1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25 #ifndef _LINUX_NETDEVICE_H 26 #define _LINUX_NETDEVICE_H 27 28 #include <linux/timer.h> 29 #include <linux/bug.h> 30 #include <linux/delay.h> 31 #include <linux/atomic.h> 32 #include <linux/prefetch.h> 33 #include <asm/cache.h> 34 #include <asm/byteorder.h> 35 36 #include <linux/percpu.h> 37 #include <linux/rculist.h> 38 #include <linux/workqueue.h> 39 #include <linux/dynamic_queue_limits.h> 40 41 #include <linux/ethtool.h> 42 #include <net/net_namespace.h> 43 #ifdef CONFIG_DCB 44 #include <net/dcbnl.h> 45 #endif 46 #include <net/netprio_cgroup.h> 47 #include <net/xdp.h> 48 49 #include <linux/netdev_features.h> 50 #include <linux/neighbour.h> 51 #include <uapi/linux/netdevice.h> 52 #include <uapi/linux/if_bonding.h> 53 #include <uapi/linux/pkt_cls.h> 54 #include <linux/hashtable.h> 55 56 struct netpoll_info; 57 struct device; 58 struct phy_device; 59 struct dsa_port; 60 61 struct sfp_bus; 62 /* 802.11 specific */ 63 struct wireless_dev; 64 /* 802.15.4 specific */ 65 struct wpan_dev; 66 struct mpls_dev; 67 /* UDP Tunnel offloads */ 68 struct udp_tunnel_info; 69 struct bpf_prog; 70 struct xdp_buff; 71 72 void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75 /* Backlog congestion levels */ 76 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77 #define NET_RX_DROP 1 /* packet dropped */ 78 79 /* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96 /* qdisc ->enqueue() return codes. */ 97 #define NET_XMIT_SUCCESS 0x00 98 #define NET_XMIT_DROP 0x01 /* skb dropped */ 99 #define NET_XMIT_CN 0x02 /* congestion notification */ 100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108 /* Driver transmit return codes */ 109 #define NETDEV_TX_MASK 0xf0 110 111 enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 }; 116 typedef enum netdev_tx netdev_tx_t; 117 118 /* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122 static inline bool dev_xmit_complete(int rc) 123 { 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141 #if defined(CONFIG_HYPERV_NET) 142 # define LL_MAX_HEADER 128 143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144 # if defined(CONFIG_MAC80211_MESH) 145 # define LL_MAX_HEADER 128 146 # else 147 # define LL_MAX_HEADER 96 148 # endif 149 #else 150 # define LL_MAX_HEADER 32 151 #endif 152 153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155 #define MAX_HEADER LL_MAX_HEADER 156 #else 157 #define MAX_HEADER (LL_MAX_HEADER + 48) 158 #endif 159 160 /* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165 struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189 }; 190 191 192 #include <linux/cache.h> 193 #include <linux/skbuff.h> 194 195 #ifdef CONFIG_RPS 196 #include <linux/static_key.h> 197 extern struct static_key rps_needed; 198 extern struct static_key rfs_needed; 199 #endif 200 201 struct neighbour; 202 struct neigh_parms; 203 struct sk_buff; 204 205 struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209 #define NETDEV_HW_ADDR_T_LAN 1 210 #define NETDEV_HW_ADDR_T_SAN 2 211 #define NETDEV_HW_ADDR_T_SLAVE 3 212 #define NETDEV_HW_ADDR_T_UNICAST 4 213 #define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219 }; 220 221 struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224 }; 225 226 #define netdev_hw_addr_list_count(l) ((l)->count) 227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228 #define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233 #define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238 #define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241 struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246 #define HH_DATA_MOD 16 247 #define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249 #define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252 }; 253 254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262 #define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267 struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277 __be16 (*parse_protocol)(const struct sk_buff *skb); 278 }; 279 280 /* These flag bits are private to the generic network queueing 281 * layer; they may not be explicitly referenced by any other 282 * code. 283 */ 284 285 enum netdev_state_t { 286 __LINK_STATE_START, 287 __LINK_STATE_PRESENT, 288 __LINK_STATE_NOCARRIER, 289 __LINK_STATE_LINKWATCH_PENDING, 290 __LINK_STATE_DORMANT, 291 }; 292 293 294 /* 295 * This structure holds boot-time configured netdevice settings. They 296 * are then used in the device probing. 297 */ 298 struct netdev_boot_setup { 299 char name[IFNAMSIZ]; 300 struct ifmap map; 301 }; 302 #define NETDEV_BOOT_SETUP_MAX 8 303 304 int __init netdev_boot_setup(char *str); 305 306 struct gro_list { 307 struct list_head list; 308 int count; 309 }; 310 311 /* 312 * size of gro hash buckets, must less than bit number of 313 * napi_struct::gro_bitmask 314 */ 315 #define GRO_HASH_BUCKETS 8 316 317 /* 318 * Structure for NAPI scheduling similar to tasklet but with weighting 319 */ 320 struct napi_struct { 321 /* The poll_list must only be managed by the entity which 322 * changes the state of the NAPI_STATE_SCHED bit. This means 323 * whoever atomically sets that bit can add this napi_struct 324 * to the per-CPU poll_list, and whoever clears that bit 325 * can remove from the list right before clearing the bit. 326 */ 327 struct list_head poll_list; 328 329 unsigned long state; 330 int weight; 331 unsigned long gro_bitmask; 332 int (*poll)(struct napi_struct *, int); 333 #ifdef CONFIG_NETPOLL 334 int poll_owner; 335 #endif 336 struct net_device *dev; 337 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 338 struct sk_buff *skb; 339 struct hrtimer timer; 340 struct list_head dev_list; 341 struct hlist_node napi_hash_node; 342 unsigned int napi_id; 343 }; 344 345 enum { 346 NAPI_STATE_SCHED, /* Poll is scheduled */ 347 NAPI_STATE_MISSED, /* reschedule a napi */ 348 NAPI_STATE_DISABLE, /* Disable pending */ 349 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 350 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 351 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 352 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 353 }; 354 355 enum { 356 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 357 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 358 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 359 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 360 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 361 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 362 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 363 }; 364 365 enum gro_result { 366 GRO_MERGED, 367 GRO_MERGED_FREE, 368 GRO_HELD, 369 GRO_NORMAL, 370 GRO_DROP, 371 GRO_CONSUMED, 372 }; 373 typedef enum gro_result gro_result_t; 374 375 /* 376 * enum rx_handler_result - Possible return values for rx_handlers. 377 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 378 * further. 379 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 380 * case skb->dev was changed by rx_handler. 381 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 382 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 383 * 384 * rx_handlers are functions called from inside __netif_receive_skb(), to do 385 * special processing of the skb, prior to delivery to protocol handlers. 386 * 387 * Currently, a net_device can only have a single rx_handler registered. Trying 388 * to register a second rx_handler will return -EBUSY. 389 * 390 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 391 * To unregister a rx_handler on a net_device, use 392 * netdev_rx_handler_unregister(). 393 * 394 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 395 * do with the skb. 396 * 397 * If the rx_handler consumed the skb in some way, it should return 398 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 399 * the skb to be delivered in some other way. 400 * 401 * If the rx_handler changed skb->dev, to divert the skb to another 402 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 403 * new device will be called if it exists. 404 * 405 * If the rx_handler decides the skb should be ignored, it should return 406 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 407 * are registered on exact device (ptype->dev == skb->dev). 408 * 409 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 410 * delivered, it should return RX_HANDLER_PASS. 411 * 412 * A device without a registered rx_handler will behave as if rx_handler 413 * returned RX_HANDLER_PASS. 414 */ 415 416 enum rx_handler_result { 417 RX_HANDLER_CONSUMED, 418 RX_HANDLER_ANOTHER, 419 RX_HANDLER_EXACT, 420 RX_HANDLER_PASS, 421 }; 422 typedef enum rx_handler_result rx_handler_result_t; 423 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 424 425 void __napi_schedule(struct napi_struct *n); 426 void __napi_schedule_irqoff(struct napi_struct *n); 427 428 static inline bool napi_disable_pending(struct napi_struct *n) 429 { 430 return test_bit(NAPI_STATE_DISABLE, &n->state); 431 } 432 433 bool napi_schedule_prep(struct napi_struct *n); 434 435 /** 436 * napi_schedule - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Schedule NAPI poll routine to be called if it is not already 440 * running. 441 */ 442 static inline void napi_schedule(struct napi_struct *n) 443 { 444 if (napi_schedule_prep(n)) 445 __napi_schedule(n); 446 } 447 448 /** 449 * napi_schedule_irqoff - schedule NAPI poll 450 * @n: NAPI context 451 * 452 * Variant of napi_schedule(), assuming hard irqs are masked. 453 */ 454 static inline void napi_schedule_irqoff(struct napi_struct *n) 455 { 456 if (napi_schedule_prep(n)) 457 __napi_schedule_irqoff(n); 458 } 459 460 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 461 static inline bool napi_reschedule(struct napi_struct *napi) 462 { 463 if (napi_schedule_prep(napi)) { 464 __napi_schedule(napi); 465 return true; 466 } 467 return false; 468 } 469 470 bool napi_complete_done(struct napi_struct *n, int work_done); 471 /** 472 * napi_complete - NAPI processing complete 473 * @n: NAPI context 474 * 475 * Mark NAPI processing as complete. 476 * Consider using napi_complete_done() instead. 477 * Return false if device should avoid rearming interrupts. 478 */ 479 static inline bool napi_complete(struct napi_struct *n) 480 { 481 return napi_complete_done(n, 0); 482 } 483 484 /** 485 * napi_hash_del - remove a NAPI from global table 486 * @napi: NAPI context 487 * 488 * Warning: caller must observe RCU grace period 489 * before freeing memory containing @napi, if 490 * this function returns true. 491 * Note: core networking stack automatically calls it 492 * from netif_napi_del(). 493 * Drivers might want to call this helper to combine all 494 * the needed RCU grace periods into a single one. 495 */ 496 bool napi_hash_del(struct napi_struct *napi); 497 498 /** 499 * napi_disable - prevent NAPI from scheduling 500 * @n: NAPI context 501 * 502 * Stop NAPI from being scheduled on this context. 503 * Waits till any outstanding processing completes. 504 */ 505 void napi_disable(struct napi_struct *n); 506 507 /** 508 * napi_enable - enable NAPI scheduling 509 * @n: NAPI context 510 * 511 * Resume NAPI from being scheduled on this context. 512 * Must be paired with napi_disable. 513 */ 514 static inline void napi_enable(struct napi_struct *n) 515 { 516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 517 smp_mb__before_atomic(); 518 clear_bit(NAPI_STATE_SCHED, &n->state); 519 clear_bit(NAPI_STATE_NPSVC, &n->state); 520 } 521 522 /** 523 * napi_synchronize - wait until NAPI is not running 524 * @n: NAPI context 525 * 526 * Wait until NAPI is done being scheduled on this context. 527 * Waits till any outstanding processing completes but 528 * does not disable future activations. 529 */ 530 static inline void napi_synchronize(const struct napi_struct *n) 531 { 532 if (IS_ENABLED(CONFIG_SMP)) 533 while (test_bit(NAPI_STATE_SCHED, &n->state)) 534 msleep(1); 535 else 536 barrier(); 537 } 538 539 /** 540 * napi_if_scheduled_mark_missed - if napi is running, set the 541 * NAPIF_STATE_MISSED 542 * @n: NAPI context 543 * 544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 545 * NAPI is scheduled. 546 **/ 547 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 548 { 549 unsigned long val, new; 550 551 do { 552 val = READ_ONCE(n->state); 553 if (val & NAPIF_STATE_DISABLE) 554 return true; 555 556 if (!(val & NAPIF_STATE_SCHED)) 557 return false; 558 559 new = val | NAPIF_STATE_MISSED; 560 } while (cmpxchg(&n->state, val, new) != val); 561 562 return true; 563 } 564 565 enum netdev_queue_state_t { 566 __QUEUE_STATE_DRV_XOFF, 567 __QUEUE_STATE_STACK_XOFF, 568 __QUEUE_STATE_FROZEN, 569 }; 570 571 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 572 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 573 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 574 575 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 576 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 579 QUEUE_STATE_FROZEN) 580 581 /* 582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 583 * netif_tx_* functions below are used to manipulate this flag. The 584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 585 * queue independently. The netif_xmit_*stopped functions below are called 586 * to check if the queue has been stopped by the driver or stack (either 587 * of the XOFF bits are set in the state). Drivers should not need to call 588 * netif_xmit*stopped functions, they should only be using netif_tx_*. 589 */ 590 591 struct netdev_queue { 592 /* 593 * read-mostly part 594 */ 595 struct net_device *dev; 596 struct Qdisc __rcu *qdisc; 597 struct Qdisc *qdisc_sleeping; 598 #ifdef CONFIG_SYSFS 599 struct kobject kobj; 600 #endif 601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 602 int numa_node; 603 #endif 604 unsigned long tx_maxrate; 605 /* 606 * Number of TX timeouts for this queue 607 * (/sys/class/net/DEV/Q/trans_timeout) 608 */ 609 unsigned long trans_timeout; 610 611 /* Subordinate device that the queue has been assigned to */ 612 struct net_device *sb_dev; 613 #ifdef CONFIG_XDP_SOCKETS 614 struct xdp_umem *umem; 615 #endif 616 /* 617 * write-mostly part 618 */ 619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 620 int xmit_lock_owner; 621 /* 622 * Time (in jiffies) of last Tx 623 */ 624 unsigned long trans_start; 625 626 unsigned long state; 627 628 #ifdef CONFIG_BQL 629 struct dql dql; 630 #endif 631 } ____cacheline_aligned_in_smp; 632 633 extern int sysctl_fb_tunnels_only_for_init_net; 634 extern int sysctl_devconf_inherit_init_net; 635 636 static inline bool net_has_fallback_tunnels(const struct net *net) 637 { 638 return net == &init_net || 639 !IS_ENABLED(CONFIG_SYSCTL) || 640 !sysctl_fb_tunnels_only_for_init_net; 641 } 642 643 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 644 { 645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 646 return q->numa_node; 647 #else 648 return NUMA_NO_NODE; 649 #endif 650 } 651 652 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 653 { 654 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 655 q->numa_node = node; 656 #endif 657 } 658 659 #ifdef CONFIG_RPS 660 /* 661 * This structure holds an RPS map which can be of variable length. The 662 * map is an array of CPUs. 663 */ 664 struct rps_map { 665 unsigned int len; 666 struct rcu_head rcu; 667 u16 cpus[0]; 668 }; 669 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 670 671 /* 672 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 673 * tail pointer for that CPU's input queue at the time of last enqueue, and 674 * a hardware filter index. 675 */ 676 struct rps_dev_flow { 677 u16 cpu; 678 u16 filter; 679 unsigned int last_qtail; 680 }; 681 #define RPS_NO_FILTER 0xffff 682 683 /* 684 * The rps_dev_flow_table structure contains a table of flow mappings. 685 */ 686 struct rps_dev_flow_table { 687 unsigned int mask; 688 struct rcu_head rcu; 689 struct rps_dev_flow flows[0]; 690 }; 691 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 692 ((_num) * sizeof(struct rps_dev_flow))) 693 694 /* 695 * The rps_sock_flow_table contains mappings of flows to the last CPU 696 * on which they were processed by the application (set in recvmsg). 697 * Each entry is a 32bit value. Upper part is the high-order bits 698 * of flow hash, lower part is CPU number. 699 * rps_cpu_mask is used to partition the space, depending on number of 700 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 701 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 702 * meaning we use 32-6=26 bits for the hash. 703 */ 704 struct rps_sock_flow_table { 705 u32 mask; 706 707 u32 ents[0] ____cacheline_aligned_in_smp; 708 }; 709 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 710 711 #define RPS_NO_CPU 0xffff 712 713 extern u32 rps_cpu_mask; 714 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 715 716 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 717 u32 hash) 718 { 719 if (table && hash) { 720 unsigned int index = hash & table->mask; 721 u32 val = hash & ~rps_cpu_mask; 722 723 /* We only give a hint, preemption can change CPU under us */ 724 val |= raw_smp_processor_id(); 725 726 if (table->ents[index] != val) 727 table->ents[index] = val; 728 } 729 } 730 731 #ifdef CONFIG_RFS_ACCEL 732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 733 u16 filter_id); 734 #endif 735 #endif /* CONFIG_RPS */ 736 737 /* This structure contains an instance of an RX queue. */ 738 struct netdev_rx_queue { 739 #ifdef CONFIG_RPS 740 struct rps_map __rcu *rps_map; 741 struct rps_dev_flow_table __rcu *rps_flow_table; 742 #endif 743 struct kobject kobj; 744 struct net_device *dev; 745 struct xdp_rxq_info xdp_rxq; 746 #ifdef CONFIG_XDP_SOCKETS 747 struct xdp_umem *umem; 748 #endif 749 } ____cacheline_aligned_in_smp; 750 751 /* 752 * RX queue sysfs structures and functions. 753 */ 754 struct rx_queue_attribute { 755 struct attribute attr; 756 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 757 ssize_t (*store)(struct netdev_rx_queue *queue, 758 const char *buf, size_t len); 759 }; 760 761 #ifdef CONFIG_XPS 762 /* 763 * This structure holds an XPS map which can be of variable length. The 764 * map is an array of queues. 765 */ 766 struct xps_map { 767 unsigned int len; 768 unsigned int alloc_len; 769 struct rcu_head rcu; 770 u16 queues[0]; 771 }; 772 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 773 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 774 - sizeof(struct xps_map)) / sizeof(u16)) 775 776 /* 777 * This structure holds all XPS maps for device. Maps are indexed by CPU. 778 */ 779 struct xps_dev_maps { 780 struct rcu_head rcu; 781 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 782 }; 783 784 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 785 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 786 787 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 788 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 789 790 #endif /* CONFIG_XPS */ 791 792 #define TC_MAX_QUEUE 16 793 #define TC_BITMASK 15 794 /* HW offloaded queuing disciplines txq count and offset maps */ 795 struct netdev_tc_txq { 796 u16 count; 797 u16 offset; 798 }; 799 800 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 801 /* 802 * This structure is to hold information about the device 803 * configured to run FCoE protocol stack. 804 */ 805 struct netdev_fcoe_hbainfo { 806 char manufacturer[64]; 807 char serial_number[64]; 808 char hardware_version[64]; 809 char driver_version[64]; 810 char optionrom_version[64]; 811 char firmware_version[64]; 812 char model[256]; 813 char model_description[256]; 814 }; 815 #endif 816 817 #define MAX_PHYS_ITEM_ID_LEN 32 818 819 /* This structure holds a unique identifier to identify some 820 * physical item (port for example) used by a netdevice. 821 */ 822 struct netdev_phys_item_id { 823 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 824 unsigned char id_len; 825 }; 826 827 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 828 struct netdev_phys_item_id *b) 829 { 830 return a->id_len == b->id_len && 831 memcmp(a->id, b->id, a->id_len) == 0; 832 } 833 834 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 835 struct sk_buff *skb, 836 struct net_device *sb_dev); 837 838 enum tc_setup_type { 839 TC_SETUP_QDISC_MQPRIO, 840 TC_SETUP_CLSU32, 841 TC_SETUP_CLSFLOWER, 842 TC_SETUP_CLSMATCHALL, 843 TC_SETUP_CLSBPF, 844 TC_SETUP_BLOCK, 845 TC_SETUP_QDISC_CBS, 846 TC_SETUP_QDISC_RED, 847 TC_SETUP_QDISC_PRIO, 848 TC_SETUP_QDISC_MQ, 849 TC_SETUP_QDISC_ETF, 850 TC_SETUP_ROOT_QDISC, 851 TC_SETUP_QDISC_GRED, 852 }; 853 854 /* These structures hold the attributes of bpf state that are being passed 855 * to the netdevice through the bpf op. 856 */ 857 enum bpf_netdev_command { 858 /* Set or clear a bpf program used in the earliest stages of packet 859 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 860 * is responsible for calling bpf_prog_put on any old progs that are 861 * stored. In case of error, the callee need not release the new prog 862 * reference, but on success it takes ownership and must bpf_prog_put 863 * when it is no longer used. 864 */ 865 XDP_SETUP_PROG, 866 XDP_SETUP_PROG_HW, 867 XDP_QUERY_PROG, 868 XDP_QUERY_PROG_HW, 869 /* BPF program for offload callbacks, invoked at program load time. */ 870 BPF_OFFLOAD_MAP_ALLOC, 871 BPF_OFFLOAD_MAP_FREE, 872 XDP_SETUP_XSK_UMEM, 873 }; 874 875 struct bpf_prog_offload_ops; 876 struct netlink_ext_ack; 877 struct xdp_umem; 878 879 struct netdev_bpf { 880 enum bpf_netdev_command command; 881 union { 882 /* XDP_SETUP_PROG */ 883 struct { 884 u32 flags; 885 struct bpf_prog *prog; 886 struct netlink_ext_ack *extack; 887 }; 888 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 889 struct { 890 u32 prog_id; 891 /* flags with which program was installed */ 892 u32 prog_flags; 893 }; 894 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 895 struct { 896 struct bpf_offloaded_map *offmap; 897 }; 898 /* XDP_SETUP_XSK_UMEM */ 899 struct { 900 struct xdp_umem *umem; 901 u16 queue_id; 902 } xsk; 903 }; 904 }; 905 906 #ifdef CONFIG_XFRM_OFFLOAD 907 struct xfrmdev_ops { 908 int (*xdo_dev_state_add) (struct xfrm_state *x); 909 void (*xdo_dev_state_delete) (struct xfrm_state *x); 910 void (*xdo_dev_state_free) (struct xfrm_state *x); 911 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 912 struct xfrm_state *x); 913 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 914 }; 915 #endif 916 917 #if IS_ENABLED(CONFIG_TLS_DEVICE) 918 enum tls_offload_ctx_dir { 919 TLS_OFFLOAD_CTX_DIR_RX, 920 TLS_OFFLOAD_CTX_DIR_TX, 921 }; 922 923 struct tls_crypto_info; 924 struct tls_context; 925 926 struct tlsdev_ops { 927 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 928 enum tls_offload_ctx_dir direction, 929 struct tls_crypto_info *crypto_info, 930 u32 start_offload_tcp_sn); 931 void (*tls_dev_del)(struct net_device *netdev, 932 struct tls_context *ctx, 933 enum tls_offload_ctx_dir direction); 934 void (*tls_dev_resync_rx)(struct net_device *netdev, 935 struct sock *sk, u32 seq, u64 rcd_sn); 936 }; 937 #endif 938 939 struct dev_ifalias { 940 struct rcu_head rcuhead; 941 char ifalias[]; 942 }; 943 944 struct devlink; 945 946 /* 947 * This structure defines the management hooks for network devices. 948 * The following hooks can be defined; unless noted otherwise, they are 949 * optional and can be filled with a null pointer. 950 * 951 * int (*ndo_init)(struct net_device *dev); 952 * This function is called once when a network device is registered. 953 * The network device can use this for any late stage initialization 954 * or semantic validation. It can fail with an error code which will 955 * be propagated back to register_netdev. 956 * 957 * void (*ndo_uninit)(struct net_device *dev); 958 * This function is called when device is unregistered or when registration 959 * fails. It is not called if init fails. 960 * 961 * int (*ndo_open)(struct net_device *dev); 962 * This function is called when a network device transitions to the up 963 * state. 964 * 965 * int (*ndo_stop)(struct net_device *dev); 966 * This function is called when a network device transitions to the down 967 * state. 968 * 969 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 970 * struct net_device *dev); 971 * Called when a packet needs to be transmitted. 972 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 973 * the queue before that can happen; it's for obsolete devices and weird 974 * corner cases, but the stack really does a non-trivial amount 975 * of useless work if you return NETDEV_TX_BUSY. 976 * Required; cannot be NULL. 977 * 978 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 979 * struct net_device *dev 980 * netdev_features_t features); 981 * Called by core transmit path to determine if device is capable of 982 * performing offload operations on a given packet. This is to give 983 * the device an opportunity to implement any restrictions that cannot 984 * be otherwise expressed by feature flags. The check is called with 985 * the set of features that the stack has calculated and it returns 986 * those the driver believes to be appropriate. 987 * 988 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 989 * struct net_device *sb_dev, 990 * select_queue_fallback_t fallback); 991 * Called to decide which queue to use when device supports multiple 992 * transmit queues. 993 * 994 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 995 * This function is called to allow device receiver to make 996 * changes to configuration when multicast or promiscuous is enabled. 997 * 998 * void (*ndo_set_rx_mode)(struct net_device *dev); 999 * This function is called device changes address list filtering. 1000 * If driver handles unicast address filtering, it should set 1001 * IFF_UNICAST_FLT in its priv_flags. 1002 * 1003 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1004 * This function is called when the Media Access Control address 1005 * needs to be changed. If this interface is not defined, the 1006 * MAC address can not be changed. 1007 * 1008 * int (*ndo_validate_addr)(struct net_device *dev); 1009 * Test if Media Access Control address is valid for the device. 1010 * 1011 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1012 * Called when a user requests an ioctl which can't be handled by 1013 * the generic interface code. If not defined ioctls return 1014 * not supported error code. 1015 * 1016 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1017 * Used to set network devices bus interface parameters. This interface 1018 * is retained for legacy reasons; new devices should use the bus 1019 * interface (PCI) for low level management. 1020 * 1021 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1022 * Called when a user wants to change the Maximum Transfer Unit 1023 * of a device. 1024 * 1025 * void (*ndo_tx_timeout)(struct net_device *dev); 1026 * Callback used when the transmitter has not made any progress 1027 * for dev->watchdog ticks. 1028 * 1029 * void (*ndo_get_stats64)(struct net_device *dev, 1030 * struct rtnl_link_stats64 *storage); 1031 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1032 * Called when a user wants to get the network device usage 1033 * statistics. Drivers must do one of the following: 1034 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1035 * rtnl_link_stats64 structure passed by the caller. 1036 * 2. Define @ndo_get_stats to update a net_device_stats structure 1037 * (which should normally be dev->stats) and return a pointer to 1038 * it. The structure may be changed asynchronously only if each 1039 * field is written atomically. 1040 * 3. Update dev->stats asynchronously and atomically, and define 1041 * neither operation. 1042 * 1043 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1044 * Return true if this device supports offload stats of this attr_id. 1045 * 1046 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1047 * void *attr_data) 1048 * Get statistics for offload operations by attr_id. Write it into the 1049 * attr_data pointer. 1050 * 1051 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1052 * If device supports VLAN filtering this function is called when a 1053 * VLAN id is registered. 1054 * 1055 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1056 * If device supports VLAN filtering this function is called when a 1057 * VLAN id is unregistered. 1058 * 1059 * void (*ndo_poll_controller)(struct net_device *dev); 1060 * 1061 * SR-IOV management functions. 1062 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1063 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1064 * u8 qos, __be16 proto); 1065 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1066 * int max_tx_rate); 1067 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1068 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1069 * int (*ndo_get_vf_config)(struct net_device *dev, 1070 * int vf, struct ifla_vf_info *ivf); 1071 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1072 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1073 * struct nlattr *port[]); 1074 * 1075 * Enable or disable the VF ability to query its RSS Redirection Table and 1076 * Hash Key. This is needed since on some devices VF share this information 1077 * with PF and querying it may introduce a theoretical security risk. 1078 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1079 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1080 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1081 * void *type_data); 1082 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1083 * This is always called from the stack with the rtnl lock held and netif 1084 * tx queues stopped. This allows the netdevice to perform queue 1085 * management safely. 1086 * 1087 * Fiber Channel over Ethernet (FCoE) offload functions. 1088 * int (*ndo_fcoe_enable)(struct net_device *dev); 1089 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1090 * so the underlying device can perform whatever needed configuration or 1091 * initialization to support acceleration of FCoE traffic. 1092 * 1093 * int (*ndo_fcoe_disable)(struct net_device *dev); 1094 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1095 * so the underlying device can perform whatever needed clean-ups to 1096 * stop supporting acceleration of FCoE traffic. 1097 * 1098 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1099 * struct scatterlist *sgl, unsigned int sgc); 1100 * Called when the FCoE Initiator wants to initialize an I/O that 1101 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1102 * perform necessary setup and returns 1 to indicate the device is set up 1103 * successfully to perform DDP on this I/O, otherwise this returns 0. 1104 * 1105 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1106 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1107 * indicated by the FC exchange id 'xid', so the underlying device can 1108 * clean up and reuse resources for later DDP requests. 1109 * 1110 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1111 * struct scatterlist *sgl, unsigned int sgc); 1112 * Called when the FCoE Target wants to initialize an I/O that 1113 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1114 * perform necessary setup and returns 1 to indicate the device is set up 1115 * successfully to perform DDP on this I/O, otherwise this returns 0. 1116 * 1117 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1118 * struct netdev_fcoe_hbainfo *hbainfo); 1119 * Called when the FCoE Protocol stack wants information on the underlying 1120 * device. This information is utilized by the FCoE protocol stack to 1121 * register attributes with Fiber Channel management service as per the 1122 * FC-GS Fabric Device Management Information(FDMI) specification. 1123 * 1124 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1125 * Called when the underlying device wants to override default World Wide 1126 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1127 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1128 * protocol stack to use. 1129 * 1130 * RFS acceleration. 1131 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1132 * u16 rxq_index, u32 flow_id); 1133 * Set hardware filter for RFS. rxq_index is the target queue index; 1134 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1135 * Return the filter ID on success, or a negative error code. 1136 * 1137 * Slave management functions (for bridge, bonding, etc). 1138 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1139 * Called to make another netdev an underling. 1140 * 1141 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1142 * Called to release previously enslaved netdev. 1143 * 1144 * Feature/offload setting functions. 1145 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1146 * netdev_features_t features); 1147 * Adjusts the requested feature flags according to device-specific 1148 * constraints, and returns the resulting flags. Must not modify 1149 * the device state. 1150 * 1151 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1152 * Called to update device configuration to new features. Passed 1153 * feature set might be less than what was returned by ndo_fix_features()). 1154 * Must return >0 or -errno if it changed dev->features itself. 1155 * 1156 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1157 * struct net_device *dev, 1158 * const unsigned char *addr, u16 vid, u16 flags, 1159 * struct netlink_ext_ack *extack); 1160 * Adds an FDB entry to dev for addr. 1161 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1162 * struct net_device *dev, 1163 * const unsigned char *addr, u16 vid) 1164 * Deletes the FDB entry from dev coresponding to addr. 1165 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1166 * struct net_device *dev, struct net_device *filter_dev, 1167 * int *idx) 1168 * Used to add FDB entries to dump requests. Implementers should add 1169 * entries to skb and update idx with the number of entries. 1170 * 1171 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1172 * u16 flags, struct netlink_ext_ack *extack) 1173 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1174 * struct net_device *dev, u32 filter_mask, 1175 * int nlflags) 1176 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1177 * u16 flags); 1178 * 1179 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1180 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1181 * which do not represent real hardware may define this to allow their 1182 * userspace components to manage their virtual carrier state. Devices 1183 * that determine carrier state from physical hardware properties (eg 1184 * network cables) or protocol-dependent mechanisms (eg 1185 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1186 * 1187 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1188 * struct netdev_phys_item_id *ppid); 1189 * Called to get ID of physical port of this device. If driver does 1190 * not implement this, it is assumed that the hw is not able to have 1191 * multiple net devices on single physical port. 1192 * 1193 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1194 * struct netdev_phys_item_id *ppid) 1195 * Called to get the parent ID of the physical port of this device. 1196 * 1197 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1198 * struct udp_tunnel_info *ti); 1199 * Called by UDP tunnel to notify a driver about the UDP port and socket 1200 * address family that a UDP tunnel is listnening to. It is called only 1201 * when a new port starts listening. The operation is protected by the 1202 * RTNL. 1203 * 1204 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1205 * struct udp_tunnel_info *ti); 1206 * Called by UDP tunnel to notify the driver about a UDP port and socket 1207 * address family that the UDP tunnel is not listening to anymore. The 1208 * operation is protected by the RTNL. 1209 * 1210 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1211 * struct net_device *dev) 1212 * Called by upper layer devices to accelerate switching or other 1213 * station functionality into hardware. 'pdev is the lowerdev 1214 * to use for the offload and 'dev' is the net device that will 1215 * back the offload. Returns a pointer to the private structure 1216 * the upper layer will maintain. 1217 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1218 * Called by upper layer device to delete the station created 1219 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1220 * the station and priv is the structure returned by the add 1221 * operation. 1222 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1223 * int queue_index, u32 maxrate); 1224 * Called when a user wants to set a max-rate limitation of specific 1225 * TX queue. 1226 * int (*ndo_get_iflink)(const struct net_device *dev); 1227 * Called to get the iflink value of this device. 1228 * void (*ndo_change_proto_down)(struct net_device *dev, 1229 * bool proto_down); 1230 * This function is used to pass protocol port error state information 1231 * to the switch driver. The switch driver can react to the proto_down 1232 * by doing a phys down on the associated switch port. 1233 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1234 * This function is used to get egress tunnel information for given skb. 1235 * This is useful for retrieving outer tunnel header parameters while 1236 * sampling packet. 1237 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1238 * This function is used to specify the headroom that the skb must 1239 * consider when allocation skb during packet reception. Setting 1240 * appropriate rx headroom value allows avoiding skb head copy on 1241 * forward. Setting a negative value resets the rx headroom to the 1242 * default value. 1243 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1244 * This function is used to set or query state related to XDP on the 1245 * netdevice and manage BPF offload. See definition of 1246 * enum bpf_netdev_command for details. 1247 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1248 * u32 flags); 1249 * This function is used to submit @n XDP packets for transmit on a 1250 * netdevice. Returns number of frames successfully transmitted, frames 1251 * that got dropped are freed/returned via xdp_return_frame(). 1252 * Returns negative number, means general error invoking ndo, meaning 1253 * no frames were xmit'ed and core-caller will free all frames. 1254 * struct devlink *(*ndo_get_devlink)(struct net_device *dev); 1255 * Get devlink instance associated with a given netdev. 1256 * Called with a reference on the netdevice and devlink locks only, 1257 * rtnl_lock is not held. 1258 */ 1259 struct net_device_ops { 1260 int (*ndo_init)(struct net_device *dev); 1261 void (*ndo_uninit)(struct net_device *dev); 1262 int (*ndo_open)(struct net_device *dev); 1263 int (*ndo_stop)(struct net_device *dev); 1264 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1265 struct net_device *dev); 1266 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1267 struct net_device *dev, 1268 netdev_features_t features); 1269 u16 (*ndo_select_queue)(struct net_device *dev, 1270 struct sk_buff *skb, 1271 struct net_device *sb_dev, 1272 select_queue_fallback_t fallback); 1273 void (*ndo_change_rx_flags)(struct net_device *dev, 1274 int flags); 1275 void (*ndo_set_rx_mode)(struct net_device *dev); 1276 int (*ndo_set_mac_address)(struct net_device *dev, 1277 void *addr); 1278 int (*ndo_validate_addr)(struct net_device *dev); 1279 int (*ndo_do_ioctl)(struct net_device *dev, 1280 struct ifreq *ifr, int cmd); 1281 int (*ndo_set_config)(struct net_device *dev, 1282 struct ifmap *map); 1283 int (*ndo_change_mtu)(struct net_device *dev, 1284 int new_mtu); 1285 int (*ndo_neigh_setup)(struct net_device *dev, 1286 struct neigh_parms *); 1287 void (*ndo_tx_timeout) (struct net_device *dev); 1288 1289 void (*ndo_get_stats64)(struct net_device *dev, 1290 struct rtnl_link_stats64 *storage); 1291 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1292 int (*ndo_get_offload_stats)(int attr_id, 1293 const struct net_device *dev, 1294 void *attr_data); 1295 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1296 1297 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1298 __be16 proto, u16 vid); 1299 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1300 __be16 proto, u16 vid); 1301 #ifdef CONFIG_NET_POLL_CONTROLLER 1302 void (*ndo_poll_controller)(struct net_device *dev); 1303 int (*ndo_netpoll_setup)(struct net_device *dev, 1304 struct netpoll_info *info); 1305 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1306 #endif 1307 int (*ndo_set_vf_mac)(struct net_device *dev, 1308 int queue, u8 *mac); 1309 int (*ndo_set_vf_vlan)(struct net_device *dev, 1310 int queue, u16 vlan, 1311 u8 qos, __be16 proto); 1312 int (*ndo_set_vf_rate)(struct net_device *dev, 1313 int vf, int min_tx_rate, 1314 int max_tx_rate); 1315 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1316 int vf, bool setting); 1317 int (*ndo_set_vf_trust)(struct net_device *dev, 1318 int vf, bool setting); 1319 int (*ndo_get_vf_config)(struct net_device *dev, 1320 int vf, 1321 struct ifla_vf_info *ivf); 1322 int (*ndo_set_vf_link_state)(struct net_device *dev, 1323 int vf, int link_state); 1324 int (*ndo_get_vf_stats)(struct net_device *dev, 1325 int vf, 1326 struct ifla_vf_stats 1327 *vf_stats); 1328 int (*ndo_set_vf_port)(struct net_device *dev, 1329 int vf, 1330 struct nlattr *port[]); 1331 int (*ndo_get_vf_port)(struct net_device *dev, 1332 int vf, struct sk_buff *skb); 1333 int (*ndo_set_vf_guid)(struct net_device *dev, 1334 int vf, u64 guid, 1335 int guid_type); 1336 int (*ndo_set_vf_rss_query_en)( 1337 struct net_device *dev, 1338 int vf, bool setting); 1339 int (*ndo_setup_tc)(struct net_device *dev, 1340 enum tc_setup_type type, 1341 void *type_data); 1342 #if IS_ENABLED(CONFIG_FCOE) 1343 int (*ndo_fcoe_enable)(struct net_device *dev); 1344 int (*ndo_fcoe_disable)(struct net_device *dev); 1345 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1346 u16 xid, 1347 struct scatterlist *sgl, 1348 unsigned int sgc); 1349 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1350 u16 xid); 1351 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1352 u16 xid, 1353 struct scatterlist *sgl, 1354 unsigned int sgc); 1355 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1356 struct netdev_fcoe_hbainfo *hbainfo); 1357 #endif 1358 1359 #if IS_ENABLED(CONFIG_LIBFCOE) 1360 #define NETDEV_FCOE_WWNN 0 1361 #define NETDEV_FCOE_WWPN 1 1362 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1363 u64 *wwn, int type); 1364 #endif 1365 1366 #ifdef CONFIG_RFS_ACCEL 1367 int (*ndo_rx_flow_steer)(struct net_device *dev, 1368 const struct sk_buff *skb, 1369 u16 rxq_index, 1370 u32 flow_id); 1371 #endif 1372 int (*ndo_add_slave)(struct net_device *dev, 1373 struct net_device *slave_dev, 1374 struct netlink_ext_ack *extack); 1375 int (*ndo_del_slave)(struct net_device *dev, 1376 struct net_device *slave_dev); 1377 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1378 netdev_features_t features); 1379 int (*ndo_set_features)(struct net_device *dev, 1380 netdev_features_t features); 1381 int (*ndo_neigh_construct)(struct net_device *dev, 1382 struct neighbour *n); 1383 void (*ndo_neigh_destroy)(struct net_device *dev, 1384 struct neighbour *n); 1385 1386 int (*ndo_fdb_add)(struct ndmsg *ndm, 1387 struct nlattr *tb[], 1388 struct net_device *dev, 1389 const unsigned char *addr, 1390 u16 vid, 1391 u16 flags, 1392 struct netlink_ext_ack *extack); 1393 int (*ndo_fdb_del)(struct ndmsg *ndm, 1394 struct nlattr *tb[], 1395 struct net_device *dev, 1396 const unsigned char *addr, 1397 u16 vid); 1398 int (*ndo_fdb_dump)(struct sk_buff *skb, 1399 struct netlink_callback *cb, 1400 struct net_device *dev, 1401 struct net_device *filter_dev, 1402 int *idx); 1403 int (*ndo_fdb_get)(struct sk_buff *skb, 1404 struct nlattr *tb[], 1405 struct net_device *dev, 1406 const unsigned char *addr, 1407 u16 vid, u32 portid, u32 seq, 1408 struct netlink_ext_ack *extack); 1409 int (*ndo_bridge_setlink)(struct net_device *dev, 1410 struct nlmsghdr *nlh, 1411 u16 flags, 1412 struct netlink_ext_ack *extack); 1413 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1414 u32 pid, u32 seq, 1415 struct net_device *dev, 1416 u32 filter_mask, 1417 int nlflags); 1418 int (*ndo_bridge_dellink)(struct net_device *dev, 1419 struct nlmsghdr *nlh, 1420 u16 flags); 1421 int (*ndo_change_carrier)(struct net_device *dev, 1422 bool new_carrier); 1423 int (*ndo_get_phys_port_id)(struct net_device *dev, 1424 struct netdev_phys_item_id *ppid); 1425 int (*ndo_get_port_parent_id)(struct net_device *dev, 1426 struct netdev_phys_item_id *ppid); 1427 int (*ndo_get_phys_port_name)(struct net_device *dev, 1428 char *name, size_t len); 1429 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1430 struct udp_tunnel_info *ti); 1431 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1432 struct udp_tunnel_info *ti); 1433 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1434 struct net_device *dev); 1435 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1436 void *priv); 1437 1438 int (*ndo_get_lock_subclass)(struct net_device *dev); 1439 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1440 int queue_index, 1441 u32 maxrate); 1442 int (*ndo_get_iflink)(const struct net_device *dev); 1443 int (*ndo_change_proto_down)(struct net_device *dev, 1444 bool proto_down); 1445 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1446 struct sk_buff *skb); 1447 void (*ndo_set_rx_headroom)(struct net_device *dev, 1448 int needed_headroom); 1449 int (*ndo_bpf)(struct net_device *dev, 1450 struct netdev_bpf *bpf); 1451 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1452 struct xdp_frame **xdp, 1453 u32 flags); 1454 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1455 u32 queue_id); 1456 struct devlink * (*ndo_get_devlink)(struct net_device *dev); 1457 }; 1458 1459 /** 1460 * enum net_device_priv_flags - &struct net_device priv_flags 1461 * 1462 * These are the &struct net_device, they are only set internally 1463 * by drivers and used in the kernel. These flags are invisible to 1464 * userspace; this means that the order of these flags can change 1465 * during any kernel release. 1466 * 1467 * You should have a pretty good reason to be extending these flags. 1468 * 1469 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1470 * @IFF_EBRIDGE: Ethernet bridging device 1471 * @IFF_BONDING: bonding master or slave 1472 * @IFF_ISATAP: ISATAP interface (RFC4214) 1473 * @IFF_WAN_HDLC: WAN HDLC device 1474 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1475 * release skb->dst 1476 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1477 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1478 * @IFF_MACVLAN_PORT: device used as macvlan port 1479 * @IFF_BRIDGE_PORT: device used as bridge port 1480 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1481 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1482 * @IFF_UNICAST_FLT: Supports unicast filtering 1483 * @IFF_TEAM_PORT: device used as team port 1484 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1485 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1486 * change when it's running 1487 * @IFF_MACVLAN: Macvlan device 1488 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1489 * underlying stacked devices 1490 * @IFF_L3MDEV_MASTER: device is an L3 master device 1491 * @IFF_NO_QUEUE: device can run without qdisc attached 1492 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1493 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1494 * @IFF_TEAM: device is a team device 1495 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1496 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1497 * entity (i.e. the master device for bridged veth) 1498 * @IFF_MACSEC: device is a MACsec device 1499 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1500 * @IFF_FAILOVER: device is a failover master device 1501 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1502 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1503 */ 1504 enum netdev_priv_flags { 1505 IFF_802_1Q_VLAN = 1<<0, 1506 IFF_EBRIDGE = 1<<1, 1507 IFF_BONDING = 1<<2, 1508 IFF_ISATAP = 1<<3, 1509 IFF_WAN_HDLC = 1<<4, 1510 IFF_XMIT_DST_RELEASE = 1<<5, 1511 IFF_DONT_BRIDGE = 1<<6, 1512 IFF_DISABLE_NETPOLL = 1<<7, 1513 IFF_MACVLAN_PORT = 1<<8, 1514 IFF_BRIDGE_PORT = 1<<9, 1515 IFF_OVS_DATAPATH = 1<<10, 1516 IFF_TX_SKB_SHARING = 1<<11, 1517 IFF_UNICAST_FLT = 1<<12, 1518 IFF_TEAM_PORT = 1<<13, 1519 IFF_SUPP_NOFCS = 1<<14, 1520 IFF_LIVE_ADDR_CHANGE = 1<<15, 1521 IFF_MACVLAN = 1<<16, 1522 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1523 IFF_L3MDEV_MASTER = 1<<18, 1524 IFF_NO_QUEUE = 1<<19, 1525 IFF_OPENVSWITCH = 1<<20, 1526 IFF_L3MDEV_SLAVE = 1<<21, 1527 IFF_TEAM = 1<<22, 1528 IFF_RXFH_CONFIGURED = 1<<23, 1529 IFF_PHONY_HEADROOM = 1<<24, 1530 IFF_MACSEC = 1<<25, 1531 IFF_NO_RX_HANDLER = 1<<26, 1532 IFF_FAILOVER = 1<<27, 1533 IFF_FAILOVER_SLAVE = 1<<28, 1534 IFF_L3MDEV_RX_HANDLER = 1<<29, 1535 }; 1536 1537 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1538 #define IFF_EBRIDGE IFF_EBRIDGE 1539 #define IFF_BONDING IFF_BONDING 1540 #define IFF_ISATAP IFF_ISATAP 1541 #define IFF_WAN_HDLC IFF_WAN_HDLC 1542 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1543 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1544 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1545 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1546 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1547 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1548 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1549 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1550 #define IFF_TEAM_PORT IFF_TEAM_PORT 1551 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1552 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1553 #define IFF_MACVLAN IFF_MACVLAN 1554 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1555 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1556 #define IFF_NO_QUEUE IFF_NO_QUEUE 1557 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1558 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1559 #define IFF_TEAM IFF_TEAM 1560 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1561 #define IFF_MACSEC IFF_MACSEC 1562 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1563 #define IFF_FAILOVER IFF_FAILOVER 1564 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1565 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1566 1567 /** 1568 * struct net_device - The DEVICE structure. 1569 * 1570 * Actually, this whole structure is a big mistake. It mixes I/O 1571 * data with strictly "high-level" data, and it has to know about 1572 * almost every data structure used in the INET module. 1573 * 1574 * @name: This is the first field of the "visible" part of this structure 1575 * (i.e. as seen by users in the "Space.c" file). It is the name 1576 * of the interface. 1577 * 1578 * @name_hlist: Device name hash chain, please keep it close to name[] 1579 * @ifalias: SNMP alias 1580 * @mem_end: Shared memory end 1581 * @mem_start: Shared memory start 1582 * @base_addr: Device I/O address 1583 * @irq: Device IRQ number 1584 * 1585 * @state: Generic network queuing layer state, see netdev_state_t 1586 * @dev_list: The global list of network devices 1587 * @napi_list: List entry used for polling NAPI devices 1588 * @unreg_list: List entry when we are unregistering the 1589 * device; see the function unregister_netdev 1590 * @close_list: List entry used when we are closing the device 1591 * @ptype_all: Device-specific packet handlers for all protocols 1592 * @ptype_specific: Device-specific, protocol-specific packet handlers 1593 * 1594 * @adj_list: Directly linked devices, like slaves for bonding 1595 * @features: Currently active device features 1596 * @hw_features: User-changeable features 1597 * 1598 * @wanted_features: User-requested features 1599 * @vlan_features: Mask of features inheritable by VLAN devices 1600 * 1601 * @hw_enc_features: Mask of features inherited by encapsulating devices 1602 * This field indicates what encapsulation 1603 * offloads the hardware is capable of doing, 1604 * and drivers will need to set them appropriately. 1605 * 1606 * @mpls_features: Mask of features inheritable by MPLS 1607 * 1608 * @ifindex: interface index 1609 * @group: The group the device belongs to 1610 * 1611 * @stats: Statistics struct, which was left as a legacy, use 1612 * rtnl_link_stats64 instead 1613 * 1614 * @rx_dropped: Dropped packets by core network, 1615 * do not use this in drivers 1616 * @tx_dropped: Dropped packets by core network, 1617 * do not use this in drivers 1618 * @rx_nohandler: nohandler dropped packets by core network on 1619 * inactive devices, do not use this in drivers 1620 * @carrier_up_count: Number of times the carrier has been up 1621 * @carrier_down_count: Number of times the carrier has been down 1622 * 1623 * @wireless_handlers: List of functions to handle Wireless Extensions, 1624 * instead of ioctl, 1625 * see <net/iw_handler.h> for details. 1626 * @wireless_data: Instance data managed by the core of wireless extensions 1627 * 1628 * @netdev_ops: Includes several pointers to callbacks, 1629 * if one wants to override the ndo_*() functions 1630 * @ethtool_ops: Management operations 1631 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1632 * discovery handling. Necessary for e.g. 6LoWPAN. 1633 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1634 * of Layer 2 headers. 1635 * 1636 * @flags: Interface flags (a la BSD) 1637 * @priv_flags: Like 'flags' but invisible to userspace, 1638 * see if.h for the definitions 1639 * @gflags: Global flags ( kept as legacy ) 1640 * @padded: How much padding added by alloc_netdev() 1641 * @operstate: RFC2863 operstate 1642 * @link_mode: Mapping policy to operstate 1643 * @if_port: Selectable AUI, TP, ... 1644 * @dma: DMA channel 1645 * @mtu: Interface MTU value 1646 * @min_mtu: Interface Minimum MTU value 1647 * @max_mtu: Interface Maximum MTU value 1648 * @type: Interface hardware type 1649 * @hard_header_len: Maximum hardware header length. 1650 * @min_header_len: Minimum hardware header length 1651 * 1652 * @needed_headroom: Extra headroom the hardware may need, but not in all 1653 * cases can this be guaranteed 1654 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1655 * cases can this be guaranteed. Some cases also use 1656 * LL_MAX_HEADER instead to allocate the skb 1657 * 1658 * interface address info: 1659 * 1660 * @perm_addr: Permanent hw address 1661 * @addr_assign_type: Hw address assignment type 1662 * @addr_len: Hardware address length 1663 * @neigh_priv_len: Used in neigh_alloc() 1664 * @dev_id: Used to differentiate devices that share 1665 * the same link layer address 1666 * @dev_port: Used to differentiate devices that share 1667 * the same function 1668 * @addr_list_lock: XXX: need comments on this one 1669 * @uc_promisc: Counter that indicates promiscuous mode 1670 * has been enabled due to the need to listen to 1671 * additional unicast addresses in a device that 1672 * does not implement ndo_set_rx_mode() 1673 * @uc: unicast mac addresses 1674 * @mc: multicast mac addresses 1675 * @dev_addrs: list of device hw addresses 1676 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1677 * @promiscuity: Number of times the NIC is told to work in 1678 * promiscuous mode; if it becomes 0 the NIC will 1679 * exit promiscuous mode 1680 * @allmulti: Counter, enables or disables allmulticast mode 1681 * 1682 * @vlan_info: VLAN info 1683 * @dsa_ptr: dsa specific data 1684 * @tipc_ptr: TIPC specific data 1685 * @atalk_ptr: AppleTalk link 1686 * @ip_ptr: IPv4 specific data 1687 * @dn_ptr: DECnet specific data 1688 * @ip6_ptr: IPv6 specific data 1689 * @ax25_ptr: AX.25 specific data 1690 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1691 * 1692 * @dev_addr: Hw address (before bcast, 1693 * because most packets are unicast) 1694 * 1695 * @_rx: Array of RX queues 1696 * @num_rx_queues: Number of RX queues 1697 * allocated at register_netdev() time 1698 * @real_num_rx_queues: Number of RX queues currently active in device 1699 * 1700 * @rx_handler: handler for received packets 1701 * @rx_handler_data: XXX: need comments on this one 1702 * @miniq_ingress: ingress/clsact qdisc specific data for 1703 * ingress processing 1704 * @ingress_queue: XXX: need comments on this one 1705 * @broadcast: hw bcast address 1706 * 1707 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1708 * indexed by RX queue number. Assigned by driver. 1709 * This must only be set if the ndo_rx_flow_steer 1710 * operation is defined 1711 * @index_hlist: Device index hash chain 1712 * 1713 * @_tx: Array of TX queues 1714 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1715 * @real_num_tx_queues: Number of TX queues currently active in device 1716 * @qdisc: Root qdisc from userspace point of view 1717 * @tx_queue_len: Max frames per queue allowed 1718 * @tx_global_lock: XXX: need comments on this one 1719 * 1720 * @xps_maps: XXX: need comments on this one 1721 * @miniq_egress: clsact qdisc specific data for 1722 * egress processing 1723 * @watchdog_timeo: Represents the timeout that is used by 1724 * the watchdog (see dev_watchdog()) 1725 * @watchdog_timer: List of timers 1726 * 1727 * @pcpu_refcnt: Number of references to this device 1728 * @todo_list: Delayed register/unregister 1729 * @link_watch_list: XXX: need comments on this one 1730 * 1731 * @reg_state: Register/unregister state machine 1732 * @dismantle: Device is going to be freed 1733 * @rtnl_link_state: This enum represents the phases of creating 1734 * a new link 1735 * 1736 * @needs_free_netdev: Should unregister perform free_netdev? 1737 * @priv_destructor: Called from unregister 1738 * @npinfo: XXX: need comments on this one 1739 * @nd_net: Network namespace this network device is inside 1740 * 1741 * @ml_priv: Mid-layer private 1742 * @lstats: Loopback statistics 1743 * @tstats: Tunnel statistics 1744 * @dstats: Dummy statistics 1745 * @vstats: Virtual ethernet statistics 1746 * 1747 * @garp_port: GARP 1748 * @mrp_port: MRP 1749 * 1750 * @dev: Class/net/name entry 1751 * @sysfs_groups: Space for optional device, statistics and wireless 1752 * sysfs groups 1753 * 1754 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1755 * @rtnl_link_ops: Rtnl_link_ops 1756 * 1757 * @gso_max_size: Maximum size of generic segmentation offload 1758 * @gso_max_segs: Maximum number of segments that can be passed to the 1759 * NIC for GSO 1760 * 1761 * @dcbnl_ops: Data Center Bridging netlink ops 1762 * @num_tc: Number of traffic classes in the net device 1763 * @tc_to_txq: XXX: need comments on this one 1764 * @prio_tc_map: XXX: need comments on this one 1765 * 1766 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1767 * 1768 * @priomap: XXX: need comments on this one 1769 * @phydev: Physical device may attach itself 1770 * for hardware timestamping 1771 * @sfp_bus: attached &struct sfp_bus structure. 1772 * 1773 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1774 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1775 * 1776 * @proto_down: protocol port state information can be sent to the 1777 * switch driver and used to set the phys state of the 1778 * switch port. 1779 * 1780 * @wol_enabled: Wake-on-LAN is enabled 1781 * 1782 * FIXME: cleanup struct net_device such that network protocol info 1783 * moves out. 1784 */ 1785 1786 struct net_device { 1787 char name[IFNAMSIZ]; 1788 struct hlist_node name_hlist; 1789 struct dev_ifalias __rcu *ifalias; 1790 /* 1791 * I/O specific fields 1792 * FIXME: Merge these and struct ifmap into one 1793 */ 1794 unsigned long mem_end; 1795 unsigned long mem_start; 1796 unsigned long base_addr; 1797 int irq; 1798 1799 /* 1800 * Some hardware also needs these fields (state,dev_list, 1801 * napi_list,unreg_list,close_list) but they are not 1802 * part of the usual set specified in Space.c. 1803 */ 1804 1805 unsigned long state; 1806 1807 struct list_head dev_list; 1808 struct list_head napi_list; 1809 struct list_head unreg_list; 1810 struct list_head close_list; 1811 struct list_head ptype_all; 1812 struct list_head ptype_specific; 1813 1814 struct { 1815 struct list_head upper; 1816 struct list_head lower; 1817 } adj_list; 1818 1819 netdev_features_t features; 1820 netdev_features_t hw_features; 1821 netdev_features_t wanted_features; 1822 netdev_features_t vlan_features; 1823 netdev_features_t hw_enc_features; 1824 netdev_features_t mpls_features; 1825 netdev_features_t gso_partial_features; 1826 1827 int ifindex; 1828 int group; 1829 1830 struct net_device_stats stats; 1831 1832 atomic_long_t rx_dropped; 1833 atomic_long_t tx_dropped; 1834 atomic_long_t rx_nohandler; 1835 1836 /* Stats to monitor link on/off, flapping */ 1837 atomic_t carrier_up_count; 1838 atomic_t carrier_down_count; 1839 1840 #ifdef CONFIG_WIRELESS_EXT 1841 const struct iw_handler_def *wireless_handlers; 1842 struct iw_public_data *wireless_data; 1843 #endif 1844 const struct net_device_ops *netdev_ops; 1845 const struct ethtool_ops *ethtool_ops; 1846 #ifdef CONFIG_NET_L3_MASTER_DEV 1847 const struct l3mdev_ops *l3mdev_ops; 1848 #endif 1849 #if IS_ENABLED(CONFIG_IPV6) 1850 const struct ndisc_ops *ndisc_ops; 1851 #endif 1852 1853 #ifdef CONFIG_XFRM_OFFLOAD 1854 const struct xfrmdev_ops *xfrmdev_ops; 1855 #endif 1856 1857 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1858 const struct tlsdev_ops *tlsdev_ops; 1859 #endif 1860 1861 const struct header_ops *header_ops; 1862 1863 unsigned int flags; 1864 unsigned int priv_flags; 1865 1866 unsigned short gflags; 1867 unsigned short padded; 1868 1869 unsigned char operstate; 1870 unsigned char link_mode; 1871 1872 unsigned char if_port; 1873 unsigned char dma; 1874 1875 unsigned int mtu; 1876 unsigned int min_mtu; 1877 unsigned int max_mtu; 1878 unsigned short type; 1879 unsigned short hard_header_len; 1880 unsigned char min_header_len; 1881 1882 unsigned short needed_headroom; 1883 unsigned short needed_tailroom; 1884 1885 /* Interface address info. */ 1886 unsigned char perm_addr[MAX_ADDR_LEN]; 1887 unsigned char addr_assign_type; 1888 unsigned char addr_len; 1889 unsigned short neigh_priv_len; 1890 unsigned short dev_id; 1891 unsigned short dev_port; 1892 spinlock_t addr_list_lock; 1893 unsigned char name_assign_type; 1894 bool uc_promisc; 1895 struct netdev_hw_addr_list uc; 1896 struct netdev_hw_addr_list mc; 1897 struct netdev_hw_addr_list dev_addrs; 1898 1899 #ifdef CONFIG_SYSFS 1900 struct kset *queues_kset; 1901 #endif 1902 unsigned int promiscuity; 1903 unsigned int allmulti; 1904 1905 1906 /* Protocol-specific pointers */ 1907 1908 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1909 struct vlan_info __rcu *vlan_info; 1910 #endif 1911 #if IS_ENABLED(CONFIG_NET_DSA) 1912 struct dsa_port *dsa_ptr; 1913 #endif 1914 #if IS_ENABLED(CONFIG_TIPC) 1915 struct tipc_bearer __rcu *tipc_ptr; 1916 #endif 1917 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1918 void *atalk_ptr; 1919 #endif 1920 struct in_device __rcu *ip_ptr; 1921 #if IS_ENABLED(CONFIG_DECNET) 1922 struct dn_dev __rcu *dn_ptr; 1923 #endif 1924 struct inet6_dev __rcu *ip6_ptr; 1925 #if IS_ENABLED(CONFIG_AX25) 1926 void *ax25_ptr; 1927 #endif 1928 struct wireless_dev *ieee80211_ptr; 1929 struct wpan_dev *ieee802154_ptr; 1930 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1931 struct mpls_dev __rcu *mpls_ptr; 1932 #endif 1933 1934 /* 1935 * Cache lines mostly used on receive path (including eth_type_trans()) 1936 */ 1937 /* Interface address info used in eth_type_trans() */ 1938 unsigned char *dev_addr; 1939 1940 struct netdev_rx_queue *_rx; 1941 unsigned int num_rx_queues; 1942 unsigned int real_num_rx_queues; 1943 1944 struct bpf_prog __rcu *xdp_prog; 1945 unsigned long gro_flush_timeout; 1946 rx_handler_func_t __rcu *rx_handler; 1947 void __rcu *rx_handler_data; 1948 1949 #ifdef CONFIG_NET_CLS_ACT 1950 struct mini_Qdisc __rcu *miniq_ingress; 1951 #endif 1952 struct netdev_queue __rcu *ingress_queue; 1953 #ifdef CONFIG_NETFILTER_INGRESS 1954 struct nf_hook_entries __rcu *nf_hooks_ingress; 1955 #endif 1956 1957 unsigned char broadcast[MAX_ADDR_LEN]; 1958 #ifdef CONFIG_RFS_ACCEL 1959 struct cpu_rmap *rx_cpu_rmap; 1960 #endif 1961 struct hlist_node index_hlist; 1962 1963 /* 1964 * Cache lines mostly used on transmit path 1965 */ 1966 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1967 unsigned int num_tx_queues; 1968 unsigned int real_num_tx_queues; 1969 struct Qdisc *qdisc; 1970 #ifdef CONFIG_NET_SCHED 1971 DECLARE_HASHTABLE (qdisc_hash, 4); 1972 #endif 1973 unsigned int tx_queue_len; 1974 spinlock_t tx_global_lock; 1975 int watchdog_timeo; 1976 1977 #ifdef CONFIG_XPS 1978 struct xps_dev_maps __rcu *xps_cpus_map; 1979 struct xps_dev_maps __rcu *xps_rxqs_map; 1980 #endif 1981 #ifdef CONFIG_NET_CLS_ACT 1982 struct mini_Qdisc __rcu *miniq_egress; 1983 #endif 1984 1985 /* These may be needed for future network-power-down code. */ 1986 struct timer_list watchdog_timer; 1987 1988 int __percpu *pcpu_refcnt; 1989 struct list_head todo_list; 1990 1991 struct list_head link_watch_list; 1992 1993 enum { NETREG_UNINITIALIZED=0, 1994 NETREG_REGISTERED, /* completed register_netdevice */ 1995 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1996 NETREG_UNREGISTERED, /* completed unregister todo */ 1997 NETREG_RELEASED, /* called free_netdev */ 1998 NETREG_DUMMY, /* dummy device for NAPI poll */ 1999 } reg_state:8; 2000 2001 bool dismantle; 2002 2003 enum { 2004 RTNL_LINK_INITIALIZED, 2005 RTNL_LINK_INITIALIZING, 2006 } rtnl_link_state:16; 2007 2008 bool needs_free_netdev; 2009 void (*priv_destructor)(struct net_device *dev); 2010 2011 #ifdef CONFIG_NETPOLL 2012 struct netpoll_info __rcu *npinfo; 2013 #endif 2014 2015 possible_net_t nd_net; 2016 2017 /* mid-layer private */ 2018 union { 2019 void *ml_priv; 2020 struct pcpu_lstats __percpu *lstats; 2021 struct pcpu_sw_netstats __percpu *tstats; 2022 struct pcpu_dstats __percpu *dstats; 2023 }; 2024 2025 #if IS_ENABLED(CONFIG_GARP) 2026 struct garp_port __rcu *garp_port; 2027 #endif 2028 #if IS_ENABLED(CONFIG_MRP) 2029 struct mrp_port __rcu *mrp_port; 2030 #endif 2031 2032 struct device dev; 2033 const struct attribute_group *sysfs_groups[4]; 2034 const struct attribute_group *sysfs_rx_queue_group; 2035 2036 const struct rtnl_link_ops *rtnl_link_ops; 2037 2038 /* for setting kernel sock attribute on TCP connection setup */ 2039 #define GSO_MAX_SIZE 65536 2040 unsigned int gso_max_size; 2041 #define GSO_MAX_SEGS 65535 2042 u16 gso_max_segs; 2043 2044 #ifdef CONFIG_DCB 2045 const struct dcbnl_rtnl_ops *dcbnl_ops; 2046 #endif 2047 s16 num_tc; 2048 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2049 u8 prio_tc_map[TC_BITMASK + 1]; 2050 2051 #if IS_ENABLED(CONFIG_FCOE) 2052 unsigned int fcoe_ddp_xid; 2053 #endif 2054 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2055 struct netprio_map __rcu *priomap; 2056 #endif 2057 struct phy_device *phydev; 2058 struct sfp_bus *sfp_bus; 2059 struct lock_class_key *qdisc_tx_busylock; 2060 struct lock_class_key *qdisc_running_key; 2061 bool proto_down; 2062 unsigned wol_enabled:1; 2063 }; 2064 #define to_net_dev(d) container_of(d, struct net_device, dev) 2065 2066 static inline bool netif_elide_gro(const struct net_device *dev) 2067 { 2068 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2069 return true; 2070 return false; 2071 } 2072 2073 #define NETDEV_ALIGN 32 2074 2075 static inline 2076 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2077 { 2078 return dev->prio_tc_map[prio & TC_BITMASK]; 2079 } 2080 2081 static inline 2082 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2083 { 2084 if (tc >= dev->num_tc) 2085 return -EINVAL; 2086 2087 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2088 return 0; 2089 } 2090 2091 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2092 void netdev_reset_tc(struct net_device *dev); 2093 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2094 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2095 2096 static inline 2097 int netdev_get_num_tc(struct net_device *dev) 2098 { 2099 return dev->num_tc; 2100 } 2101 2102 void netdev_unbind_sb_channel(struct net_device *dev, 2103 struct net_device *sb_dev); 2104 int netdev_bind_sb_channel_queue(struct net_device *dev, 2105 struct net_device *sb_dev, 2106 u8 tc, u16 count, u16 offset); 2107 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2108 static inline int netdev_get_sb_channel(struct net_device *dev) 2109 { 2110 return max_t(int, -dev->num_tc, 0); 2111 } 2112 2113 static inline 2114 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2115 unsigned int index) 2116 { 2117 return &dev->_tx[index]; 2118 } 2119 2120 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2121 const struct sk_buff *skb) 2122 { 2123 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2124 } 2125 2126 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2127 void (*f)(struct net_device *, 2128 struct netdev_queue *, 2129 void *), 2130 void *arg) 2131 { 2132 unsigned int i; 2133 2134 for (i = 0; i < dev->num_tx_queues; i++) 2135 f(dev, &dev->_tx[i], arg); 2136 } 2137 2138 #define netdev_lockdep_set_classes(dev) \ 2139 { \ 2140 static struct lock_class_key qdisc_tx_busylock_key; \ 2141 static struct lock_class_key qdisc_running_key; \ 2142 static struct lock_class_key qdisc_xmit_lock_key; \ 2143 static struct lock_class_key dev_addr_list_lock_key; \ 2144 unsigned int i; \ 2145 \ 2146 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2147 (dev)->qdisc_running_key = &qdisc_running_key; \ 2148 lockdep_set_class(&(dev)->addr_list_lock, \ 2149 &dev_addr_list_lock_key); \ 2150 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2151 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2152 &qdisc_xmit_lock_key); \ 2153 } 2154 2155 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2156 struct sk_buff *skb, 2157 struct net_device *sb_dev); 2158 2159 /* returns the headroom that the master device needs to take in account 2160 * when forwarding to this dev 2161 */ 2162 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2163 { 2164 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2165 } 2166 2167 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2168 { 2169 if (dev->netdev_ops->ndo_set_rx_headroom) 2170 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2171 } 2172 2173 /* set the device rx headroom to the dev's default */ 2174 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2175 { 2176 netdev_set_rx_headroom(dev, -1); 2177 } 2178 2179 /* 2180 * Net namespace inlines 2181 */ 2182 static inline 2183 struct net *dev_net(const struct net_device *dev) 2184 { 2185 return read_pnet(&dev->nd_net); 2186 } 2187 2188 static inline 2189 void dev_net_set(struct net_device *dev, struct net *net) 2190 { 2191 write_pnet(&dev->nd_net, net); 2192 } 2193 2194 /** 2195 * netdev_priv - access network device private data 2196 * @dev: network device 2197 * 2198 * Get network device private data 2199 */ 2200 static inline void *netdev_priv(const struct net_device *dev) 2201 { 2202 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2203 } 2204 2205 /* Set the sysfs physical device reference for the network logical device 2206 * if set prior to registration will cause a symlink during initialization. 2207 */ 2208 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2209 2210 /* Set the sysfs device type for the network logical device to allow 2211 * fine-grained identification of different network device types. For 2212 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2213 */ 2214 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2215 2216 /* Default NAPI poll() weight 2217 * Device drivers are strongly advised to not use bigger value 2218 */ 2219 #define NAPI_POLL_WEIGHT 64 2220 2221 /** 2222 * netif_napi_add - initialize a NAPI context 2223 * @dev: network device 2224 * @napi: NAPI context 2225 * @poll: polling function 2226 * @weight: default weight 2227 * 2228 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2229 * *any* of the other NAPI-related functions. 2230 */ 2231 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2232 int (*poll)(struct napi_struct *, int), int weight); 2233 2234 /** 2235 * netif_tx_napi_add - initialize a NAPI context 2236 * @dev: network device 2237 * @napi: NAPI context 2238 * @poll: polling function 2239 * @weight: default weight 2240 * 2241 * This variant of netif_napi_add() should be used from drivers using NAPI 2242 * to exclusively poll a TX queue. 2243 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2244 */ 2245 static inline void netif_tx_napi_add(struct net_device *dev, 2246 struct napi_struct *napi, 2247 int (*poll)(struct napi_struct *, int), 2248 int weight) 2249 { 2250 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2251 netif_napi_add(dev, napi, poll, weight); 2252 } 2253 2254 /** 2255 * netif_napi_del - remove a NAPI context 2256 * @napi: NAPI context 2257 * 2258 * netif_napi_del() removes a NAPI context from the network device NAPI list 2259 */ 2260 void netif_napi_del(struct napi_struct *napi); 2261 2262 struct napi_gro_cb { 2263 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2264 void *frag0; 2265 2266 /* Length of frag0. */ 2267 unsigned int frag0_len; 2268 2269 /* This indicates where we are processing relative to skb->data. */ 2270 int data_offset; 2271 2272 /* This is non-zero if the packet cannot be merged with the new skb. */ 2273 u16 flush; 2274 2275 /* Save the IP ID here and check when we get to the transport layer */ 2276 u16 flush_id; 2277 2278 /* Number of segments aggregated. */ 2279 u16 count; 2280 2281 /* Start offset for remote checksum offload */ 2282 u16 gro_remcsum_start; 2283 2284 /* jiffies when first packet was created/queued */ 2285 unsigned long age; 2286 2287 /* Used in ipv6_gro_receive() and foo-over-udp */ 2288 u16 proto; 2289 2290 /* This is non-zero if the packet may be of the same flow. */ 2291 u8 same_flow:1; 2292 2293 /* Used in tunnel GRO receive */ 2294 u8 encap_mark:1; 2295 2296 /* GRO checksum is valid */ 2297 u8 csum_valid:1; 2298 2299 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2300 u8 csum_cnt:3; 2301 2302 /* Free the skb? */ 2303 u8 free:2; 2304 #define NAPI_GRO_FREE 1 2305 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2306 2307 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2308 u8 is_ipv6:1; 2309 2310 /* Used in GRE, set in fou/gue_gro_receive */ 2311 u8 is_fou:1; 2312 2313 /* Used to determine if flush_id can be ignored */ 2314 u8 is_atomic:1; 2315 2316 /* Number of gro_receive callbacks this packet already went through */ 2317 u8 recursion_counter:4; 2318 2319 /* 1 bit hole */ 2320 2321 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2322 __wsum csum; 2323 2324 /* used in skb_gro_receive() slow path */ 2325 struct sk_buff *last; 2326 }; 2327 2328 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2329 2330 #define GRO_RECURSION_LIMIT 15 2331 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2332 { 2333 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2334 } 2335 2336 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2337 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2338 struct list_head *head, 2339 struct sk_buff *skb) 2340 { 2341 if (unlikely(gro_recursion_inc_test(skb))) { 2342 NAPI_GRO_CB(skb)->flush |= 1; 2343 return NULL; 2344 } 2345 2346 return cb(head, skb); 2347 } 2348 2349 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2350 struct sk_buff *); 2351 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2352 struct sock *sk, 2353 struct list_head *head, 2354 struct sk_buff *skb) 2355 { 2356 if (unlikely(gro_recursion_inc_test(skb))) { 2357 NAPI_GRO_CB(skb)->flush |= 1; 2358 return NULL; 2359 } 2360 2361 return cb(sk, head, skb); 2362 } 2363 2364 struct packet_type { 2365 __be16 type; /* This is really htons(ether_type). */ 2366 bool ignore_outgoing; 2367 struct net_device *dev; /* NULL is wildcarded here */ 2368 int (*func) (struct sk_buff *, 2369 struct net_device *, 2370 struct packet_type *, 2371 struct net_device *); 2372 void (*list_func) (struct list_head *, 2373 struct packet_type *, 2374 struct net_device *); 2375 bool (*id_match)(struct packet_type *ptype, 2376 struct sock *sk); 2377 void *af_packet_priv; 2378 struct list_head list; 2379 }; 2380 2381 struct offload_callbacks { 2382 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2383 netdev_features_t features); 2384 struct sk_buff *(*gro_receive)(struct list_head *head, 2385 struct sk_buff *skb); 2386 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2387 }; 2388 2389 struct packet_offload { 2390 __be16 type; /* This is really htons(ether_type). */ 2391 u16 priority; 2392 struct offload_callbacks callbacks; 2393 struct list_head list; 2394 }; 2395 2396 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2397 struct pcpu_sw_netstats { 2398 u64 rx_packets; 2399 u64 rx_bytes; 2400 u64 tx_packets; 2401 u64 tx_bytes; 2402 struct u64_stats_sync syncp; 2403 } __aligned(4 * sizeof(u64)); 2404 2405 struct pcpu_lstats { 2406 u64 packets; 2407 u64 bytes; 2408 struct u64_stats_sync syncp; 2409 } __aligned(2 * sizeof(u64)); 2410 2411 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2412 ({ \ 2413 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2414 if (pcpu_stats) { \ 2415 int __cpu; \ 2416 for_each_possible_cpu(__cpu) { \ 2417 typeof(type) *stat; \ 2418 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2419 u64_stats_init(&stat->syncp); \ 2420 } \ 2421 } \ 2422 pcpu_stats; \ 2423 }) 2424 2425 #define netdev_alloc_pcpu_stats(type) \ 2426 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2427 2428 enum netdev_lag_tx_type { 2429 NETDEV_LAG_TX_TYPE_UNKNOWN, 2430 NETDEV_LAG_TX_TYPE_RANDOM, 2431 NETDEV_LAG_TX_TYPE_BROADCAST, 2432 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2433 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2434 NETDEV_LAG_TX_TYPE_HASH, 2435 }; 2436 2437 enum netdev_lag_hash { 2438 NETDEV_LAG_HASH_NONE, 2439 NETDEV_LAG_HASH_L2, 2440 NETDEV_LAG_HASH_L34, 2441 NETDEV_LAG_HASH_L23, 2442 NETDEV_LAG_HASH_E23, 2443 NETDEV_LAG_HASH_E34, 2444 NETDEV_LAG_HASH_UNKNOWN, 2445 }; 2446 2447 struct netdev_lag_upper_info { 2448 enum netdev_lag_tx_type tx_type; 2449 enum netdev_lag_hash hash_type; 2450 }; 2451 2452 struct netdev_lag_lower_state_info { 2453 u8 link_up : 1, 2454 tx_enabled : 1; 2455 }; 2456 2457 #include <linux/notifier.h> 2458 2459 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2460 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2461 * adding new types. 2462 */ 2463 enum netdev_cmd { 2464 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2465 NETDEV_DOWN, 2466 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2467 detected a hardware crash and restarted 2468 - we can use this eg to kick tcp sessions 2469 once done */ 2470 NETDEV_CHANGE, /* Notify device state change */ 2471 NETDEV_REGISTER, 2472 NETDEV_UNREGISTER, 2473 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2474 NETDEV_CHANGEADDR, /* notify after the address change */ 2475 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2476 NETDEV_GOING_DOWN, 2477 NETDEV_CHANGENAME, 2478 NETDEV_FEAT_CHANGE, 2479 NETDEV_BONDING_FAILOVER, 2480 NETDEV_PRE_UP, 2481 NETDEV_PRE_TYPE_CHANGE, 2482 NETDEV_POST_TYPE_CHANGE, 2483 NETDEV_POST_INIT, 2484 NETDEV_RELEASE, 2485 NETDEV_NOTIFY_PEERS, 2486 NETDEV_JOIN, 2487 NETDEV_CHANGEUPPER, 2488 NETDEV_RESEND_IGMP, 2489 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2490 NETDEV_CHANGEINFODATA, 2491 NETDEV_BONDING_INFO, 2492 NETDEV_PRECHANGEUPPER, 2493 NETDEV_CHANGELOWERSTATE, 2494 NETDEV_UDP_TUNNEL_PUSH_INFO, 2495 NETDEV_UDP_TUNNEL_DROP_INFO, 2496 NETDEV_CHANGE_TX_QUEUE_LEN, 2497 NETDEV_CVLAN_FILTER_PUSH_INFO, 2498 NETDEV_CVLAN_FILTER_DROP_INFO, 2499 NETDEV_SVLAN_FILTER_PUSH_INFO, 2500 NETDEV_SVLAN_FILTER_DROP_INFO, 2501 }; 2502 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2503 2504 int register_netdevice_notifier(struct notifier_block *nb); 2505 int unregister_netdevice_notifier(struct notifier_block *nb); 2506 2507 struct netdev_notifier_info { 2508 struct net_device *dev; 2509 struct netlink_ext_ack *extack; 2510 }; 2511 2512 struct netdev_notifier_info_ext { 2513 struct netdev_notifier_info info; /* must be first */ 2514 union { 2515 u32 mtu; 2516 } ext; 2517 }; 2518 2519 struct netdev_notifier_change_info { 2520 struct netdev_notifier_info info; /* must be first */ 2521 unsigned int flags_changed; 2522 }; 2523 2524 struct netdev_notifier_changeupper_info { 2525 struct netdev_notifier_info info; /* must be first */ 2526 struct net_device *upper_dev; /* new upper dev */ 2527 bool master; /* is upper dev master */ 2528 bool linking; /* is the notification for link or unlink */ 2529 void *upper_info; /* upper dev info */ 2530 }; 2531 2532 struct netdev_notifier_changelowerstate_info { 2533 struct netdev_notifier_info info; /* must be first */ 2534 void *lower_state_info; /* is lower dev state */ 2535 }; 2536 2537 struct netdev_notifier_pre_changeaddr_info { 2538 struct netdev_notifier_info info; /* must be first */ 2539 const unsigned char *dev_addr; 2540 }; 2541 2542 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2543 struct net_device *dev) 2544 { 2545 info->dev = dev; 2546 info->extack = NULL; 2547 } 2548 2549 static inline struct net_device * 2550 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2551 { 2552 return info->dev; 2553 } 2554 2555 static inline struct netlink_ext_ack * 2556 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2557 { 2558 return info->extack; 2559 } 2560 2561 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2562 2563 2564 extern rwlock_t dev_base_lock; /* Device list lock */ 2565 2566 #define for_each_netdev(net, d) \ 2567 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2568 #define for_each_netdev_reverse(net, d) \ 2569 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2570 #define for_each_netdev_rcu(net, d) \ 2571 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2572 #define for_each_netdev_safe(net, d, n) \ 2573 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2574 #define for_each_netdev_continue(net, d) \ 2575 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2576 #define for_each_netdev_continue_rcu(net, d) \ 2577 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2578 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2579 for_each_netdev_rcu(&init_net, slave) \ 2580 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2581 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2582 2583 static inline struct net_device *next_net_device(struct net_device *dev) 2584 { 2585 struct list_head *lh; 2586 struct net *net; 2587 2588 net = dev_net(dev); 2589 lh = dev->dev_list.next; 2590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2591 } 2592 2593 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2594 { 2595 struct list_head *lh; 2596 struct net *net; 2597 2598 net = dev_net(dev); 2599 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2600 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2601 } 2602 2603 static inline struct net_device *first_net_device(struct net *net) 2604 { 2605 return list_empty(&net->dev_base_head) ? NULL : 2606 net_device_entry(net->dev_base_head.next); 2607 } 2608 2609 static inline struct net_device *first_net_device_rcu(struct net *net) 2610 { 2611 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2612 2613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2614 } 2615 2616 int netdev_boot_setup_check(struct net_device *dev); 2617 unsigned long netdev_boot_base(const char *prefix, int unit); 2618 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2619 const char *hwaddr); 2620 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2621 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2622 void dev_add_pack(struct packet_type *pt); 2623 void dev_remove_pack(struct packet_type *pt); 2624 void __dev_remove_pack(struct packet_type *pt); 2625 void dev_add_offload(struct packet_offload *po); 2626 void dev_remove_offload(struct packet_offload *po); 2627 2628 int dev_get_iflink(const struct net_device *dev); 2629 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2630 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2631 unsigned short mask); 2632 struct net_device *dev_get_by_name(struct net *net, const char *name); 2633 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2634 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2635 int dev_alloc_name(struct net_device *dev, const char *name); 2636 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2637 void dev_close(struct net_device *dev); 2638 void dev_close_many(struct list_head *head, bool unlink); 2639 void dev_disable_lro(struct net_device *dev); 2640 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2641 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2642 struct net_device *sb_dev, 2643 select_queue_fallback_t fallback); 2644 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2645 struct net_device *sb_dev, 2646 select_queue_fallback_t fallback); 2647 int dev_queue_xmit(struct sk_buff *skb); 2648 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2649 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2650 int register_netdevice(struct net_device *dev); 2651 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2652 void unregister_netdevice_many(struct list_head *head); 2653 static inline void unregister_netdevice(struct net_device *dev) 2654 { 2655 unregister_netdevice_queue(dev, NULL); 2656 } 2657 2658 int netdev_refcnt_read(const struct net_device *dev); 2659 void free_netdev(struct net_device *dev); 2660 void netdev_freemem(struct net_device *dev); 2661 void synchronize_net(void); 2662 int init_dummy_netdev(struct net_device *dev); 2663 2664 DECLARE_PER_CPU(int, xmit_recursion); 2665 #define XMIT_RECURSION_LIMIT 10 2666 2667 static inline int dev_recursion_level(void) 2668 { 2669 return this_cpu_read(xmit_recursion); 2670 } 2671 2672 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2673 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2674 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2675 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2676 int netdev_get_name(struct net *net, char *name, int ifindex); 2677 int dev_restart(struct net_device *dev); 2678 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2679 2680 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2681 { 2682 return NAPI_GRO_CB(skb)->data_offset; 2683 } 2684 2685 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2686 { 2687 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2688 } 2689 2690 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2691 { 2692 NAPI_GRO_CB(skb)->data_offset += len; 2693 } 2694 2695 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2696 unsigned int offset) 2697 { 2698 return NAPI_GRO_CB(skb)->frag0 + offset; 2699 } 2700 2701 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2702 { 2703 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2704 } 2705 2706 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2707 { 2708 NAPI_GRO_CB(skb)->frag0 = NULL; 2709 NAPI_GRO_CB(skb)->frag0_len = 0; 2710 } 2711 2712 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2713 unsigned int offset) 2714 { 2715 if (!pskb_may_pull(skb, hlen)) 2716 return NULL; 2717 2718 skb_gro_frag0_invalidate(skb); 2719 return skb->data + offset; 2720 } 2721 2722 static inline void *skb_gro_network_header(struct sk_buff *skb) 2723 { 2724 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2725 skb_network_offset(skb); 2726 } 2727 2728 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2729 const void *start, unsigned int len) 2730 { 2731 if (NAPI_GRO_CB(skb)->csum_valid) 2732 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2733 csum_partial(start, len, 0)); 2734 } 2735 2736 /* GRO checksum functions. These are logical equivalents of the normal 2737 * checksum functions (in skbuff.h) except that they operate on the GRO 2738 * offsets and fields in sk_buff. 2739 */ 2740 2741 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2742 2743 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2744 { 2745 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2746 } 2747 2748 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2749 bool zero_okay, 2750 __sum16 check) 2751 { 2752 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2753 skb_checksum_start_offset(skb) < 2754 skb_gro_offset(skb)) && 2755 !skb_at_gro_remcsum_start(skb) && 2756 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2757 (!zero_okay || check)); 2758 } 2759 2760 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2761 __wsum psum) 2762 { 2763 if (NAPI_GRO_CB(skb)->csum_valid && 2764 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2765 return 0; 2766 2767 NAPI_GRO_CB(skb)->csum = psum; 2768 2769 return __skb_gro_checksum_complete(skb); 2770 } 2771 2772 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2773 { 2774 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2775 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2776 NAPI_GRO_CB(skb)->csum_cnt--; 2777 } else { 2778 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2779 * verified a new top level checksum or an encapsulated one 2780 * during GRO. This saves work if we fallback to normal path. 2781 */ 2782 __skb_incr_checksum_unnecessary(skb); 2783 } 2784 } 2785 2786 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2787 compute_pseudo) \ 2788 ({ \ 2789 __sum16 __ret = 0; \ 2790 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2791 __ret = __skb_gro_checksum_validate_complete(skb, \ 2792 compute_pseudo(skb, proto)); \ 2793 if (!__ret) \ 2794 skb_gro_incr_csum_unnecessary(skb); \ 2795 __ret; \ 2796 }) 2797 2798 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2799 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2800 2801 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2802 compute_pseudo) \ 2803 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2804 2805 #define skb_gro_checksum_simple_validate(skb) \ 2806 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2807 2808 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2809 { 2810 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2811 !NAPI_GRO_CB(skb)->csum_valid); 2812 } 2813 2814 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2815 __sum16 check, __wsum pseudo) 2816 { 2817 NAPI_GRO_CB(skb)->csum = ~pseudo; 2818 NAPI_GRO_CB(skb)->csum_valid = 1; 2819 } 2820 2821 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2822 do { \ 2823 if (__skb_gro_checksum_convert_check(skb)) \ 2824 __skb_gro_checksum_convert(skb, check, \ 2825 compute_pseudo(skb, proto)); \ 2826 } while (0) 2827 2828 struct gro_remcsum { 2829 int offset; 2830 __wsum delta; 2831 }; 2832 2833 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2834 { 2835 grc->offset = 0; 2836 grc->delta = 0; 2837 } 2838 2839 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2840 unsigned int off, size_t hdrlen, 2841 int start, int offset, 2842 struct gro_remcsum *grc, 2843 bool nopartial) 2844 { 2845 __wsum delta; 2846 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2847 2848 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2849 2850 if (!nopartial) { 2851 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2852 return ptr; 2853 } 2854 2855 ptr = skb_gro_header_fast(skb, off); 2856 if (skb_gro_header_hard(skb, off + plen)) { 2857 ptr = skb_gro_header_slow(skb, off + plen, off); 2858 if (!ptr) 2859 return NULL; 2860 } 2861 2862 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2863 start, offset); 2864 2865 /* Adjust skb->csum since we changed the packet */ 2866 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2867 2868 grc->offset = off + hdrlen + offset; 2869 grc->delta = delta; 2870 2871 return ptr; 2872 } 2873 2874 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2875 struct gro_remcsum *grc) 2876 { 2877 void *ptr; 2878 size_t plen = grc->offset + sizeof(u16); 2879 2880 if (!grc->delta) 2881 return; 2882 2883 ptr = skb_gro_header_fast(skb, grc->offset); 2884 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2885 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2886 if (!ptr) 2887 return; 2888 } 2889 2890 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2891 } 2892 2893 #ifdef CONFIG_XFRM_OFFLOAD 2894 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2895 { 2896 if (PTR_ERR(pp) != -EINPROGRESS) 2897 NAPI_GRO_CB(skb)->flush |= flush; 2898 } 2899 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2900 struct sk_buff *pp, 2901 int flush, 2902 struct gro_remcsum *grc) 2903 { 2904 if (PTR_ERR(pp) != -EINPROGRESS) { 2905 NAPI_GRO_CB(skb)->flush |= flush; 2906 skb_gro_remcsum_cleanup(skb, grc); 2907 skb->remcsum_offload = 0; 2908 } 2909 } 2910 #else 2911 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2912 { 2913 NAPI_GRO_CB(skb)->flush |= flush; 2914 } 2915 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2916 struct sk_buff *pp, 2917 int flush, 2918 struct gro_remcsum *grc) 2919 { 2920 NAPI_GRO_CB(skb)->flush |= flush; 2921 skb_gro_remcsum_cleanup(skb, grc); 2922 skb->remcsum_offload = 0; 2923 } 2924 #endif 2925 2926 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2927 unsigned short type, 2928 const void *daddr, const void *saddr, 2929 unsigned int len) 2930 { 2931 if (!dev->header_ops || !dev->header_ops->create) 2932 return 0; 2933 2934 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2935 } 2936 2937 static inline int dev_parse_header(const struct sk_buff *skb, 2938 unsigned char *haddr) 2939 { 2940 const struct net_device *dev = skb->dev; 2941 2942 if (!dev->header_ops || !dev->header_ops->parse) 2943 return 0; 2944 return dev->header_ops->parse(skb, haddr); 2945 } 2946 2947 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2948 { 2949 const struct net_device *dev = skb->dev; 2950 2951 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2952 return 0; 2953 return dev->header_ops->parse_protocol(skb); 2954 } 2955 2956 /* ll_header must have at least hard_header_len allocated */ 2957 static inline bool dev_validate_header(const struct net_device *dev, 2958 char *ll_header, int len) 2959 { 2960 if (likely(len >= dev->hard_header_len)) 2961 return true; 2962 if (len < dev->min_header_len) 2963 return false; 2964 2965 if (capable(CAP_SYS_RAWIO)) { 2966 memset(ll_header + len, 0, dev->hard_header_len - len); 2967 return true; 2968 } 2969 2970 if (dev->header_ops && dev->header_ops->validate) 2971 return dev->header_ops->validate(ll_header, len); 2972 2973 return false; 2974 } 2975 2976 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2977 int len, int size); 2978 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2979 static inline int unregister_gifconf(unsigned int family) 2980 { 2981 return register_gifconf(family, NULL); 2982 } 2983 2984 #ifdef CONFIG_NET_FLOW_LIMIT 2985 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2986 struct sd_flow_limit { 2987 u64 count; 2988 unsigned int num_buckets; 2989 unsigned int history_head; 2990 u16 history[FLOW_LIMIT_HISTORY]; 2991 u8 buckets[]; 2992 }; 2993 2994 extern int netdev_flow_limit_table_len; 2995 #endif /* CONFIG_NET_FLOW_LIMIT */ 2996 2997 /* 2998 * Incoming packets are placed on per-CPU queues 2999 */ 3000 struct softnet_data { 3001 struct list_head poll_list; 3002 struct sk_buff_head process_queue; 3003 3004 /* stats */ 3005 unsigned int processed; 3006 unsigned int time_squeeze; 3007 unsigned int received_rps; 3008 #ifdef CONFIG_RPS 3009 struct softnet_data *rps_ipi_list; 3010 #endif 3011 #ifdef CONFIG_NET_FLOW_LIMIT 3012 struct sd_flow_limit __rcu *flow_limit; 3013 #endif 3014 struct Qdisc *output_queue; 3015 struct Qdisc **output_queue_tailp; 3016 struct sk_buff *completion_queue; 3017 #ifdef CONFIG_XFRM_OFFLOAD 3018 struct sk_buff_head xfrm_backlog; 3019 #endif 3020 #ifdef CONFIG_RPS 3021 /* input_queue_head should be written by cpu owning this struct, 3022 * and only read by other cpus. Worth using a cache line. 3023 */ 3024 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3025 3026 /* Elements below can be accessed between CPUs for RPS/RFS */ 3027 call_single_data_t csd ____cacheline_aligned_in_smp; 3028 struct softnet_data *rps_ipi_next; 3029 unsigned int cpu; 3030 unsigned int input_queue_tail; 3031 #endif 3032 unsigned int dropped; 3033 struct sk_buff_head input_pkt_queue; 3034 struct napi_struct backlog; 3035 3036 }; 3037 3038 static inline void input_queue_head_incr(struct softnet_data *sd) 3039 { 3040 #ifdef CONFIG_RPS 3041 sd->input_queue_head++; 3042 #endif 3043 } 3044 3045 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3046 unsigned int *qtail) 3047 { 3048 #ifdef CONFIG_RPS 3049 *qtail = ++sd->input_queue_tail; 3050 #endif 3051 } 3052 3053 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3054 3055 void __netif_schedule(struct Qdisc *q); 3056 void netif_schedule_queue(struct netdev_queue *txq); 3057 3058 static inline void netif_tx_schedule_all(struct net_device *dev) 3059 { 3060 unsigned int i; 3061 3062 for (i = 0; i < dev->num_tx_queues; i++) 3063 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3064 } 3065 3066 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3067 { 3068 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3069 } 3070 3071 /** 3072 * netif_start_queue - allow transmit 3073 * @dev: network device 3074 * 3075 * Allow upper layers to call the device hard_start_xmit routine. 3076 */ 3077 static inline void netif_start_queue(struct net_device *dev) 3078 { 3079 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3080 } 3081 3082 static inline void netif_tx_start_all_queues(struct net_device *dev) 3083 { 3084 unsigned int i; 3085 3086 for (i = 0; i < dev->num_tx_queues; i++) { 3087 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3088 netif_tx_start_queue(txq); 3089 } 3090 } 3091 3092 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3093 3094 /** 3095 * netif_wake_queue - restart transmit 3096 * @dev: network device 3097 * 3098 * Allow upper layers to call the device hard_start_xmit routine. 3099 * Used for flow control when transmit resources are available. 3100 */ 3101 static inline void netif_wake_queue(struct net_device *dev) 3102 { 3103 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3104 } 3105 3106 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3107 { 3108 unsigned int i; 3109 3110 for (i = 0; i < dev->num_tx_queues; i++) { 3111 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3112 netif_tx_wake_queue(txq); 3113 } 3114 } 3115 3116 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3117 { 3118 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3119 } 3120 3121 /** 3122 * netif_stop_queue - stop transmitted packets 3123 * @dev: network device 3124 * 3125 * Stop upper layers calling the device hard_start_xmit routine. 3126 * Used for flow control when transmit resources are unavailable. 3127 */ 3128 static inline void netif_stop_queue(struct net_device *dev) 3129 { 3130 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3131 } 3132 3133 void netif_tx_stop_all_queues(struct net_device *dev); 3134 3135 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3136 { 3137 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3138 } 3139 3140 /** 3141 * netif_queue_stopped - test if transmit queue is flowblocked 3142 * @dev: network device 3143 * 3144 * Test if transmit queue on device is currently unable to send. 3145 */ 3146 static inline bool netif_queue_stopped(const struct net_device *dev) 3147 { 3148 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3149 } 3150 3151 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3152 { 3153 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3154 } 3155 3156 static inline bool 3157 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3158 { 3159 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3160 } 3161 3162 static inline bool 3163 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3164 { 3165 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3166 } 3167 3168 /** 3169 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3170 * @dev_queue: pointer to transmit queue 3171 * 3172 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3173 * to give appropriate hint to the CPU. 3174 */ 3175 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3176 { 3177 #ifdef CONFIG_BQL 3178 prefetchw(&dev_queue->dql.num_queued); 3179 #endif 3180 } 3181 3182 /** 3183 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3184 * @dev_queue: pointer to transmit queue 3185 * 3186 * BQL enabled drivers might use this helper in their TX completion path, 3187 * to give appropriate hint to the CPU. 3188 */ 3189 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3190 { 3191 #ifdef CONFIG_BQL 3192 prefetchw(&dev_queue->dql.limit); 3193 #endif 3194 } 3195 3196 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3197 unsigned int bytes) 3198 { 3199 #ifdef CONFIG_BQL 3200 dql_queued(&dev_queue->dql, bytes); 3201 3202 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3203 return; 3204 3205 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3206 3207 /* 3208 * The XOFF flag must be set before checking the dql_avail below, 3209 * because in netdev_tx_completed_queue we update the dql_completed 3210 * before checking the XOFF flag. 3211 */ 3212 smp_mb(); 3213 3214 /* check again in case another CPU has just made room avail */ 3215 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3216 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3217 #endif 3218 } 3219 3220 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3221 * that they should not test BQL status themselves. 3222 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3223 * skb of a batch. 3224 * Returns true if the doorbell must be used to kick the NIC. 3225 */ 3226 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3227 unsigned int bytes, 3228 bool xmit_more) 3229 { 3230 if (xmit_more) { 3231 #ifdef CONFIG_BQL 3232 dql_queued(&dev_queue->dql, bytes); 3233 #endif 3234 return netif_tx_queue_stopped(dev_queue); 3235 } 3236 netdev_tx_sent_queue(dev_queue, bytes); 3237 return true; 3238 } 3239 3240 /** 3241 * netdev_sent_queue - report the number of bytes queued to hardware 3242 * @dev: network device 3243 * @bytes: number of bytes queued to the hardware device queue 3244 * 3245 * Report the number of bytes queued for sending/completion to the network 3246 * device hardware queue. @bytes should be a good approximation and should 3247 * exactly match netdev_completed_queue() @bytes 3248 */ 3249 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3250 { 3251 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3252 } 3253 3254 static inline bool __netdev_sent_queue(struct net_device *dev, 3255 unsigned int bytes, 3256 bool xmit_more) 3257 { 3258 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3259 xmit_more); 3260 } 3261 3262 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3263 unsigned int pkts, unsigned int bytes) 3264 { 3265 #ifdef CONFIG_BQL 3266 if (unlikely(!bytes)) 3267 return; 3268 3269 dql_completed(&dev_queue->dql, bytes); 3270 3271 /* 3272 * Without the memory barrier there is a small possiblity that 3273 * netdev_tx_sent_queue will miss the update and cause the queue to 3274 * be stopped forever 3275 */ 3276 smp_mb(); 3277 3278 if (dql_avail(&dev_queue->dql) < 0) 3279 return; 3280 3281 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3282 netif_schedule_queue(dev_queue); 3283 #endif 3284 } 3285 3286 /** 3287 * netdev_completed_queue - report bytes and packets completed by device 3288 * @dev: network device 3289 * @pkts: actual number of packets sent over the medium 3290 * @bytes: actual number of bytes sent over the medium 3291 * 3292 * Report the number of bytes and packets transmitted by the network device 3293 * hardware queue over the physical medium, @bytes must exactly match the 3294 * @bytes amount passed to netdev_sent_queue() 3295 */ 3296 static inline void netdev_completed_queue(struct net_device *dev, 3297 unsigned int pkts, unsigned int bytes) 3298 { 3299 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3300 } 3301 3302 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3303 { 3304 #ifdef CONFIG_BQL 3305 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3306 dql_reset(&q->dql); 3307 #endif 3308 } 3309 3310 /** 3311 * netdev_reset_queue - reset the packets and bytes count of a network device 3312 * @dev_queue: network device 3313 * 3314 * Reset the bytes and packet count of a network device and clear the 3315 * software flow control OFF bit for this network device 3316 */ 3317 static inline void netdev_reset_queue(struct net_device *dev_queue) 3318 { 3319 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3320 } 3321 3322 /** 3323 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3324 * @dev: network device 3325 * @queue_index: given tx queue index 3326 * 3327 * Returns 0 if given tx queue index >= number of device tx queues, 3328 * otherwise returns the originally passed tx queue index. 3329 */ 3330 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3331 { 3332 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3333 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3334 dev->name, queue_index, 3335 dev->real_num_tx_queues); 3336 return 0; 3337 } 3338 3339 return queue_index; 3340 } 3341 3342 /** 3343 * netif_running - test if up 3344 * @dev: network device 3345 * 3346 * Test if the device has been brought up. 3347 */ 3348 static inline bool netif_running(const struct net_device *dev) 3349 { 3350 return test_bit(__LINK_STATE_START, &dev->state); 3351 } 3352 3353 /* 3354 * Routines to manage the subqueues on a device. We only need start, 3355 * stop, and a check if it's stopped. All other device management is 3356 * done at the overall netdevice level. 3357 * Also test the device if we're multiqueue. 3358 */ 3359 3360 /** 3361 * netif_start_subqueue - allow sending packets on subqueue 3362 * @dev: network device 3363 * @queue_index: sub queue index 3364 * 3365 * Start individual transmit queue of a device with multiple transmit queues. 3366 */ 3367 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3368 { 3369 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3370 3371 netif_tx_start_queue(txq); 3372 } 3373 3374 /** 3375 * netif_stop_subqueue - stop sending packets on subqueue 3376 * @dev: network device 3377 * @queue_index: sub queue index 3378 * 3379 * Stop individual transmit queue of a device with multiple transmit queues. 3380 */ 3381 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3382 { 3383 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3384 netif_tx_stop_queue(txq); 3385 } 3386 3387 /** 3388 * netif_subqueue_stopped - test status of subqueue 3389 * @dev: network device 3390 * @queue_index: sub queue index 3391 * 3392 * Check individual transmit queue of a device with multiple transmit queues. 3393 */ 3394 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3395 u16 queue_index) 3396 { 3397 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3398 3399 return netif_tx_queue_stopped(txq); 3400 } 3401 3402 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3403 struct sk_buff *skb) 3404 { 3405 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3406 } 3407 3408 /** 3409 * netif_wake_subqueue - allow sending packets on subqueue 3410 * @dev: network device 3411 * @queue_index: sub queue index 3412 * 3413 * Resume individual transmit queue of a device with multiple transmit queues. 3414 */ 3415 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3416 { 3417 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3418 3419 netif_tx_wake_queue(txq); 3420 } 3421 3422 #ifdef CONFIG_XPS 3423 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3424 u16 index); 3425 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3426 u16 index, bool is_rxqs_map); 3427 3428 /** 3429 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3430 * @j: CPU/Rx queue index 3431 * @mask: bitmask of all cpus/rx queues 3432 * @nr_bits: number of bits in the bitmask 3433 * 3434 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3435 */ 3436 static inline bool netif_attr_test_mask(unsigned long j, 3437 const unsigned long *mask, 3438 unsigned int nr_bits) 3439 { 3440 cpu_max_bits_warn(j, nr_bits); 3441 return test_bit(j, mask); 3442 } 3443 3444 /** 3445 * netif_attr_test_online - Test for online CPU/Rx queue 3446 * @j: CPU/Rx queue index 3447 * @online_mask: bitmask for CPUs/Rx queues that are online 3448 * @nr_bits: number of bits in the bitmask 3449 * 3450 * Returns true if a CPU/Rx queue is online. 3451 */ 3452 static inline bool netif_attr_test_online(unsigned long j, 3453 const unsigned long *online_mask, 3454 unsigned int nr_bits) 3455 { 3456 cpu_max_bits_warn(j, nr_bits); 3457 3458 if (online_mask) 3459 return test_bit(j, online_mask); 3460 3461 return (j < nr_bits); 3462 } 3463 3464 /** 3465 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3466 * @n: CPU/Rx queue index 3467 * @srcp: the cpumask/Rx queue mask pointer 3468 * @nr_bits: number of bits in the bitmask 3469 * 3470 * Returns >= nr_bits if no further CPUs/Rx queues set. 3471 */ 3472 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3473 unsigned int nr_bits) 3474 { 3475 /* -1 is a legal arg here. */ 3476 if (n != -1) 3477 cpu_max_bits_warn(n, nr_bits); 3478 3479 if (srcp) 3480 return find_next_bit(srcp, nr_bits, n + 1); 3481 3482 return n + 1; 3483 } 3484 3485 /** 3486 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3487 * @n: CPU/Rx queue index 3488 * @src1p: the first CPUs/Rx queues mask pointer 3489 * @src2p: the second CPUs/Rx queues mask pointer 3490 * @nr_bits: number of bits in the bitmask 3491 * 3492 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3493 */ 3494 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3495 const unsigned long *src2p, 3496 unsigned int nr_bits) 3497 { 3498 /* -1 is a legal arg here. */ 3499 if (n != -1) 3500 cpu_max_bits_warn(n, nr_bits); 3501 3502 if (src1p && src2p) 3503 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3504 else if (src1p) 3505 return find_next_bit(src1p, nr_bits, n + 1); 3506 else if (src2p) 3507 return find_next_bit(src2p, nr_bits, n + 1); 3508 3509 return n + 1; 3510 } 3511 #else 3512 static inline int netif_set_xps_queue(struct net_device *dev, 3513 const struct cpumask *mask, 3514 u16 index) 3515 { 3516 return 0; 3517 } 3518 3519 static inline int __netif_set_xps_queue(struct net_device *dev, 3520 const unsigned long *mask, 3521 u16 index, bool is_rxqs_map) 3522 { 3523 return 0; 3524 } 3525 #endif 3526 3527 /** 3528 * netif_is_multiqueue - test if device has multiple transmit queues 3529 * @dev: network device 3530 * 3531 * Check if device has multiple transmit queues 3532 */ 3533 static inline bool netif_is_multiqueue(const struct net_device *dev) 3534 { 3535 return dev->num_tx_queues > 1; 3536 } 3537 3538 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3539 3540 #ifdef CONFIG_SYSFS 3541 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3542 #else 3543 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3544 unsigned int rxqs) 3545 { 3546 dev->real_num_rx_queues = rxqs; 3547 return 0; 3548 } 3549 #endif 3550 3551 static inline struct netdev_rx_queue * 3552 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3553 { 3554 return dev->_rx + rxq; 3555 } 3556 3557 #ifdef CONFIG_SYSFS 3558 static inline unsigned int get_netdev_rx_queue_index( 3559 struct netdev_rx_queue *queue) 3560 { 3561 struct net_device *dev = queue->dev; 3562 int index = queue - dev->_rx; 3563 3564 BUG_ON(index >= dev->num_rx_queues); 3565 return index; 3566 } 3567 #endif 3568 3569 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3570 int netif_get_num_default_rss_queues(void); 3571 3572 enum skb_free_reason { 3573 SKB_REASON_CONSUMED, 3574 SKB_REASON_DROPPED, 3575 }; 3576 3577 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3578 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3579 3580 /* 3581 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3582 * interrupt context or with hardware interrupts being disabled. 3583 * (in_irq() || irqs_disabled()) 3584 * 3585 * We provide four helpers that can be used in following contexts : 3586 * 3587 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3588 * replacing kfree_skb(skb) 3589 * 3590 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3591 * Typically used in place of consume_skb(skb) in TX completion path 3592 * 3593 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3594 * replacing kfree_skb(skb) 3595 * 3596 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3597 * and consumed a packet. Used in place of consume_skb(skb) 3598 */ 3599 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3600 { 3601 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3602 } 3603 3604 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3605 { 3606 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3607 } 3608 3609 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3610 { 3611 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3612 } 3613 3614 static inline void dev_consume_skb_any(struct sk_buff *skb) 3615 { 3616 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3617 } 3618 3619 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3620 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3621 int netif_rx(struct sk_buff *skb); 3622 int netif_rx_ni(struct sk_buff *skb); 3623 int netif_receive_skb(struct sk_buff *skb); 3624 int netif_receive_skb_core(struct sk_buff *skb); 3625 void netif_receive_skb_list(struct list_head *head); 3626 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3627 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3628 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3629 gro_result_t napi_gro_frags(struct napi_struct *napi); 3630 struct packet_offload *gro_find_receive_by_type(__be16 type); 3631 struct packet_offload *gro_find_complete_by_type(__be16 type); 3632 3633 static inline void napi_free_frags(struct napi_struct *napi) 3634 { 3635 kfree_skb(napi->skb); 3636 napi->skb = NULL; 3637 } 3638 3639 bool netdev_is_rx_handler_busy(struct net_device *dev); 3640 int netdev_rx_handler_register(struct net_device *dev, 3641 rx_handler_func_t *rx_handler, 3642 void *rx_handler_data); 3643 void netdev_rx_handler_unregister(struct net_device *dev); 3644 3645 bool dev_valid_name(const char *name); 3646 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3647 bool *need_copyout); 3648 int dev_ifconf(struct net *net, struct ifconf *, int); 3649 int dev_ethtool(struct net *net, struct ifreq *); 3650 unsigned int dev_get_flags(const struct net_device *); 3651 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3652 struct netlink_ext_ack *extack); 3653 int dev_change_flags(struct net_device *dev, unsigned int flags, 3654 struct netlink_ext_ack *extack); 3655 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3656 unsigned int gchanges); 3657 int dev_change_name(struct net_device *, const char *); 3658 int dev_set_alias(struct net_device *, const char *, size_t); 3659 int dev_get_alias(const struct net_device *, char *, size_t); 3660 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3661 int __dev_set_mtu(struct net_device *, int); 3662 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3663 struct netlink_ext_ack *extack); 3664 int dev_set_mtu(struct net_device *, int); 3665 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3666 void dev_set_group(struct net_device *, int); 3667 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3668 struct netlink_ext_ack *extack); 3669 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3670 struct netlink_ext_ack *extack); 3671 int dev_change_carrier(struct net_device *, bool new_carrier); 3672 int dev_get_phys_port_id(struct net_device *dev, 3673 struct netdev_phys_item_id *ppid); 3674 int dev_get_phys_port_name(struct net_device *dev, 3675 char *name, size_t len); 3676 int dev_get_port_parent_id(struct net_device *dev, 3677 struct netdev_phys_item_id *ppid, bool recurse); 3678 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3679 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3680 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3681 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3682 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3683 struct netdev_queue *txq, int *ret); 3684 3685 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3686 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3687 int fd, u32 flags); 3688 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3689 enum bpf_netdev_command cmd); 3690 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3691 3692 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3693 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3694 bool is_skb_forwardable(const struct net_device *dev, 3695 const struct sk_buff *skb); 3696 3697 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3698 struct sk_buff *skb) 3699 { 3700 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3701 unlikely(!is_skb_forwardable(dev, skb))) { 3702 atomic_long_inc(&dev->rx_dropped); 3703 kfree_skb(skb); 3704 return NET_RX_DROP; 3705 } 3706 3707 skb_scrub_packet(skb, true); 3708 skb->priority = 0; 3709 return 0; 3710 } 3711 3712 bool dev_nit_active(struct net_device *dev); 3713 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3714 3715 extern int netdev_budget; 3716 extern unsigned int netdev_budget_usecs; 3717 3718 /* Called by rtnetlink.c:rtnl_unlock() */ 3719 void netdev_run_todo(void); 3720 3721 /** 3722 * dev_put - release reference to device 3723 * @dev: network device 3724 * 3725 * Release reference to device to allow it to be freed. 3726 */ 3727 static inline void dev_put(struct net_device *dev) 3728 { 3729 this_cpu_dec(*dev->pcpu_refcnt); 3730 } 3731 3732 /** 3733 * dev_hold - get reference to device 3734 * @dev: network device 3735 * 3736 * Hold reference to device to keep it from being freed. 3737 */ 3738 static inline void dev_hold(struct net_device *dev) 3739 { 3740 this_cpu_inc(*dev->pcpu_refcnt); 3741 } 3742 3743 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3744 * and _off may be called from IRQ context, but it is caller 3745 * who is responsible for serialization of these calls. 3746 * 3747 * The name carrier is inappropriate, these functions should really be 3748 * called netif_lowerlayer_*() because they represent the state of any 3749 * kind of lower layer not just hardware media. 3750 */ 3751 3752 void linkwatch_init_dev(struct net_device *dev); 3753 void linkwatch_fire_event(struct net_device *dev); 3754 void linkwatch_forget_dev(struct net_device *dev); 3755 3756 /** 3757 * netif_carrier_ok - test if carrier present 3758 * @dev: network device 3759 * 3760 * Check if carrier is present on device 3761 */ 3762 static inline bool netif_carrier_ok(const struct net_device *dev) 3763 { 3764 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3765 } 3766 3767 unsigned long dev_trans_start(struct net_device *dev); 3768 3769 void __netdev_watchdog_up(struct net_device *dev); 3770 3771 void netif_carrier_on(struct net_device *dev); 3772 3773 void netif_carrier_off(struct net_device *dev); 3774 3775 /** 3776 * netif_dormant_on - mark device as dormant. 3777 * @dev: network device 3778 * 3779 * Mark device as dormant (as per RFC2863). 3780 * 3781 * The dormant state indicates that the relevant interface is not 3782 * actually in a condition to pass packets (i.e., it is not 'up') but is 3783 * in a "pending" state, waiting for some external event. For "on- 3784 * demand" interfaces, this new state identifies the situation where the 3785 * interface is waiting for events to place it in the up state. 3786 */ 3787 static inline void netif_dormant_on(struct net_device *dev) 3788 { 3789 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3790 linkwatch_fire_event(dev); 3791 } 3792 3793 /** 3794 * netif_dormant_off - set device as not dormant. 3795 * @dev: network device 3796 * 3797 * Device is not in dormant state. 3798 */ 3799 static inline void netif_dormant_off(struct net_device *dev) 3800 { 3801 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3802 linkwatch_fire_event(dev); 3803 } 3804 3805 /** 3806 * netif_dormant - test if device is dormant 3807 * @dev: network device 3808 * 3809 * Check if device is dormant. 3810 */ 3811 static inline bool netif_dormant(const struct net_device *dev) 3812 { 3813 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3814 } 3815 3816 3817 /** 3818 * netif_oper_up - test if device is operational 3819 * @dev: network device 3820 * 3821 * Check if carrier is operational 3822 */ 3823 static inline bool netif_oper_up(const struct net_device *dev) 3824 { 3825 return (dev->operstate == IF_OPER_UP || 3826 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3827 } 3828 3829 /** 3830 * netif_device_present - is device available or removed 3831 * @dev: network device 3832 * 3833 * Check if device has not been removed from system. 3834 */ 3835 static inline bool netif_device_present(struct net_device *dev) 3836 { 3837 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3838 } 3839 3840 void netif_device_detach(struct net_device *dev); 3841 3842 void netif_device_attach(struct net_device *dev); 3843 3844 /* 3845 * Network interface message level settings 3846 */ 3847 3848 enum { 3849 NETIF_MSG_DRV = 0x0001, 3850 NETIF_MSG_PROBE = 0x0002, 3851 NETIF_MSG_LINK = 0x0004, 3852 NETIF_MSG_TIMER = 0x0008, 3853 NETIF_MSG_IFDOWN = 0x0010, 3854 NETIF_MSG_IFUP = 0x0020, 3855 NETIF_MSG_RX_ERR = 0x0040, 3856 NETIF_MSG_TX_ERR = 0x0080, 3857 NETIF_MSG_TX_QUEUED = 0x0100, 3858 NETIF_MSG_INTR = 0x0200, 3859 NETIF_MSG_TX_DONE = 0x0400, 3860 NETIF_MSG_RX_STATUS = 0x0800, 3861 NETIF_MSG_PKTDATA = 0x1000, 3862 NETIF_MSG_HW = 0x2000, 3863 NETIF_MSG_WOL = 0x4000, 3864 }; 3865 3866 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3867 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3868 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3869 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3870 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3871 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3872 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3873 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3874 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3875 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3876 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3877 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3878 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3879 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3880 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3881 3882 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3883 { 3884 /* use default */ 3885 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3886 return default_msg_enable_bits; 3887 if (debug_value == 0) /* no output */ 3888 return 0; 3889 /* set low N bits */ 3890 return (1U << debug_value) - 1; 3891 } 3892 3893 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3894 { 3895 spin_lock(&txq->_xmit_lock); 3896 txq->xmit_lock_owner = cpu; 3897 } 3898 3899 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3900 { 3901 __acquire(&txq->_xmit_lock); 3902 return true; 3903 } 3904 3905 static inline void __netif_tx_release(struct netdev_queue *txq) 3906 { 3907 __release(&txq->_xmit_lock); 3908 } 3909 3910 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3911 { 3912 spin_lock_bh(&txq->_xmit_lock); 3913 txq->xmit_lock_owner = smp_processor_id(); 3914 } 3915 3916 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3917 { 3918 bool ok = spin_trylock(&txq->_xmit_lock); 3919 if (likely(ok)) 3920 txq->xmit_lock_owner = smp_processor_id(); 3921 return ok; 3922 } 3923 3924 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3925 { 3926 txq->xmit_lock_owner = -1; 3927 spin_unlock(&txq->_xmit_lock); 3928 } 3929 3930 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3931 { 3932 txq->xmit_lock_owner = -1; 3933 spin_unlock_bh(&txq->_xmit_lock); 3934 } 3935 3936 static inline void txq_trans_update(struct netdev_queue *txq) 3937 { 3938 if (txq->xmit_lock_owner != -1) 3939 txq->trans_start = jiffies; 3940 } 3941 3942 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3943 static inline void netif_trans_update(struct net_device *dev) 3944 { 3945 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3946 3947 if (txq->trans_start != jiffies) 3948 txq->trans_start = jiffies; 3949 } 3950 3951 /** 3952 * netif_tx_lock - grab network device transmit lock 3953 * @dev: network device 3954 * 3955 * Get network device transmit lock 3956 */ 3957 static inline void netif_tx_lock(struct net_device *dev) 3958 { 3959 unsigned int i; 3960 int cpu; 3961 3962 spin_lock(&dev->tx_global_lock); 3963 cpu = smp_processor_id(); 3964 for (i = 0; i < dev->num_tx_queues; i++) { 3965 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3966 3967 /* We are the only thread of execution doing a 3968 * freeze, but we have to grab the _xmit_lock in 3969 * order to synchronize with threads which are in 3970 * the ->hard_start_xmit() handler and already 3971 * checked the frozen bit. 3972 */ 3973 __netif_tx_lock(txq, cpu); 3974 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3975 __netif_tx_unlock(txq); 3976 } 3977 } 3978 3979 static inline void netif_tx_lock_bh(struct net_device *dev) 3980 { 3981 local_bh_disable(); 3982 netif_tx_lock(dev); 3983 } 3984 3985 static inline void netif_tx_unlock(struct net_device *dev) 3986 { 3987 unsigned int i; 3988 3989 for (i = 0; i < dev->num_tx_queues; i++) { 3990 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3991 3992 /* No need to grab the _xmit_lock here. If the 3993 * queue is not stopped for another reason, we 3994 * force a schedule. 3995 */ 3996 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3997 netif_schedule_queue(txq); 3998 } 3999 spin_unlock(&dev->tx_global_lock); 4000 } 4001 4002 static inline void netif_tx_unlock_bh(struct net_device *dev) 4003 { 4004 netif_tx_unlock(dev); 4005 local_bh_enable(); 4006 } 4007 4008 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4009 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4010 __netif_tx_lock(txq, cpu); \ 4011 } else { \ 4012 __netif_tx_acquire(txq); \ 4013 } \ 4014 } 4015 4016 #define HARD_TX_TRYLOCK(dev, txq) \ 4017 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4018 __netif_tx_trylock(txq) : \ 4019 __netif_tx_acquire(txq)) 4020 4021 #define HARD_TX_UNLOCK(dev, txq) { \ 4022 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4023 __netif_tx_unlock(txq); \ 4024 } else { \ 4025 __netif_tx_release(txq); \ 4026 } \ 4027 } 4028 4029 static inline void netif_tx_disable(struct net_device *dev) 4030 { 4031 unsigned int i; 4032 int cpu; 4033 4034 local_bh_disable(); 4035 cpu = smp_processor_id(); 4036 for (i = 0; i < dev->num_tx_queues; i++) { 4037 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4038 4039 __netif_tx_lock(txq, cpu); 4040 netif_tx_stop_queue(txq); 4041 __netif_tx_unlock(txq); 4042 } 4043 local_bh_enable(); 4044 } 4045 4046 static inline void netif_addr_lock(struct net_device *dev) 4047 { 4048 spin_lock(&dev->addr_list_lock); 4049 } 4050 4051 static inline void netif_addr_lock_nested(struct net_device *dev) 4052 { 4053 int subclass = SINGLE_DEPTH_NESTING; 4054 4055 if (dev->netdev_ops->ndo_get_lock_subclass) 4056 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4057 4058 spin_lock_nested(&dev->addr_list_lock, subclass); 4059 } 4060 4061 static inline void netif_addr_lock_bh(struct net_device *dev) 4062 { 4063 spin_lock_bh(&dev->addr_list_lock); 4064 } 4065 4066 static inline void netif_addr_unlock(struct net_device *dev) 4067 { 4068 spin_unlock(&dev->addr_list_lock); 4069 } 4070 4071 static inline void netif_addr_unlock_bh(struct net_device *dev) 4072 { 4073 spin_unlock_bh(&dev->addr_list_lock); 4074 } 4075 4076 /* 4077 * dev_addrs walker. Should be used only for read access. Call with 4078 * rcu_read_lock held. 4079 */ 4080 #define for_each_dev_addr(dev, ha) \ 4081 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4082 4083 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4084 4085 void ether_setup(struct net_device *dev); 4086 4087 /* Support for loadable net-drivers */ 4088 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4089 unsigned char name_assign_type, 4090 void (*setup)(struct net_device *), 4091 unsigned int txqs, unsigned int rxqs); 4092 int dev_get_valid_name(struct net *net, struct net_device *dev, 4093 const char *name); 4094 4095 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4096 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4097 4098 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4099 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4100 count) 4101 4102 int register_netdev(struct net_device *dev); 4103 void unregister_netdev(struct net_device *dev); 4104 4105 /* General hardware address lists handling functions */ 4106 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4107 struct netdev_hw_addr_list *from_list, int addr_len); 4108 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4109 struct netdev_hw_addr_list *from_list, int addr_len); 4110 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4111 struct net_device *dev, 4112 int (*sync)(struct net_device *, const unsigned char *), 4113 int (*unsync)(struct net_device *, 4114 const unsigned char *)); 4115 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4116 struct net_device *dev, 4117 int (*sync)(struct net_device *, 4118 const unsigned char *, int), 4119 int (*unsync)(struct net_device *, 4120 const unsigned char *, int)); 4121 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4122 struct net_device *dev, 4123 int (*unsync)(struct net_device *, 4124 const unsigned char *, int)); 4125 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4126 struct net_device *dev, 4127 int (*unsync)(struct net_device *, 4128 const unsigned char *)); 4129 void __hw_addr_init(struct netdev_hw_addr_list *list); 4130 4131 /* Functions used for device addresses handling */ 4132 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4133 unsigned char addr_type); 4134 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4135 unsigned char addr_type); 4136 void dev_addr_flush(struct net_device *dev); 4137 int dev_addr_init(struct net_device *dev); 4138 4139 /* Functions used for unicast addresses handling */ 4140 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4141 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4142 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4143 int dev_uc_sync(struct net_device *to, struct net_device *from); 4144 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4145 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4146 void dev_uc_flush(struct net_device *dev); 4147 void dev_uc_init(struct net_device *dev); 4148 4149 /** 4150 * __dev_uc_sync - Synchonize device's unicast list 4151 * @dev: device to sync 4152 * @sync: function to call if address should be added 4153 * @unsync: function to call if address should be removed 4154 * 4155 * Add newly added addresses to the interface, and release 4156 * addresses that have been deleted. 4157 */ 4158 static inline int __dev_uc_sync(struct net_device *dev, 4159 int (*sync)(struct net_device *, 4160 const unsigned char *), 4161 int (*unsync)(struct net_device *, 4162 const unsigned char *)) 4163 { 4164 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4165 } 4166 4167 /** 4168 * __dev_uc_unsync - Remove synchronized addresses from device 4169 * @dev: device to sync 4170 * @unsync: function to call if address should be removed 4171 * 4172 * Remove all addresses that were added to the device by dev_uc_sync(). 4173 */ 4174 static inline void __dev_uc_unsync(struct net_device *dev, 4175 int (*unsync)(struct net_device *, 4176 const unsigned char *)) 4177 { 4178 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4179 } 4180 4181 /* Functions used for multicast addresses handling */ 4182 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4183 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4184 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4185 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4186 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4187 int dev_mc_sync(struct net_device *to, struct net_device *from); 4188 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4189 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4190 void dev_mc_flush(struct net_device *dev); 4191 void dev_mc_init(struct net_device *dev); 4192 4193 /** 4194 * __dev_mc_sync - Synchonize device's multicast list 4195 * @dev: device to sync 4196 * @sync: function to call if address should be added 4197 * @unsync: function to call if address should be removed 4198 * 4199 * Add newly added addresses to the interface, and release 4200 * addresses that have been deleted. 4201 */ 4202 static inline int __dev_mc_sync(struct net_device *dev, 4203 int (*sync)(struct net_device *, 4204 const unsigned char *), 4205 int (*unsync)(struct net_device *, 4206 const unsigned char *)) 4207 { 4208 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4209 } 4210 4211 /** 4212 * __dev_mc_unsync - Remove synchronized addresses from device 4213 * @dev: device to sync 4214 * @unsync: function to call if address should be removed 4215 * 4216 * Remove all addresses that were added to the device by dev_mc_sync(). 4217 */ 4218 static inline void __dev_mc_unsync(struct net_device *dev, 4219 int (*unsync)(struct net_device *, 4220 const unsigned char *)) 4221 { 4222 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4223 } 4224 4225 /* Functions used for secondary unicast and multicast support */ 4226 void dev_set_rx_mode(struct net_device *dev); 4227 void __dev_set_rx_mode(struct net_device *dev); 4228 int dev_set_promiscuity(struct net_device *dev, int inc); 4229 int dev_set_allmulti(struct net_device *dev, int inc); 4230 void netdev_state_change(struct net_device *dev); 4231 void netdev_notify_peers(struct net_device *dev); 4232 void netdev_features_change(struct net_device *dev); 4233 /* Load a device via the kmod */ 4234 void dev_load(struct net *net, const char *name); 4235 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4236 struct rtnl_link_stats64 *storage); 4237 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4238 const struct net_device_stats *netdev_stats); 4239 4240 extern int netdev_max_backlog; 4241 extern int netdev_tstamp_prequeue; 4242 extern int weight_p; 4243 extern int dev_weight_rx_bias; 4244 extern int dev_weight_tx_bias; 4245 extern int dev_rx_weight; 4246 extern int dev_tx_weight; 4247 4248 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4249 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4250 struct list_head **iter); 4251 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4252 struct list_head **iter); 4253 4254 /* iterate through upper list, must be called under RCU read lock */ 4255 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4256 for (iter = &(dev)->adj_list.upper, \ 4257 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4258 updev; \ 4259 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4260 4261 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4262 int (*fn)(struct net_device *upper_dev, 4263 void *data), 4264 void *data); 4265 4266 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4267 struct net_device *upper_dev); 4268 4269 bool netdev_has_any_upper_dev(struct net_device *dev); 4270 4271 void *netdev_lower_get_next_private(struct net_device *dev, 4272 struct list_head **iter); 4273 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4274 struct list_head **iter); 4275 4276 #define netdev_for_each_lower_private(dev, priv, iter) \ 4277 for (iter = (dev)->adj_list.lower.next, \ 4278 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4279 priv; \ 4280 priv = netdev_lower_get_next_private(dev, &(iter))) 4281 4282 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4283 for (iter = &(dev)->adj_list.lower, \ 4284 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4285 priv; \ 4286 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4287 4288 void *netdev_lower_get_next(struct net_device *dev, 4289 struct list_head **iter); 4290 4291 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4292 for (iter = (dev)->adj_list.lower.next, \ 4293 ldev = netdev_lower_get_next(dev, &(iter)); \ 4294 ldev; \ 4295 ldev = netdev_lower_get_next(dev, &(iter))) 4296 4297 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4298 struct list_head **iter); 4299 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4300 struct list_head **iter); 4301 4302 int netdev_walk_all_lower_dev(struct net_device *dev, 4303 int (*fn)(struct net_device *lower_dev, 4304 void *data), 4305 void *data); 4306 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4307 int (*fn)(struct net_device *lower_dev, 4308 void *data), 4309 void *data); 4310 4311 void *netdev_adjacent_get_private(struct list_head *adj_list); 4312 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4313 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4314 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4315 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4316 struct netlink_ext_ack *extack); 4317 int netdev_master_upper_dev_link(struct net_device *dev, 4318 struct net_device *upper_dev, 4319 void *upper_priv, void *upper_info, 4320 struct netlink_ext_ack *extack); 4321 void netdev_upper_dev_unlink(struct net_device *dev, 4322 struct net_device *upper_dev); 4323 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4324 void *netdev_lower_dev_get_private(struct net_device *dev, 4325 struct net_device *lower_dev); 4326 void netdev_lower_state_changed(struct net_device *lower_dev, 4327 void *lower_state_info); 4328 4329 /* RSS keys are 40 or 52 bytes long */ 4330 #define NETDEV_RSS_KEY_LEN 52 4331 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4332 void netdev_rss_key_fill(void *buffer, size_t len); 4333 4334 int dev_get_nest_level(struct net_device *dev); 4335 int skb_checksum_help(struct sk_buff *skb); 4336 int skb_crc32c_csum_help(struct sk_buff *skb); 4337 int skb_csum_hwoffload_help(struct sk_buff *skb, 4338 const netdev_features_t features); 4339 4340 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4341 netdev_features_t features, bool tx_path); 4342 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4343 netdev_features_t features); 4344 4345 struct netdev_bonding_info { 4346 ifslave slave; 4347 ifbond master; 4348 }; 4349 4350 struct netdev_notifier_bonding_info { 4351 struct netdev_notifier_info info; /* must be first */ 4352 struct netdev_bonding_info bonding_info; 4353 }; 4354 4355 void netdev_bonding_info_change(struct net_device *dev, 4356 struct netdev_bonding_info *bonding_info); 4357 4358 static inline 4359 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4360 { 4361 return __skb_gso_segment(skb, features, true); 4362 } 4363 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4364 4365 static inline bool can_checksum_protocol(netdev_features_t features, 4366 __be16 protocol) 4367 { 4368 if (protocol == htons(ETH_P_FCOE)) 4369 return !!(features & NETIF_F_FCOE_CRC); 4370 4371 /* Assume this is an IP checksum (not SCTP CRC) */ 4372 4373 if (features & NETIF_F_HW_CSUM) { 4374 /* Can checksum everything */ 4375 return true; 4376 } 4377 4378 switch (protocol) { 4379 case htons(ETH_P_IP): 4380 return !!(features & NETIF_F_IP_CSUM); 4381 case htons(ETH_P_IPV6): 4382 return !!(features & NETIF_F_IPV6_CSUM); 4383 default: 4384 return false; 4385 } 4386 } 4387 4388 #ifdef CONFIG_BUG 4389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4390 #else 4391 static inline void netdev_rx_csum_fault(struct net_device *dev, 4392 struct sk_buff *skb) 4393 { 4394 } 4395 #endif 4396 /* rx skb timestamps */ 4397 void net_enable_timestamp(void); 4398 void net_disable_timestamp(void); 4399 4400 #ifdef CONFIG_PROC_FS 4401 int __init dev_proc_init(void); 4402 #else 4403 #define dev_proc_init() 0 4404 #endif 4405 4406 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4407 struct sk_buff *skb, struct net_device *dev, 4408 bool more) 4409 { 4410 skb->xmit_more = more ? 1 : 0; 4411 return ops->ndo_start_xmit(skb, dev); 4412 } 4413 4414 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4415 struct netdev_queue *txq, bool more) 4416 { 4417 const struct net_device_ops *ops = dev->netdev_ops; 4418 netdev_tx_t rc; 4419 4420 rc = __netdev_start_xmit(ops, skb, dev, more); 4421 if (rc == NETDEV_TX_OK) 4422 txq_trans_update(txq); 4423 4424 return rc; 4425 } 4426 4427 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4428 const void *ns); 4429 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4430 const void *ns); 4431 4432 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4433 { 4434 return netdev_class_create_file_ns(class_attr, NULL); 4435 } 4436 4437 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4438 { 4439 netdev_class_remove_file_ns(class_attr, NULL); 4440 } 4441 4442 extern const struct kobj_ns_type_operations net_ns_type_operations; 4443 4444 const char *netdev_drivername(const struct net_device *dev); 4445 4446 void linkwatch_run_queue(void); 4447 4448 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4449 netdev_features_t f2) 4450 { 4451 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4452 if (f1 & NETIF_F_HW_CSUM) 4453 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4454 else 4455 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4456 } 4457 4458 return f1 & f2; 4459 } 4460 4461 static inline netdev_features_t netdev_get_wanted_features( 4462 struct net_device *dev) 4463 { 4464 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4465 } 4466 netdev_features_t netdev_increment_features(netdev_features_t all, 4467 netdev_features_t one, netdev_features_t mask); 4468 4469 /* Allow TSO being used on stacked device : 4470 * Performing the GSO segmentation before last device 4471 * is a performance improvement. 4472 */ 4473 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4474 netdev_features_t mask) 4475 { 4476 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4477 } 4478 4479 int __netdev_update_features(struct net_device *dev); 4480 void netdev_update_features(struct net_device *dev); 4481 void netdev_change_features(struct net_device *dev); 4482 4483 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4484 struct net_device *dev); 4485 4486 netdev_features_t passthru_features_check(struct sk_buff *skb, 4487 struct net_device *dev, 4488 netdev_features_t features); 4489 netdev_features_t netif_skb_features(struct sk_buff *skb); 4490 4491 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4492 { 4493 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4494 4495 /* check flags correspondence */ 4496 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4497 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4498 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4499 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4500 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4501 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4502 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4503 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4514 4515 return (features & feature) == feature; 4516 } 4517 4518 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4519 { 4520 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4521 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4522 } 4523 4524 static inline bool netif_needs_gso(struct sk_buff *skb, 4525 netdev_features_t features) 4526 { 4527 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4528 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4529 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4530 } 4531 4532 static inline void netif_set_gso_max_size(struct net_device *dev, 4533 unsigned int size) 4534 { 4535 dev->gso_max_size = size; 4536 } 4537 4538 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4539 int pulled_hlen, u16 mac_offset, 4540 int mac_len) 4541 { 4542 skb->protocol = protocol; 4543 skb->encapsulation = 1; 4544 skb_push(skb, pulled_hlen); 4545 skb_reset_transport_header(skb); 4546 skb->mac_header = mac_offset; 4547 skb->network_header = skb->mac_header + mac_len; 4548 skb->mac_len = mac_len; 4549 } 4550 4551 static inline bool netif_is_macsec(const struct net_device *dev) 4552 { 4553 return dev->priv_flags & IFF_MACSEC; 4554 } 4555 4556 static inline bool netif_is_macvlan(const struct net_device *dev) 4557 { 4558 return dev->priv_flags & IFF_MACVLAN; 4559 } 4560 4561 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4562 { 4563 return dev->priv_flags & IFF_MACVLAN_PORT; 4564 } 4565 4566 static inline bool netif_is_bond_master(const struct net_device *dev) 4567 { 4568 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4569 } 4570 4571 static inline bool netif_is_bond_slave(const struct net_device *dev) 4572 { 4573 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4574 } 4575 4576 static inline bool netif_supports_nofcs(struct net_device *dev) 4577 { 4578 return dev->priv_flags & IFF_SUPP_NOFCS; 4579 } 4580 4581 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4582 { 4583 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4584 } 4585 4586 static inline bool netif_is_l3_master(const struct net_device *dev) 4587 { 4588 return dev->priv_flags & IFF_L3MDEV_MASTER; 4589 } 4590 4591 static inline bool netif_is_l3_slave(const struct net_device *dev) 4592 { 4593 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4594 } 4595 4596 static inline bool netif_is_bridge_master(const struct net_device *dev) 4597 { 4598 return dev->priv_flags & IFF_EBRIDGE; 4599 } 4600 4601 static inline bool netif_is_bridge_port(const struct net_device *dev) 4602 { 4603 return dev->priv_flags & IFF_BRIDGE_PORT; 4604 } 4605 4606 static inline bool netif_is_ovs_master(const struct net_device *dev) 4607 { 4608 return dev->priv_flags & IFF_OPENVSWITCH; 4609 } 4610 4611 static inline bool netif_is_ovs_port(const struct net_device *dev) 4612 { 4613 return dev->priv_flags & IFF_OVS_DATAPATH; 4614 } 4615 4616 static inline bool netif_is_team_master(const struct net_device *dev) 4617 { 4618 return dev->priv_flags & IFF_TEAM; 4619 } 4620 4621 static inline bool netif_is_team_port(const struct net_device *dev) 4622 { 4623 return dev->priv_flags & IFF_TEAM_PORT; 4624 } 4625 4626 static inline bool netif_is_lag_master(const struct net_device *dev) 4627 { 4628 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4629 } 4630 4631 static inline bool netif_is_lag_port(const struct net_device *dev) 4632 { 4633 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4634 } 4635 4636 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4637 { 4638 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4639 } 4640 4641 static inline bool netif_is_failover(const struct net_device *dev) 4642 { 4643 return dev->priv_flags & IFF_FAILOVER; 4644 } 4645 4646 static inline bool netif_is_failover_slave(const struct net_device *dev) 4647 { 4648 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4649 } 4650 4651 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4652 static inline void netif_keep_dst(struct net_device *dev) 4653 { 4654 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4655 } 4656 4657 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4658 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4659 { 4660 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4661 return dev->priv_flags & IFF_MACSEC; 4662 } 4663 4664 extern struct pernet_operations __net_initdata loopback_net_ops; 4665 4666 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4667 4668 /* netdev_printk helpers, similar to dev_printk */ 4669 4670 static inline const char *netdev_name(const struct net_device *dev) 4671 { 4672 if (!dev->name[0] || strchr(dev->name, '%')) 4673 return "(unnamed net_device)"; 4674 return dev->name; 4675 } 4676 4677 static inline bool netdev_unregistering(const struct net_device *dev) 4678 { 4679 return dev->reg_state == NETREG_UNREGISTERING; 4680 } 4681 4682 static inline const char *netdev_reg_state(const struct net_device *dev) 4683 { 4684 switch (dev->reg_state) { 4685 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4686 case NETREG_REGISTERED: return ""; 4687 case NETREG_UNREGISTERING: return " (unregistering)"; 4688 case NETREG_UNREGISTERED: return " (unregistered)"; 4689 case NETREG_RELEASED: return " (released)"; 4690 case NETREG_DUMMY: return " (dummy)"; 4691 } 4692 4693 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4694 return " (unknown)"; 4695 } 4696 4697 __printf(3, 4) __cold 4698 void netdev_printk(const char *level, const struct net_device *dev, 4699 const char *format, ...); 4700 __printf(2, 3) __cold 4701 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4702 __printf(2, 3) __cold 4703 void netdev_alert(const struct net_device *dev, const char *format, ...); 4704 __printf(2, 3) __cold 4705 void netdev_crit(const struct net_device *dev, const char *format, ...); 4706 __printf(2, 3) __cold 4707 void netdev_err(const struct net_device *dev, const char *format, ...); 4708 __printf(2, 3) __cold 4709 void netdev_warn(const struct net_device *dev, const char *format, ...); 4710 __printf(2, 3) __cold 4711 void netdev_notice(const struct net_device *dev, const char *format, ...); 4712 __printf(2, 3) __cold 4713 void netdev_info(const struct net_device *dev, const char *format, ...); 4714 4715 #define netdev_level_once(level, dev, fmt, ...) \ 4716 do { \ 4717 static bool __print_once __read_mostly; \ 4718 \ 4719 if (!__print_once) { \ 4720 __print_once = true; \ 4721 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4722 } \ 4723 } while (0) 4724 4725 #define netdev_emerg_once(dev, fmt, ...) \ 4726 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4727 #define netdev_alert_once(dev, fmt, ...) \ 4728 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4729 #define netdev_crit_once(dev, fmt, ...) \ 4730 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4731 #define netdev_err_once(dev, fmt, ...) \ 4732 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4733 #define netdev_warn_once(dev, fmt, ...) \ 4734 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4735 #define netdev_notice_once(dev, fmt, ...) \ 4736 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4737 #define netdev_info_once(dev, fmt, ...) \ 4738 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4739 4740 #define MODULE_ALIAS_NETDEV(device) \ 4741 MODULE_ALIAS("netdev-" device) 4742 4743 #if defined(CONFIG_DYNAMIC_DEBUG) 4744 #define netdev_dbg(__dev, format, args...) \ 4745 do { \ 4746 dynamic_netdev_dbg(__dev, format, ##args); \ 4747 } while (0) 4748 #elif defined(DEBUG) 4749 #define netdev_dbg(__dev, format, args...) \ 4750 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4751 #else 4752 #define netdev_dbg(__dev, format, args...) \ 4753 ({ \ 4754 if (0) \ 4755 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4756 }) 4757 #endif 4758 4759 #if defined(VERBOSE_DEBUG) 4760 #define netdev_vdbg netdev_dbg 4761 #else 4762 4763 #define netdev_vdbg(dev, format, args...) \ 4764 ({ \ 4765 if (0) \ 4766 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4767 0; \ 4768 }) 4769 #endif 4770 4771 /* 4772 * netdev_WARN() acts like dev_printk(), but with the key difference 4773 * of using a WARN/WARN_ON to get the message out, including the 4774 * file/line information and a backtrace. 4775 */ 4776 #define netdev_WARN(dev, format, args...) \ 4777 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4778 netdev_reg_state(dev), ##args) 4779 4780 #define netdev_WARN_ONCE(dev, format, args...) \ 4781 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4782 netdev_reg_state(dev), ##args) 4783 4784 /* netif printk helpers, similar to netdev_printk */ 4785 4786 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4787 do { \ 4788 if (netif_msg_##type(priv)) \ 4789 netdev_printk(level, (dev), fmt, ##args); \ 4790 } while (0) 4791 4792 #define netif_level(level, priv, type, dev, fmt, args...) \ 4793 do { \ 4794 if (netif_msg_##type(priv)) \ 4795 netdev_##level(dev, fmt, ##args); \ 4796 } while (0) 4797 4798 #define netif_emerg(priv, type, dev, fmt, args...) \ 4799 netif_level(emerg, priv, type, dev, fmt, ##args) 4800 #define netif_alert(priv, type, dev, fmt, args...) \ 4801 netif_level(alert, priv, type, dev, fmt, ##args) 4802 #define netif_crit(priv, type, dev, fmt, args...) \ 4803 netif_level(crit, priv, type, dev, fmt, ##args) 4804 #define netif_err(priv, type, dev, fmt, args...) \ 4805 netif_level(err, priv, type, dev, fmt, ##args) 4806 #define netif_warn(priv, type, dev, fmt, args...) \ 4807 netif_level(warn, priv, type, dev, fmt, ##args) 4808 #define netif_notice(priv, type, dev, fmt, args...) \ 4809 netif_level(notice, priv, type, dev, fmt, ##args) 4810 #define netif_info(priv, type, dev, fmt, args...) \ 4811 netif_level(info, priv, type, dev, fmt, ##args) 4812 4813 #if defined(CONFIG_DYNAMIC_DEBUG) 4814 #define netif_dbg(priv, type, netdev, format, args...) \ 4815 do { \ 4816 if (netif_msg_##type(priv)) \ 4817 dynamic_netdev_dbg(netdev, format, ##args); \ 4818 } while (0) 4819 #elif defined(DEBUG) 4820 #define netif_dbg(priv, type, dev, format, args...) \ 4821 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4822 #else 4823 #define netif_dbg(priv, type, dev, format, args...) \ 4824 ({ \ 4825 if (0) \ 4826 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4827 0; \ 4828 }) 4829 #endif 4830 4831 /* if @cond then downgrade to debug, else print at @level */ 4832 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4833 do { \ 4834 if (cond) \ 4835 netif_dbg(priv, type, netdev, fmt, ##args); \ 4836 else \ 4837 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4838 } while (0) 4839 4840 #if defined(VERBOSE_DEBUG) 4841 #define netif_vdbg netif_dbg 4842 #else 4843 #define netif_vdbg(priv, type, dev, format, args...) \ 4844 ({ \ 4845 if (0) \ 4846 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4847 0; \ 4848 }) 4849 #endif 4850 4851 /* 4852 * The list of packet types we will receive (as opposed to discard) 4853 * and the routines to invoke. 4854 * 4855 * Why 16. Because with 16 the only overlap we get on a hash of the 4856 * low nibble of the protocol value is RARP/SNAP/X.25. 4857 * 4858 * 0800 IP 4859 * 0001 802.3 4860 * 0002 AX.25 4861 * 0004 802.2 4862 * 8035 RARP 4863 * 0005 SNAP 4864 * 0805 X.25 4865 * 0806 ARP 4866 * 8137 IPX 4867 * 0009 Localtalk 4868 * 86DD IPv6 4869 */ 4870 #define PTYPE_HASH_SIZE (16) 4871 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4872 4873 #endif /* _LINUX_NETDEVICE_H */ 4874