xref: /openbmc/linux/include/linux/mtd/mtd.h (revision 615c36f5)
1 /*
2  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  *
18  */
19 
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22 
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27 
28 #include <mtd/mtd-abi.h>
29 
30 #include <asm/div64.h>
31 
32 #define MTD_CHAR_MAJOR 90
33 #define MTD_BLOCK_MAJOR 31
34 
35 #define MTD_ERASE_PENDING	0x01
36 #define MTD_ERASING		0x02
37 #define MTD_ERASE_SUSPEND	0x04
38 #define MTD_ERASE_DONE		0x08
39 #define MTD_ERASE_FAILED	0x10
40 
41 #define MTD_FAIL_ADDR_UNKNOWN -1LL
42 
43 /*
44  * If the erase fails, fail_addr might indicate exactly which block failed. If
45  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
46  * or was not specific to any particular block.
47  */
48 struct erase_info {
49 	struct mtd_info *mtd;
50 	uint64_t addr;
51 	uint64_t len;
52 	uint64_t fail_addr;
53 	u_long time;
54 	u_long retries;
55 	unsigned dev;
56 	unsigned cell;
57 	void (*callback) (struct erase_info *self);
58 	u_long priv;
59 	u_char state;
60 	struct erase_info *next;
61 };
62 
63 struct mtd_erase_region_info {
64 	uint64_t offset;		/* At which this region starts, from the beginning of the MTD */
65 	uint32_t erasesize;		/* For this region */
66 	uint32_t numblocks;		/* Number of blocks of erasesize in this region */
67 	unsigned long *lockmap;		/* If keeping bitmap of locks */
68 };
69 
70 /**
71  * struct mtd_oob_ops - oob operation operands
72  * @mode:	operation mode
73  *
74  * @len:	number of data bytes to write/read
75  *
76  * @retlen:	number of data bytes written/read
77  *
78  * @ooblen:	number of oob bytes to write/read
79  * @oobretlen:	number of oob bytes written/read
80  * @ooboffs:	offset of oob data in the oob area (only relevant when
81  *		mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
82  * @datbuf:	data buffer - if NULL only oob data are read/written
83  * @oobbuf:	oob data buffer
84  *
85  * Note, it is allowed to read more than one OOB area at one go, but not write.
86  * The interface assumes that the OOB write requests program only one page's
87  * OOB area.
88  */
89 struct mtd_oob_ops {
90 	unsigned int	mode;
91 	size_t		len;
92 	size_t		retlen;
93 	size_t		ooblen;
94 	size_t		oobretlen;
95 	uint32_t	ooboffs;
96 	uint8_t		*datbuf;
97 	uint8_t		*oobbuf;
98 };
99 
100 #define MTD_MAX_OOBFREE_ENTRIES_LARGE	32
101 #define MTD_MAX_ECCPOS_ENTRIES_LARGE	448
102 /*
103  * Internal ECC layout control structure. For historical reasons, there is a
104  * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
105  * for export to user-space via the ECCGETLAYOUT ioctl.
106  * nand_ecclayout should be expandable in the future simply by the above macros.
107  */
108 struct nand_ecclayout {
109 	__u32 eccbytes;
110 	__u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE];
111 	__u32 oobavail;
112 	struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE];
113 };
114 
115 struct module;	/* only needed for owner field in mtd_info */
116 
117 struct mtd_info {
118 	u_char type;
119 	uint32_t flags;
120 	uint64_t size;	 // Total size of the MTD
121 
122 	/* "Major" erase size for the device. Naïve users may take this
123 	 * to be the only erase size available, or may use the more detailed
124 	 * information below if they desire
125 	 */
126 	uint32_t erasesize;
127 	/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
128 	 * though individual bits can be cleared), in case of NAND flash it is
129 	 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
130 	 * it is of ECC block size, etc. It is illegal to have writesize = 0.
131 	 * Any driver registering a struct mtd_info must ensure a writesize of
132 	 * 1 or larger.
133 	 */
134 	uint32_t writesize;
135 
136 	/*
137 	 * Size of the write buffer used by the MTD. MTD devices having a write
138 	 * buffer can write multiple writesize chunks at a time. E.g. while
139 	 * writing 4 * writesize bytes to a device with 2 * writesize bytes
140 	 * buffer the MTD driver can (but doesn't have to) do 2 writesize
141 	 * operations, but not 4. Currently, all NANDs have writebufsize
142 	 * equivalent to writesize (NAND page size). Some NOR flashes do have
143 	 * writebufsize greater than writesize.
144 	 */
145 	uint32_t writebufsize;
146 
147 	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
148 	uint32_t oobavail;  // Available OOB bytes per block
149 
150 	/*
151 	 * If erasesize is a power of 2 then the shift is stored in
152 	 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
153 	 */
154 	unsigned int erasesize_shift;
155 	unsigned int writesize_shift;
156 	/* Masks based on erasesize_shift and writesize_shift */
157 	unsigned int erasesize_mask;
158 	unsigned int writesize_mask;
159 
160 	// Kernel-only stuff starts here.
161 	const char *name;
162 	int index;
163 
164 	/* ECC layout structure pointer - read only! */
165 	struct nand_ecclayout *ecclayout;
166 
167 	/* Data for variable erase regions. If numeraseregions is zero,
168 	 * it means that the whole device has erasesize as given above.
169 	 */
170 	int numeraseregions;
171 	struct mtd_erase_region_info *eraseregions;
172 
173 	/*
174 	 * Erase is an asynchronous operation.  Device drivers are supposed
175 	 * to call instr->callback() whenever the operation completes, even
176 	 * if it completes with a failure.
177 	 * Callers are supposed to pass a callback function and wait for it
178 	 * to be called before writing to the block.
179 	 */
180 	int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
181 
182 	/* This stuff for eXecute-In-Place */
183 	/* phys is optional and may be set to NULL */
184 	int (*point) (struct mtd_info *mtd, loff_t from, size_t len,
185 			size_t *retlen, void **virt, resource_size_t *phys);
186 
187 	/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
188 	void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
189 
190 	/* Allow NOMMU mmap() to directly map the device (if not NULL)
191 	 * - return the address to which the offset maps
192 	 * - return -ENOSYS to indicate refusal to do the mapping
193 	 */
194 	unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
195 					    unsigned long len,
196 					    unsigned long offset,
197 					    unsigned long flags);
198 
199 	/* Backing device capabilities for this device
200 	 * - provides mmap capabilities
201 	 */
202 	struct backing_dev_info *backing_dev_info;
203 
204 
205 	int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
206 	int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
207 
208 	/* In blackbox flight recorder like scenarios we want to make successful
209 	   writes in interrupt context. panic_write() is only intended to be
210 	   called when its known the kernel is about to panic and we need the
211 	   write to succeed. Since the kernel is not going to be running for much
212 	   longer, this function can break locks and delay to ensure the write
213 	   succeeds (but not sleep). */
214 
215 	int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
216 
217 	int (*read_oob) (struct mtd_info *mtd, loff_t from,
218 			 struct mtd_oob_ops *ops);
219 	int (*write_oob) (struct mtd_info *mtd, loff_t to,
220 			 struct mtd_oob_ops *ops);
221 
222 	/*
223 	 * Methods to access the protection register area, present in some
224 	 * flash devices. The user data is one time programmable but the
225 	 * factory data is read only.
226 	 */
227 	int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
228 	int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
229 	int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
230 	int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
231 	int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
232 	int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len);
233 
234 	/* kvec-based read/write methods.
235 	   NB: The 'count' parameter is the number of _vectors_, each of
236 	   which contains an (ofs, len) tuple.
237 	*/
238 	int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
239 
240 	/* Sync */
241 	void (*sync) (struct mtd_info *mtd);
242 
243 	/* Chip-supported device locking */
244 	int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
245 	int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
246 	int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
247 
248 	/* Power Management functions */
249 	int (*suspend) (struct mtd_info *mtd);
250 	void (*resume) (struct mtd_info *mtd);
251 
252 	/* Bad block management functions */
253 	int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
254 	int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
255 
256 	struct notifier_block reboot_notifier;  /* default mode before reboot */
257 
258 	/* ECC status information */
259 	struct mtd_ecc_stats ecc_stats;
260 	/* Subpage shift (NAND) */
261 	int subpage_sft;
262 
263 	void *priv;
264 
265 	struct module *owner;
266 	struct device dev;
267 	int usecount;
268 
269 	/* If the driver is something smart, like UBI, it may need to maintain
270 	 * its own reference counting. The below functions are only for driver.
271 	 * The driver may register its callbacks. These callbacks are not
272 	 * supposed to be called by MTD users */
273 	int (*get_device) (struct mtd_info *mtd);
274 	void (*put_device) (struct mtd_info *mtd);
275 };
276 
277 static inline struct mtd_info *dev_to_mtd(struct device *dev)
278 {
279 	return dev ? dev_get_drvdata(dev) : NULL;
280 }
281 
282 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
283 {
284 	if (mtd->erasesize_shift)
285 		return sz >> mtd->erasesize_shift;
286 	do_div(sz, mtd->erasesize);
287 	return sz;
288 }
289 
290 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
291 {
292 	if (mtd->erasesize_shift)
293 		return sz & mtd->erasesize_mask;
294 	return do_div(sz, mtd->erasesize);
295 }
296 
297 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
298 {
299 	if (mtd->writesize_shift)
300 		return sz >> mtd->writesize_shift;
301 	do_div(sz, mtd->writesize);
302 	return sz;
303 }
304 
305 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
306 {
307 	if (mtd->writesize_shift)
308 		return sz & mtd->writesize_mask;
309 	return do_div(sz, mtd->writesize);
310 }
311 
312 	/* Kernel-side ioctl definitions */
313 
314 struct mtd_partition;
315 struct mtd_part_parser_data;
316 
317 extern int mtd_device_parse_register(struct mtd_info *mtd,
318 			      const char **part_probe_types,
319 			      struct mtd_part_parser_data *parser_data,
320 			      const struct mtd_partition *defparts,
321 			      int defnr_parts);
322 #define mtd_device_register(master, parts, nr_parts)	\
323 	mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
324 extern int mtd_device_unregister(struct mtd_info *master);
325 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
326 extern int __get_mtd_device(struct mtd_info *mtd);
327 extern void __put_mtd_device(struct mtd_info *mtd);
328 extern struct mtd_info *get_mtd_device_nm(const char *name);
329 extern void put_mtd_device(struct mtd_info *mtd);
330 
331 
332 struct mtd_notifier {
333 	void (*add)(struct mtd_info *mtd);
334 	void (*remove)(struct mtd_info *mtd);
335 	struct list_head list;
336 };
337 
338 
339 extern void register_mtd_user (struct mtd_notifier *new);
340 extern int unregister_mtd_user (struct mtd_notifier *old);
341 
342 int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
343 		       unsigned long count, loff_t to, size_t *retlen);
344 
345 int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
346 		      unsigned long count, loff_t from, size_t *retlen);
347 
348 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
349 
350 void mtd_erase_callback(struct erase_info *instr);
351 
352 static inline int mtd_is_bitflip(int err) {
353 	return err == -EUCLEAN;
354 }
355 
356 static inline int mtd_is_eccerr(int err) {
357 	return err == -EBADMSG;
358 }
359 
360 static inline int mtd_is_bitflip_or_eccerr(int err) {
361 	return mtd_is_bitflip(err) || mtd_is_eccerr(err);
362 }
363 
364 #endif /* __MTD_MTD_H__ */
365