1 /* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20 #ifndef __MTD_MTD_H__ 21 #define __MTD_MTD_H__ 22 23 #include <linux/types.h> 24 #include <linux/uio.h> 25 #include <linux/notifier.h> 26 #include <linux/device.h> 27 #include <linux/of.h> 28 #include <linux/nvmem-provider.h> 29 30 #include <mtd/mtd-abi.h> 31 32 #include <asm/div64.h> 33 34 #define MTD_FAIL_ADDR_UNKNOWN -1LL 35 36 struct mtd_info; 37 38 /* 39 * If the erase fails, fail_addr might indicate exactly which block failed. If 40 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 41 * or was not specific to any particular block. 42 */ 43 struct erase_info { 44 uint64_t addr; 45 uint64_t len; 46 uint64_t fail_addr; 47 }; 48 49 struct mtd_erase_region_info { 50 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 51 uint32_t erasesize; /* For this region */ 52 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 53 unsigned long *lockmap; /* If keeping bitmap of locks */ 54 }; 55 56 /** 57 * struct mtd_oob_ops - oob operation operands 58 * @mode: operation mode 59 * 60 * @len: number of data bytes to write/read 61 * 62 * @retlen: number of data bytes written/read 63 * 64 * @ooblen: number of oob bytes to write/read 65 * @oobretlen: number of oob bytes written/read 66 * @ooboffs: offset of oob data in the oob area (only relevant when 67 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 68 * @datbuf: data buffer - if NULL only oob data are read/written 69 * @oobbuf: oob data buffer 70 * 71 * Note, some MTD drivers do not allow you to write more than one OOB area at 72 * one go. If you try to do that on such an MTD device, -EINVAL will be 73 * returned. If you want to make your implementation portable on all kind of MTD 74 * devices you should split the write request into several sub-requests when the 75 * request crosses a page boundary. 76 */ 77 struct mtd_oob_ops { 78 unsigned int mode; 79 size_t len; 80 size_t retlen; 81 size_t ooblen; 82 size_t oobretlen; 83 uint32_t ooboffs; 84 uint8_t *datbuf; 85 uint8_t *oobbuf; 86 }; 87 88 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 89 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 90 /** 91 * struct mtd_oob_region - oob region definition 92 * @offset: region offset 93 * @length: region length 94 * 95 * This structure describes a region of the OOB area, and is used 96 * to retrieve ECC or free bytes sections. 97 * Each section is defined by an offset within the OOB area and a 98 * length. 99 */ 100 struct mtd_oob_region { 101 u32 offset; 102 u32 length; 103 }; 104 105 /* 106 * struct mtd_ooblayout_ops - NAND OOB layout operations 107 * @ecc: function returning an ECC region in the OOB area. 108 * Should return -ERANGE if %section exceeds the total number of 109 * ECC sections. 110 * @free: function returning a free region in the OOB area. 111 * Should return -ERANGE if %section exceeds the total number of 112 * free sections. 113 */ 114 struct mtd_ooblayout_ops { 115 int (*ecc)(struct mtd_info *mtd, int section, 116 struct mtd_oob_region *oobecc); 117 int (*free)(struct mtd_info *mtd, int section, 118 struct mtd_oob_region *oobfree); 119 }; 120 121 /** 122 * struct mtd_pairing_info - page pairing information 123 * 124 * @pair: pair id 125 * @group: group id 126 * 127 * The term "pair" is used here, even though TLC NANDs might group pages by 3 128 * (3 bits in a single cell). A pair should regroup all pages that are sharing 129 * the same cell. Pairs are then indexed in ascending order. 130 * 131 * @group is defining the position of a page in a given pair. It can also be 132 * seen as the bit position in the cell: page attached to bit 0 belongs to 133 * group 0, page attached to bit 1 belongs to group 1, etc. 134 * 135 * Example: 136 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 137 * 138 * group-0 group-1 139 * 140 * pair-0 page-0 page-4 141 * pair-1 page-1 page-5 142 * pair-2 page-2 page-8 143 * ... 144 * pair-127 page-251 page-255 145 * 146 * 147 * Note that the "group" and "pair" terms were extracted from Samsung and 148 * Hynix datasheets, and might be referenced under other names in other 149 * datasheets (Micron is describing this concept as "shared pages"). 150 */ 151 struct mtd_pairing_info { 152 int pair; 153 int group; 154 }; 155 156 /** 157 * struct mtd_pairing_scheme - page pairing scheme description 158 * 159 * @ngroups: number of groups. Should be related to the number of bits 160 * per cell. 161 * @get_info: converts a write-unit (page number within an erase block) into 162 * mtd_pairing information (pair + group). This function should 163 * fill the info parameter based on the wunit index or return 164 * -EINVAL if the wunit parameter is invalid. 165 * @get_wunit: converts pairing information into a write-unit (page) number. 166 * This function should return the wunit index pointed by the 167 * pairing information described in the info argument. It should 168 * return -EINVAL, if there's no wunit corresponding to the 169 * passed pairing information. 170 * 171 * See mtd_pairing_info documentation for a detailed explanation of the 172 * pair and group concepts. 173 * 174 * The mtd_pairing_scheme structure provides a generic solution to represent 175 * NAND page pairing scheme. Instead of exposing two big tables to do the 176 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 177 * implement the ->get_info() and ->get_wunit() functions. 178 * 179 * MTD users will then be able to query these information by using the 180 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 181 * 182 * @ngroups is here to help MTD users iterating over all the pages in a 183 * given pair. This value can be retrieved by MTD users using the 184 * mtd_pairing_groups() helper. 185 * 186 * Examples are given in the mtd_pairing_info_to_wunit() and 187 * mtd_wunit_to_pairing_info() documentation. 188 */ 189 struct mtd_pairing_scheme { 190 int ngroups; 191 int (*get_info)(struct mtd_info *mtd, int wunit, 192 struct mtd_pairing_info *info); 193 int (*get_wunit)(struct mtd_info *mtd, 194 const struct mtd_pairing_info *info); 195 }; 196 197 struct module; /* only needed for owner field in mtd_info */ 198 199 /** 200 * struct mtd_debug_info - debugging information for an MTD device. 201 * 202 * @dfs_dir: direntry object of the MTD device debugfs directory 203 */ 204 struct mtd_debug_info { 205 struct dentry *dfs_dir; 206 }; 207 208 struct mtd_info { 209 u_char type; 210 uint32_t flags; 211 uint64_t size; // Total size of the MTD 212 213 /* "Major" erase size for the device. Naïve users may take this 214 * to be the only erase size available, or may use the more detailed 215 * information below if they desire 216 */ 217 uint32_t erasesize; 218 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 219 * though individual bits can be cleared), in case of NAND flash it is 220 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 221 * it is of ECC block size, etc. It is illegal to have writesize = 0. 222 * Any driver registering a struct mtd_info must ensure a writesize of 223 * 1 or larger. 224 */ 225 uint32_t writesize; 226 227 /* 228 * Size of the write buffer used by the MTD. MTD devices having a write 229 * buffer can write multiple writesize chunks at a time. E.g. while 230 * writing 4 * writesize bytes to a device with 2 * writesize bytes 231 * buffer the MTD driver can (but doesn't have to) do 2 writesize 232 * operations, but not 4. Currently, all NANDs have writebufsize 233 * equivalent to writesize (NAND page size). Some NOR flashes do have 234 * writebufsize greater than writesize. 235 */ 236 uint32_t writebufsize; 237 238 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 239 uint32_t oobavail; // Available OOB bytes per block 240 241 /* 242 * If erasesize is a power of 2 then the shift is stored in 243 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 244 */ 245 unsigned int erasesize_shift; 246 unsigned int writesize_shift; 247 /* Masks based on erasesize_shift and writesize_shift */ 248 unsigned int erasesize_mask; 249 unsigned int writesize_mask; 250 251 /* 252 * read ops return -EUCLEAN if max number of bitflips corrected on any 253 * one region comprising an ecc step equals or exceeds this value. 254 * Settable by driver, else defaults to ecc_strength. User can override 255 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 256 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 257 */ 258 unsigned int bitflip_threshold; 259 260 /* Kernel-only stuff starts here. */ 261 const char *name; 262 int index; 263 264 /* OOB layout description */ 265 const struct mtd_ooblayout_ops *ooblayout; 266 267 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 268 const struct mtd_pairing_scheme *pairing; 269 270 /* the ecc step size. */ 271 unsigned int ecc_step_size; 272 273 /* max number of correctible bit errors per ecc step */ 274 unsigned int ecc_strength; 275 276 /* Data for variable erase regions. If numeraseregions is zero, 277 * it means that the whole device has erasesize as given above. 278 */ 279 int numeraseregions; 280 struct mtd_erase_region_info *eraseregions; 281 282 /* 283 * Do not call via these pointers, use corresponding mtd_*() 284 * wrappers instead. 285 */ 286 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 287 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 288 size_t *retlen, void **virt, resource_size_t *phys); 289 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 290 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 291 size_t *retlen, u_char *buf); 292 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 293 size_t *retlen, const u_char *buf); 294 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 295 size_t *retlen, const u_char *buf); 296 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 297 struct mtd_oob_ops *ops); 298 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 299 struct mtd_oob_ops *ops); 300 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 301 size_t *retlen, struct otp_info *buf); 302 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 303 size_t len, size_t *retlen, u_char *buf); 304 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 305 size_t *retlen, struct otp_info *buf); 306 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 307 size_t len, size_t *retlen, u_char *buf); 308 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 309 size_t len, size_t *retlen, u_char *buf); 310 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 311 size_t len); 312 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 313 unsigned long count, loff_t to, size_t *retlen); 314 void (*_sync) (struct mtd_info *mtd); 315 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 316 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 317 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 318 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 319 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 320 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 321 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 322 int (*_suspend) (struct mtd_info *mtd); 323 void (*_resume) (struct mtd_info *mtd); 324 void (*_reboot) (struct mtd_info *mtd); 325 /* 326 * If the driver is something smart, like UBI, it may need to maintain 327 * its own reference counting. The below functions are only for driver. 328 */ 329 int (*_get_device) (struct mtd_info *mtd); 330 void (*_put_device) (struct mtd_info *mtd); 331 332 struct notifier_block reboot_notifier; /* default mode before reboot */ 333 334 /* ECC status information */ 335 struct mtd_ecc_stats ecc_stats; 336 /* Subpage shift (NAND) */ 337 int subpage_sft; 338 339 void *priv; 340 341 struct module *owner; 342 struct device dev; 343 int usecount; 344 struct mtd_debug_info dbg; 345 struct nvmem_device *nvmem; 346 }; 347 348 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 349 struct mtd_oob_region *oobecc); 350 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 351 int *section, 352 struct mtd_oob_region *oobregion); 353 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 354 const u8 *oobbuf, int start, int nbytes); 355 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 356 u8 *oobbuf, int start, int nbytes); 357 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 358 struct mtd_oob_region *oobfree); 359 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 360 const u8 *oobbuf, int start, int nbytes); 361 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 362 u8 *oobbuf, int start, int nbytes); 363 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 364 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 365 366 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 367 const struct mtd_ooblayout_ops *ooblayout) 368 { 369 mtd->ooblayout = ooblayout; 370 } 371 372 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 373 const struct mtd_pairing_scheme *pairing) 374 { 375 mtd->pairing = pairing; 376 } 377 378 static inline void mtd_set_of_node(struct mtd_info *mtd, 379 struct device_node *np) 380 { 381 mtd->dev.of_node = np; 382 if (!mtd->name) 383 of_property_read_string(np, "label", &mtd->name); 384 } 385 386 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 387 { 388 return dev_of_node(&mtd->dev); 389 } 390 391 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 392 { 393 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 394 } 395 396 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 397 loff_t ofs, size_t len) 398 { 399 if (!mtd->_max_bad_blocks) 400 return -ENOTSUPP; 401 402 if (mtd->size < (len + ofs) || ofs < 0) 403 return -EINVAL; 404 405 return mtd->_max_bad_blocks(mtd, ofs, len); 406 } 407 408 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 409 struct mtd_pairing_info *info); 410 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 411 const struct mtd_pairing_info *info); 412 int mtd_pairing_groups(struct mtd_info *mtd); 413 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 414 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 415 void **virt, resource_size_t *phys); 416 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 417 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 418 unsigned long offset, unsigned long flags); 419 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 420 u_char *buf); 421 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 422 const u_char *buf); 423 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 424 const u_char *buf); 425 426 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 427 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 428 429 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 430 struct otp_info *buf); 431 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 432 size_t *retlen, u_char *buf); 433 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 434 struct otp_info *buf); 435 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 436 size_t *retlen, u_char *buf); 437 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 438 size_t *retlen, u_char *buf); 439 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 440 441 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 442 unsigned long count, loff_t to, size_t *retlen); 443 444 static inline void mtd_sync(struct mtd_info *mtd) 445 { 446 if (mtd->_sync) 447 mtd->_sync(mtd); 448 } 449 450 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 451 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 452 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 453 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 454 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 455 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 456 457 static inline int mtd_suspend(struct mtd_info *mtd) 458 { 459 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 460 } 461 462 static inline void mtd_resume(struct mtd_info *mtd) 463 { 464 if (mtd->_resume) 465 mtd->_resume(mtd); 466 } 467 468 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 469 { 470 if (mtd->erasesize_shift) 471 return sz >> mtd->erasesize_shift; 472 do_div(sz, mtd->erasesize); 473 return sz; 474 } 475 476 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 477 { 478 if (mtd->erasesize_shift) 479 return sz & mtd->erasesize_mask; 480 return do_div(sz, mtd->erasesize); 481 } 482 483 /** 484 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 485 * boundaries. 486 * @mtd: the MTD device this erase request applies on 487 * @req: the erase request to adjust 488 * 489 * This function will adjust @req->addr and @req->len to align them on 490 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 491 */ 492 static inline void mtd_align_erase_req(struct mtd_info *mtd, 493 struct erase_info *req) 494 { 495 u32 mod; 496 497 if (WARN_ON(!mtd->erasesize)) 498 return; 499 500 mod = mtd_mod_by_eb(req->addr, mtd); 501 if (mod) { 502 req->addr -= mod; 503 req->len += mod; 504 } 505 506 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 507 if (mod) 508 req->len += mtd->erasesize - mod; 509 } 510 511 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 512 { 513 if (mtd->writesize_shift) 514 return sz >> mtd->writesize_shift; 515 do_div(sz, mtd->writesize); 516 return sz; 517 } 518 519 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 520 { 521 if (mtd->writesize_shift) 522 return sz & mtd->writesize_mask; 523 return do_div(sz, mtd->writesize); 524 } 525 526 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 527 { 528 return mtd->erasesize / mtd->writesize; 529 } 530 531 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 532 { 533 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 534 } 535 536 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 537 int wunit) 538 { 539 return base + (wunit * mtd->writesize); 540 } 541 542 543 static inline int mtd_has_oob(const struct mtd_info *mtd) 544 { 545 return mtd->_read_oob && mtd->_write_oob; 546 } 547 548 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 549 { 550 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 551 } 552 553 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 554 { 555 return !!mtd->_block_isbad; 556 } 557 558 /* Kernel-side ioctl definitions */ 559 560 struct mtd_partition; 561 struct mtd_part_parser_data; 562 563 extern int mtd_device_parse_register(struct mtd_info *mtd, 564 const char * const *part_probe_types, 565 struct mtd_part_parser_data *parser_data, 566 const struct mtd_partition *defparts, 567 int defnr_parts); 568 #define mtd_device_register(master, parts, nr_parts) \ 569 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 570 extern int mtd_device_unregister(struct mtd_info *master); 571 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 572 extern int __get_mtd_device(struct mtd_info *mtd); 573 extern void __put_mtd_device(struct mtd_info *mtd); 574 extern struct mtd_info *get_mtd_device_nm(const char *name); 575 extern void put_mtd_device(struct mtd_info *mtd); 576 577 578 struct mtd_notifier { 579 void (*add)(struct mtd_info *mtd); 580 void (*remove)(struct mtd_info *mtd); 581 struct list_head list; 582 }; 583 584 585 extern void register_mtd_user (struct mtd_notifier *new); 586 extern int unregister_mtd_user (struct mtd_notifier *old); 587 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 588 589 static inline int mtd_is_bitflip(int err) { 590 return err == -EUCLEAN; 591 } 592 593 static inline int mtd_is_eccerr(int err) { 594 return err == -EBADMSG; 595 } 596 597 static inline int mtd_is_bitflip_or_eccerr(int err) { 598 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 599 } 600 601 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 602 603 #endif /* __MTD_MTD_H__ */ 604