xref: /openbmc/linux/include/linux/mm_inline.h (revision 0153682e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef LINUX_MM_INLINE_H
3 #define LINUX_MM_INLINE_H
4 
5 #include <linux/atomic.h>
6 #include <linux/huge_mm.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/userfaultfd_k.h>
10 #include <linux/swapops.h>
11 
12 /**
13  * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
14  * @folio: The folio to test.
15  *
16  * We would like to get this info without a page flag, but the state
17  * needs to survive until the folio is last deleted from the LRU, which
18  * could be as far down as __page_cache_release.
19  *
20  * Return: An integer (not a boolean!) used to sort a folio onto the
21  * right LRU list and to account folios correctly.
22  * 1 if @folio is a regular filesystem backed page cache folio
23  * or a lazily freed anonymous folio (e.g. via MADV_FREE).
24  * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
25  * ram or swap backed folio.
26  */
27 static inline int folio_is_file_lru(struct folio *folio)
28 {
29 	return !folio_test_swapbacked(folio);
30 }
31 
32 static inline int page_is_file_lru(struct page *page)
33 {
34 	return folio_is_file_lru(page_folio(page));
35 }
36 
37 static __always_inline void update_lru_size(struct lruvec *lruvec,
38 				enum lru_list lru, enum zone_type zid,
39 				long nr_pages)
40 {
41 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
42 
43 	__mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
44 	__mod_zone_page_state(&pgdat->node_zones[zid],
45 				NR_ZONE_LRU_BASE + lru, nr_pages);
46 #ifdef CONFIG_MEMCG
47 	mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
48 #endif
49 }
50 
51 /**
52  * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
53  * @folio: The folio that was on lru and now has a zero reference.
54  */
55 static __always_inline void __folio_clear_lru_flags(struct folio *folio)
56 {
57 	VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
58 
59 	__folio_clear_lru(folio);
60 
61 	/* this shouldn't happen, so leave the flags to bad_page() */
62 	if (folio_test_active(folio) && folio_test_unevictable(folio))
63 		return;
64 
65 	__folio_clear_active(folio);
66 	__folio_clear_unevictable(folio);
67 }
68 
69 static __always_inline void __clear_page_lru_flags(struct page *page)
70 {
71 	__folio_clear_lru_flags(page_folio(page));
72 }
73 
74 /**
75  * folio_lru_list - Which LRU list should a folio be on?
76  * @folio: The folio to test.
77  *
78  * Return: The LRU list a folio should be on, as an index
79  * into the array of LRU lists.
80  */
81 static __always_inline enum lru_list folio_lru_list(struct folio *folio)
82 {
83 	enum lru_list lru;
84 
85 	VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
86 
87 	if (folio_test_unevictable(folio))
88 		return LRU_UNEVICTABLE;
89 
90 	lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
91 	if (folio_test_active(folio))
92 		lru += LRU_ACTIVE;
93 
94 	return lru;
95 }
96 
97 static __always_inline
98 void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
99 {
100 	enum lru_list lru = folio_lru_list(folio);
101 
102 	update_lru_size(lruvec, lru, folio_zonenum(folio),
103 			folio_nr_pages(folio));
104 	if (lru != LRU_UNEVICTABLE)
105 		list_add(&folio->lru, &lruvec->lists[lru]);
106 }
107 
108 static __always_inline void add_page_to_lru_list(struct page *page,
109 				struct lruvec *lruvec)
110 {
111 	lruvec_add_folio(lruvec, page_folio(page));
112 }
113 
114 static __always_inline
115 void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
116 {
117 	enum lru_list lru = folio_lru_list(folio);
118 
119 	update_lru_size(lruvec, lru, folio_zonenum(folio),
120 			folio_nr_pages(folio));
121 	/* This is not expected to be used on LRU_UNEVICTABLE */
122 	list_add_tail(&folio->lru, &lruvec->lists[lru]);
123 }
124 
125 static __always_inline void add_page_to_lru_list_tail(struct page *page,
126 				struct lruvec *lruvec)
127 {
128 	lruvec_add_folio_tail(lruvec, page_folio(page));
129 }
130 
131 static __always_inline
132 void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
133 {
134 	enum lru_list lru = folio_lru_list(folio);
135 
136 	if (lru != LRU_UNEVICTABLE)
137 		list_del(&folio->lru);
138 	update_lru_size(lruvec, lru, folio_zonenum(folio),
139 			-folio_nr_pages(folio));
140 }
141 
142 static __always_inline void del_page_from_lru_list(struct page *page,
143 				struct lruvec *lruvec)
144 {
145 	lruvec_del_folio(lruvec, page_folio(page));
146 }
147 
148 #ifdef CONFIG_ANON_VMA_NAME
149 /*
150  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
151  * either keep holding the lock while using the returned pointer or it should
152  * raise anon_vma_name refcount before releasing the lock.
153  */
154 extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
155 extern struct anon_vma_name *anon_vma_name_alloc(const char *name);
156 extern void anon_vma_name_free(struct kref *kref);
157 
158 /* mmap_lock should be read-locked */
159 static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
160 {
161 	if (anon_name)
162 		kref_get(&anon_name->kref);
163 }
164 
165 static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
166 {
167 	if (anon_name)
168 		kref_put(&anon_name->kref, anon_vma_name_free);
169 }
170 
171 static inline
172 struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
173 {
174 	/* Prevent anon_name refcount saturation early on */
175 	if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
176 		anon_vma_name_get(anon_name);
177 		return anon_name;
178 
179 	}
180 	return anon_vma_name_alloc(anon_name->name);
181 }
182 
183 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
184 				     struct vm_area_struct *new_vma)
185 {
186 	struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
187 
188 	if (anon_name)
189 		new_vma->anon_name = anon_vma_name_reuse(anon_name);
190 }
191 
192 static inline void free_anon_vma_name(struct vm_area_struct *vma)
193 {
194 	/*
195 	 * Not using anon_vma_name because it generates a warning if mmap_lock
196 	 * is not held, which might be the case here.
197 	 */
198 	if (!vma->vm_file)
199 		anon_vma_name_put(vma->anon_name);
200 }
201 
202 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
203 				    struct anon_vma_name *anon_name2)
204 {
205 	if (anon_name1 == anon_name2)
206 		return true;
207 
208 	return anon_name1 && anon_name2 &&
209 		!strcmp(anon_name1->name, anon_name2->name);
210 }
211 
212 #else /* CONFIG_ANON_VMA_NAME */
213 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
214 {
215 	return NULL;
216 }
217 
218 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
219 {
220 	return NULL;
221 }
222 
223 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
224 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
225 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
226 				     struct vm_area_struct *new_vma) {}
227 static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
228 
229 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
230 				    struct anon_vma_name *anon_name2)
231 {
232 	return true;
233 }
234 
235 #endif  /* CONFIG_ANON_VMA_NAME */
236 
237 static inline void init_tlb_flush_pending(struct mm_struct *mm)
238 {
239 	atomic_set(&mm->tlb_flush_pending, 0);
240 }
241 
242 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
243 {
244 	atomic_inc(&mm->tlb_flush_pending);
245 	/*
246 	 * The only time this value is relevant is when there are indeed pages
247 	 * to flush. And we'll only flush pages after changing them, which
248 	 * requires the PTL.
249 	 *
250 	 * So the ordering here is:
251 	 *
252 	 *	atomic_inc(&mm->tlb_flush_pending);
253 	 *	spin_lock(&ptl);
254 	 *	...
255 	 *	set_pte_at();
256 	 *	spin_unlock(&ptl);
257 	 *
258 	 *				spin_lock(&ptl)
259 	 *				mm_tlb_flush_pending();
260 	 *				....
261 	 *				spin_unlock(&ptl);
262 	 *
263 	 *	flush_tlb_range();
264 	 *	atomic_dec(&mm->tlb_flush_pending);
265 	 *
266 	 * Where the increment if constrained by the PTL unlock, it thus
267 	 * ensures that the increment is visible if the PTE modification is
268 	 * visible. After all, if there is no PTE modification, nobody cares
269 	 * about TLB flushes either.
270 	 *
271 	 * This very much relies on users (mm_tlb_flush_pending() and
272 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
273 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
274 	 * locks (PPC) the unlock of one doesn't order against the lock of
275 	 * another PTL.
276 	 *
277 	 * The decrement is ordered by the flush_tlb_range(), such that
278 	 * mm_tlb_flush_pending() will not return false unless all flushes have
279 	 * completed.
280 	 */
281 }
282 
283 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
284 {
285 	/*
286 	 * See inc_tlb_flush_pending().
287 	 *
288 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
289 	 * not order against TLB invalidate completion, which is what we need.
290 	 *
291 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
292 	 */
293 	atomic_dec(&mm->tlb_flush_pending);
294 }
295 
296 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
297 {
298 	/*
299 	 * Must be called after having acquired the PTL; orders against that
300 	 * PTLs release and therefore ensures that if we observe the modified
301 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
302 	 *
303 	 * That is, it only guarantees to return true if there is a flush
304 	 * pending for _this_ PTL.
305 	 */
306 	return atomic_read(&mm->tlb_flush_pending);
307 }
308 
309 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
310 {
311 	/*
312 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
313 	 * for which there is a TLB flush pending in order to guarantee
314 	 * we've seen both that PTE modification and the increment.
315 	 *
316 	 * (no requirement on actually still holding the PTL, that is irrelevant)
317 	 */
318 	return atomic_read(&mm->tlb_flush_pending) > 1;
319 }
320 
321 /*
322  * If this pte is wr-protected by uffd-wp in any form, arm the special pte to
323  * replace a none pte.  NOTE!  This should only be called when *pte is already
324  * cleared so we will never accidentally replace something valuable.  Meanwhile
325  * none pte also means we are not demoting the pte so tlb flushed is not needed.
326  * E.g., when pte cleared the caller should have taken care of the tlb flush.
327  *
328  * Must be called with pgtable lock held so that no thread will see the none
329  * pte, and if they see it, they'll fault and serialize at the pgtable lock.
330  *
331  * This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
332  */
333 static inline void
334 pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
335 			      pte_t *pte, pte_t pteval)
336 {
337 #ifdef CONFIG_PTE_MARKER_UFFD_WP
338 	bool arm_uffd_pte = false;
339 
340 	/* The current status of the pte should be "cleared" before calling */
341 	WARN_ON_ONCE(!pte_none(*pte));
342 
343 	if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
344 		return;
345 
346 	/* A uffd-wp wr-protected normal pte */
347 	if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
348 		arm_uffd_pte = true;
349 
350 	/*
351 	 * A uffd-wp wr-protected swap pte.  Note: this should even cover an
352 	 * existing pte marker with uffd-wp bit set.
353 	 */
354 	if (unlikely(pte_swp_uffd_wp_any(pteval)))
355 		arm_uffd_pte = true;
356 
357 	if (unlikely(arm_uffd_pte))
358 		set_pte_at(vma->vm_mm, addr, pte,
359 			   make_pte_marker(PTE_MARKER_UFFD_WP));
360 #endif
361 }
362 
363 #endif
364