1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6 #ifndef __MTD_MTD_H__ 7 #define __MTD_MTD_H__ 8 9 #include <linux/types.h> 10 #include <linux/uio.h> 11 #include <linux/list.h> 12 #include <linux/notifier.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/nvmem-provider.h> 16 17 #include <mtd/mtd-abi.h> 18 19 #include <asm/div64.h> 20 21 #define MTD_FAIL_ADDR_UNKNOWN -1LL 22 23 struct mtd_info; 24 25 /* 26 * If the erase fails, fail_addr might indicate exactly which block failed. If 27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 28 * or was not specific to any particular block. 29 */ 30 struct erase_info { 31 uint64_t addr; 32 uint64_t len; 33 uint64_t fail_addr; 34 }; 35 36 struct mtd_erase_region_info { 37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 38 uint32_t erasesize; /* For this region */ 39 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 40 unsigned long *lockmap; /* If keeping bitmap of locks */ 41 }; 42 43 /** 44 * struct mtd_oob_ops - oob operation operands 45 * @mode: operation mode 46 * 47 * @len: number of data bytes to write/read 48 * 49 * @retlen: number of data bytes written/read 50 * 51 * @ooblen: number of oob bytes to write/read 52 * @oobretlen: number of oob bytes written/read 53 * @ooboffs: offset of oob data in the oob area (only relevant when 54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 55 * @datbuf: data buffer - if NULL only oob data are read/written 56 * @oobbuf: oob data buffer 57 * 58 * Note, some MTD drivers do not allow you to write more than one OOB area at 59 * one go. If you try to do that on such an MTD device, -EINVAL will be 60 * returned. If you want to make your implementation portable on all kind of MTD 61 * devices you should split the write request into several sub-requests when the 62 * request crosses a page boundary. 63 */ 64 struct mtd_oob_ops { 65 unsigned int mode; 66 size_t len; 67 size_t retlen; 68 size_t ooblen; 69 size_t oobretlen; 70 uint32_t ooboffs; 71 uint8_t *datbuf; 72 uint8_t *oobbuf; 73 }; 74 75 /** 76 * struct mtd_oob_region - oob region definition 77 * @offset: region offset 78 * @length: region length 79 * 80 * This structure describes a region of the OOB area, and is used 81 * to retrieve ECC or free bytes sections. 82 * Each section is defined by an offset within the OOB area and a 83 * length. 84 */ 85 struct mtd_oob_region { 86 u32 offset; 87 u32 length; 88 }; 89 90 /* 91 * struct mtd_ooblayout_ops - NAND OOB layout operations 92 * @ecc: function returning an ECC region in the OOB area. 93 * Should return -ERANGE if %section exceeds the total number of 94 * ECC sections. 95 * @free: function returning a free region in the OOB area. 96 * Should return -ERANGE if %section exceeds the total number of 97 * free sections. 98 */ 99 struct mtd_ooblayout_ops { 100 int (*ecc)(struct mtd_info *mtd, int section, 101 struct mtd_oob_region *oobecc); 102 int (*free)(struct mtd_info *mtd, int section, 103 struct mtd_oob_region *oobfree); 104 }; 105 106 /** 107 * struct mtd_pairing_info - page pairing information 108 * 109 * @pair: pair id 110 * @group: group id 111 * 112 * The term "pair" is used here, even though TLC NANDs might group pages by 3 113 * (3 bits in a single cell). A pair should regroup all pages that are sharing 114 * the same cell. Pairs are then indexed in ascending order. 115 * 116 * @group is defining the position of a page in a given pair. It can also be 117 * seen as the bit position in the cell: page attached to bit 0 belongs to 118 * group 0, page attached to bit 1 belongs to group 1, etc. 119 * 120 * Example: 121 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 122 * 123 * group-0 group-1 124 * 125 * pair-0 page-0 page-4 126 * pair-1 page-1 page-5 127 * pair-2 page-2 page-8 128 * ... 129 * pair-127 page-251 page-255 130 * 131 * 132 * Note that the "group" and "pair" terms were extracted from Samsung and 133 * Hynix datasheets, and might be referenced under other names in other 134 * datasheets (Micron is describing this concept as "shared pages"). 135 */ 136 struct mtd_pairing_info { 137 int pair; 138 int group; 139 }; 140 141 /** 142 * struct mtd_pairing_scheme - page pairing scheme description 143 * 144 * @ngroups: number of groups. Should be related to the number of bits 145 * per cell. 146 * @get_info: converts a write-unit (page number within an erase block) into 147 * mtd_pairing information (pair + group). This function should 148 * fill the info parameter based on the wunit index or return 149 * -EINVAL if the wunit parameter is invalid. 150 * @get_wunit: converts pairing information into a write-unit (page) number. 151 * This function should return the wunit index pointed by the 152 * pairing information described in the info argument. It should 153 * return -EINVAL, if there's no wunit corresponding to the 154 * passed pairing information. 155 * 156 * See mtd_pairing_info documentation for a detailed explanation of the 157 * pair and group concepts. 158 * 159 * The mtd_pairing_scheme structure provides a generic solution to represent 160 * NAND page pairing scheme. Instead of exposing two big tables to do the 161 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 162 * implement the ->get_info() and ->get_wunit() functions. 163 * 164 * MTD users will then be able to query these information by using the 165 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 166 * 167 * @ngroups is here to help MTD users iterating over all the pages in a 168 * given pair. This value can be retrieved by MTD users using the 169 * mtd_pairing_groups() helper. 170 * 171 * Examples are given in the mtd_pairing_info_to_wunit() and 172 * mtd_wunit_to_pairing_info() documentation. 173 */ 174 struct mtd_pairing_scheme { 175 int ngroups; 176 int (*get_info)(struct mtd_info *mtd, int wunit, 177 struct mtd_pairing_info *info); 178 int (*get_wunit)(struct mtd_info *mtd, 179 const struct mtd_pairing_info *info); 180 }; 181 182 struct module; /* only needed for owner field in mtd_info */ 183 184 /** 185 * struct mtd_debug_info - debugging information for an MTD device. 186 * 187 * @dfs_dir: direntry object of the MTD device debugfs directory 188 */ 189 struct mtd_debug_info { 190 struct dentry *dfs_dir; 191 }; 192 193 /** 194 * struct mtd_part - MTD partition specific fields 195 * 196 * @node: list node used to add an MTD partition to the parent partition list 197 * @offset: offset of the partition relatively to the parent offset 198 * @size: partition size. Should be equal to mtd->size unless 199 * MTD_SLC_ON_MLC_EMULATION is set 200 * @flags: original flags (before the mtdpart logic decided to tweak them based 201 * on flash constraints, like eraseblock/pagesize alignment) 202 * 203 * This struct is embedded in mtd_info and contains partition-specific 204 * properties/fields. 205 */ 206 struct mtd_part { 207 struct list_head node; 208 u64 offset; 209 u64 size; 210 u32 flags; 211 }; 212 213 /** 214 * struct mtd_master - MTD master specific fields 215 * 216 * @partitions_lock: lock protecting accesses to the partition list. Protects 217 * not only the master partition list, but also all 218 * sub-partitions. 219 * @suspended: et to 1 when the device is suspended, 0 otherwise 220 * 221 * This struct is embedded in mtd_info and contains master-specific 222 * properties/fields. The master is the root MTD device from the MTD partition 223 * point of view. 224 */ 225 struct mtd_master { 226 struct mutex partitions_lock; 227 struct mutex chrdev_lock; 228 unsigned int suspended : 1; 229 }; 230 231 struct mtd_info { 232 u_char type; 233 uint32_t flags; 234 uint64_t size; // Total size of the MTD 235 236 /* "Major" erase size for the device. Naïve users may take this 237 * to be the only erase size available, or may use the more detailed 238 * information below if they desire 239 */ 240 uint32_t erasesize; 241 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 242 * though individual bits can be cleared), in case of NAND flash it is 243 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 244 * it is of ECC block size, etc. It is illegal to have writesize = 0. 245 * Any driver registering a struct mtd_info must ensure a writesize of 246 * 1 or larger. 247 */ 248 uint32_t writesize; 249 250 /* 251 * Size of the write buffer used by the MTD. MTD devices having a write 252 * buffer can write multiple writesize chunks at a time. E.g. while 253 * writing 4 * writesize bytes to a device with 2 * writesize bytes 254 * buffer the MTD driver can (but doesn't have to) do 2 writesize 255 * operations, but not 4. Currently, all NANDs have writebufsize 256 * equivalent to writesize (NAND page size). Some NOR flashes do have 257 * writebufsize greater than writesize. 258 */ 259 uint32_t writebufsize; 260 261 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 262 uint32_t oobavail; // Available OOB bytes per block 263 264 /* 265 * If erasesize is a power of 2 then the shift is stored in 266 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 267 */ 268 unsigned int erasesize_shift; 269 unsigned int writesize_shift; 270 /* Masks based on erasesize_shift and writesize_shift */ 271 unsigned int erasesize_mask; 272 unsigned int writesize_mask; 273 274 /* 275 * read ops return -EUCLEAN if max number of bitflips corrected on any 276 * one region comprising an ecc step equals or exceeds this value. 277 * Settable by driver, else defaults to ecc_strength. User can override 278 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 279 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 280 */ 281 unsigned int bitflip_threshold; 282 283 /* Kernel-only stuff starts here. */ 284 const char *name; 285 int index; 286 287 /* OOB layout description */ 288 const struct mtd_ooblayout_ops *ooblayout; 289 290 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 291 const struct mtd_pairing_scheme *pairing; 292 293 /* the ecc step size. */ 294 unsigned int ecc_step_size; 295 296 /* max number of correctible bit errors per ecc step */ 297 unsigned int ecc_strength; 298 299 /* Data for variable erase regions. If numeraseregions is zero, 300 * it means that the whole device has erasesize as given above. 301 */ 302 int numeraseregions; 303 struct mtd_erase_region_info *eraseregions; 304 305 /* 306 * Do not call via these pointers, use corresponding mtd_*() 307 * wrappers instead. 308 */ 309 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 310 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 311 size_t *retlen, void **virt, resource_size_t *phys); 312 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 313 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 314 size_t *retlen, u_char *buf); 315 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 316 size_t *retlen, const u_char *buf); 317 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 318 size_t *retlen, const u_char *buf); 319 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 320 struct mtd_oob_ops *ops); 321 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 322 struct mtd_oob_ops *ops); 323 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 324 size_t *retlen, struct otp_info *buf); 325 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 326 size_t len, size_t *retlen, u_char *buf); 327 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 328 size_t *retlen, struct otp_info *buf); 329 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 330 size_t len, size_t *retlen, u_char *buf); 331 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 332 size_t len, size_t *retlen, 333 const u_char *buf); 334 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 335 size_t len); 336 int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from, 337 size_t len); 338 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 339 unsigned long count, loff_t to, size_t *retlen); 340 void (*_sync) (struct mtd_info *mtd); 341 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 342 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 343 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 344 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 345 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 346 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 347 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 348 int (*_suspend) (struct mtd_info *mtd); 349 void (*_resume) (struct mtd_info *mtd); 350 void (*_reboot) (struct mtd_info *mtd); 351 /* 352 * If the driver is something smart, like UBI, it may need to maintain 353 * its own reference counting. The below functions are only for driver. 354 */ 355 int (*_get_device) (struct mtd_info *mtd); 356 void (*_put_device) (struct mtd_info *mtd); 357 358 /* 359 * flag indicates a panic write, low level drivers can take appropriate 360 * action if required to ensure writes go through 361 */ 362 bool oops_panic_write; 363 364 struct notifier_block reboot_notifier; /* default mode before reboot */ 365 366 /* ECC status information */ 367 struct mtd_ecc_stats ecc_stats; 368 /* Subpage shift (NAND) */ 369 int subpage_sft; 370 371 void *priv; 372 373 struct module *owner; 374 struct device dev; 375 int usecount; 376 struct mtd_debug_info dbg; 377 struct nvmem_device *nvmem; 378 struct nvmem_device *otp_user_nvmem; 379 struct nvmem_device *otp_factory_nvmem; 380 381 /* 382 * Parent device from the MTD partition point of view. 383 * 384 * MTD masters do not have any parent, MTD partitions do. The parent 385 * MTD device can itself be a partition. 386 */ 387 struct mtd_info *parent; 388 389 /* List of partitions attached to this MTD device */ 390 struct list_head partitions; 391 392 struct mtd_part part; 393 struct mtd_master master; 394 }; 395 396 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd) 397 { 398 while (mtd->parent) 399 mtd = mtd->parent; 400 401 return mtd; 402 } 403 404 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs) 405 { 406 while (mtd->parent) { 407 ofs += mtd->part.offset; 408 mtd = mtd->parent; 409 } 410 411 return ofs; 412 } 413 414 static inline bool mtd_is_partition(const struct mtd_info *mtd) 415 { 416 return mtd->parent; 417 } 418 419 static inline bool mtd_has_partitions(const struct mtd_info *mtd) 420 { 421 return !list_empty(&mtd->partitions); 422 } 423 424 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 425 struct mtd_oob_region *oobecc); 426 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 427 int *section, 428 struct mtd_oob_region *oobregion); 429 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 430 const u8 *oobbuf, int start, int nbytes); 431 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 432 u8 *oobbuf, int start, int nbytes); 433 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 434 struct mtd_oob_region *oobfree); 435 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 436 const u8 *oobbuf, int start, int nbytes); 437 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 438 u8 *oobbuf, int start, int nbytes); 439 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 440 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 441 442 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 443 const struct mtd_ooblayout_ops *ooblayout) 444 { 445 mtd->ooblayout = ooblayout; 446 } 447 448 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 449 const struct mtd_pairing_scheme *pairing) 450 { 451 mtd->pairing = pairing; 452 } 453 454 static inline void mtd_set_of_node(struct mtd_info *mtd, 455 struct device_node *np) 456 { 457 mtd->dev.of_node = np; 458 if (!mtd->name) 459 of_property_read_string(np, "label", &mtd->name); 460 } 461 462 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 463 { 464 return dev_of_node(&mtd->dev); 465 } 466 467 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 468 { 469 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 470 } 471 472 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 473 loff_t ofs, size_t len) 474 { 475 struct mtd_info *master = mtd_get_master(mtd); 476 477 if (!master->_max_bad_blocks) 478 return -ENOTSUPP; 479 480 if (mtd->size < (len + ofs) || ofs < 0) 481 return -EINVAL; 482 483 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs), 484 len); 485 } 486 487 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 488 struct mtd_pairing_info *info); 489 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 490 const struct mtd_pairing_info *info); 491 int mtd_pairing_groups(struct mtd_info *mtd); 492 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 493 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 494 void **virt, resource_size_t *phys); 495 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 496 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 497 unsigned long offset, unsigned long flags); 498 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 499 u_char *buf); 500 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 501 const u_char *buf); 502 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 503 const u_char *buf); 504 505 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 506 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 507 508 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 509 struct otp_info *buf); 510 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 511 size_t *retlen, u_char *buf); 512 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 513 struct otp_info *buf); 514 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 515 size_t *retlen, u_char *buf); 516 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 517 size_t *retlen, const u_char *buf); 518 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 519 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 520 521 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 522 unsigned long count, loff_t to, size_t *retlen); 523 524 static inline void mtd_sync(struct mtd_info *mtd) 525 { 526 struct mtd_info *master = mtd_get_master(mtd); 527 528 if (master->_sync) 529 master->_sync(master); 530 } 531 532 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 533 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 534 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 535 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 536 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 537 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 538 539 static inline int mtd_suspend(struct mtd_info *mtd) 540 { 541 struct mtd_info *master = mtd_get_master(mtd); 542 int ret; 543 544 if (master->master.suspended) 545 return 0; 546 547 ret = master->_suspend ? master->_suspend(master) : 0; 548 if (ret) 549 return ret; 550 551 master->master.suspended = 1; 552 return 0; 553 } 554 555 static inline void mtd_resume(struct mtd_info *mtd) 556 { 557 struct mtd_info *master = mtd_get_master(mtd); 558 559 if (!master->master.suspended) 560 return; 561 562 if (master->_resume) 563 master->_resume(master); 564 565 master->master.suspended = 0; 566 } 567 568 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 569 { 570 if (mtd->erasesize_shift) 571 return sz >> mtd->erasesize_shift; 572 do_div(sz, mtd->erasesize); 573 return sz; 574 } 575 576 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 577 { 578 if (mtd->erasesize_shift) 579 return sz & mtd->erasesize_mask; 580 return do_div(sz, mtd->erasesize); 581 } 582 583 /** 584 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 585 * boundaries. 586 * @mtd: the MTD device this erase request applies on 587 * @req: the erase request to adjust 588 * 589 * This function will adjust @req->addr and @req->len to align them on 590 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 591 */ 592 static inline void mtd_align_erase_req(struct mtd_info *mtd, 593 struct erase_info *req) 594 { 595 u32 mod; 596 597 if (WARN_ON(!mtd->erasesize)) 598 return; 599 600 mod = mtd_mod_by_eb(req->addr, mtd); 601 if (mod) { 602 req->addr -= mod; 603 req->len += mod; 604 } 605 606 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 607 if (mod) 608 req->len += mtd->erasesize - mod; 609 } 610 611 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 612 { 613 if (mtd->writesize_shift) 614 return sz >> mtd->writesize_shift; 615 do_div(sz, mtd->writesize); 616 return sz; 617 } 618 619 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 620 { 621 if (mtd->writesize_shift) 622 return sz & mtd->writesize_mask; 623 return do_div(sz, mtd->writesize); 624 } 625 626 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 627 { 628 struct mtd_info *master = mtd_get_master(mtd); 629 630 return master->erasesize / mtd->writesize; 631 } 632 633 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 634 { 635 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 636 } 637 638 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 639 int wunit) 640 { 641 return base + (wunit * mtd->writesize); 642 } 643 644 645 static inline int mtd_has_oob(const struct mtd_info *mtd) 646 { 647 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 648 649 return master->_read_oob && master->_write_oob; 650 } 651 652 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 653 { 654 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 655 } 656 657 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 658 { 659 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 660 661 return !!master->_block_isbad; 662 } 663 664 /* Kernel-side ioctl definitions */ 665 666 struct mtd_partition; 667 struct mtd_part_parser_data; 668 669 extern int mtd_device_parse_register(struct mtd_info *mtd, 670 const char * const *part_probe_types, 671 struct mtd_part_parser_data *parser_data, 672 const struct mtd_partition *defparts, 673 int defnr_parts); 674 #define mtd_device_register(master, parts, nr_parts) \ 675 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 676 extern int mtd_device_unregister(struct mtd_info *master); 677 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 678 extern int __get_mtd_device(struct mtd_info *mtd); 679 extern void __put_mtd_device(struct mtd_info *mtd); 680 extern struct mtd_info *get_mtd_device_nm(const char *name); 681 extern void put_mtd_device(struct mtd_info *mtd); 682 683 684 struct mtd_notifier { 685 void (*add)(struct mtd_info *mtd); 686 void (*remove)(struct mtd_info *mtd); 687 struct list_head list; 688 }; 689 690 691 extern void register_mtd_user (struct mtd_notifier *new); 692 extern int unregister_mtd_user (struct mtd_notifier *old); 693 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 694 695 static inline int mtd_is_bitflip(int err) { 696 return err == -EUCLEAN; 697 } 698 699 static inline int mtd_is_eccerr(int err) { 700 return err == -EBADMSG; 701 } 702 703 static inline int mtd_is_bitflip_or_eccerr(int err) { 704 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 705 } 706 707 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 708 709 #ifdef CONFIG_DEBUG_FS 710 bool mtd_check_expert_analysis_mode(void); 711 #else 712 static inline bool mtd_check_expert_analysis_mode(void) { return false; } 713 #endif 714 715 716 #endif /* __MTD_MTD_H__ */ 717