1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6 #ifndef __MTD_MTD_H__ 7 #define __MTD_MTD_H__ 8 9 #include <linux/types.h> 10 #include <linux/uio.h> 11 #include <linux/notifier.h> 12 #include <linux/device.h> 13 #include <linux/of.h> 14 #include <linux/nvmem-provider.h> 15 16 #include <mtd/mtd-abi.h> 17 18 #include <asm/div64.h> 19 20 #define MTD_FAIL_ADDR_UNKNOWN -1LL 21 22 struct mtd_info; 23 24 /* 25 * If the erase fails, fail_addr might indicate exactly which block failed. If 26 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 27 * or was not specific to any particular block. 28 */ 29 struct erase_info { 30 uint64_t addr; 31 uint64_t len; 32 uint64_t fail_addr; 33 }; 34 35 struct mtd_erase_region_info { 36 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 37 uint32_t erasesize; /* For this region */ 38 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 39 unsigned long *lockmap; /* If keeping bitmap of locks */ 40 }; 41 42 /** 43 * struct mtd_oob_ops - oob operation operands 44 * @mode: operation mode 45 * 46 * @len: number of data bytes to write/read 47 * 48 * @retlen: number of data bytes written/read 49 * 50 * @ooblen: number of oob bytes to write/read 51 * @oobretlen: number of oob bytes written/read 52 * @ooboffs: offset of oob data in the oob area (only relevant when 53 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 54 * @datbuf: data buffer - if NULL only oob data are read/written 55 * @oobbuf: oob data buffer 56 * 57 * Note, some MTD drivers do not allow you to write more than one OOB area at 58 * one go. If you try to do that on such an MTD device, -EINVAL will be 59 * returned. If you want to make your implementation portable on all kind of MTD 60 * devices you should split the write request into several sub-requests when the 61 * request crosses a page boundary. 62 */ 63 struct mtd_oob_ops { 64 unsigned int mode; 65 size_t len; 66 size_t retlen; 67 size_t ooblen; 68 size_t oobretlen; 69 uint32_t ooboffs; 70 uint8_t *datbuf; 71 uint8_t *oobbuf; 72 }; 73 74 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 75 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 76 /** 77 * struct mtd_oob_region - oob region definition 78 * @offset: region offset 79 * @length: region length 80 * 81 * This structure describes a region of the OOB area, and is used 82 * to retrieve ECC or free bytes sections. 83 * Each section is defined by an offset within the OOB area and a 84 * length. 85 */ 86 struct mtd_oob_region { 87 u32 offset; 88 u32 length; 89 }; 90 91 /* 92 * struct mtd_ooblayout_ops - NAND OOB layout operations 93 * @ecc: function returning an ECC region in the OOB area. 94 * Should return -ERANGE if %section exceeds the total number of 95 * ECC sections. 96 * @free: function returning a free region in the OOB area. 97 * Should return -ERANGE if %section exceeds the total number of 98 * free sections. 99 */ 100 struct mtd_ooblayout_ops { 101 int (*ecc)(struct mtd_info *mtd, int section, 102 struct mtd_oob_region *oobecc); 103 int (*free)(struct mtd_info *mtd, int section, 104 struct mtd_oob_region *oobfree); 105 }; 106 107 /** 108 * struct mtd_pairing_info - page pairing information 109 * 110 * @pair: pair id 111 * @group: group id 112 * 113 * The term "pair" is used here, even though TLC NANDs might group pages by 3 114 * (3 bits in a single cell). A pair should regroup all pages that are sharing 115 * the same cell. Pairs are then indexed in ascending order. 116 * 117 * @group is defining the position of a page in a given pair. It can also be 118 * seen as the bit position in the cell: page attached to bit 0 belongs to 119 * group 0, page attached to bit 1 belongs to group 1, etc. 120 * 121 * Example: 122 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 123 * 124 * group-0 group-1 125 * 126 * pair-0 page-0 page-4 127 * pair-1 page-1 page-5 128 * pair-2 page-2 page-8 129 * ... 130 * pair-127 page-251 page-255 131 * 132 * 133 * Note that the "group" and "pair" terms were extracted from Samsung and 134 * Hynix datasheets, and might be referenced under other names in other 135 * datasheets (Micron is describing this concept as "shared pages"). 136 */ 137 struct mtd_pairing_info { 138 int pair; 139 int group; 140 }; 141 142 /** 143 * struct mtd_pairing_scheme - page pairing scheme description 144 * 145 * @ngroups: number of groups. Should be related to the number of bits 146 * per cell. 147 * @get_info: converts a write-unit (page number within an erase block) into 148 * mtd_pairing information (pair + group). This function should 149 * fill the info parameter based on the wunit index or return 150 * -EINVAL if the wunit parameter is invalid. 151 * @get_wunit: converts pairing information into a write-unit (page) number. 152 * This function should return the wunit index pointed by the 153 * pairing information described in the info argument. It should 154 * return -EINVAL, if there's no wunit corresponding to the 155 * passed pairing information. 156 * 157 * See mtd_pairing_info documentation for a detailed explanation of the 158 * pair and group concepts. 159 * 160 * The mtd_pairing_scheme structure provides a generic solution to represent 161 * NAND page pairing scheme. Instead of exposing two big tables to do the 162 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 163 * implement the ->get_info() and ->get_wunit() functions. 164 * 165 * MTD users will then be able to query these information by using the 166 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 167 * 168 * @ngroups is here to help MTD users iterating over all the pages in a 169 * given pair. This value can be retrieved by MTD users using the 170 * mtd_pairing_groups() helper. 171 * 172 * Examples are given in the mtd_pairing_info_to_wunit() and 173 * mtd_wunit_to_pairing_info() documentation. 174 */ 175 struct mtd_pairing_scheme { 176 int ngroups; 177 int (*get_info)(struct mtd_info *mtd, int wunit, 178 struct mtd_pairing_info *info); 179 int (*get_wunit)(struct mtd_info *mtd, 180 const struct mtd_pairing_info *info); 181 }; 182 183 struct module; /* only needed for owner field in mtd_info */ 184 185 /** 186 * struct mtd_debug_info - debugging information for an MTD device. 187 * 188 * @dfs_dir: direntry object of the MTD device debugfs directory 189 */ 190 struct mtd_debug_info { 191 struct dentry *dfs_dir; 192 }; 193 194 struct mtd_info { 195 u_char type; 196 uint32_t flags; 197 uint32_t orig_flags; /* Flags as before running mtd checks */ 198 uint64_t size; // Total size of the MTD 199 200 /* "Major" erase size for the device. Naïve users may take this 201 * to be the only erase size available, or may use the more detailed 202 * information below if they desire 203 */ 204 uint32_t erasesize; 205 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 206 * though individual bits can be cleared), in case of NAND flash it is 207 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 208 * it is of ECC block size, etc. It is illegal to have writesize = 0. 209 * Any driver registering a struct mtd_info must ensure a writesize of 210 * 1 or larger. 211 */ 212 uint32_t writesize; 213 214 /* 215 * Size of the write buffer used by the MTD. MTD devices having a write 216 * buffer can write multiple writesize chunks at a time. E.g. while 217 * writing 4 * writesize bytes to a device with 2 * writesize bytes 218 * buffer the MTD driver can (but doesn't have to) do 2 writesize 219 * operations, but not 4. Currently, all NANDs have writebufsize 220 * equivalent to writesize (NAND page size). Some NOR flashes do have 221 * writebufsize greater than writesize. 222 */ 223 uint32_t writebufsize; 224 225 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 226 uint32_t oobavail; // Available OOB bytes per block 227 228 /* 229 * If erasesize is a power of 2 then the shift is stored in 230 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 231 */ 232 unsigned int erasesize_shift; 233 unsigned int writesize_shift; 234 /* Masks based on erasesize_shift and writesize_shift */ 235 unsigned int erasesize_mask; 236 unsigned int writesize_mask; 237 238 /* 239 * read ops return -EUCLEAN if max number of bitflips corrected on any 240 * one region comprising an ecc step equals or exceeds this value. 241 * Settable by driver, else defaults to ecc_strength. User can override 242 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 243 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 244 */ 245 unsigned int bitflip_threshold; 246 247 /* Kernel-only stuff starts here. */ 248 const char *name; 249 int index; 250 251 /* OOB layout description */ 252 const struct mtd_ooblayout_ops *ooblayout; 253 254 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 255 const struct mtd_pairing_scheme *pairing; 256 257 /* the ecc step size. */ 258 unsigned int ecc_step_size; 259 260 /* max number of correctible bit errors per ecc step */ 261 unsigned int ecc_strength; 262 263 /* Data for variable erase regions. If numeraseregions is zero, 264 * it means that the whole device has erasesize as given above. 265 */ 266 int numeraseregions; 267 struct mtd_erase_region_info *eraseregions; 268 269 /* 270 * Do not call via these pointers, use corresponding mtd_*() 271 * wrappers instead. 272 */ 273 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 274 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 275 size_t *retlen, void **virt, resource_size_t *phys); 276 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 277 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 278 size_t *retlen, u_char *buf); 279 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 280 size_t *retlen, const u_char *buf); 281 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 282 size_t *retlen, const u_char *buf); 283 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 284 struct mtd_oob_ops *ops); 285 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 286 struct mtd_oob_ops *ops); 287 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 288 size_t *retlen, struct otp_info *buf); 289 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 290 size_t len, size_t *retlen, u_char *buf); 291 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 292 size_t *retlen, struct otp_info *buf); 293 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 294 size_t len, size_t *retlen, u_char *buf); 295 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 296 size_t len, size_t *retlen, u_char *buf); 297 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 298 size_t len); 299 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 300 unsigned long count, loff_t to, size_t *retlen); 301 void (*_sync) (struct mtd_info *mtd); 302 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 303 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 304 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 305 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 306 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 307 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 308 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 309 int (*_suspend) (struct mtd_info *mtd); 310 void (*_resume) (struct mtd_info *mtd); 311 void (*_reboot) (struct mtd_info *mtd); 312 /* 313 * If the driver is something smart, like UBI, it may need to maintain 314 * its own reference counting. The below functions are only for driver. 315 */ 316 int (*_get_device) (struct mtd_info *mtd); 317 void (*_put_device) (struct mtd_info *mtd); 318 319 /* 320 * flag indicates a panic write, low level drivers can take appropriate 321 * action if required to ensure writes go through 322 */ 323 bool oops_panic_write; 324 325 struct notifier_block reboot_notifier; /* default mode before reboot */ 326 327 /* ECC status information */ 328 struct mtd_ecc_stats ecc_stats; 329 /* Subpage shift (NAND) */ 330 int subpage_sft; 331 332 void *priv; 333 334 struct module *owner; 335 struct device dev; 336 int usecount; 337 struct mtd_debug_info dbg; 338 struct nvmem_device *nvmem; 339 }; 340 341 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 342 struct mtd_oob_region *oobecc); 343 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 344 int *section, 345 struct mtd_oob_region *oobregion); 346 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 347 const u8 *oobbuf, int start, int nbytes); 348 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 349 u8 *oobbuf, int start, int nbytes); 350 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 351 struct mtd_oob_region *oobfree); 352 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 353 const u8 *oobbuf, int start, int nbytes); 354 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 355 u8 *oobbuf, int start, int nbytes); 356 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 357 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 358 359 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 360 const struct mtd_ooblayout_ops *ooblayout) 361 { 362 mtd->ooblayout = ooblayout; 363 } 364 365 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 366 const struct mtd_pairing_scheme *pairing) 367 { 368 mtd->pairing = pairing; 369 } 370 371 static inline void mtd_set_of_node(struct mtd_info *mtd, 372 struct device_node *np) 373 { 374 mtd->dev.of_node = np; 375 if (!mtd->name) 376 of_property_read_string(np, "label", &mtd->name); 377 } 378 379 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 380 { 381 return dev_of_node(&mtd->dev); 382 } 383 384 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 385 { 386 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 387 } 388 389 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 390 loff_t ofs, size_t len) 391 { 392 if (!mtd->_max_bad_blocks) 393 return -ENOTSUPP; 394 395 if (mtd->size < (len + ofs) || ofs < 0) 396 return -EINVAL; 397 398 return mtd->_max_bad_blocks(mtd, ofs, len); 399 } 400 401 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 402 struct mtd_pairing_info *info); 403 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 404 const struct mtd_pairing_info *info); 405 int mtd_pairing_groups(struct mtd_info *mtd); 406 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 407 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 408 void **virt, resource_size_t *phys); 409 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 410 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 411 unsigned long offset, unsigned long flags); 412 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 413 u_char *buf); 414 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 415 const u_char *buf); 416 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 417 const u_char *buf); 418 419 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 420 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 421 422 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 423 struct otp_info *buf); 424 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 425 size_t *retlen, u_char *buf); 426 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 427 struct otp_info *buf); 428 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 429 size_t *retlen, u_char *buf); 430 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 431 size_t *retlen, u_char *buf); 432 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 433 434 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 435 unsigned long count, loff_t to, size_t *retlen); 436 437 static inline void mtd_sync(struct mtd_info *mtd) 438 { 439 if (mtd->_sync) 440 mtd->_sync(mtd); 441 } 442 443 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 444 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 445 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 446 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 447 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 448 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 449 450 static inline int mtd_suspend(struct mtd_info *mtd) 451 { 452 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 453 } 454 455 static inline void mtd_resume(struct mtd_info *mtd) 456 { 457 if (mtd->_resume) 458 mtd->_resume(mtd); 459 } 460 461 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 462 { 463 if (mtd->erasesize_shift) 464 return sz >> mtd->erasesize_shift; 465 do_div(sz, mtd->erasesize); 466 return sz; 467 } 468 469 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 470 { 471 if (mtd->erasesize_shift) 472 return sz & mtd->erasesize_mask; 473 return do_div(sz, mtd->erasesize); 474 } 475 476 /** 477 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 478 * boundaries. 479 * @mtd: the MTD device this erase request applies on 480 * @req: the erase request to adjust 481 * 482 * This function will adjust @req->addr and @req->len to align them on 483 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 484 */ 485 static inline void mtd_align_erase_req(struct mtd_info *mtd, 486 struct erase_info *req) 487 { 488 u32 mod; 489 490 if (WARN_ON(!mtd->erasesize)) 491 return; 492 493 mod = mtd_mod_by_eb(req->addr, mtd); 494 if (mod) { 495 req->addr -= mod; 496 req->len += mod; 497 } 498 499 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 500 if (mod) 501 req->len += mtd->erasesize - mod; 502 } 503 504 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 505 { 506 if (mtd->writesize_shift) 507 return sz >> mtd->writesize_shift; 508 do_div(sz, mtd->writesize); 509 return sz; 510 } 511 512 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 513 { 514 if (mtd->writesize_shift) 515 return sz & mtd->writesize_mask; 516 return do_div(sz, mtd->writesize); 517 } 518 519 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 520 { 521 return mtd->erasesize / mtd->writesize; 522 } 523 524 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 525 { 526 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 527 } 528 529 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 530 int wunit) 531 { 532 return base + (wunit * mtd->writesize); 533 } 534 535 536 static inline int mtd_has_oob(const struct mtd_info *mtd) 537 { 538 return mtd->_read_oob && mtd->_write_oob; 539 } 540 541 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 542 { 543 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 544 } 545 546 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 547 { 548 return !!mtd->_block_isbad; 549 } 550 551 /* Kernel-side ioctl definitions */ 552 553 struct mtd_partition; 554 struct mtd_part_parser_data; 555 556 extern int mtd_device_parse_register(struct mtd_info *mtd, 557 const char * const *part_probe_types, 558 struct mtd_part_parser_data *parser_data, 559 const struct mtd_partition *defparts, 560 int defnr_parts); 561 #define mtd_device_register(master, parts, nr_parts) \ 562 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 563 extern int mtd_device_unregister(struct mtd_info *master); 564 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 565 extern int __get_mtd_device(struct mtd_info *mtd); 566 extern void __put_mtd_device(struct mtd_info *mtd); 567 extern struct mtd_info *get_mtd_device_nm(const char *name); 568 extern void put_mtd_device(struct mtd_info *mtd); 569 570 571 struct mtd_notifier { 572 void (*add)(struct mtd_info *mtd); 573 void (*remove)(struct mtd_info *mtd); 574 struct list_head list; 575 }; 576 577 578 extern void register_mtd_user (struct mtd_notifier *new); 579 extern int unregister_mtd_user (struct mtd_notifier *old); 580 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 581 582 static inline int mtd_is_bitflip(int err) { 583 return err == -EUCLEAN; 584 } 585 586 static inline int mtd_is_eccerr(int err) { 587 return err == -EBADMSG; 588 } 589 590 static inline int mtd_is_bitflip_or_eccerr(int err) { 591 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 592 } 593 594 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 595 596 #endif /* __MTD_MTD_H__ */ 597