xref: /openbmc/linux/include/linux/mtd/mtd.h (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  *
18  */
19 
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22 
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27 #include <linux/of.h>
28 
29 #include <mtd/mtd-abi.h>
30 
31 #include <asm/div64.h>
32 
33 #define MTD_ERASE_PENDING	0x01
34 #define MTD_ERASING		0x02
35 #define MTD_ERASE_SUSPEND	0x04
36 #define MTD_ERASE_DONE		0x08
37 #define MTD_ERASE_FAILED	0x10
38 
39 #define MTD_FAIL_ADDR_UNKNOWN -1LL
40 
41 /*
42  * If the erase fails, fail_addr might indicate exactly which block failed. If
43  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
44  * or was not specific to any particular block.
45  */
46 struct erase_info {
47 	struct mtd_info *mtd;
48 	uint64_t addr;
49 	uint64_t len;
50 	uint64_t fail_addr;
51 	u_long time;
52 	u_long retries;
53 	unsigned dev;
54 	unsigned cell;
55 	void (*callback) (struct erase_info *self);
56 	u_long priv;
57 	u_char state;
58 	struct erase_info *next;
59 };
60 
61 struct mtd_erase_region_info {
62 	uint64_t offset;		/* At which this region starts, from the beginning of the MTD */
63 	uint32_t erasesize;		/* For this region */
64 	uint32_t numblocks;		/* Number of blocks of erasesize in this region */
65 	unsigned long *lockmap;		/* If keeping bitmap of locks */
66 };
67 
68 /**
69  * struct mtd_oob_ops - oob operation operands
70  * @mode:	operation mode
71  *
72  * @len:	number of data bytes to write/read
73  *
74  * @retlen:	number of data bytes written/read
75  *
76  * @ooblen:	number of oob bytes to write/read
77  * @oobretlen:	number of oob bytes written/read
78  * @ooboffs:	offset of oob data in the oob area (only relevant when
79  *		mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
80  * @datbuf:	data buffer - if NULL only oob data are read/written
81  * @oobbuf:	oob data buffer
82  *
83  * Note, it is allowed to read more than one OOB area at one go, but not write.
84  * The interface assumes that the OOB write requests program only one page's
85  * OOB area.
86  */
87 struct mtd_oob_ops {
88 	unsigned int	mode;
89 	size_t		len;
90 	size_t		retlen;
91 	size_t		ooblen;
92 	size_t		oobretlen;
93 	uint32_t	ooboffs;
94 	uint8_t		*datbuf;
95 	uint8_t		*oobbuf;
96 };
97 
98 #define MTD_MAX_OOBFREE_ENTRIES_LARGE	32
99 #define MTD_MAX_ECCPOS_ENTRIES_LARGE	640
100 /**
101  * struct mtd_oob_region - oob region definition
102  * @offset: region offset
103  * @length: region length
104  *
105  * This structure describes a region of the OOB area, and is used
106  * to retrieve ECC or free bytes sections.
107  * Each section is defined by an offset within the OOB area and a
108  * length.
109  */
110 struct mtd_oob_region {
111 	u32 offset;
112 	u32 length;
113 };
114 
115 /*
116  * struct mtd_ooblayout_ops - NAND OOB layout operations
117  * @ecc: function returning an ECC region in the OOB area.
118  *	 Should return -ERANGE if %section exceeds the total number of
119  *	 ECC sections.
120  * @free: function returning a free region in the OOB area.
121  *	  Should return -ERANGE if %section exceeds the total number of
122  *	  free sections.
123  */
124 struct mtd_ooblayout_ops {
125 	int (*ecc)(struct mtd_info *mtd, int section,
126 		   struct mtd_oob_region *oobecc);
127 	int (*free)(struct mtd_info *mtd, int section,
128 		    struct mtd_oob_region *oobfree);
129 };
130 
131 /**
132  * struct mtd_pairing_info - page pairing information
133  *
134  * @pair: pair id
135  * @group: group id
136  *
137  * The term "pair" is used here, even though TLC NANDs might group pages by 3
138  * (3 bits in a single cell). A pair should regroup all pages that are sharing
139  * the same cell. Pairs are then indexed in ascending order.
140  *
141  * @group is defining the position of a page in a given pair. It can also be
142  * seen as the bit position in the cell: page attached to bit 0 belongs to
143  * group 0, page attached to bit 1 belongs to group 1, etc.
144  *
145  * Example:
146  * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
147  *
148  *		group-0		group-1
149  *
150  *  pair-0	page-0		page-4
151  *  pair-1	page-1		page-5
152  *  pair-2	page-2		page-8
153  *  ...
154  *  pair-127	page-251	page-255
155  *
156  *
157  * Note that the "group" and "pair" terms were extracted from Samsung and
158  * Hynix datasheets, and might be referenced under other names in other
159  * datasheets (Micron is describing this concept as "shared pages").
160  */
161 struct mtd_pairing_info {
162 	int pair;
163 	int group;
164 };
165 
166 /**
167  * struct mtd_pairing_scheme - page pairing scheme description
168  *
169  * @ngroups: number of groups. Should be related to the number of bits
170  *	     per cell.
171  * @get_info: converts a write-unit (page number within an erase block) into
172  *	      mtd_pairing information (pair + group). This function should
173  *	      fill the info parameter based on the wunit index or return
174  *	      -EINVAL if the wunit parameter is invalid.
175  * @get_wunit: converts pairing information into a write-unit (page) number.
176  *	       This function should return the wunit index pointed by the
177  *	       pairing information described in the info argument. It should
178  *	       return -EINVAL, if there's no wunit corresponding to the
179  *	       passed pairing information.
180  *
181  * See mtd_pairing_info documentation for a detailed explanation of the
182  * pair and group concepts.
183  *
184  * The mtd_pairing_scheme structure provides a generic solution to represent
185  * NAND page pairing scheme. Instead of exposing two big tables to do the
186  * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
187  * implement the ->get_info() and ->get_wunit() functions.
188  *
189  * MTD users will then be able to query these information by using the
190  * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
191  *
192  * @ngroups is here to help MTD users iterating over all the pages in a
193  * given pair. This value can be retrieved by MTD users using the
194  * mtd_pairing_groups() helper.
195  *
196  * Examples are given in the mtd_pairing_info_to_wunit() and
197  * mtd_wunit_to_pairing_info() documentation.
198  */
199 struct mtd_pairing_scheme {
200 	int ngroups;
201 	int (*get_info)(struct mtd_info *mtd, int wunit,
202 			struct mtd_pairing_info *info);
203 	int (*get_wunit)(struct mtd_info *mtd,
204 			 const struct mtd_pairing_info *info);
205 };
206 
207 struct module;	/* only needed for owner field in mtd_info */
208 
209 struct mtd_info {
210 	u_char type;
211 	uint32_t flags;
212 	uint64_t size;	 // Total size of the MTD
213 
214 	/* "Major" erase size for the device. Naïve users may take this
215 	 * to be the only erase size available, or may use the more detailed
216 	 * information below if they desire
217 	 */
218 	uint32_t erasesize;
219 	/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
220 	 * though individual bits can be cleared), in case of NAND flash it is
221 	 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
222 	 * it is of ECC block size, etc. It is illegal to have writesize = 0.
223 	 * Any driver registering a struct mtd_info must ensure a writesize of
224 	 * 1 or larger.
225 	 */
226 	uint32_t writesize;
227 
228 	/*
229 	 * Size of the write buffer used by the MTD. MTD devices having a write
230 	 * buffer can write multiple writesize chunks at a time. E.g. while
231 	 * writing 4 * writesize bytes to a device with 2 * writesize bytes
232 	 * buffer the MTD driver can (but doesn't have to) do 2 writesize
233 	 * operations, but not 4. Currently, all NANDs have writebufsize
234 	 * equivalent to writesize (NAND page size). Some NOR flashes do have
235 	 * writebufsize greater than writesize.
236 	 */
237 	uint32_t writebufsize;
238 
239 	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
240 	uint32_t oobavail;  // Available OOB bytes per block
241 
242 	/*
243 	 * If erasesize is a power of 2 then the shift is stored in
244 	 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
245 	 */
246 	unsigned int erasesize_shift;
247 	unsigned int writesize_shift;
248 	/* Masks based on erasesize_shift and writesize_shift */
249 	unsigned int erasesize_mask;
250 	unsigned int writesize_mask;
251 
252 	/*
253 	 * read ops return -EUCLEAN if max number of bitflips corrected on any
254 	 * one region comprising an ecc step equals or exceeds this value.
255 	 * Settable by driver, else defaults to ecc_strength.  User can override
256 	 * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
257 	 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
258 	 */
259 	unsigned int bitflip_threshold;
260 
261 	// Kernel-only stuff starts here.
262 	const char *name;
263 	int index;
264 
265 	/* OOB layout description */
266 	const struct mtd_ooblayout_ops *ooblayout;
267 
268 	/* NAND pairing scheme, only provided for MLC/TLC NANDs */
269 	const struct mtd_pairing_scheme *pairing;
270 
271 	/* the ecc step size. */
272 	unsigned int ecc_step_size;
273 
274 	/* max number of correctible bit errors per ecc step */
275 	unsigned int ecc_strength;
276 
277 	/* Data for variable erase regions. If numeraseregions is zero,
278 	 * it means that the whole device has erasesize as given above.
279 	 */
280 	int numeraseregions;
281 	struct mtd_erase_region_info *eraseregions;
282 
283 	/*
284 	 * Do not call via these pointers, use corresponding mtd_*()
285 	 * wrappers instead.
286 	 */
287 	int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
288 	int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
289 		       size_t *retlen, void **virt, resource_size_t *phys);
290 	int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
291 	unsigned long (*_get_unmapped_area) (struct mtd_info *mtd,
292 					     unsigned long len,
293 					     unsigned long offset,
294 					     unsigned long flags);
295 	int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
296 		      size_t *retlen, u_char *buf);
297 	int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
298 		       size_t *retlen, const u_char *buf);
299 	int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
300 			     size_t *retlen, const u_char *buf);
301 	int (*_read_oob) (struct mtd_info *mtd, loff_t from,
302 			  struct mtd_oob_ops *ops);
303 	int (*_write_oob) (struct mtd_info *mtd, loff_t to,
304 			   struct mtd_oob_ops *ops);
305 	int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
306 				    size_t *retlen, struct otp_info *buf);
307 	int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
308 				    size_t len, size_t *retlen, u_char *buf);
309 	int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
310 				    size_t *retlen, struct otp_info *buf);
311 	int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
312 				    size_t len, size_t *retlen, u_char *buf);
313 	int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
314 				     size_t len, size_t *retlen, u_char *buf);
315 	int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
316 				    size_t len);
317 	int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
318 			unsigned long count, loff_t to, size_t *retlen);
319 	void (*_sync) (struct mtd_info *mtd);
320 	int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
321 	int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
322 	int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
323 	int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
324 	int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
325 	int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
326 	int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
327 	int (*_suspend) (struct mtd_info *mtd);
328 	void (*_resume) (struct mtd_info *mtd);
329 	void (*_reboot) (struct mtd_info *mtd);
330 	/*
331 	 * If the driver is something smart, like UBI, it may need to maintain
332 	 * its own reference counting. The below functions are only for driver.
333 	 */
334 	int (*_get_device) (struct mtd_info *mtd);
335 	void (*_put_device) (struct mtd_info *mtd);
336 
337 	/* Backing device capabilities for this device
338 	 * - provides mmap capabilities
339 	 */
340 	struct backing_dev_info *backing_dev_info;
341 
342 	struct notifier_block reboot_notifier;  /* default mode before reboot */
343 
344 	/* ECC status information */
345 	struct mtd_ecc_stats ecc_stats;
346 	/* Subpage shift (NAND) */
347 	int subpage_sft;
348 
349 	void *priv;
350 
351 	struct module *owner;
352 	struct device dev;
353 	int usecount;
354 };
355 
356 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
357 		      struct mtd_oob_region *oobecc);
358 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
359 				 int *section,
360 				 struct mtd_oob_region *oobregion);
361 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
362 			       const u8 *oobbuf, int start, int nbytes);
363 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
364 			       u8 *oobbuf, int start, int nbytes);
365 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
366 		       struct mtd_oob_region *oobfree);
367 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
368 				const u8 *oobbuf, int start, int nbytes);
369 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
370 				u8 *oobbuf, int start, int nbytes);
371 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
372 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
373 
374 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
375 				     const struct mtd_ooblayout_ops *ooblayout)
376 {
377 	mtd->ooblayout = ooblayout;
378 }
379 
380 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
381 				const struct mtd_pairing_scheme *pairing)
382 {
383 	mtd->pairing = pairing;
384 }
385 
386 static inline void mtd_set_of_node(struct mtd_info *mtd,
387 				   struct device_node *np)
388 {
389 	mtd->dev.of_node = np;
390 	if (!mtd->name)
391 		of_property_read_string(np, "label", &mtd->name);
392 }
393 
394 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
395 {
396 	return mtd->dev.of_node;
397 }
398 
399 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
400 {
401 	return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
402 }
403 
404 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
405 				     loff_t ofs, size_t len)
406 {
407 	if (!mtd->_max_bad_blocks)
408 		return -ENOTSUPP;
409 
410 	if (mtd->size < (len + ofs) || ofs < 0)
411 		return -EINVAL;
412 
413 	return mtd->_max_bad_blocks(mtd, ofs, len);
414 }
415 
416 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
417 			      struct mtd_pairing_info *info);
418 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
419 			      const struct mtd_pairing_info *info);
420 int mtd_pairing_groups(struct mtd_info *mtd);
421 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
422 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
423 	      void **virt, resource_size_t *phys);
424 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
425 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
426 				    unsigned long offset, unsigned long flags);
427 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
428 	     u_char *buf);
429 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
430 	      const u_char *buf);
431 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
432 		    const u_char *buf);
433 
434 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
435 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
436 
437 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
438 			   struct otp_info *buf);
439 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
440 			   size_t *retlen, u_char *buf);
441 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
442 			   struct otp_info *buf);
443 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
444 			   size_t *retlen, u_char *buf);
445 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
446 			    size_t *retlen, u_char *buf);
447 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
448 
449 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
450 	       unsigned long count, loff_t to, size_t *retlen);
451 
452 static inline void mtd_sync(struct mtd_info *mtd)
453 {
454 	if (mtd->_sync)
455 		mtd->_sync(mtd);
456 }
457 
458 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
459 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
460 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
461 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
462 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
463 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
464 
465 static inline int mtd_suspend(struct mtd_info *mtd)
466 {
467 	return mtd->_suspend ? mtd->_suspend(mtd) : 0;
468 }
469 
470 static inline void mtd_resume(struct mtd_info *mtd)
471 {
472 	if (mtd->_resume)
473 		mtd->_resume(mtd);
474 }
475 
476 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
477 {
478 	if (mtd->erasesize_shift)
479 		return sz >> mtd->erasesize_shift;
480 	do_div(sz, mtd->erasesize);
481 	return sz;
482 }
483 
484 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
485 {
486 	if (mtd->erasesize_shift)
487 		return sz & mtd->erasesize_mask;
488 	return do_div(sz, mtd->erasesize);
489 }
490 
491 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
492 {
493 	if (mtd->writesize_shift)
494 		return sz >> mtd->writesize_shift;
495 	do_div(sz, mtd->writesize);
496 	return sz;
497 }
498 
499 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
500 {
501 	if (mtd->writesize_shift)
502 		return sz & mtd->writesize_mask;
503 	return do_div(sz, mtd->writesize);
504 }
505 
506 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
507 {
508 	return mtd->erasesize / mtd->writesize;
509 }
510 
511 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
512 {
513 	return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
514 }
515 
516 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
517 					 int wunit)
518 {
519 	return base + (wunit * mtd->writesize);
520 }
521 
522 
523 static inline int mtd_has_oob(const struct mtd_info *mtd)
524 {
525 	return mtd->_read_oob && mtd->_write_oob;
526 }
527 
528 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
529 {
530 	return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
531 }
532 
533 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
534 {
535 	return !!mtd->_block_isbad;
536 }
537 
538 	/* Kernel-side ioctl definitions */
539 
540 struct mtd_partition;
541 struct mtd_part_parser_data;
542 
543 extern int mtd_device_parse_register(struct mtd_info *mtd,
544 				     const char * const *part_probe_types,
545 				     struct mtd_part_parser_data *parser_data,
546 				     const struct mtd_partition *defparts,
547 				     int defnr_parts);
548 #define mtd_device_register(master, parts, nr_parts)	\
549 	mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
550 extern int mtd_device_unregister(struct mtd_info *master);
551 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
552 extern int __get_mtd_device(struct mtd_info *mtd);
553 extern void __put_mtd_device(struct mtd_info *mtd);
554 extern struct mtd_info *get_mtd_device_nm(const char *name);
555 extern void put_mtd_device(struct mtd_info *mtd);
556 
557 
558 struct mtd_notifier {
559 	void (*add)(struct mtd_info *mtd);
560 	void (*remove)(struct mtd_info *mtd);
561 	struct list_head list;
562 };
563 
564 
565 extern void register_mtd_user (struct mtd_notifier *new);
566 extern int unregister_mtd_user (struct mtd_notifier *old);
567 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
568 
569 void mtd_erase_callback(struct erase_info *instr);
570 
571 static inline int mtd_is_bitflip(int err) {
572 	return err == -EUCLEAN;
573 }
574 
575 static inline int mtd_is_eccerr(int err) {
576 	return err == -EBADMSG;
577 }
578 
579 static inline int mtd_is_bitflip_or_eccerr(int err) {
580 	return mtd_is_bitflip(err) || mtd_is_eccerr(err);
581 }
582 
583 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
584 
585 #endif /* __MTD_MTD_H__ */
586