1 /* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20 #ifndef __MTD_MTD_H__ 21 #define __MTD_MTD_H__ 22 23 #include <linux/types.h> 24 #include <linux/uio.h> 25 #include <linux/notifier.h> 26 #include <linux/device.h> 27 28 #include <mtd/mtd-abi.h> 29 30 #include <asm/div64.h> 31 32 #define MTD_ERASE_PENDING 0x01 33 #define MTD_ERASING 0x02 34 #define MTD_ERASE_SUSPEND 0x04 35 #define MTD_ERASE_DONE 0x08 36 #define MTD_ERASE_FAILED 0x10 37 38 #define MTD_FAIL_ADDR_UNKNOWN -1LL 39 40 /* 41 * If the erase fails, fail_addr might indicate exactly which block failed. If 42 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 43 * or was not specific to any particular block. 44 */ 45 struct erase_info { 46 struct mtd_info *mtd; 47 uint64_t addr; 48 uint64_t len; 49 uint64_t fail_addr; 50 u_long time; 51 u_long retries; 52 unsigned dev; 53 unsigned cell; 54 void (*callback) (struct erase_info *self); 55 u_long priv; 56 u_char state; 57 struct erase_info *next; 58 }; 59 60 struct mtd_erase_region_info { 61 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 62 uint32_t erasesize; /* For this region */ 63 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 64 unsigned long *lockmap; /* If keeping bitmap of locks */ 65 }; 66 67 /** 68 * struct mtd_oob_ops - oob operation operands 69 * @mode: operation mode 70 * 71 * @len: number of data bytes to write/read 72 * 73 * @retlen: number of data bytes written/read 74 * 75 * @ooblen: number of oob bytes to write/read 76 * @oobretlen: number of oob bytes written/read 77 * @ooboffs: offset of oob data in the oob area (only relevant when 78 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 79 * @datbuf: data buffer - if NULL only oob data are read/written 80 * @oobbuf: oob data buffer 81 * 82 * Note, it is allowed to read more than one OOB area at one go, but not write. 83 * The interface assumes that the OOB write requests program only one page's 84 * OOB area. 85 */ 86 struct mtd_oob_ops { 87 unsigned int mode; 88 size_t len; 89 size_t retlen; 90 size_t ooblen; 91 size_t oobretlen; 92 uint32_t ooboffs; 93 uint8_t *datbuf; 94 uint8_t *oobbuf; 95 }; 96 97 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 98 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 99 /** 100 * struct mtd_oob_region - oob region definition 101 * @offset: region offset 102 * @length: region length 103 * 104 * This structure describes a region of the OOB area, and is used 105 * to retrieve ECC or free bytes sections. 106 * Each section is defined by an offset within the OOB area and a 107 * length. 108 */ 109 struct mtd_oob_region { 110 u32 offset; 111 u32 length; 112 }; 113 114 /* 115 * struct mtd_ooblayout_ops - NAND OOB layout operations 116 * @ecc: function returning an ECC region in the OOB area. 117 * Should return -ERANGE if %section exceeds the total number of 118 * ECC sections. 119 * @free: function returning a free region in the OOB area. 120 * Should return -ERANGE if %section exceeds the total number of 121 * free sections. 122 */ 123 struct mtd_ooblayout_ops { 124 int (*ecc)(struct mtd_info *mtd, int section, 125 struct mtd_oob_region *oobecc); 126 int (*free)(struct mtd_info *mtd, int section, 127 struct mtd_oob_region *oobfree); 128 }; 129 130 /** 131 * struct mtd_pairing_info - page pairing information 132 * 133 * @pair: pair id 134 * @group: group id 135 * 136 * The term "pair" is used here, even though TLC NANDs might group pages by 3 137 * (3 bits in a single cell). A pair should regroup all pages that are sharing 138 * the same cell. Pairs are then indexed in ascending order. 139 * 140 * @group is defining the position of a page in a given pair. It can also be 141 * seen as the bit position in the cell: page attached to bit 0 belongs to 142 * group 0, page attached to bit 1 belongs to group 1, etc. 143 * 144 * Example: 145 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 146 * 147 * group-0 group-1 148 * 149 * pair-0 page-0 page-4 150 * pair-1 page-1 page-5 151 * pair-2 page-2 page-8 152 * ... 153 * pair-127 page-251 page-255 154 * 155 * 156 * Note that the "group" and "pair" terms were extracted from Samsung and 157 * Hynix datasheets, and might be referenced under other names in other 158 * datasheets (Micron is describing this concept as "shared pages"). 159 */ 160 struct mtd_pairing_info { 161 int pair; 162 int group; 163 }; 164 165 /** 166 * struct mtd_pairing_scheme - page pairing scheme description 167 * 168 * @ngroups: number of groups. Should be related to the number of bits 169 * per cell. 170 * @get_info: converts a write-unit (page number within an erase block) into 171 * mtd_pairing information (pair + group). This function should 172 * fill the info parameter based on the wunit index or return 173 * -EINVAL if the wunit parameter is invalid. 174 * @get_wunit: converts pairing information into a write-unit (page) number. 175 * This function should return the wunit index pointed by the 176 * pairing information described in the info argument. It should 177 * return -EINVAL, if there's no wunit corresponding to the 178 * passed pairing information. 179 * 180 * See mtd_pairing_info documentation for a detailed explanation of the 181 * pair and group concepts. 182 * 183 * The mtd_pairing_scheme structure provides a generic solution to represent 184 * NAND page pairing scheme. Instead of exposing two big tables to do the 185 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 186 * implement the ->get_info() and ->get_wunit() functions. 187 * 188 * MTD users will then be able to query these information by using the 189 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 190 * 191 * @ngroups is here to help MTD users iterating over all the pages in a 192 * given pair. This value can be retrieved by MTD users using the 193 * mtd_pairing_groups() helper. 194 * 195 * Examples are given in the mtd_pairing_info_to_wunit() and 196 * mtd_wunit_to_pairing_info() documentation. 197 */ 198 struct mtd_pairing_scheme { 199 int ngroups; 200 int (*get_info)(struct mtd_info *mtd, int wunit, 201 struct mtd_pairing_info *info); 202 int (*get_wunit)(struct mtd_info *mtd, 203 const struct mtd_pairing_info *info); 204 }; 205 206 struct module; /* only needed for owner field in mtd_info */ 207 208 struct mtd_info { 209 u_char type; 210 uint32_t flags; 211 uint64_t size; // Total size of the MTD 212 213 /* "Major" erase size for the device. Naïve users may take this 214 * to be the only erase size available, or may use the more detailed 215 * information below if they desire 216 */ 217 uint32_t erasesize; 218 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 219 * though individual bits can be cleared), in case of NAND flash it is 220 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 221 * it is of ECC block size, etc. It is illegal to have writesize = 0. 222 * Any driver registering a struct mtd_info must ensure a writesize of 223 * 1 or larger. 224 */ 225 uint32_t writesize; 226 227 /* 228 * Size of the write buffer used by the MTD. MTD devices having a write 229 * buffer can write multiple writesize chunks at a time. E.g. while 230 * writing 4 * writesize bytes to a device with 2 * writesize bytes 231 * buffer the MTD driver can (but doesn't have to) do 2 writesize 232 * operations, but not 4. Currently, all NANDs have writebufsize 233 * equivalent to writesize (NAND page size). Some NOR flashes do have 234 * writebufsize greater than writesize. 235 */ 236 uint32_t writebufsize; 237 238 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 239 uint32_t oobavail; // Available OOB bytes per block 240 241 /* 242 * If erasesize is a power of 2 then the shift is stored in 243 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 244 */ 245 unsigned int erasesize_shift; 246 unsigned int writesize_shift; 247 /* Masks based on erasesize_shift and writesize_shift */ 248 unsigned int erasesize_mask; 249 unsigned int writesize_mask; 250 251 /* 252 * read ops return -EUCLEAN if max number of bitflips corrected on any 253 * one region comprising an ecc step equals or exceeds this value. 254 * Settable by driver, else defaults to ecc_strength. User can override 255 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 256 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 257 */ 258 unsigned int bitflip_threshold; 259 260 // Kernel-only stuff starts here. 261 const char *name; 262 int index; 263 264 /* OOB layout description */ 265 const struct mtd_ooblayout_ops *ooblayout; 266 267 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 268 const struct mtd_pairing_scheme *pairing; 269 270 /* the ecc step size. */ 271 unsigned int ecc_step_size; 272 273 /* max number of correctible bit errors per ecc step */ 274 unsigned int ecc_strength; 275 276 /* Data for variable erase regions. If numeraseregions is zero, 277 * it means that the whole device has erasesize as given above. 278 */ 279 int numeraseregions; 280 struct mtd_erase_region_info *eraseregions; 281 282 /* 283 * Do not call via these pointers, use corresponding mtd_*() 284 * wrappers instead. 285 */ 286 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 287 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 288 size_t *retlen, void **virt, resource_size_t *phys); 289 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 290 unsigned long (*_get_unmapped_area) (struct mtd_info *mtd, 291 unsigned long len, 292 unsigned long offset, 293 unsigned long flags); 294 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 295 size_t *retlen, u_char *buf); 296 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 297 size_t *retlen, const u_char *buf); 298 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 299 size_t *retlen, const u_char *buf); 300 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 301 struct mtd_oob_ops *ops); 302 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 303 struct mtd_oob_ops *ops); 304 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 305 size_t *retlen, struct otp_info *buf); 306 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 307 size_t len, size_t *retlen, u_char *buf); 308 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 309 size_t *retlen, struct otp_info *buf); 310 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 311 size_t len, size_t *retlen, u_char *buf); 312 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 313 size_t len, size_t *retlen, u_char *buf); 314 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 315 size_t len); 316 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 317 unsigned long count, loff_t to, size_t *retlen); 318 void (*_sync) (struct mtd_info *mtd); 319 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 320 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 321 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 322 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 323 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 324 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 325 int (*_suspend) (struct mtd_info *mtd); 326 void (*_resume) (struct mtd_info *mtd); 327 void (*_reboot) (struct mtd_info *mtd); 328 /* 329 * If the driver is something smart, like UBI, it may need to maintain 330 * its own reference counting. The below functions are only for driver. 331 */ 332 int (*_get_device) (struct mtd_info *mtd); 333 void (*_put_device) (struct mtd_info *mtd); 334 335 /* Backing device capabilities for this device 336 * - provides mmap capabilities 337 */ 338 struct backing_dev_info *backing_dev_info; 339 340 struct notifier_block reboot_notifier; /* default mode before reboot */ 341 342 /* ECC status information */ 343 struct mtd_ecc_stats ecc_stats; 344 /* Subpage shift (NAND) */ 345 int subpage_sft; 346 347 void *priv; 348 349 struct module *owner; 350 struct device dev; 351 int usecount; 352 }; 353 354 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 355 struct mtd_oob_region *oobecc); 356 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 357 int *section, 358 struct mtd_oob_region *oobregion); 359 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 360 const u8 *oobbuf, int start, int nbytes); 361 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 362 u8 *oobbuf, int start, int nbytes); 363 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 364 struct mtd_oob_region *oobfree); 365 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 366 const u8 *oobbuf, int start, int nbytes); 367 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 368 u8 *oobbuf, int start, int nbytes); 369 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 370 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 371 372 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 373 const struct mtd_ooblayout_ops *ooblayout) 374 { 375 mtd->ooblayout = ooblayout; 376 } 377 378 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 379 const struct mtd_pairing_scheme *pairing) 380 { 381 mtd->pairing = pairing; 382 } 383 384 static inline void mtd_set_of_node(struct mtd_info *mtd, 385 struct device_node *np) 386 { 387 mtd->dev.of_node = np; 388 } 389 390 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 391 { 392 return mtd->dev.of_node; 393 } 394 395 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 396 { 397 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 398 } 399 400 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 401 struct mtd_pairing_info *info); 402 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 403 const struct mtd_pairing_info *info); 404 int mtd_pairing_groups(struct mtd_info *mtd); 405 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 406 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 407 void **virt, resource_size_t *phys); 408 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 409 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 410 unsigned long offset, unsigned long flags); 411 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 412 u_char *buf); 413 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 414 const u_char *buf); 415 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 416 const u_char *buf); 417 418 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 419 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 420 421 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 422 struct otp_info *buf); 423 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 424 size_t *retlen, u_char *buf); 425 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 426 struct otp_info *buf); 427 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 428 size_t *retlen, u_char *buf); 429 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 430 size_t *retlen, u_char *buf); 431 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 432 433 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 434 unsigned long count, loff_t to, size_t *retlen); 435 436 static inline void mtd_sync(struct mtd_info *mtd) 437 { 438 if (mtd->_sync) 439 mtd->_sync(mtd); 440 } 441 442 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 443 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 444 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 445 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 446 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 447 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 448 449 static inline int mtd_suspend(struct mtd_info *mtd) 450 { 451 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 452 } 453 454 static inline void mtd_resume(struct mtd_info *mtd) 455 { 456 if (mtd->_resume) 457 mtd->_resume(mtd); 458 } 459 460 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 461 { 462 if (mtd->erasesize_shift) 463 return sz >> mtd->erasesize_shift; 464 do_div(sz, mtd->erasesize); 465 return sz; 466 } 467 468 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 469 { 470 if (mtd->erasesize_shift) 471 return sz & mtd->erasesize_mask; 472 return do_div(sz, mtd->erasesize); 473 } 474 475 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 476 { 477 if (mtd->writesize_shift) 478 return sz >> mtd->writesize_shift; 479 do_div(sz, mtd->writesize); 480 return sz; 481 } 482 483 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 484 { 485 if (mtd->writesize_shift) 486 return sz & mtd->writesize_mask; 487 return do_div(sz, mtd->writesize); 488 } 489 490 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 491 { 492 return mtd->erasesize / mtd->writesize; 493 } 494 495 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 496 { 497 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 498 } 499 500 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 501 int wunit) 502 { 503 return base + (wunit * mtd->writesize); 504 } 505 506 507 static inline int mtd_has_oob(const struct mtd_info *mtd) 508 { 509 return mtd->_read_oob && mtd->_write_oob; 510 } 511 512 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 513 { 514 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 515 } 516 517 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 518 { 519 return !!mtd->_block_isbad; 520 } 521 522 /* Kernel-side ioctl definitions */ 523 524 struct mtd_partition; 525 struct mtd_part_parser_data; 526 527 extern int mtd_device_parse_register(struct mtd_info *mtd, 528 const char * const *part_probe_types, 529 struct mtd_part_parser_data *parser_data, 530 const struct mtd_partition *defparts, 531 int defnr_parts); 532 #define mtd_device_register(master, parts, nr_parts) \ 533 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 534 extern int mtd_device_unregister(struct mtd_info *master); 535 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 536 extern int __get_mtd_device(struct mtd_info *mtd); 537 extern void __put_mtd_device(struct mtd_info *mtd); 538 extern struct mtd_info *get_mtd_device_nm(const char *name); 539 extern void put_mtd_device(struct mtd_info *mtd); 540 541 542 struct mtd_notifier { 543 void (*add)(struct mtd_info *mtd); 544 void (*remove)(struct mtd_info *mtd); 545 struct list_head list; 546 }; 547 548 549 extern void register_mtd_user (struct mtd_notifier *new); 550 extern int unregister_mtd_user (struct mtd_notifier *old); 551 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 552 553 void mtd_erase_callback(struct erase_info *instr); 554 555 static inline int mtd_is_bitflip(int err) { 556 return err == -EUCLEAN; 557 } 558 559 static inline int mtd_is_eccerr(int err) { 560 return err == -EBADMSG; 561 } 562 563 static inline int mtd_is_bitflip_or_eccerr(int err) { 564 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 565 } 566 567 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 568 569 #endif /* __MTD_MTD_H__ */ 570