1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6 #ifndef __MTD_MTD_H__ 7 #define __MTD_MTD_H__ 8 9 #include <linux/types.h> 10 #include <linux/uio.h> 11 #include <linux/list.h> 12 #include <linux/notifier.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/nvmem-provider.h> 16 17 #include <mtd/mtd-abi.h> 18 19 #include <asm/div64.h> 20 21 #define MTD_FAIL_ADDR_UNKNOWN -1LL 22 23 struct mtd_info; 24 25 /* 26 * If the erase fails, fail_addr might indicate exactly which block failed. If 27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 28 * or was not specific to any particular block. 29 */ 30 struct erase_info { 31 uint64_t addr; 32 uint64_t len; 33 uint64_t fail_addr; 34 }; 35 36 struct mtd_erase_region_info { 37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 38 uint32_t erasesize; /* For this region */ 39 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 40 unsigned long *lockmap; /* If keeping bitmap of locks */ 41 }; 42 43 /** 44 * struct mtd_oob_ops - oob operation operands 45 * @mode: operation mode 46 * 47 * @len: number of data bytes to write/read 48 * 49 * @retlen: number of data bytes written/read 50 * 51 * @ooblen: number of oob bytes to write/read 52 * @oobretlen: number of oob bytes written/read 53 * @ooboffs: offset of oob data in the oob area (only relevant when 54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 55 * @datbuf: data buffer - if NULL only oob data are read/written 56 * @oobbuf: oob data buffer 57 * 58 * Note, some MTD drivers do not allow you to write more than one OOB area at 59 * one go. If you try to do that on such an MTD device, -EINVAL will be 60 * returned. If you want to make your implementation portable on all kind of MTD 61 * devices you should split the write request into several sub-requests when the 62 * request crosses a page boundary. 63 */ 64 struct mtd_oob_ops { 65 unsigned int mode; 66 size_t len; 67 size_t retlen; 68 size_t ooblen; 69 size_t oobretlen; 70 uint32_t ooboffs; 71 uint8_t *datbuf; 72 uint8_t *oobbuf; 73 }; 74 75 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 76 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 77 /** 78 * struct mtd_oob_region - oob region definition 79 * @offset: region offset 80 * @length: region length 81 * 82 * This structure describes a region of the OOB area, and is used 83 * to retrieve ECC or free bytes sections. 84 * Each section is defined by an offset within the OOB area and a 85 * length. 86 */ 87 struct mtd_oob_region { 88 u32 offset; 89 u32 length; 90 }; 91 92 /* 93 * struct mtd_ooblayout_ops - NAND OOB layout operations 94 * @ecc: function returning an ECC region in the OOB area. 95 * Should return -ERANGE if %section exceeds the total number of 96 * ECC sections. 97 * @free: function returning a free region in the OOB area. 98 * Should return -ERANGE if %section exceeds the total number of 99 * free sections. 100 */ 101 struct mtd_ooblayout_ops { 102 int (*ecc)(struct mtd_info *mtd, int section, 103 struct mtd_oob_region *oobecc); 104 int (*free)(struct mtd_info *mtd, int section, 105 struct mtd_oob_region *oobfree); 106 }; 107 108 /** 109 * struct mtd_pairing_info - page pairing information 110 * 111 * @pair: pair id 112 * @group: group id 113 * 114 * The term "pair" is used here, even though TLC NANDs might group pages by 3 115 * (3 bits in a single cell). A pair should regroup all pages that are sharing 116 * the same cell. Pairs are then indexed in ascending order. 117 * 118 * @group is defining the position of a page in a given pair. It can also be 119 * seen as the bit position in the cell: page attached to bit 0 belongs to 120 * group 0, page attached to bit 1 belongs to group 1, etc. 121 * 122 * Example: 123 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 124 * 125 * group-0 group-1 126 * 127 * pair-0 page-0 page-4 128 * pair-1 page-1 page-5 129 * pair-2 page-2 page-8 130 * ... 131 * pair-127 page-251 page-255 132 * 133 * 134 * Note that the "group" and "pair" terms were extracted from Samsung and 135 * Hynix datasheets, and might be referenced under other names in other 136 * datasheets (Micron is describing this concept as "shared pages"). 137 */ 138 struct mtd_pairing_info { 139 int pair; 140 int group; 141 }; 142 143 /** 144 * struct mtd_pairing_scheme - page pairing scheme description 145 * 146 * @ngroups: number of groups. Should be related to the number of bits 147 * per cell. 148 * @get_info: converts a write-unit (page number within an erase block) into 149 * mtd_pairing information (pair + group). This function should 150 * fill the info parameter based on the wunit index or return 151 * -EINVAL if the wunit parameter is invalid. 152 * @get_wunit: converts pairing information into a write-unit (page) number. 153 * This function should return the wunit index pointed by the 154 * pairing information described in the info argument. It should 155 * return -EINVAL, if there's no wunit corresponding to the 156 * passed pairing information. 157 * 158 * See mtd_pairing_info documentation for a detailed explanation of the 159 * pair and group concepts. 160 * 161 * The mtd_pairing_scheme structure provides a generic solution to represent 162 * NAND page pairing scheme. Instead of exposing two big tables to do the 163 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 164 * implement the ->get_info() and ->get_wunit() functions. 165 * 166 * MTD users will then be able to query these information by using the 167 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 168 * 169 * @ngroups is here to help MTD users iterating over all the pages in a 170 * given pair. This value can be retrieved by MTD users using the 171 * mtd_pairing_groups() helper. 172 * 173 * Examples are given in the mtd_pairing_info_to_wunit() and 174 * mtd_wunit_to_pairing_info() documentation. 175 */ 176 struct mtd_pairing_scheme { 177 int ngroups; 178 int (*get_info)(struct mtd_info *mtd, int wunit, 179 struct mtd_pairing_info *info); 180 int (*get_wunit)(struct mtd_info *mtd, 181 const struct mtd_pairing_info *info); 182 }; 183 184 struct module; /* only needed for owner field in mtd_info */ 185 186 /** 187 * struct mtd_debug_info - debugging information for an MTD device. 188 * 189 * @dfs_dir: direntry object of the MTD device debugfs directory 190 */ 191 struct mtd_debug_info { 192 struct dentry *dfs_dir; 193 194 const char *partname; 195 const char *partid; 196 }; 197 198 /** 199 * struct mtd_part - MTD partition specific fields 200 * 201 * @node: list node used to add an MTD partition to the parent partition list 202 * @offset: offset of the partition relatively to the parent offset 203 * @flags: original flags (before the mtdpart logic decided to tweak them based 204 * on flash constraints, like eraseblock/pagesize alignment) 205 * 206 * This struct is embedded in mtd_info and contains partition-specific 207 * properties/fields. 208 */ 209 struct mtd_part { 210 struct list_head node; 211 u64 offset; 212 u32 flags; 213 }; 214 215 /** 216 * struct mtd_master - MTD master specific fields 217 * 218 * @partitions_lock: lock protecting accesses to the partition list. Protects 219 * not only the master partition list, but also all 220 * sub-partitions. 221 * @suspended: et to 1 when the device is suspended, 0 otherwise 222 * 223 * This struct is embedded in mtd_info and contains master-specific 224 * properties/fields. The master is the root MTD device from the MTD partition 225 * point of view. 226 */ 227 struct mtd_master { 228 struct mutex partitions_lock; 229 unsigned int suspended : 1; 230 }; 231 232 struct mtd_info { 233 u_char type; 234 uint32_t flags; 235 uint64_t size; // Total size of the MTD 236 237 /* "Major" erase size for the device. Naïve users may take this 238 * to be the only erase size available, or may use the more detailed 239 * information below if they desire 240 */ 241 uint32_t erasesize; 242 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 243 * though individual bits can be cleared), in case of NAND flash it is 244 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 245 * it is of ECC block size, etc. It is illegal to have writesize = 0. 246 * Any driver registering a struct mtd_info must ensure a writesize of 247 * 1 or larger. 248 */ 249 uint32_t writesize; 250 251 /* 252 * Size of the write buffer used by the MTD. MTD devices having a write 253 * buffer can write multiple writesize chunks at a time. E.g. while 254 * writing 4 * writesize bytes to a device with 2 * writesize bytes 255 * buffer the MTD driver can (but doesn't have to) do 2 writesize 256 * operations, but not 4. Currently, all NANDs have writebufsize 257 * equivalent to writesize (NAND page size). Some NOR flashes do have 258 * writebufsize greater than writesize. 259 */ 260 uint32_t writebufsize; 261 262 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 263 uint32_t oobavail; // Available OOB bytes per block 264 265 /* 266 * If erasesize is a power of 2 then the shift is stored in 267 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 268 */ 269 unsigned int erasesize_shift; 270 unsigned int writesize_shift; 271 /* Masks based on erasesize_shift and writesize_shift */ 272 unsigned int erasesize_mask; 273 unsigned int writesize_mask; 274 275 /* 276 * read ops return -EUCLEAN if max number of bitflips corrected on any 277 * one region comprising an ecc step equals or exceeds this value. 278 * Settable by driver, else defaults to ecc_strength. User can override 279 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 280 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 281 */ 282 unsigned int bitflip_threshold; 283 284 /* Kernel-only stuff starts here. */ 285 const char *name; 286 int index; 287 288 /* OOB layout description */ 289 const struct mtd_ooblayout_ops *ooblayout; 290 291 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 292 const struct mtd_pairing_scheme *pairing; 293 294 /* the ecc step size. */ 295 unsigned int ecc_step_size; 296 297 /* max number of correctible bit errors per ecc step */ 298 unsigned int ecc_strength; 299 300 /* Data for variable erase regions. If numeraseregions is zero, 301 * it means that the whole device has erasesize as given above. 302 */ 303 int numeraseregions; 304 struct mtd_erase_region_info *eraseregions; 305 306 /* 307 * Do not call via these pointers, use corresponding mtd_*() 308 * wrappers instead. 309 */ 310 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 311 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 312 size_t *retlen, void **virt, resource_size_t *phys); 313 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 314 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 315 size_t *retlen, u_char *buf); 316 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 317 size_t *retlen, const u_char *buf); 318 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 319 size_t *retlen, const u_char *buf); 320 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 321 struct mtd_oob_ops *ops); 322 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 323 struct mtd_oob_ops *ops); 324 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 325 size_t *retlen, struct otp_info *buf); 326 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 327 size_t len, size_t *retlen, u_char *buf); 328 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 329 size_t *retlen, struct otp_info *buf); 330 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 331 size_t len, size_t *retlen, u_char *buf); 332 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 333 size_t len, size_t *retlen, u_char *buf); 334 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 335 size_t len); 336 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 337 unsigned long count, loff_t to, size_t *retlen); 338 void (*_sync) (struct mtd_info *mtd); 339 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 340 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 341 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 342 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 343 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 344 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 345 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 346 int (*_suspend) (struct mtd_info *mtd); 347 void (*_resume) (struct mtd_info *mtd); 348 void (*_reboot) (struct mtd_info *mtd); 349 /* 350 * If the driver is something smart, like UBI, it may need to maintain 351 * its own reference counting. The below functions are only for driver. 352 */ 353 int (*_get_device) (struct mtd_info *mtd); 354 void (*_put_device) (struct mtd_info *mtd); 355 356 /* 357 * flag indicates a panic write, low level drivers can take appropriate 358 * action if required to ensure writes go through 359 */ 360 bool oops_panic_write; 361 362 struct notifier_block reboot_notifier; /* default mode before reboot */ 363 364 /* ECC status information */ 365 struct mtd_ecc_stats ecc_stats; 366 /* Subpage shift (NAND) */ 367 int subpage_sft; 368 369 void *priv; 370 371 struct module *owner; 372 struct device dev; 373 int usecount; 374 struct mtd_debug_info dbg; 375 struct nvmem_device *nvmem; 376 377 /* 378 * Parent device from the MTD partition point of view. 379 * 380 * MTD masters do not have any parent, MTD partitions do. The parent 381 * MTD device can itself be a partition. 382 */ 383 struct mtd_info *parent; 384 385 /* List of partitions attached to this MTD device */ 386 struct list_head partitions; 387 388 union { 389 struct mtd_part part; 390 struct mtd_master master; 391 }; 392 }; 393 394 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd) 395 { 396 while (mtd->parent) 397 mtd = mtd->parent; 398 399 return mtd; 400 } 401 402 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs) 403 { 404 while (mtd->parent) { 405 ofs += mtd->part.offset; 406 mtd = mtd->parent; 407 } 408 409 return ofs; 410 } 411 412 static inline bool mtd_is_partition(const struct mtd_info *mtd) 413 { 414 return mtd->parent; 415 } 416 417 static inline bool mtd_has_partitions(const struct mtd_info *mtd) 418 { 419 return !list_empty(&mtd->partitions); 420 } 421 422 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 423 struct mtd_oob_region *oobecc); 424 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 425 int *section, 426 struct mtd_oob_region *oobregion); 427 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 428 const u8 *oobbuf, int start, int nbytes); 429 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 430 u8 *oobbuf, int start, int nbytes); 431 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 432 struct mtd_oob_region *oobfree); 433 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 434 const u8 *oobbuf, int start, int nbytes); 435 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 436 u8 *oobbuf, int start, int nbytes); 437 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 438 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 439 440 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 441 const struct mtd_ooblayout_ops *ooblayout) 442 { 443 mtd->ooblayout = ooblayout; 444 } 445 446 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 447 const struct mtd_pairing_scheme *pairing) 448 { 449 mtd->pairing = pairing; 450 } 451 452 static inline void mtd_set_of_node(struct mtd_info *mtd, 453 struct device_node *np) 454 { 455 mtd->dev.of_node = np; 456 if (!mtd->name) 457 of_property_read_string(np, "label", &mtd->name); 458 } 459 460 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 461 { 462 return dev_of_node(&mtd->dev); 463 } 464 465 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 466 { 467 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 468 } 469 470 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 471 loff_t ofs, size_t len) 472 { 473 struct mtd_info *master = mtd_get_master(mtd); 474 475 if (!master->_max_bad_blocks) 476 return -ENOTSUPP; 477 478 if (mtd->size < (len + ofs) || ofs < 0) 479 return -EINVAL; 480 481 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs), 482 len); 483 } 484 485 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 486 struct mtd_pairing_info *info); 487 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 488 const struct mtd_pairing_info *info); 489 int mtd_pairing_groups(struct mtd_info *mtd); 490 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 491 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 492 void **virt, resource_size_t *phys); 493 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 494 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 495 unsigned long offset, unsigned long flags); 496 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 497 u_char *buf); 498 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 499 const u_char *buf); 500 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 501 const u_char *buf); 502 503 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 504 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 505 506 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 507 struct otp_info *buf); 508 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 509 size_t *retlen, u_char *buf); 510 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 511 struct otp_info *buf); 512 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 513 size_t *retlen, u_char *buf); 514 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 515 size_t *retlen, u_char *buf); 516 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 517 518 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 519 unsigned long count, loff_t to, size_t *retlen); 520 521 static inline void mtd_sync(struct mtd_info *mtd) 522 { 523 struct mtd_info *master = mtd_get_master(mtd); 524 525 if (master->_sync) 526 master->_sync(master); 527 } 528 529 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 530 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 531 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 532 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 533 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 534 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 535 536 static inline int mtd_suspend(struct mtd_info *mtd) 537 { 538 struct mtd_info *master = mtd_get_master(mtd); 539 int ret; 540 541 if (master->master.suspended) 542 return 0; 543 544 ret = master->_suspend ? master->_suspend(master) : 0; 545 if (ret) 546 return ret; 547 548 master->master.suspended = 1; 549 return 0; 550 } 551 552 static inline void mtd_resume(struct mtd_info *mtd) 553 { 554 struct mtd_info *master = mtd_get_master(mtd); 555 556 if (!master->master.suspended) 557 return; 558 559 if (master->_resume) 560 master->_resume(master); 561 562 master->master.suspended = 0; 563 } 564 565 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 566 { 567 if (mtd->erasesize_shift) 568 return sz >> mtd->erasesize_shift; 569 do_div(sz, mtd->erasesize); 570 return sz; 571 } 572 573 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 574 { 575 if (mtd->erasesize_shift) 576 return sz & mtd->erasesize_mask; 577 return do_div(sz, mtd->erasesize); 578 } 579 580 /** 581 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 582 * boundaries. 583 * @mtd: the MTD device this erase request applies on 584 * @req: the erase request to adjust 585 * 586 * This function will adjust @req->addr and @req->len to align them on 587 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 588 */ 589 static inline void mtd_align_erase_req(struct mtd_info *mtd, 590 struct erase_info *req) 591 { 592 u32 mod; 593 594 if (WARN_ON(!mtd->erasesize)) 595 return; 596 597 mod = mtd_mod_by_eb(req->addr, mtd); 598 if (mod) { 599 req->addr -= mod; 600 req->len += mod; 601 } 602 603 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 604 if (mod) 605 req->len += mtd->erasesize - mod; 606 } 607 608 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 609 { 610 if (mtd->writesize_shift) 611 return sz >> mtd->writesize_shift; 612 do_div(sz, mtd->writesize); 613 return sz; 614 } 615 616 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 617 { 618 if (mtd->writesize_shift) 619 return sz & mtd->writesize_mask; 620 return do_div(sz, mtd->writesize); 621 } 622 623 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 624 { 625 return mtd->erasesize / mtd->writesize; 626 } 627 628 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 629 { 630 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 631 } 632 633 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 634 int wunit) 635 { 636 return base + (wunit * mtd->writesize); 637 } 638 639 640 static inline int mtd_has_oob(const struct mtd_info *mtd) 641 { 642 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 643 644 return master->_read_oob && master->_write_oob; 645 } 646 647 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 648 { 649 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 650 } 651 652 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 653 { 654 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 655 656 return !!master->_block_isbad; 657 } 658 659 /* Kernel-side ioctl definitions */ 660 661 struct mtd_partition; 662 struct mtd_part_parser_data; 663 664 extern int mtd_device_parse_register(struct mtd_info *mtd, 665 const char * const *part_probe_types, 666 struct mtd_part_parser_data *parser_data, 667 const struct mtd_partition *defparts, 668 int defnr_parts); 669 #define mtd_device_register(master, parts, nr_parts) \ 670 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 671 extern int mtd_device_unregister(struct mtd_info *master); 672 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 673 extern int __get_mtd_device(struct mtd_info *mtd); 674 extern void __put_mtd_device(struct mtd_info *mtd); 675 extern struct mtd_info *get_mtd_device_nm(const char *name); 676 extern void put_mtd_device(struct mtd_info *mtd); 677 678 679 struct mtd_notifier { 680 void (*add)(struct mtd_info *mtd); 681 void (*remove)(struct mtd_info *mtd); 682 struct list_head list; 683 }; 684 685 686 extern void register_mtd_user (struct mtd_notifier *new); 687 extern int unregister_mtd_user (struct mtd_notifier *old); 688 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 689 690 static inline int mtd_is_bitflip(int err) { 691 return err == -EUCLEAN; 692 } 693 694 static inline int mtd_is_eccerr(int err) { 695 return err == -EBADMSG; 696 } 697 698 static inline int mtd_is_bitflip_or_eccerr(int err) { 699 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 700 } 701 702 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 703 704 #endif /* __MTD_MTD_H__ */ 705