *
3106  *	Allow upper layers to call the device hard_start_xmit routine.
3107  *	Used for flow control when transmit resources are available.
3108  */
3109 static inline void netif_wake_queue(struct net_device *dev)
3110 {
3111 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3112 }
3113 
3114 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3115 {
3116 	unsigned int i;
3117 
3118 	for (i = 0; i < dev->num_tx_queues; i++) {
3119 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3120 		netif_tx_wake_queue(txq);
3121 	}
3122 }
3123 
3124 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3125 {
3126 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3127 }
3128 
3129 /**
3130  *	netif_stop_queue - stop transmitted packets
3131  *	@dev: network device
3132  *
3133  *	Stop upper layers calling the device hard_start_xmit routine.
3134  *	Used for flow control when transmit resources are unavailable.
3135  */
3136 static inline void netif_stop_queue(struct net_device *dev)
3137 {
3138 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3139 }
3140 
3141 void netif_tx_stop_all_queues(struct net_device *dev);
3142 
3143 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3144 {
3145 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3146 }
3147 
3148 /**
3149  *	netif_queue_stopped - test if transmit queue is flowblocked
3150  *	@dev: network device
3151  *
3152  *	Test if transmit queue on device is currently unable to send.
3153  */
3154 static inline bool netif_queue_stopped(const struct net_device *dev)
3155 {
3156 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3157 }
3158 
3159 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3160 {
3161 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3162 }
3163 
3164 static inline bool
3165 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3166 {
3167 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3168 }
3169 
3170 static inline bool
3171 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3172 {
3173 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3174 }
3175 
3176 /**
3177  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3178  *	@dev_queue: pointer to transmit queue
3179  *
3180  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3181  * to give appropriate hint to the CPU.
3182  */
3183 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3184 {
3185 #ifdef CONFIG_BQL
3186 	prefetchw(&dev_queue->dql.num_queued);
3187 #endif
3188 }
3189 
3190 /**
3191  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3192  *	@dev_queue: pointer to transmit queue
3193  *
3194  * BQL enabled drivers might use this helper in their TX completion path,
3195  * to give appropriate hint to the CPU.
3196  */
3197 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3198 {
3199 #ifdef CONFIG_BQL
3200 	prefetchw(&dev_queue->dql.limit);
3201 #endif
3202 }
3203 
3204 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3205 					unsigned int bytes)
3206 {
3207 #ifdef CONFIG_BQL
3208 	dql_queued(&dev_queue->dql, bytes);
3209 
3210 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3211 		return;
3212 
3213 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3214 
3215 	/*
3216 	 * The XOFF flag must be set before checking the dql_avail below,
3217 	 * because in netdev_tx_completed_queue we update the dql_completed
3218 	 * before checking the XOFF flag.
3219 	 */
3220 	smp_mb();
3221 
3222 	/* check again in case another CPU has just made room avail */
3223 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3224 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3225 #endif
3226 }
3227 
3228 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3229  * that they should not test BQL status themselves.
3230  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3231  * skb of a batch.
3232  * Returns true if the doorbell must be used to kick the NIC.
3233  */
3234 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3235 					  unsigned int bytes,
3236 					  bool xmit_more)
3237 {
3238 	if (xmit_more) {
3239 #ifdef CONFIG_BQL
3240 		dql_queued(&dev_queue->dql, bytes);
3241 #endif
3242 		return netif_tx_queue_stopped(dev_queue);
3243 	}
3244 	netdev_tx_sent_queue(dev_queue, bytes);
3245 	return true;
3246 }
3247 
3248 /**
3249  * 	netdev_sent_queue - report the number of bytes queued to hardware
3250  * 	@dev: network device
3251  * 	@bytes: number of bytes queued to the hardware device queue
3252  *
3253  * 	Report the number of bytes queued for sending/completion to the network
3254  * 	device hardware queue. @bytes should be a good approximation and should
3255  * 	exactly match netdev_completed_queue() @bytes
3256  */
3257 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3258 {
3259 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3260 }
3261 
3262 static inline bool __netdev_sent_queue(struct net_device *dev,
3263 				       unsigned int bytes,
3264 				       bool xmit_more)
3265 {
3266 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3267 				      xmit_more);
3268 }
3269 
3270 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3271 					     unsigned int pkts, unsigned int bytes)
3272 {
3273 #ifdef CONFIG_BQL
3274 	if (unlikely(!bytes))
3275 		return;
3276 
3277 	dql_completed(&dev_queue->dql, bytes);
3278 
3279 	/*
3280 	 * Without the memory barrier there is a small possiblity that
3281 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3282 	 * be stopped forever
3283 	 */
3284 	smp_mb();
3285 
3286 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3287 		return;
3288 
3289 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3290 		netif_schedule_queue(dev_queue);
3291 #endif
3292 }
3293 
3294 /**
3295  * 	netdev_completed_queue - report bytes and packets completed by device
3296  * 	@dev: network device
3297  * 	@pkts: actual number of packets sent over the medium
3298  * 	@bytes: actual number of bytes sent over the medium
3299  *
3300  * 	Report the number of bytes and packets transmitted by the network device
3301  * 	hardware queue over the physical medium, @bytes must exactly match the
3302  * 	@bytes amount passed to netdev_sent_queue()
3303  */
3304 static inline void netdev_completed_queue(struct net_device *dev,
3305 					  unsigned int pkts, unsigned int bytes)
3306 {
3307 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3308 }
3309 
3310 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3311 {
3312 #ifdef CONFIG_BQL
3313 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3314 	dql_reset(&q->dql);
3315 #endif
3316 }
3317 
3318 /**
3319  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3320  * 	@dev_queue: network device
3321  *
3322  * 	Reset the bytes and packet count of a network device and clear the
3323  * 	software flow control OFF bit for this network device
3324  */
3325 static inline void netdev_reset_queue(struct net_device *dev_queue)
3326 {
3327 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3328 }
3329 
3330 /**
3331  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3332  * 	@dev: network device
3333  * 	@queue_index: given tx queue index
3334  *
3335  * 	Returns 0 if given tx queue index >= number of device tx queues,
3336  * 	otherwise returns the originally passed tx queue index.
3337  */
3338 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3339 {
3340 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3341 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3342 				     dev->name, queue_index,
3343 				     dev->real_num_tx_queues);
3344 		return 0;
3345 	}
3346 
3347 	return queue_index;
3348 }
3349 
3350 /**
3351  *	netif_running - test if up
3352  *	@dev: network device
3353  *
3354  *	Test if the device has been brought up.
3355  */
3356 static inline bool netif_running(const struct net_device *dev)
3357 {
3358 	return test_bit(__LINK_STATE_START, &dev->state);
3359 }
3360 
3361 /*
3362  * Routines to manage the subqueues on a device.  We only need start,
3363  * stop, and a check if it's stopped.  All other device management is
3364  * done at the overall netdevice level.
3365  * Also test the device if we're multiqueue.
3366  */
3367 
3368 /**
3369  *	netif_start_subqueue - allow sending packets on subqueue
3370  *	@dev: network device
3371  *	@queue_index: sub queue index
3372  *
3373  * Start individual transmit queue of a device with multiple transmit queues.
3374  */
3375 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3376 {
3377 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3378 
3379 	netif_tx_start_queue(txq);
3380 }
3381 
3382 /**
3383  *	netif_stop_subqueue - stop sending packets on subqueue
3384  *	@dev: network device
3385  *	@queue_index: sub queue index
3386  *
3387  * Stop individual transmit queue of a device with multiple transmit queues.
3388  */
3389 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3390 {
3391 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3392 	netif_tx_stop_queue(txq);
3393 }
3394 
3395 /**
3396  *	netif_subqueue_stopped - test status of subqueue
3397  *	@dev: network device
3398  *	@queue_index: sub queue index
3399  *
3400  * Check individual transmit queue of a device with multiple transmit queues.
3401  */
3402 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3403 					    u16 queue_index)
3404 {
3405 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3406 
3407 	return netif_tx_queue_stopped(txq);
3408 }
3409 
3410 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3411 					  struct sk_buff *skb)
3412 {
3413 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3414 }
3415 
3416 /**
3417  *	netif_wake_subqueue - allow sending packets on subqueue
3418  *	@dev: network device
3419  *	@queue_index: sub queue index
3420  *
3421  * Resume individual transmit queue of a device with multiple transmit queues.
3422  */
3423 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3424 {
3425 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3426 
3427 	netif_tx_wake_queue(txq);
3428 }
3429 
3430 #ifdef CONFIG_XPS
3431 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3432 			u16 index);
3433 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3434 			  u16 index, bool is_rxqs_map);
3435 
3436 /**
3437  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3438  *	@j: CPU/Rx queue index
3439  *	@mask: bitmask of all cpus/rx queues
3440  *	@nr_bits: number of bits in the bitmask
3441  *
3442  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3443  */
3444 static inline bool netif_attr_test_mask(unsigned long j,
3445 					const unsigned long *mask,
3446 					unsigned int nr_bits)
3447 {
3448 	cpu_max_bits_warn(j, nr_bits);
3449 	return test_bit(j, mask);
3450 }
3451 
3452 /**
3453  *	netif_attr_test_online - Test for online CPU/Rx queue
3454  *	@j: CPU/Rx queue index
3455  *	@online_mask: bitmask for CPUs/Rx queues that are online
3456  *	@nr_bits: number of bits in the bitmask
3457  *
3458  * Returns true if a CPU/Rx queue is online.
3459  */
3460 static inline bool netif_attr_test_online(unsigned long j,
3461 					  const unsigned long *online_mask,
3462 					  unsigned int nr_bits)
3463 {
3464 	cpu_max_bits_warn(j, nr_bits);
3465 
3466 	if (online_mask)
3467 		return test_bit(j, online_mask);
3468 
3469 	return (j < nr_bits);
3470 }
3471 
3472 /**
3473  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3474  *	@n: CPU/Rx queue index
3475  *	@srcp: the cpumask/Rx queue mask pointer
3476  *	@nr_bits: number of bits in the bitmask
3477  *
3478  * Returns >= nr_bits if no further CPUs/Rx queues set.
3479  */
3480 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3481 					       unsigned int nr_bits)
3482 {
3483 	/* -1 is a legal arg here. */
3484 	if (n != -1)
3485 		cpu_max_bits_warn(n, nr_bits);
3486 
3487 	if (srcp)
3488 		return find_next_bit(srcp, nr_bits, n + 1);
3489 
3490 	return n + 1;
3491 }
3492 
3493 /**
3494  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3495  *	@n: CPU/Rx queue index
3496  *	@src1p: the first CPUs/Rx queues mask pointer
3497  *	@src2p: the second CPUs/Rx queues mask pointer
3498  *	@nr_bits: number of bits in the bitmask
3499  *
3500  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3501  */
3502 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3503 					  const unsigned long *src2p,
3504 					  unsigned int nr_bits)
3505 {
3506 	/* -1 is a legal arg here. */
3507 	if (n != -1)
3508 		cpu_max_bits_warn(n, nr_bits);
3509 
3510 	if (src1p && src2p)
3511 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3512 	else if (src1p)
3513 		return find_next_bit(src1p, nr_bits, n + 1);
3514 	else if (src2p)
3515 		return find_next_bit(src2p, nr_bits, n + 1);
3516 
3517 	return n + 1;
3518 }
3519 #else
3520 static inline int netif_set_xps_queue(struct net_device *dev,
3521 				      const struct cpumask *mask,
3522 				      u16 index)
3523 {
3524 	return 0;
3525 }
3526 
3527 static inline int __netif_set_xps_queue(struct net_device *dev,
3528 					const unsigned long *mask,
3529 					u16 index, bool is_rxqs_map)
3530 {
3531 	return 0;
3532 }
3533 #endif
3534 
3535 /**
3536  *	netif_is_multiqueue - test if device has multiple transmit queues
3537  *	@dev: network device
3538  *
3539  * Check if device has multiple transmit queues
3540  */
3541 static inline bool netif_is_multiqueue(const struct net_device *dev)
3542 {
3543 	return dev->num_tx_queues > 1;
3544 }
3545 
3546 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3547 
3548 #ifdef CONFIG_SYSFS
3549 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3550 #else
3551 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3552 						unsigned int rxqs)
3553 {
3554 	dev->real_num_rx_queues = rxqs;
3555 	return 0;
3556 }
3557 #endif
3558 
3559 static inline struct netdev_rx_queue *
3560 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3561 {
3562 	return dev->_rx + rxq;
3563 }
3564 
3565 #ifdef CONFIG_SYSFS
3566 static inline unsigned int get_netdev_rx_queue_index(
3567 		struct netdev_rx_queue *queue)
3568 {
3569 	struct net_device *dev = queue->dev;
3570 	int index = queue - dev->_rx;
3571 
3572 	BUG_ON(index >= dev->num_rx_queues);
3573 	return index;
3574 }
3575 #endif
3576 
3577 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3578 int netif_get_num_default_rss_queues(void);
3579 
3580 enum skb_free_reason {
3581 	SKB_REASON_CONSUMED,
3582 	SKB_REASON_DROPPED,
3583 };
3584 
3585 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3586 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3587 
3588 /*
3589  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3590  * interrupt context or with hardware interrupts being disabled.
3591  * (in_irq() || irqs_disabled())
3592  *
3593  * We provide four helpers that can be used in following contexts :
3594  *
3595  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3596  *  replacing kfree_skb(skb)
3597  *
3598  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3599  *  Typically used in place of consume_skb(skb) in TX completion path
3600  *
3601  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3602  *  replacing kfree_skb(skb)
3603  *
3604  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3605  *  and consumed a packet. Used in place of consume_skb(skb)
3606  */
3607 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3608 {
3609 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3610 }
3611 
3612 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3613 {
3614 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3615 }
3616 
3617 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3618 {
3619 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3620 }
3621 
3622 static inline void dev_consume_skb_any(struct sk_buff *skb)
3623 {
3624 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3625 }
3626 
3627 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3628 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3629 int netif_rx(struct sk_buff *skb);
3630 int netif_rx_ni(struct sk_buff *skb);
3631 int netif_receive_skb(struct sk_buff *skb);
3632 int netif_receive_skb_core(struct sk_buff *skb);
3633 void netif_receive_skb_list(struct list_head *head);
3634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3635 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3636 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3637 gro_result_t napi_gro_frags(struct napi_struct *napi);
3638 struct packet_offload *gro_find_receive_by_type(__be16 type);
3639 struct packet_offload *gro_find_complete_by_type(__be16 type);
3640 
3641 static inline void napi_free_frags(struct napi_struct *napi)
3642 {
3643 	kfree_skb(napi->skb);
3644 	napi->skb = NULL;
3645 }
3646 
3647 bool netdev_is_rx_handler_busy(struct net_device *dev);
3648 int netdev_rx_handler_register(struct net_device *dev,
3649 			       rx_handler_func_t *rx_handler,
3650 			       void *rx_handler_data);
3651 void netdev_rx_handler_unregister(struct net_device *dev);
3652 
3653 bool dev_valid_name(const char *name);
3654 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3655 		bool *need_copyout);
3656 int dev_ifconf(struct net *net, struct ifconf *, int);
3657 int dev_ethtool(struct net *net, struct ifreq *);
3658 unsigned int dev_get_flags(const struct net_device *);
3659 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3660 		       struct netlink_ext_ack *extack);
3661 int dev_change_flags(struct net_device *dev, unsigned int flags,
3662 		     struct netlink_ext_ack *extack);
3663 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3664 			unsigned int gchanges);
3665 int dev_change_name(struct net_device *, const char *);
3666 int dev_set_alias(struct net_device *, const char *, size_t);
3667 int dev_get_alias(const struct net_device *, char *, size_t);
3668 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3669 int __dev_set_mtu(struct net_device *, int);
3670 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3671 		    struct netlink_ext_ack *extack);
3672 int dev_set_mtu(struct net_device *, int);
3673 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3674 void dev_set_group(struct net_device *, int);
3675 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3676 			      struct netlink_ext_ack *extack);
3677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3678 			struct netlink_ext_ack *extack);
3679 int dev_change_carrier(struct net_device *, bool new_carrier);
3680 int dev_get_phys_port_id(struct net_device *dev,
3681 			 struct netdev_phys_item_id *ppid);
3682 int dev_get_phys_port_name(struct net_device *dev,
3683 			   char *name, size_t len);
3684 int dev_get_port_parent_id(struct net_device *dev,
3685 			   struct netdev_phys_item_id *ppid, bool recurse);
3686 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3687 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3688 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3689 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3690 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3691 				    struct netdev_queue *txq, int *ret);
3692 
3693 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3694 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3695 		      int fd, u32 flags);
3696 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3697 		    enum bpf_netdev_command cmd);
3698 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3699 
3700 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3701 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3702 bool is_skb_forwardable(const struct net_device *dev,
3703 			const struct sk_buff *skb);
3704 
3705 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3706 					       struct sk_buff *skb)
3707 {
3708 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3709 	    unlikely(!is_skb_forwardable(dev, skb))) {
3710 		atomic_long_inc(&dev->rx_dropped);
3711 		kfree_skb(skb);
3712 		return NET_RX_DROP;
3713 	}
3714 
3715 	skb_scrub_packet(skb, true);
3716 	skb->priority = 0;
3717 	return 0;
3718 }
3719 
3720 bool dev_nit_active(struct net_device *dev);
3721 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3722 
3723 extern int		netdev_budget;
3724 extern unsigned int	netdev_budget_usecs;
3725 
3726 /* Called by rtnetlink.c:rtnl_unlock() */
3727 void netdev_run_todo(void);
3728 
3729 /**
3730  *	dev_put - release reference to device
3731  *	@dev: network device
3732  *
3733  * Release reference to device to allow it to be freed.
3734  */
3735 static inline void dev_put(struct net_device *dev)
3736 {
3737 	this_cpu_dec(*dev->pcpu_refcnt);
3738 }
3739 
3740 /**
3741  *	dev_hold - get reference to device
3742  *	@dev: network device
3743  *
3744  * Hold reference to device to keep it from being freed.
3745  */
3746 static inline void dev_hold(struct net_device *dev)
3747 {
3748 	this_cpu_inc(*dev->pcpu_refcnt);
3749 }
3750 
3751 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3752  * and _off may be called from IRQ context, but it is caller
3753  * who is responsible for serialization of these calls.
3754  *
3755  * The name carrier is inappropriate, these functions should really be
3756  * called netif_lowerlayer_*() because they represent the state of any
3757  * kind of lower layer not just hardware media.
3758  */
3759 
3760 void linkwatch_init_dev(struct net_device *dev);
3761 void linkwatch_fire_event(struct net_device *dev);
3762 void linkwatch_forget_dev(struct net_device *dev);
3763 
3764 /**
3765  *	netif_carrier_ok - test if carrier present
3766  *	@dev: network device
3767  *
3768  * Check if carrier is present on device
3769  */
3770 static inline bool netif_carrier_ok(const struct net_device *dev)
3771 {
3772 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3773 }
3774 
3775 unsigned long dev_trans_start(struct net_device *dev);
3776 
3777 void __netdev_watchdog_up(struct net_device *dev);
3778 
3779 void netif_carrier_on(struct net_device *dev);
3780 
3781 void netif_carrier_off(struct net_device *dev);
3782 
3783 /**
3784  *	netif_dormant_on - mark device as dormant.
3785  *	@dev: network device
3786  *
3787  * Mark device as dormant (as per RFC2863).
3788  *
3789  * The dormant state indicates that the relevant interface is not
3790  * actually in a condition to pass packets (i.e., it is not 'up') but is
3791  * in a "pending" state, waiting for some external event.  For "on-
3792  * demand" interfaces, this new state identifies the situation where the
3793  * interface is waiting for events to place it in the up state.
3794  */
3795 static inline void netif_dormant_on(struct net_device *dev)
3796 {
3797 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3798 		linkwatch_fire_event(dev);
3799 }
3800 
3801 /**
3802  *	netif_dormant_off - set device as not dormant.
3803  *	@dev: network device
3804  *
3805  * Device is not in dormant state.
3806  */
3807 static inline void netif_dormant_off(struct net_device *dev)
3808 {
3809 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3810 		linkwatch_fire_event(dev);
3811 }
3812 
3813 /**
3814  *	netif_dormant - test if device is dormant
3815  *	@dev: network device
3816  *
3817  * Check if device is dormant.
3818  */
3819 static inline bool netif_dormant(const struct net_device *dev)
3820 {
3821 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3822 }
3823 
3824 
3825 /**
3826  *	netif_oper_up - test if device is operational
3827  *	@dev: network device
3828  *
3829  * Check if carrier is operational
3830  */
3831 static inline bool netif_oper_up(const struct net_device *dev)
3832 {
3833 	return (dev->operstate == IF_OPER_UP ||
3834 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3835 }
3836 
3837 /**
3838  *	netif_device_present - is device available or removed
3839  *	@dev: network device
3840  *
3841  * Check if device has not been removed from system.
3842  */
3843 static inline bool netif_device_present(struct net_device *dev)
3844 {
3845 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3846 }
3847 
3848 void netif_device_detach(struct net_device *dev);
3849 
3850 void netif_device_attach(struct net_device *dev);
3851 
3852 /*
3853  * Network interface message level settings
3854  */
3855 
3856 enum {
3857 	NETIF_MSG_DRV		= 0x0001,
3858 	NETIF_MSG_PROBE		= 0x0002,
3859 	NETIF_MSG_LINK		= 0x0004,
3860 	NETIF_MSG_TIMER		= 0x0008,
3861 	NETIF_MSG_IFDOWN	= 0x0010,
3862 	NETIF_MSG_IFUP		= 0x0020,
3863 	NETIF_MSG_RX_ERR	= 0x0040,
3864 	NETIF_MSG_TX_ERR	= 0x0080,
3865 	NETIF_MSG_TX_QUEUED	= 0x0100,
3866 	NETIF_MSG_INTR		= 0x0200,
3867 	NETIF_MSG_TX_DONE	= 0x0400,
3868 	NETIF_MSG_RX_STATUS	= 0x0800,
3869 	NETIF_MSG_PKTDATA	= 0x1000,
3870 	NETIF_MSG_HW		= 0x2000,
3871 	NETIF_MSG_WOL		= 0x4000,
3872 };
3873 
3874 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3875 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3876 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3877 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3878 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3879 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3880 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3881 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3882 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3883 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3884 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3885 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3886 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3887 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3888 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3889 
3890 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3891 {
3892 	/* use default */
3893 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3894 		return default_msg_enable_bits;
3895 	if (debug_value == 0)	/* no output */
3896 		return 0;
3897 	/* set low N bits */
3898 	return (1U << debug_value) - 1;
3899 }
3900 
3901 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3902 {
3903 	spin_lock(&txq->_xmit_lock);
3904 	txq->xmit_lock_owner = cpu;
3905 }
3906 
3907 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3908 {
3909 	__acquire(&txq->_xmit_lock);
3910 	return true;
3911 }
3912 
3913 static inline void __netif_tx_release(struct netdev_queue *txq)
3914 {
3915 	__release(&txq->_xmit_lock);
3916 }
3917 
3918 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3919 {
3920 	spin_lock_bh(&txq->_xmit_lock);
3921 	txq->xmit_lock_owner = smp_processor_id();
3922 }
3923 
3924 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3925 {
3926 	bool ok = spin_trylock(&txq->_xmit_lock);
3927 	if (likely(ok))
3928 		txq->xmit_lock_owner = smp_processor_id();
3929 	return ok;
3930 }
3931 
3932 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3933 {
3934 	txq->xmit_lock_owner = -1;
3935 	spin_unlock(&txq->_xmit_lock);
3936 }
3937 
3938 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3939 {
3940 	txq->xmit_lock_owner = -1;
3941 	spin_unlock_bh(&txq->_xmit_lock);
3942 }
3943 
3944 static inline void txq_trans_update(struct netdev_queue *txq)
3945 {
3946 	if (txq->xmit_lock_owner != -1)
3947 		txq->trans_start = jiffies;
3948 }
3949 
3950 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3951 static inline void netif_trans_update(struct net_device *dev)
3952 {
3953 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3954 
3955 	if (txq->trans_start != jiffies)
3956 		txq->trans_start = jiffies;
3957 }
3958 
3959 /**
3960  *	netif_tx_lock - grab network device transmit lock
3961  *	@dev: network device
3962  *
3963  * Get network device transmit lock
3964  */
3965 static inline void netif_tx_lock(struct net_device *dev)
3966 {
3967 	unsigned int i;
3968 	int cpu;
3969 
3970 	spin_lock(&dev->tx_global_lock);
3971 	cpu = smp_processor_id();
3972 	for (i = 0; i < dev->num_tx_queues; i++) {
3973 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3974 
3975 		/* We are the only thread of execution doing a
3976 		 * freeze, but we have to grab the _xmit_lock in
3977 		 * order to synchronize with threads which are in
3978 		 * the ->hard_start_xmit() handler and already
3979 		 * checked the frozen bit.
3980 		 */
3981 		__netif_tx_lock(txq, cpu);
3982 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3983 		__netif_tx_unlock(txq);
3984 	}
3985 }
3986 
3987 static inline void netif_tx_lock_bh(struct net_device *dev)
3988 {
3989 	local_bh_disable();
3990 	netif_tx_lock(dev);
3991 }
3992 
3993 static inline void netif_tx_unlock(struct net_device *dev)
3994 {
3995 	unsigned int i;
3996 
3997 	for (i = 0; i < dev->num_tx_queues; i++) {
3998 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3999 
4000 		/* No need to grab the _xmit_lock here.  If the
4001 		 * queue is not stopped for another reason, we
4002 		 * force a schedule.
4003 		 */
4004 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4005 		netif_schedule_queue(txq);
4006 	}
4007 	spin_unlock(&dev->tx_global_lock);
4008 }
4009 
4010 static inline void netif_tx_unlock_bh(struct net_device *dev)
4011 {
4012 	netif_tx_unlock(dev);
4013 	local_bh_enable();
4014 }
4015 
4016 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4017 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4018 		__netif_tx_lock(txq, cpu);		\
4019 	} else {					\
4020 		__netif_tx_acquire(txq);		\
4021 	}						\
4022 }
4023 
4024 #define HARD_TX_TRYLOCK(dev, txq)			\
4025 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4026 		__netif_tx_trylock(txq) :		\
4027 		__netif_tx_acquire(txq))
4028 
4029 #define HARD_TX_UNLOCK(dev, txq) {			\
4030 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4031 		__netif_tx_unlock(txq);			\
4032 	} else {					\
4033 		__netif_tx_release(txq);		\
4034 	}						\
4035 }
4036 
4037 static inline void netif_tx_disable(struct net_device *dev)
4038 {
4039 	unsigned int i;
4040 	int cpu;
4041 
4042 	local_bh_disable();
4043 	cpu = smp_processor_id();
4044 	for (i = 0; i < dev->num_tx_queues; i++) {
4045 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4046 
4047 		__netif_tx_lock(txq, cpu);
4048 		netif_tx_stop_queue(txq);
4049 		__netif_tx_unlock(txq);
4050 	}
4051 	local_bh_enable();
4052 }
4053 
4054 static inline void netif_addr_lock(struct net_device *dev)
4055 {
4056 	spin_lock(&dev->addr_list_lock);
4057 }
4058 
4059 static inline void netif_addr_lock_nested(struct net_device *dev)
4060 {
4061 	int subclass = SINGLE_DEPTH_NESTING;
4062 
4063 	if (dev->netdev_ops->ndo_get_lock_subclass)
4064 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4065 
4066 	spin_lock_nested(&dev->addr_list_lock, subclass);
4067 }
4068 
4069 static inline void netif_addr_lock_bh(struct net_device *dev)
4070 {
4071 	spin_lock_bh(&dev->addr_list_lock);
4072 }
4073 
4074 static inline void netif_addr_unlock(struct net_device *dev)
4075 {
4076 	spin_unlock(&dev->addr_list_lock);
4077 }
4078 
4079 static inline void netif_addr_unlock_bh(struct net_device *dev)
4080 {
4081 	spin_unlock_bh(&dev->addr_list_lock);
4082 }
4083 
4084 /*
4085  * dev_addrs walker. Should be used only for read access. Call with
4086  * rcu_read_lock held.
4087  */
4088 #define for_each_dev_addr(dev, ha) \
4089 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4090 
4091 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4092 
4093 void ether_setup(struct net_device *dev);
4094 
4095 /* Support for loadable net-drivers */
4096 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4097 				    unsigned char name_assign_type,
4098 				    void (*setup)(struct net_device *),
4099 				    unsigned int txqs, unsigned int rxqs);
4100 int dev_get_valid_name(struct net *net, struct net_device *dev,
4101 		       const char *name);
4102 
4103 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4104 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4105 
4106 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4107 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4108 			 count)
4109 
4110 int register_netdev(struct net_device *dev);
4111 void unregister_netdev(struct net_device *dev);
4112 
4113 /* General hardware address lists handling functions */
4114 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4115 		   struct netdev_hw_addr_list *from_list, int addr_len);
4116 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4117 		      struct netdev_hw_addr_list *from_list, int addr_len);
4118 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4119 		       struct net_device *dev,
4120 		       int (*sync)(struct net_device *, const unsigned char *),
4121 		       int (*unsync)(struct net_device *,
4122 				     const unsigned char *));
4123 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4124 			   struct net_device *dev,
4125 			   int (*sync)(struct net_device *,
4126 				       const unsigned char *, int),
4127 			   int (*unsync)(struct net_device *,
4128 					 const unsigned char *, int));
4129 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4130 			      struct net_device *dev,
4131 			      int (*unsync)(struct net_device *,
4132 					    const unsigned char *, int));
4133 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4134 			  struct net_device *dev,
4135 			  int (*unsync)(struct net_device *,
4136 					const unsigned char *));
4137 void __hw_addr_init(struct netdev_hw_addr_list *list);
4138 
4139 /* Functions used for device addresses handling */
4140 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4141 		 unsigned char addr_type);
4142 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4143 		 unsigned char addr_type);
4144 void dev_addr_flush(struct net_device *dev);
4145 int dev_addr_init(struct net_device *dev);
4146 
4147 /* Functions used for unicast addresses handling */
4148 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4149 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4150 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4151 int dev_uc_sync(struct net_device *to, struct net_device *from);
4152 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4153 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4154 void dev_uc_flush(struct net_device *dev);
4155 void dev_uc_init(struct net_device *dev);
4156 
4157 /**
4158  *  __dev_uc_sync - Synchonize device's unicast list
4159  *  @dev:  device to sync
4160  *  @sync: function to call if address should be added
4161  *  @unsync: function to call if address should be removed
4162  *
4163  *  Add newly added addresses to the interface, and release
4164  *  addresses that have been deleted.
4165  */
4166 static inline int __dev_uc_sync(struct net_device *dev,
4167 				int (*sync)(struct net_device *,
4168 					    const unsigned char *),
4169 				int (*unsync)(struct net_device *,
4170 					      const unsigned char *))
4171 {
4172 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4173 }
4174 
4175 /**
4176  *  __dev_uc_unsync - Remove synchronized addresses from device
4177  *  @dev:  device to sync
4178  *  @unsync: function to call if address should be removed
4179  *
4180  *  Remove all addresses that were added to the device by dev_uc_sync().
4181  */
4182 static inline void __dev_uc_unsync(struct net_device *dev,
4183 				   int (*unsync)(struct net_device *,
4184 						 const unsigned char *))
4185 {
4186 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4187 }
4188 
4189 /* Functions used for multicast addresses handling */
4190 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4191 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4192 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4193 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4194 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4195 int dev_mc_sync(struct net_device *to, struct net_device *from);
4196 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4197 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4198 void dev_mc_flush(struct net_device *dev);
4199 void dev_mc_init(struct net_device *dev);
4200 
4201 /**
4202  *  __dev_mc_sync - Synchonize device's multicast list
4203  *  @dev:  device to sync
4204  *  @sync: function to call if address should be added
4205  *  @unsync: function to call if address should be removed
4206  *
4207  *  Add newly added addresses to the interface, and release
4208  *  addresses that have been deleted.
4209  */
4210 static inline int __dev_mc_sync(struct net_device *dev,
4211 				int (*sync)(struct net_device *,
4212 					    const unsigned char *),
4213 				int (*unsync)(struct net_device *,
4214 					      const unsigned char *))
4215 {
4216 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4217 }
4218 
4219 /**
4220  *  __dev_mc_unsync - Remove synchronized addresses from device
4221  *  @dev:  device to sync
4222  *  @unsync: function to call if address should be removed
4223  *
4224  *  Remove all addresses that were added to the device by dev_mc_sync().
4225  */
4226 static inline void __dev_mc_unsync(struct net_device *dev,
4227 				   int (*unsync)(struct net_device *,
4228 						 const unsigned char *))
4229 {
4230 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4231 }
4232 
4233 /* Functions used for secondary unicast and multicast support */
4234 void dev_set_rx_mode(struct net_device *dev);
4235 void __dev_set_rx_mode(struct net_device *dev);
4236 int dev_set_promiscuity(struct net_device *dev, int inc);
4237 int dev_set_allmulti(struct net_device *dev, int inc);
4238 void netdev_state_change(struct net_device *dev);
4239 void netdev_notify_peers(struct net_device *dev);
4240 void netdev_features_change(struct net_device *dev);
4241 /* Load a device via the kmod */
4242 void dev_load(struct net *net, const char *name);
4243 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4244 					struct rtnl_link_stats64 *storage);
4245 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4246 			     const struct net_device_stats *netdev_stats);
4247 
4248 extern int		netdev_max_backlog;
4249 extern int		netdev_tstamp_prequeue;
4250 extern int		weight_p;
4251 extern int		dev_weight_rx_bias;
4252 extern int		dev_weight_tx_bias;
4253 extern int		dev_rx_weight;
4254 extern int		dev_tx_weight;
4255 extern int		gro_normal_batch;
4256 
4257 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4258 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4259 						     struct list_head **iter);
4260 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4261 						     struct list_head **iter);
4262 
4263 /* iterate through upper list, must be called under RCU read lock */
4264 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4265 	for (iter = &(dev)->adj_list.upper, \
4266 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4267 	     updev; \
4268 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4269 
4270 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4271 				  int (*fn)(struct net_device *upper_dev,
4272 					    void *data),
4273 				  void *data);
4274 
4275 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4276 				  struct net_device *upper_dev);
4277 
4278 bool netdev_has_any_upper_dev(struct net_device *dev);
4279 
4280 void *netdev_lower_get_next_private(struct net_device *dev,
4281 				    struct list_head **iter);
4282 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4283 					struct list_head **iter);
4284 
4285 #define netdev_for_each_lower_private(dev, priv, iter) \
4286 	for (iter = (dev)->adj_list.lower.next, \
4287 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4288 	     priv; \
4289 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4290 
4291 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4292 	for (iter = &(dev)->adj_list.lower, \
4293 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4294 	     priv; \
4295 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4296 
4297 void *netdev_lower_get_next(struct net_device *dev,
4298 				struct list_head **iter);
4299 
4300 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4301 	for (iter = (dev)->adj_list.lower.next, \
4302 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4303 	     ldev; \
4304 	     ldev = netdev_lower_get_next(dev, &(iter)))
4305 
4306 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4307 					     struct list_head **iter);
4308 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4309 						 struct list_head **iter);
4310 
4311 int netdev_walk_all_lower_dev(struct net_device *dev,
4312 			      int (*fn)(struct net_device *lower_dev,
4313 					void *data),
4314 			      void *data);
4315 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4316 				  int (*fn)(struct net_device *lower_dev,
4317 					    void *data),
4318 				  void *data);
4319 
4320 void *netdev_adjacent_get_private(struct list_head *adj_list);
4321 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4322 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4323 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4324 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4325 			  struct netlink_ext_ack *extack);
4326 int netdev_master_upper_dev_link(struct net_device *dev,
4327 				 struct net_device *upper_dev,
4328 				 void *upper_priv, void *upper_info,
4329 				 struct netlink_ext_ack *extack);
4330 void netdev_upper_dev_unlink(struct net_device *dev,
4331 			     struct net_device *upper_dev);
4332 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4333 void *netdev_lower_dev_get_private(struct net_device *dev,
4334 				   struct net_device *lower_dev);
4335 void netdev_lower_state_changed(struct net_device *lower_dev,
4336 				void *lower_state_info);
4337 
4338 /* RSS keys are 40 or 52 bytes long */
4339 #define NETDEV_RSS_KEY_LEN 52
4340 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4341 void netdev_rss_key_fill(void *buffer, size_t len);
4342 
4343 int dev_get_nest_level(struct net_device *dev);
4344 int skb_checksum_help(struct sk_buff *skb);
4345 int skb_crc32c_csum_help(struct sk_buff *skb);
4346 int skb_csum_hwoffload_help(struct sk_buff *skb,
4347 			    const netdev_features_t features);
4348 
4349 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4350 				  netdev_features_t features, bool tx_path);
4351 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4352 				    netdev_features_t features);
4353 
4354 struct netdev_bonding_info {
4355 	ifslave	slave;
4356 	ifbond	master;
4357 };
4358 
4359 struct netdev_notifier_bonding_info {
4360 	struct netdev_notifier_info info; /* must be first */
4361 	struct netdev_bonding_info  bonding_info;
4362 };
4363 
4364 void netdev_bonding_info_change(struct net_device *dev,
4365 				struct netdev_bonding_info *bonding_info);
4366 
4367 static inline
4368 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4369 {
4370 	return __skb_gso_segment(skb, features, true);
4371 }
4372 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4373 
4374 static inline bool can_checksum_protocol(netdev_features_t features,
4375 					 __be16 protocol)
4376 {
4377 	if (protocol == htons(ETH_P_FCOE))
4378 		return !!(features & NETIF_F_FCOE_CRC);
4379 
4380 	/* Assume this is an IP checksum (not SCTP CRC) */
4381 
4382 	if (features & NETIF_F_HW_CSUM) {
4383 		/* Can checksum everything */
4384 		return true;
4385 	}
4386 
4387 	switch (protocol) {
4388 	case htons(ETH_P_IP):
4389 		return !!(features & NETIF_F_IP_CSUM);
4390 	case htons(ETH_P_IPV6):
4391 		return !!(features & NETIF_F_IPV6_CSUM);
4392 	default:
4393 		return false;
4394 	}
4395 }
4396 
4397 #ifdef CONFIG_BUG
4398 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4399 #else
4400 static inline void netdev_rx_csum_fault(struct net_device *dev,
4401 					struct sk_buff *skb)
4402 {
4403 }
4404 #endif
4405 /* rx skb timestamps */
4406 void net_enable_timestamp(void);
4407 void net_disable_timestamp(void);
4408 
4409 #ifdef CONFIG_PROC_FS
4410 int __init dev_proc_init(void);
4411 #else
4412 #define dev_proc_init() 0
4413 #endif
4414 
4415 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4416 					      struct sk_buff *skb, struct net_device *dev,
4417 					      bool more)
4418 {
4419 	__this_cpu_write(softnet_data.xmit.more, more);
4420 	return ops->ndo_start_xmit(skb, dev);
4421 }
4422 
4423 static inline bool netdev_xmit_more(void)
4424 {
4425 	return __this_cpu_read(softnet_data.xmit.more);
4426 }
4427 
4428 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4429 					    struct netdev_queue *txq, bool more)
4430 {
4431 	const struct net_device_ops *ops = dev->netdev_ops;
4432 	netdev_tx_t rc;
4433 
4434 	rc = __netdev_start_xmit(ops, skb, dev, more);
4435 	if (rc == NETDEV_TX_OK)
4436 		txq_trans_update(txq);
4437 
4438 	return rc;
4439 }
4440 
4441 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4442 				const void *ns);
4443 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4444 				 const void *ns);
4445 
4446 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4447 {
4448 	return netdev_class_create_file_ns(class_attr, NULL);
4449 }
4450 
4451 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4452 {
4453 	netdev_class_remove_file_ns(class_attr, NULL);
4454 }
4455 
4456 extern const struct kobj_ns_type_operations net_ns_type_operations;
4457 
4458 const char *netdev_drivername(const struct net_device *dev);
4459 
4460 void linkwatch_run_queue(void);
4461 
4462 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4463 							  netdev_features_t f2)
4464 {
4465 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4466 		if (f1 & NETIF_F_HW_CSUM)
4467 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4468 		else
4469 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4470 	}
4471 
4472 	return f1 & f2;
4473 }
4474 
4475 static inline netdev_features_t netdev_get_wanted_features(
4476 	struct net_device *dev)
4477 {
4478 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4479 }
4480 netdev_features_t netdev_increment_features(netdev_features_t all,
4481 	netdev_features_t one, netdev_features_t mask);
4482 
4483 /* Allow TSO being used on stacked device :
4484  * Performing the GSO segmentation before last device
4485  * is a performance improvement.
4486  */
4487 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4488 							netdev_features_t mask)
4489 {
4490 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4491 }
4492 
4493 int __netdev_update_features(struct net_device *dev);
4494 void netdev_update_features(struct net_device *dev);
4495 void netdev_change_features(struct net_device *dev);
4496 
4497 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4498 					struct net_device *dev);
4499 
4500 netdev_features_t passthru_features_check(struct sk_buff *skb,
4501 					  struct net_device *dev,
4502 					  netdev_features_t features);
4503 netdev_features_t netif_skb_features(struct sk_buff *skb);
4504 
4505 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4506 {
4507 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4508 
4509 	/* check flags correspondence */
4510 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4511 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4512 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4513 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4514 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4515 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4516 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4517 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4518 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4519 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4520 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4521 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4522 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4523 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4524 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4525 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4526 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4527 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4528 
4529 	return (features & feature) == feature;
4530 }
4531 
4532 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4533 {
4534 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4535 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4536 }
4537 
4538 static inline bool netif_needs_gso(struct sk_buff *skb,
4539 				   netdev_features_t features)
4540 {
4541 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4542 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4543 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4544 }
4545 
4546 static inline void netif_set_gso_max_size(struct net_device *dev,
4547 					  unsigned int size)
4548 {
4549 	dev->gso_max_size = size;
4550 }
4551 
4552 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4553 					int pulled_hlen, u16 mac_offset,
4554 					int mac_len)
4555 {
4556 	skb->protocol = protocol;
4557 	skb->encapsulation = 1;
4558 	skb_push(skb, pulled_hlen);
4559 	skb_reset_transport_header(skb);
4560 	skb->mac_header = mac_offset;
4561 	skb->network_header = skb->mac_header + mac_len;
4562 	skb->mac_len = mac_len;
4563 }
4564 
4565 static inline bool netif_is_macsec(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_MACSEC;
4568 }
4569 
4570 static inline bool netif_is_macvlan(const struct net_device *dev)
4571 {
4572 	return dev->priv_flags & IFF_MACVLAN;
4573 }
4574 
4575 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4576 {
4577 	return dev->priv_flags & IFF_MACVLAN_PORT;
4578 }
4579 
4580 static inline bool netif_is_bond_master(const struct net_device *dev)
4581 {
4582 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4583 }
4584 
4585 static inline bool netif_is_bond_slave(const struct net_device *dev)
4586 {
4587 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4588 }
4589 
4590 static inline bool netif_supports_nofcs(struct net_device *dev)
4591 {
4592 	return dev->priv_flags & IFF_SUPP_NOFCS;
4593 }
4594 
4595 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4596 {
4597 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4598 }
4599 
4600 static inline bool netif_is_l3_master(const struct net_device *dev)
4601 {
4602 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4603 }
4604 
4605 static inline bool netif_is_l3_slave(const struct net_device *dev)
4606 {
4607 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4608 }
4609 
4610 static inline bool netif_is_bridge_master(const struct net_device *dev)
4611 {
4612 	return dev->priv_flags & IFF_EBRIDGE;
4613 }
4614 
4615 static inline bool netif_is_bridge_port(const struct net_device *dev)
4616 {
4617 	return dev->priv_flags & IFF_BRIDGE_PORT;
4618 }
4619 
4620 static inline bool netif_is_ovs_master(const struct net_device *dev)
4621 {
4622 	return dev->priv_flags & IFF_OPENVSWITCH;
4623 }
4624 
4625 static inline bool netif_is_ovs_port(const struct net_device *dev)
4626 {
4627 	return dev->priv_flags & IFF_OVS_DATAPATH;
4628 }
4629 
4630 static inline bool netif_is_team_master(const struct net_device *dev)
4631 {
4632 	return dev->priv_flags & IFF_TEAM;
4633 }
4634 
4635 static inline bool netif_is_team_port(const struct net_device *dev)
4636 {
4637 	return dev->priv_flags & IFF_TEAM_PORT;
4638 }
4639 
4640 static inline bool netif_is_lag_master(const struct net_device *dev)
4641 {
4642 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4643 }
4644 
4645 static inline bool netif_is_lag_port(const struct net_device *dev)
4646 {
4647 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4648 }
4649 
4650 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4651 {
4652 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4653 }
4654 
4655 static inline bool netif_is_failover(const struct net_device *dev)
4656 {
4657 	return dev->priv_flags & IFF_FAILOVER;
4658 }
4659 
4660 static inline bool netif_is_failover_slave(const struct net_device *dev)
4661 {
4662 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4663 }
4664 
4665 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4666 static inline void netif_keep_dst(struct net_device *dev)
4667 {
4668 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4669 }
4670 
4671 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4672 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4673 {
4674 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4675 	return dev->priv_flags & IFF_MACSEC;
4676 }
4677 
4678 extern struct pernet_operations __net_initdata loopback_net_ops;
4679 
4680 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4681 
4682 /* netdev_printk helpers, similar to dev_printk */
4683 
4684 static inline const char *netdev_name(const struct net_device *dev)
4685 {
4686 	if (!dev->name[0] || strchr(dev->name, '%'))
4687 		return "(unnamed net_device)";
4688 	return dev->name;
4689 }
4690 
4691 static inline bool netdev_unregistering(const struct net_device *dev)
4692 {
4693 	return dev->reg_state == NETREG_UNREGISTERING;
4694 }
4695 
4696 static inline const char *netdev_reg_state(const struct net_device *dev)
4697 {
4698 	switch (dev->reg_state) {
4699 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4700 	case NETREG_REGISTERED: return "";
4701 	case NETREG_UNREGISTERING: return " (unregistering)";
4702 	case NETREG_UNREGISTERED: return " (unregistered)";
4703 	case NETREG_RELEASED: return " (released)";
4704 	case NETREG_DUMMY: return " (dummy)";
4705 	}
4706 
4707 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4708 	return " (unknown)";
4709 }
4710 
4711 __printf(3, 4) __cold
4712 void netdev_printk(const char *level, const struct net_device *dev,
4713 		   const char *format, ...);
4714 __printf(2, 3) __cold
4715 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4716 __printf(2, 3) __cold
4717 void netdev_alert(const struct net_device *dev, const char *format, ...);
4718 __printf(2, 3) __cold
4719 void netdev_crit(const struct net_device *dev, const char *format, ...);
4720 __printf(2, 3) __cold
4721 void netdev_err(const struct net_device *dev, const char *format, ...);
4722 __printf(2, 3) __cold
4723 void netdev_warn(const struct net_device *dev, const char *format, ...);
4724 __printf(2, 3) __cold
4725 void netdev_notice(const struct net_device *dev, const char *format, ...);
4726 __printf(2, 3) __cold
4727 void netdev_info(const struct net_device *dev, const char *format, ...);
4728 
4729 #define netdev_level_once(level, dev, fmt, ...)			\
4730 do {								\
4731 	static bool __print_once __read_mostly;			\
4732 								\
4733 	if (!__print_once) {					\
4734 		__print_once = true;				\
4735 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4736 	}							\
4737 } while (0)
4738 
4739 #define netdev_emerg_once(dev, fmt, ...) \
4740 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4741 #define netdev_alert_once(dev, fmt, ...) \
4742 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4743 #define netdev_crit_once(dev, fmt, ...) \
4744 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4745 #define netdev_err_once(dev, fmt, ...) \
4746 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4747 #define netdev_warn_once(dev, fmt, ...) \
4748 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4749 #define netdev_notice_once(dev, fmt, ...) \
4750 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4751 #define netdev_info_once(dev, fmt, ...) \
4752 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4753 
4754 #define MODULE_ALIAS_NETDEV(device) \
4755 	MODULE_ALIAS("netdev-" device)
4756 
4757 #if defined(CONFIG_DYNAMIC_DEBUG)
4758 #define netdev_dbg(__dev, format, args...)			\
4759 do {								\
4760 	dynamic_netdev_dbg(__dev, format, ##args);		\
4761 } while (0)
4762 #elif defined(DEBUG)
4763 #define netdev_dbg(__dev, format, args...)			\
4764 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4765 #else
4766 #define netdev_dbg(__dev, format, args...)			\
4767 ({								\
4768 	if (0)							\
4769 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4770 })
4771 #endif
4772 
4773 #if defined(VERBOSE_DEBUG)
4774 #define netdev_vdbg	netdev_dbg
4775 #else
4776 
4777 #define netdev_vdbg(dev, format, args...)			\
4778 ({								\
4779 	if (0)							\
4780 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4781 	0;							\
4782 })
4783 #endif
4784 
4785 /*
4786  * netdev_WARN() acts like dev_printk(), but with the key difference
4787  * of using a WARN/WARN_ON to get the message out, including the
4788  * file/line information and a backtrace.
4789  */
4790 #define netdev_WARN(dev, format, args...)			\
4791 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4792 	     netdev_reg_state(dev), ##args)
4793 
4794 #define netdev_WARN_ONCE(dev, format, args...)				\
4795 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4796 		  netdev_reg_state(dev), ##args)
4797 
4798 /* netif printk helpers, similar to netdev_printk */
4799 
4800 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4801 do {					  			\
4802 	if (netif_msg_##type(priv))				\
4803 		netdev_printk(level, (dev), fmt, ##args);	\
4804 } while (0)
4805 
4806 #define netif_level(level, priv, type, dev, fmt, args...)	\
4807 do {								\
4808 	if (netif_msg_##type(priv))				\
4809 		netdev_##level(dev, fmt, ##args);		\
4810 } while (0)
4811 
4812 #define netif_emerg(priv, type, dev, fmt, args...)		\
4813 	netif_level(emerg, priv, type, dev, fmt, ##args)
4814 #define netif_alert(priv, type, dev, fmt, args...)		\
4815 	netif_level(alert, priv, type, dev, fmt, ##args)
4816 #define netif_crit(priv, type, dev, fmt, args...)		\
4817 	netif_level(crit, priv, type, dev, fmt, ##args)
4818 #define netif_err(priv, type, dev, fmt, args...)		\
4819 	netif_level(err, priv, type, dev, fmt, ##args)
4820 #define netif_warn(priv, type, dev, fmt, args...)		\
4821 	netif_level(warn, priv, type, dev, fmt, ##args)
4822 #define netif_notice(priv, type, dev, fmt, args...)		\
4823 	netif_level(notice, priv, type, dev, fmt, ##args)
4824 #define netif_info(priv, type, dev, fmt, args...)		\
4825 	netif_level(info, priv, type, dev, fmt, ##args)
4826 
4827 #if defined(CONFIG_DYNAMIC_DEBUG)
4828 #define netif_dbg(priv, type, netdev, format, args...)		\
4829 do {								\
4830 	if (netif_msg_##type(priv))				\
4831 		dynamic_netdev_dbg(netdev, format, ##args);	\
4832 } while (0)
4833 #elif defined(DEBUG)
4834 #define netif_dbg(priv, type, dev, format, args...)		\
4835 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4836 #else
4837 #define netif_dbg(priv, type, dev, format, args...)			\
4838 ({									\
4839 	if (0)								\
4840 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4841 	0;								\
4842 })
4843 #endif
4844 
4845 /* if @cond then downgrade to debug, else print at @level */
4846 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4847 	do {                                                              \
4848 		if (cond)                                                 \
4849 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4850 		else                                                      \
4851 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4852 	} while (0)
4853 
4854 #if defined(VERBOSE_DEBUG)
4855 #define netif_vdbg	netif_dbg
4856 #else
4857 #define netif_vdbg(priv, type, dev, format, args...)		\
4858 ({								\
4859 	if (0)							\
4860 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4861 	0;							\
4862 })
4863 #endif
4864 
4865 /*
4866  *	The list of packet types we will receive (as opposed to discard)
4867  *	and the routines to invoke.
4868  *
4869  *	Why 16. Because with 16 the only overlap we get on a hash of the
4870  *	low nibble of the protocol value is RARP/SNAP/X.25.
4871  *
4872  *		0800	IP
4873  *		0001	802.3
4874  *		0002	AX.25
4875  *		0004	802.2
4876  *		8035	RARP
4877  *		0005	SNAP
4878  *		0805	X.25
4879  *		0806	ARP
4880  *		8137	IPX
4881  *		0009	Localtalk
4882  *		86DD	IPv6
4883  */
4884 #define PTYPE_HASH_SIZE	(16)
4885 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4886 
4887 extern struct net_device *blackhole_netdev;
4888 
4889 #endif	/* _LINUX_NETDEVICE_H */
4890