xref: /openbmc/linux/include/linux/mm_types.h (revision a86854d0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 typedef int vm_fault_t;
26 
27 struct address_space;
28 struct mem_cgroup;
29 struct hmm;
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * If you allocate the page using alloc_pages(), you can use some of the
39  * space in struct page for your own purposes.  The five words in the main
40  * union are available, except for bit 0 of the first word which must be
41  * kept clear.  Many users use this word to store a pointer to an object
42  * which is guaranteed to be aligned.  If you use the same storage as
43  * page->mapping, you must restore it to NULL before freeing the page.
44  *
45  * If your page will not be mapped to userspace, you can also use the four
46  * bytes in the mapcount union, but you must call page_mapcount_reset()
47  * before freeing it.
48  *
49  * If you want to use the refcount field, it must be used in such a way
50  * that other CPUs temporarily incrementing and then decrementing the
51  * refcount does not cause problems.  On receiving the page from
52  * alloc_pages(), the refcount will be positive.
53  *
54  * If you allocate pages of order > 0, you can use some of the fields
55  * in each subpage, but you may need to restore some of their values
56  * afterwards.
57  *
58  * SLUB uses cmpxchg_double() to atomically update its freelist and
59  * counters.  That requires that freelist & counters be adjacent and
60  * double-word aligned.  We align all struct pages to double-word
61  * boundaries, and ensure that 'freelist' is aligned within the
62  * struct.
63  */
64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
65 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
66 #else
67 #define _struct_page_alignment
68 #endif
69 
70 struct page {
71 	unsigned long flags;		/* Atomic flags, some possibly
72 					 * updated asynchronously */
73 	/*
74 	 * Five words (20/40 bytes) are available in this union.
75 	 * WARNING: bit 0 of the first word is used for PageTail(). That
76 	 * means the other users of this union MUST NOT use the bit to
77 	 * avoid collision and false-positive PageTail().
78 	 */
79 	union {
80 		struct {	/* Page cache and anonymous pages */
81 			/**
82 			 * @lru: Pageout list, eg. active_list protected by
83 			 * zone_lru_lock.  Sometimes used as a generic list
84 			 * by the page owner.
85 			 */
86 			struct list_head lru;
87 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
88 			struct address_space *mapping;
89 			pgoff_t index;		/* Our offset within mapping. */
90 			/**
91 			 * @private: Mapping-private opaque data.
92 			 * Usually used for buffer_heads if PagePrivate.
93 			 * Used for swp_entry_t if PageSwapCache.
94 			 * Indicates order in the buddy system if PageBuddy.
95 			 */
96 			unsigned long private;
97 		};
98 		struct {	/* slab, slob and slub */
99 			union {
100 				struct list_head slab_list;	/* uses lru */
101 				struct {	/* Partial pages */
102 					struct page *next;
103 #ifdef CONFIG_64BIT
104 					int pages;	/* Nr of pages left */
105 					int pobjects;	/* Approximate count */
106 #else
107 					short int pages;
108 					short int pobjects;
109 #endif
110 				};
111 			};
112 			struct kmem_cache *slab_cache; /* not slob */
113 			/* Double-word boundary */
114 			void *freelist;		/* first free object */
115 			union {
116 				void *s_mem;	/* slab: first object */
117 				unsigned long counters;		/* SLUB */
118 				struct {			/* SLUB */
119 					unsigned inuse:16;
120 					unsigned objects:15;
121 					unsigned frozen:1;
122 				};
123 			};
124 		};
125 		struct {	/* Tail pages of compound page */
126 			unsigned long compound_head;	/* Bit zero is set */
127 
128 			/* First tail page only */
129 			unsigned char compound_dtor;
130 			unsigned char compound_order;
131 			atomic_t compound_mapcount;
132 		};
133 		struct {	/* Second tail page of compound page */
134 			unsigned long _compound_pad_1;	/* compound_head */
135 			unsigned long _compound_pad_2;
136 			struct list_head deferred_list;
137 		};
138 		struct {	/* Page table pages */
139 			unsigned long _pt_pad_1;	/* compound_head */
140 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
141 			unsigned long _pt_pad_2;	/* mapping */
142 			struct mm_struct *pt_mm;	/* x86 pgds only */
143 #if ALLOC_SPLIT_PTLOCKS
144 			spinlock_t *ptl;
145 #else
146 			spinlock_t ptl;
147 #endif
148 		};
149 		struct {	/* ZONE_DEVICE pages */
150 			/** @pgmap: Points to the hosting device page map. */
151 			struct dev_pagemap *pgmap;
152 			unsigned long hmm_data;
153 			unsigned long _zd_pad_1;	/* uses mapping */
154 		};
155 
156 		/** @rcu_head: You can use this to free a page by RCU. */
157 		struct rcu_head rcu_head;
158 	};
159 
160 	union {		/* This union is 4 bytes in size. */
161 		/*
162 		 * If the page can be mapped to userspace, encodes the number
163 		 * of times this page is referenced by a page table.
164 		 */
165 		atomic_t _mapcount;
166 
167 		/*
168 		 * If the page is neither PageSlab nor mappable to userspace,
169 		 * the value stored here may help determine what this page
170 		 * is used for.  See page-flags.h for a list of page types
171 		 * which are currently stored here.
172 		 */
173 		unsigned int page_type;
174 
175 		unsigned int active;		/* SLAB */
176 		int units;			/* SLOB */
177 	};
178 
179 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
180 	atomic_t _refcount;
181 
182 #ifdef CONFIG_MEMCG
183 	struct mem_cgroup *mem_cgroup;
184 #endif
185 
186 	/*
187 	 * On machines where all RAM is mapped into kernel address space,
188 	 * we can simply calculate the virtual address. On machines with
189 	 * highmem some memory is mapped into kernel virtual memory
190 	 * dynamically, so we need a place to store that address.
191 	 * Note that this field could be 16 bits on x86 ... ;)
192 	 *
193 	 * Architectures with slow multiplication can define
194 	 * WANT_PAGE_VIRTUAL in asm/page.h
195 	 */
196 #if defined(WANT_PAGE_VIRTUAL)
197 	void *virtual;			/* Kernel virtual address (NULL if
198 					   not kmapped, ie. highmem) */
199 #endif /* WANT_PAGE_VIRTUAL */
200 
201 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
202 	int _last_cpupid;
203 #endif
204 } _struct_page_alignment;
205 
206 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
207 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
208 
209 struct page_frag_cache {
210 	void * va;
211 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
212 	__u16 offset;
213 	__u16 size;
214 #else
215 	__u32 offset;
216 #endif
217 	/* we maintain a pagecount bias, so that we dont dirty cache line
218 	 * containing page->_refcount every time we allocate a fragment.
219 	 */
220 	unsigned int		pagecnt_bias;
221 	bool pfmemalloc;
222 };
223 
224 typedef unsigned long vm_flags_t;
225 
226 /*
227  * A region containing a mapping of a non-memory backed file under NOMMU
228  * conditions.  These are held in a global tree and are pinned by the VMAs that
229  * map parts of them.
230  */
231 struct vm_region {
232 	struct rb_node	vm_rb;		/* link in global region tree */
233 	vm_flags_t	vm_flags;	/* VMA vm_flags */
234 	unsigned long	vm_start;	/* start address of region */
235 	unsigned long	vm_end;		/* region initialised to here */
236 	unsigned long	vm_top;		/* region allocated to here */
237 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
238 	struct file	*vm_file;	/* the backing file or NULL */
239 
240 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
241 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
242 						* this region */
243 };
244 
245 #ifdef CONFIG_USERFAULTFD
246 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
247 struct vm_userfaultfd_ctx {
248 	struct userfaultfd_ctx *ctx;
249 };
250 #else /* CONFIG_USERFAULTFD */
251 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
252 struct vm_userfaultfd_ctx {};
253 #endif /* CONFIG_USERFAULTFD */
254 
255 /*
256  * This struct defines a memory VMM memory area. There is one of these
257  * per VM-area/task.  A VM area is any part of the process virtual memory
258  * space that has a special rule for the page-fault handlers (ie a shared
259  * library, the executable area etc).
260  */
261 struct vm_area_struct {
262 	/* The first cache line has the info for VMA tree walking. */
263 
264 	unsigned long vm_start;		/* Our start address within vm_mm. */
265 	unsigned long vm_end;		/* The first byte after our end address
266 					   within vm_mm. */
267 
268 	/* linked list of VM areas per task, sorted by address */
269 	struct vm_area_struct *vm_next, *vm_prev;
270 
271 	struct rb_node vm_rb;
272 
273 	/*
274 	 * Largest free memory gap in bytes to the left of this VMA.
275 	 * Either between this VMA and vma->vm_prev, or between one of the
276 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
277 	 * get_unmapped_area find a free area of the right size.
278 	 */
279 	unsigned long rb_subtree_gap;
280 
281 	/* Second cache line starts here. */
282 
283 	struct mm_struct *vm_mm;	/* The address space we belong to. */
284 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
285 	unsigned long vm_flags;		/* Flags, see mm.h. */
286 
287 	/*
288 	 * For areas with an address space and backing store,
289 	 * linkage into the address_space->i_mmap interval tree.
290 	 */
291 	struct {
292 		struct rb_node rb;
293 		unsigned long rb_subtree_last;
294 	} shared;
295 
296 	/*
297 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
298 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
299 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
300 	 * or brk vma (with NULL file) can only be in an anon_vma list.
301 	 */
302 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
303 					  * page_table_lock */
304 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
305 
306 	/* Function pointers to deal with this struct. */
307 	const struct vm_operations_struct *vm_ops;
308 
309 	/* Information about our backing store: */
310 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
311 					   units */
312 	struct file * vm_file;		/* File we map to (can be NULL). */
313 	void * vm_private_data;		/* was vm_pte (shared mem) */
314 
315 	atomic_long_t swap_readahead_info;
316 #ifndef CONFIG_MMU
317 	struct vm_region *vm_region;	/* NOMMU mapping region */
318 #endif
319 #ifdef CONFIG_NUMA
320 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
321 #endif
322 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
323 } __randomize_layout;
324 
325 struct core_thread {
326 	struct task_struct *task;
327 	struct core_thread *next;
328 };
329 
330 struct core_state {
331 	atomic_t nr_threads;
332 	struct core_thread dumper;
333 	struct completion startup;
334 };
335 
336 struct kioctx_table;
337 struct mm_struct {
338 	struct vm_area_struct *mmap;		/* list of VMAs */
339 	struct rb_root mm_rb;
340 	u32 vmacache_seqnum;                   /* per-thread vmacache */
341 #ifdef CONFIG_MMU
342 	unsigned long (*get_unmapped_area) (struct file *filp,
343 				unsigned long addr, unsigned long len,
344 				unsigned long pgoff, unsigned long flags);
345 #endif
346 	unsigned long mmap_base;		/* base of mmap area */
347 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
348 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
349 	/* Base adresses for compatible mmap() */
350 	unsigned long mmap_compat_base;
351 	unsigned long mmap_compat_legacy_base;
352 #endif
353 	unsigned long task_size;		/* size of task vm space */
354 	unsigned long highest_vm_end;		/* highest vma end address */
355 	pgd_t * pgd;
356 
357 	/**
358 	 * @mm_users: The number of users including userspace.
359 	 *
360 	 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
361 	 * to 0 (i.e. when the task exits and there are no other temporary
362 	 * reference holders), we also release a reference on @mm_count
363 	 * (which may then free the &struct mm_struct if @mm_count also
364 	 * drops to 0).
365 	 */
366 	atomic_t mm_users;
367 
368 	/**
369 	 * @mm_count: The number of references to &struct mm_struct
370 	 * (@mm_users count as 1).
371 	 *
372 	 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
373 	 * &struct mm_struct is freed.
374 	 */
375 	atomic_t mm_count;
376 
377 #ifdef CONFIG_MMU
378 	atomic_long_t pgtables_bytes;		/* PTE page table pages */
379 #endif
380 	int map_count;				/* number of VMAs */
381 
382 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
383 	struct rw_semaphore mmap_sem;
384 
385 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
386 						 * together off init_mm.mmlist, and are protected
387 						 * by mmlist_lock
388 						 */
389 
390 
391 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
392 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
393 
394 	unsigned long total_vm;		/* Total pages mapped */
395 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
396 	unsigned long pinned_vm;	/* Refcount permanently increased */
397 	unsigned long data_vm;		/* VM_WRITE & ~VM_SHARED & ~VM_STACK */
398 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE & ~VM_STACK */
399 	unsigned long stack_vm;		/* VM_STACK */
400 	unsigned long def_flags;
401 
402 	spinlock_t arg_lock; /* protect the below fields */
403 	unsigned long start_code, end_code, start_data, end_data;
404 	unsigned long start_brk, brk, start_stack;
405 	unsigned long arg_start, arg_end, env_start, env_end;
406 
407 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
408 
409 	/*
410 	 * Special counters, in some configurations protected by the
411 	 * page_table_lock, in other configurations by being atomic.
412 	 */
413 	struct mm_rss_stat rss_stat;
414 
415 	struct linux_binfmt *binfmt;
416 
417 	cpumask_var_t cpu_vm_mask_var;
418 
419 	/* Architecture-specific MM context */
420 	mm_context_t context;
421 
422 	unsigned long flags; /* Must use atomic bitops to access the bits */
423 
424 	struct core_state *core_state; /* coredumping support */
425 #ifdef CONFIG_MEMBARRIER
426 	atomic_t membarrier_state;
427 #endif
428 #ifdef CONFIG_AIO
429 	spinlock_t			ioctx_lock;
430 	struct kioctx_table __rcu	*ioctx_table;
431 #endif
432 #ifdef CONFIG_MEMCG
433 	/*
434 	 * "owner" points to a task that is regarded as the canonical
435 	 * user/owner of this mm. All of the following must be true in
436 	 * order for it to be changed:
437 	 *
438 	 * current == mm->owner
439 	 * current->mm != mm
440 	 * new_owner->mm == mm
441 	 * new_owner->alloc_lock is held
442 	 */
443 	struct task_struct __rcu *owner;
444 #endif
445 	struct user_namespace *user_ns;
446 
447 	/* store ref to file /proc/<pid>/exe symlink points to */
448 	struct file __rcu *exe_file;
449 #ifdef CONFIG_MMU_NOTIFIER
450 	struct mmu_notifier_mm *mmu_notifier_mm;
451 #endif
452 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
453 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
454 #endif
455 #ifdef CONFIG_CPUMASK_OFFSTACK
456 	struct cpumask cpumask_allocation;
457 #endif
458 #ifdef CONFIG_NUMA_BALANCING
459 	/*
460 	 * numa_next_scan is the next time that the PTEs will be marked
461 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
462 	 * pages to new nodes if necessary.
463 	 */
464 	unsigned long numa_next_scan;
465 
466 	/* Restart point for scanning and setting pte_numa */
467 	unsigned long numa_scan_offset;
468 
469 	/* numa_scan_seq prevents two threads setting pte_numa */
470 	int numa_scan_seq;
471 #endif
472 	/*
473 	 * An operation with batched TLB flushing is going on. Anything that
474 	 * can move process memory needs to flush the TLB when moving a
475 	 * PROT_NONE or PROT_NUMA mapped page.
476 	 */
477 	atomic_t tlb_flush_pending;
478 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
479 	/* See flush_tlb_batched_pending() */
480 	bool tlb_flush_batched;
481 #endif
482 	struct uprobes_state uprobes_state;
483 #ifdef CONFIG_HUGETLB_PAGE
484 	atomic_long_t hugetlb_usage;
485 #endif
486 	struct work_struct async_put_work;
487 
488 #if IS_ENABLED(CONFIG_HMM)
489 	/* HMM needs to track a few things per mm */
490 	struct hmm *hmm;
491 #endif
492 } __randomize_layout;
493 
494 extern struct mm_struct init_mm;
495 
496 static inline void mm_init_cpumask(struct mm_struct *mm)
497 {
498 #ifdef CONFIG_CPUMASK_OFFSTACK
499 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
500 #endif
501 	cpumask_clear(mm->cpu_vm_mask_var);
502 }
503 
504 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
505 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
506 {
507 	return mm->cpu_vm_mask_var;
508 }
509 
510 struct mmu_gather;
511 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
512 				unsigned long start, unsigned long end);
513 extern void tlb_finish_mmu(struct mmu_gather *tlb,
514 				unsigned long start, unsigned long end);
515 
516 static inline void init_tlb_flush_pending(struct mm_struct *mm)
517 {
518 	atomic_set(&mm->tlb_flush_pending, 0);
519 }
520 
521 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
522 {
523 	atomic_inc(&mm->tlb_flush_pending);
524 	/*
525 	 * The only time this value is relevant is when there are indeed pages
526 	 * to flush. And we'll only flush pages after changing them, which
527 	 * requires the PTL.
528 	 *
529 	 * So the ordering here is:
530 	 *
531 	 *	atomic_inc(&mm->tlb_flush_pending);
532 	 *	spin_lock(&ptl);
533 	 *	...
534 	 *	set_pte_at();
535 	 *	spin_unlock(&ptl);
536 	 *
537 	 *				spin_lock(&ptl)
538 	 *				mm_tlb_flush_pending();
539 	 *				....
540 	 *				spin_unlock(&ptl);
541 	 *
542 	 *	flush_tlb_range();
543 	 *	atomic_dec(&mm->tlb_flush_pending);
544 	 *
545 	 * Where the increment if constrained by the PTL unlock, it thus
546 	 * ensures that the increment is visible if the PTE modification is
547 	 * visible. After all, if there is no PTE modification, nobody cares
548 	 * about TLB flushes either.
549 	 *
550 	 * This very much relies on users (mm_tlb_flush_pending() and
551 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
552 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
553 	 * locks (PPC) the unlock of one doesn't order against the lock of
554 	 * another PTL.
555 	 *
556 	 * The decrement is ordered by the flush_tlb_range(), such that
557 	 * mm_tlb_flush_pending() will not return false unless all flushes have
558 	 * completed.
559 	 */
560 }
561 
562 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
563 {
564 	/*
565 	 * See inc_tlb_flush_pending().
566 	 *
567 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
568 	 * not order against TLB invalidate completion, which is what we need.
569 	 *
570 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
571 	 */
572 	atomic_dec(&mm->tlb_flush_pending);
573 }
574 
575 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
576 {
577 	/*
578 	 * Must be called after having acquired the PTL; orders against that
579 	 * PTLs release and therefore ensures that if we observe the modified
580 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
581 	 *
582 	 * That is, it only guarantees to return true if there is a flush
583 	 * pending for _this_ PTL.
584 	 */
585 	return atomic_read(&mm->tlb_flush_pending);
586 }
587 
588 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
589 {
590 	/*
591 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
592 	 * for which there is a TLB flush pending in order to guarantee
593 	 * we've seen both that PTE modification and the increment.
594 	 *
595 	 * (no requirement on actually still holding the PTL, that is irrelevant)
596 	 */
597 	return atomic_read(&mm->tlb_flush_pending) > 1;
598 }
599 
600 struct vm_fault;
601 
602 struct vm_special_mapping {
603 	const char *name;	/* The name, e.g. "[vdso]". */
604 
605 	/*
606 	 * If .fault is not provided, this points to a
607 	 * NULL-terminated array of pages that back the special mapping.
608 	 *
609 	 * This must not be NULL unless .fault is provided.
610 	 */
611 	struct page **pages;
612 
613 	/*
614 	 * If non-NULL, then this is called to resolve page faults
615 	 * on the special mapping.  If used, .pages is not checked.
616 	 */
617 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
618 				struct vm_area_struct *vma,
619 				struct vm_fault *vmf);
620 
621 	int (*mremap)(const struct vm_special_mapping *sm,
622 		     struct vm_area_struct *new_vma);
623 };
624 
625 enum tlb_flush_reason {
626 	TLB_FLUSH_ON_TASK_SWITCH,
627 	TLB_REMOTE_SHOOTDOWN,
628 	TLB_LOCAL_SHOOTDOWN,
629 	TLB_LOCAL_MM_SHOOTDOWN,
630 	TLB_REMOTE_SEND_IPI,
631 	NR_TLB_FLUSH_REASONS,
632 };
633 
634  /*
635   * A swap entry has to fit into a "unsigned long", as the entry is hidden
636   * in the "index" field of the swapper address space.
637   */
638 typedef struct {
639 	unsigned long val;
640 } swp_entry_t;
641 
642 #endif /* _LINUX_MM_TYPES_H */
643