1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6 #ifndef __MTD_MTD_H__ 7 #define __MTD_MTD_H__ 8 9 #include <linux/types.h> 10 #include <linux/uio.h> 11 #include <linux/list.h> 12 #include <linux/notifier.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/nvmem-provider.h> 16 17 #include <mtd/mtd-abi.h> 18 19 #include <asm/div64.h> 20 21 #define MTD_FAIL_ADDR_UNKNOWN -1LL 22 23 struct mtd_info; 24 25 /* 26 * If the erase fails, fail_addr might indicate exactly which block failed. If 27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 28 * or was not specific to any particular block. 29 */ 30 struct erase_info { 31 uint64_t addr; 32 uint64_t len; 33 uint64_t fail_addr; 34 }; 35 36 struct mtd_erase_region_info { 37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 38 uint32_t erasesize; /* For this region */ 39 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 40 unsigned long *lockmap; /* If keeping bitmap of locks */ 41 }; 42 43 /** 44 * struct mtd_oob_ops - oob operation operands 45 * @mode: operation mode 46 * 47 * @len: number of data bytes to write/read 48 * 49 * @retlen: number of data bytes written/read 50 * 51 * @ooblen: number of oob bytes to write/read 52 * @oobretlen: number of oob bytes written/read 53 * @ooboffs: offset of oob data in the oob area (only relevant when 54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 55 * @datbuf: data buffer - if NULL only oob data are read/written 56 * @oobbuf: oob data buffer 57 * 58 * Note, some MTD drivers do not allow you to write more than one OOB area at 59 * one go. If you try to do that on such an MTD device, -EINVAL will be 60 * returned. If you want to make your implementation portable on all kind of MTD 61 * devices you should split the write request into several sub-requests when the 62 * request crosses a page boundary. 63 */ 64 struct mtd_oob_ops { 65 unsigned int mode; 66 size_t len; 67 size_t retlen; 68 size_t ooblen; 69 size_t oobretlen; 70 uint32_t ooboffs; 71 uint8_t *datbuf; 72 uint8_t *oobbuf; 73 }; 74 75 /** 76 * struct mtd_oob_region - oob region definition 77 * @offset: region offset 78 * @length: region length 79 * 80 * This structure describes a region of the OOB area, and is used 81 * to retrieve ECC or free bytes sections. 82 * Each section is defined by an offset within the OOB area and a 83 * length. 84 */ 85 struct mtd_oob_region { 86 u32 offset; 87 u32 length; 88 }; 89 90 /* 91 * struct mtd_ooblayout_ops - NAND OOB layout operations 92 * @ecc: function returning an ECC region in the OOB area. 93 * Should return -ERANGE if %section exceeds the total number of 94 * ECC sections. 95 * @free: function returning a free region in the OOB area. 96 * Should return -ERANGE if %section exceeds the total number of 97 * free sections. 98 */ 99 struct mtd_ooblayout_ops { 100 int (*ecc)(struct mtd_info *mtd, int section, 101 struct mtd_oob_region *oobecc); 102 int (*free)(struct mtd_info *mtd, int section, 103 struct mtd_oob_region *oobfree); 104 }; 105 106 /** 107 * struct mtd_pairing_info - page pairing information 108 * 109 * @pair: pair id 110 * @group: group id 111 * 112 * The term "pair" is used here, even though TLC NANDs might group pages by 3 113 * (3 bits in a single cell). A pair should regroup all pages that are sharing 114 * the same cell. Pairs are then indexed in ascending order. 115 * 116 * @group is defining the position of a page in a given pair. It can also be 117 * seen as the bit position in the cell: page attached to bit 0 belongs to 118 * group 0, page attached to bit 1 belongs to group 1, etc. 119 * 120 * Example: 121 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 122 * 123 * group-0 group-1 124 * 125 * pair-0 page-0 page-4 126 * pair-1 page-1 page-5 127 * pair-2 page-2 page-8 128 * ... 129 * pair-127 page-251 page-255 130 * 131 * 132 * Note that the "group" and "pair" terms were extracted from Samsung and 133 * Hynix datasheets, and might be referenced under other names in other 134 * datasheets (Micron is describing this concept as "shared pages"). 135 */ 136 struct mtd_pairing_info { 137 int pair; 138 int group; 139 }; 140 141 /** 142 * struct mtd_pairing_scheme - page pairing scheme description 143 * 144 * @ngroups: number of groups. Should be related to the number of bits 145 * per cell. 146 * @get_info: converts a write-unit (page number within an erase block) into 147 * mtd_pairing information (pair + group). This function should 148 * fill the info parameter based on the wunit index or return 149 * -EINVAL if the wunit parameter is invalid. 150 * @get_wunit: converts pairing information into a write-unit (page) number. 151 * This function should return the wunit index pointed by the 152 * pairing information described in the info argument. It should 153 * return -EINVAL, if there's no wunit corresponding to the 154 * passed pairing information. 155 * 156 * See mtd_pairing_info documentation for a detailed explanation of the 157 * pair and group concepts. 158 * 159 * The mtd_pairing_scheme structure provides a generic solution to represent 160 * NAND page pairing scheme. Instead of exposing two big tables to do the 161 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 162 * implement the ->get_info() and ->get_wunit() functions. 163 * 164 * MTD users will then be able to query these information by using the 165 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 166 * 167 * @ngroups is here to help MTD users iterating over all the pages in a 168 * given pair. This value can be retrieved by MTD users using the 169 * mtd_pairing_groups() helper. 170 * 171 * Examples are given in the mtd_pairing_info_to_wunit() and 172 * mtd_wunit_to_pairing_info() documentation. 173 */ 174 struct mtd_pairing_scheme { 175 int ngroups; 176 int (*get_info)(struct mtd_info *mtd, int wunit, 177 struct mtd_pairing_info *info); 178 int (*get_wunit)(struct mtd_info *mtd, 179 const struct mtd_pairing_info *info); 180 }; 181 182 struct module; /* only needed for owner field in mtd_info */ 183 184 /** 185 * struct mtd_debug_info - debugging information for an MTD device. 186 * 187 * @dfs_dir: direntry object of the MTD device debugfs directory 188 */ 189 struct mtd_debug_info { 190 struct dentry *dfs_dir; 191 }; 192 193 /** 194 * struct mtd_part - MTD partition specific fields 195 * 196 * @node: list node used to add an MTD partition to the parent partition list 197 * @offset: offset of the partition relatively to the parent offset 198 * @size: partition size. Should be equal to mtd->size unless 199 * MTD_SLC_ON_MLC_EMULATION is set 200 * @flags: original flags (before the mtdpart logic decided to tweak them based 201 * on flash constraints, like eraseblock/pagesize alignment) 202 * 203 * This struct is embedded in mtd_info and contains partition-specific 204 * properties/fields. 205 */ 206 struct mtd_part { 207 struct list_head node; 208 u64 offset; 209 u64 size; 210 u32 flags; 211 }; 212 213 /** 214 * struct mtd_master - MTD master specific fields 215 * 216 * @partitions_lock: lock protecting accesses to the partition list. Protects 217 * not only the master partition list, but also all 218 * sub-partitions. 219 * @suspended: et to 1 when the device is suspended, 0 otherwise 220 * 221 * This struct is embedded in mtd_info and contains master-specific 222 * properties/fields. The master is the root MTD device from the MTD partition 223 * point of view. 224 */ 225 struct mtd_master { 226 struct mutex partitions_lock; 227 struct mutex chrdev_lock; 228 unsigned int suspended : 1; 229 }; 230 231 struct mtd_info { 232 u_char type; 233 uint32_t flags; 234 uint64_t size; // Total size of the MTD 235 236 /* "Major" erase size for the device. Naïve users may take this 237 * to be the only erase size available, or may use the more detailed 238 * information below if they desire 239 */ 240 uint32_t erasesize; 241 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 242 * though individual bits can be cleared), in case of NAND flash it is 243 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 244 * it is of ECC block size, etc. It is illegal to have writesize = 0. 245 * Any driver registering a struct mtd_info must ensure a writesize of 246 * 1 or larger. 247 */ 248 uint32_t writesize; 249 250 /* 251 * Size of the write buffer used by the MTD. MTD devices having a write 252 * buffer can write multiple writesize chunks at a time. E.g. while 253 * writing 4 * writesize bytes to a device with 2 * writesize bytes 254 * buffer the MTD driver can (but doesn't have to) do 2 writesize 255 * operations, but not 4. Currently, all NANDs have writebufsize 256 * equivalent to writesize (NAND page size). Some NOR flashes do have 257 * writebufsize greater than writesize. 258 */ 259 uint32_t writebufsize; 260 261 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 262 uint32_t oobavail; // Available OOB bytes per block 263 264 /* 265 * If erasesize is a power of 2 then the shift is stored in 266 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 267 */ 268 unsigned int erasesize_shift; 269 unsigned int writesize_shift; 270 /* Masks based on erasesize_shift and writesize_shift */ 271 unsigned int erasesize_mask; 272 unsigned int writesize_mask; 273 274 /* 275 * read ops return -EUCLEAN if max number of bitflips corrected on any 276 * one region comprising an ecc step equals or exceeds this value. 277 * Settable by driver, else defaults to ecc_strength. User can override 278 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 279 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 280 */ 281 unsigned int bitflip_threshold; 282 283 /* Kernel-only stuff starts here. */ 284 const char *name; 285 int index; 286 287 /* OOB layout description */ 288 const struct mtd_ooblayout_ops *ooblayout; 289 290 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 291 const struct mtd_pairing_scheme *pairing; 292 293 /* the ecc step size. */ 294 unsigned int ecc_step_size; 295 296 /* max number of correctible bit errors per ecc step */ 297 unsigned int ecc_strength; 298 299 /* Data for variable erase regions. If numeraseregions is zero, 300 * it means that the whole device has erasesize as given above. 301 */ 302 int numeraseregions; 303 struct mtd_erase_region_info *eraseregions; 304 305 /* 306 * Do not call via these pointers, use corresponding mtd_*() 307 * wrappers instead. 308 */ 309 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 310 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 311 size_t *retlen, void **virt, resource_size_t *phys); 312 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 313 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 314 size_t *retlen, u_char *buf); 315 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 316 size_t *retlen, const u_char *buf); 317 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 318 size_t *retlen, const u_char *buf); 319 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 320 struct mtd_oob_ops *ops); 321 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 322 struct mtd_oob_ops *ops); 323 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 324 size_t *retlen, struct otp_info *buf); 325 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 326 size_t len, size_t *retlen, u_char *buf); 327 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 328 size_t *retlen, struct otp_info *buf); 329 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 330 size_t len, size_t *retlen, u_char *buf); 331 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 332 size_t len, size_t *retlen, 333 const u_char *buf); 334 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 335 size_t len); 336 int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from, 337 size_t len); 338 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 339 unsigned long count, loff_t to, size_t *retlen); 340 void (*_sync) (struct mtd_info *mtd); 341 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 342 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 343 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 344 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 345 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 346 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 347 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 348 int (*_suspend) (struct mtd_info *mtd); 349 void (*_resume) (struct mtd_info *mtd); 350 void (*_reboot) (struct mtd_info *mtd); 351 /* 352 * If the driver is something smart, like UBI, it may need to maintain 353 * its own reference counting. The below functions are only for driver. 354 */ 355 int (*_get_device) (struct mtd_info *mtd); 356 void (*_put_device) (struct mtd_info *mtd); 357 358 /* 359 * flag indicates a panic write, low level drivers can take appropriate 360 * action if required to ensure writes go through 361 */ 362 bool oops_panic_write; 363 364 struct notifier_block reboot_notifier; /* default mode before reboot */ 365 366 /* ECC status information */ 367 struct mtd_ecc_stats ecc_stats; 368 /* Subpage shift (NAND) */ 369 int subpage_sft; 370 371 void *priv; 372 373 struct module *owner; 374 struct device dev; 375 int usecount; 376 struct mtd_debug_info dbg; 377 struct nvmem_device *nvmem; 378 struct nvmem_device *otp_user_nvmem; 379 struct nvmem_device *otp_factory_nvmem; 380 381 /* 382 * Parent device from the MTD partition point of view. 383 * 384 * MTD masters do not have any parent, MTD partitions do. The parent 385 * MTD device can itself be a partition. 386 */ 387 struct mtd_info *parent; 388 389 /* List of partitions attached to this MTD device */ 390 struct list_head partitions; 391 392 union { 393 struct mtd_part part; 394 struct mtd_master master; 395 }; 396 }; 397 398 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd) 399 { 400 while (mtd->parent) 401 mtd = mtd->parent; 402 403 return mtd; 404 } 405 406 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs) 407 { 408 while (mtd->parent) { 409 ofs += mtd->part.offset; 410 mtd = mtd->parent; 411 } 412 413 return ofs; 414 } 415 416 static inline bool mtd_is_partition(const struct mtd_info *mtd) 417 { 418 return mtd->parent; 419 } 420 421 static inline bool mtd_has_partitions(const struct mtd_info *mtd) 422 { 423 return !list_empty(&mtd->partitions); 424 } 425 426 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 427 struct mtd_oob_region *oobecc); 428 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 429 int *section, 430 struct mtd_oob_region *oobregion); 431 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 432 const u8 *oobbuf, int start, int nbytes); 433 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 434 u8 *oobbuf, int start, int nbytes); 435 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 436 struct mtd_oob_region *oobfree); 437 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 438 const u8 *oobbuf, int start, int nbytes); 439 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 440 u8 *oobbuf, int start, int nbytes); 441 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 442 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 443 444 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 445 const struct mtd_ooblayout_ops *ooblayout) 446 { 447 mtd->ooblayout = ooblayout; 448 } 449 450 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 451 const struct mtd_pairing_scheme *pairing) 452 { 453 mtd->pairing = pairing; 454 } 455 456 static inline void mtd_set_of_node(struct mtd_info *mtd, 457 struct device_node *np) 458 { 459 mtd->dev.of_node = np; 460 if (!mtd->name) 461 of_property_read_string(np, "label", &mtd->name); 462 } 463 464 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 465 { 466 return dev_of_node(&mtd->dev); 467 } 468 469 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 470 { 471 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 472 } 473 474 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 475 loff_t ofs, size_t len) 476 { 477 struct mtd_info *master = mtd_get_master(mtd); 478 479 if (!master->_max_bad_blocks) 480 return -ENOTSUPP; 481 482 if (mtd->size < (len + ofs) || ofs < 0) 483 return -EINVAL; 484 485 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs), 486 len); 487 } 488 489 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 490 struct mtd_pairing_info *info); 491 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 492 const struct mtd_pairing_info *info); 493 int mtd_pairing_groups(struct mtd_info *mtd); 494 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 495 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 496 void **virt, resource_size_t *phys); 497 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 498 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 499 unsigned long offset, unsigned long flags); 500 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 501 u_char *buf); 502 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 503 const u_char *buf); 504 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 505 const u_char *buf); 506 507 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 508 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 509 510 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 511 struct otp_info *buf); 512 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 513 size_t *retlen, u_char *buf); 514 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 515 struct otp_info *buf); 516 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 517 size_t *retlen, u_char *buf); 518 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 519 size_t *retlen, const u_char *buf); 520 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 521 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 522 523 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 524 unsigned long count, loff_t to, size_t *retlen); 525 526 static inline void mtd_sync(struct mtd_info *mtd) 527 { 528 struct mtd_info *master = mtd_get_master(mtd); 529 530 if (master->_sync) 531 master->_sync(master); 532 } 533 534 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 535 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 536 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 537 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 538 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 539 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 540 541 static inline int mtd_suspend(struct mtd_info *mtd) 542 { 543 struct mtd_info *master = mtd_get_master(mtd); 544 int ret; 545 546 if (master->master.suspended) 547 return 0; 548 549 ret = master->_suspend ? master->_suspend(master) : 0; 550 if (ret) 551 return ret; 552 553 master->master.suspended = 1; 554 return 0; 555 } 556 557 static inline void mtd_resume(struct mtd_info *mtd) 558 { 559 struct mtd_info *master = mtd_get_master(mtd); 560 561 if (!master->master.suspended) 562 return; 563 564 if (master->_resume) 565 master->_resume(master); 566 567 master->master.suspended = 0; 568 } 569 570 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 571 { 572 if (mtd->erasesize_shift) 573 return sz >> mtd->erasesize_shift; 574 do_div(sz, mtd->erasesize); 575 return sz; 576 } 577 578 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 579 { 580 if (mtd->erasesize_shift) 581 return sz & mtd->erasesize_mask; 582 return do_div(sz, mtd->erasesize); 583 } 584 585 /** 586 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 587 * boundaries. 588 * @mtd: the MTD device this erase request applies on 589 * @req: the erase request to adjust 590 * 591 * This function will adjust @req->addr and @req->len to align them on 592 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 593 */ 594 static inline void mtd_align_erase_req(struct mtd_info *mtd, 595 struct erase_info *req) 596 { 597 u32 mod; 598 599 if (WARN_ON(!mtd->erasesize)) 600 return; 601 602 mod = mtd_mod_by_eb(req->addr, mtd); 603 if (mod) { 604 req->addr -= mod; 605 req->len += mod; 606 } 607 608 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 609 if (mod) 610 req->len += mtd->erasesize - mod; 611 } 612 613 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 614 { 615 if (mtd->writesize_shift) 616 return sz >> mtd->writesize_shift; 617 do_div(sz, mtd->writesize); 618 return sz; 619 } 620 621 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 622 { 623 if (mtd->writesize_shift) 624 return sz & mtd->writesize_mask; 625 return do_div(sz, mtd->writesize); 626 } 627 628 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 629 { 630 struct mtd_info *master = mtd_get_master(mtd); 631 632 return master->erasesize / mtd->writesize; 633 } 634 635 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 636 { 637 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 638 } 639 640 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 641 int wunit) 642 { 643 return base + (wunit * mtd->writesize); 644 } 645 646 647 static inline int mtd_has_oob(const struct mtd_info *mtd) 648 { 649 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 650 651 return master->_read_oob && master->_write_oob; 652 } 653 654 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 655 { 656 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 657 } 658 659 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 660 { 661 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 662 663 return !!master->_block_isbad; 664 } 665 666 /* Kernel-side ioctl definitions */ 667 668 struct mtd_partition; 669 struct mtd_part_parser_data; 670 671 extern int mtd_device_parse_register(struct mtd_info *mtd, 672 const char * const *part_probe_types, 673 struct mtd_part_parser_data *parser_data, 674 const struct mtd_partition *defparts, 675 int defnr_parts); 676 #define mtd_device_register(master, parts, nr_parts) \ 677 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 678 extern int mtd_device_unregister(struct mtd_info *master); 679 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 680 extern int __get_mtd_device(struct mtd_info *mtd); 681 extern void __put_mtd_device(struct mtd_info *mtd); 682 extern struct mtd_info *get_mtd_device_nm(const char *name); 683 extern void put_mtd_device(struct mtd_info *mtd); 684 685 686 struct mtd_notifier { 687 void (*add)(struct mtd_info *mtd); 688 void (*remove)(struct mtd_info *mtd); 689 struct list_head list; 690 }; 691 692 693 extern void register_mtd_user (struct mtd_notifier *new); 694 extern int unregister_mtd_user (struct mtd_notifier *old); 695 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 696 697 static inline int mtd_is_bitflip(int err) { 698 return err == -EUCLEAN; 699 } 700 701 static inline int mtd_is_eccerr(int err) { 702 return err == -EBADMSG; 703 } 704 705 static inline int mtd_is_bitflip_or_eccerr(int err) { 706 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 707 } 708 709 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 710 711 #ifdef CONFIG_DEBUG_FS 712 bool mtd_check_expert_analysis_mode(void); 713 #else 714 static inline bool mtd_check_expert_analysis_mode(void) { return false; } 715 #endif 716 717 718 #endif /* __MTD_MTD_H__ */ 719