xref: /openbmc/linux/include/linux/mtd/mtd.h (revision 0bea2a65)
1 /*
2  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  *
18  */
19 
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22 
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27 #include <linux/of.h>
28 
29 #include <mtd/mtd-abi.h>
30 
31 #include <asm/div64.h>
32 
33 #define MTD_ERASE_PENDING	0x01
34 #define MTD_ERASING		0x02
35 #define MTD_ERASE_SUSPEND	0x04
36 #define MTD_ERASE_DONE		0x08
37 #define MTD_ERASE_FAILED	0x10
38 
39 #define MTD_FAIL_ADDR_UNKNOWN -1LL
40 
41 /*
42  * If the erase fails, fail_addr might indicate exactly which block failed. If
43  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
44  * or was not specific to any particular block.
45  */
46 struct erase_info {
47 	struct mtd_info *mtd;
48 	uint64_t addr;
49 	uint64_t len;
50 	uint64_t fail_addr;
51 	u_long time;
52 	u_long retries;
53 	unsigned dev;
54 	unsigned cell;
55 	void (*callback) (struct erase_info *self);
56 	u_long priv;
57 	u_char state;
58 	struct erase_info *next;
59 };
60 
61 struct mtd_erase_region_info {
62 	uint64_t offset;		/* At which this region starts, from the beginning of the MTD */
63 	uint32_t erasesize;		/* For this region */
64 	uint32_t numblocks;		/* Number of blocks of erasesize in this region */
65 	unsigned long *lockmap;		/* If keeping bitmap of locks */
66 };
67 
68 /**
69  * struct mtd_oob_ops - oob operation operands
70  * @mode:	operation mode
71  *
72  * @len:	number of data bytes to write/read
73  *
74  * @retlen:	number of data bytes written/read
75  *
76  * @ooblen:	number of oob bytes to write/read
77  * @oobretlen:	number of oob bytes written/read
78  * @ooboffs:	offset of oob data in the oob area (only relevant when
79  *		mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
80  * @datbuf:	data buffer - if NULL only oob data are read/written
81  * @oobbuf:	oob data buffer
82  *
83  * Note, it is allowed to read more than one OOB area at one go, but not write.
84  * The interface assumes that the OOB write requests program only one page's
85  * OOB area.
86  */
87 struct mtd_oob_ops {
88 	unsigned int	mode;
89 	size_t		len;
90 	size_t		retlen;
91 	size_t		ooblen;
92 	size_t		oobretlen;
93 	uint32_t	ooboffs;
94 	uint8_t		*datbuf;
95 	uint8_t		*oobbuf;
96 };
97 
98 #define MTD_MAX_OOBFREE_ENTRIES_LARGE	32
99 #define MTD_MAX_ECCPOS_ENTRIES_LARGE	640
100 /**
101  * struct mtd_oob_region - oob region definition
102  * @offset: region offset
103  * @length: region length
104  *
105  * This structure describes a region of the OOB area, and is used
106  * to retrieve ECC or free bytes sections.
107  * Each section is defined by an offset within the OOB area and a
108  * length.
109  */
110 struct mtd_oob_region {
111 	u32 offset;
112 	u32 length;
113 };
114 
115 /*
116  * struct mtd_ooblayout_ops - NAND OOB layout operations
117  * @ecc: function returning an ECC region in the OOB area.
118  *	 Should return -ERANGE if %section exceeds the total number of
119  *	 ECC sections.
120  * @free: function returning a free region in the OOB area.
121  *	  Should return -ERANGE if %section exceeds the total number of
122  *	  free sections.
123  */
124 struct mtd_ooblayout_ops {
125 	int (*ecc)(struct mtd_info *mtd, int section,
126 		   struct mtd_oob_region *oobecc);
127 	int (*free)(struct mtd_info *mtd, int section,
128 		    struct mtd_oob_region *oobfree);
129 };
130 
131 /**
132  * struct mtd_pairing_info - page pairing information
133  *
134  * @pair: pair id
135  * @group: group id
136  *
137  * The term "pair" is used here, even though TLC NANDs might group pages by 3
138  * (3 bits in a single cell). A pair should regroup all pages that are sharing
139  * the same cell. Pairs are then indexed in ascending order.
140  *
141  * @group is defining the position of a page in a given pair. It can also be
142  * seen as the bit position in the cell: page attached to bit 0 belongs to
143  * group 0, page attached to bit 1 belongs to group 1, etc.
144  *
145  * Example:
146  * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
147  *
148  *		group-0		group-1
149  *
150  *  pair-0	page-0		page-4
151  *  pair-1	page-1		page-5
152  *  pair-2	page-2		page-8
153  *  ...
154  *  pair-127	page-251	page-255
155  *
156  *
157  * Note that the "group" and "pair" terms were extracted from Samsung and
158  * Hynix datasheets, and might be referenced under other names in other
159  * datasheets (Micron is describing this concept as "shared pages").
160  */
161 struct mtd_pairing_info {
162 	int pair;
163 	int group;
164 };
165 
166 /**
167  * struct mtd_pairing_scheme - page pairing scheme description
168  *
169  * @ngroups: number of groups. Should be related to the number of bits
170  *	     per cell.
171  * @get_info: converts a write-unit (page number within an erase block) into
172  *	      mtd_pairing information (pair + group). This function should
173  *	      fill the info parameter based on the wunit index or return
174  *	      -EINVAL if the wunit parameter is invalid.
175  * @get_wunit: converts pairing information into a write-unit (page) number.
176  *	       This function should return the wunit index pointed by the
177  *	       pairing information described in the info argument. It should
178  *	       return -EINVAL, if there's no wunit corresponding to the
179  *	       passed pairing information.
180  *
181  * See mtd_pairing_info documentation for a detailed explanation of the
182  * pair and group concepts.
183  *
184  * The mtd_pairing_scheme structure provides a generic solution to represent
185  * NAND page pairing scheme. Instead of exposing two big tables to do the
186  * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
187  * implement the ->get_info() and ->get_wunit() functions.
188  *
189  * MTD users will then be able to query these information by using the
190  * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
191  *
192  * @ngroups is here to help MTD users iterating over all the pages in a
193  * given pair. This value can be retrieved by MTD users using the
194  * mtd_pairing_groups() helper.
195  *
196  * Examples are given in the mtd_pairing_info_to_wunit() and
197  * mtd_wunit_to_pairing_info() documentation.
198  */
199 struct mtd_pairing_scheme {
200 	int ngroups;
201 	int (*get_info)(struct mtd_info *mtd, int wunit,
202 			struct mtd_pairing_info *info);
203 	int (*get_wunit)(struct mtd_info *mtd,
204 			 const struct mtd_pairing_info *info);
205 };
206 
207 struct module;	/* only needed for owner field in mtd_info */
208 
209 /**
210  * struct mtd_debug_info - debugging information for an MTD device.
211  *
212  * @dfs_dir: direntry object of the MTD device debugfs directory
213  */
214 struct mtd_debug_info {
215 	struct dentry *dfs_dir;
216 };
217 
218 struct mtd_info {
219 	u_char type;
220 	uint32_t flags;
221 	uint64_t size;	 // Total size of the MTD
222 
223 	/* "Major" erase size for the device. Naïve users may take this
224 	 * to be the only erase size available, or may use the more detailed
225 	 * information below if they desire
226 	 */
227 	uint32_t erasesize;
228 	/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
229 	 * though individual bits can be cleared), in case of NAND flash it is
230 	 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
231 	 * it is of ECC block size, etc. It is illegal to have writesize = 0.
232 	 * Any driver registering a struct mtd_info must ensure a writesize of
233 	 * 1 or larger.
234 	 */
235 	uint32_t writesize;
236 
237 	/*
238 	 * Size of the write buffer used by the MTD. MTD devices having a write
239 	 * buffer can write multiple writesize chunks at a time. E.g. while
240 	 * writing 4 * writesize bytes to a device with 2 * writesize bytes
241 	 * buffer the MTD driver can (but doesn't have to) do 2 writesize
242 	 * operations, but not 4. Currently, all NANDs have writebufsize
243 	 * equivalent to writesize (NAND page size). Some NOR flashes do have
244 	 * writebufsize greater than writesize.
245 	 */
246 	uint32_t writebufsize;
247 
248 	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
249 	uint32_t oobavail;  // Available OOB bytes per block
250 
251 	/*
252 	 * If erasesize is a power of 2 then the shift is stored in
253 	 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
254 	 */
255 	unsigned int erasesize_shift;
256 	unsigned int writesize_shift;
257 	/* Masks based on erasesize_shift and writesize_shift */
258 	unsigned int erasesize_mask;
259 	unsigned int writesize_mask;
260 
261 	/*
262 	 * read ops return -EUCLEAN if max number of bitflips corrected on any
263 	 * one region comprising an ecc step equals or exceeds this value.
264 	 * Settable by driver, else defaults to ecc_strength.  User can override
265 	 * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
266 	 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
267 	 */
268 	unsigned int bitflip_threshold;
269 
270 	/* Kernel-only stuff starts here. */
271 	const char *name;
272 	int index;
273 
274 	/* OOB layout description */
275 	const struct mtd_ooblayout_ops *ooblayout;
276 
277 	/* NAND pairing scheme, only provided for MLC/TLC NANDs */
278 	const struct mtd_pairing_scheme *pairing;
279 
280 	/* the ecc step size. */
281 	unsigned int ecc_step_size;
282 
283 	/* max number of correctible bit errors per ecc step */
284 	unsigned int ecc_strength;
285 
286 	/* Data for variable erase regions. If numeraseregions is zero,
287 	 * it means that the whole device has erasesize as given above.
288 	 */
289 	int numeraseregions;
290 	struct mtd_erase_region_info *eraseregions;
291 
292 	/*
293 	 * Do not call via these pointers, use corresponding mtd_*()
294 	 * wrappers instead.
295 	 */
296 	int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
297 	int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
298 		       size_t *retlen, void **virt, resource_size_t *phys);
299 	int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
300 	int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
301 		      size_t *retlen, u_char *buf);
302 	int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
303 		       size_t *retlen, const u_char *buf);
304 	int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
305 			     size_t *retlen, const u_char *buf);
306 	int (*_read_oob) (struct mtd_info *mtd, loff_t from,
307 			  struct mtd_oob_ops *ops);
308 	int (*_write_oob) (struct mtd_info *mtd, loff_t to,
309 			   struct mtd_oob_ops *ops);
310 	int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
311 				    size_t *retlen, struct otp_info *buf);
312 	int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
313 				    size_t len, size_t *retlen, u_char *buf);
314 	int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
315 				    size_t *retlen, struct otp_info *buf);
316 	int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
317 				    size_t len, size_t *retlen, u_char *buf);
318 	int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
319 				     size_t len, size_t *retlen, u_char *buf);
320 	int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
321 				    size_t len);
322 	int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
323 			unsigned long count, loff_t to, size_t *retlen);
324 	void (*_sync) (struct mtd_info *mtd);
325 	int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
326 	int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
327 	int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
328 	int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
329 	int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
330 	int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
331 	int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
332 	int (*_suspend) (struct mtd_info *mtd);
333 	void (*_resume) (struct mtd_info *mtd);
334 	void (*_reboot) (struct mtd_info *mtd);
335 	/*
336 	 * If the driver is something smart, like UBI, it may need to maintain
337 	 * its own reference counting. The below functions are only for driver.
338 	 */
339 	int (*_get_device) (struct mtd_info *mtd);
340 	void (*_put_device) (struct mtd_info *mtd);
341 
342 	struct notifier_block reboot_notifier;  /* default mode before reboot */
343 
344 	/* ECC status information */
345 	struct mtd_ecc_stats ecc_stats;
346 	/* Subpage shift (NAND) */
347 	int subpage_sft;
348 
349 	void *priv;
350 
351 	struct module *owner;
352 	struct device dev;
353 	int usecount;
354 	struct mtd_debug_info dbg;
355 };
356 
357 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
358 		      struct mtd_oob_region *oobecc);
359 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
360 				 int *section,
361 				 struct mtd_oob_region *oobregion);
362 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
363 			       const u8 *oobbuf, int start, int nbytes);
364 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
365 			       u8 *oobbuf, int start, int nbytes);
366 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
367 		       struct mtd_oob_region *oobfree);
368 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
369 				const u8 *oobbuf, int start, int nbytes);
370 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
371 				u8 *oobbuf, int start, int nbytes);
372 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
373 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
374 
375 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
376 				     const struct mtd_ooblayout_ops *ooblayout)
377 {
378 	mtd->ooblayout = ooblayout;
379 }
380 
381 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
382 				const struct mtd_pairing_scheme *pairing)
383 {
384 	mtd->pairing = pairing;
385 }
386 
387 static inline void mtd_set_of_node(struct mtd_info *mtd,
388 				   struct device_node *np)
389 {
390 	mtd->dev.of_node = np;
391 	if (!mtd->name)
392 		of_property_read_string(np, "label", &mtd->name);
393 }
394 
395 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
396 {
397 	return dev_of_node(&mtd->dev);
398 }
399 
400 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
401 {
402 	return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
403 }
404 
405 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
406 				     loff_t ofs, size_t len)
407 {
408 	if (!mtd->_max_bad_blocks)
409 		return -ENOTSUPP;
410 
411 	if (mtd->size < (len + ofs) || ofs < 0)
412 		return -EINVAL;
413 
414 	return mtd->_max_bad_blocks(mtd, ofs, len);
415 }
416 
417 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
418 			      struct mtd_pairing_info *info);
419 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
420 			      const struct mtd_pairing_info *info);
421 int mtd_pairing_groups(struct mtd_info *mtd);
422 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
423 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
424 	      void **virt, resource_size_t *phys);
425 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
426 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
427 				    unsigned long offset, unsigned long flags);
428 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
429 	     u_char *buf);
430 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
431 	      const u_char *buf);
432 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
433 		    const u_char *buf);
434 
435 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
436 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
437 
438 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
439 			   struct otp_info *buf);
440 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
441 			   size_t *retlen, u_char *buf);
442 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
443 			   struct otp_info *buf);
444 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
445 			   size_t *retlen, u_char *buf);
446 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
447 			    size_t *retlen, u_char *buf);
448 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
449 
450 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
451 	       unsigned long count, loff_t to, size_t *retlen);
452 
453 static inline void mtd_sync(struct mtd_info *mtd)
454 {
455 	if (mtd->_sync)
456 		mtd->_sync(mtd);
457 }
458 
459 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
460 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
461 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
462 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
463 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
464 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
465 
466 static inline int mtd_suspend(struct mtd_info *mtd)
467 {
468 	return mtd->_suspend ? mtd->_suspend(mtd) : 0;
469 }
470 
471 static inline void mtd_resume(struct mtd_info *mtd)
472 {
473 	if (mtd->_resume)
474 		mtd->_resume(mtd);
475 }
476 
477 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
478 {
479 	if (mtd->erasesize_shift)
480 		return sz >> mtd->erasesize_shift;
481 	do_div(sz, mtd->erasesize);
482 	return sz;
483 }
484 
485 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
486 {
487 	if (mtd->erasesize_shift)
488 		return sz & mtd->erasesize_mask;
489 	return do_div(sz, mtd->erasesize);
490 }
491 
492 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
493 {
494 	if (mtd->writesize_shift)
495 		return sz >> mtd->writesize_shift;
496 	do_div(sz, mtd->writesize);
497 	return sz;
498 }
499 
500 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
501 {
502 	if (mtd->writesize_shift)
503 		return sz & mtd->writesize_mask;
504 	return do_div(sz, mtd->writesize);
505 }
506 
507 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
508 {
509 	return mtd->erasesize / mtd->writesize;
510 }
511 
512 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
513 {
514 	return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
515 }
516 
517 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
518 					 int wunit)
519 {
520 	return base + (wunit * mtd->writesize);
521 }
522 
523 
524 static inline int mtd_has_oob(const struct mtd_info *mtd)
525 {
526 	return mtd->_read_oob && mtd->_write_oob;
527 }
528 
529 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
530 {
531 	return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
532 }
533 
534 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
535 {
536 	return !!mtd->_block_isbad;
537 }
538 
539 	/* Kernel-side ioctl definitions */
540 
541 struct mtd_partition;
542 struct mtd_part_parser_data;
543 
544 extern int mtd_device_parse_register(struct mtd_info *mtd,
545 				     const char * const *part_probe_types,
546 				     struct mtd_part_parser_data *parser_data,
547 				     const struct mtd_partition *defparts,
548 				     int defnr_parts);
549 #define mtd_device_register(master, parts, nr_parts)	\
550 	mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
551 extern int mtd_device_unregister(struct mtd_info *master);
552 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
553 extern int __get_mtd_device(struct mtd_info *mtd);
554 extern void __put_mtd_device(struct mtd_info *mtd);
555 extern struct mtd_info *get_mtd_device_nm(const char *name);
556 extern void put_mtd_device(struct mtd_info *mtd);
557 
558 
559 struct mtd_notifier {
560 	void (*add)(struct mtd_info *mtd);
561 	void (*remove)(struct mtd_info *mtd);
562 	struct list_head list;
563 };
564 
565 
566 extern void register_mtd_user (struct mtd_notifier *new);
567 extern int unregister_mtd_user (struct mtd_notifier *old);
568 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
569 
570 void mtd_erase_callback(struct erase_info *instr);
571 
572 static inline int mtd_is_bitflip(int err) {
573 	return err == -EUCLEAN;
574 }
575 
576 static inline int mtd_is_eccerr(int err) {
577 	return err == -EBADMSG;
578 }
579 
580 static inline int mtd_is_bitflip_or_eccerr(int err) {
581 	return mtd_is_bitflip(err) || mtd_is_eccerr(err);
582 }
583 
584 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
585 
586 #endif /* __MTD_MTD_H__ */
587