1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6 #ifndef __MTD_MTD_H__ 7 #define __MTD_MTD_H__ 8 9 #include <linux/types.h> 10 #include <linux/uio.h> 11 #include <linux/notifier.h> 12 #include <linux/device.h> 13 #include <linux/of.h> 14 #include <linux/nvmem-provider.h> 15 16 #include <mtd/mtd-abi.h> 17 18 #include <asm/div64.h> 19 20 #define MTD_FAIL_ADDR_UNKNOWN -1LL 21 22 struct mtd_info; 23 24 /* 25 * If the erase fails, fail_addr might indicate exactly which block failed. If 26 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 27 * or was not specific to any particular block. 28 */ 29 struct erase_info { 30 uint64_t addr; 31 uint64_t len; 32 uint64_t fail_addr; 33 }; 34 35 struct mtd_erase_region_info { 36 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 37 uint32_t erasesize; /* For this region */ 38 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 39 unsigned long *lockmap; /* If keeping bitmap of locks */ 40 }; 41 42 /** 43 * struct mtd_oob_ops - oob operation operands 44 * @mode: operation mode 45 * 46 * @len: number of data bytes to write/read 47 * 48 * @retlen: number of data bytes written/read 49 * 50 * @ooblen: number of oob bytes to write/read 51 * @oobretlen: number of oob bytes written/read 52 * @ooboffs: offset of oob data in the oob area (only relevant when 53 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 54 * @datbuf: data buffer - if NULL only oob data are read/written 55 * @oobbuf: oob data buffer 56 * 57 * Note, some MTD drivers do not allow you to write more than one OOB area at 58 * one go. If you try to do that on such an MTD device, -EINVAL will be 59 * returned. If you want to make your implementation portable on all kind of MTD 60 * devices you should split the write request into several sub-requests when the 61 * request crosses a page boundary. 62 */ 63 struct mtd_oob_ops { 64 unsigned int mode; 65 size_t len; 66 size_t retlen; 67 size_t ooblen; 68 size_t oobretlen; 69 uint32_t ooboffs; 70 uint8_t *datbuf; 71 uint8_t *oobbuf; 72 }; 73 74 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 75 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 76 /** 77 * struct mtd_oob_region - oob region definition 78 * @offset: region offset 79 * @length: region length 80 * 81 * This structure describes a region of the OOB area, and is used 82 * to retrieve ECC or free bytes sections. 83 * Each section is defined by an offset within the OOB area and a 84 * length. 85 */ 86 struct mtd_oob_region { 87 u32 offset; 88 u32 length; 89 }; 90 91 /* 92 * struct mtd_ooblayout_ops - NAND OOB layout operations 93 * @ecc: function returning an ECC region in the OOB area. 94 * Should return -ERANGE if %section exceeds the total number of 95 * ECC sections. 96 * @free: function returning a free region in the OOB area. 97 * Should return -ERANGE if %section exceeds the total number of 98 * free sections. 99 */ 100 struct mtd_ooblayout_ops { 101 int (*ecc)(struct mtd_info *mtd, int section, 102 struct mtd_oob_region *oobecc); 103 int (*free)(struct mtd_info *mtd, int section, 104 struct mtd_oob_region *oobfree); 105 }; 106 107 /** 108 * struct mtd_pairing_info - page pairing information 109 * 110 * @pair: pair id 111 * @group: group id 112 * 113 * The term "pair" is used here, even though TLC NANDs might group pages by 3 114 * (3 bits in a single cell). A pair should regroup all pages that are sharing 115 * the same cell. Pairs are then indexed in ascending order. 116 * 117 * @group is defining the position of a page in a given pair. It can also be 118 * seen as the bit position in the cell: page attached to bit 0 belongs to 119 * group 0, page attached to bit 1 belongs to group 1, etc. 120 * 121 * Example: 122 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 123 * 124 * group-0 group-1 125 * 126 * pair-0 page-0 page-4 127 * pair-1 page-1 page-5 128 * pair-2 page-2 page-8 129 * ... 130 * pair-127 page-251 page-255 131 * 132 * 133 * Note that the "group" and "pair" terms were extracted from Samsung and 134 * Hynix datasheets, and might be referenced under other names in other 135 * datasheets (Micron is describing this concept as "shared pages"). 136 */ 137 struct mtd_pairing_info { 138 int pair; 139 int group; 140 }; 141 142 /** 143 * struct mtd_pairing_scheme - page pairing scheme description 144 * 145 * @ngroups: number of groups. Should be related to the number of bits 146 * per cell. 147 * @get_info: converts a write-unit (page number within an erase block) into 148 * mtd_pairing information (pair + group). This function should 149 * fill the info parameter based on the wunit index or return 150 * -EINVAL if the wunit parameter is invalid. 151 * @get_wunit: converts pairing information into a write-unit (page) number. 152 * This function should return the wunit index pointed by the 153 * pairing information described in the info argument. It should 154 * return -EINVAL, if there's no wunit corresponding to the 155 * passed pairing information. 156 * 157 * See mtd_pairing_info documentation for a detailed explanation of the 158 * pair and group concepts. 159 * 160 * The mtd_pairing_scheme structure provides a generic solution to represent 161 * NAND page pairing scheme. Instead of exposing two big tables to do the 162 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 163 * implement the ->get_info() and ->get_wunit() functions. 164 * 165 * MTD users will then be able to query these information by using the 166 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 167 * 168 * @ngroups is here to help MTD users iterating over all the pages in a 169 * given pair. This value can be retrieved by MTD users using the 170 * mtd_pairing_groups() helper. 171 * 172 * Examples are given in the mtd_pairing_info_to_wunit() and 173 * mtd_wunit_to_pairing_info() documentation. 174 */ 175 struct mtd_pairing_scheme { 176 int ngroups; 177 int (*get_info)(struct mtd_info *mtd, int wunit, 178 struct mtd_pairing_info *info); 179 int (*get_wunit)(struct mtd_info *mtd, 180 const struct mtd_pairing_info *info); 181 }; 182 183 struct module; /* only needed for owner field in mtd_info */ 184 185 /** 186 * struct mtd_debug_info - debugging information for an MTD device. 187 * 188 * @dfs_dir: direntry object of the MTD device debugfs directory 189 */ 190 struct mtd_debug_info { 191 struct dentry *dfs_dir; 192 193 const char *partname; 194 const char *partid; 195 }; 196 197 struct mtd_info { 198 u_char type; 199 uint32_t flags; 200 uint32_t orig_flags; /* Flags as before running mtd checks */ 201 uint64_t size; // Total size of the MTD 202 203 /* "Major" erase size for the device. Naïve users may take this 204 * to be the only erase size available, or may use the more detailed 205 * information below if they desire 206 */ 207 uint32_t erasesize; 208 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 209 * though individual bits can be cleared), in case of NAND flash it is 210 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 211 * it is of ECC block size, etc. It is illegal to have writesize = 0. 212 * Any driver registering a struct mtd_info must ensure a writesize of 213 * 1 or larger. 214 */ 215 uint32_t writesize; 216 217 /* 218 * Size of the write buffer used by the MTD. MTD devices having a write 219 * buffer can write multiple writesize chunks at a time. E.g. while 220 * writing 4 * writesize bytes to a device with 2 * writesize bytes 221 * buffer the MTD driver can (but doesn't have to) do 2 writesize 222 * operations, but not 4. Currently, all NANDs have writebufsize 223 * equivalent to writesize (NAND page size). Some NOR flashes do have 224 * writebufsize greater than writesize. 225 */ 226 uint32_t writebufsize; 227 228 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 229 uint32_t oobavail; // Available OOB bytes per block 230 231 /* 232 * If erasesize is a power of 2 then the shift is stored in 233 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 234 */ 235 unsigned int erasesize_shift; 236 unsigned int writesize_shift; 237 /* Masks based on erasesize_shift and writesize_shift */ 238 unsigned int erasesize_mask; 239 unsigned int writesize_mask; 240 241 /* 242 * read ops return -EUCLEAN if max number of bitflips corrected on any 243 * one region comprising an ecc step equals or exceeds this value. 244 * Settable by driver, else defaults to ecc_strength. User can override 245 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 246 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 247 */ 248 unsigned int bitflip_threshold; 249 250 /* Kernel-only stuff starts here. */ 251 const char *name; 252 int index; 253 254 /* OOB layout description */ 255 const struct mtd_ooblayout_ops *ooblayout; 256 257 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 258 const struct mtd_pairing_scheme *pairing; 259 260 /* the ecc step size. */ 261 unsigned int ecc_step_size; 262 263 /* max number of correctible bit errors per ecc step */ 264 unsigned int ecc_strength; 265 266 /* Data for variable erase regions. If numeraseregions is zero, 267 * it means that the whole device has erasesize as given above. 268 */ 269 int numeraseregions; 270 struct mtd_erase_region_info *eraseregions; 271 272 /* 273 * Do not call via these pointers, use corresponding mtd_*() 274 * wrappers instead. 275 */ 276 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 277 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 278 size_t *retlen, void **virt, resource_size_t *phys); 279 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 280 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 281 size_t *retlen, u_char *buf); 282 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 283 size_t *retlen, const u_char *buf); 284 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 285 size_t *retlen, const u_char *buf); 286 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 287 struct mtd_oob_ops *ops); 288 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 289 struct mtd_oob_ops *ops); 290 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 291 size_t *retlen, struct otp_info *buf); 292 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 293 size_t len, size_t *retlen, u_char *buf); 294 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 295 size_t *retlen, struct otp_info *buf); 296 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 297 size_t len, size_t *retlen, u_char *buf); 298 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 299 size_t len, size_t *retlen, u_char *buf); 300 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 301 size_t len); 302 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 303 unsigned long count, loff_t to, size_t *retlen); 304 void (*_sync) (struct mtd_info *mtd); 305 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 306 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 307 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 308 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 309 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 310 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 311 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 312 int (*_suspend) (struct mtd_info *mtd); 313 void (*_resume) (struct mtd_info *mtd); 314 void (*_reboot) (struct mtd_info *mtd); 315 /* 316 * If the driver is something smart, like UBI, it may need to maintain 317 * its own reference counting. The below functions are only for driver. 318 */ 319 int (*_get_device) (struct mtd_info *mtd); 320 void (*_put_device) (struct mtd_info *mtd); 321 322 /* 323 * flag indicates a panic write, low level drivers can take appropriate 324 * action if required to ensure writes go through 325 */ 326 bool oops_panic_write; 327 328 struct notifier_block reboot_notifier; /* default mode before reboot */ 329 330 /* ECC status information */ 331 struct mtd_ecc_stats ecc_stats; 332 /* Subpage shift (NAND) */ 333 int subpage_sft; 334 335 void *priv; 336 337 struct module *owner; 338 struct device dev; 339 int usecount; 340 struct mtd_debug_info dbg; 341 struct nvmem_device *nvmem; 342 }; 343 344 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 345 struct mtd_oob_region *oobecc); 346 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 347 int *section, 348 struct mtd_oob_region *oobregion); 349 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 350 const u8 *oobbuf, int start, int nbytes); 351 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 352 u8 *oobbuf, int start, int nbytes); 353 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 354 struct mtd_oob_region *oobfree); 355 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 356 const u8 *oobbuf, int start, int nbytes); 357 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 358 u8 *oobbuf, int start, int nbytes); 359 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 360 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 361 362 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 363 const struct mtd_ooblayout_ops *ooblayout) 364 { 365 mtd->ooblayout = ooblayout; 366 } 367 368 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 369 const struct mtd_pairing_scheme *pairing) 370 { 371 mtd->pairing = pairing; 372 } 373 374 static inline void mtd_set_of_node(struct mtd_info *mtd, 375 struct device_node *np) 376 { 377 mtd->dev.of_node = np; 378 if (!mtd->name) 379 of_property_read_string(np, "label", &mtd->name); 380 } 381 382 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 383 { 384 return dev_of_node(&mtd->dev); 385 } 386 387 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 388 { 389 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 390 } 391 392 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 393 loff_t ofs, size_t len) 394 { 395 if (!mtd->_max_bad_blocks) 396 return -ENOTSUPP; 397 398 if (mtd->size < (len + ofs) || ofs < 0) 399 return -EINVAL; 400 401 return mtd->_max_bad_blocks(mtd, ofs, len); 402 } 403 404 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 405 struct mtd_pairing_info *info); 406 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 407 const struct mtd_pairing_info *info); 408 int mtd_pairing_groups(struct mtd_info *mtd); 409 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 410 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 411 void **virt, resource_size_t *phys); 412 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 413 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 414 unsigned long offset, unsigned long flags); 415 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 416 u_char *buf); 417 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 418 const u_char *buf); 419 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 420 const u_char *buf); 421 422 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 423 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 424 425 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 426 struct otp_info *buf); 427 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 428 size_t *retlen, u_char *buf); 429 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 430 struct otp_info *buf); 431 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 432 size_t *retlen, u_char *buf); 433 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 434 size_t *retlen, u_char *buf); 435 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 436 437 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 438 unsigned long count, loff_t to, size_t *retlen); 439 440 static inline void mtd_sync(struct mtd_info *mtd) 441 { 442 if (mtd->_sync) 443 mtd->_sync(mtd); 444 } 445 446 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 447 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 448 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 449 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 450 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 451 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 452 453 static inline int mtd_suspend(struct mtd_info *mtd) 454 { 455 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 456 } 457 458 static inline void mtd_resume(struct mtd_info *mtd) 459 { 460 if (mtd->_resume) 461 mtd->_resume(mtd); 462 } 463 464 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 465 { 466 if (mtd->erasesize_shift) 467 return sz >> mtd->erasesize_shift; 468 do_div(sz, mtd->erasesize); 469 return sz; 470 } 471 472 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 473 { 474 if (mtd->erasesize_shift) 475 return sz & mtd->erasesize_mask; 476 return do_div(sz, mtd->erasesize); 477 } 478 479 /** 480 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 481 * boundaries. 482 * @mtd: the MTD device this erase request applies on 483 * @req: the erase request to adjust 484 * 485 * This function will adjust @req->addr and @req->len to align them on 486 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 487 */ 488 static inline void mtd_align_erase_req(struct mtd_info *mtd, 489 struct erase_info *req) 490 { 491 u32 mod; 492 493 if (WARN_ON(!mtd->erasesize)) 494 return; 495 496 mod = mtd_mod_by_eb(req->addr, mtd); 497 if (mod) { 498 req->addr -= mod; 499 req->len += mod; 500 } 501 502 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 503 if (mod) 504 req->len += mtd->erasesize - mod; 505 } 506 507 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 508 { 509 if (mtd->writesize_shift) 510 return sz >> mtd->writesize_shift; 511 do_div(sz, mtd->writesize); 512 return sz; 513 } 514 515 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 516 { 517 if (mtd->writesize_shift) 518 return sz & mtd->writesize_mask; 519 return do_div(sz, mtd->writesize); 520 } 521 522 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 523 { 524 return mtd->erasesize / mtd->writesize; 525 } 526 527 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 528 { 529 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 530 } 531 532 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 533 int wunit) 534 { 535 return base + (wunit * mtd->writesize); 536 } 537 538 539 static inline int mtd_has_oob(const struct mtd_info *mtd) 540 { 541 return mtd->_read_oob && mtd->_write_oob; 542 } 543 544 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 545 { 546 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 547 } 548 549 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 550 { 551 return !!mtd->_block_isbad; 552 } 553 554 /* Kernel-side ioctl definitions */ 555 556 struct mtd_partition; 557 struct mtd_part_parser_data; 558 559 extern int mtd_device_parse_register(struct mtd_info *mtd, 560 const char * const *part_probe_types, 561 struct mtd_part_parser_data *parser_data, 562 const struct mtd_partition *defparts, 563 int defnr_parts); 564 #define mtd_device_register(master, parts, nr_parts) \ 565 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 566 extern int mtd_device_unregister(struct mtd_info *master); 567 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 568 extern int __get_mtd_device(struct mtd_info *mtd); 569 extern void __put_mtd_device(struct mtd_info *mtd); 570 extern struct mtd_info *get_mtd_device_nm(const char *name); 571 extern void put_mtd_device(struct mtd_info *mtd); 572 573 574 struct mtd_notifier { 575 void (*add)(struct mtd_info *mtd); 576 void (*remove)(struct mtd_info *mtd); 577 struct list_head list; 578 }; 579 580 581 extern void register_mtd_user (struct mtd_notifier *new); 582 extern int unregister_mtd_user (struct mtd_notifier *old); 583 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 584 585 static inline int mtd_is_bitflip(int err) { 586 return err == -EUCLEAN; 587 } 588 589 static inline int mtd_is_eccerr(int err) { 590 return err == -EBADMSG; 591 } 592 593 static inline int mtd_is_bitflip_or_eccerr(int err) { 594 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 595 } 596 597 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 598 599 #endif /* __MTD_MTD_H__ */ 600