xref: /openbmc/linux/include/linux/mmu_notifier.h (revision 5294bac9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4 
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/mmap_lock.h>
9 #include <linux/srcu.h>
10 #include <linux/interval_tree.h>
11 
12 struct mmu_notifier_subscriptions;
13 struct mmu_notifier;
14 struct mmu_notifier_range;
15 struct mmu_interval_notifier;
16 
17 /**
18  * enum mmu_notifier_event - reason for the mmu notifier callback
19  * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
20  * move the range
21  *
22  * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
23  * madvise() or replacing a page by another one, ...).
24  *
25  * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
26  * ie using the vma access permission (vm_page_prot) to update the whole range
27  * is enough no need to inspect changes to the CPU page table (mprotect()
28  * syscall)
29  *
30  * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
31  * pages in the range so to mirror those changes the user must inspect the CPU
32  * page table (from the end callback).
33  *
34  * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
35  * access flags). User should soft dirty the page in the end callback to make
36  * sure that anyone relying on soft dirtyness catch pages that might be written
37  * through non CPU mappings.
38  *
39  * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
40  * that the mm refcount is zero and the range is no longer accessible.
41  *
42  * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
43  * a device driver to possibly ignore the invalidation if the
44  * migrate_pgmap_owner field matches the driver's device private pgmap owner.
45  */
46 enum mmu_notifier_event {
47 	MMU_NOTIFY_UNMAP = 0,
48 	MMU_NOTIFY_CLEAR,
49 	MMU_NOTIFY_PROTECTION_VMA,
50 	MMU_NOTIFY_PROTECTION_PAGE,
51 	MMU_NOTIFY_SOFT_DIRTY,
52 	MMU_NOTIFY_RELEASE,
53 	MMU_NOTIFY_MIGRATE,
54 };
55 
56 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
57 
58 struct mmu_notifier_ops {
59 	/*
60 	 * Called either by mmu_notifier_unregister or when the mm is
61 	 * being destroyed by exit_mmap, always before all pages are
62 	 * freed. This can run concurrently with other mmu notifier
63 	 * methods (the ones invoked outside the mm context) and it
64 	 * should tear down all secondary mmu mappings and freeze the
65 	 * secondary mmu. If this method isn't implemented you've to
66 	 * be sure that nothing could possibly write to the pages
67 	 * through the secondary mmu by the time the last thread with
68 	 * tsk->mm == mm exits.
69 	 *
70 	 * As side note: the pages freed after ->release returns could
71 	 * be immediately reallocated by the gart at an alias physical
72 	 * address with a different cache model, so if ->release isn't
73 	 * implemented because all _software_ driven memory accesses
74 	 * through the secondary mmu are terminated by the time the
75 	 * last thread of this mm quits, you've also to be sure that
76 	 * speculative _hardware_ operations can't allocate dirty
77 	 * cachelines in the cpu that could not be snooped and made
78 	 * coherent with the other read and write operations happening
79 	 * through the gart alias address, so leading to memory
80 	 * corruption.
81 	 */
82 	void (*release)(struct mmu_notifier *subscription,
83 			struct mm_struct *mm);
84 
85 	/*
86 	 * clear_flush_young is called after the VM is
87 	 * test-and-clearing the young/accessed bitflag in the
88 	 * pte. This way the VM will provide proper aging to the
89 	 * accesses to the page through the secondary MMUs and not
90 	 * only to the ones through the Linux pte.
91 	 * Start-end is necessary in case the secondary MMU is mapping the page
92 	 * at a smaller granularity than the primary MMU.
93 	 */
94 	int (*clear_flush_young)(struct mmu_notifier *subscription,
95 				 struct mm_struct *mm,
96 				 unsigned long start,
97 				 unsigned long end);
98 
99 	/*
100 	 * clear_young is a lightweight version of clear_flush_young. Like the
101 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
102 	 * in the secondary pte, but it may omit flushing the secondary tlb.
103 	 */
104 	int (*clear_young)(struct mmu_notifier *subscription,
105 			   struct mm_struct *mm,
106 			   unsigned long start,
107 			   unsigned long end);
108 
109 	/*
110 	 * test_young is called to check the young/accessed bitflag in
111 	 * the secondary pte. This is used to know if the page is
112 	 * frequently used without actually clearing the flag or tearing
113 	 * down the secondary mapping on the page.
114 	 */
115 	int (*test_young)(struct mmu_notifier *subscription,
116 			  struct mm_struct *mm,
117 			  unsigned long address);
118 
119 	/*
120 	 * change_pte is called in cases that pte mapping to page is changed:
121 	 * for example, when ksm remaps pte to point to a new shared page.
122 	 */
123 	void (*change_pte)(struct mmu_notifier *subscription,
124 			   struct mm_struct *mm,
125 			   unsigned long address,
126 			   pte_t pte);
127 
128 	/*
129 	 * invalidate_range_start() and invalidate_range_end() must be
130 	 * paired and are called only when the mmap_lock and/or the
131 	 * locks protecting the reverse maps are held. If the subsystem
132 	 * can't guarantee that no additional references are taken to
133 	 * the pages in the range, it has to implement the
134 	 * invalidate_range() notifier to remove any references taken
135 	 * after invalidate_range_start().
136 	 *
137 	 * Invalidation of multiple concurrent ranges may be
138 	 * optionally permitted by the driver. Either way the
139 	 * establishment of sptes is forbidden in the range passed to
140 	 * invalidate_range_begin/end for the whole duration of the
141 	 * invalidate_range_begin/end critical section.
142 	 *
143 	 * invalidate_range_start() is called when all pages in the
144 	 * range are still mapped and have at least a refcount of one.
145 	 *
146 	 * invalidate_range_end() is called when all pages in the
147 	 * range have been unmapped and the pages have been freed by
148 	 * the VM.
149 	 *
150 	 * The VM will remove the page table entries and potentially
151 	 * the page between invalidate_range_start() and
152 	 * invalidate_range_end(). If the page must not be freed
153 	 * because of pending I/O or other circumstances then the
154 	 * invalidate_range_start() callback (or the initial mapping
155 	 * by the driver) must make sure that the refcount is kept
156 	 * elevated.
157 	 *
158 	 * If the driver increases the refcount when the pages are
159 	 * initially mapped into an address space then either
160 	 * invalidate_range_start() or invalidate_range_end() may
161 	 * decrease the refcount. If the refcount is decreased on
162 	 * invalidate_range_start() then the VM can free pages as page
163 	 * table entries are removed.  If the refcount is only
164 	 * droppped on invalidate_range_end() then the driver itself
165 	 * will drop the last refcount but it must take care to flush
166 	 * any secondary tlb before doing the final free on the
167 	 * page. Pages will no longer be referenced by the linux
168 	 * address space but may still be referenced by sptes until
169 	 * the last refcount is dropped.
170 	 *
171 	 * If blockable argument is set to false then the callback cannot
172 	 * sleep and has to return with -EAGAIN. 0 should be returned
173 	 * otherwise. Please note that if invalidate_range_start approves
174 	 * a non-blocking behavior then the same applies to
175 	 * invalidate_range_end.
176 	 *
177 	 */
178 	int (*invalidate_range_start)(struct mmu_notifier *subscription,
179 				      const struct mmu_notifier_range *range);
180 	void (*invalidate_range_end)(struct mmu_notifier *subscription,
181 				     const struct mmu_notifier_range *range);
182 
183 	/*
184 	 * invalidate_range() is either called between
185 	 * invalidate_range_start() and invalidate_range_end() when the
186 	 * VM has to free pages that where unmapped, but before the
187 	 * pages are actually freed, or outside of _start()/_end() when
188 	 * a (remote) TLB is necessary.
189 	 *
190 	 * If invalidate_range() is used to manage a non-CPU TLB with
191 	 * shared page-tables, it not necessary to implement the
192 	 * invalidate_range_start()/end() notifiers, as
193 	 * invalidate_range() alread catches the points in time when an
194 	 * external TLB range needs to be flushed. For more in depth
195 	 * discussion on this see Documentation/vm/mmu_notifier.rst
196 	 *
197 	 * Note that this function might be called with just a sub-range
198 	 * of what was passed to invalidate_range_start()/end(), if
199 	 * called between those functions.
200 	 */
201 	void (*invalidate_range)(struct mmu_notifier *subscription,
202 				 struct mm_struct *mm,
203 				 unsigned long start,
204 				 unsigned long end);
205 
206 	/*
207 	 * These callbacks are used with the get/put interface to manage the
208 	 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
209 	 * notifier for use with the mm.
210 	 *
211 	 * free_notifier() is only called after the mmu_notifier has been
212 	 * fully put, calls to any ops callback are prevented and no ops
213 	 * callbacks are currently running. It is called from a SRCU callback
214 	 * and cannot sleep.
215 	 */
216 	struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
217 	void (*free_notifier)(struct mmu_notifier *subscription);
218 };
219 
220 /*
221  * The notifier chains are protected by mmap_lock and/or the reverse map
222  * semaphores. Notifier chains are only changed when all reverse maps and
223  * the mmap_lock locks are taken.
224  *
225  * Therefore notifier chains can only be traversed when either
226  *
227  * 1. mmap_lock is held.
228  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
229  * 3. No other concurrent thread can access the list (release)
230  */
231 struct mmu_notifier {
232 	struct hlist_node hlist;
233 	const struct mmu_notifier_ops *ops;
234 	struct mm_struct *mm;
235 	struct rcu_head rcu;
236 	unsigned int users;
237 };
238 
239 /**
240  * struct mmu_interval_notifier_ops
241  * @invalidate: Upon return the caller must stop using any SPTEs within this
242  *              range. This function can sleep. Return false only if sleeping
243  *              was required but mmu_notifier_range_blockable(range) is false.
244  */
245 struct mmu_interval_notifier_ops {
246 	bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
247 			   const struct mmu_notifier_range *range,
248 			   unsigned long cur_seq);
249 };
250 
251 struct mmu_interval_notifier {
252 	struct interval_tree_node interval_tree;
253 	const struct mmu_interval_notifier_ops *ops;
254 	struct mm_struct *mm;
255 	struct hlist_node deferred_item;
256 	unsigned long invalidate_seq;
257 };
258 
259 #ifdef CONFIG_MMU_NOTIFIER
260 
261 #ifdef CONFIG_LOCKDEP
262 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
263 #endif
264 
265 struct mmu_notifier_range {
266 	struct vm_area_struct *vma;
267 	struct mm_struct *mm;
268 	unsigned long start;
269 	unsigned long end;
270 	unsigned flags;
271 	enum mmu_notifier_event event;
272 	void *migrate_pgmap_owner;
273 };
274 
275 static inline int mm_has_notifiers(struct mm_struct *mm)
276 {
277 	return unlikely(mm->notifier_subscriptions);
278 }
279 
280 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
281 					     struct mm_struct *mm);
282 static inline struct mmu_notifier *
283 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
284 {
285 	struct mmu_notifier *ret;
286 
287 	mmap_write_lock(mm);
288 	ret = mmu_notifier_get_locked(ops, mm);
289 	mmap_write_unlock(mm);
290 	return ret;
291 }
292 void mmu_notifier_put(struct mmu_notifier *subscription);
293 void mmu_notifier_synchronize(void);
294 
295 extern int mmu_notifier_register(struct mmu_notifier *subscription,
296 				 struct mm_struct *mm);
297 extern int __mmu_notifier_register(struct mmu_notifier *subscription,
298 				   struct mm_struct *mm);
299 extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
300 				    struct mm_struct *mm);
301 
302 unsigned long
303 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
304 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
305 				 struct mm_struct *mm, unsigned long start,
306 				 unsigned long length,
307 				 const struct mmu_interval_notifier_ops *ops);
308 int mmu_interval_notifier_insert_locked(
309 	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
310 	unsigned long start, unsigned long length,
311 	const struct mmu_interval_notifier_ops *ops);
312 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
313 
314 /**
315  * mmu_interval_set_seq - Save the invalidation sequence
316  * @interval_sub - The subscription passed to invalidate
317  * @cur_seq - The cur_seq passed to the invalidate() callback
318  *
319  * This must be called unconditionally from the invalidate callback of a
320  * struct mmu_interval_notifier_ops under the same lock that is used to call
321  * mmu_interval_read_retry(). It updates the sequence number for later use by
322  * mmu_interval_read_retry(). The provided cur_seq will always be odd.
323  *
324  * If the caller does not call mmu_interval_read_begin() or
325  * mmu_interval_read_retry() then this call is not required.
326  */
327 static inline void
328 mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
329 		     unsigned long cur_seq)
330 {
331 	WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
332 }
333 
334 /**
335  * mmu_interval_read_retry - End a read side critical section against a VA range
336  * interval_sub: The subscription
337  * seq: The return of the paired mmu_interval_read_begin()
338  *
339  * This MUST be called under a user provided lock that is also held
340  * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
341  *
342  * Each call should be paired with a single mmu_interval_read_begin() and
343  * should be used to conclude the read side.
344  *
345  * Returns true if an invalidation collided with this critical section, and
346  * the caller should retry.
347  */
348 static inline bool
349 mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
350 			unsigned long seq)
351 {
352 	return interval_sub->invalidate_seq != seq;
353 }
354 
355 /**
356  * mmu_interval_check_retry - Test if a collision has occurred
357  * interval_sub: The subscription
358  * seq: The return of the matching mmu_interval_read_begin()
359  *
360  * This can be used in the critical section between mmu_interval_read_begin()
361  * and mmu_interval_read_retry().  A return of true indicates an invalidation
362  * has collided with this critical region and a future
363  * mmu_interval_read_retry() will return true.
364  *
365  * False is not reliable and only suggests a collision may not have
366  * occured. It can be called many times and does not have to hold the user
367  * provided lock.
368  *
369  * This call can be used as part of loops and other expensive operations to
370  * expedite a retry.
371  */
372 static inline bool
373 mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
374 			 unsigned long seq)
375 {
376 	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
377 	return READ_ONCE(interval_sub->invalidate_seq) != seq;
378 }
379 
380 extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
381 extern void __mmu_notifier_release(struct mm_struct *mm);
382 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
383 					  unsigned long start,
384 					  unsigned long end);
385 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
386 				      unsigned long start,
387 				      unsigned long end);
388 extern int __mmu_notifier_test_young(struct mm_struct *mm,
389 				     unsigned long address);
390 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
391 				      unsigned long address, pte_t pte);
392 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
393 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
394 				  bool only_end);
395 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
396 				  unsigned long start, unsigned long end);
397 extern bool
398 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
399 
400 static inline bool
401 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
402 {
403 	return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
404 }
405 
406 static inline void mmu_notifier_release(struct mm_struct *mm)
407 {
408 	if (mm_has_notifiers(mm))
409 		__mmu_notifier_release(mm);
410 }
411 
412 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
413 					  unsigned long start,
414 					  unsigned long end)
415 {
416 	if (mm_has_notifiers(mm))
417 		return __mmu_notifier_clear_flush_young(mm, start, end);
418 	return 0;
419 }
420 
421 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
422 					   unsigned long start,
423 					   unsigned long end)
424 {
425 	if (mm_has_notifiers(mm))
426 		return __mmu_notifier_clear_young(mm, start, end);
427 	return 0;
428 }
429 
430 static inline int mmu_notifier_test_young(struct mm_struct *mm,
431 					  unsigned long address)
432 {
433 	if (mm_has_notifiers(mm))
434 		return __mmu_notifier_test_young(mm, address);
435 	return 0;
436 }
437 
438 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
439 					   unsigned long address, pte_t pte)
440 {
441 	if (mm_has_notifiers(mm))
442 		__mmu_notifier_change_pte(mm, address, pte);
443 }
444 
445 static inline void
446 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
447 {
448 	might_sleep();
449 
450 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
451 	if (mm_has_notifiers(range->mm)) {
452 		range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
453 		__mmu_notifier_invalidate_range_start(range);
454 	}
455 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
456 }
457 
458 static inline int
459 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
460 {
461 	int ret = 0;
462 
463 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
464 	if (mm_has_notifiers(range->mm)) {
465 		range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
466 		ret = __mmu_notifier_invalidate_range_start(range);
467 	}
468 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
469 	return ret;
470 }
471 
472 static inline void
473 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
474 {
475 	if (mmu_notifier_range_blockable(range))
476 		might_sleep();
477 
478 	if (mm_has_notifiers(range->mm))
479 		__mmu_notifier_invalidate_range_end(range, false);
480 }
481 
482 static inline void
483 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
484 {
485 	if (mm_has_notifiers(range->mm))
486 		__mmu_notifier_invalidate_range_end(range, true);
487 }
488 
489 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
490 				  unsigned long start, unsigned long end)
491 {
492 	if (mm_has_notifiers(mm))
493 		__mmu_notifier_invalidate_range(mm, start, end);
494 }
495 
496 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
497 {
498 	mm->notifier_subscriptions = NULL;
499 }
500 
501 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
502 {
503 	if (mm_has_notifiers(mm))
504 		__mmu_notifier_subscriptions_destroy(mm);
505 }
506 
507 
508 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
509 					   enum mmu_notifier_event event,
510 					   unsigned flags,
511 					   struct vm_area_struct *vma,
512 					   struct mm_struct *mm,
513 					   unsigned long start,
514 					   unsigned long end)
515 {
516 	range->vma = vma;
517 	range->event = event;
518 	range->mm = mm;
519 	range->start = start;
520 	range->end = end;
521 	range->flags = flags;
522 }
523 
524 static inline void mmu_notifier_range_init_migrate(
525 			struct mmu_notifier_range *range, unsigned int flags,
526 			struct vm_area_struct *vma, struct mm_struct *mm,
527 			unsigned long start, unsigned long end, void *pgmap)
528 {
529 	mmu_notifier_range_init(range, MMU_NOTIFY_MIGRATE, flags, vma, mm,
530 				start, end);
531 	range->migrate_pgmap_owner = pgmap;
532 }
533 
534 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
535 ({									\
536 	int __young;							\
537 	struct vm_area_struct *___vma = __vma;				\
538 	unsigned long ___address = __address;				\
539 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
540 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
541 						  ___address,		\
542 						  ___address +		\
543 							PAGE_SIZE);	\
544 	__young;							\
545 })
546 
547 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
548 ({									\
549 	int __young;							\
550 	struct vm_area_struct *___vma = __vma;				\
551 	unsigned long ___address = __address;				\
552 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
553 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
554 						  ___address,		\
555 						  ___address +		\
556 							PMD_SIZE);	\
557 	__young;							\
558 })
559 
560 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
561 ({									\
562 	int __young;							\
563 	struct vm_area_struct *___vma = __vma;				\
564 	unsigned long ___address = __address;				\
565 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
566 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
567 					    ___address + PAGE_SIZE);	\
568 	__young;							\
569 })
570 
571 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
572 ({									\
573 	int __young;							\
574 	struct vm_area_struct *___vma = __vma;				\
575 	unsigned long ___address = __address;				\
576 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
577 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
578 					    ___address + PMD_SIZE);	\
579 	__young;							\
580 })
581 
582 #define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
583 ({									\
584 	unsigned long ___addr = __address & PAGE_MASK;			\
585 	struct mm_struct *___mm = (__vma)->vm_mm;			\
586 	pte_t ___pte;							\
587 									\
588 	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
589 	mmu_notifier_invalidate_range(___mm, ___addr,			\
590 					___addr + PAGE_SIZE);		\
591 									\
592 	___pte;								\
593 })
594 
595 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
596 ({									\
597 	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
598 	struct mm_struct *___mm = (__vma)->vm_mm;			\
599 	pmd_t ___pmd;							\
600 									\
601 	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
602 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
603 				      ___haddr + HPAGE_PMD_SIZE);	\
604 									\
605 	___pmd;								\
606 })
607 
608 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)		\
609 ({									\
610 	unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;		\
611 	struct mm_struct *___mm = (__vma)->vm_mm;			\
612 	pud_t ___pud;							\
613 									\
614 	___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);		\
615 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
616 				      ___haddr + HPAGE_PUD_SIZE);	\
617 									\
618 	___pud;								\
619 })
620 
621 /*
622  * set_pte_at_notify() sets the pte _after_ running the notifier.
623  * This is safe to start by updating the secondary MMUs, because the primary MMU
624  * pte invalidate must have already happened with a ptep_clear_flush() before
625  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
626  * required when we change both the protection of the mapping from read-only to
627  * read-write and the pfn (like during copy on write page faults). Otherwise the
628  * old page would remain mapped readonly in the secondary MMUs after the new
629  * page is already writable by some CPU through the primary MMU.
630  */
631 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
632 ({									\
633 	struct mm_struct *___mm = __mm;					\
634 	unsigned long ___address = __address;				\
635 	pte_t ___pte = __pte;						\
636 									\
637 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
638 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
639 })
640 
641 #else /* CONFIG_MMU_NOTIFIER */
642 
643 struct mmu_notifier_range {
644 	unsigned long start;
645 	unsigned long end;
646 };
647 
648 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
649 					    unsigned long start,
650 					    unsigned long end)
651 {
652 	range->start = start;
653 	range->end = end;
654 }
655 
656 #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end)  \
657 	_mmu_notifier_range_init(range, start, end)
658 #define mmu_notifier_range_init_migrate(range, flags, vma, mm, start, end, \
659 					pgmap) \
660 	_mmu_notifier_range_init(range, start, end)
661 
662 static inline bool
663 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
664 {
665 	return true;
666 }
667 
668 static inline int mm_has_notifiers(struct mm_struct *mm)
669 {
670 	return 0;
671 }
672 
673 static inline void mmu_notifier_release(struct mm_struct *mm)
674 {
675 }
676 
677 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
678 					  unsigned long start,
679 					  unsigned long end)
680 {
681 	return 0;
682 }
683 
684 static inline int mmu_notifier_test_young(struct mm_struct *mm,
685 					  unsigned long address)
686 {
687 	return 0;
688 }
689 
690 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
691 					   unsigned long address, pte_t pte)
692 {
693 }
694 
695 static inline void
696 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
697 {
698 }
699 
700 static inline int
701 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
702 {
703 	return 0;
704 }
705 
706 static inline
707 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
708 {
709 }
710 
711 static inline void
712 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
713 {
714 }
715 
716 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
717 				  unsigned long start, unsigned long end)
718 {
719 }
720 
721 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
722 {
723 }
724 
725 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
726 {
727 }
728 
729 #define mmu_notifier_range_update_to_read_only(r) false
730 
731 #define ptep_clear_flush_young_notify ptep_clear_flush_young
732 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
733 #define ptep_clear_young_notify ptep_test_and_clear_young
734 #define pmdp_clear_young_notify pmdp_test_and_clear_young
735 #define	ptep_clear_flush_notify ptep_clear_flush
736 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
737 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
738 #define set_pte_at_notify set_pte_at
739 
740 static inline void mmu_notifier_synchronize(void)
741 {
742 }
743 
744 #endif /* CONFIG_MMU_NOTIFIER */
745 
746 #endif /* _LINUX_MMU_NOTIFIER_H */
747