1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <uapi/linux/netdevice.h> 47 #include <uapi/linux/if_bonding.h> 48 #include <uapi/linux/pkt_cls.h> 49 #include <uapi/linux/netdev.h> 50 #include <linux/hashtable.h> 51 #include <linux/rbtree.h> 52 #include <net/net_trackers.h> 53 #include <net/net_debug.h> 54 #include <net/dropreason-core.h> 55 56 struct netpoll_info; 57 struct device; 58 struct ethtool_ops; 59 struct kernel_hwtstamp_config; 60 struct phy_device; 61 struct dsa_port; 62 struct ip_tunnel_parm; 63 struct macsec_context; 64 struct macsec_ops; 65 struct netdev_name_node; 66 struct sd_flow_limit; 67 struct sfp_bus; 68 /* 802.11 specific */ 69 struct wireless_dev; 70 /* 802.15.4 specific */ 71 struct wpan_dev; 72 struct mpls_dev; 73 /* UDP Tunnel offloads */ 74 struct udp_tunnel_info; 75 struct udp_tunnel_nic_info; 76 struct udp_tunnel_nic; 77 struct bpf_prog; 78 struct xdp_buff; 79 struct xdp_frame; 80 struct xdp_metadata_ops; 81 struct xdp_md; 82 83 typedef u32 xdp_features_t; 84 85 void synchronize_net(void); 86 void netdev_set_default_ethtool_ops(struct net_device *dev, 87 const struct ethtool_ops *ops); 88 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 89 90 /* Backlog congestion levels */ 91 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 92 #define NET_RX_DROP 1 /* packet dropped */ 93 94 #define MAX_NEST_DEV 8 95 96 /* 97 * Transmit return codes: transmit return codes originate from three different 98 * namespaces: 99 * 100 * - qdisc return codes 101 * - driver transmit return codes 102 * - errno values 103 * 104 * Drivers are allowed to return any one of those in their hard_start_xmit() 105 * function. Real network devices commonly used with qdiscs should only return 106 * the driver transmit return codes though - when qdiscs are used, the actual 107 * transmission happens asynchronously, so the value is not propagated to 108 * higher layers. Virtual network devices transmit synchronously; in this case 109 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 110 * others are propagated to higher layers. 111 */ 112 113 /* qdisc ->enqueue() return codes. */ 114 #define NET_XMIT_SUCCESS 0x00 115 #define NET_XMIT_DROP 0x01 /* skb dropped */ 116 #define NET_XMIT_CN 0x02 /* congestion notification */ 117 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 118 119 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 120 * indicates that the device will soon be dropping packets, or already drops 121 * some packets of the same priority; prompting us to send less aggressively. */ 122 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 123 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 124 125 /* Driver transmit return codes */ 126 #define NETDEV_TX_MASK 0xf0 127 128 enum netdev_tx { 129 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 130 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 131 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 132 }; 133 typedef enum netdev_tx netdev_tx_t; 134 135 /* 136 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 137 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 138 */ 139 static inline bool dev_xmit_complete(int rc) 140 { 141 /* 142 * Positive cases with an skb consumed by a driver: 143 * - successful transmission (rc == NETDEV_TX_OK) 144 * - error while transmitting (rc < 0) 145 * - error while queueing to a different device (rc & NET_XMIT_MASK) 146 */ 147 if (likely(rc < NET_XMIT_MASK)) 148 return true; 149 150 return false; 151 } 152 153 /* 154 * Compute the worst-case header length according to the protocols 155 * used. 156 */ 157 158 #if defined(CONFIG_HYPERV_NET) 159 # define LL_MAX_HEADER 128 160 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 161 # if defined(CONFIG_MAC80211_MESH) 162 # define LL_MAX_HEADER 128 163 # else 164 # define LL_MAX_HEADER 96 165 # endif 166 #else 167 # define LL_MAX_HEADER 32 168 #endif 169 170 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 171 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 172 #define MAX_HEADER LL_MAX_HEADER 173 #else 174 #define MAX_HEADER (LL_MAX_HEADER + 48) 175 #endif 176 177 /* 178 * Old network device statistics. Fields are native words 179 * (unsigned long) so they can be read and written atomically. 180 */ 181 182 #define NET_DEV_STAT(FIELD) \ 183 union { \ 184 unsigned long FIELD; \ 185 atomic_long_t __##FIELD; \ 186 } 187 188 struct net_device_stats { 189 NET_DEV_STAT(rx_packets); 190 NET_DEV_STAT(tx_packets); 191 NET_DEV_STAT(rx_bytes); 192 NET_DEV_STAT(tx_bytes); 193 NET_DEV_STAT(rx_errors); 194 NET_DEV_STAT(tx_errors); 195 NET_DEV_STAT(rx_dropped); 196 NET_DEV_STAT(tx_dropped); 197 NET_DEV_STAT(multicast); 198 NET_DEV_STAT(collisions); 199 NET_DEV_STAT(rx_length_errors); 200 NET_DEV_STAT(rx_over_errors); 201 NET_DEV_STAT(rx_crc_errors); 202 NET_DEV_STAT(rx_frame_errors); 203 NET_DEV_STAT(rx_fifo_errors); 204 NET_DEV_STAT(rx_missed_errors); 205 NET_DEV_STAT(tx_aborted_errors); 206 NET_DEV_STAT(tx_carrier_errors); 207 NET_DEV_STAT(tx_fifo_errors); 208 NET_DEV_STAT(tx_heartbeat_errors); 209 NET_DEV_STAT(tx_window_errors); 210 NET_DEV_STAT(rx_compressed); 211 NET_DEV_STAT(tx_compressed); 212 }; 213 #undef NET_DEV_STAT 214 215 /* per-cpu stats, allocated on demand. 216 * Try to fit them in a single cache line, for dev_get_stats() sake. 217 */ 218 struct net_device_core_stats { 219 unsigned long rx_dropped; 220 unsigned long tx_dropped; 221 unsigned long rx_nohandler; 222 unsigned long rx_otherhost_dropped; 223 } __aligned(4 * sizeof(unsigned long)); 224 225 #include <linux/cache.h> 226 #include <linux/skbuff.h> 227 228 #ifdef CONFIG_RPS 229 #include <linux/static_key.h> 230 extern struct static_key_false rps_needed; 231 extern struct static_key_false rfs_needed; 232 #endif 233 234 struct neighbour; 235 struct neigh_parms; 236 struct sk_buff; 237 238 struct netdev_hw_addr { 239 struct list_head list; 240 struct rb_node node; 241 unsigned char addr[MAX_ADDR_LEN]; 242 unsigned char type; 243 #define NETDEV_HW_ADDR_T_LAN 1 244 #define NETDEV_HW_ADDR_T_SAN 2 245 #define NETDEV_HW_ADDR_T_UNICAST 3 246 #define NETDEV_HW_ADDR_T_MULTICAST 4 247 bool global_use; 248 int sync_cnt; 249 int refcount; 250 int synced; 251 struct rcu_head rcu_head; 252 }; 253 254 struct netdev_hw_addr_list { 255 struct list_head list; 256 int count; 257 258 /* Auxiliary tree for faster lookup on addition and deletion */ 259 struct rb_root tree; 260 }; 261 262 #define netdev_hw_addr_list_count(l) ((l)->count) 263 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 264 #define netdev_hw_addr_list_for_each(ha, l) \ 265 list_for_each_entry(ha, &(l)->list, list) 266 267 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 268 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 269 #define netdev_for_each_uc_addr(ha, dev) \ 270 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 271 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 272 netdev_for_each_uc_addr((_ha), (_dev)) \ 273 if ((_ha)->sync_cnt) 274 275 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 276 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 277 #define netdev_for_each_mc_addr(ha, dev) \ 278 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 279 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 280 netdev_for_each_mc_addr((_ha), (_dev)) \ 281 if ((_ha)->sync_cnt) 282 283 struct hh_cache { 284 unsigned int hh_len; 285 seqlock_t hh_lock; 286 287 /* cached hardware header; allow for machine alignment needs. */ 288 #define HH_DATA_MOD 16 289 #define HH_DATA_OFF(__len) \ 290 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 291 #define HH_DATA_ALIGN(__len) \ 292 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 293 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 294 }; 295 296 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 297 * Alternative is: 298 * dev->hard_header_len ? (dev->hard_header_len + 299 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 300 * 301 * We could use other alignment values, but we must maintain the 302 * relationship HH alignment <= LL alignment. 303 */ 304 #define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 306 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 307 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 308 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 309 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311 struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned int len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 317 void (*cache_update)(struct hh_cache *hh, 318 const struct net_device *dev, 319 const unsigned char *haddr); 320 bool (*validate)(const char *ll_header, unsigned int len); 321 __be16 (*parse_protocol)(const struct sk_buff *skb); 322 }; 323 324 /* These flag bits are private to the generic network queueing 325 * layer; they may not be explicitly referenced by any other 326 * code. 327 */ 328 329 enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335 __LINK_STATE_TESTING, 336 }; 337 338 struct gro_list { 339 struct list_head list; 340 int count; 341 }; 342 343 /* 344 * size of gro hash buckets, must less than bit number of 345 * napi_struct::gro_bitmask 346 */ 347 #define GRO_HASH_BUCKETS 8 348 349 /* 350 * Structure for NAPI scheduling similar to tasklet but with weighting 351 */ 352 struct napi_struct { 353 /* The poll_list must only be managed by the entity which 354 * changes the state of the NAPI_STATE_SCHED bit. This means 355 * whoever atomically sets that bit can add this napi_struct 356 * to the per-CPU poll_list, and whoever clears that bit 357 * can remove from the list right before clearing the bit. 358 */ 359 struct list_head poll_list; 360 361 unsigned long state; 362 int weight; 363 int defer_hard_irqs_count; 364 unsigned long gro_bitmask; 365 int (*poll)(struct napi_struct *, int); 366 #ifdef CONFIG_NETPOLL 367 /* CPU actively polling if netpoll is configured */ 368 int poll_owner; 369 #endif 370 /* CPU on which NAPI has been scheduled for processing */ 371 int list_owner; 372 struct net_device *dev; 373 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 374 struct sk_buff *skb; 375 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 376 int rx_count; /* length of rx_list */ 377 unsigned int napi_id; 378 struct hrtimer timer; 379 struct task_struct *thread; 380 /* control-path-only fields follow */ 381 struct list_head dev_list; 382 struct hlist_node napi_hash_node; 383 }; 384 385 enum { 386 NAPI_STATE_SCHED, /* Poll is scheduled */ 387 NAPI_STATE_MISSED, /* reschedule a napi */ 388 NAPI_STATE_DISABLE, /* Disable pending */ 389 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 390 NAPI_STATE_LISTED, /* NAPI added to system lists */ 391 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 392 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 393 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 394 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 395 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 396 }; 397 398 enum { 399 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 400 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 401 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 402 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 403 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 404 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 405 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 406 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 407 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 408 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 409 }; 410 411 enum gro_result { 412 GRO_MERGED, 413 GRO_MERGED_FREE, 414 GRO_HELD, 415 GRO_NORMAL, 416 GRO_CONSUMED, 417 }; 418 typedef enum gro_result gro_result_t; 419 420 /* 421 * enum rx_handler_result - Possible return values for rx_handlers. 422 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 423 * further. 424 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 425 * case skb->dev was changed by rx_handler. 426 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 427 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 428 * 429 * rx_handlers are functions called from inside __netif_receive_skb(), to do 430 * special processing of the skb, prior to delivery to protocol handlers. 431 * 432 * Currently, a net_device can only have a single rx_handler registered. Trying 433 * to register a second rx_handler will return -EBUSY. 434 * 435 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 436 * To unregister a rx_handler on a net_device, use 437 * netdev_rx_handler_unregister(). 438 * 439 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 440 * do with the skb. 441 * 442 * If the rx_handler consumed the skb in some way, it should return 443 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 444 * the skb to be delivered in some other way. 445 * 446 * If the rx_handler changed skb->dev, to divert the skb to another 447 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 448 * new device will be called if it exists. 449 * 450 * If the rx_handler decides the skb should be ignored, it should return 451 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 452 * are registered on exact device (ptype->dev == skb->dev). 453 * 454 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 455 * delivered, it should return RX_HANDLER_PASS. 456 * 457 * A device without a registered rx_handler will behave as if rx_handler 458 * returned RX_HANDLER_PASS. 459 */ 460 461 enum rx_handler_result { 462 RX_HANDLER_CONSUMED, 463 RX_HANDLER_ANOTHER, 464 RX_HANDLER_EXACT, 465 RX_HANDLER_PASS, 466 }; 467 typedef enum rx_handler_result rx_handler_result_t; 468 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 469 470 void __napi_schedule(struct napi_struct *n); 471 void __napi_schedule_irqoff(struct napi_struct *n); 472 473 static inline bool napi_disable_pending(struct napi_struct *n) 474 { 475 return test_bit(NAPI_STATE_DISABLE, &n->state); 476 } 477 478 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 479 { 480 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 481 } 482 483 bool napi_schedule_prep(struct napi_struct *n); 484 485 /** 486 * napi_schedule - schedule NAPI poll 487 * @n: NAPI context 488 * 489 * Schedule NAPI poll routine to be called if it is not already 490 * running. 491 */ 492 static inline void napi_schedule(struct napi_struct *n) 493 { 494 if (napi_schedule_prep(n)) 495 __napi_schedule(n); 496 } 497 498 /** 499 * napi_schedule_irqoff - schedule NAPI poll 500 * @n: NAPI context 501 * 502 * Variant of napi_schedule(), assuming hard irqs are masked. 503 */ 504 static inline void napi_schedule_irqoff(struct napi_struct *n) 505 { 506 if (napi_schedule_prep(n)) 507 __napi_schedule_irqoff(n); 508 } 509 510 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 511 static inline bool napi_reschedule(struct napi_struct *napi) 512 { 513 if (napi_schedule_prep(napi)) { 514 __napi_schedule(napi); 515 return true; 516 } 517 return false; 518 } 519 520 /** 521 * napi_complete_done - NAPI processing complete 522 * @n: NAPI context 523 * @work_done: number of packets processed 524 * 525 * Mark NAPI processing as complete. Should only be called if poll budget 526 * has not been completely consumed. 527 * Prefer over napi_complete(). 528 * Return false if device should avoid rearming interrupts. 529 */ 530 bool napi_complete_done(struct napi_struct *n, int work_done); 531 532 static inline bool napi_complete(struct napi_struct *n) 533 { 534 return napi_complete_done(n, 0); 535 } 536 537 int dev_set_threaded(struct net_device *dev, bool threaded); 538 539 /** 540 * napi_disable - prevent NAPI from scheduling 541 * @n: NAPI context 542 * 543 * Stop NAPI from being scheduled on this context. 544 * Waits till any outstanding processing completes. 545 */ 546 void napi_disable(struct napi_struct *n); 547 548 void napi_enable(struct napi_struct *n); 549 550 /** 551 * napi_synchronize - wait until NAPI is not running 552 * @n: NAPI context 553 * 554 * Wait until NAPI is done being scheduled on this context. 555 * Waits till any outstanding processing completes but 556 * does not disable future activations. 557 */ 558 static inline void napi_synchronize(const struct napi_struct *n) 559 { 560 if (IS_ENABLED(CONFIG_SMP)) 561 while (test_bit(NAPI_STATE_SCHED, &n->state)) 562 msleep(1); 563 else 564 barrier(); 565 } 566 567 /** 568 * napi_if_scheduled_mark_missed - if napi is running, set the 569 * NAPIF_STATE_MISSED 570 * @n: NAPI context 571 * 572 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 573 * NAPI is scheduled. 574 **/ 575 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 576 { 577 unsigned long val, new; 578 579 val = READ_ONCE(n->state); 580 do { 581 if (val & NAPIF_STATE_DISABLE) 582 return true; 583 584 if (!(val & NAPIF_STATE_SCHED)) 585 return false; 586 587 new = val | NAPIF_STATE_MISSED; 588 } while (!try_cmpxchg(&n->state, &val, new)); 589 590 return true; 591 } 592 593 enum netdev_queue_state_t { 594 __QUEUE_STATE_DRV_XOFF, 595 __QUEUE_STATE_STACK_XOFF, 596 __QUEUE_STATE_FROZEN, 597 }; 598 599 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 600 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 601 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 602 603 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 604 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 605 QUEUE_STATE_FROZEN) 606 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 607 QUEUE_STATE_FROZEN) 608 609 /* 610 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 611 * netif_tx_* functions below are used to manipulate this flag. The 612 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 613 * queue independently. The netif_xmit_*stopped functions below are called 614 * to check if the queue has been stopped by the driver or stack (either 615 * of the XOFF bits are set in the state). Drivers should not need to call 616 * netif_xmit*stopped functions, they should only be using netif_tx_*. 617 */ 618 619 struct netdev_queue { 620 /* 621 * read-mostly part 622 */ 623 struct net_device *dev; 624 netdevice_tracker dev_tracker; 625 626 struct Qdisc __rcu *qdisc; 627 struct Qdisc __rcu *qdisc_sleeping; 628 #ifdef CONFIG_SYSFS 629 struct kobject kobj; 630 #endif 631 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 632 int numa_node; 633 #endif 634 unsigned long tx_maxrate; 635 /* 636 * Number of TX timeouts for this queue 637 * (/sys/class/net/DEV/Q/trans_timeout) 638 */ 639 atomic_long_t trans_timeout; 640 641 /* Subordinate device that the queue has been assigned to */ 642 struct net_device *sb_dev; 643 #ifdef CONFIG_XDP_SOCKETS 644 struct xsk_buff_pool *pool; 645 #endif 646 /* 647 * write-mostly part 648 */ 649 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 650 int xmit_lock_owner; 651 /* 652 * Time (in jiffies) of last Tx 653 */ 654 unsigned long trans_start; 655 656 unsigned long state; 657 658 #ifdef CONFIG_BQL 659 struct dql dql; 660 #endif 661 } ____cacheline_aligned_in_smp; 662 663 extern int sysctl_fb_tunnels_only_for_init_net; 664 extern int sysctl_devconf_inherit_init_net; 665 666 /* 667 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 668 * == 1 : For initns only 669 * == 2 : For none. 670 */ 671 static inline bool net_has_fallback_tunnels(const struct net *net) 672 { 673 #if IS_ENABLED(CONFIG_SYSCTL) 674 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 675 676 return !fb_tunnels_only_for_init_net || 677 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 678 #else 679 return true; 680 #endif 681 } 682 683 static inline int net_inherit_devconf(void) 684 { 685 #if IS_ENABLED(CONFIG_SYSCTL) 686 return READ_ONCE(sysctl_devconf_inherit_init_net); 687 #else 688 return 0; 689 #endif 690 } 691 692 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 693 { 694 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 695 return q->numa_node; 696 #else 697 return NUMA_NO_NODE; 698 #endif 699 } 700 701 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 702 { 703 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 704 q->numa_node = node; 705 #endif 706 } 707 708 #ifdef CONFIG_RPS 709 /* 710 * This structure holds an RPS map which can be of variable length. The 711 * map is an array of CPUs. 712 */ 713 struct rps_map { 714 unsigned int len; 715 struct rcu_head rcu; 716 u16 cpus[]; 717 }; 718 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 719 720 /* 721 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 722 * tail pointer for that CPU's input queue at the time of last enqueue, and 723 * a hardware filter index. 724 */ 725 struct rps_dev_flow { 726 u16 cpu; 727 u16 filter; 728 unsigned int last_qtail; 729 }; 730 #define RPS_NO_FILTER 0xffff 731 732 /* 733 * The rps_dev_flow_table structure contains a table of flow mappings. 734 */ 735 struct rps_dev_flow_table { 736 unsigned int mask; 737 struct rcu_head rcu; 738 struct rps_dev_flow flows[]; 739 }; 740 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 741 ((_num) * sizeof(struct rps_dev_flow))) 742 743 /* 744 * The rps_sock_flow_table contains mappings of flows to the last CPU 745 * on which they were processed by the application (set in recvmsg). 746 * Each entry is a 32bit value. Upper part is the high-order bits 747 * of flow hash, lower part is CPU number. 748 * rps_cpu_mask is used to partition the space, depending on number of 749 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 750 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 751 * meaning we use 32-6=26 bits for the hash. 752 */ 753 struct rps_sock_flow_table { 754 u32 mask; 755 756 u32 ents[] ____cacheline_aligned_in_smp; 757 }; 758 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 759 760 #define RPS_NO_CPU 0xffff 761 762 extern u32 rps_cpu_mask; 763 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 764 765 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 766 u32 hash) 767 { 768 if (table && hash) { 769 unsigned int index = hash & table->mask; 770 u32 val = hash & ~rps_cpu_mask; 771 772 /* We only give a hint, preemption can change CPU under us */ 773 val |= raw_smp_processor_id(); 774 775 /* The following WRITE_ONCE() is paired with the READ_ONCE() 776 * here, and another one in get_rps_cpu(). 777 */ 778 if (READ_ONCE(table->ents[index]) != val) 779 WRITE_ONCE(table->ents[index], val); 780 } 781 } 782 783 #ifdef CONFIG_RFS_ACCEL 784 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 785 u16 filter_id); 786 #endif 787 #endif /* CONFIG_RPS */ 788 789 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 790 enum xps_map_type { 791 XPS_CPUS = 0, 792 XPS_RXQS, 793 XPS_MAPS_MAX, 794 }; 795 796 #ifdef CONFIG_XPS 797 /* 798 * This structure holds an XPS map which can be of variable length. The 799 * map is an array of queues. 800 */ 801 struct xps_map { 802 unsigned int len; 803 unsigned int alloc_len; 804 struct rcu_head rcu; 805 u16 queues[]; 806 }; 807 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 808 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 809 - sizeof(struct xps_map)) / sizeof(u16)) 810 811 /* 812 * This structure holds all XPS maps for device. Maps are indexed by CPU. 813 * 814 * We keep track of the number of cpus/rxqs used when the struct is allocated, 815 * in nr_ids. This will help not accessing out-of-bound memory. 816 * 817 * We keep track of the number of traffic classes used when the struct is 818 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 819 * not crossing its upper bound, as the original dev->num_tc can be updated in 820 * the meantime. 821 */ 822 struct xps_dev_maps { 823 struct rcu_head rcu; 824 unsigned int nr_ids; 825 s16 num_tc; 826 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 827 }; 828 829 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 830 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 831 832 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 833 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 834 835 #endif /* CONFIG_XPS */ 836 837 #define TC_MAX_QUEUE 16 838 #define TC_BITMASK 15 839 /* HW offloaded queuing disciplines txq count and offset maps */ 840 struct netdev_tc_txq { 841 u16 count; 842 u16 offset; 843 }; 844 845 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 846 /* 847 * This structure is to hold information about the device 848 * configured to run FCoE protocol stack. 849 */ 850 struct netdev_fcoe_hbainfo { 851 char manufacturer[64]; 852 char serial_number[64]; 853 char hardware_version[64]; 854 char driver_version[64]; 855 char optionrom_version[64]; 856 char firmware_version[64]; 857 char model[256]; 858 char model_description[256]; 859 }; 860 #endif 861 862 #define MAX_PHYS_ITEM_ID_LEN 32 863 864 /* This structure holds a unique identifier to identify some 865 * physical item (port for example) used by a netdevice. 866 */ 867 struct netdev_phys_item_id { 868 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 869 unsigned char id_len; 870 }; 871 872 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 873 struct netdev_phys_item_id *b) 874 { 875 return a->id_len == b->id_len && 876 memcmp(a->id, b->id, a->id_len) == 0; 877 } 878 879 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 880 struct sk_buff *skb, 881 struct net_device *sb_dev); 882 883 enum net_device_path_type { 884 DEV_PATH_ETHERNET = 0, 885 DEV_PATH_VLAN, 886 DEV_PATH_BRIDGE, 887 DEV_PATH_PPPOE, 888 DEV_PATH_DSA, 889 DEV_PATH_MTK_WDMA, 890 }; 891 892 struct net_device_path { 893 enum net_device_path_type type; 894 const struct net_device *dev; 895 union { 896 struct { 897 u16 id; 898 __be16 proto; 899 u8 h_dest[ETH_ALEN]; 900 } encap; 901 struct { 902 enum { 903 DEV_PATH_BR_VLAN_KEEP, 904 DEV_PATH_BR_VLAN_TAG, 905 DEV_PATH_BR_VLAN_UNTAG, 906 DEV_PATH_BR_VLAN_UNTAG_HW, 907 } vlan_mode; 908 u16 vlan_id; 909 __be16 vlan_proto; 910 } bridge; 911 struct { 912 int port; 913 u16 proto; 914 } dsa; 915 struct { 916 u8 wdma_idx; 917 u8 queue; 918 u16 wcid; 919 u8 bss; 920 } mtk_wdma; 921 }; 922 }; 923 924 #define NET_DEVICE_PATH_STACK_MAX 5 925 #define NET_DEVICE_PATH_VLAN_MAX 2 926 927 struct net_device_path_stack { 928 int num_paths; 929 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 930 }; 931 932 struct net_device_path_ctx { 933 const struct net_device *dev; 934 u8 daddr[ETH_ALEN]; 935 936 int num_vlans; 937 struct { 938 u16 id; 939 __be16 proto; 940 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 941 }; 942 943 enum tc_setup_type { 944 TC_QUERY_CAPS, 945 TC_SETUP_QDISC_MQPRIO, 946 TC_SETUP_CLSU32, 947 TC_SETUP_CLSFLOWER, 948 TC_SETUP_CLSMATCHALL, 949 TC_SETUP_CLSBPF, 950 TC_SETUP_BLOCK, 951 TC_SETUP_QDISC_CBS, 952 TC_SETUP_QDISC_RED, 953 TC_SETUP_QDISC_PRIO, 954 TC_SETUP_QDISC_MQ, 955 TC_SETUP_QDISC_ETF, 956 TC_SETUP_ROOT_QDISC, 957 TC_SETUP_QDISC_GRED, 958 TC_SETUP_QDISC_TAPRIO, 959 TC_SETUP_FT, 960 TC_SETUP_QDISC_ETS, 961 TC_SETUP_QDISC_TBF, 962 TC_SETUP_QDISC_FIFO, 963 TC_SETUP_QDISC_HTB, 964 TC_SETUP_ACT, 965 }; 966 967 /* These structures hold the attributes of bpf state that are being passed 968 * to the netdevice through the bpf op. 969 */ 970 enum bpf_netdev_command { 971 /* Set or clear a bpf program used in the earliest stages of packet 972 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 973 * is responsible for calling bpf_prog_put on any old progs that are 974 * stored. In case of error, the callee need not release the new prog 975 * reference, but on success it takes ownership and must bpf_prog_put 976 * when it is no longer used. 977 */ 978 XDP_SETUP_PROG, 979 XDP_SETUP_PROG_HW, 980 /* BPF program for offload callbacks, invoked at program load time. */ 981 BPF_OFFLOAD_MAP_ALLOC, 982 BPF_OFFLOAD_MAP_FREE, 983 XDP_SETUP_XSK_POOL, 984 }; 985 986 struct bpf_prog_offload_ops; 987 struct netlink_ext_ack; 988 struct xdp_umem; 989 struct xdp_dev_bulk_queue; 990 struct bpf_xdp_link; 991 992 enum bpf_xdp_mode { 993 XDP_MODE_SKB = 0, 994 XDP_MODE_DRV = 1, 995 XDP_MODE_HW = 2, 996 __MAX_XDP_MODE 997 }; 998 999 struct bpf_xdp_entity { 1000 struct bpf_prog *prog; 1001 struct bpf_xdp_link *link; 1002 }; 1003 1004 struct netdev_bpf { 1005 enum bpf_netdev_command command; 1006 union { 1007 /* XDP_SETUP_PROG */ 1008 struct { 1009 u32 flags; 1010 struct bpf_prog *prog; 1011 struct netlink_ext_ack *extack; 1012 }; 1013 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1014 struct { 1015 struct bpf_offloaded_map *offmap; 1016 }; 1017 /* XDP_SETUP_XSK_POOL */ 1018 struct { 1019 struct xsk_buff_pool *pool; 1020 u16 queue_id; 1021 } xsk; 1022 }; 1023 }; 1024 1025 /* Flags for ndo_xsk_wakeup. */ 1026 #define XDP_WAKEUP_RX (1 << 0) 1027 #define XDP_WAKEUP_TX (1 << 1) 1028 1029 #ifdef CONFIG_XFRM_OFFLOAD 1030 struct xfrmdev_ops { 1031 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1032 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1033 void (*xdo_dev_state_free) (struct xfrm_state *x); 1034 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1035 struct xfrm_state *x); 1036 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1037 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1038 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1039 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1040 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1041 }; 1042 #endif 1043 1044 struct dev_ifalias { 1045 struct rcu_head rcuhead; 1046 char ifalias[]; 1047 }; 1048 1049 struct devlink; 1050 struct tlsdev_ops; 1051 1052 struct netdev_net_notifier { 1053 struct list_head list; 1054 struct notifier_block *nb; 1055 }; 1056 1057 /* 1058 * This structure defines the management hooks for network devices. 1059 * The following hooks can be defined; unless noted otherwise, they are 1060 * optional and can be filled with a null pointer. 1061 * 1062 * int (*ndo_init)(struct net_device *dev); 1063 * This function is called once when a network device is registered. 1064 * The network device can use this for any late stage initialization 1065 * or semantic validation. It can fail with an error code which will 1066 * be propagated back to register_netdev. 1067 * 1068 * void (*ndo_uninit)(struct net_device *dev); 1069 * This function is called when device is unregistered or when registration 1070 * fails. It is not called if init fails. 1071 * 1072 * int (*ndo_open)(struct net_device *dev); 1073 * This function is called when a network device transitions to the up 1074 * state. 1075 * 1076 * int (*ndo_stop)(struct net_device *dev); 1077 * This function is called when a network device transitions to the down 1078 * state. 1079 * 1080 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1081 * struct net_device *dev); 1082 * Called when a packet needs to be transmitted. 1083 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1084 * the queue before that can happen; it's for obsolete devices and weird 1085 * corner cases, but the stack really does a non-trivial amount 1086 * of useless work if you return NETDEV_TX_BUSY. 1087 * Required; cannot be NULL. 1088 * 1089 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1090 * struct net_device *dev 1091 * netdev_features_t features); 1092 * Called by core transmit path to determine if device is capable of 1093 * performing offload operations on a given packet. This is to give 1094 * the device an opportunity to implement any restrictions that cannot 1095 * be otherwise expressed by feature flags. The check is called with 1096 * the set of features that the stack has calculated and it returns 1097 * those the driver believes to be appropriate. 1098 * 1099 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1100 * struct net_device *sb_dev); 1101 * Called to decide which queue to use when device supports multiple 1102 * transmit queues. 1103 * 1104 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1105 * This function is called to allow device receiver to make 1106 * changes to configuration when multicast or promiscuous is enabled. 1107 * 1108 * void (*ndo_set_rx_mode)(struct net_device *dev); 1109 * This function is called device changes address list filtering. 1110 * If driver handles unicast address filtering, it should set 1111 * IFF_UNICAST_FLT in its priv_flags. 1112 * 1113 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1114 * This function is called when the Media Access Control address 1115 * needs to be changed. If this interface is not defined, the 1116 * MAC address can not be changed. 1117 * 1118 * int (*ndo_validate_addr)(struct net_device *dev); 1119 * Test if Media Access Control address is valid for the device. 1120 * 1121 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1122 * Old-style ioctl entry point. This is used internally by the 1123 * appletalk and ieee802154 subsystems but is no longer called by 1124 * the device ioctl handler. 1125 * 1126 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1127 * Used by the bonding driver for its device specific ioctls: 1128 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1129 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1130 * 1131 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1132 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1133 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1134 * 1135 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1136 * Used to set network devices bus interface parameters. This interface 1137 * is retained for legacy reasons; new devices should use the bus 1138 * interface (PCI) for low level management. 1139 * 1140 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1141 * Called when a user wants to change the Maximum Transfer Unit 1142 * of a device. 1143 * 1144 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1145 * Callback used when the transmitter has not made any progress 1146 * for dev->watchdog ticks. 1147 * 1148 * void (*ndo_get_stats64)(struct net_device *dev, 1149 * struct rtnl_link_stats64 *storage); 1150 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1151 * Called when a user wants to get the network device usage 1152 * statistics. Drivers must do one of the following: 1153 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1154 * rtnl_link_stats64 structure passed by the caller. 1155 * 2. Define @ndo_get_stats to update a net_device_stats structure 1156 * (which should normally be dev->stats) and return a pointer to 1157 * it. The structure may be changed asynchronously only if each 1158 * field is written atomically. 1159 * 3. Update dev->stats asynchronously and atomically, and define 1160 * neither operation. 1161 * 1162 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1163 * Return true if this device supports offload stats of this attr_id. 1164 * 1165 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1166 * void *attr_data) 1167 * Get statistics for offload operations by attr_id. Write it into the 1168 * attr_data pointer. 1169 * 1170 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1171 * If device supports VLAN filtering this function is called when a 1172 * VLAN id is registered. 1173 * 1174 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1175 * If device supports VLAN filtering this function is called when a 1176 * VLAN id is unregistered. 1177 * 1178 * void (*ndo_poll_controller)(struct net_device *dev); 1179 * 1180 * SR-IOV management functions. 1181 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1182 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1183 * u8 qos, __be16 proto); 1184 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1185 * int max_tx_rate); 1186 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1187 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1188 * int (*ndo_get_vf_config)(struct net_device *dev, 1189 * int vf, struct ifla_vf_info *ivf); 1190 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1191 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1192 * struct nlattr *port[]); 1193 * 1194 * Enable or disable the VF ability to query its RSS Redirection Table and 1195 * Hash Key. This is needed since on some devices VF share this information 1196 * with PF and querying it may introduce a theoretical security risk. 1197 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1198 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1199 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1200 * void *type_data); 1201 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1202 * This is always called from the stack with the rtnl lock held and netif 1203 * tx queues stopped. This allows the netdevice to perform queue 1204 * management safely. 1205 * 1206 * Fiber Channel over Ethernet (FCoE) offload functions. 1207 * int (*ndo_fcoe_enable)(struct net_device *dev); 1208 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1209 * so the underlying device can perform whatever needed configuration or 1210 * initialization to support acceleration of FCoE traffic. 1211 * 1212 * int (*ndo_fcoe_disable)(struct net_device *dev); 1213 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1214 * so the underlying device can perform whatever needed clean-ups to 1215 * stop supporting acceleration of FCoE traffic. 1216 * 1217 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1218 * struct scatterlist *sgl, unsigned int sgc); 1219 * Called when the FCoE Initiator wants to initialize an I/O that 1220 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1221 * perform necessary setup and returns 1 to indicate the device is set up 1222 * successfully to perform DDP on this I/O, otherwise this returns 0. 1223 * 1224 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1225 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1226 * indicated by the FC exchange id 'xid', so the underlying device can 1227 * clean up and reuse resources for later DDP requests. 1228 * 1229 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1230 * struct scatterlist *sgl, unsigned int sgc); 1231 * Called when the FCoE Target wants to initialize an I/O that 1232 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1233 * perform necessary setup and returns 1 to indicate the device is set up 1234 * successfully to perform DDP on this I/O, otherwise this returns 0. 1235 * 1236 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1237 * struct netdev_fcoe_hbainfo *hbainfo); 1238 * Called when the FCoE Protocol stack wants information on the underlying 1239 * device. This information is utilized by the FCoE protocol stack to 1240 * register attributes with Fiber Channel management service as per the 1241 * FC-GS Fabric Device Management Information(FDMI) specification. 1242 * 1243 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1244 * Called when the underlying device wants to override default World Wide 1245 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1246 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1247 * protocol stack to use. 1248 * 1249 * RFS acceleration. 1250 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1251 * u16 rxq_index, u32 flow_id); 1252 * Set hardware filter for RFS. rxq_index is the target queue index; 1253 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1254 * Return the filter ID on success, or a negative error code. 1255 * 1256 * Slave management functions (for bridge, bonding, etc). 1257 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1258 * Called to make another netdev an underling. 1259 * 1260 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1261 * Called to release previously enslaved netdev. 1262 * 1263 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1264 * struct sk_buff *skb, 1265 * bool all_slaves); 1266 * Get the xmit slave of master device. If all_slaves is true, function 1267 * assume all the slaves can transmit. 1268 * 1269 * Feature/offload setting functions. 1270 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1271 * netdev_features_t features); 1272 * Adjusts the requested feature flags according to device-specific 1273 * constraints, and returns the resulting flags. Must not modify 1274 * the device state. 1275 * 1276 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1277 * Called to update device configuration to new features. Passed 1278 * feature set might be less than what was returned by ndo_fix_features()). 1279 * Must return >0 or -errno if it changed dev->features itself. 1280 * 1281 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1282 * struct net_device *dev, 1283 * const unsigned char *addr, u16 vid, u16 flags, 1284 * struct netlink_ext_ack *extack); 1285 * Adds an FDB entry to dev for addr. 1286 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1287 * struct net_device *dev, 1288 * const unsigned char *addr, u16 vid) 1289 * Deletes the FDB entry from dev coresponding to addr. 1290 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1291 * struct net_device *dev, 1292 * u16 vid, 1293 * struct netlink_ext_ack *extack); 1294 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1295 * struct net_device *dev, struct net_device *filter_dev, 1296 * int *idx) 1297 * Used to add FDB entries to dump requests. Implementers should add 1298 * entries to skb and update idx with the number of entries. 1299 * 1300 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1301 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1302 * Adds an MDB entry to dev. 1303 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1304 * struct netlink_ext_ack *extack); 1305 * Deletes the MDB entry from dev. 1306 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1307 * struct netlink_callback *cb); 1308 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1309 * callback is used by core rtnetlink code. 1310 * 1311 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1312 * u16 flags, struct netlink_ext_ack *extack) 1313 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1314 * struct net_device *dev, u32 filter_mask, 1315 * int nlflags) 1316 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1317 * u16 flags); 1318 * 1319 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1320 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1321 * which do not represent real hardware may define this to allow their 1322 * userspace components to manage their virtual carrier state. Devices 1323 * that determine carrier state from physical hardware properties (eg 1324 * network cables) or protocol-dependent mechanisms (eg 1325 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1326 * 1327 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1328 * struct netdev_phys_item_id *ppid); 1329 * Called to get ID of physical port of this device. If driver does 1330 * not implement this, it is assumed that the hw is not able to have 1331 * multiple net devices on single physical port. 1332 * 1333 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1334 * struct netdev_phys_item_id *ppid) 1335 * Called to get the parent ID of the physical port of this device. 1336 * 1337 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1338 * struct net_device *dev) 1339 * Called by upper layer devices to accelerate switching or other 1340 * station functionality into hardware. 'pdev is the lowerdev 1341 * to use for the offload and 'dev' is the net device that will 1342 * back the offload. Returns a pointer to the private structure 1343 * the upper layer will maintain. 1344 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1345 * Called by upper layer device to delete the station created 1346 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1347 * the station and priv is the structure returned by the add 1348 * operation. 1349 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1350 * int queue_index, u32 maxrate); 1351 * Called when a user wants to set a max-rate limitation of specific 1352 * TX queue. 1353 * int (*ndo_get_iflink)(const struct net_device *dev); 1354 * Called to get the iflink value of this device. 1355 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1356 * This function is used to get egress tunnel information for given skb. 1357 * This is useful for retrieving outer tunnel header parameters while 1358 * sampling packet. 1359 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1360 * This function is used to specify the headroom that the skb must 1361 * consider when allocation skb during packet reception. Setting 1362 * appropriate rx headroom value allows avoiding skb head copy on 1363 * forward. Setting a negative value resets the rx headroom to the 1364 * default value. 1365 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1366 * This function is used to set or query state related to XDP on the 1367 * netdevice and manage BPF offload. See definition of 1368 * enum bpf_netdev_command for details. 1369 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1370 * u32 flags); 1371 * This function is used to submit @n XDP packets for transmit on a 1372 * netdevice. Returns number of frames successfully transmitted, frames 1373 * that got dropped are freed/returned via xdp_return_frame(). 1374 * Returns negative number, means general error invoking ndo, meaning 1375 * no frames were xmit'ed and core-caller will free all frames. 1376 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1377 * struct xdp_buff *xdp); 1378 * Get the xmit slave of master device based on the xdp_buff. 1379 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1380 * This function is used to wake up the softirq, ksoftirqd or kthread 1381 * responsible for sending and/or receiving packets on a specific 1382 * queue id bound to an AF_XDP socket. The flags field specifies if 1383 * only RX, only Tx, or both should be woken up using the flags 1384 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1385 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1386 * int cmd); 1387 * Add, change, delete or get information on an IPv4 tunnel. 1388 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1389 * If a device is paired with a peer device, return the peer instance. 1390 * The caller must be under RCU read context. 1391 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1392 * Get the forwarding path to reach the real device from the HW destination address 1393 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1394 * const struct skb_shared_hwtstamps *hwtstamps, 1395 * bool cycles); 1396 * Get hardware timestamp based on normal/adjustable time or free running 1397 * cycle counter. This function is required if physical clock supports a 1398 * free running cycle counter. 1399 * 1400 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1401 * struct kernel_hwtstamp_config *kernel_config); 1402 * Get the currently configured hardware timestamping parameters for the 1403 * NIC device. 1404 * 1405 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1406 * struct kernel_hwtstamp_config *kernel_config, 1407 * struct netlink_ext_ack *extack); 1408 * Change the hardware timestamping parameters for NIC device. 1409 */ 1410 struct net_device_ops { 1411 int (*ndo_init)(struct net_device *dev); 1412 void (*ndo_uninit)(struct net_device *dev); 1413 int (*ndo_open)(struct net_device *dev); 1414 int (*ndo_stop)(struct net_device *dev); 1415 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1416 struct net_device *dev); 1417 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1418 struct net_device *dev, 1419 netdev_features_t features); 1420 u16 (*ndo_select_queue)(struct net_device *dev, 1421 struct sk_buff *skb, 1422 struct net_device *sb_dev); 1423 void (*ndo_change_rx_flags)(struct net_device *dev, 1424 int flags); 1425 void (*ndo_set_rx_mode)(struct net_device *dev); 1426 int (*ndo_set_mac_address)(struct net_device *dev, 1427 void *addr); 1428 int (*ndo_validate_addr)(struct net_device *dev); 1429 int (*ndo_do_ioctl)(struct net_device *dev, 1430 struct ifreq *ifr, int cmd); 1431 int (*ndo_eth_ioctl)(struct net_device *dev, 1432 struct ifreq *ifr, int cmd); 1433 int (*ndo_siocbond)(struct net_device *dev, 1434 struct ifreq *ifr, int cmd); 1435 int (*ndo_siocwandev)(struct net_device *dev, 1436 struct if_settings *ifs); 1437 int (*ndo_siocdevprivate)(struct net_device *dev, 1438 struct ifreq *ifr, 1439 void __user *data, int cmd); 1440 int (*ndo_set_config)(struct net_device *dev, 1441 struct ifmap *map); 1442 int (*ndo_change_mtu)(struct net_device *dev, 1443 int new_mtu); 1444 int (*ndo_neigh_setup)(struct net_device *dev, 1445 struct neigh_parms *); 1446 void (*ndo_tx_timeout) (struct net_device *dev, 1447 unsigned int txqueue); 1448 1449 void (*ndo_get_stats64)(struct net_device *dev, 1450 struct rtnl_link_stats64 *storage); 1451 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1452 int (*ndo_get_offload_stats)(int attr_id, 1453 const struct net_device *dev, 1454 void *attr_data); 1455 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1456 1457 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1458 __be16 proto, u16 vid); 1459 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1460 __be16 proto, u16 vid); 1461 #ifdef CONFIG_NET_POLL_CONTROLLER 1462 void (*ndo_poll_controller)(struct net_device *dev); 1463 int (*ndo_netpoll_setup)(struct net_device *dev, 1464 struct netpoll_info *info); 1465 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1466 #endif 1467 int (*ndo_set_vf_mac)(struct net_device *dev, 1468 int queue, u8 *mac); 1469 int (*ndo_set_vf_vlan)(struct net_device *dev, 1470 int queue, u16 vlan, 1471 u8 qos, __be16 proto); 1472 int (*ndo_set_vf_rate)(struct net_device *dev, 1473 int vf, int min_tx_rate, 1474 int max_tx_rate); 1475 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1476 int vf, bool setting); 1477 int (*ndo_set_vf_trust)(struct net_device *dev, 1478 int vf, bool setting); 1479 int (*ndo_get_vf_config)(struct net_device *dev, 1480 int vf, 1481 struct ifla_vf_info *ivf); 1482 int (*ndo_set_vf_link_state)(struct net_device *dev, 1483 int vf, int link_state); 1484 int (*ndo_get_vf_stats)(struct net_device *dev, 1485 int vf, 1486 struct ifla_vf_stats 1487 *vf_stats); 1488 int (*ndo_set_vf_port)(struct net_device *dev, 1489 int vf, 1490 struct nlattr *port[]); 1491 int (*ndo_get_vf_port)(struct net_device *dev, 1492 int vf, struct sk_buff *skb); 1493 int (*ndo_get_vf_guid)(struct net_device *dev, 1494 int vf, 1495 struct ifla_vf_guid *node_guid, 1496 struct ifla_vf_guid *port_guid); 1497 int (*ndo_set_vf_guid)(struct net_device *dev, 1498 int vf, u64 guid, 1499 int guid_type); 1500 int (*ndo_set_vf_rss_query_en)( 1501 struct net_device *dev, 1502 int vf, bool setting); 1503 int (*ndo_setup_tc)(struct net_device *dev, 1504 enum tc_setup_type type, 1505 void *type_data); 1506 #if IS_ENABLED(CONFIG_FCOE) 1507 int (*ndo_fcoe_enable)(struct net_device *dev); 1508 int (*ndo_fcoe_disable)(struct net_device *dev); 1509 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1510 u16 xid, 1511 struct scatterlist *sgl, 1512 unsigned int sgc); 1513 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1514 u16 xid); 1515 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1516 u16 xid, 1517 struct scatterlist *sgl, 1518 unsigned int sgc); 1519 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1520 struct netdev_fcoe_hbainfo *hbainfo); 1521 #endif 1522 1523 #if IS_ENABLED(CONFIG_LIBFCOE) 1524 #define NETDEV_FCOE_WWNN 0 1525 #define NETDEV_FCOE_WWPN 1 1526 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1527 u64 *wwn, int type); 1528 #endif 1529 1530 #ifdef CONFIG_RFS_ACCEL 1531 int (*ndo_rx_flow_steer)(struct net_device *dev, 1532 const struct sk_buff *skb, 1533 u16 rxq_index, 1534 u32 flow_id); 1535 #endif 1536 int (*ndo_add_slave)(struct net_device *dev, 1537 struct net_device *slave_dev, 1538 struct netlink_ext_ack *extack); 1539 int (*ndo_del_slave)(struct net_device *dev, 1540 struct net_device *slave_dev); 1541 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1542 struct sk_buff *skb, 1543 bool all_slaves); 1544 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1545 struct sock *sk); 1546 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1547 netdev_features_t features); 1548 int (*ndo_set_features)(struct net_device *dev, 1549 netdev_features_t features); 1550 int (*ndo_neigh_construct)(struct net_device *dev, 1551 struct neighbour *n); 1552 void (*ndo_neigh_destroy)(struct net_device *dev, 1553 struct neighbour *n); 1554 1555 int (*ndo_fdb_add)(struct ndmsg *ndm, 1556 struct nlattr *tb[], 1557 struct net_device *dev, 1558 const unsigned char *addr, 1559 u16 vid, 1560 u16 flags, 1561 struct netlink_ext_ack *extack); 1562 int (*ndo_fdb_del)(struct ndmsg *ndm, 1563 struct nlattr *tb[], 1564 struct net_device *dev, 1565 const unsigned char *addr, 1566 u16 vid, struct netlink_ext_ack *extack); 1567 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1568 struct nlattr *tb[], 1569 struct net_device *dev, 1570 u16 vid, 1571 struct netlink_ext_ack *extack); 1572 int (*ndo_fdb_dump)(struct sk_buff *skb, 1573 struct netlink_callback *cb, 1574 struct net_device *dev, 1575 struct net_device *filter_dev, 1576 int *idx); 1577 int (*ndo_fdb_get)(struct sk_buff *skb, 1578 struct nlattr *tb[], 1579 struct net_device *dev, 1580 const unsigned char *addr, 1581 u16 vid, u32 portid, u32 seq, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_mdb_add)(struct net_device *dev, 1584 struct nlattr *tb[], 1585 u16 nlmsg_flags, 1586 struct netlink_ext_ack *extack); 1587 int (*ndo_mdb_del)(struct net_device *dev, 1588 struct nlattr *tb[], 1589 struct netlink_ext_ack *extack); 1590 int (*ndo_mdb_dump)(struct net_device *dev, 1591 struct sk_buff *skb, 1592 struct netlink_callback *cb); 1593 int (*ndo_bridge_setlink)(struct net_device *dev, 1594 struct nlmsghdr *nlh, 1595 u16 flags, 1596 struct netlink_ext_ack *extack); 1597 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1598 u32 pid, u32 seq, 1599 struct net_device *dev, 1600 u32 filter_mask, 1601 int nlflags); 1602 int (*ndo_bridge_dellink)(struct net_device *dev, 1603 struct nlmsghdr *nlh, 1604 u16 flags); 1605 int (*ndo_change_carrier)(struct net_device *dev, 1606 bool new_carrier); 1607 int (*ndo_get_phys_port_id)(struct net_device *dev, 1608 struct netdev_phys_item_id *ppid); 1609 int (*ndo_get_port_parent_id)(struct net_device *dev, 1610 struct netdev_phys_item_id *ppid); 1611 int (*ndo_get_phys_port_name)(struct net_device *dev, 1612 char *name, size_t len); 1613 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1614 struct net_device *dev); 1615 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1616 void *priv); 1617 1618 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1619 int queue_index, 1620 u32 maxrate); 1621 int (*ndo_get_iflink)(const struct net_device *dev); 1622 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1623 struct sk_buff *skb); 1624 void (*ndo_set_rx_headroom)(struct net_device *dev, 1625 int needed_headroom); 1626 int (*ndo_bpf)(struct net_device *dev, 1627 struct netdev_bpf *bpf); 1628 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1629 struct xdp_frame **xdp, 1630 u32 flags); 1631 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1632 struct xdp_buff *xdp); 1633 int (*ndo_xsk_wakeup)(struct net_device *dev, 1634 u32 queue_id, u32 flags); 1635 int (*ndo_tunnel_ctl)(struct net_device *dev, 1636 struct ip_tunnel_parm *p, int cmd); 1637 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1638 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1639 struct net_device_path *path); 1640 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1641 const struct skb_shared_hwtstamps *hwtstamps, 1642 bool cycles); 1643 int (*ndo_hwtstamp_get)(struct net_device *dev, 1644 struct kernel_hwtstamp_config *kernel_config); 1645 int (*ndo_hwtstamp_set)(struct net_device *dev, 1646 struct kernel_hwtstamp_config *kernel_config, 1647 struct netlink_ext_ack *extack); 1648 }; 1649 1650 /** 1651 * enum netdev_priv_flags - &struct net_device priv_flags 1652 * 1653 * These are the &struct net_device, they are only set internally 1654 * by drivers and used in the kernel. These flags are invisible to 1655 * userspace; this means that the order of these flags can change 1656 * during any kernel release. 1657 * 1658 * You should have a pretty good reason to be extending these flags. 1659 * 1660 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1661 * @IFF_EBRIDGE: Ethernet bridging device 1662 * @IFF_BONDING: bonding master or slave 1663 * @IFF_ISATAP: ISATAP interface (RFC4214) 1664 * @IFF_WAN_HDLC: WAN HDLC device 1665 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1666 * release skb->dst 1667 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1668 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1669 * @IFF_MACVLAN_PORT: device used as macvlan port 1670 * @IFF_BRIDGE_PORT: device used as bridge port 1671 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1672 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1673 * @IFF_UNICAST_FLT: Supports unicast filtering 1674 * @IFF_TEAM_PORT: device used as team port 1675 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1676 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1677 * change when it's running 1678 * @IFF_MACVLAN: Macvlan device 1679 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1680 * underlying stacked devices 1681 * @IFF_L3MDEV_MASTER: device is an L3 master device 1682 * @IFF_NO_QUEUE: device can run without qdisc attached 1683 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1684 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1685 * @IFF_TEAM: device is a team device 1686 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1687 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1688 * entity (i.e. the master device for bridged veth) 1689 * @IFF_MACSEC: device is a MACsec device 1690 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1691 * @IFF_FAILOVER: device is a failover master device 1692 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1693 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1694 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1695 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1696 * skb_headlen(skb) == 0 (data starts from frag0) 1697 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1698 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1699 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1700 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1701 */ 1702 enum netdev_priv_flags { 1703 IFF_802_1Q_VLAN = 1<<0, 1704 IFF_EBRIDGE = 1<<1, 1705 IFF_BONDING = 1<<2, 1706 IFF_ISATAP = 1<<3, 1707 IFF_WAN_HDLC = 1<<4, 1708 IFF_XMIT_DST_RELEASE = 1<<5, 1709 IFF_DONT_BRIDGE = 1<<6, 1710 IFF_DISABLE_NETPOLL = 1<<7, 1711 IFF_MACVLAN_PORT = 1<<8, 1712 IFF_BRIDGE_PORT = 1<<9, 1713 IFF_OVS_DATAPATH = 1<<10, 1714 IFF_TX_SKB_SHARING = 1<<11, 1715 IFF_UNICAST_FLT = 1<<12, 1716 IFF_TEAM_PORT = 1<<13, 1717 IFF_SUPP_NOFCS = 1<<14, 1718 IFF_LIVE_ADDR_CHANGE = 1<<15, 1719 IFF_MACVLAN = 1<<16, 1720 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1721 IFF_L3MDEV_MASTER = 1<<18, 1722 IFF_NO_QUEUE = 1<<19, 1723 IFF_OPENVSWITCH = 1<<20, 1724 IFF_L3MDEV_SLAVE = 1<<21, 1725 IFF_TEAM = 1<<22, 1726 IFF_RXFH_CONFIGURED = 1<<23, 1727 IFF_PHONY_HEADROOM = 1<<24, 1728 IFF_MACSEC = 1<<25, 1729 IFF_NO_RX_HANDLER = 1<<26, 1730 IFF_FAILOVER = 1<<27, 1731 IFF_FAILOVER_SLAVE = 1<<28, 1732 IFF_L3MDEV_RX_HANDLER = 1<<29, 1733 IFF_NO_ADDRCONF = BIT_ULL(30), 1734 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1735 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1736 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1737 }; 1738 1739 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1740 #define IFF_EBRIDGE IFF_EBRIDGE 1741 #define IFF_BONDING IFF_BONDING 1742 #define IFF_ISATAP IFF_ISATAP 1743 #define IFF_WAN_HDLC IFF_WAN_HDLC 1744 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1745 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1746 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1747 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1748 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1749 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1750 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1751 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1752 #define IFF_TEAM_PORT IFF_TEAM_PORT 1753 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1754 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1755 #define IFF_MACVLAN IFF_MACVLAN 1756 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1757 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1758 #define IFF_NO_QUEUE IFF_NO_QUEUE 1759 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1760 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1761 #define IFF_TEAM IFF_TEAM 1762 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1763 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1764 #define IFF_MACSEC IFF_MACSEC 1765 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1766 #define IFF_FAILOVER IFF_FAILOVER 1767 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1768 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1769 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1770 1771 /* Specifies the type of the struct net_device::ml_priv pointer */ 1772 enum netdev_ml_priv_type { 1773 ML_PRIV_NONE, 1774 ML_PRIV_CAN, 1775 }; 1776 1777 enum netdev_stat_type { 1778 NETDEV_PCPU_STAT_NONE, 1779 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1780 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1781 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1782 }; 1783 1784 /** 1785 * struct net_device - The DEVICE structure. 1786 * 1787 * Actually, this whole structure is a big mistake. It mixes I/O 1788 * data with strictly "high-level" data, and it has to know about 1789 * almost every data structure used in the INET module. 1790 * 1791 * @name: This is the first field of the "visible" part of this structure 1792 * (i.e. as seen by users in the "Space.c" file). It is the name 1793 * of the interface. 1794 * 1795 * @name_node: Name hashlist node 1796 * @ifalias: SNMP alias 1797 * @mem_end: Shared memory end 1798 * @mem_start: Shared memory start 1799 * @base_addr: Device I/O address 1800 * @irq: Device IRQ number 1801 * 1802 * @state: Generic network queuing layer state, see netdev_state_t 1803 * @dev_list: The global list of network devices 1804 * @napi_list: List entry used for polling NAPI devices 1805 * @unreg_list: List entry when we are unregistering the 1806 * device; see the function unregister_netdev 1807 * @close_list: List entry used when we are closing the device 1808 * @ptype_all: Device-specific packet handlers for all protocols 1809 * @ptype_specific: Device-specific, protocol-specific packet handlers 1810 * 1811 * @adj_list: Directly linked devices, like slaves for bonding 1812 * @features: Currently active device features 1813 * @hw_features: User-changeable features 1814 * 1815 * @wanted_features: User-requested features 1816 * @vlan_features: Mask of features inheritable by VLAN devices 1817 * 1818 * @hw_enc_features: Mask of features inherited by encapsulating devices 1819 * This field indicates what encapsulation 1820 * offloads the hardware is capable of doing, 1821 * and drivers will need to set them appropriately. 1822 * 1823 * @mpls_features: Mask of features inheritable by MPLS 1824 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1825 * 1826 * @ifindex: interface index 1827 * @group: The group the device belongs to 1828 * 1829 * @stats: Statistics struct, which was left as a legacy, use 1830 * rtnl_link_stats64 instead 1831 * 1832 * @core_stats: core networking counters, 1833 * do not use this in drivers 1834 * @carrier_up_count: Number of times the carrier has been up 1835 * @carrier_down_count: Number of times the carrier has been down 1836 * 1837 * @wireless_handlers: List of functions to handle Wireless Extensions, 1838 * instead of ioctl, 1839 * see <net/iw_handler.h> for details. 1840 * @wireless_data: Instance data managed by the core of wireless extensions 1841 * 1842 * @netdev_ops: Includes several pointers to callbacks, 1843 * if one wants to override the ndo_*() functions 1844 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1845 * @ethtool_ops: Management operations 1846 * @l3mdev_ops: Layer 3 master device operations 1847 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1848 * discovery handling. Necessary for e.g. 6LoWPAN. 1849 * @xfrmdev_ops: Transformation offload operations 1850 * @tlsdev_ops: Transport Layer Security offload operations 1851 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1852 * of Layer 2 headers. 1853 * 1854 * @flags: Interface flags (a la BSD) 1855 * @xdp_features: XDP capability supported by the device 1856 * @priv_flags: Like 'flags' but invisible to userspace, 1857 * see if.h for the definitions 1858 * @gflags: Global flags ( kept as legacy ) 1859 * @padded: How much padding added by alloc_netdev() 1860 * @operstate: RFC2863 operstate 1861 * @link_mode: Mapping policy to operstate 1862 * @if_port: Selectable AUI, TP, ... 1863 * @dma: DMA channel 1864 * @mtu: Interface MTU value 1865 * @min_mtu: Interface Minimum MTU value 1866 * @max_mtu: Interface Maximum MTU value 1867 * @type: Interface hardware type 1868 * @hard_header_len: Maximum hardware header length. 1869 * @min_header_len: Minimum hardware header length 1870 * 1871 * @needed_headroom: Extra headroom the hardware may need, but not in all 1872 * cases can this be guaranteed 1873 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1874 * cases can this be guaranteed. Some cases also use 1875 * LL_MAX_HEADER instead to allocate the skb 1876 * 1877 * interface address info: 1878 * 1879 * @perm_addr: Permanent hw address 1880 * @addr_assign_type: Hw address assignment type 1881 * @addr_len: Hardware address length 1882 * @upper_level: Maximum depth level of upper devices. 1883 * @lower_level: Maximum depth level of lower devices. 1884 * @neigh_priv_len: Used in neigh_alloc() 1885 * @dev_id: Used to differentiate devices that share 1886 * the same link layer address 1887 * @dev_port: Used to differentiate devices that share 1888 * the same function 1889 * @addr_list_lock: XXX: need comments on this one 1890 * @name_assign_type: network interface name assignment type 1891 * @uc_promisc: Counter that indicates promiscuous mode 1892 * has been enabled due to the need to listen to 1893 * additional unicast addresses in a device that 1894 * does not implement ndo_set_rx_mode() 1895 * @uc: unicast mac addresses 1896 * @mc: multicast mac addresses 1897 * @dev_addrs: list of device hw addresses 1898 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1899 * @promiscuity: Number of times the NIC is told to work in 1900 * promiscuous mode; if it becomes 0 the NIC will 1901 * exit promiscuous mode 1902 * @allmulti: Counter, enables or disables allmulticast mode 1903 * 1904 * @vlan_info: VLAN info 1905 * @dsa_ptr: dsa specific data 1906 * @tipc_ptr: TIPC specific data 1907 * @atalk_ptr: AppleTalk link 1908 * @ip_ptr: IPv4 specific data 1909 * @ip6_ptr: IPv6 specific data 1910 * @ax25_ptr: AX.25 specific data 1911 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1912 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1913 * device struct 1914 * @mpls_ptr: mpls_dev struct pointer 1915 * @mctp_ptr: MCTP specific data 1916 * 1917 * @dev_addr: Hw address (before bcast, 1918 * because most packets are unicast) 1919 * 1920 * @_rx: Array of RX queues 1921 * @num_rx_queues: Number of RX queues 1922 * allocated at register_netdev() time 1923 * @real_num_rx_queues: Number of RX queues currently active in device 1924 * @xdp_prog: XDP sockets filter program pointer 1925 * @gro_flush_timeout: timeout for GRO layer in NAPI 1926 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1927 * allow to avoid NIC hard IRQ, on busy queues. 1928 * 1929 * @rx_handler: handler for received packets 1930 * @rx_handler_data: XXX: need comments on this one 1931 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1932 * @ingress_queue: XXX: need comments on this one 1933 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1934 * @broadcast: hw bcast address 1935 * 1936 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1937 * indexed by RX queue number. Assigned by driver. 1938 * This must only be set if the ndo_rx_flow_steer 1939 * operation is defined 1940 * @index_hlist: Device index hash chain 1941 * 1942 * @_tx: Array of TX queues 1943 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1944 * @real_num_tx_queues: Number of TX queues currently active in device 1945 * @qdisc: Root qdisc from userspace point of view 1946 * @tx_queue_len: Max frames per queue allowed 1947 * @tx_global_lock: XXX: need comments on this one 1948 * @xdp_bulkq: XDP device bulk queue 1949 * @xps_maps: all CPUs/RXQs maps for XPS device 1950 * 1951 * @xps_maps: XXX: need comments on this one 1952 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1953 * @nf_hooks_egress: netfilter hooks executed for egress packets 1954 * @qdisc_hash: qdisc hash table 1955 * @watchdog_timeo: Represents the timeout that is used by 1956 * the watchdog (see dev_watchdog()) 1957 * @watchdog_timer: List of timers 1958 * 1959 * @proto_down_reason: reason a netdev interface is held down 1960 * @pcpu_refcnt: Number of references to this device 1961 * @dev_refcnt: Number of references to this device 1962 * @refcnt_tracker: Tracker directory for tracked references to this device 1963 * @todo_list: Delayed register/unregister 1964 * @link_watch_list: XXX: need comments on this one 1965 * 1966 * @reg_state: Register/unregister state machine 1967 * @dismantle: Device is going to be freed 1968 * @rtnl_link_state: This enum represents the phases of creating 1969 * a new link 1970 * 1971 * @needs_free_netdev: Should unregister perform free_netdev? 1972 * @priv_destructor: Called from unregister 1973 * @npinfo: XXX: need comments on this one 1974 * @nd_net: Network namespace this network device is inside 1975 * 1976 * @ml_priv: Mid-layer private 1977 * @ml_priv_type: Mid-layer private type 1978 * 1979 * @pcpu_stat_type: Type of device statistics which the core should 1980 * allocate/free: none, lstats, tstats, dstats. none 1981 * means the driver is handling statistics allocation/ 1982 * freeing internally. 1983 * @lstats: Loopback statistics: packets, bytes 1984 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1985 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1986 * 1987 * @garp_port: GARP 1988 * @mrp_port: MRP 1989 * 1990 * @dm_private: Drop monitor private 1991 * 1992 * @dev: Class/net/name entry 1993 * @sysfs_groups: Space for optional device, statistics and wireless 1994 * sysfs groups 1995 * 1996 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1997 * @rtnl_link_ops: Rtnl_link_ops 1998 * 1999 * @gso_max_size: Maximum size of generic segmentation offload 2000 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2001 * @gso_max_segs: Maximum number of segments that can be passed to the 2002 * NIC for GSO 2003 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2004 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2005 * for IPv4. 2006 * 2007 * @dcbnl_ops: Data Center Bridging netlink ops 2008 * @num_tc: Number of traffic classes in the net device 2009 * @tc_to_txq: XXX: need comments on this one 2010 * @prio_tc_map: XXX: need comments on this one 2011 * 2012 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2013 * 2014 * @priomap: XXX: need comments on this one 2015 * @phydev: Physical device may attach itself 2016 * for hardware timestamping 2017 * @sfp_bus: attached &struct sfp_bus structure. 2018 * 2019 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2020 * 2021 * @proto_down: protocol port state information can be sent to the 2022 * switch driver and used to set the phys state of the 2023 * switch port. 2024 * 2025 * @wol_enabled: Wake-on-LAN is enabled 2026 * 2027 * @threaded: napi threaded mode is enabled 2028 * 2029 * @net_notifier_list: List of per-net netdev notifier block 2030 * that follow this device when it is moved 2031 * to another network namespace. 2032 * 2033 * @macsec_ops: MACsec offloading ops 2034 * 2035 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2036 * offload capabilities of the device 2037 * @udp_tunnel_nic: UDP tunnel offload state 2038 * @xdp_state: stores info on attached XDP BPF programs 2039 * 2040 * @nested_level: Used as a parameter of spin_lock_nested() of 2041 * dev->addr_list_lock. 2042 * @unlink_list: As netif_addr_lock() can be called recursively, 2043 * keep a list of interfaces to be deleted. 2044 * @gro_max_size: Maximum size of aggregated packet in generic 2045 * receive offload (GRO) 2046 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2047 * receive offload (GRO), for IPv4. 2048 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2049 * zero copy driver 2050 * 2051 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2052 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2053 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2054 * @dev_registered_tracker: tracker for reference held while 2055 * registered 2056 * @offload_xstats_l3: L3 HW stats for this netdevice. 2057 * 2058 * @devlink_port: Pointer to related devlink port structure. 2059 * Assigned by a driver before netdev registration using 2060 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2061 * during the time netdevice is registered. 2062 * 2063 * FIXME: cleanup struct net_device such that network protocol info 2064 * moves out. 2065 */ 2066 2067 struct net_device { 2068 char name[IFNAMSIZ]; 2069 struct netdev_name_node *name_node; 2070 struct dev_ifalias __rcu *ifalias; 2071 /* 2072 * I/O specific fields 2073 * FIXME: Merge these and struct ifmap into one 2074 */ 2075 unsigned long mem_end; 2076 unsigned long mem_start; 2077 unsigned long base_addr; 2078 2079 /* 2080 * Some hardware also needs these fields (state,dev_list, 2081 * napi_list,unreg_list,close_list) but they are not 2082 * part of the usual set specified in Space.c. 2083 */ 2084 2085 unsigned long state; 2086 2087 struct list_head dev_list; 2088 struct list_head napi_list; 2089 struct list_head unreg_list; 2090 struct list_head close_list; 2091 struct list_head ptype_all; 2092 struct list_head ptype_specific; 2093 2094 struct { 2095 struct list_head upper; 2096 struct list_head lower; 2097 } adj_list; 2098 2099 /* Read-mostly cache-line for fast-path access */ 2100 unsigned int flags; 2101 xdp_features_t xdp_features; 2102 unsigned long long priv_flags; 2103 const struct net_device_ops *netdev_ops; 2104 const struct xdp_metadata_ops *xdp_metadata_ops; 2105 int ifindex; 2106 unsigned short gflags; 2107 unsigned short hard_header_len; 2108 2109 /* Note : dev->mtu is often read without holding a lock. 2110 * Writers usually hold RTNL. 2111 * It is recommended to use READ_ONCE() to annotate the reads, 2112 * and to use WRITE_ONCE() to annotate the writes. 2113 */ 2114 unsigned int mtu; 2115 unsigned short needed_headroom; 2116 unsigned short needed_tailroom; 2117 2118 netdev_features_t features; 2119 netdev_features_t hw_features; 2120 netdev_features_t wanted_features; 2121 netdev_features_t vlan_features; 2122 netdev_features_t hw_enc_features; 2123 netdev_features_t mpls_features; 2124 netdev_features_t gso_partial_features; 2125 2126 unsigned int min_mtu; 2127 unsigned int max_mtu; 2128 unsigned short type; 2129 unsigned char min_header_len; 2130 unsigned char name_assign_type; 2131 2132 int group; 2133 2134 struct net_device_stats stats; /* not used by modern drivers */ 2135 2136 struct net_device_core_stats __percpu *core_stats; 2137 2138 /* Stats to monitor link on/off, flapping */ 2139 atomic_t carrier_up_count; 2140 atomic_t carrier_down_count; 2141 2142 #ifdef CONFIG_WIRELESS_EXT 2143 const struct iw_handler_def *wireless_handlers; 2144 struct iw_public_data *wireless_data; 2145 #endif 2146 const struct ethtool_ops *ethtool_ops; 2147 #ifdef CONFIG_NET_L3_MASTER_DEV 2148 const struct l3mdev_ops *l3mdev_ops; 2149 #endif 2150 #if IS_ENABLED(CONFIG_IPV6) 2151 const struct ndisc_ops *ndisc_ops; 2152 #endif 2153 2154 #ifdef CONFIG_XFRM_OFFLOAD 2155 const struct xfrmdev_ops *xfrmdev_ops; 2156 #endif 2157 2158 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2159 const struct tlsdev_ops *tlsdev_ops; 2160 #endif 2161 2162 const struct header_ops *header_ops; 2163 2164 unsigned char operstate; 2165 unsigned char link_mode; 2166 2167 unsigned char if_port; 2168 unsigned char dma; 2169 2170 /* Interface address info. */ 2171 unsigned char perm_addr[MAX_ADDR_LEN]; 2172 unsigned char addr_assign_type; 2173 unsigned char addr_len; 2174 unsigned char upper_level; 2175 unsigned char lower_level; 2176 2177 unsigned short neigh_priv_len; 2178 unsigned short dev_id; 2179 unsigned short dev_port; 2180 unsigned short padded; 2181 2182 spinlock_t addr_list_lock; 2183 int irq; 2184 2185 struct netdev_hw_addr_list uc; 2186 struct netdev_hw_addr_list mc; 2187 struct netdev_hw_addr_list dev_addrs; 2188 2189 #ifdef CONFIG_SYSFS 2190 struct kset *queues_kset; 2191 #endif 2192 #ifdef CONFIG_LOCKDEP 2193 struct list_head unlink_list; 2194 #endif 2195 unsigned int promiscuity; 2196 unsigned int allmulti; 2197 bool uc_promisc; 2198 #ifdef CONFIG_LOCKDEP 2199 unsigned char nested_level; 2200 #endif 2201 2202 2203 /* Protocol-specific pointers */ 2204 2205 struct in_device __rcu *ip_ptr; 2206 struct inet6_dev __rcu *ip6_ptr; 2207 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2208 struct vlan_info __rcu *vlan_info; 2209 #endif 2210 #if IS_ENABLED(CONFIG_NET_DSA) 2211 struct dsa_port *dsa_ptr; 2212 #endif 2213 #if IS_ENABLED(CONFIG_TIPC) 2214 struct tipc_bearer __rcu *tipc_ptr; 2215 #endif 2216 #if IS_ENABLED(CONFIG_ATALK) 2217 void *atalk_ptr; 2218 #endif 2219 #if IS_ENABLED(CONFIG_AX25) 2220 struct ax25_dev __rcu *ax25_ptr; 2221 #endif 2222 #if IS_ENABLED(CONFIG_CFG80211) 2223 struct wireless_dev *ieee80211_ptr; 2224 #endif 2225 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2226 struct wpan_dev *ieee802154_ptr; 2227 #endif 2228 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2229 struct mpls_dev __rcu *mpls_ptr; 2230 #endif 2231 #if IS_ENABLED(CONFIG_MCTP) 2232 struct mctp_dev __rcu *mctp_ptr; 2233 #endif 2234 2235 /* 2236 * Cache lines mostly used on receive path (including eth_type_trans()) 2237 */ 2238 /* Interface address info used in eth_type_trans() */ 2239 const unsigned char *dev_addr; 2240 2241 struct netdev_rx_queue *_rx; 2242 unsigned int num_rx_queues; 2243 unsigned int real_num_rx_queues; 2244 2245 struct bpf_prog __rcu *xdp_prog; 2246 unsigned long gro_flush_timeout; 2247 int napi_defer_hard_irqs; 2248 #define GRO_LEGACY_MAX_SIZE 65536u 2249 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2250 * and shinfo->gso_segs is a 16bit field. 2251 */ 2252 #define GRO_MAX_SIZE (8 * 65535u) 2253 unsigned int gro_max_size; 2254 unsigned int gro_ipv4_max_size; 2255 unsigned int xdp_zc_max_segs; 2256 rx_handler_func_t __rcu *rx_handler; 2257 void __rcu *rx_handler_data; 2258 #ifdef CONFIG_NET_XGRESS 2259 struct bpf_mprog_entry __rcu *tcx_ingress; 2260 #endif 2261 struct netdev_queue __rcu *ingress_queue; 2262 #ifdef CONFIG_NETFILTER_INGRESS 2263 struct nf_hook_entries __rcu *nf_hooks_ingress; 2264 #endif 2265 2266 unsigned char broadcast[MAX_ADDR_LEN]; 2267 #ifdef CONFIG_RFS_ACCEL 2268 struct cpu_rmap *rx_cpu_rmap; 2269 #endif 2270 struct hlist_node index_hlist; 2271 2272 /* 2273 * Cache lines mostly used on transmit path 2274 */ 2275 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2276 unsigned int num_tx_queues; 2277 unsigned int real_num_tx_queues; 2278 struct Qdisc __rcu *qdisc; 2279 unsigned int tx_queue_len; 2280 spinlock_t tx_global_lock; 2281 2282 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2283 2284 #ifdef CONFIG_XPS 2285 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2286 #endif 2287 #ifdef CONFIG_NET_XGRESS 2288 struct bpf_mprog_entry __rcu *tcx_egress; 2289 #endif 2290 #ifdef CONFIG_NETFILTER_EGRESS 2291 struct nf_hook_entries __rcu *nf_hooks_egress; 2292 #endif 2293 2294 #ifdef CONFIG_NET_SCHED 2295 DECLARE_HASHTABLE (qdisc_hash, 4); 2296 #endif 2297 /* These may be needed for future network-power-down code. */ 2298 struct timer_list watchdog_timer; 2299 int watchdog_timeo; 2300 2301 u32 proto_down_reason; 2302 2303 struct list_head todo_list; 2304 2305 #ifdef CONFIG_PCPU_DEV_REFCNT 2306 int __percpu *pcpu_refcnt; 2307 #else 2308 refcount_t dev_refcnt; 2309 #endif 2310 struct ref_tracker_dir refcnt_tracker; 2311 2312 struct list_head link_watch_list; 2313 2314 enum { NETREG_UNINITIALIZED=0, 2315 NETREG_REGISTERED, /* completed register_netdevice */ 2316 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2317 NETREG_UNREGISTERED, /* completed unregister todo */ 2318 NETREG_RELEASED, /* called free_netdev */ 2319 NETREG_DUMMY, /* dummy device for NAPI poll */ 2320 } reg_state:8; 2321 2322 bool dismantle; 2323 2324 enum { 2325 RTNL_LINK_INITIALIZED, 2326 RTNL_LINK_INITIALIZING, 2327 } rtnl_link_state:16; 2328 2329 bool needs_free_netdev; 2330 void (*priv_destructor)(struct net_device *dev); 2331 2332 #ifdef CONFIG_NETPOLL 2333 struct netpoll_info __rcu *npinfo; 2334 #endif 2335 2336 possible_net_t nd_net; 2337 2338 /* mid-layer private */ 2339 void *ml_priv; 2340 enum netdev_ml_priv_type ml_priv_type; 2341 2342 enum netdev_stat_type pcpu_stat_type:8; 2343 union { 2344 struct pcpu_lstats __percpu *lstats; 2345 struct pcpu_sw_netstats __percpu *tstats; 2346 struct pcpu_dstats __percpu *dstats; 2347 }; 2348 2349 #if IS_ENABLED(CONFIG_GARP) 2350 struct garp_port __rcu *garp_port; 2351 #endif 2352 #if IS_ENABLED(CONFIG_MRP) 2353 struct mrp_port __rcu *mrp_port; 2354 #endif 2355 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2356 struct dm_hw_stat_delta __rcu *dm_private; 2357 #endif 2358 struct device dev; 2359 const struct attribute_group *sysfs_groups[4]; 2360 const struct attribute_group *sysfs_rx_queue_group; 2361 2362 const struct rtnl_link_ops *rtnl_link_ops; 2363 2364 /* for setting kernel sock attribute on TCP connection setup */ 2365 #define GSO_MAX_SEGS 65535u 2366 #define GSO_LEGACY_MAX_SIZE 65536u 2367 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2368 * and shinfo->gso_segs is a 16bit field. 2369 */ 2370 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2371 2372 unsigned int gso_max_size; 2373 #define TSO_LEGACY_MAX_SIZE 65536 2374 #define TSO_MAX_SIZE UINT_MAX 2375 unsigned int tso_max_size; 2376 u16 gso_max_segs; 2377 #define TSO_MAX_SEGS U16_MAX 2378 u16 tso_max_segs; 2379 unsigned int gso_ipv4_max_size; 2380 2381 #ifdef CONFIG_DCB 2382 const struct dcbnl_rtnl_ops *dcbnl_ops; 2383 #endif 2384 s16 num_tc; 2385 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2386 u8 prio_tc_map[TC_BITMASK + 1]; 2387 2388 #if IS_ENABLED(CONFIG_FCOE) 2389 unsigned int fcoe_ddp_xid; 2390 #endif 2391 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2392 struct netprio_map __rcu *priomap; 2393 #endif 2394 struct phy_device *phydev; 2395 struct sfp_bus *sfp_bus; 2396 struct lock_class_key *qdisc_tx_busylock; 2397 bool proto_down; 2398 unsigned wol_enabled:1; 2399 unsigned threaded:1; 2400 2401 struct list_head net_notifier_list; 2402 2403 #if IS_ENABLED(CONFIG_MACSEC) 2404 /* MACsec management functions */ 2405 const struct macsec_ops *macsec_ops; 2406 #endif 2407 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2408 struct udp_tunnel_nic *udp_tunnel_nic; 2409 2410 /* protected by rtnl_lock */ 2411 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2412 2413 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2414 netdevice_tracker linkwatch_dev_tracker; 2415 netdevice_tracker watchdog_dev_tracker; 2416 netdevice_tracker dev_registered_tracker; 2417 struct rtnl_hw_stats64 *offload_xstats_l3; 2418 2419 struct devlink_port *devlink_port; 2420 }; 2421 #define to_net_dev(d) container_of(d, struct net_device, dev) 2422 2423 /* 2424 * Driver should use this to assign devlink port instance to a netdevice 2425 * before it registers the netdevice. Therefore devlink_port is static 2426 * during the netdev lifetime after it is registered. 2427 */ 2428 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2429 ({ \ 2430 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2431 ((dev)->devlink_port = (port)); \ 2432 }) 2433 2434 static inline bool netif_elide_gro(const struct net_device *dev) 2435 { 2436 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2437 return true; 2438 return false; 2439 } 2440 2441 #define NETDEV_ALIGN 32 2442 2443 static inline 2444 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2445 { 2446 return dev->prio_tc_map[prio & TC_BITMASK]; 2447 } 2448 2449 static inline 2450 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2451 { 2452 if (tc >= dev->num_tc) 2453 return -EINVAL; 2454 2455 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2456 return 0; 2457 } 2458 2459 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2460 void netdev_reset_tc(struct net_device *dev); 2461 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2462 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2463 2464 static inline 2465 int netdev_get_num_tc(struct net_device *dev) 2466 { 2467 return dev->num_tc; 2468 } 2469 2470 static inline void net_prefetch(void *p) 2471 { 2472 prefetch(p); 2473 #if L1_CACHE_BYTES < 128 2474 prefetch((u8 *)p + L1_CACHE_BYTES); 2475 #endif 2476 } 2477 2478 static inline void net_prefetchw(void *p) 2479 { 2480 prefetchw(p); 2481 #if L1_CACHE_BYTES < 128 2482 prefetchw((u8 *)p + L1_CACHE_BYTES); 2483 #endif 2484 } 2485 2486 void netdev_unbind_sb_channel(struct net_device *dev, 2487 struct net_device *sb_dev); 2488 int netdev_bind_sb_channel_queue(struct net_device *dev, 2489 struct net_device *sb_dev, 2490 u8 tc, u16 count, u16 offset); 2491 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2492 static inline int netdev_get_sb_channel(struct net_device *dev) 2493 { 2494 return max_t(int, -dev->num_tc, 0); 2495 } 2496 2497 static inline 2498 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2499 unsigned int index) 2500 { 2501 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2502 return &dev->_tx[index]; 2503 } 2504 2505 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2506 const struct sk_buff *skb) 2507 { 2508 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2509 } 2510 2511 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2512 void (*f)(struct net_device *, 2513 struct netdev_queue *, 2514 void *), 2515 void *arg) 2516 { 2517 unsigned int i; 2518 2519 for (i = 0; i < dev->num_tx_queues; i++) 2520 f(dev, &dev->_tx[i], arg); 2521 } 2522 2523 #define netdev_lockdep_set_classes(dev) \ 2524 { \ 2525 static struct lock_class_key qdisc_tx_busylock_key; \ 2526 static struct lock_class_key qdisc_xmit_lock_key; \ 2527 static struct lock_class_key dev_addr_list_lock_key; \ 2528 unsigned int i; \ 2529 \ 2530 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2531 lockdep_set_class(&(dev)->addr_list_lock, \ 2532 &dev_addr_list_lock_key); \ 2533 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2534 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2535 &qdisc_xmit_lock_key); \ 2536 } 2537 2538 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2539 struct net_device *sb_dev); 2540 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2541 struct sk_buff *skb, 2542 struct net_device *sb_dev); 2543 2544 /* returns the headroom that the master device needs to take in account 2545 * when forwarding to this dev 2546 */ 2547 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2548 { 2549 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2550 } 2551 2552 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2553 { 2554 if (dev->netdev_ops->ndo_set_rx_headroom) 2555 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2556 } 2557 2558 /* set the device rx headroom to the dev's default */ 2559 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2560 { 2561 netdev_set_rx_headroom(dev, -1); 2562 } 2563 2564 static inline void *netdev_get_ml_priv(struct net_device *dev, 2565 enum netdev_ml_priv_type type) 2566 { 2567 if (dev->ml_priv_type != type) 2568 return NULL; 2569 2570 return dev->ml_priv; 2571 } 2572 2573 static inline void netdev_set_ml_priv(struct net_device *dev, 2574 void *ml_priv, 2575 enum netdev_ml_priv_type type) 2576 { 2577 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2578 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2579 dev->ml_priv_type, type); 2580 WARN(!dev->ml_priv_type && dev->ml_priv, 2581 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2582 2583 dev->ml_priv = ml_priv; 2584 dev->ml_priv_type = type; 2585 } 2586 2587 /* 2588 * Net namespace inlines 2589 */ 2590 static inline 2591 struct net *dev_net(const struct net_device *dev) 2592 { 2593 return read_pnet(&dev->nd_net); 2594 } 2595 2596 static inline 2597 struct net *dev_net_rcu(const struct net_device *dev) 2598 { 2599 return read_pnet_rcu(&dev->nd_net); 2600 } 2601 2602 static inline 2603 void dev_net_set(struct net_device *dev, struct net *net) 2604 { 2605 write_pnet(&dev->nd_net, net); 2606 } 2607 2608 /** 2609 * netdev_priv - access network device private data 2610 * @dev: network device 2611 * 2612 * Get network device private data 2613 */ 2614 static inline void *netdev_priv(const struct net_device *dev) 2615 { 2616 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2617 } 2618 2619 /* Set the sysfs physical device reference for the network logical device 2620 * if set prior to registration will cause a symlink during initialization. 2621 */ 2622 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2623 2624 /* Set the sysfs device type for the network logical device to allow 2625 * fine-grained identification of different network device types. For 2626 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2627 */ 2628 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2629 2630 /* Default NAPI poll() weight 2631 * Device drivers are strongly advised to not use bigger value 2632 */ 2633 #define NAPI_POLL_WEIGHT 64 2634 2635 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2636 int (*poll)(struct napi_struct *, int), int weight); 2637 2638 /** 2639 * netif_napi_add() - initialize a NAPI context 2640 * @dev: network device 2641 * @napi: NAPI context 2642 * @poll: polling function 2643 * 2644 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2645 * *any* of the other NAPI-related functions. 2646 */ 2647 static inline void 2648 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2649 int (*poll)(struct napi_struct *, int)) 2650 { 2651 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2652 } 2653 2654 static inline void 2655 netif_napi_add_tx_weight(struct net_device *dev, 2656 struct napi_struct *napi, 2657 int (*poll)(struct napi_struct *, int), 2658 int weight) 2659 { 2660 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2661 netif_napi_add_weight(dev, napi, poll, weight); 2662 } 2663 2664 /** 2665 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2666 * @dev: network device 2667 * @napi: NAPI context 2668 * @poll: polling function 2669 * 2670 * This variant of netif_napi_add() should be used from drivers using NAPI 2671 * to exclusively poll a TX queue. 2672 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2673 */ 2674 static inline void netif_napi_add_tx(struct net_device *dev, 2675 struct napi_struct *napi, 2676 int (*poll)(struct napi_struct *, int)) 2677 { 2678 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2679 } 2680 2681 /** 2682 * __netif_napi_del - remove a NAPI context 2683 * @napi: NAPI context 2684 * 2685 * Warning: caller must observe RCU grace period before freeing memory 2686 * containing @napi. Drivers might want to call this helper to combine 2687 * all the needed RCU grace periods into a single one. 2688 */ 2689 void __netif_napi_del(struct napi_struct *napi); 2690 2691 /** 2692 * netif_napi_del - remove a NAPI context 2693 * @napi: NAPI context 2694 * 2695 * netif_napi_del() removes a NAPI context from the network device NAPI list 2696 */ 2697 static inline void netif_napi_del(struct napi_struct *napi) 2698 { 2699 __netif_napi_del(napi); 2700 synchronize_net(); 2701 } 2702 2703 struct packet_type { 2704 __be16 type; /* This is really htons(ether_type). */ 2705 bool ignore_outgoing; 2706 struct net_device *dev; /* NULL is wildcarded here */ 2707 netdevice_tracker dev_tracker; 2708 int (*func) (struct sk_buff *, 2709 struct net_device *, 2710 struct packet_type *, 2711 struct net_device *); 2712 void (*list_func) (struct list_head *, 2713 struct packet_type *, 2714 struct net_device *); 2715 bool (*id_match)(struct packet_type *ptype, 2716 struct sock *sk); 2717 struct net *af_packet_net; 2718 void *af_packet_priv; 2719 struct list_head list; 2720 }; 2721 2722 struct offload_callbacks { 2723 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2724 netdev_features_t features); 2725 struct sk_buff *(*gro_receive)(struct list_head *head, 2726 struct sk_buff *skb); 2727 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2728 }; 2729 2730 struct packet_offload { 2731 __be16 type; /* This is really htons(ether_type). */ 2732 u16 priority; 2733 struct offload_callbacks callbacks; 2734 struct list_head list; 2735 }; 2736 2737 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2738 struct pcpu_sw_netstats { 2739 u64_stats_t rx_packets; 2740 u64_stats_t rx_bytes; 2741 u64_stats_t tx_packets; 2742 u64_stats_t tx_bytes; 2743 struct u64_stats_sync syncp; 2744 } __aligned(4 * sizeof(u64)); 2745 2746 struct pcpu_dstats { 2747 u64 rx_packets; 2748 u64 rx_bytes; 2749 u64 rx_drops; 2750 u64 tx_packets; 2751 u64 tx_bytes; 2752 u64 tx_drops; 2753 struct u64_stats_sync syncp; 2754 } __aligned(8 * sizeof(u64)); 2755 2756 struct pcpu_lstats { 2757 u64_stats_t packets; 2758 u64_stats_t bytes; 2759 struct u64_stats_sync syncp; 2760 } __aligned(2 * sizeof(u64)); 2761 2762 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2763 2764 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2765 { 2766 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2767 2768 u64_stats_update_begin(&tstats->syncp); 2769 u64_stats_add(&tstats->rx_bytes, len); 2770 u64_stats_inc(&tstats->rx_packets); 2771 u64_stats_update_end(&tstats->syncp); 2772 } 2773 2774 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2775 unsigned int packets, 2776 unsigned int len) 2777 { 2778 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2779 2780 u64_stats_update_begin(&tstats->syncp); 2781 u64_stats_add(&tstats->tx_bytes, len); 2782 u64_stats_add(&tstats->tx_packets, packets); 2783 u64_stats_update_end(&tstats->syncp); 2784 } 2785 2786 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2787 { 2788 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2789 2790 u64_stats_update_begin(&lstats->syncp); 2791 u64_stats_add(&lstats->bytes, len); 2792 u64_stats_inc(&lstats->packets); 2793 u64_stats_update_end(&lstats->syncp); 2794 } 2795 2796 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2797 ({ \ 2798 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2799 if (pcpu_stats) { \ 2800 int __cpu; \ 2801 for_each_possible_cpu(__cpu) { \ 2802 typeof(type) *stat; \ 2803 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2804 u64_stats_init(&stat->syncp); \ 2805 } \ 2806 } \ 2807 pcpu_stats; \ 2808 }) 2809 2810 #define netdev_alloc_pcpu_stats(type) \ 2811 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2812 2813 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2814 ({ \ 2815 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2816 if (pcpu_stats) { \ 2817 int __cpu; \ 2818 for_each_possible_cpu(__cpu) { \ 2819 typeof(type) *stat; \ 2820 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2821 u64_stats_init(&stat->syncp); \ 2822 } \ 2823 } \ 2824 pcpu_stats; \ 2825 }) 2826 2827 enum netdev_lag_tx_type { 2828 NETDEV_LAG_TX_TYPE_UNKNOWN, 2829 NETDEV_LAG_TX_TYPE_RANDOM, 2830 NETDEV_LAG_TX_TYPE_BROADCAST, 2831 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2832 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2833 NETDEV_LAG_TX_TYPE_HASH, 2834 }; 2835 2836 enum netdev_lag_hash { 2837 NETDEV_LAG_HASH_NONE, 2838 NETDEV_LAG_HASH_L2, 2839 NETDEV_LAG_HASH_L34, 2840 NETDEV_LAG_HASH_L23, 2841 NETDEV_LAG_HASH_E23, 2842 NETDEV_LAG_HASH_E34, 2843 NETDEV_LAG_HASH_VLAN_SRCMAC, 2844 NETDEV_LAG_HASH_UNKNOWN, 2845 }; 2846 2847 struct netdev_lag_upper_info { 2848 enum netdev_lag_tx_type tx_type; 2849 enum netdev_lag_hash hash_type; 2850 }; 2851 2852 struct netdev_lag_lower_state_info { 2853 u8 link_up : 1, 2854 tx_enabled : 1; 2855 }; 2856 2857 #include <linux/notifier.h> 2858 2859 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2860 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2861 * adding new types. 2862 */ 2863 enum netdev_cmd { 2864 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2865 NETDEV_DOWN, 2866 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2867 detected a hardware crash and restarted 2868 - we can use this eg to kick tcp sessions 2869 once done */ 2870 NETDEV_CHANGE, /* Notify device state change */ 2871 NETDEV_REGISTER, 2872 NETDEV_UNREGISTER, 2873 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2874 NETDEV_CHANGEADDR, /* notify after the address change */ 2875 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2876 NETDEV_GOING_DOWN, 2877 NETDEV_CHANGENAME, 2878 NETDEV_FEAT_CHANGE, 2879 NETDEV_BONDING_FAILOVER, 2880 NETDEV_PRE_UP, 2881 NETDEV_PRE_TYPE_CHANGE, 2882 NETDEV_POST_TYPE_CHANGE, 2883 NETDEV_POST_INIT, 2884 NETDEV_PRE_UNINIT, 2885 NETDEV_RELEASE, 2886 NETDEV_NOTIFY_PEERS, 2887 NETDEV_JOIN, 2888 NETDEV_CHANGEUPPER, 2889 NETDEV_RESEND_IGMP, 2890 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2891 NETDEV_CHANGEINFODATA, 2892 NETDEV_BONDING_INFO, 2893 NETDEV_PRECHANGEUPPER, 2894 NETDEV_CHANGELOWERSTATE, 2895 NETDEV_UDP_TUNNEL_PUSH_INFO, 2896 NETDEV_UDP_TUNNEL_DROP_INFO, 2897 NETDEV_CHANGE_TX_QUEUE_LEN, 2898 NETDEV_CVLAN_FILTER_PUSH_INFO, 2899 NETDEV_CVLAN_FILTER_DROP_INFO, 2900 NETDEV_SVLAN_FILTER_PUSH_INFO, 2901 NETDEV_SVLAN_FILTER_DROP_INFO, 2902 NETDEV_OFFLOAD_XSTATS_ENABLE, 2903 NETDEV_OFFLOAD_XSTATS_DISABLE, 2904 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2905 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2906 NETDEV_XDP_FEAT_CHANGE, 2907 }; 2908 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2909 2910 int register_netdevice_notifier(struct notifier_block *nb); 2911 int unregister_netdevice_notifier(struct notifier_block *nb); 2912 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2913 int unregister_netdevice_notifier_net(struct net *net, 2914 struct notifier_block *nb); 2915 int register_netdevice_notifier_dev_net(struct net_device *dev, 2916 struct notifier_block *nb, 2917 struct netdev_net_notifier *nn); 2918 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2919 struct notifier_block *nb, 2920 struct netdev_net_notifier *nn); 2921 2922 struct netdev_notifier_info { 2923 struct net_device *dev; 2924 struct netlink_ext_ack *extack; 2925 }; 2926 2927 struct netdev_notifier_info_ext { 2928 struct netdev_notifier_info info; /* must be first */ 2929 union { 2930 u32 mtu; 2931 } ext; 2932 }; 2933 2934 struct netdev_notifier_change_info { 2935 struct netdev_notifier_info info; /* must be first */ 2936 unsigned int flags_changed; 2937 }; 2938 2939 struct netdev_notifier_changeupper_info { 2940 struct netdev_notifier_info info; /* must be first */ 2941 struct net_device *upper_dev; /* new upper dev */ 2942 bool master; /* is upper dev master */ 2943 bool linking; /* is the notification for link or unlink */ 2944 void *upper_info; /* upper dev info */ 2945 }; 2946 2947 struct netdev_notifier_changelowerstate_info { 2948 struct netdev_notifier_info info; /* must be first */ 2949 void *lower_state_info; /* is lower dev state */ 2950 }; 2951 2952 struct netdev_notifier_pre_changeaddr_info { 2953 struct netdev_notifier_info info; /* must be first */ 2954 const unsigned char *dev_addr; 2955 }; 2956 2957 enum netdev_offload_xstats_type { 2958 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2959 }; 2960 2961 struct netdev_notifier_offload_xstats_info { 2962 struct netdev_notifier_info info; /* must be first */ 2963 enum netdev_offload_xstats_type type; 2964 2965 union { 2966 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2967 struct netdev_notifier_offload_xstats_rd *report_delta; 2968 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2969 struct netdev_notifier_offload_xstats_ru *report_used; 2970 }; 2971 }; 2972 2973 int netdev_offload_xstats_enable(struct net_device *dev, 2974 enum netdev_offload_xstats_type type, 2975 struct netlink_ext_ack *extack); 2976 int netdev_offload_xstats_disable(struct net_device *dev, 2977 enum netdev_offload_xstats_type type); 2978 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2979 enum netdev_offload_xstats_type type); 2980 int netdev_offload_xstats_get(struct net_device *dev, 2981 enum netdev_offload_xstats_type type, 2982 struct rtnl_hw_stats64 *stats, bool *used, 2983 struct netlink_ext_ack *extack); 2984 void 2985 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2986 const struct rtnl_hw_stats64 *stats); 2987 void 2988 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2989 void netdev_offload_xstats_push_delta(struct net_device *dev, 2990 enum netdev_offload_xstats_type type, 2991 const struct rtnl_hw_stats64 *stats); 2992 2993 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2994 struct net_device *dev) 2995 { 2996 info->dev = dev; 2997 info->extack = NULL; 2998 } 2999 3000 static inline struct net_device * 3001 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3002 { 3003 return info->dev; 3004 } 3005 3006 static inline struct netlink_ext_ack * 3007 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3008 { 3009 return info->extack; 3010 } 3011 3012 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3013 int call_netdevice_notifiers_info(unsigned long val, 3014 struct netdev_notifier_info *info); 3015 3016 extern rwlock_t dev_base_lock; /* Device list lock */ 3017 3018 #define for_each_netdev(net, d) \ 3019 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3020 #define for_each_netdev_reverse(net, d) \ 3021 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3022 #define for_each_netdev_rcu(net, d) \ 3023 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3024 #define for_each_netdev_safe(net, d, n) \ 3025 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3026 #define for_each_netdev_continue(net, d) \ 3027 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3028 #define for_each_netdev_continue_reverse(net, d) \ 3029 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3030 dev_list) 3031 #define for_each_netdev_continue_rcu(net, d) \ 3032 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3033 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3034 for_each_netdev_rcu(&init_net, slave) \ 3035 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3036 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3037 3038 #define for_each_netdev_dump(net, d, ifindex) \ 3039 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3040 3041 static inline struct net_device *next_net_device(struct net_device *dev) 3042 { 3043 struct list_head *lh; 3044 struct net *net; 3045 3046 net = dev_net(dev); 3047 lh = dev->dev_list.next; 3048 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3049 } 3050 3051 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3052 { 3053 struct list_head *lh; 3054 struct net *net; 3055 3056 net = dev_net(dev); 3057 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3058 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3059 } 3060 3061 static inline struct net_device *first_net_device(struct net *net) 3062 { 3063 return list_empty(&net->dev_base_head) ? NULL : 3064 net_device_entry(net->dev_base_head.next); 3065 } 3066 3067 static inline struct net_device *first_net_device_rcu(struct net *net) 3068 { 3069 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3070 3071 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3072 } 3073 3074 int netdev_boot_setup_check(struct net_device *dev); 3075 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 3076 const char *hwaddr); 3077 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3078 const char *hwaddr); 3079 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3080 void dev_add_pack(struct packet_type *pt); 3081 void dev_remove_pack(struct packet_type *pt); 3082 void __dev_remove_pack(struct packet_type *pt); 3083 void dev_add_offload(struct packet_offload *po); 3084 void dev_remove_offload(struct packet_offload *po); 3085 3086 int dev_get_iflink(const struct net_device *dev); 3087 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3088 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3089 struct net_device_path_stack *stack); 3090 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3091 unsigned short mask); 3092 struct net_device *dev_get_by_name(struct net *net, const char *name); 3093 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3094 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3095 bool netdev_name_in_use(struct net *net, const char *name); 3096 int dev_alloc_name(struct net_device *dev, const char *name); 3097 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3098 void dev_close(struct net_device *dev); 3099 void dev_close_many(struct list_head *head, bool unlink); 3100 void dev_disable_lro(struct net_device *dev); 3101 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3102 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3103 struct net_device *sb_dev); 3104 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3105 struct net_device *sb_dev); 3106 3107 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3108 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3109 3110 static inline int dev_queue_xmit(struct sk_buff *skb) 3111 { 3112 return __dev_queue_xmit(skb, NULL); 3113 } 3114 3115 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3116 struct net_device *sb_dev) 3117 { 3118 return __dev_queue_xmit(skb, sb_dev); 3119 } 3120 3121 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3122 { 3123 int ret; 3124 3125 ret = __dev_direct_xmit(skb, queue_id); 3126 if (!dev_xmit_complete(ret)) 3127 kfree_skb(skb); 3128 return ret; 3129 } 3130 3131 int register_netdevice(struct net_device *dev); 3132 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3133 void unregister_netdevice_many(struct list_head *head); 3134 static inline void unregister_netdevice(struct net_device *dev) 3135 { 3136 unregister_netdevice_queue(dev, NULL); 3137 } 3138 3139 int netdev_refcnt_read(const struct net_device *dev); 3140 void free_netdev(struct net_device *dev); 3141 void netdev_freemem(struct net_device *dev); 3142 int init_dummy_netdev(struct net_device *dev); 3143 3144 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3145 struct sk_buff *skb, 3146 bool all_slaves); 3147 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3148 struct sock *sk); 3149 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3150 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3151 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3152 netdevice_tracker *tracker, gfp_t gfp); 3153 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3154 netdevice_tracker *tracker, gfp_t gfp); 3155 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3156 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3157 3158 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3159 unsigned short type, 3160 const void *daddr, const void *saddr, 3161 unsigned int len) 3162 { 3163 if (!dev->header_ops || !dev->header_ops->create) 3164 return 0; 3165 3166 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3167 } 3168 3169 static inline int dev_parse_header(const struct sk_buff *skb, 3170 unsigned char *haddr) 3171 { 3172 const struct net_device *dev = skb->dev; 3173 3174 if (!dev->header_ops || !dev->header_ops->parse) 3175 return 0; 3176 return dev->header_ops->parse(skb, haddr); 3177 } 3178 3179 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3180 { 3181 const struct net_device *dev = skb->dev; 3182 3183 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3184 return 0; 3185 return dev->header_ops->parse_protocol(skb); 3186 } 3187 3188 /* ll_header must have at least hard_header_len allocated */ 3189 static inline bool dev_validate_header(const struct net_device *dev, 3190 char *ll_header, int len) 3191 { 3192 if (likely(len >= dev->hard_header_len)) 3193 return true; 3194 if (len < dev->min_header_len) 3195 return false; 3196 3197 if (capable(CAP_SYS_RAWIO)) { 3198 memset(ll_header + len, 0, dev->hard_header_len - len); 3199 return true; 3200 } 3201 3202 if (dev->header_ops && dev->header_ops->validate) 3203 return dev->header_ops->validate(ll_header, len); 3204 3205 return false; 3206 } 3207 3208 static inline bool dev_has_header(const struct net_device *dev) 3209 { 3210 return dev->header_ops && dev->header_ops->create; 3211 } 3212 3213 /* 3214 * Incoming packets are placed on per-CPU queues 3215 */ 3216 struct softnet_data { 3217 struct list_head poll_list; 3218 struct sk_buff_head process_queue; 3219 3220 /* stats */ 3221 unsigned int processed; 3222 unsigned int time_squeeze; 3223 #ifdef CONFIG_RPS 3224 struct softnet_data *rps_ipi_list; 3225 #endif 3226 3227 bool in_net_rx_action; 3228 bool in_napi_threaded_poll; 3229 3230 #ifdef CONFIG_NET_FLOW_LIMIT 3231 struct sd_flow_limit __rcu *flow_limit; 3232 #endif 3233 struct Qdisc *output_queue; 3234 struct Qdisc **output_queue_tailp; 3235 struct sk_buff *completion_queue; 3236 #ifdef CONFIG_XFRM_OFFLOAD 3237 struct sk_buff_head xfrm_backlog; 3238 #endif 3239 /* written and read only by owning cpu: */ 3240 struct { 3241 u16 recursion; 3242 u8 more; 3243 #ifdef CONFIG_NET_EGRESS 3244 u8 skip_txqueue; 3245 #endif 3246 } xmit; 3247 #ifdef CONFIG_RPS 3248 /* input_queue_head should be written by cpu owning this struct, 3249 * and only read by other cpus. Worth using a cache line. 3250 */ 3251 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3252 3253 /* Elements below can be accessed between CPUs for RPS/RFS */ 3254 call_single_data_t csd ____cacheline_aligned_in_smp; 3255 struct softnet_data *rps_ipi_next; 3256 unsigned int cpu; 3257 unsigned int input_queue_tail; 3258 #endif 3259 unsigned int received_rps; 3260 unsigned int dropped; 3261 struct sk_buff_head input_pkt_queue; 3262 struct napi_struct backlog; 3263 3264 /* Another possibly contended cache line */ 3265 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3266 int defer_count; 3267 int defer_ipi_scheduled; 3268 struct sk_buff *defer_list; 3269 call_single_data_t defer_csd; 3270 }; 3271 3272 static inline void input_queue_head_incr(struct softnet_data *sd) 3273 { 3274 #ifdef CONFIG_RPS 3275 sd->input_queue_head++; 3276 #endif 3277 } 3278 3279 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3280 unsigned int *qtail) 3281 { 3282 #ifdef CONFIG_RPS 3283 *qtail = ++sd->input_queue_tail; 3284 #endif 3285 } 3286 3287 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3288 3289 static inline int dev_recursion_level(void) 3290 { 3291 return this_cpu_read(softnet_data.xmit.recursion); 3292 } 3293 3294 #define XMIT_RECURSION_LIMIT 8 3295 static inline bool dev_xmit_recursion(void) 3296 { 3297 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3298 XMIT_RECURSION_LIMIT); 3299 } 3300 3301 static inline void dev_xmit_recursion_inc(void) 3302 { 3303 __this_cpu_inc(softnet_data.xmit.recursion); 3304 } 3305 3306 static inline void dev_xmit_recursion_dec(void) 3307 { 3308 __this_cpu_dec(softnet_data.xmit.recursion); 3309 } 3310 3311 void __netif_schedule(struct Qdisc *q); 3312 void netif_schedule_queue(struct netdev_queue *txq); 3313 3314 static inline void netif_tx_schedule_all(struct net_device *dev) 3315 { 3316 unsigned int i; 3317 3318 for (i = 0; i < dev->num_tx_queues; i++) 3319 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3320 } 3321 3322 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3323 { 3324 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3325 } 3326 3327 /** 3328 * netif_start_queue - allow transmit 3329 * @dev: network device 3330 * 3331 * Allow upper layers to call the device hard_start_xmit routine. 3332 */ 3333 static inline void netif_start_queue(struct net_device *dev) 3334 { 3335 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3336 } 3337 3338 static inline void netif_tx_start_all_queues(struct net_device *dev) 3339 { 3340 unsigned int i; 3341 3342 for (i = 0; i < dev->num_tx_queues; i++) { 3343 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3344 netif_tx_start_queue(txq); 3345 } 3346 } 3347 3348 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3349 3350 /** 3351 * netif_wake_queue - restart transmit 3352 * @dev: network device 3353 * 3354 * Allow upper layers to call the device hard_start_xmit routine. 3355 * Used for flow control when transmit resources are available. 3356 */ 3357 static inline void netif_wake_queue(struct net_device *dev) 3358 { 3359 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3360 } 3361 3362 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3363 { 3364 unsigned int i; 3365 3366 for (i = 0; i < dev->num_tx_queues; i++) { 3367 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3368 netif_tx_wake_queue(txq); 3369 } 3370 } 3371 3372 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3373 { 3374 /* Paired with READ_ONCE() from dev_watchdog() */ 3375 WRITE_ONCE(dev_queue->trans_start, jiffies); 3376 3377 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3378 smp_mb__before_atomic(); 3379 3380 /* Must be an atomic op see netif_txq_try_stop() */ 3381 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3382 } 3383 3384 /** 3385 * netif_stop_queue - stop transmitted packets 3386 * @dev: network device 3387 * 3388 * Stop upper layers calling the device hard_start_xmit routine. 3389 * Used for flow control when transmit resources are unavailable. 3390 */ 3391 static inline void netif_stop_queue(struct net_device *dev) 3392 { 3393 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3394 } 3395 3396 void netif_tx_stop_all_queues(struct net_device *dev); 3397 3398 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3399 { 3400 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3401 } 3402 3403 /** 3404 * netif_queue_stopped - test if transmit queue is flowblocked 3405 * @dev: network device 3406 * 3407 * Test if transmit queue on device is currently unable to send. 3408 */ 3409 static inline bool netif_queue_stopped(const struct net_device *dev) 3410 { 3411 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3412 } 3413 3414 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3415 { 3416 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3417 } 3418 3419 static inline bool 3420 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3421 { 3422 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3423 } 3424 3425 static inline bool 3426 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3427 { 3428 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3429 } 3430 3431 /** 3432 * netdev_queue_set_dql_min_limit - set dql minimum limit 3433 * @dev_queue: pointer to transmit queue 3434 * @min_limit: dql minimum limit 3435 * 3436 * Forces xmit_more() to return true until the minimum threshold 3437 * defined by @min_limit is reached (or until the tx queue is 3438 * empty). Warning: to be use with care, misuse will impact the 3439 * latency. 3440 */ 3441 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3442 unsigned int min_limit) 3443 { 3444 #ifdef CONFIG_BQL 3445 dev_queue->dql.min_limit = min_limit; 3446 #endif 3447 } 3448 3449 /** 3450 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3451 * @dev_queue: pointer to transmit queue 3452 * 3453 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3454 * to give appropriate hint to the CPU. 3455 */ 3456 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3457 { 3458 #ifdef CONFIG_BQL 3459 prefetchw(&dev_queue->dql.num_queued); 3460 #endif 3461 } 3462 3463 /** 3464 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3465 * @dev_queue: pointer to transmit queue 3466 * 3467 * BQL enabled drivers might use this helper in their TX completion path, 3468 * to give appropriate hint to the CPU. 3469 */ 3470 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3471 { 3472 #ifdef CONFIG_BQL 3473 prefetchw(&dev_queue->dql.limit); 3474 #endif 3475 } 3476 3477 /** 3478 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3479 * @dev_queue: network device queue 3480 * @bytes: number of bytes queued to the device queue 3481 * 3482 * Report the number of bytes queued for sending/completion to the network 3483 * device hardware queue. @bytes should be a good approximation and should 3484 * exactly match netdev_completed_queue() @bytes. 3485 * This is typically called once per packet, from ndo_start_xmit(). 3486 */ 3487 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3488 unsigned int bytes) 3489 { 3490 #ifdef CONFIG_BQL 3491 dql_queued(&dev_queue->dql, bytes); 3492 3493 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3494 return; 3495 3496 /* Paired with READ_ONCE() from dev_watchdog() */ 3497 WRITE_ONCE(dev_queue->trans_start, jiffies); 3498 3499 /* This barrier is paired with smp_mb() from dev_watchdog() */ 3500 smp_mb__before_atomic(); 3501 3502 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3503 3504 /* 3505 * The XOFF flag must be set before checking the dql_avail below, 3506 * because in netdev_tx_completed_queue we update the dql_completed 3507 * before checking the XOFF flag. 3508 */ 3509 smp_mb(); 3510 3511 /* check again in case another CPU has just made room avail */ 3512 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3513 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3514 #endif 3515 } 3516 3517 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3518 * that they should not test BQL status themselves. 3519 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3520 * skb of a batch. 3521 * Returns true if the doorbell must be used to kick the NIC. 3522 */ 3523 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3524 unsigned int bytes, 3525 bool xmit_more) 3526 { 3527 if (xmit_more) { 3528 #ifdef CONFIG_BQL 3529 dql_queued(&dev_queue->dql, bytes); 3530 #endif 3531 return netif_tx_queue_stopped(dev_queue); 3532 } 3533 netdev_tx_sent_queue(dev_queue, bytes); 3534 return true; 3535 } 3536 3537 /** 3538 * netdev_sent_queue - report the number of bytes queued to hardware 3539 * @dev: network device 3540 * @bytes: number of bytes queued to the hardware device queue 3541 * 3542 * Report the number of bytes queued for sending/completion to the network 3543 * device hardware queue#0. @bytes should be a good approximation and should 3544 * exactly match netdev_completed_queue() @bytes. 3545 * This is typically called once per packet, from ndo_start_xmit(). 3546 */ 3547 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3548 { 3549 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3550 } 3551 3552 static inline bool __netdev_sent_queue(struct net_device *dev, 3553 unsigned int bytes, 3554 bool xmit_more) 3555 { 3556 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3557 xmit_more); 3558 } 3559 3560 /** 3561 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3562 * @dev_queue: network device queue 3563 * @pkts: number of packets (currently ignored) 3564 * @bytes: number of bytes dequeued from the device queue 3565 * 3566 * Must be called at most once per TX completion round (and not per 3567 * individual packet), so that BQL can adjust its limits appropriately. 3568 */ 3569 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3570 unsigned int pkts, unsigned int bytes) 3571 { 3572 #ifdef CONFIG_BQL 3573 if (unlikely(!bytes)) 3574 return; 3575 3576 dql_completed(&dev_queue->dql, bytes); 3577 3578 /* 3579 * Without the memory barrier there is a small possiblity that 3580 * netdev_tx_sent_queue will miss the update and cause the queue to 3581 * be stopped forever 3582 */ 3583 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3584 3585 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3586 return; 3587 3588 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3589 netif_schedule_queue(dev_queue); 3590 #endif 3591 } 3592 3593 /** 3594 * netdev_completed_queue - report bytes and packets completed by device 3595 * @dev: network device 3596 * @pkts: actual number of packets sent over the medium 3597 * @bytes: actual number of bytes sent over the medium 3598 * 3599 * Report the number of bytes and packets transmitted by the network device 3600 * hardware queue over the physical medium, @bytes must exactly match the 3601 * @bytes amount passed to netdev_sent_queue() 3602 */ 3603 static inline void netdev_completed_queue(struct net_device *dev, 3604 unsigned int pkts, unsigned int bytes) 3605 { 3606 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3607 } 3608 3609 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3610 { 3611 #ifdef CONFIG_BQL 3612 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3613 dql_reset(&q->dql); 3614 #endif 3615 } 3616 3617 /** 3618 * netdev_reset_queue - reset the packets and bytes count of a network device 3619 * @dev_queue: network device 3620 * 3621 * Reset the bytes and packet count of a network device and clear the 3622 * software flow control OFF bit for this network device 3623 */ 3624 static inline void netdev_reset_queue(struct net_device *dev_queue) 3625 { 3626 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3627 } 3628 3629 /** 3630 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3631 * @dev: network device 3632 * @queue_index: given tx queue index 3633 * 3634 * Returns 0 if given tx queue index >= number of device tx queues, 3635 * otherwise returns the originally passed tx queue index. 3636 */ 3637 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3638 { 3639 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3640 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3641 dev->name, queue_index, 3642 dev->real_num_tx_queues); 3643 return 0; 3644 } 3645 3646 return queue_index; 3647 } 3648 3649 /** 3650 * netif_running - test if up 3651 * @dev: network device 3652 * 3653 * Test if the device has been brought up. 3654 */ 3655 static inline bool netif_running(const struct net_device *dev) 3656 { 3657 return test_bit(__LINK_STATE_START, &dev->state); 3658 } 3659 3660 /* 3661 * Routines to manage the subqueues on a device. We only need start, 3662 * stop, and a check if it's stopped. All other device management is 3663 * done at the overall netdevice level. 3664 * Also test the device if we're multiqueue. 3665 */ 3666 3667 /** 3668 * netif_start_subqueue - allow sending packets on subqueue 3669 * @dev: network device 3670 * @queue_index: sub queue index 3671 * 3672 * Start individual transmit queue of a device with multiple transmit queues. 3673 */ 3674 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3675 { 3676 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3677 3678 netif_tx_start_queue(txq); 3679 } 3680 3681 /** 3682 * netif_stop_subqueue - stop sending packets on subqueue 3683 * @dev: network device 3684 * @queue_index: sub queue index 3685 * 3686 * Stop individual transmit queue of a device with multiple transmit queues. 3687 */ 3688 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3689 { 3690 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3691 netif_tx_stop_queue(txq); 3692 } 3693 3694 /** 3695 * __netif_subqueue_stopped - test status of subqueue 3696 * @dev: network device 3697 * @queue_index: sub queue index 3698 * 3699 * Check individual transmit queue of a device with multiple transmit queues. 3700 */ 3701 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3702 u16 queue_index) 3703 { 3704 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3705 3706 return netif_tx_queue_stopped(txq); 3707 } 3708 3709 /** 3710 * netif_subqueue_stopped - test status of subqueue 3711 * @dev: network device 3712 * @skb: sub queue buffer pointer 3713 * 3714 * Check individual transmit queue of a device with multiple transmit queues. 3715 */ 3716 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3717 struct sk_buff *skb) 3718 { 3719 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3720 } 3721 3722 /** 3723 * netif_wake_subqueue - allow sending packets on subqueue 3724 * @dev: network device 3725 * @queue_index: sub queue index 3726 * 3727 * Resume individual transmit queue of a device with multiple transmit queues. 3728 */ 3729 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3730 { 3731 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3732 3733 netif_tx_wake_queue(txq); 3734 } 3735 3736 #ifdef CONFIG_XPS 3737 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3738 u16 index); 3739 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3740 u16 index, enum xps_map_type type); 3741 3742 /** 3743 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3744 * @j: CPU/Rx queue index 3745 * @mask: bitmask of all cpus/rx queues 3746 * @nr_bits: number of bits in the bitmask 3747 * 3748 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3749 */ 3750 static inline bool netif_attr_test_mask(unsigned long j, 3751 const unsigned long *mask, 3752 unsigned int nr_bits) 3753 { 3754 cpu_max_bits_warn(j, nr_bits); 3755 return test_bit(j, mask); 3756 } 3757 3758 /** 3759 * netif_attr_test_online - Test for online CPU/Rx queue 3760 * @j: CPU/Rx queue index 3761 * @online_mask: bitmask for CPUs/Rx queues that are online 3762 * @nr_bits: number of bits in the bitmask 3763 * 3764 * Returns true if a CPU/Rx queue is online. 3765 */ 3766 static inline bool netif_attr_test_online(unsigned long j, 3767 const unsigned long *online_mask, 3768 unsigned int nr_bits) 3769 { 3770 cpu_max_bits_warn(j, nr_bits); 3771 3772 if (online_mask) 3773 return test_bit(j, online_mask); 3774 3775 return (j < nr_bits); 3776 } 3777 3778 /** 3779 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3780 * @n: CPU/Rx queue index 3781 * @srcp: the cpumask/Rx queue mask pointer 3782 * @nr_bits: number of bits in the bitmask 3783 * 3784 * Returns >= nr_bits if no further CPUs/Rx queues set. 3785 */ 3786 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3787 unsigned int nr_bits) 3788 { 3789 /* -1 is a legal arg here. */ 3790 if (n != -1) 3791 cpu_max_bits_warn(n, nr_bits); 3792 3793 if (srcp) 3794 return find_next_bit(srcp, nr_bits, n + 1); 3795 3796 return n + 1; 3797 } 3798 3799 /** 3800 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3801 * @n: CPU/Rx queue index 3802 * @src1p: the first CPUs/Rx queues mask pointer 3803 * @src2p: the second CPUs/Rx queues mask pointer 3804 * @nr_bits: number of bits in the bitmask 3805 * 3806 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3807 */ 3808 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3809 const unsigned long *src2p, 3810 unsigned int nr_bits) 3811 { 3812 /* -1 is a legal arg here. */ 3813 if (n != -1) 3814 cpu_max_bits_warn(n, nr_bits); 3815 3816 if (src1p && src2p) 3817 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3818 else if (src1p) 3819 return find_next_bit(src1p, nr_bits, n + 1); 3820 else if (src2p) 3821 return find_next_bit(src2p, nr_bits, n + 1); 3822 3823 return n + 1; 3824 } 3825 #else 3826 static inline int netif_set_xps_queue(struct net_device *dev, 3827 const struct cpumask *mask, 3828 u16 index) 3829 { 3830 return 0; 3831 } 3832 3833 static inline int __netif_set_xps_queue(struct net_device *dev, 3834 const unsigned long *mask, 3835 u16 index, enum xps_map_type type) 3836 { 3837 return 0; 3838 } 3839 #endif 3840 3841 /** 3842 * netif_is_multiqueue - test if device has multiple transmit queues 3843 * @dev: network device 3844 * 3845 * Check if device has multiple transmit queues 3846 */ 3847 static inline bool netif_is_multiqueue(const struct net_device *dev) 3848 { 3849 return dev->num_tx_queues > 1; 3850 } 3851 3852 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3853 3854 #ifdef CONFIG_SYSFS 3855 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3856 #else 3857 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3858 unsigned int rxqs) 3859 { 3860 dev->real_num_rx_queues = rxqs; 3861 return 0; 3862 } 3863 #endif 3864 int netif_set_real_num_queues(struct net_device *dev, 3865 unsigned int txq, unsigned int rxq); 3866 3867 int netif_get_num_default_rss_queues(void); 3868 3869 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3870 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3871 3872 /* 3873 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3874 * interrupt context or with hardware interrupts being disabled. 3875 * (in_hardirq() || irqs_disabled()) 3876 * 3877 * We provide four helpers that can be used in following contexts : 3878 * 3879 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3880 * replacing kfree_skb(skb) 3881 * 3882 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3883 * Typically used in place of consume_skb(skb) in TX completion path 3884 * 3885 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3886 * replacing kfree_skb(skb) 3887 * 3888 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3889 * and consumed a packet. Used in place of consume_skb(skb) 3890 */ 3891 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3892 { 3893 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3894 } 3895 3896 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3897 { 3898 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3899 } 3900 3901 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3902 { 3903 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3904 } 3905 3906 static inline void dev_consume_skb_any(struct sk_buff *skb) 3907 { 3908 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3909 } 3910 3911 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3912 struct bpf_prog *xdp_prog); 3913 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3914 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3915 int netif_rx(struct sk_buff *skb); 3916 int __netif_rx(struct sk_buff *skb); 3917 3918 int netif_receive_skb(struct sk_buff *skb); 3919 int netif_receive_skb_core(struct sk_buff *skb); 3920 void netif_receive_skb_list_internal(struct list_head *head); 3921 void netif_receive_skb_list(struct list_head *head); 3922 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3923 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3924 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3925 void napi_get_frags_check(struct napi_struct *napi); 3926 gro_result_t napi_gro_frags(struct napi_struct *napi); 3927 struct packet_offload *gro_find_receive_by_type(__be16 type); 3928 struct packet_offload *gro_find_complete_by_type(__be16 type); 3929 3930 static inline void napi_free_frags(struct napi_struct *napi) 3931 { 3932 kfree_skb(napi->skb); 3933 napi->skb = NULL; 3934 } 3935 3936 bool netdev_is_rx_handler_busy(struct net_device *dev); 3937 int netdev_rx_handler_register(struct net_device *dev, 3938 rx_handler_func_t *rx_handler, 3939 void *rx_handler_data); 3940 void netdev_rx_handler_unregister(struct net_device *dev); 3941 3942 bool dev_valid_name(const char *name); 3943 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3944 { 3945 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3946 } 3947 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3948 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3949 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3950 void __user *data, bool *need_copyout); 3951 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3952 int generic_hwtstamp_get_lower(struct net_device *dev, 3953 struct kernel_hwtstamp_config *kernel_cfg); 3954 int generic_hwtstamp_set_lower(struct net_device *dev, 3955 struct kernel_hwtstamp_config *kernel_cfg, 3956 struct netlink_ext_ack *extack); 3957 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3958 unsigned int dev_get_flags(const struct net_device *); 3959 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3960 struct netlink_ext_ack *extack); 3961 int dev_change_flags(struct net_device *dev, unsigned int flags, 3962 struct netlink_ext_ack *extack); 3963 int dev_set_alias(struct net_device *, const char *, size_t); 3964 int dev_get_alias(const struct net_device *, char *, size_t); 3965 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3966 const char *pat, int new_ifindex); 3967 static inline 3968 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3969 const char *pat) 3970 { 3971 return __dev_change_net_namespace(dev, net, pat, 0); 3972 } 3973 int __dev_set_mtu(struct net_device *, int); 3974 int dev_set_mtu(struct net_device *, int); 3975 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3976 struct netlink_ext_ack *extack); 3977 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3978 struct netlink_ext_ack *extack); 3979 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3980 struct netlink_ext_ack *extack); 3981 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3982 int dev_get_port_parent_id(struct net_device *dev, 3983 struct netdev_phys_item_id *ppid, bool recurse); 3984 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3985 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3986 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3987 struct netdev_queue *txq, int *ret); 3988 3989 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3990 u8 dev_xdp_prog_count(struct net_device *dev); 3991 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3992 3993 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3994 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3995 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3996 bool is_skb_forwardable(const struct net_device *dev, 3997 const struct sk_buff *skb); 3998 3999 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4000 const struct sk_buff *skb, 4001 const bool check_mtu) 4002 { 4003 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4004 unsigned int len; 4005 4006 if (!(dev->flags & IFF_UP)) 4007 return false; 4008 4009 if (!check_mtu) 4010 return true; 4011 4012 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4013 if (skb->len <= len) 4014 return true; 4015 4016 /* if TSO is enabled, we don't care about the length as the packet 4017 * could be forwarded without being segmented before 4018 */ 4019 if (skb_is_gso(skb)) 4020 return true; 4021 4022 return false; 4023 } 4024 4025 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 4026 4027 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 4028 { 4029 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 4030 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 4031 4032 if (likely(p)) 4033 return p; 4034 4035 return netdev_core_stats_alloc(dev); 4036 } 4037 4038 #define DEV_CORE_STATS_INC(FIELD) \ 4039 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4040 { \ 4041 struct net_device_core_stats __percpu *p; \ 4042 \ 4043 p = dev_core_stats(dev); \ 4044 if (p) \ 4045 this_cpu_inc(p->FIELD); \ 4046 } 4047 DEV_CORE_STATS_INC(rx_dropped) 4048 DEV_CORE_STATS_INC(tx_dropped) 4049 DEV_CORE_STATS_INC(rx_nohandler) 4050 DEV_CORE_STATS_INC(rx_otherhost_dropped) 4051 4052 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4053 struct sk_buff *skb, 4054 const bool check_mtu) 4055 { 4056 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4057 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4058 dev_core_stats_rx_dropped_inc(dev); 4059 kfree_skb(skb); 4060 return NET_RX_DROP; 4061 } 4062 4063 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4064 skb->priority = 0; 4065 return 0; 4066 } 4067 4068 bool dev_nit_active(struct net_device *dev); 4069 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4070 4071 static inline void __dev_put(struct net_device *dev) 4072 { 4073 if (dev) { 4074 #ifdef CONFIG_PCPU_DEV_REFCNT 4075 this_cpu_dec(*dev->pcpu_refcnt); 4076 #else 4077 refcount_dec(&dev->dev_refcnt); 4078 #endif 4079 } 4080 } 4081 4082 static inline void __dev_hold(struct net_device *dev) 4083 { 4084 if (dev) { 4085 #ifdef CONFIG_PCPU_DEV_REFCNT 4086 this_cpu_inc(*dev->pcpu_refcnt); 4087 #else 4088 refcount_inc(&dev->dev_refcnt); 4089 #endif 4090 } 4091 } 4092 4093 static inline void __netdev_tracker_alloc(struct net_device *dev, 4094 netdevice_tracker *tracker, 4095 gfp_t gfp) 4096 { 4097 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4098 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4099 #endif 4100 } 4101 4102 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4103 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4104 */ 4105 static inline void netdev_tracker_alloc(struct net_device *dev, 4106 netdevice_tracker *tracker, gfp_t gfp) 4107 { 4108 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4109 refcount_dec(&dev->refcnt_tracker.no_tracker); 4110 __netdev_tracker_alloc(dev, tracker, gfp); 4111 #endif 4112 } 4113 4114 static inline void netdev_tracker_free(struct net_device *dev, 4115 netdevice_tracker *tracker) 4116 { 4117 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4118 ref_tracker_free(&dev->refcnt_tracker, tracker); 4119 #endif 4120 } 4121 4122 static inline void netdev_hold(struct net_device *dev, 4123 netdevice_tracker *tracker, gfp_t gfp) 4124 { 4125 if (dev) { 4126 __dev_hold(dev); 4127 __netdev_tracker_alloc(dev, tracker, gfp); 4128 } 4129 } 4130 4131 static inline void netdev_put(struct net_device *dev, 4132 netdevice_tracker *tracker) 4133 { 4134 if (dev) { 4135 netdev_tracker_free(dev, tracker); 4136 __dev_put(dev); 4137 } 4138 } 4139 4140 /** 4141 * dev_hold - get reference to device 4142 * @dev: network device 4143 * 4144 * Hold reference to device to keep it from being freed. 4145 * Try using netdev_hold() instead. 4146 */ 4147 static inline void dev_hold(struct net_device *dev) 4148 { 4149 netdev_hold(dev, NULL, GFP_ATOMIC); 4150 } 4151 4152 /** 4153 * dev_put - release reference to device 4154 * @dev: network device 4155 * 4156 * Release reference to device to allow it to be freed. 4157 * Try using netdev_put() instead. 4158 */ 4159 static inline void dev_put(struct net_device *dev) 4160 { 4161 netdev_put(dev, NULL); 4162 } 4163 4164 static inline void netdev_ref_replace(struct net_device *odev, 4165 struct net_device *ndev, 4166 netdevice_tracker *tracker, 4167 gfp_t gfp) 4168 { 4169 if (odev) 4170 netdev_tracker_free(odev, tracker); 4171 4172 __dev_hold(ndev); 4173 __dev_put(odev); 4174 4175 if (ndev) 4176 __netdev_tracker_alloc(ndev, tracker, gfp); 4177 } 4178 4179 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4180 * and _off may be called from IRQ context, but it is caller 4181 * who is responsible for serialization of these calls. 4182 * 4183 * The name carrier is inappropriate, these functions should really be 4184 * called netif_lowerlayer_*() because they represent the state of any 4185 * kind of lower layer not just hardware media. 4186 */ 4187 void linkwatch_fire_event(struct net_device *dev); 4188 4189 /** 4190 * netif_carrier_ok - test if carrier present 4191 * @dev: network device 4192 * 4193 * Check if carrier is present on device 4194 */ 4195 static inline bool netif_carrier_ok(const struct net_device *dev) 4196 { 4197 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4198 } 4199 4200 unsigned long dev_trans_start(struct net_device *dev); 4201 4202 void __netdev_watchdog_up(struct net_device *dev); 4203 4204 void netif_carrier_on(struct net_device *dev); 4205 void netif_carrier_off(struct net_device *dev); 4206 void netif_carrier_event(struct net_device *dev); 4207 4208 /** 4209 * netif_dormant_on - mark device as dormant. 4210 * @dev: network device 4211 * 4212 * Mark device as dormant (as per RFC2863). 4213 * 4214 * The dormant state indicates that the relevant interface is not 4215 * actually in a condition to pass packets (i.e., it is not 'up') but is 4216 * in a "pending" state, waiting for some external event. For "on- 4217 * demand" interfaces, this new state identifies the situation where the 4218 * interface is waiting for events to place it in the up state. 4219 */ 4220 static inline void netif_dormant_on(struct net_device *dev) 4221 { 4222 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4223 linkwatch_fire_event(dev); 4224 } 4225 4226 /** 4227 * netif_dormant_off - set device as not dormant. 4228 * @dev: network device 4229 * 4230 * Device is not in dormant state. 4231 */ 4232 static inline void netif_dormant_off(struct net_device *dev) 4233 { 4234 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4235 linkwatch_fire_event(dev); 4236 } 4237 4238 /** 4239 * netif_dormant - test if device is dormant 4240 * @dev: network device 4241 * 4242 * Check if device is dormant. 4243 */ 4244 static inline bool netif_dormant(const struct net_device *dev) 4245 { 4246 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4247 } 4248 4249 4250 /** 4251 * netif_testing_on - mark device as under test. 4252 * @dev: network device 4253 * 4254 * Mark device as under test (as per RFC2863). 4255 * 4256 * The testing state indicates that some test(s) must be performed on 4257 * the interface. After completion, of the test, the interface state 4258 * will change to up, dormant, or down, as appropriate. 4259 */ 4260 static inline void netif_testing_on(struct net_device *dev) 4261 { 4262 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4263 linkwatch_fire_event(dev); 4264 } 4265 4266 /** 4267 * netif_testing_off - set device as not under test. 4268 * @dev: network device 4269 * 4270 * Device is not in testing state. 4271 */ 4272 static inline void netif_testing_off(struct net_device *dev) 4273 { 4274 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4275 linkwatch_fire_event(dev); 4276 } 4277 4278 /** 4279 * netif_testing - test if device is under test 4280 * @dev: network device 4281 * 4282 * Check if device is under test 4283 */ 4284 static inline bool netif_testing(const struct net_device *dev) 4285 { 4286 return test_bit(__LINK_STATE_TESTING, &dev->state); 4287 } 4288 4289 4290 /** 4291 * netif_oper_up - test if device is operational 4292 * @dev: network device 4293 * 4294 * Check if carrier is operational 4295 */ 4296 static inline bool netif_oper_up(const struct net_device *dev) 4297 { 4298 return (dev->operstate == IF_OPER_UP || 4299 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4300 } 4301 4302 /** 4303 * netif_device_present - is device available or removed 4304 * @dev: network device 4305 * 4306 * Check if device has not been removed from system. 4307 */ 4308 static inline bool netif_device_present(const struct net_device *dev) 4309 { 4310 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4311 } 4312 4313 void netif_device_detach(struct net_device *dev); 4314 4315 void netif_device_attach(struct net_device *dev); 4316 4317 /* 4318 * Network interface message level settings 4319 */ 4320 4321 enum { 4322 NETIF_MSG_DRV_BIT, 4323 NETIF_MSG_PROBE_BIT, 4324 NETIF_MSG_LINK_BIT, 4325 NETIF_MSG_TIMER_BIT, 4326 NETIF_MSG_IFDOWN_BIT, 4327 NETIF_MSG_IFUP_BIT, 4328 NETIF_MSG_RX_ERR_BIT, 4329 NETIF_MSG_TX_ERR_BIT, 4330 NETIF_MSG_TX_QUEUED_BIT, 4331 NETIF_MSG_INTR_BIT, 4332 NETIF_MSG_TX_DONE_BIT, 4333 NETIF_MSG_RX_STATUS_BIT, 4334 NETIF_MSG_PKTDATA_BIT, 4335 NETIF_MSG_HW_BIT, 4336 NETIF_MSG_WOL_BIT, 4337 4338 /* When you add a new bit above, update netif_msg_class_names array 4339 * in net/ethtool/common.c 4340 */ 4341 NETIF_MSG_CLASS_COUNT, 4342 }; 4343 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4344 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4345 4346 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4347 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4348 4349 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4350 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4351 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4352 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4353 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4354 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4355 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4356 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4357 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4358 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4359 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4360 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4361 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4362 #define NETIF_MSG_HW __NETIF_MSG(HW) 4363 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4364 4365 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4366 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4367 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4368 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4369 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4370 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4371 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4372 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4373 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4374 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4375 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4376 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4377 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4378 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4379 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4380 4381 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4382 { 4383 /* use default */ 4384 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4385 return default_msg_enable_bits; 4386 if (debug_value == 0) /* no output */ 4387 return 0; 4388 /* set low N bits */ 4389 return (1U << debug_value) - 1; 4390 } 4391 4392 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4393 { 4394 spin_lock(&txq->_xmit_lock); 4395 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4396 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4397 } 4398 4399 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4400 { 4401 __acquire(&txq->_xmit_lock); 4402 return true; 4403 } 4404 4405 static inline void __netif_tx_release(struct netdev_queue *txq) 4406 { 4407 __release(&txq->_xmit_lock); 4408 } 4409 4410 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4411 { 4412 spin_lock_bh(&txq->_xmit_lock); 4413 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4414 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4415 } 4416 4417 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4418 { 4419 bool ok = spin_trylock(&txq->_xmit_lock); 4420 4421 if (likely(ok)) { 4422 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4423 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4424 } 4425 return ok; 4426 } 4427 4428 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4429 { 4430 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4431 WRITE_ONCE(txq->xmit_lock_owner, -1); 4432 spin_unlock(&txq->_xmit_lock); 4433 } 4434 4435 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4436 { 4437 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4438 WRITE_ONCE(txq->xmit_lock_owner, -1); 4439 spin_unlock_bh(&txq->_xmit_lock); 4440 } 4441 4442 /* 4443 * txq->trans_start can be read locklessly from dev_watchdog() 4444 */ 4445 static inline void txq_trans_update(struct netdev_queue *txq) 4446 { 4447 if (txq->xmit_lock_owner != -1) 4448 WRITE_ONCE(txq->trans_start, jiffies); 4449 } 4450 4451 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4452 { 4453 unsigned long now = jiffies; 4454 4455 if (READ_ONCE(txq->trans_start) != now) 4456 WRITE_ONCE(txq->trans_start, now); 4457 } 4458 4459 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4460 static inline void netif_trans_update(struct net_device *dev) 4461 { 4462 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4463 4464 txq_trans_cond_update(txq); 4465 } 4466 4467 /** 4468 * netif_tx_lock - grab network device transmit lock 4469 * @dev: network device 4470 * 4471 * Get network device transmit lock 4472 */ 4473 void netif_tx_lock(struct net_device *dev); 4474 4475 static inline void netif_tx_lock_bh(struct net_device *dev) 4476 { 4477 local_bh_disable(); 4478 netif_tx_lock(dev); 4479 } 4480 4481 void netif_tx_unlock(struct net_device *dev); 4482 4483 static inline void netif_tx_unlock_bh(struct net_device *dev) 4484 { 4485 netif_tx_unlock(dev); 4486 local_bh_enable(); 4487 } 4488 4489 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4490 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4491 __netif_tx_lock(txq, cpu); \ 4492 } else { \ 4493 __netif_tx_acquire(txq); \ 4494 } \ 4495 } 4496 4497 #define HARD_TX_TRYLOCK(dev, txq) \ 4498 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4499 __netif_tx_trylock(txq) : \ 4500 __netif_tx_acquire(txq)) 4501 4502 #define HARD_TX_UNLOCK(dev, txq) { \ 4503 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4504 __netif_tx_unlock(txq); \ 4505 } else { \ 4506 __netif_tx_release(txq); \ 4507 } \ 4508 } 4509 4510 static inline void netif_tx_disable(struct net_device *dev) 4511 { 4512 unsigned int i; 4513 int cpu; 4514 4515 local_bh_disable(); 4516 cpu = smp_processor_id(); 4517 spin_lock(&dev->tx_global_lock); 4518 for (i = 0; i < dev->num_tx_queues; i++) { 4519 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4520 4521 __netif_tx_lock(txq, cpu); 4522 netif_tx_stop_queue(txq); 4523 __netif_tx_unlock(txq); 4524 } 4525 spin_unlock(&dev->tx_global_lock); 4526 local_bh_enable(); 4527 } 4528 4529 static inline void netif_addr_lock(struct net_device *dev) 4530 { 4531 unsigned char nest_level = 0; 4532 4533 #ifdef CONFIG_LOCKDEP 4534 nest_level = dev->nested_level; 4535 #endif 4536 spin_lock_nested(&dev->addr_list_lock, nest_level); 4537 } 4538 4539 static inline void netif_addr_lock_bh(struct net_device *dev) 4540 { 4541 unsigned char nest_level = 0; 4542 4543 #ifdef CONFIG_LOCKDEP 4544 nest_level = dev->nested_level; 4545 #endif 4546 local_bh_disable(); 4547 spin_lock_nested(&dev->addr_list_lock, nest_level); 4548 } 4549 4550 static inline void netif_addr_unlock(struct net_device *dev) 4551 { 4552 spin_unlock(&dev->addr_list_lock); 4553 } 4554 4555 static inline void netif_addr_unlock_bh(struct net_device *dev) 4556 { 4557 spin_unlock_bh(&dev->addr_list_lock); 4558 } 4559 4560 /* 4561 * dev_addrs walker. Should be used only for read access. Call with 4562 * rcu_read_lock held. 4563 */ 4564 #define for_each_dev_addr(dev, ha) \ 4565 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4566 4567 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4568 4569 void ether_setup(struct net_device *dev); 4570 4571 /* Support for loadable net-drivers */ 4572 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4573 unsigned char name_assign_type, 4574 void (*setup)(struct net_device *), 4575 unsigned int txqs, unsigned int rxqs); 4576 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4577 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4578 4579 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4580 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4581 count) 4582 4583 int register_netdev(struct net_device *dev); 4584 void unregister_netdev(struct net_device *dev); 4585 4586 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4587 4588 /* General hardware address lists handling functions */ 4589 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4590 struct netdev_hw_addr_list *from_list, int addr_len); 4591 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4592 struct netdev_hw_addr_list *from_list, int addr_len); 4593 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4594 struct net_device *dev, 4595 int (*sync)(struct net_device *, const unsigned char *), 4596 int (*unsync)(struct net_device *, 4597 const unsigned char *)); 4598 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4599 struct net_device *dev, 4600 int (*sync)(struct net_device *, 4601 const unsigned char *, int), 4602 int (*unsync)(struct net_device *, 4603 const unsigned char *, int)); 4604 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4605 struct net_device *dev, 4606 int (*unsync)(struct net_device *, 4607 const unsigned char *, int)); 4608 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4609 struct net_device *dev, 4610 int (*unsync)(struct net_device *, 4611 const unsigned char *)); 4612 void __hw_addr_init(struct netdev_hw_addr_list *list); 4613 4614 /* Functions used for device addresses handling */ 4615 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4616 const void *addr, size_t len); 4617 4618 static inline void 4619 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4620 { 4621 dev_addr_mod(dev, 0, addr, len); 4622 } 4623 4624 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4625 { 4626 __dev_addr_set(dev, addr, dev->addr_len); 4627 } 4628 4629 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4630 unsigned char addr_type); 4631 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4632 unsigned char addr_type); 4633 4634 /* Functions used for unicast addresses handling */ 4635 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4636 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4637 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4638 int dev_uc_sync(struct net_device *to, struct net_device *from); 4639 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4640 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4641 void dev_uc_flush(struct net_device *dev); 4642 void dev_uc_init(struct net_device *dev); 4643 4644 /** 4645 * __dev_uc_sync - Synchonize device's unicast list 4646 * @dev: device to sync 4647 * @sync: function to call if address should be added 4648 * @unsync: function to call if address should be removed 4649 * 4650 * Add newly added addresses to the interface, and release 4651 * addresses that have been deleted. 4652 */ 4653 static inline int __dev_uc_sync(struct net_device *dev, 4654 int (*sync)(struct net_device *, 4655 const unsigned char *), 4656 int (*unsync)(struct net_device *, 4657 const unsigned char *)) 4658 { 4659 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4660 } 4661 4662 /** 4663 * __dev_uc_unsync - Remove synchronized addresses from device 4664 * @dev: device to sync 4665 * @unsync: function to call if address should be removed 4666 * 4667 * Remove all addresses that were added to the device by dev_uc_sync(). 4668 */ 4669 static inline void __dev_uc_unsync(struct net_device *dev, 4670 int (*unsync)(struct net_device *, 4671 const unsigned char *)) 4672 { 4673 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4674 } 4675 4676 /* Functions used for multicast addresses handling */ 4677 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4678 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4679 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4680 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4681 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4682 int dev_mc_sync(struct net_device *to, struct net_device *from); 4683 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4684 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4685 void dev_mc_flush(struct net_device *dev); 4686 void dev_mc_init(struct net_device *dev); 4687 4688 /** 4689 * __dev_mc_sync - Synchonize device's multicast list 4690 * @dev: device to sync 4691 * @sync: function to call if address should be added 4692 * @unsync: function to call if address should be removed 4693 * 4694 * Add newly added addresses to the interface, and release 4695 * addresses that have been deleted. 4696 */ 4697 static inline int __dev_mc_sync(struct net_device *dev, 4698 int (*sync)(struct net_device *, 4699 const unsigned char *), 4700 int (*unsync)(struct net_device *, 4701 const unsigned char *)) 4702 { 4703 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4704 } 4705 4706 /** 4707 * __dev_mc_unsync - Remove synchronized addresses from device 4708 * @dev: device to sync 4709 * @unsync: function to call if address should be removed 4710 * 4711 * Remove all addresses that were added to the device by dev_mc_sync(). 4712 */ 4713 static inline void __dev_mc_unsync(struct net_device *dev, 4714 int (*unsync)(struct net_device *, 4715 const unsigned char *)) 4716 { 4717 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4718 } 4719 4720 /* Functions used for secondary unicast and multicast support */ 4721 void dev_set_rx_mode(struct net_device *dev); 4722 int dev_set_promiscuity(struct net_device *dev, int inc); 4723 int dev_set_allmulti(struct net_device *dev, int inc); 4724 void netdev_state_change(struct net_device *dev); 4725 void __netdev_notify_peers(struct net_device *dev); 4726 void netdev_notify_peers(struct net_device *dev); 4727 void netdev_features_change(struct net_device *dev); 4728 /* Load a device via the kmod */ 4729 void dev_load(struct net *net, const char *name); 4730 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4731 struct rtnl_link_stats64 *storage); 4732 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4733 const struct net_device_stats *netdev_stats); 4734 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4735 const struct pcpu_sw_netstats __percpu *netstats); 4736 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4737 4738 extern int netdev_max_backlog; 4739 extern int dev_rx_weight; 4740 extern int dev_tx_weight; 4741 extern int gro_normal_batch; 4742 4743 enum { 4744 NESTED_SYNC_IMM_BIT, 4745 NESTED_SYNC_TODO_BIT, 4746 }; 4747 4748 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4749 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4750 4751 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4752 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4753 4754 struct netdev_nested_priv { 4755 unsigned char flags; 4756 void *data; 4757 }; 4758 4759 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4760 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4761 struct list_head **iter); 4762 4763 /* iterate through upper list, must be called under RCU read lock */ 4764 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4765 for (iter = &(dev)->adj_list.upper, \ 4766 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4767 updev; \ 4768 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4769 4770 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4771 int (*fn)(struct net_device *upper_dev, 4772 struct netdev_nested_priv *priv), 4773 struct netdev_nested_priv *priv); 4774 4775 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4776 struct net_device *upper_dev); 4777 4778 bool netdev_has_any_upper_dev(struct net_device *dev); 4779 4780 void *netdev_lower_get_next_private(struct net_device *dev, 4781 struct list_head **iter); 4782 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4783 struct list_head **iter); 4784 4785 #define netdev_for_each_lower_private(dev, priv, iter) \ 4786 for (iter = (dev)->adj_list.lower.next, \ 4787 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4788 priv; \ 4789 priv = netdev_lower_get_next_private(dev, &(iter))) 4790 4791 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4792 for (iter = &(dev)->adj_list.lower, \ 4793 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4794 priv; \ 4795 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4796 4797 void *netdev_lower_get_next(struct net_device *dev, 4798 struct list_head **iter); 4799 4800 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4801 for (iter = (dev)->adj_list.lower.next, \ 4802 ldev = netdev_lower_get_next(dev, &(iter)); \ 4803 ldev; \ 4804 ldev = netdev_lower_get_next(dev, &(iter))) 4805 4806 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4807 struct list_head **iter); 4808 int netdev_walk_all_lower_dev(struct net_device *dev, 4809 int (*fn)(struct net_device *lower_dev, 4810 struct netdev_nested_priv *priv), 4811 struct netdev_nested_priv *priv); 4812 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4813 int (*fn)(struct net_device *lower_dev, 4814 struct netdev_nested_priv *priv), 4815 struct netdev_nested_priv *priv); 4816 4817 void *netdev_adjacent_get_private(struct list_head *adj_list); 4818 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4819 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4820 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4821 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4822 struct netlink_ext_ack *extack); 4823 int netdev_master_upper_dev_link(struct net_device *dev, 4824 struct net_device *upper_dev, 4825 void *upper_priv, void *upper_info, 4826 struct netlink_ext_ack *extack); 4827 void netdev_upper_dev_unlink(struct net_device *dev, 4828 struct net_device *upper_dev); 4829 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4830 struct net_device *new_dev, 4831 struct net_device *dev, 4832 struct netlink_ext_ack *extack); 4833 void netdev_adjacent_change_commit(struct net_device *old_dev, 4834 struct net_device *new_dev, 4835 struct net_device *dev); 4836 void netdev_adjacent_change_abort(struct net_device *old_dev, 4837 struct net_device *new_dev, 4838 struct net_device *dev); 4839 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4840 void *netdev_lower_dev_get_private(struct net_device *dev, 4841 struct net_device *lower_dev); 4842 void netdev_lower_state_changed(struct net_device *lower_dev, 4843 void *lower_state_info); 4844 4845 /* RSS keys are 40 or 52 bytes long */ 4846 #define NETDEV_RSS_KEY_LEN 52 4847 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4848 void netdev_rss_key_fill(void *buffer, size_t len); 4849 4850 int skb_checksum_help(struct sk_buff *skb); 4851 int skb_crc32c_csum_help(struct sk_buff *skb); 4852 int skb_csum_hwoffload_help(struct sk_buff *skb, 4853 const netdev_features_t features); 4854 4855 struct netdev_bonding_info { 4856 ifslave slave; 4857 ifbond master; 4858 }; 4859 4860 struct netdev_notifier_bonding_info { 4861 struct netdev_notifier_info info; /* must be first */ 4862 struct netdev_bonding_info bonding_info; 4863 }; 4864 4865 void netdev_bonding_info_change(struct net_device *dev, 4866 struct netdev_bonding_info *bonding_info); 4867 4868 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4869 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4870 #else 4871 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4872 const void *data) 4873 { 4874 } 4875 #endif 4876 4877 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4878 4879 static inline bool can_checksum_protocol(netdev_features_t features, 4880 __be16 protocol) 4881 { 4882 if (protocol == htons(ETH_P_FCOE)) 4883 return !!(features & NETIF_F_FCOE_CRC); 4884 4885 /* Assume this is an IP checksum (not SCTP CRC) */ 4886 4887 if (features & NETIF_F_HW_CSUM) { 4888 /* Can checksum everything */ 4889 return true; 4890 } 4891 4892 switch (protocol) { 4893 case htons(ETH_P_IP): 4894 return !!(features & NETIF_F_IP_CSUM); 4895 case htons(ETH_P_IPV6): 4896 return !!(features & NETIF_F_IPV6_CSUM); 4897 default: 4898 return false; 4899 } 4900 } 4901 4902 #ifdef CONFIG_BUG 4903 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4904 #else 4905 static inline void netdev_rx_csum_fault(struct net_device *dev, 4906 struct sk_buff *skb) 4907 { 4908 } 4909 #endif 4910 /* rx skb timestamps */ 4911 void net_enable_timestamp(void); 4912 void net_disable_timestamp(void); 4913 4914 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4915 const struct skb_shared_hwtstamps *hwtstamps, 4916 bool cycles) 4917 { 4918 const struct net_device_ops *ops = dev->netdev_ops; 4919 4920 if (ops->ndo_get_tstamp) 4921 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4922 4923 return hwtstamps->hwtstamp; 4924 } 4925 4926 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4927 struct sk_buff *skb, struct net_device *dev, 4928 bool more) 4929 { 4930 __this_cpu_write(softnet_data.xmit.more, more); 4931 return ops->ndo_start_xmit(skb, dev); 4932 } 4933 4934 static inline bool netdev_xmit_more(void) 4935 { 4936 return __this_cpu_read(softnet_data.xmit.more); 4937 } 4938 4939 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4940 struct netdev_queue *txq, bool more) 4941 { 4942 const struct net_device_ops *ops = dev->netdev_ops; 4943 netdev_tx_t rc; 4944 4945 rc = __netdev_start_xmit(ops, skb, dev, more); 4946 if (rc == NETDEV_TX_OK) 4947 txq_trans_update(txq); 4948 4949 return rc; 4950 } 4951 4952 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4953 const void *ns); 4954 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4955 const void *ns); 4956 4957 extern const struct kobj_ns_type_operations net_ns_type_operations; 4958 4959 const char *netdev_drivername(const struct net_device *dev); 4960 4961 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4962 netdev_features_t f2) 4963 { 4964 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4965 if (f1 & NETIF_F_HW_CSUM) 4966 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4967 else 4968 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4969 } 4970 4971 return f1 & f2; 4972 } 4973 4974 static inline netdev_features_t netdev_get_wanted_features( 4975 struct net_device *dev) 4976 { 4977 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4978 } 4979 netdev_features_t netdev_increment_features(netdev_features_t all, 4980 netdev_features_t one, netdev_features_t mask); 4981 4982 /* Allow TSO being used on stacked device : 4983 * Performing the GSO segmentation before last device 4984 * is a performance improvement. 4985 */ 4986 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4987 netdev_features_t mask) 4988 { 4989 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4990 } 4991 4992 int __netdev_update_features(struct net_device *dev); 4993 void netdev_update_features(struct net_device *dev); 4994 void netdev_change_features(struct net_device *dev); 4995 4996 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4997 struct net_device *dev); 4998 4999 netdev_features_t passthru_features_check(struct sk_buff *skb, 5000 struct net_device *dev, 5001 netdev_features_t features); 5002 netdev_features_t netif_skb_features(struct sk_buff *skb); 5003 void skb_warn_bad_offload(const struct sk_buff *skb); 5004 5005 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5006 { 5007 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5008 5009 /* check flags correspondence */ 5010 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5011 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5012 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5013 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5014 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5015 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5016 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5017 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5018 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5019 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5020 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5021 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5022 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5023 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5024 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5025 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5026 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5027 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5028 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5029 5030 return (features & feature) == feature; 5031 } 5032 5033 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5034 { 5035 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5036 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5037 } 5038 5039 static inline bool netif_needs_gso(struct sk_buff *skb, 5040 netdev_features_t features) 5041 { 5042 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5043 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5044 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5045 } 5046 5047 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5048 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5049 void netif_inherit_tso_max(struct net_device *to, 5050 const struct net_device *from); 5051 5052 static inline unsigned int 5053 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5054 { 5055 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5056 return skb->protocol == htons(ETH_P_IPV6) ? 5057 READ_ONCE(dev->gro_max_size) : 5058 READ_ONCE(dev->gro_ipv4_max_size); 5059 } 5060 5061 static inline unsigned int 5062 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5063 { 5064 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5065 return skb->protocol == htons(ETH_P_IPV6) ? 5066 READ_ONCE(dev->gso_max_size) : 5067 READ_ONCE(dev->gso_ipv4_max_size); 5068 } 5069 5070 static inline bool netif_is_macsec(const struct net_device *dev) 5071 { 5072 return dev->priv_flags & IFF_MACSEC; 5073 } 5074 5075 static inline bool netif_is_macvlan(const struct net_device *dev) 5076 { 5077 return dev->priv_flags & IFF_MACVLAN; 5078 } 5079 5080 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5081 { 5082 return dev->priv_flags & IFF_MACVLAN_PORT; 5083 } 5084 5085 static inline bool netif_is_bond_master(const struct net_device *dev) 5086 { 5087 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5088 } 5089 5090 static inline bool netif_is_bond_slave(const struct net_device *dev) 5091 { 5092 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5093 } 5094 5095 static inline bool netif_supports_nofcs(struct net_device *dev) 5096 { 5097 return dev->priv_flags & IFF_SUPP_NOFCS; 5098 } 5099 5100 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5101 { 5102 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5103 } 5104 5105 static inline bool netif_is_l3_master(const struct net_device *dev) 5106 { 5107 return dev->priv_flags & IFF_L3MDEV_MASTER; 5108 } 5109 5110 static inline bool netif_is_l3_slave(const struct net_device *dev) 5111 { 5112 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5113 } 5114 5115 static inline int dev_sdif(const struct net_device *dev) 5116 { 5117 #ifdef CONFIG_NET_L3_MASTER_DEV 5118 if (netif_is_l3_slave(dev)) 5119 return dev->ifindex; 5120 #endif 5121 return 0; 5122 } 5123 5124 static inline bool netif_is_bridge_master(const struct net_device *dev) 5125 { 5126 return dev->priv_flags & IFF_EBRIDGE; 5127 } 5128 5129 static inline bool netif_is_bridge_port(const struct net_device *dev) 5130 { 5131 return dev->priv_flags & IFF_BRIDGE_PORT; 5132 } 5133 5134 static inline bool netif_is_ovs_master(const struct net_device *dev) 5135 { 5136 return dev->priv_flags & IFF_OPENVSWITCH; 5137 } 5138 5139 static inline bool netif_is_ovs_port(const struct net_device *dev) 5140 { 5141 return dev->priv_flags & IFF_OVS_DATAPATH; 5142 } 5143 5144 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5145 { 5146 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5147 } 5148 5149 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5150 { 5151 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5152 } 5153 5154 static inline bool netif_is_team_master(const struct net_device *dev) 5155 { 5156 return dev->priv_flags & IFF_TEAM; 5157 } 5158 5159 static inline bool netif_is_team_port(const struct net_device *dev) 5160 { 5161 return dev->priv_flags & IFF_TEAM_PORT; 5162 } 5163 5164 static inline bool netif_is_lag_master(const struct net_device *dev) 5165 { 5166 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5167 } 5168 5169 static inline bool netif_is_lag_port(const struct net_device *dev) 5170 { 5171 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5172 } 5173 5174 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5175 { 5176 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5177 } 5178 5179 static inline bool netif_is_failover(const struct net_device *dev) 5180 { 5181 return dev->priv_flags & IFF_FAILOVER; 5182 } 5183 5184 static inline bool netif_is_failover_slave(const struct net_device *dev) 5185 { 5186 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5187 } 5188 5189 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5190 static inline void netif_keep_dst(struct net_device *dev) 5191 { 5192 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5193 } 5194 5195 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5196 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5197 { 5198 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5199 return netif_is_macsec(dev); 5200 } 5201 5202 extern struct pernet_operations __net_initdata loopback_net_ops; 5203 5204 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5205 5206 /* netdev_printk helpers, similar to dev_printk */ 5207 5208 static inline const char *netdev_name(const struct net_device *dev) 5209 { 5210 if (!dev->name[0] || strchr(dev->name, '%')) 5211 return "(unnamed net_device)"; 5212 return dev->name; 5213 } 5214 5215 static inline const char *netdev_reg_state(const struct net_device *dev) 5216 { 5217 switch (dev->reg_state) { 5218 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5219 case NETREG_REGISTERED: return ""; 5220 case NETREG_UNREGISTERING: return " (unregistering)"; 5221 case NETREG_UNREGISTERED: return " (unregistered)"; 5222 case NETREG_RELEASED: return " (released)"; 5223 case NETREG_DUMMY: return " (dummy)"; 5224 } 5225 5226 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5227 return " (unknown)"; 5228 } 5229 5230 #define MODULE_ALIAS_NETDEV(device) \ 5231 MODULE_ALIAS("netdev-" device) 5232 5233 /* 5234 * netdev_WARN() acts like dev_printk(), but with the key difference 5235 * of using a WARN/WARN_ON to get the message out, including the 5236 * file/line information and a backtrace. 5237 */ 5238 #define netdev_WARN(dev, format, args...) \ 5239 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5240 netdev_reg_state(dev), ##args) 5241 5242 #define netdev_WARN_ONCE(dev, format, args...) \ 5243 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5244 netdev_reg_state(dev), ##args) 5245 5246 /* 5247 * The list of packet types we will receive (as opposed to discard) 5248 * and the routines to invoke. 5249 * 5250 * Why 16. Because with 16 the only overlap we get on a hash of the 5251 * low nibble of the protocol value is RARP/SNAP/X.25. 5252 * 5253 * 0800 IP 5254 * 0001 802.3 5255 * 0002 AX.25 5256 * 0004 802.2 5257 * 8035 RARP 5258 * 0005 SNAP 5259 * 0805 X.25 5260 * 0806 ARP 5261 * 8137 IPX 5262 * 0009 Localtalk 5263 * 86DD IPv6 5264 */ 5265 #define PTYPE_HASH_SIZE (16) 5266 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5267 5268 extern struct list_head ptype_all __read_mostly; 5269 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5270 5271 extern struct net_device *blackhole_netdev; 5272 5273 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5274 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5275 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5276 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5277 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5278 5279 #endif /* _LINUX_NETDEVICE_H */ 5280