1 /* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20 #ifndef __MTD_MTD_H__ 21 #define __MTD_MTD_H__ 22 23 #include <linux/types.h> 24 #include <linux/uio.h> 25 #include <linux/notifier.h> 26 #include <linux/device.h> 27 #include <linux/of.h> 28 29 #include <mtd/mtd-abi.h> 30 31 #include <asm/div64.h> 32 33 #define MTD_FAIL_ADDR_UNKNOWN -1LL 34 35 struct mtd_info; 36 37 /* 38 * If the erase fails, fail_addr might indicate exactly which block failed. If 39 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 40 * or was not specific to any particular block. 41 */ 42 struct erase_info { 43 uint64_t addr; 44 uint64_t len; 45 uint64_t fail_addr; 46 }; 47 48 struct mtd_erase_region_info { 49 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 50 uint32_t erasesize; /* For this region */ 51 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 52 unsigned long *lockmap; /* If keeping bitmap of locks */ 53 }; 54 55 /** 56 * struct mtd_oob_ops - oob operation operands 57 * @mode: operation mode 58 * 59 * @len: number of data bytes to write/read 60 * 61 * @retlen: number of data bytes written/read 62 * 63 * @ooblen: number of oob bytes to write/read 64 * @oobretlen: number of oob bytes written/read 65 * @ooboffs: offset of oob data in the oob area (only relevant when 66 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 67 * @datbuf: data buffer - if NULL only oob data are read/written 68 * @oobbuf: oob data buffer 69 * 70 * Note, some MTD drivers do not allow you to write more than one OOB area at 71 * one go. If you try to do that on such an MTD device, -EINVAL will be 72 * returned. If you want to make your implementation portable on all kind of MTD 73 * devices you should split the write request into several sub-requests when the 74 * request crosses a page boundary. 75 */ 76 struct mtd_oob_ops { 77 unsigned int mode; 78 size_t len; 79 size_t retlen; 80 size_t ooblen; 81 size_t oobretlen; 82 uint32_t ooboffs; 83 uint8_t *datbuf; 84 uint8_t *oobbuf; 85 }; 86 87 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 88 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 89 /** 90 * struct mtd_oob_region - oob region definition 91 * @offset: region offset 92 * @length: region length 93 * 94 * This structure describes a region of the OOB area, and is used 95 * to retrieve ECC or free bytes sections. 96 * Each section is defined by an offset within the OOB area and a 97 * length. 98 */ 99 struct mtd_oob_region { 100 u32 offset; 101 u32 length; 102 }; 103 104 /* 105 * struct mtd_ooblayout_ops - NAND OOB layout operations 106 * @ecc: function returning an ECC region in the OOB area. 107 * Should return -ERANGE if %section exceeds the total number of 108 * ECC sections. 109 * @free: function returning a free region in the OOB area. 110 * Should return -ERANGE if %section exceeds the total number of 111 * free sections. 112 */ 113 struct mtd_ooblayout_ops { 114 int (*ecc)(struct mtd_info *mtd, int section, 115 struct mtd_oob_region *oobecc); 116 int (*free)(struct mtd_info *mtd, int section, 117 struct mtd_oob_region *oobfree); 118 }; 119 120 /** 121 * struct mtd_pairing_info - page pairing information 122 * 123 * @pair: pair id 124 * @group: group id 125 * 126 * The term "pair" is used here, even though TLC NANDs might group pages by 3 127 * (3 bits in a single cell). A pair should regroup all pages that are sharing 128 * the same cell. Pairs are then indexed in ascending order. 129 * 130 * @group is defining the position of a page in a given pair. It can also be 131 * seen as the bit position in the cell: page attached to bit 0 belongs to 132 * group 0, page attached to bit 1 belongs to group 1, etc. 133 * 134 * Example: 135 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 136 * 137 * group-0 group-1 138 * 139 * pair-0 page-0 page-4 140 * pair-1 page-1 page-5 141 * pair-2 page-2 page-8 142 * ... 143 * pair-127 page-251 page-255 144 * 145 * 146 * Note that the "group" and "pair" terms were extracted from Samsung and 147 * Hynix datasheets, and might be referenced under other names in other 148 * datasheets (Micron is describing this concept as "shared pages"). 149 */ 150 struct mtd_pairing_info { 151 int pair; 152 int group; 153 }; 154 155 /** 156 * struct mtd_pairing_scheme - page pairing scheme description 157 * 158 * @ngroups: number of groups. Should be related to the number of bits 159 * per cell. 160 * @get_info: converts a write-unit (page number within an erase block) into 161 * mtd_pairing information (pair + group). This function should 162 * fill the info parameter based on the wunit index or return 163 * -EINVAL if the wunit parameter is invalid. 164 * @get_wunit: converts pairing information into a write-unit (page) number. 165 * This function should return the wunit index pointed by the 166 * pairing information described in the info argument. It should 167 * return -EINVAL, if there's no wunit corresponding to the 168 * passed pairing information. 169 * 170 * See mtd_pairing_info documentation for a detailed explanation of the 171 * pair and group concepts. 172 * 173 * The mtd_pairing_scheme structure provides a generic solution to represent 174 * NAND page pairing scheme. Instead of exposing two big tables to do the 175 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 176 * implement the ->get_info() and ->get_wunit() functions. 177 * 178 * MTD users will then be able to query these information by using the 179 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 180 * 181 * @ngroups is here to help MTD users iterating over all the pages in a 182 * given pair. This value can be retrieved by MTD users using the 183 * mtd_pairing_groups() helper. 184 * 185 * Examples are given in the mtd_pairing_info_to_wunit() and 186 * mtd_wunit_to_pairing_info() documentation. 187 */ 188 struct mtd_pairing_scheme { 189 int ngroups; 190 int (*get_info)(struct mtd_info *mtd, int wunit, 191 struct mtd_pairing_info *info); 192 int (*get_wunit)(struct mtd_info *mtd, 193 const struct mtd_pairing_info *info); 194 }; 195 196 struct module; /* only needed for owner field in mtd_info */ 197 198 /** 199 * struct mtd_debug_info - debugging information for an MTD device. 200 * 201 * @dfs_dir: direntry object of the MTD device debugfs directory 202 */ 203 struct mtd_debug_info { 204 struct dentry *dfs_dir; 205 }; 206 207 struct mtd_info { 208 u_char type; 209 uint32_t flags; 210 uint64_t size; // Total size of the MTD 211 212 /* "Major" erase size for the device. Naïve users may take this 213 * to be the only erase size available, or may use the more detailed 214 * information below if they desire 215 */ 216 uint32_t erasesize; 217 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 218 * though individual bits can be cleared), in case of NAND flash it is 219 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 220 * it is of ECC block size, etc. It is illegal to have writesize = 0. 221 * Any driver registering a struct mtd_info must ensure a writesize of 222 * 1 or larger. 223 */ 224 uint32_t writesize; 225 226 /* 227 * Size of the write buffer used by the MTD. MTD devices having a write 228 * buffer can write multiple writesize chunks at a time. E.g. while 229 * writing 4 * writesize bytes to a device with 2 * writesize bytes 230 * buffer the MTD driver can (but doesn't have to) do 2 writesize 231 * operations, but not 4. Currently, all NANDs have writebufsize 232 * equivalent to writesize (NAND page size). Some NOR flashes do have 233 * writebufsize greater than writesize. 234 */ 235 uint32_t writebufsize; 236 237 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 238 uint32_t oobavail; // Available OOB bytes per block 239 240 /* 241 * If erasesize is a power of 2 then the shift is stored in 242 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 243 */ 244 unsigned int erasesize_shift; 245 unsigned int writesize_shift; 246 /* Masks based on erasesize_shift and writesize_shift */ 247 unsigned int erasesize_mask; 248 unsigned int writesize_mask; 249 250 /* 251 * read ops return -EUCLEAN if max number of bitflips corrected on any 252 * one region comprising an ecc step equals or exceeds this value. 253 * Settable by driver, else defaults to ecc_strength. User can override 254 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 255 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 256 */ 257 unsigned int bitflip_threshold; 258 259 /* Kernel-only stuff starts here. */ 260 const char *name; 261 int index; 262 263 /* OOB layout description */ 264 const struct mtd_ooblayout_ops *ooblayout; 265 266 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 267 const struct mtd_pairing_scheme *pairing; 268 269 /* the ecc step size. */ 270 unsigned int ecc_step_size; 271 272 /* max number of correctible bit errors per ecc step */ 273 unsigned int ecc_strength; 274 275 /* Data for variable erase regions. If numeraseregions is zero, 276 * it means that the whole device has erasesize as given above. 277 */ 278 int numeraseregions; 279 struct mtd_erase_region_info *eraseregions; 280 281 /* 282 * Do not call via these pointers, use corresponding mtd_*() 283 * wrappers instead. 284 */ 285 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 286 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 287 size_t *retlen, void **virt, resource_size_t *phys); 288 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 289 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 290 size_t *retlen, u_char *buf); 291 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 292 size_t *retlen, const u_char *buf); 293 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 294 size_t *retlen, const u_char *buf); 295 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 296 struct mtd_oob_ops *ops); 297 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 298 struct mtd_oob_ops *ops); 299 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 300 size_t *retlen, struct otp_info *buf); 301 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 302 size_t len, size_t *retlen, u_char *buf); 303 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 304 size_t *retlen, struct otp_info *buf); 305 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 306 size_t len, size_t *retlen, u_char *buf); 307 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 308 size_t len, size_t *retlen, u_char *buf); 309 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 310 size_t len); 311 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 312 unsigned long count, loff_t to, size_t *retlen); 313 void (*_sync) (struct mtd_info *mtd); 314 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 315 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 316 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 317 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 318 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 319 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 320 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 321 int (*_suspend) (struct mtd_info *mtd); 322 void (*_resume) (struct mtd_info *mtd); 323 void (*_reboot) (struct mtd_info *mtd); 324 /* 325 * If the driver is something smart, like UBI, it may need to maintain 326 * its own reference counting. The below functions are only for driver. 327 */ 328 int (*_get_device) (struct mtd_info *mtd); 329 void (*_put_device) (struct mtd_info *mtd); 330 331 struct notifier_block reboot_notifier; /* default mode before reboot */ 332 333 /* ECC status information */ 334 struct mtd_ecc_stats ecc_stats; 335 /* Subpage shift (NAND) */ 336 int subpage_sft; 337 338 void *priv; 339 340 struct module *owner; 341 struct device dev; 342 int usecount; 343 struct mtd_debug_info dbg; 344 }; 345 346 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 347 struct mtd_oob_region *oobecc); 348 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 349 int *section, 350 struct mtd_oob_region *oobregion); 351 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 352 const u8 *oobbuf, int start, int nbytes); 353 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 354 u8 *oobbuf, int start, int nbytes); 355 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 356 struct mtd_oob_region *oobfree); 357 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 358 const u8 *oobbuf, int start, int nbytes); 359 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 360 u8 *oobbuf, int start, int nbytes); 361 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 362 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 363 364 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 365 const struct mtd_ooblayout_ops *ooblayout) 366 { 367 mtd->ooblayout = ooblayout; 368 } 369 370 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 371 const struct mtd_pairing_scheme *pairing) 372 { 373 mtd->pairing = pairing; 374 } 375 376 static inline void mtd_set_of_node(struct mtd_info *mtd, 377 struct device_node *np) 378 { 379 mtd->dev.of_node = np; 380 if (!mtd->name) 381 of_property_read_string(np, "label", &mtd->name); 382 } 383 384 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 385 { 386 return dev_of_node(&mtd->dev); 387 } 388 389 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 390 { 391 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 392 } 393 394 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 395 loff_t ofs, size_t len) 396 { 397 if (!mtd->_max_bad_blocks) 398 return -ENOTSUPP; 399 400 if (mtd->size < (len + ofs) || ofs < 0) 401 return -EINVAL; 402 403 return mtd->_max_bad_blocks(mtd, ofs, len); 404 } 405 406 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 407 struct mtd_pairing_info *info); 408 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 409 const struct mtd_pairing_info *info); 410 int mtd_pairing_groups(struct mtd_info *mtd); 411 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 412 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 413 void **virt, resource_size_t *phys); 414 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 415 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 416 unsigned long offset, unsigned long flags); 417 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 418 u_char *buf); 419 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 420 const u_char *buf); 421 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 422 const u_char *buf); 423 424 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 425 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 426 427 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 428 struct otp_info *buf); 429 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 430 size_t *retlen, u_char *buf); 431 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 432 struct otp_info *buf); 433 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 434 size_t *retlen, u_char *buf); 435 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 436 size_t *retlen, u_char *buf); 437 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 438 439 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 440 unsigned long count, loff_t to, size_t *retlen); 441 442 static inline void mtd_sync(struct mtd_info *mtd) 443 { 444 if (mtd->_sync) 445 mtd->_sync(mtd); 446 } 447 448 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 449 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 450 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 451 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 452 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 453 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 454 455 static inline int mtd_suspend(struct mtd_info *mtd) 456 { 457 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 458 } 459 460 static inline void mtd_resume(struct mtd_info *mtd) 461 { 462 if (mtd->_resume) 463 mtd->_resume(mtd); 464 } 465 466 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 467 { 468 if (mtd->erasesize_shift) 469 return sz >> mtd->erasesize_shift; 470 do_div(sz, mtd->erasesize); 471 return sz; 472 } 473 474 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 475 { 476 if (mtd->erasesize_shift) 477 return sz & mtd->erasesize_mask; 478 return do_div(sz, mtd->erasesize); 479 } 480 481 /** 482 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 483 * boundaries. 484 * @mtd: the MTD device this erase request applies on 485 * @req: the erase request to adjust 486 * 487 * This function will adjust @req->addr and @req->len to align them on 488 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 489 */ 490 static inline void mtd_align_erase_req(struct mtd_info *mtd, 491 struct erase_info *req) 492 { 493 u32 mod; 494 495 if (WARN_ON(!mtd->erasesize)) 496 return; 497 498 mod = mtd_mod_by_eb(req->addr, mtd); 499 if (mod) { 500 req->addr -= mod; 501 req->len += mod; 502 } 503 504 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 505 if (mod) 506 req->len += mtd->erasesize - mod; 507 } 508 509 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 510 { 511 if (mtd->writesize_shift) 512 return sz >> mtd->writesize_shift; 513 do_div(sz, mtd->writesize); 514 return sz; 515 } 516 517 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 518 { 519 if (mtd->writesize_shift) 520 return sz & mtd->writesize_mask; 521 return do_div(sz, mtd->writesize); 522 } 523 524 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 525 { 526 return mtd->erasesize / mtd->writesize; 527 } 528 529 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 530 { 531 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 532 } 533 534 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 535 int wunit) 536 { 537 return base + (wunit * mtd->writesize); 538 } 539 540 541 static inline int mtd_has_oob(const struct mtd_info *mtd) 542 { 543 return mtd->_read_oob && mtd->_write_oob; 544 } 545 546 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 547 { 548 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 549 } 550 551 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 552 { 553 return !!mtd->_block_isbad; 554 } 555 556 /* Kernel-side ioctl definitions */ 557 558 struct mtd_partition; 559 struct mtd_part_parser_data; 560 561 extern int mtd_device_parse_register(struct mtd_info *mtd, 562 const char * const *part_probe_types, 563 struct mtd_part_parser_data *parser_data, 564 const struct mtd_partition *defparts, 565 int defnr_parts); 566 #define mtd_device_register(master, parts, nr_parts) \ 567 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 568 extern int mtd_device_unregister(struct mtd_info *master); 569 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 570 extern int __get_mtd_device(struct mtd_info *mtd); 571 extern void __put_mtd_device(struct mtd_info *mtd); 572 extern struct mtd_info *get_mtd_device_nm(const char *name); 573 extern void put_mtd_device(struct mtd_info *mtd); 574 575 576 struct mtd_notifier { 577 void (*add)(struct mtd_info *mtd); 578 void (*remove)(struct mtd_info *mtd); 579 struct list_head list; 580 }; 581 582 583 extern void register_mtd_user (struct mtd_notifier *new); 584 extern int unregister_mtd_user (struct mtd_notifier *old); 585 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 586 587 static inline int mtd_is_bitflip(int err) { 588 return err == -EUCLEAN; 589 } 590 591 static inline int mtd_is_eccerr(int err) { 592 return err == -EBADMSG; 593 } 594 595 static inline int mtd_is_bitflip_or_eccerr(int err) { 596 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 597 } 598 599 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 600 601 #endif /* __MTD_MTD_H__ */ 602