xref: /openbmc/linux/include/linux/mm.h (revision ed1666f6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 #ifndef __pa_symbol
103 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
104 #endif
105 
106 #ifndef page_to_virt
107 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
108 #endif
109 
110 #ifndef lm_alias
111 #define lm_alias(x)	__va(__pa_symbol(x))
112 #endif
113 
114 /*
115  * To prevent common memory management code establishing
116  * a zero page mapping on a read fault.
117  * This macro should be defined within <asm/pgtable.h>.
118  * s390 does this to prevent multiplexing of hardware bits
119  * related to the physical page in case of virtualization.
120  */
121 #ifndef mm_forbids_zeropage
122 #define mm_forbids_zeropage(X)	(0)
123 #endif
124 
125 /*
126  * On some architectures it is expensive to call memset() for small sizes.
127  * Those architectures should provide their own implementation of "struct page"
128  * zeroing by defining this macro in <asm/pgtable.h>.
129  */
130 #ifndef mm_zero_struct_page
131 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
132 #endif
133 
134 /*
135  * Default maximum number of active map areas, this limits the number of vmas
136  * per mm struct. Users can overwrite this number by sysctl but there is a
137  * problem.
138  *
139  * When a program's coredump is generated as ELF format, a section is created
140  * per a vma. In ELF, the number of sections is represented in unsigned short.
141  * This means the number of sections should be smaller than 65535 at coredump.
142  * Because the kernel adds some informative sections to a image of program at
143  * generating coredump, we need some margin. The number of extra sections is
144  * 1-3 now and depends on arch. We use "5" as safe margin, here.
145  *
146  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
147  * not a hard limit any more. Although some userspace tools can be surprised by
148  * that.
149  */
150 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
151 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
152 
153 extern int sysctl_max_map_count;
154 
155 extern unsigned long sysctl_user_reserve_kbytes;
156 extern unsigned long sysctl_admin_reserve_kbytes;
157 
158 extern int sysctl_overcommit_memory;
159 extern int sysctl_overcommit_ratio;
160 extern unsigned long sysctl_overcommit_kbytes;
161 
162 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
163 				    size_t *, loff_t *);
164 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
165 				    size_t *, loff_t *);
166 
167 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
168 
169 /* to align the pointer to the (next) page boundary */
170 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
171 
172 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
173 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
174 
175 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
176 
177 /*
178  * Linux kernel virtual memory manager primitives.
179  * The idea being to have a "virtual" mm in the same way
180  * we have a virtual fs - giving a cleaner interface to the
181  * mm details, and allowing different kinds of memory mappings
182  * (from shared memory to executable loading to arbitrary
183  * mmap() functions).
184  */
185 
186 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
187 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
188 void vm_area_free(struct vm_area_struct *);
189 
190 #ifndef CONFIG_MMU
191 extern struct rb_root nommu_region_tree;
192 extern struct rw_semaphore nommu_region_sem;
193 
194 extern unsigned int kobjsize(const void *objp);
195 #endif
196 
197 /*
198  * vm_flags in vm_area_struct, see mm_types.h.
199  * When changing, update also include/trace/events/mmflags.h
200  */
201 #define VM_NONE		0x00000000
202 
203 #define VM_READ		0x00000001	/* currently active flags */
204 #define VM_WRITE	0x00000002
205 #define VM_EXEC		0x00000004
206 #define VM_SHARED	0x00000008
207 
208 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
209 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
210 #define VM_MAYWRITE	0x00000020
211 #define VM_MAYEXEC	0x00000040
212 #define VM_MAYSHARE	0x00000080
213 
214 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
215 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
216 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
217 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
218 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
219 
220 #define VM_LOCKED	0x00002000
221 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
222 
223 					/* Used by sys_madvise() */
224 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
225 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
226 
227 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
228 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
229 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
230 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
231 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
232 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
233 #define VM_SYNC		0x00800000	/* Synchronous page faults */
234 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
235 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
236 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
237 
238 #ifdef CONFIG_MEM_SOFT_DIRTY
239 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
240 #else
241 # define VM_SOFTDIRTY	0
242 #endif
243 
244 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
245 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
246 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
247 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
248 
249 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
250 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
251 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
252 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
253 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
254 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
255 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
256 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
257 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
258 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
259 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
260 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
261 
262 #ifdef CONFIG_ARCH_HAS_PKEYS
263 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
264 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
265 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
266 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
267 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
268 #ifdef CONFIG_PPC
269 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
270 #else
271 # define VM_PKEY_BIT4  0
272 #endif
273 #endif /* CONFIG_ARCH_HAS_PKEYS */
274 
275 #if defined(CONFIG_X86)
276 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
277 #elif defined(CONFIG_PPC)
278 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
279 #elif defined(CONFIG_PARISC)
280 # define VM_GROWSUP	VM_ARCH_1
281 #elif defined(CONFIG_IA64)
282 # define VM_GROWSUP	VM_ARCH_1
283 #elif defined(CONFIG_SPARC64)
284 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
285 # define VM_ARCH_CLEAR	VM_SPARC_ADI
286 #elif !defined(CONFIG_MMU)
287 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
288 #endif
289 
290 #if defined(CONFIG_X86_INTEL_MPX)
291 /* MPX specific bounds table or bounds directory */
292 # define VM_MPX		VM_HIGH_ARCH_4
293 #else
294 # define VM_MPX		VM_NONE
295 #endif
296 
297 #ifndef VM_GROWSUP
298 # define VM_GROWSUP	VM_NONE
299 #endif
300 
301 /* Bits set in the VMA until the stack is in its final location */
302 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
303 
304 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
305 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
306 #endif
307 
308 #ifdef CONFIG_STACK_GROWSUP
309 #define VM_STACK	VM_GROWSUP
310 #else
311 #define VM_STACK	VM_GROWSDOWN
312 #endif
313 
314 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
315 
316 /*
317  * Special vmas that are non-mergable, non-mlock()able.
318  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
319  */
320 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
321 
322 /* This mask defines which mm->def_flags a process can inherit its parent */
323 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
324 
325 /* This mask is used to clear all the VMA flags used by mlock */
326 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
327 
328 /* Arch-specific flags to clear when updating VM flags on protection change */
329 #ifndef VM_ARCH_CLEAR
330 # define VM_ARCH_CLEAR	VM_NONE
331 #endif
332 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
333 
334 /*
335  * mapping from the currently active vm_flags protection bits (the
336  * low four bits) to a page protection mask..
337  */
338 extern pgprot_t protection_map[16];
339 
340 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
341 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
342 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
343 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
344 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
345 #define FAULT_FLAG_TRIED	0x20	/* Second try */
346 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
347 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
348 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
349 
350 #define FAULT_FLAG_TRACE \
351 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
352 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
353 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
354 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
355 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
356 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
357 	{ FAULT_FLAG_USER,		"USER" }, \
358 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
359 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
360 
361 /*
362  * vm_fault is filled by the the pagefault handler and passed to the vma's
363  * ->fault function. The vma's ->fault is responsible for returning a bitmask
364  * of VM_FAULT_xxx flags that give details about how the fault was handled.
365  *
366  * MM layer fills up gfp_mask for page allocations but fault handler might
367  * alter it if its implementation requires a different allocation context.
368  *
369  * pgoff should be used in favour of virtual_address, if possible.
370  */
371 struct vm_fault {
372 	struct vm_area_struct *vma;	/* Target VMA */
373 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
374 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
375 	pgoff_t pgoff;			/* Logical page offset based on vma */
376 	unsigned long address;		/* Faulting virtual address */
377 	pmd_t *pmd;			/* Pointer to pmd entry matching
378 					 * the 'address' */
379 	pud_t *pud;			/* Pointer to pud entry matching
380 					 * the 'address'
381 					 */
382 	pte_t orig_pte;			/* Value of PTE at the time of fault */
383 
384 	struct page *cow_page;		/* Page handler may use for COW fault */
385 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
386 	struct page *page;		/* ->fault handlers should return a
387 					 * page here, unless VM_FAULT_NOPAGE
388 					 * is set (which is also implied by
389 					 * VM_FAULT_ERROR).
390 					 */
391 	/* These three entries are valid only while holding ptl lock */
392 	pte_t *pte;			/* Pointer to pte entry matching
393 					 * the 'address'. NULL if the page
394 					 * table hasn't been allocated.
395 					 */
396 	spinlock_t *ptl;		/* Page table lock.
397 					 * Protects pte page table if 'pte'
398 					 * is not NULL, otherwise pmd.
399 					 */
400 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
401 					 * vm_ops->map_pages() calls
402 					 * alloc_set_pte() from atomic context.
403 					 * do_fault_around() pre-allocates
404 					 * page table to avoid allocation from
405 					 * atomic context.
406 					 */
407 };
408 
409 /* page entry size for vm->huge_fault() */
410 enum page_entry_size {
411 	PE_SIZE_PTE = 0,
412 	PE_SIZE_PMD,
413 	PE_SIZE_PUD,
414 };
415 
416 /*
417  * These are the virtual MM functions - opening of an area, closing and
418  * unmapping it (needed to keep files on disk up-to-date etc), pointer
419  * to the functions called when a no-page or a wp-page exception occurs.
420  */
421 struct vm_operations_struct {
422 	void (*open)(struct vm_area_struct * area);
423 	void (*close)(struct vm_area_struct * area);
424 	int (*split)(struct vm_area_struct * area, unsigned long addr);
425 	int (*mremap)(struct vm_area_struct * area);
426 	vm_fault_t (*fault)(struct vm_fault *vmf);
427 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
428 			enum page_entry_size pe_size);
429 	void (*map_pages)(struct vm_fault *vmf,
430 			pgoff_t start_pgoff, pgoff_t end_pgoff);
431 	unsigned long (*pagesize)(struct vm_area_struct * area);
432 
433 	/* notification that a previously read-only page is about to become
434 	 * writable, if an error is returned it will cause a SIGBUS */
435 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
436 
437 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
438 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
439 
440 	/* called by access_process_vm when get_user_pages() fails, typically
441 	 * for use by special VMAs that can switch between memory and hardware
442 	 */
443 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
444 		      void *buf, int len, int write);
445 
446 	/* Called by the /proc/PID/maps code to ask the vma whether it
447 	 * has a special name.  Returning non-NULL will also cause this
448 	 * vma to be dumped unconditionally. */
449 	const char *(*name)(struct vm_area_struct *vma);
450 
451 #ifdef CONFIG_NUMA
452 	/*
453 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
454 	 * to hold the policy upon return.  Caller should pass NULL @new to
455 	 * remove a policy and fall back to surrounding context--i.e. do not
456 	 * install a MPOL_DEFAULT policy, nor the task or system default
457 	 * mempolicy.
458 	 */
459 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
460 
461 	/*
462 	 * get_policy() op must add reference [mpol_get()] to any policy at
463 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
464 	 * in mm/mempolicy.c will do this automatically.
465 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
466 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
467 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
468 	 * must return NULL--i.e., do not "fallback" to task or system default
469 	 * policy.
470 	 */
471 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
472 					unsigned long addr);
473 #endif
474 	/*
475 	 * Called by vm_normal_page() for special PTEs to find the
476 	 * page for @addr.  This is useful if the default behavior
477 	 * (using pte_page()) would not find the correct page.
478 	 */
479 	struct page *(*find_special_page)(struct vm_area_struct *vma,
480 					  unsigned long addr);
481 };
482 
483 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
484 {
485 	static const struct vm_operations_struct dummy_vm_ops = {};
486 
487 	memset(vma, 0, sizeof(*vma));
488 	vma->vm_mm = mm;
489 	vma->vm_ops = &dummy_vm_ops;
490 	INIT_LIST_HEAD(&vma->anon_vma_chain);
491 }
492 
493 static inline void vma_set_anonymous(struct vm_area_struct *vma)
494 {
495 	vma->vm_ops = NULL;
496 }
497 
498 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
499 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
500 
501 struct mmu_gather;
502 struct inode;
503 
504 #define page_private(page)		((page)->private)
505 #define set_page_private(page, v)	((page)->private = (v))
506 
507 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
508 static inline int pmd_devmap(pmd_t pmd)
509 {
510 	return 0;
511 }
512 static inline int pud_devmap(pud_t pud)
513 {
514 	return 0;
515 }
516 static inline int pgd_devmap(pgd_t pgd)
517 {
518 	return 0;
519 }
520 #endif
521 
522 /*
523  * FIXME: take this include out, include page-flags.h in
524  * files which need it (119 of them)
525  */
526 #include <linux/page-flags.h>
527 #include <linux/huge_mm.h>
528 
529 /*
530  * Methods to modify the page usage count.
531  *
532  * What counts for a page usage:
533  * - cache mapping   (page->mapping)
534  * - private data    (page->private)
535  * - page mapped in a task's page tables, each mapping
536  *   is counted separately
537  *
538  * Also, many kernel routines increase the page count before a critical
539  * routine so they can be sure the page doesn't go away from under them.
540  */
541 
542 /*
543  * Drop a ref, return true if the refcount fell to zero (the page has no users)
544  */
545 static inline int put_page_testzero(struct page *page)
546 {
547 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
548 	return page_ref_dec_and_test(page);
549 }
550 
551 /*
552  * Try to grab a ref unless the page has a refcount of zero, return false if
553  * that is the case.
554  * This can be called when MMU is off so it must not access
555  * any of the virtual mappings.
556  */
557 static inline int get_page_unless_zero(struct page *page)
558 {
559 	return page_ref_add_unless(page, 1, 0);
560 }
561 
562 extern int page_is_ram(unsigned long pfn);
563 
564 enum {
565 	REGION_INTERSECTS,
566 	REGION_DISJOINT,
567 	REGION_MIXED,
568 };
569 
570 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
571 		      unsigned long desc);
572 
573 /* Support for virtually mapped pages */
574 struct page *vmalloc_to_page(const void *addr);
575 unsigned long vmalloc_to_pfn(const void *addr);
576 
577 /*
578  * Determine if an address is within the vmalloc range
579  *
580  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
581  * is no special casing required.
582  */
583 static inline bool is_vmalloc_addr(const void *x)
584 {
585 #ifdef CONFIG_MMU
586 	unsigned long addr = (unsigned long)x;
587 
588 	return addr >= VMALLOC_START && addr < VMALLOC_END;
589 #else
590 	return false;
591 #endif
592 }
593 #ifdef CONFIG_MMU
594 extern int is_vmalloc_or_module_addr(const void *x);
595 #else
596 static inline int is_vmalloc_or_module_addr(const void *x)
597 {
598 	return 0;
599 }
600 #endif
601 
602 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
603 static inline void *kvmalloc(size_t size, gfp_t flags)
604 {
605 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
606 }
607 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
608 {
609 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
610 }
611 static inline void *kvzalloc(size_t size, gfp_t flags)
612 {
613 	return kvmalloc(size, flags | __GFP_ZERO);
614 }
615 
616 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
617 {
618 	size_t bytes;
619 
620 	if (unlikely(check_mul_overflow(n, size, &bytes)))
621 		return NULL;
622 
623 	return kvmalloc(bytes, flags);
624 }
625 
626 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
627 {
628 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
629 }
630 
631 extern void kvfree(const void *addr);
632 
633 static inline atomic_t *compound_mapcount_ptr(struct page *page)
634 {
635 	return &page[1].compound_mapcount;
636 }
637 
638 static inline int compound_mapcount(struct page *page)
639 {
640 	VM_BUG_ON_PAGE(!PageCompound(page), page);
641 	page = compound_head(page);
642 	return atomic_read(compound_mapcount_ptr(page)) + 1;
643 }
644 
645 /*
646  * The atomic page->_mapcount, starts from -1: so that transitions
647  * both from it and to it can be tracked, using atomic_inc_and_test
648  * and atomic_add_negative(-1).
649  */
650 static inline void page_mapcount_reset(struct page *page)
651 {
652 	atomic_set(&(page)->_mapcount, -1);
653 }
654 
655 int __page_mapcount(struct page *page);
656 
657 static inline int page_mapcount(struct page *page)
658 {
659 	VM_BUG_ON_PAGE(PageSlab(page), page);
660 
661 	if (unlikely(PageCompound(page)))
662 		return __page_mapcount(page);
663 	return atomic_read(&page->_mapcount) + 1;
664 }
665 
666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 int total_mapcount(struct page *page);
668 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
669 #else
670 static inline int total_mapcount(struct page *page)
671 {
672 	return page_mapcount(page);
673 }
674 static inline int page_trans_huge_mapcount(struct page *page,
675 					   int *total_mapcount)
676 {
677 	int mapcount = page_mapcount(page);
678 	if (total_mapcount)
679 		*total_mapcount = mapcount;
680 	return mapcount;
681 }
682 #endif
683 
684 static inline struct page *virt_to_head_page(const void *x)
685 {
686 	struct page *page = virt_to_page(x);
687 
688 	return compound_head(page);
689 }
690 
691 void __put_page(struct page *page);
692 
693 void put_pages_list(struct list_head *pages);
694 
695 void split_page(struct page *page, unsigned int order);
696 
697 /*
698  * Compound pages have a destructor function.  Provide a
699  * prototype for that function and accessor functions.
700  * These are _only_ valid on the head of a compound page.
701  */
702 typedef void compound_page_dtor(struct page *);
703 
704 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
705 enum compound_dtor_id {
706 	NULL_COMPOUND_DTOR,
707 	COMPOUND_PAGE_DTOR,
708 #ifdef CONFIG_HUGETLB_PAGE
709 	HUGETLB_PAGE_DTOR,
710 #endif
711 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
712 	TRANSHUGE_PAGE_DTOR,
713 #endif
714 	NR_COMPOUND_DTORS,
715 };
716 extern compound_page_dtor * const compound_page_dtors[];
717 
718 static inline void set_compound_page_dtor(struct page *page,
719 		enum compound_dtor_id compound_dtor)
720 {
721 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
722 	page[1].compound_dtor = compound_dtor;
723 }
724 
725 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
726 {
727 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
728 	return compound_page_dtors[page[1].compound_dtor];
729 }
730 
731 static inline unsigned int compound_order(struct page *page)
732 {
733 	if (!PageHead(page))
734 		return 0;
735 	return page[1].compound_order;
736 }
737 
738 static inline void set_compound_order(struct page *page, unsigned int order)
739 {
740 	page[1].compound_order = order;
741 }
742 
743 void free_compound_page(struct page *page);
744 
745 #ifdef CONFIG_MMU
746 /*
747  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
748  * servicing faults for write access.  In the normal case, do always want
749  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
750  * that do not have writing enabled, when used by access_process_vm.
751  */
752 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
753 {
754 	if (likely(vma->vm_flags & VM_WRITE))
755 		pte = pte_mkwrite(pte);
756 	return pte;
757 }
758 
759 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
760 		struct page *page);
761 vm_fault_t finish_fault(struct vm_fault *vmf);
762 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
763 #endif
764 
765 /*
766  * Multiple processes may "see" the same page. E.g. for untouched
767  * mappings of /dev/null, all processes see the same page full of
768  * zeroes, and text pages of executables and shared libraries have
769  * only one copy in memory, at most, normally.
770  *
771  * For the non-reserved pages, page_count(page) denotes a reference count.
772  *   page_count() == 0 means the page is free. page->lru is then used for
773  *   freelist management in the buddy allocator.
774  *   page_count() > 0  means the page has been allocated.
775  *
776  * Pages are allocated by the slab allocator in order to provide memory
777  * to kmalloc and kmem_cache_alloc. In this case, the management of the
778  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
779  * unless a particular usage is carefully commented. (the responsibility of
780  * freeing the kmalloc memory is the caller's, of course).
781  *
782  * A page may be used by anyone else who does a __get_free_page().
783  * In this case, page_count still tracks the references, and should only
784  * be used through the normal accessor functions. The top bits of page->flags
785  * and page->virtual store page management information, but all other fields
786  * are unused and could be used privately, carefully. The management of this
787  * page is the responsibility of the one who allocated it, and those who have
788  * subsequently been given references to it.
789  *
790  * The other pages (we may call them "pagecache pages") are completely
791  * managed by the Linux memory manager: I/O, buffers, swapping etc.
792  * The following discussion applies only to them.
793  *
794  * A pagecache page contains an opaque `private' member, which belongs to the
795  * page's address_space. Usually, this is the address of a circular list of
796  * the page's disk buffers. PG_private must be set to tell the VM to call
797  * into the filesystem to release these pages.
798  *
799  * A page may belong to an inode's memory mapping. In this case, page->mapping
800  * is the pointer to the inode, and page->index is the file offset of the page,
801  * in units of PAGE_SIZE.
802  *
803  * If pagecache pages are not associated with an inode, they are said to be
804  * anonymous pages. These may become associated with the swapcache, and in that
805  * case PG_swapcache is set, and page->private is an offset into the swapcache.
806  *
807  * In either case (swapcache or inode backed), the pagecache itself holds one
808  * reference to the page. Setting PG_private should also increment the
809  * refcount. The each user mapping also has a reference to the page.
810  *
811  * The pagecache pages are stored in a per-mapping radix tree, which is
812  * rooted at mapping->i_pages, and indexed by offset.
813  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
814  * lists, we instead now tag pages as dirty/writeback in the radix tree.
815  *
816  * All pagecache pages may be subject to I/O:
817  * - inode pages may need to be read from disk,
818  * - inode pages which have been modified and are MAP_SHARED may need
819  *   to be written back to the inode on disk,
820  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
821  *   modified may need to be swapped out to swap space and (later) to be read
822  *   back into memory.
823  */
824 
825 /*
826  * The zone field is never updated after free_area_init_core()
827  * sets it, so none of the operations on it need to be atomic.
828  */
829 
830 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
831 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
832 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
833 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
834 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
835 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
836 
837 /*
838  * Define the bit shifts to access each section.  For non-existent
839  * sections we define the shift as 0; that plus a 0 mask ensures
840  * the compiler will optimise away reference to them.
841  */
842 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
843 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
844 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
845 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
846 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
847 
848 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
849 #ifdef NODE_NOT_IN_PAGE_FLAGS
850 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
851 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
852 						SECTIONS_PGOFF : ZONES_PGOFF)
853 #else
854 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
855 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
856 						NODES_PGOFF : ZONES_PGOFF)
857 #endif
858 
859 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
860 
861 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
862 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
863 #endif
864 
865 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
866 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
867 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
868 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
869 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
870 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
871 
872 static inline enum zone_type page_zonenum(const struct page *page)
873 {
874 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
875 }
876 
877 #ifdef CONFIG_ZONE_DEVICE
878 static inline bool is_zone_device_page(const struct page *page)
879 {
880 	return page_zonenum(page) == ZONE_DEVICE;
881 }
882 extern void memmap_init_zone_device(struct zone *, unsigned long,
883 				    unsigned long, struct dev_pagemap *);
884 #else
885 static inline bool is_zone_device_page(const struct page *page)
886 {
887 	return false;
888 }
889 #endif
890 
891 #ifdef CONFIG_DEV_PAGEMAP_OPS
892 void dev_pagemap_get_ops(void);
893 void dev_pagemap_put_ops(void);
894 void __put_devmap_managed_page(struct page *page);
895 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
896 static inline bool put_devmap_managed_page(struct page *page)
897 {
898 	if (!static_branch_unlikely(&devmap_managed_key))
899 		return false;
900 	if (!is_zone_device_page(page))
901 		return false;
902 	switch (page->pgmap->type) {
903 	case MEMORY_DEVICE_PRIVATE:
904 	case MEMORY_DEVICE_PUBLIC:
905 	case MEMORY_DEVICE_FS_DAX:
906 		__put_devmap_managed_page(page);
907 		return true;
908 	default:
909 		break;
910 	}
911 	return false;
912 }
913 
914 static inline bool is_device_private_page(const struct page *page)
915 {
916 	return is_zone_device_page(page) &&
917 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
918 }
919 
920 static inline bool is_device_public_page(const struct page *page)
921 {
922 	return is_zone_device_page(page) &&
923 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
924 }
925 
926 #ifdef CONFIG_PCI_P2PDMA
927 static inline bool is_pci_p2pdma_page(const struct page *page)
928 {
929 	return is_zone_device_page(page) &&
930 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
931 }
932 #else /* CONFIG_PCI_P2PDMA */
933 static inline bool is_pci_p2pdma_page(const struct page *page)
934 {
935 	return false;
936 }
937 #endif /* CONFIG_PCI_P2PDMA */
938 
939 #else /* CONFIG_DEV_PAGEMAP_OPS */
940 static inline void dev_pagemap_get_ops(void)
941 {
942 }
943 
944 static inline void dev_pagemap_put_ops(void)
945 {
946 }
947 
948 static inline bool put_devmap_managed_page(struct page *page)
949 {
950 	return false;
951 }
952 
953 static inline bool is_device_private_page(const struct page *page)
954 {
955 	return false;
956 }
957 
958 static inline bool is_device_public_page(const struct page *page)
959 {
960 	return false;
961 }
962 
963 static inline bool is_pci_p2pdma_page(const struct page *page)
964 {
965 	return false;
966 }
967 #endif /* CONFIG_DEV_PAGEMAP_OPS */
968 
969 static inline void get_page(struct page *page)
970 {
971 	page = compound_head(page);
972 	/*
973 	 * Getting a normal page or the head of a compound page
974 	 * requires to already have an elevated page->_refcount.
975 	 */
976 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
977 	page_ref_inc(page);
978 }
979 
980 static inline void put_page(struct page *page)
981 {
982 	page = compound_head(page);
983 
984 	/*
985 	 * For devmap managed pages we need to catch refcount transition from
986 	 * 2 to 1, when refcount reach one it means the page is free and we
987 	 * need to inform the device driver through callback. See
988 	 * include/linux/memremap.h and HMM for details.
989 	 */
990 	if (put_devmap_managed_page(page))
991 		return;
992 
993 	if (put_page_testzero(page))
994 		__put_page(page);
995 }
996 
997 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
998 #define SECTION_IN_PAGE_FLAGS
999 #endif
1000 
1001 /*
1002  * The identification function is mainly used by the buddy allocator for
1003  * determining if two pages could be buddies. We are not really identifying
1004  * the zone since we could be using the section number id if we do not have
1005  * node id available in page flags.
1006  * We only guarantee that it will return the same value for two combinable
1007  * pages in a zone.
1008  */
1009 static inline int page_zone_id(struct page *page)
1010 {
1011 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1012 }
1013 
1014 #ifdef NODE_NOT_IN_PAGE_FLAGS
1015 extern int page_to_nid(const struct page *page);
1016 #else
1017 static inline int page_to_nid(const struct page *page)
1018 {
1019 	struct page *p = (struct page *)page;
1020 
1021 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1022 }
1023 #endif
1024 
1025 #ifdef CONFIG_NUMA_BALANCING
1026 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1027 {
1028 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1029 }
1030 
1031 static inline int cpupid_to_pid(int cpupid)
1032 {
1033 	return cpupid & LAST__PID_MASK;
1034 }
1035 
1036 static inline int cpupid_to_cpu(int cpupid)
1037 {
1038 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1039 }
1040 
1041 static inline int cpupid_to_nid(int cpupid)
1042 {
1043 	return cpu_to_node(cpupid_to_cpu(cpupid));
1044 }
1045 
1046 static inline bool cpupid_pid_unset(int cpupid)
1047 {
1048 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1049 }
1050 
1051 static inline bool cpupid_cpu_unset(int cpupid)
1052 {
1053 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1054 }
1055 
1056 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1057 {
1058 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1059 }
1060 
1061 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1062 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1063 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1064 {
1065 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1066 }
1067 
1068 static inline int page_cpupid_last(struct page *page)
1069 {
1070 	return page->_last_cpupid;
1071 }
1072 static inline void page_cpupid_reset_last(struct page *page)
1073 {
1074 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1075 }
1076 #else
1077 static inline int page_cpupid_last(struct page *page)
1078 {
1079 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1080 }
1081 
1082 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1083 
1084 static inline void page_cpupid_reset_last(struct page *page)
1085 {
1086 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1087 }
1088 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1089 #else /* !CONFIG_NUMA_BALANCING */
1090 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1091 {
1092 	return page_to_nid(page); /* XXX */
1093 }
1094 
1095 static inline int page_cpupid_last(struct page *page)
1096 {
1097 	return page_to_nid(page); /* XXX */
1098 }
1099 
1100 static inline int cpupid_to_nid(int cpupid)
1101 {
1102 	return -1;
1103 }
1104 
1105 static inline int cpupid_to_pid(int cpupid)
1106 {
1107 	return -1;
1108 }
1109 
1110 static inline int cpupid_to_cpu(int cpupid)
1111 {
1112 	return -1;
1113 }
1114 
1115 static inline int cpu_pid_to_cpupid(int nid, int pid)
1116 {
1117 	return -1;
1118 }
1119 
1120 static inline bool cpupid_pid_unset(int cpupid)
1121 {
1122 	return 1;
1123 }
1124 
1125 static inline void page_cpupid_reset_last(struct page *page)
1126 {
1127 }
1128 
1129 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1130 {
1131 	return false;
1132 }
1133 #endif /* CONFIG_NUMA_BALANCING */
1134 
1135 #ifdef CONFIG_KASAN_SW_TAGS
1136 static inline u8 page_kasan_tag(const struct page *page)
1137 {
1138 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1139 }
1140 
1141 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1142 {
1143 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1144 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1145 }
1146 
1147 static inline void page_kasan_tag_reset(struct page *page)
1148 {
1149 	page_kasan_tag_set(page, 0xff);
1150 }
1151 #else
1152 static inline u8 page_kasan_tag(const struct page *page)
1153 {
1154 	return 0xff;
1155 }
1156 
1157 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1158 static inline void page_kasan_tag_reset(struct page *page) { }
1159 #endif
1160 
1161 static inline struct zone *page_zone(const struct page *page)
1162 {
1163 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1164 }
1165 
1166 static inline pg_data_t *page_pgdat(const struct page *page)
1167 {
1168 	return NODE_DATA(page_to_nid(page));
1169 }
1170 
1171 #ifdef SECTION_IN_PAGE_FLAGS
1172 static inline void set_page_section(struct page *page, unsigned long section)
1173 {
1174 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1175 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1176 }
1177 
1178 static inline unsigned long page_to_section(const struct page *page)
1179 {
1180 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1181 }
1182 #endif
1183 
1184 static inline void set_page_zone(struct page *page, enum zone_type zone)
1185 {
1186 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1187 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1188 }
1189 
1190 static inline void set_page_node(struct page *page, unsigned long node)
1191 {
1192 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1193 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1194 }
1195 
1196 static inline void set_page_links(struct page *page, enum zone_type zone,
1197 	unsigned long node, unsigned long pfn)
1198 {
1199 	set_page_zone(page, zone);
1200 	set_page_node(page, node);
1201 #ifdef SECTION_IN_PAGE_FLAGS
1202 	set_page_section(page, pfn_to_section_nr(pfn));
1203 #endif
1204 }
1205 
1206 #ifdef CONFIG_MEMCG
1207 static inline struct mem_cgroup *page_memcg(struct page *page)
1208 {
1209 	return page->mem_cgroup;
1210 }
1211 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1212 {
1213 	WARN_ON_ONCE(!rcu_read_lock_held());
1214 	return READ_ONCE(page->mem_cgroup);
1215 }
1216 #else
1217 static inline struct mem_cgroup *page_memcg(struct page *page)
1218 {
1219 	return NULL;
1220 }
1221 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1222 {
1223 	WARN_ON_ONCE(!rcu_read_lock_held());
1224 	return NULL;
1225 }
1226 #endif
1227 
1228 /*
1229  * Some inline functions in vmstat.h depend on page_zone()
1230  */
1231 #include <linux/vmstat.h>
1232 
1233 static __always_inline void *lowmem_page_address(const struct page *page)
1234 {
1235 	return page_to_virt(page);
1236 }
1237 
1238 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1239 #define HASHED_PAGE_VIRTUAL
1240 #endif
1241 
1242 #if defined(WANT_PAGE_VIRTUAL)
1243 static inline void *page_address(const struct page *page)
1244 {
1245 	return page->virtual;
1246 }
1247 static inline void set_page_address(struct page *page, void *address)
1248 {
1249 	page->virtual = address;
1250 }
1251 #define page_address_init()  do { } while(0)
1252 #endif
1253 
1254 #if defined(HASHED_PAGE_VIRTUAL)
1255 void *page_address(const struct page *page);
1256 void set_page_address(struct page *page, void *virtual);
1257 void page_address_init(void);
1258 #endif
1259 
1260 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1261 #define page_address(page) lowmem_page_address(page)
1262 #define set_page_address(page, address)  do { } while(0)
1263 #define page_address_init()  do { } while(0)
1264 #endif
1265 
1266 extern void *page_rmapping(struct page *page);
1267 extern struct anon_vma *page_anon_vma(struct page *page);
1268 extern struct address_space *page_mapping(struct page *page);
1269 
1270 extern struct address_space *__page_file_mapping(struct page *);
1271 
1272 static inline
1273 struct address_space *page_file_mapping(struct page *page)
1274 {
1275 	if (unlikely(PageSwapCache(page)))
1276 		return __page_file_mapping(page);
1277 
1278 	return page->mapping;
1279 }
1280 
1281 extern pgoff_t __page_file_index(struct page *page);
1282 
1283 /*
1284  * Return the pagecache index of the passed page.  Regular pagecache pages
1285  * use ->index whereas swapcache pages use swp_offset(->private)
1286  */
1287 static inline pgoff_t page_index(struct page *page)
1288 {
1289 	if (unlikely(PageSwapCache(page)))
1290 		return __page_file_index(page);
1291 	return page->index;
1292 }
1293 
1294 bool page_mapped(struct page *page);
1295 struct address_space *page_mapping(struct page *page);
1296 struct address_space *page_mapping_file(struct page *page);
1297 
1298 /*
1299  * Return true only if the page has been allocated with
1300  * ALLOC_NO_WATERMARKS and the low watermark was not
1301  * met implying that the system is under some pressure.
1302  */
1303 static inline bool page_is_pfmemalloc(struct page *page)
1304 {
1305 	/*
1306 	 * Page index cannot be this large so this must be
1307 	 * a pfmemalloc page.
1308 	 */
1309 	return page->index == -1UL;
1310 }
1311 
1312 /*
1313  * Only to be called by the page allocator on a freshly allocated
1314  * page.
1315  */
1316 static inline void set_page_pfmemalloc(struct page *page)
1317 {
1318 	page->index = -1UL;
1319 }
1320 
1321 static inline void clear_page_pfmemalloc(struct page *page)
1322 {
1323 	page->index = 0;
1324 }
1325 
1326 /*
1327  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1328  */
1329 extern void pagefault_out_of_memory(void);
1330 
1331 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1332 
1333 /*
1334  * Flags passed to show_mem() and show_free_areas() to suppress output in
1335  * various contexts.
1336  */
1337 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1338 
1339 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1340 
1341 extern bool can_do_mlock(void);
1342 extern int user_shm_lock(size_t, struct user_struct *);
1343 extern void user_shm_unlock(size_t, struct user_struct *);
1344 
1345 /*
1346  * Parameter block passed down to zap_pte_range in exceptional cases.
1347  */
1348 struct zap_details {
1349 	struct address_space *check_mapping;	/* Check page->mapping if set */
1350 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1351 	pgoff_t last_index;			/* Highest page->index to unmap */
1352 };
1353 
1354 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1355 			     pte_t pte, bool with_public_device);
1356 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1357 
1358 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1359 				pmd_t pmd);
1360 
1361 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1362 		  unsigned long size);
1363 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1364 		    unsigned long size);
1365 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1366 		unsigned long start, unsigned long end);
1367 
1368 /**
1369  * mm_walk - callbacks for walk_page_range
1370  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1371  *	       this handler should only handle pud_trans_huge() puds.
1372  *	       the pmd_entry or pte_entry callbacks will be used for
1373  *	       regular PUDs.
1374  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1375  *	       this handler is required to be able to handle
1376  *	       pmd_trans_huge() pmds.  They may simply choose to
1377  *	       split_huge_page() instead of handling it explicitly.
1378  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1379  * @pte_hole: if set, called for each hole at all levels
1380  * @hugetlb_entry: if set, called for each hugetlb entry
1381  * @test_walk: caller specific callback function to determine whether
1382  *             we walk over the current vma or not. Returning 0
1383  *             value means "do page table walk over the current vma,"
1384  *             and a negative one means "abort current page table walk
1385  *             right now." 1 means "skip the current vma."
1386  * @mm:        mm_struct representing the target process of page table walk
1387  * @vma:       vma currently walked (NULL if walking outside vmas)
1388  * @private:   private data for callbacks' usage
1389  *
1390  * (see the comment on walk_page_range() for more details)
1391  */
1392 struct mm_walk {
1393 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1394 			 unsigned long next, struct mm_walk *walk);
1395 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1396 			 unsigned long next, struct mm_walk *walk);
1397 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1398 			 unsigned long next, struct mm_walk *walk);
1399 	int (*pte_hole)(unsigned long addr, unsigned long next,
1400 			struct mm_walk *walk);
1401 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1402 			     unsigned long addr, unsigned long next,
1403 			     struct mm_walk *walk);
1404 	int (*test_walk)(unsigned long addr, unsigned long next,
1405 			struct mm_walk *walk);
1406 	struct mm_struct *mm;
1407 	struct vm_area_struct *vma;
1408 	void *private;
1409 };
1410 
1411 struct mmu_notifier_range;
1412 
1413 int walk_page_range(unsigned long addr, unsigned long end,
1414 		struct mm_walk *walk);
1415 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1416 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1417 		unsigned long end, unsigned long floor, unsigned long ceiling);
1418 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1419 			struct vm_area_struct *vma);
1420 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1421 		   struct mmu_notifier_range *range,
1422 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1423 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1424 	unsigned long *pfn);
1425 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1426 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1427 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1428 			void *buf, int len, int write);
1429 
1430 extern void truncate_pagecache(struct inode *inode, loff_t new);
1431 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1432 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1433 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1434 int truncate_inode_page(struct address_space *mapping, struct page *page);
1435 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1436 int invalidate_inode_page(struct page *page);
1437 
1438 #ifdef CONFIG_MMU
1439 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1440 			unsigned long address, unsigned int flags);
1441 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1442 			    unsigned long address, unsigned int fault_flags,
1443 			    bool *unlocked);
1444 void unmap_mapping_pages(struct address_space *mapping,
1445 		pgoff_t start, pgoff_t nr, bool even_cows);
1446 void unmap_mapping_range(struct address_space *mapping,
1447 		loff_t const holebegin, loff_t const holelen, int even_cows);
1448 #else
1449 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1450 		unsigned long address, unsigned int flags)
1451 {
1452 	/* should never happen if there's no MMU */
1453 	BUG();
1454 	return VM_FAULT_SIGBUS;
1455 }
1456 static inline int fixup_user_fault(struct task_struct *tsk,
1457 		struct mm_struct *mm, unsigned long address,
1458 		unsigned int fault_flags, bool *unlocked)
1459 {
1460 	/* should never happen if there's no MMU */
1461 	BUG();
1462 	return -EFAULT;
1463 }
1464 static inline void unmap_mapping_pages(struct address_space *mapping,
1465 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1466 static inline void unmap_mapping_range(struct address_space *mapping,
1467 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1468 #endif
1469 
1470 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1471 		loff_t const holebegin, loff_t const holelen)
1472 {
1473 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1474 }
1475 
1476 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1477 		void *buf, int len, unsigned int gup_flags);
1478 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1479 		void *buf, int len, unsigned int gup_flags);
1480 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1481 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1482 
1483 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1484 			    unsigned long start, unsigned long nr_pages,
1485 			    unsigned int gup_flags, struct page **pages,
1486 			    struct vm_area_struct **vmas, int *locked);
1487 long get_user_pages(unsigned long start, unsigned long nr_pages,
1488 			    unsigned int gup_flags, struct page **pages,
1489 			    struct vm_area_struct **vmas);
1490 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1491 		    unsigned int gup_flags, struct page **pages, int *locked);
1492 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1493 		    struct page **pages, unsigned int gup_flags);
1494 
1495 #if defined(CONFIG_FS_DAX) || defined(CONFIG_CMA)
1496 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1497 			    unsigned int gup_flags, struct page **pages,
1498 			    struct vm_area_struct **vmas);
1499 #else
1500 static inline long get_user_pages_longterm(unsigned long start,
1501 		unsigned long nr_pages, unsigned int gup_flags,
1502 		struct page **pages, struct vm_area_struct **vmas)
1503 {
1504 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1505 }
1506 #endif /* CONFIG_FS_DAX */
1507 
1508 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1509 			struct page **pages);
1510 
1511 /* Container for pinned pfns / pages */
1512 struct frame_vector {
1513 	unsigned int nr_allocated;	/* Number of frames we have space for */
1514 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1515 	bool got_ref;		/* Did we pin pages by getting page ref? */
1516 	bool is_pfns;		/* Does array contain pages or pfns? */
1517 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1518 				 * pfns_vector_pages() or pfns_vector_pfns()
1519 				 * for access */
1520 };
1521 
1522 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1523 void frame_vector_destroy(struct frame_vector *vec);
1524 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1525 		     unsigned int gup_flags, struct frame_vector *vec);
1526 void put_vaddr_frames(struct frame_vector *vec);
1527 int frame_vector_to_pages(struct frame_vector *vec);
1528 void frame_vector_to_pfns(struct frame_vector *vec);
1529 
1530 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1531 {
1532 	return vec->nr_frames;
1533 }
1534 
1535 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1536 {
1537 	if (vec->is_pfns) {
1538 		int err = frame_vector_to_pages(vec);
1539 
1540 		if (err)
1541 			return ERR_PTR(err);
1542 	}
1543 	return (struct page **)(vec->ptrs);
1544 }
1545 
1546 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1547 {
1548 	if (!vec->is_pfns)
1549 		frame_vector_to_pfns(vec);
1550 	return (unsigned long *)(vec->ptrs);
1551 }
1552 
1553 struct kvec;
1554 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1555 			struct page **pages);
1556 int get_kernel_page(unsigned long start, int write, struct page **pages);
1557 struct page *get_dump_page(unsigned long addr);
1558 
1559 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1560 extern void do_invalidatepage(struct page *page, unsigned int offset,
1561 			      unsigned int length);
1562 
1563 void __set_page_dirty(struct page *, struct address_space *, int warn);
1564 int __set_page_dirty_nobuffers(struct page *page);
1565 int __set_page_dirty_no_writeback(struct page *page);
1566 int redirty_page_for_writepage(struct writeback_control *wbc,
1567 				struct page *page);
1568 void account_page_dirtied(struct page *page, struct address_space *mapping);
1569 void account_page_cleaned(struct page *page, struct address_space *mapping,
1570 			  struct bdi_writeback *wb);
1571 int set_page_dirty(struct page *page);
1572 int set_page_dirty_lock(struct page *page);
1573 void __cancel_dirty_page(struct page *page);
1574 static inline void cancel_dirty_page(struct page *page)
1575 {
1576 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1577 	if (PageDirty(page))
1578 		__cancel_dirty_page(page);
1579 }
1580 int clear_page_dirty_for_io(struct page *page);
1581 
1582 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1583 
1584 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1585 {
1586 	return !vma->vm_ops;
1587 }
1588 
1589 #ifdef CONFIG_SHMEM
1590 /*
1591  * The vma_is_shmem is not inline because it is used only by slow
1592  * paths in userfault.
1593  */
1594 bool vma_is_shmem(struct vm_area_struct *vma);
1595 #else
1596 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1597 #endif
1598 
1599 int vma_is_stack_for_current(struct vm_area_struct *vma);
1600 
1601 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1602 		unsigned long old_addr, struct vm_area_struct *new_vma,
1603 		unsigned long new_addr, unsigned long len,
1604 		bool need_rmap_locks);
1605 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1606 			      unsigned long end, pgprot_t newprot,
1607 			      int dirty_accountable, int prot_numa);
1608 extern int mprotect_fixup(struct vm_area_struct *vma,
1609 			  struct vm_area_struct **pprev, unsigned long start,
1610 			  unsigned long end, unsigned long newflags);
1611 
1612 /*
1613  * doesn't attempt to fault and will return short.
1614  */
1615 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1616 			  struct page **pages);
1617 /*
1618  * per-process(per-mm_struct) statistics.
1619  */
1620 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1621 {
1622 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1623 
1624 #ifdef SPLIT_RSS_COUNTING
1625 	/*
1626 	 * counter is updated in asynchronous manner and may go to minus.
1627 	 * But it's never be expected number for users.
1628 	 */
1629 	if (val < 0)
1630 		val = 0;
1631 #endif
1632 	return (unsigned long)val;
1633 }
1634 
1635 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1636 {
1637 	atomic_long_add(value, &mm->rss_stat.count[member]);
1638 }
1639 
1640 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1641 {
1642 	atomic_long_inc(&mm->rss_stat.count[member]);
1643 }
1644 
1645 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1646 {
1647 	atomic_long_dec(&mm->rss_stat.count[member]);
1648 }
1649 
1650 /* Optimized variant when page is already known not to be PageAnon */
1651 static inline int mm_counter_file(struct page *page)
1652 {
1653 	if (PageSwapBacked(page))
1654 		return MM_SHMEMPAGES;
1655 	return MM_FILEPAGES;
1656 }
1657 
1658 static inline int mm_counter(struct page *page)
1659 {
1660 	if (PageAnon(page))
1661 		return MM_ANONPAGES;
1662 	return mm_counter_file(page);
1663 }
1664 
1665 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1666 {
1667 	return get_mm_counter(mm, MM_FILEPAGES) +
1668 		get_mm_counter(mm, MM_ANONPAGES) +
1669 		get_mm_counter(mm, MM_SHMEMPAGES);
1670 }
1671 
1672 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1673 {
1674 	return max(mm->hiwater_rss, get_mm_rss(mm));
1675 }
1676 
1677 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1678 {
1679 	return max(mm->hiwater_vm, mm->total_vm);
1680 }
1681 
1682 static inline void update_hiwater_rss(struct mm_struct *mm)
1683 {
1684 	unsigned long _rss = get_mm_rss(mm);
1685 
1686 	if ((mm)->hiwater_rss < _rss)
1687 		(mm)->hiwater_rss = _rss;
1688 }
1689 
1690 static inline void update_hiwater_vm(struct mm_struct *mm)
1691 {
1692 	if (mm->hiwater_vm < mm->total_vm)
1693 		mm->hiwater_vm = mm->total_vm;
1694 }
1695 
1696 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1697 {
1698 	mm->hiwater_rss = get_mm_rss(mm);
1699 }
1700 
1701 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1702 					 struct mm_struct *mm)
1703 {
1704 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1705 
1706 	if (*maxrss < hiwater_rss)
1707 		*maxrss = hiwater_rss;
1708 }
1709 
1710 #if defined(SPLIT_RSS_COUNTING)
1711 void sync_mm_rss(struct mm_struct *mm);
1712 #else
1713 static inline void sync_mm_rss(struct mm_struct *mm)
1714 {
1715 }
1716 #endif
1717 
1718 #ifndef __HAVE_ARCH_PTE_DEVMAP
1719 static inline int pte_devmap(pte_t pte)
1720 {
1721 	return 0;
1722 }
1723 #endif
1724 
1725 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1726 
1727 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1728 			       spinlock_t **ptl);
1729 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730 				    spinlock_t **ptl)
1731 {
1732 	pte_t *ptep;
1733 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1734 	return ptep;
1735 }
1736 
1737 #ifdef __PAGETABLE_P4D_FOLDED
1738 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1739 						unsigned long address)
1740 {
1741 	return 0;
1742 }
1743 #else
1744 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1745 #endif
1746 
1747 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1748 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1749 						unsigned long address)
1750 {
1751 	return 0;
1752 }
1753 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1754 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1755 
1756 #else
1757 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1758 
1759 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1760 {
1761 	if (mm_pud_folded(mm))
1762 		return;
1763 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1764 }
1765 
1766 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1767 {
1768 	if (mm_pud_folded(mm))
1769 		return;
1770 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1771 }
1772 #endif
1773 
1774 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1775 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1776 						unsigned long address)
1777 {
1778 	return 0;
1779 }
1780 
1781 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1782 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1783 
1784 #else
1785 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1786 
1787 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1788 {
1789 	if (mm_pmd_folded(mm))
1790 		return;
1791 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1792 }
1793 
1794 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1795 {
1796 	if (mm_pmd_folded(mm))
1797 		return;
1798 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1799 }
1800 #endif
1801 
1802 #ifdef CONFIG_MMU
1803 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1804 {
1805 	atomic_long_set(&mm->pgtables_bytes, 0);
1806 }
1807 
1808 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1809 {
1810 	return atomic_long_read(&mm->pgtables_bytes);
1811 }
1812 
1813 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1814 {
1815 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1816 }
1817 
1818 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1819 {
1820 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1821 }
1822 #else
1823 
1824 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1825 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1826 {
1827 	return 0;
1828 }
1829 
1830 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1831 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1832 #endif
1833 
1834 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1835 int __pte_alloc_kernel(pmd_t *pmd);
1836 
1837 /*
1838  * The following ifdef needed to get the 4level-fixup.h header to work.
1839  * Remove it when 4level-fixup.h has been removed.
1840  */
1841 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1842 
1843 #ifndef __ARCH_HAS_5LEVEL_HACK
1844 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1845 		unsigned long address)
1846 {
1847 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1848 		NULL : p4d_offset(pgd, address);
1849 }
1850 
1851 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1852 		unsigned long address)
1853 {
1854 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1855 		NULL : pud_offset(p4d, address);
1856 }
1857 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1858 
1859 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1860 {
1861 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1862 		NULL: pmd_offset(pud, address);
1863 }
1864 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1865 
1866 #if USE_SPLIT_PTE_PTLOCKS
1867 #if ALLOC_SPLIT_PTLOCKS
1868 void __init ptlock_cache_init(void);
1869 extern bool ptlock_alloc(struct page *page);
1870 extern void ptlock_free(struct page *page);
1871 
1872 static inline spinlock_t *ptlock_ptr(struct page *page)
1873 {
1874 	return page->ptl;
1875 }
1876 #else /* ALLOC_SPLIT_PTLOCKS */
1877 static inline void ptlock_cache_init(void)
1878 {
1879 }
1880 
1881 static inline bool ptlock_alloc(struct page *page)
1882 {
1883 	return true;
1884 }
1885 
1886 static inline void ptlock_free(struct page *page)
1887 {
1888 }
1889 
1890 static inline spinlock_t *ptlock_ptr(struct page *page)
1891 {
1892 	return &page->ptl;
1893 }
1894 #endif /* ALLOC_SPLIT_PTLOCKS */
1895 
1896 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1897 {
1898 	return ptlock_ptr(pmd_page(*pmd));
1899 }
1900 
1901 static inline bool ptlock_init(struct page *page)
1902 {
1903 	/*
1904 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1905 	 * with 0. Make sure nobody took it in use in between.
1906 	 *
1907 	 * It can happen if arch try to use slab for page table allocation:
1908 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1909 	 */
1910 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1911 	if (!ptlock_alloc(page))
1912 		return false;
1913 	spin_lock_init(ptlock_ptr(page));
1914 	return true;
1915 }
1916 
1917 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1918 /*
1919  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1920  */
1921 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1922 {
1923 	return &mm->page_table_lock;
1924 }
1925 static inline void ptlock_cache_init(void) {}
1926 static inline bool ptlock_init(struct page *page) { return true; }
1927 static inline void ptlock_free(struct page *page) {}
1928 #endif /* USE_SPLIT_PTE_PTLOCKS */
1929 
1930 static inline void pgtable_init(void)
1931 {
1932 	ptlock_cache_init();
1933 	pgtable_cache_init();
1934 }
1935 
1936 static inline bool pgtable_page_ctor(struct page *page)
1937 {
1938 	if (!ptlock_init(page))
1939 		return false;
1940 	__SetPageTable(page);
1941 	inc_zone_page_state(page, NR_PAGETABLE);
1942 	return true;
1943 }
1944 
1945 static inline void pgtable_page_dtor(struct page *page)
1946 {
1947 	ptlock_free(page);
1948 	__ClearPageTable(page);
1949 	dec_zone_page_state(page, NR_PAGETABLE);
1950 }
1951 
1952 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1953 ({							\
1954 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1955 	pte_t *__pte = pte_offset_map(pmd, address);	\
1956 	*(ptlp) = __ptl;				\
1957 	spin_lock(__ptl);				\
1958 	__pte;						\
1959 })
1960 
1961 #define pte_unmap_unlock(pte, ptl)	do {		\
1962 	spin_unlock(ptl);				\
1963 	pte_unmap(pte);					\
1964 } while (0)
1965 
1966 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1967 
1968 #define pte_alloc_map(mm, pmd, address)			\
1969 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1970 
1971 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1972 	(pte_alloc(mm, pmd) ?			\
1973 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1974 
1975 #define pte_alloc_kernel(pmd, address)			\
1976 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1977 		NULL: pte_offset_kernel(pmd, address))
1978 
1979 #if USE_SPLIT_PMD_PTLOCKS
1980 
1981 static struct page *pmd_to_page(pmd_t *pmd)
1982 {
1983 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1984 	return virt_to_page((void *)((unsigned long) pmd & mask));
1985 }
1986 
1987 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1988 {
1989 	return ptlock_ptr(pmd_to_page(pmd));
1990 }
1991 
1992 static inline bool pgtable_pmd_page_ctor(struct page *page)
1993 {
1994 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1995 	page->pmd_huge_pte = NULL;
1996 #endif
1997 	return ptlock_init(page);
1998 }
1999 
2000 static inline void pgtable_pmd_page_dtor(struct page *page)
2001 {
2002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2003 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2004 #endif
2005 	ptlock_free(page);
2006 }
2007 
2008 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2009 
2010 #else
2011 
2012 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2013 {
2014 	return &mm->page_table_lock;
2015 }
2016 
2017 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2018 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2019 
2020 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2021 
2022 #endif
2023 
2024 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2025 {
2026 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2027 	spin_lock(ptl);
2028 	return ptl;
2029 }
2030 
2031 /*
2032  * No scalability reason to split PUD locks yet, but follow the same pattern
2033  * as the PMD locks to make it easier if we decide to.  The VM should not be
2034  * considered ready to switch to split PUD locks yet; there may be places
2035  * which need to be converted from page_table_lock.
2036  */
2037 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2038 {
2039 	return &mm->page_table_lock;
2040 }
2041 
2042 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2043 {
2044 	spinlock_t *ptl = pud_lockptr(mm, pud);
2045 
2046 	spin_lock(ptl);
2047 	return ptl;
2048 }
2049 
2050 extern void __init pagecache_init(void);
2051 extern void free_area_init(unsigned long * zones_size);
2052 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2053 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2054 extern void free_initmem(void);
2055 
2056 /*
2057  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2058  * into the buddy system. The freed pages will be poisoned with pattern
2059  * "poison" if it's within range [0, UCHAR_MAX].
2060  * Return pages freed into the buddy system.
2061  */
2062 extern unsigned long free_reserved_area(void *start, void *end,
2063 					int poison, const char *s);
2064 
2065 #ifdef	CONFIG_HIGHMEM
2066 /*
2067  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2068  * and totalram_pages.
2069  */
2070 extern void free_highmem_page(struct page *page);
2071 #endif
2072 
2073 extern void adjust_managed_page_count(struct page *page, long count);
2074 extern void mem_init_print_info(const char *str);
2075 
2076 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2077 
2078 /* Free the reserved page into the buddy system, so it gets managed. */
2079 static inline void __free_reserved_page(struct page *page)
2080 {
2081 	ClearPageReserved(page);
2082 	init_page_count(page);
2083 	__free_page(page);
2084 }
2085 
2086 static inline void free_reserved_page(struct page *page)
2087 {
2088 	__free_reserved_page(page);
2089 	adjust_managed_page_count(page, 1);
2090 }
2091 
2092 static inline void mark_page_reserved(struct page *page)
2093 {
2094 	SetPageReserved(page);
2095 	adjust_managed_page_count(page, -1);
2096 }
2097 
2098 /*
2099  * Default method to free all the __init memory into the buddy system.
2100  * The freed pages will be poisoned with pattern "poison" if it's within
2101  * range [0, UCHAR_MAX].
2102  * Return pages freed into the buddy system.
2103  */
2104 static inline unsigned long free_initmem_default(int poison)
2105 {
2106 	extern char __init_begin[], __init_end[];
2107 
2108 	return free_reserved_area(&__init_begin, &__init_end,
2109 				  poison, "unused kernel");
2110 }
2111 
2112 static inline unsigned long get_num_physpages(void)
2113 {
2114 	int nid;
2115 	unsigned long phys_pages = 0;
2116 
2117 	for_each_online_node(nid)
2118 		phys_pages += node_present_pages(nid);
2119 
2120 	return phys_pages;
2121 }
2122 
2123 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2124 /*
2125  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2126  * zones, allocate the backing mem_map and account for memory holes in a more
2127  * architecture independent manner. This is a substitute for creating the
2128  * zone_sizes[] and zholes_size[] arrays and passing them to
2129  * free_area_init_node()
2130  *
2131  * An architecture is expected to register range of page frames backed by
2132  * physical memory with memblock_add[_node]() before calling
2133  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2134  * usage, an architecture is expected to do something like
2135  *
2136  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2137  * 							 max_highmem_pfn};
2138  * for_each_valid_physical_page_range()
2139  * 	memblock_add_node(base, size, nid)
2140  * free_area_init_nodes(max_zone_pfns);
2141  *
2142  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2143  * registered physical page range.  Similarly
2144  * sparse_memory_present_with_active_regions() calls memory_present() for
2145  * each range when SPARSEMEM is enabled.
2146  *
2147  * See mm/page_alloc.c for more information on each function exposed by
2148  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2149  */
2150 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2151 unsigned long node_map_pfn_alignment(void);
2152 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2153 						unsigned long end_pfn);
2154 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2155 						unsigned long end_pfn);
2156 extern void get_pfn_range_for_nid(unsigned int nid,
2157 			unsigned long *start_pfn, unsigned long *end_pfn);
2158 extern unsigned long find_min_pfn_with_active_regions(void);
2159 extern void free_bootmem_with_active_regions(int nid,
2160 						unsigned long max_low_pfn);
2161 extern void sparse_memory_present_with_active_regions(int nid);
2162 
2163 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2164 
2165 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2166     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2167 static inline int __early_pfn_to_nid(unsigned long pfn,
2168 					struct mminit_pfnnid_cache *state)
2169 {
2170 	return 0;
2171 }
2172 #else
2173 /* please see mm/page_alloc.c */
2174 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2175 /* there is a per-arch backend function. */
2176 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2177 					struct mminit_pfnnid_cache *state);
2178 #endif
2179 
2180 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2181 void zero_resv_unavail(void);
2182 #else
2183 static inline void zero_resv_unavail(void) {}
2184 #endif
2185 
2186 extern void set_dma_reserve(unsigned long new_dma_reserve);
2187 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2188 		enum memmap_context, struct vmem_altmap *);
2189 extern void setup_per_zone_wmarks(void);
2190 extern int __meminit init_per_zone_wmark_min(void);
2191 extern void mem_init(void);
2192 extern void __init mmap_init(void);
2193 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2194 extern long si_mem_available(void);
2195 extern void si_meminfo(struct sysinfo * val);
2196 extern void si_meminfo_node(struct sysinfo *val, int nid);
2197 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2198 extern unsigned long arch_reserved_kernel_pages(void);
2199 #endif
2200 
2201 extern __printf(3, 4)
2202 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2203 
2204 extern void setup_per_cpu_pageset(void);
2205 
2206 extern void zone_pcp_update(struct zone *zone);
2207 extern void zone_pcp_reset(struct zone *zone);
2208 
2209 /* page_alloc.c */
2210 extern int min_free_kbytes;
2211 extern int watermark_boost_factor;
2212 extern int watermark_scale_factor;
2213 
2214 /* nommu.c */
2215 extern atomic_long_t mmap_pages_allocated;
2216 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2217 
2218 /* interval_tree.c */
2219 void vma_interval_tree_insert(struct vm_area_struct *node,
2220 			      struct rb_root_cached *root);
2221 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2222 				    struct vm_area_struct *prev,
2223 				    struct rb_root_cached *root);
2224 void vma_interval_tree_remove(struct vm_area_struct *node,
2225 			      struct rb_root_cached *root);
2226 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2227 				unsigned long start, unsigned long last);
2228 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2229 				unsigned long start, unsigned long last);
2230 
2231 #define vma_interval_tree_foreach(vma, root, start, last)		\
2232 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2233 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2234 
2235 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2236 				   struct rb_root_cached *root);
2237 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2238 				   struct rb_root_cached *root);
2239 struct anon_vma_chain *
2240 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2241 				  unsigned long start, unsigned long last);
2242 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2243 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2244 #ifdef CONFIG_DEBUG_VM_RB
2245 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2246 #endif
2247 
2248 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2249 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2250 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2251 
2252 /* mmap.c */
2253 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2254 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2255 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2256 	struct vm_area_struct *expand);
2257 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2258 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2259 {
2260 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2261 }
2262 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2263 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2264 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2265 	struct mempolicy *, struct vm_userfaultfd_ctx);
2266 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2267 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2268 	unsigned long addr, int new_below);
2269 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2270 	unsigned long addr, int new_below);
2271 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2272 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2273 	struct rb_node **, struct rb_node *);
2274 extern void unlink_file_vma(struct vm_area_struct *);
2275 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2276 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2277 	bool *need_rmap_locks);
2278 extern void exit_mmap(struct mm_struct *);
2279 
2280 static inline int check_data_rlimit(unsigned long rlim,
2281 				    unsigned long new,
2282 				    unsigned long start,
2283 				    unsigned long end_data,
2284 				    unsigned long start_data)
2285 {
2286 	if (rlim < RLIM_INFINITY) {
2287 		if (((new - start) + (end_data - start_data)) > rlim)
2288 			return -ENOSPC;
2289 	}
2290 
2291 	return 0;
2292 }
2293 
2294 extern int mm_take_all_locks(struct mm_struct *mm);
2295 extern void mm_drop_all_locks(struct mm_struct *mm);
2296 
2297 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2298 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2299 extern struct file *get_task_exe_file(struct task_struct *task);
2300 
2301 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2302 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2303 
2304 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2305 				   const struct vm_special_mapping *sm);
2306 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2307 				   unsigned long addr, unsigned long len,
2308 				   unsigned long flags,
2309 				   const struct vm_special_mapping *spec);
2310 /* This is an obsolete alternative to _install_special_mapping. */
2311 extern int install_special_mapping(struct mm_struct *mm,
2312 				   unsigned long addr, unsigned long len,
2313 				   unsigned long flags, struct page **pages);
2314 
2315 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2316 
2317 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2318 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2319 	struct list_head *uf);
2320 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2321 	unsigned long len, unsigned long prot, unsigned long flags,
2322 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2323 	struct list_head *uf);
2324 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2325 		       struct list_head *uf, bool downgrade);
2326 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2327 		     struct list_head *uf);
2328 
2329 static inline unsigned long
2330 do_mmap_pgoff(struct file *file, unsigned long addr,
2331 	unsigned long len, unsigned long prot, unsigned long flags,
2332 	unsigned long pgoff, unsigned long *populate,
2333 	struct list_head *uf)
2334 {
2335 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2336 }
2337 
2338 #ifdef CONFIG_MMU
2339 extern int __mm_populate(unsigned long addr, unsigned long len,
2340 			 int ignore_errors);
2341 static inline void mm_populate(unsigned long addr, unsigned long len)
2342 {
2343 	/* Ignore errors */
2344 	(void) __mm_populate(addr, len, 1);
2345 }
2346 #else
2347 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2348 #endif
2349 
2350 /* These take the mm semaphore themselves */
2351 extern int __must_check vm_brk(unsigned long, unsigned long);
2352 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2353 extern int vm_munmap(unsigned long, size_t);
2354 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2355         unsigned long, unsigned long,
2356         unsigned long, unsigned long);
2357 
2358 struct vm_unmapped_area_info {
2359 #define VM_UNMAPPED_AREA_TOPDOWN 1
2360 	unsigned long flags;
2361 	unsigned long length;
2362 	unsigned long low_limit;
2363 	unsigned long high_limit;
2364 	unsigned long align_mask;
2365 	unsigned long align_offset;
2366 };
2367 
2368 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2369 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2370 
2371 /*
2372  * Search for an unmapped address range.
2373  *
2374  * We are looking for a range that:
2375  * - does not intersect with any VMA;
2376  * - is contained within the [low_limit, high_limit) interval;
2377  * - is at least the desired size.
2378  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2379  */
2380 static inline unsigned long
2381 vm_unmapped_area(struct vm_unmapped_area_info *info)
2382 {
2383 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2384 		return unmapped_area_topdown(info);
2385 	else
2386 		return unmapped_area(info);
2387 }
2388 
2389 /* truncate.c */
2390 extern void truncate_inode_pages(struct address_space *, loff_t);
2391 extern void truncate_inode_pages_range(struct address_space *,
2392 				       loff_t lstart, loff_t lend);
2393 extern void truncate_inode_pages_final(struct address_space *);
2394 
2395 /* generic vm_area_ops exported for stackable file systems */
2396 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2397 extern void filemap_map_pages(struct vm_fault *vmf,
2398 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2399 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2400 
2401 /* mm/page-writeback.c */
2402 int __must_check write_one_page(struct page *page);
2403 void task_dirty_inc(struct task_struct *tsk);
2404 
2405 /* readahead.c */
2406 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2407 
2408 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2409 			pgoff_t offset, unsigned long nr_to_read);
2410 
2411 void page_cache_sync_readahead(struct address_space *mapping,
2412 			       struct file_ra_state *ra,
2413 			       struct file *filp,
2414 			       pgoff_t offset,
2415 			       unsigned long size);
2416 
2417 void page_cache_async_readahead(struct address_space *mapping,
2418 				struct file_ra_state *ra,
2419 				struct file *filp,
2420 				struct page *pg,
2421 				pgoff_t offset,
2422 				unsigned long size);
2423 
2424 extern unsigned long stack_guard_gap;
2425 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2426 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2427 
2428 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2429 extern int expand_downwards(struct vm_area_struct *vma,
2430 		unsigned long address);
2431 #if VM_GROWSUP
2432 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2433 #else
2434   #define expand_upwards(vma, address) (0)
2435 #endif
2436 
2437 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2438 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2439 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2440 					     struct vm_area_struct **pprev);
2441 
2442 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2443    NULL if none.  Assume start_addr < end_addr. */
2444 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2445 {
2446 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2447 
2448 	if (vma && end_addr <= vma->vm_start)
2449 		vma = NULL;
2450 	return vma;
2451 }
2452 
2453 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2454 {
2455 	unsigned long vm_start = vma->vm_start;
2456 
2457 	if (vma->vm_flags & VM_GROWSDOWN) {
2458 		vm_start -= stack_guard_gap;
2459 		if (vm_start > vma->vm_start)
2460 			vm_start = 0;
2461 	}
2462 	return vm_start;
2463 }
2464 
2465 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2466 {
2467 	unsigned long vm_end = vma->vm_end;
2468 
2469 	if (vma->vm_flags & VM_GROWSUP) {
2470 		vm_end += stack_guard_gap;
2471 		if (vm_end < vma->vm_end)
2472 			vm_end = -PAGE_SIZE;
2473 	}
2474 	return vm_end;
2475 }
2476 
2477 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2478 {
2479 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2480 }
2481 
2482 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2483 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2484 				unsigned long vm_start, unsigned long vm_end)
2485 {
2486 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2487 
2488 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2489 		vma = NULL;
2490 
2491 	return vma;
2492 }
2493 
2494 static inline bool range_in_vma(struct vm_area_struct *vma,
2495 				unsigned long start, unsigned long end)
2496 {
2497 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2498 }
2499 
2500 #ifdef CONFIG_MMU
2501 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2502 void vma_set_page_prot(struct vm_area_struct *vma);
2503 #else
2504 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2505 {
2506 	return __pgprot(0);
2507 }
2508 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2509 {
2510 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2511 }
2512 #endif
2513 
2514 #ifdef CONFIG_NUMA_BALANCING
2515 unsigned long change_prot_numa(struct vm_area_struct *vma,
2516 			unsigned long start, unsigned long end);
2517 #endif
2518 
2519 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2520 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2521 			unsigned long pfn, unsigned long size, pgprot_t);
2522 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2523 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2524 			unsigned long pfn);
2525 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2526 			unsigned long pfn, pgprot_t pgprot);
2527 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2528 			pfn_t pfn);
2529 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2530 		unsigned long addr, pfn_t pfn);
2531 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2532 
2533 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2534 				unsigned long addr, struct page *page)
2535 {
2536 	int err = vm_insert_page(vma, addr, page);
2537 
2538 	if (err == -ENOMEM)
2539 		return VM_FAULT_OOM;
2540 	if (err < 0 && err != -EBUSY)
2541 		return VM_FAULT_SIGBUS;
2542 
2543 	return VM_FAULT_NOPAGE;
2544 }
2545 
2546 static inline vm_fault_t vmf_error(int err)
2547 {
2548 	if (err == -ENOMEM)
2549 		return VM_FAULT_OOM;
2550 	return VM_FAULT_SIGBUS;
2551 }
2552 
2553 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2554 			 unsigned int foll_flags);
2555 
2556 #define FOLL_WRITE	0x01	/* check pte is writable */
2557 #define FOLL_TOUCH	0x02	/* mark page accessed */
2558 #define FOLL_GET	0x04	/* do get_page on page */
2559 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2560 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2561 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2562 				 * and return without waiting upon it */
2563 #define FOLL_POPULATE	0x40	/* fault in page */
2564 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2565 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2566 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2567 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2568 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2569 #define FOLL_MLOCK	0x1000	/* lock present pages */
2570 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2571 #define FOLL_COW	0x4000	/* internal GUP flag */
2572 #define FOLL_ANON	0x8000	/* don't do file mappings */
2573 
2574 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2575 {
2576 	if (vm_fault & VM_FAULT_OOM)
2577 		return -ENOMEM;
2578 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2579 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2580 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2581 		return -EFAULT;
2582 	return 0;
2583 }
2584 
2585 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2586 			void *data);
2587 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2588 			       unsigned long size, pte_fn_t fn, void *data);
2589 
2590 
2591 #ifdef CONFIG_PAGE_POISONING
2592 extern bool page_poisoning_enabled(void);
2593 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2594 #else
2595 static inline bool page_poisoning_enabled(void) { return false; }
2596 static inline void kernel_poison_pages(struct page *page, int numpages,
2597 					int enable) { }
2598 #endif
2599 
2600 #ifdef CONFIG_DEBUG_PAGEALLOC
2601 extern bool _debug_pagealloc_enabled;
2602 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2603 
2604 static inline bool debug_pagealloc_enabled(void)
2605 {
2606 	return _debug_pagealloc_enabled;
2607 }
2608 
2609 static inline void
2610 kernel_map_pages(struct page *page, int numpages, int enable)
2611 {
2612 	if (!debug_pagealloc_enabled())
2613 		return;
2614 
2615 	__kernel_map_pages(page, numpages, enable);
2616 }
2617 #ifdef CONFIG_HIBERNATION
2618 extern bool kernel_page_present(struct page *page);
2619 #endif	/* CONFIG_HIBERNATION */
2620 #else	/* CONFIG_DEBUG_PAGEALLOC */
2621 static inline void
2622 kernel_map_pages(struct page *page, int numpages, int enable) {}
2623 #ifdef CONFIG_HIBERNATION
2624 static inline bool kernel_page_present(struct page *page) { return true; }
2625 #endif	/* CONFIG_HIBERNATION */
2626 static inline bool debug_pagealloc_enabled(void)
2627 {
2628 	return false;
2629 }
2630 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2631 
2632 #ifdef __HAVE_ARCH_GATE_AREA
2633 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2634 extern int in_gate_area_no_mm(unsigned long addr);
2635 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2636 #else
2637 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2638 {
2639 	return NULL;
2640 }
2641 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2642 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2643 {
2644 	return 0;
2645 }
2646 #endif	/* __HAVE_ARCH_GATE_AREA */
2647 
2648 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2649 
2650 #ifdef CONFIG_SYSCTL
2651 extern int sysctl_drop_caches;
2652 int drop_caches_sysctl_handler(struct ctl_table *, int,
2653 					void __user *, size_t *, loff_t *);
2654 #endif
2655 
2656 void drop_slab(void);
2657 void drop_slab_node(int nid);
2658 
2659 #ifndef CONFIG_MMU
2660 #define randomize_va_space 0
2661 #else
2662 extern int randomize_va_space;
2663 #endif
2664 
2665 const char * arch_vma_name(struct vm_area_struct *vma);
2666 void print_vma_addr(char *prefix, unsigned long rip);
2667 
2668 void *sparse_buffer_alloc(unsigned long size);
2669 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2670 		struct vmem_altmap *altmap);
2671 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2672 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2673 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2674 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2675 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2676 void *vmemmap_alloc_block(unsigned long size, int node);
2677 struct vmem_altmap;
2678 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2679 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2680 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2681 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2682 			       int node);
2683 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2684 		struct vmem_altmap *altmap);
2685 void vmemmap_populate_print_last(void);
2686 #ifdef CONFIG_MEMORY_HOTPLUG
2687 void vmemmap_free(unsigned long start, unsigned long end,
2688 		struct vmem_altmap *altmap);
2689 #endif
2690 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2691 				  unsigned long nr_pages);
2692 
2693 enum mf_flags {
2694 	MF_COUNT_INCREASED = 1 << 0,
2695 	MF_ACTION_REQUIRED = 1 << 1,
2696 	MF_MUST_KILL = 1 << 2,
2697 	MF_SOFT_OFFLINE = 1 << 3,
2698 };
2699 extern int memory_failure(unsigned long pfn, int flags);
2700 extern void memory_failure_queue(unsigned long pfn, int flags);
2701 extern int unpoison_memory(unsigned long pfn);
2702 extern int get_hwpoison_page(struct page *page);
2703 #define put_hwpoison_page(page)	put_page(page)
2704 extern int sysctl_memory_failure_early_kill;
2705 extern int sysctl_memory_failure_recovery;
2706 extern void shake_page(struct page *p, int access);
2707 extern atomic_long_t num_poisoned_pages __read_mostly;
2708 extern int soft_offline_page(struct page *page, int flags);
2709 
2710 
2711 /*
2712  * Error handlers for various types of pages.
2713  */
2714 enum mf_result {
2715 	MF_IGNORED,	/* Error: cannot be handled */
2716 	MF_FAILED,	/* Error: handling failed */
2717 	MF_DELAYED,	/* Will be handled later */
2718 	MF_RECOVERED,	/* Successfully recovered */
2719 };
2720 
2721 enum mf_action_page_type {
2722 	MF_MSG_KERNEL,
2723 	MF_MSG_KERNEL_HIGH_ORDER,
2724 	MF_MSG_SLAB,
2725 	MF_MSG_DIFFERENT_COMPOUND,
2726 	MF_MSG_POISONED_HUGE,
2727 	MF_MSG_HUGE,
2728 	MF_MSG_FREE_HUGE,
2729 	MF_MSG_NON_PMD_HUGE,
2730 	MF_MSG_UNMAP_FAILED,
2731 	MF_MSG_DIRTY_SWAPCACHE,
2732 	MF_MSG_CLEAN_SWAPCACHE,
2733 	MF_MSG_DIRTY_MLOCKED_LRU,
2734 	MF_MSG_CLEAN_MLOCKED_LRU,
2735 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2736 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2737 	MF_MSG_DIRTY_LRU,
2738 	MF_MSG_CLEAN_LRU,
2739 	MF_MSG_TRUNCATED_LRU,
2740 	MF_MSG_BUDDY,
2741 	MF_MSG_BUDDY_2ND,
2742 	MF_MSG_DAX,
2743 	MF_MSG_UNKNOWN,
2744 };
2745 
2746 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2747 extern void clear_huge_page(struct page *page,
2748 			    unsigned long addr_hint,
2749 			    unsigned int pages_per_huge_page);
2750 extern void copy_user_huge_page(struct page *dst, struct page *src,
2751 				unsigned long addr_hint,
2752 				struct vm_area_struct *vma,
2753 				unsigned int pages_per_huge_page);
2754 extern long copy_huge_page_from_user(struct page *dst_page,
2755 				const void __user *usr_src,
2756 				unsigned int pages_per_huge_page,
2757 				bool allow_pagefault);
2758 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2759 
2760 extern struct page_ext_operations debug_guardpage_ops;
2761 
2762 #ifdef CONFIG_DEBUG_PAGEALLOC
2763 extern unsigned int _debug_guardpage_minorder;
2764 extern bool _debug_guardpage_enabled;
2765 
2766 static inline unsigned int debug_guardpage_minorder(void)
2767 {
2768 	return _debug_guardpage_minorder;
2769 }
2770 
2771 static inline bool debug_guardpage_enabled(void)
2772 {
2773 	return _debug_guardpage_enabled;
2774 }
2775 
2776 static inline bool page_is_guard(struct page *page)
2777 {
2778 	struct page_ext *page_ext;
2779 
2780 	if (!debug_guardpage_enabled())
2781 		return false;
2782 
2783 	page_ext = lookup_page_ext(page);
2784 	if (unlikely(!page_ext))
2785 		return false;
2786 
2787 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2788 }
2789 #else
2790 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2791 static inline bool debug_guardpage_enabled(void) { return false; }
2792 static inline bool page_is_guard(struct page *page) { return false; }
2793 #endif /* CONFIG_DEBUG_PAGEALLOC */
2794 
2795 #if MAX_NUMNODES > 1
2796 void __init setup_nr_node_ids(void);
2797 #else
2798 static inline void setup_nr_node_ids(void) {}
2799 #endif
2800 
2801 #endif /* __KERNEL__ */
2802 #endif /* _LINUX_MM_H */
2803