xref: /openbmc/linux/include/linux/mm.h (revision d78c317f)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 struct file_ra_state;
24 struct user_struct;
25 struct writeback_control;
26 
27 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
28 extern unsigned long max_mapnr;
29 #endif
30 
31 extern unsigned long num_physpages;
32 extern unsigned long totalram_pages;
33 extern void * high_memory;
34 extern int page_cluster;
35 
36 #ifdef CONFIG_SYSCTL
37 extern int sysctl_legacy_va_layout;
38 #else
39 #define sysctl_legacy_va_layout 0
40 #endif
41 
42 #include <asm/page.h>
43 #include <asm/pgtable.h>
44 #include <asm/processor.h>
45 
46 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
47 
48 /* to align the pointer to the (next) page boundary */
49 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
50 
51 /*
52  * Linux kernel virtual memory manager primitives.
53  * The idea being to have a "virtual" mm in the same way
54  * we have a virtual fs - giving a cleaner interface to the
55  * mm details, and allowing different kinds of memory mappings
56  * (from shared memory to executable loading to arbitrary
57  * mmap() functions).
58  */
59 
60 extern struct kmem_cache *vm_area_cachep;
61 
62 #ifndef CONFIG_MMU
63 extern struct rb_root nommu_region_tree;
64 extern struct rw_semaphore nommu_region_sem;
65 
66 extern unsigned int kobjsize(const void *objp);
67 #endif
68 
69 /*
70  * vm_flags in vm_area_struct, see mm_types.h.
71  */
72 #define VM_READ		0x00000001	/* currently active flags */
73 #define VM_WRITE	0x00000002
74 #define VM_EXEC		0x00000004
75 #define VM_SHARED	0x00000008
76 
77 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
78 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
79 #define VM_MAYWRITE	0x00000020
80 #define VM_MAYEXEC	0x00000040
81 #define VM_MAYSHARE	0x00000080
82 
83 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
84 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
85 #define VM_GROWSUP	0x00000200
86 #else
87 #define VM_GROWSUP	0x00000000
88 #define VM_NOHUGEPAGE	0x00000200	/* MADV_NOHUGEPAGE marked this vma */
89 #endif
90 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
91 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
92 
93 #define VM_EXECUTABLE	0x00001000
94 #define VM_LOCKED	0x00002000
95 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
96 
97 					/* Used by sys_madvise() */
98 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
99 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
100 
101 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
102 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
103 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
104 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
105 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
106 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
107 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
108 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
109 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
110 #else
111 #define VM_HUGEPAGE	0x01000000	/* MADV_HUGEPAGE marked this vma */
112 #endif
113 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
114 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
115 
116 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
117 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
118 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
119 #define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
120 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
121 
122 /* Bits set in the VMA until the stack is in its final location */
123 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
124 
125 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
126 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
127 #endif
128 
129 #ifdef CONFIG_STACK_GROWSUP
130 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131 #else
132 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
133 #endif
134 
135 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
136 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
137 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
138 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
139 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
140 
141 /*
142  * Special vmas that are non-mergable, non-mlock()able.
143  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
144  */
145 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
146 
147 /*
148  * mapping from the currently active vm_flags protection bits (the
149  * low four bits) to a page protection mask..
150  */
151 extern pgprot_t protection_map[16];
152 
153 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
154 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
155 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
156 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
157 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
158 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
159 
160 /*
161  * This interface is used by x86 PAT code to identify a pfn mapping that is
162  * linear over entire vma. This is to optimize PAT code that deals with
163  * marking the physical region with a particular prot. This is not for generic
164  * mm use. Note also that this check will not work if the pfn mapping is
165  * linear for a vma starting at physical address 0. In which case PAT code
166  * falls back to slow path of reserving physical range page by page.
167  */
168 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
169 {
170 	return !!(vma->vm_flags & VM_PFN_AT_MMAP);
171 }
172 
173 static inline int is_pfn_mapping(struct vm_area_struct *vma)
174 {
175 	return !!(vma->vm_flags & VM_PFNMAP);
176 }
177 
178 /*
179  * vm_fault is filled by the the pagefault handler and passed to the vma's
180  * ->fault function. The vma's ->fault is responsible for returning a bitmask
181  * of VM_FAULT_xxx flags that give details about how the fault was handled.
182  *
183  * pgoff should be used in favour of virtual_address, if possible. If pgoff
184  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
185  * mapping support.
186  */
187 struct vm_fault {
188 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
189 	pgoff_t pgoff;			/* Logical page offset based on vma */
190 	void __user *virtual_address;	/* Faulting virtual address */
191 
192 	struct page *page;		/* ->fault handlers should return a
193 					 * page here, unless VM_FAULT_NOPAGE
194 					 * is set (which is also implied by
195 					 * VM_FAULT_ERROR).
196 					 */
197 };
198 
199 /*
200  * These are the virtual MM functions - opening of an area, closing and
201  * unmapping it (needed to keep files on disk up-to-date etc), pointer
202  * to the functions called when a no-page or a wp-page exception occurs.
203  */
204 struct vm_operations_struct {
205 	void (*open)(struct vm_area_struct * area);
206 	void (*close)(struct vm_area_struct * area);
207 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
208 
209 	/* notification that a previously read-only page is about to become
210 	 * writable, if an error is returned it will cause a SIGBUS */
211 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
212 
213 	/* called by access_process_vm when get_user_pages() fails, typically
214 	 * for use by special VMAs that can switch between memory and hardware
215 	 */
216 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
217 		      void *buf, int len, int write);
218 #ifdef CONFIG_NUMA
219 	/*
220 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
221 	 * to hold the policy upon return.  Caller should pass NULL @new to
222 	 * remove a policy and fall back to surrounding context--i.e. do not
223 	 * install a MPOL_DEFAULT policy, nor the task or system default
224 	 * mempolicy.
225 	 */
226 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
227 
228 	/*
229 	 * get_policy() op must add reference [mpol_get()] to any policy at
230 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
231 	 * in mm/mempolicy.c will do this automatically.
232 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
233 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
234 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
235 	 * must return NULL--i.e., do not "fallback" to task or system default
236 	 * policy.
237 	 */
238 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
239 					unsigned long addr);
240 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
241 		const nodemask_t *to, unsigned long flags);
242 #endif
243 };
244 
245 struct mmu_gather;
246 struct inode;
247 
248 #define page_private(page)		((page)->private)
249 #define set_page_private(page, v)	((page)->private = (v))
250 
251 /*
252  * FIXME: take this include out, include page-flags.h in
253  * files which need it (119 of them)
254  */
255 #include <linux/page-flags.h>
256 #include <linux/huge_mm.h>
257 
258 /*
259  * Methods to modify the page usage count.
260  *
261  * What counts for a page usage:
262  * - cache mapping   (page->mapping)
263  * - private data    (page->private)
264  * - page mapped in a task's page tables, each mapping
265  *   is counted separately
266  *
267  * Also, many kernel routines increase the page count before a critical
268  * routine so they can be sure the page doesn't go away from under them.
269  */
270 
271 /*
272  * Drop a ref, return true if the refcount fell to zero (the page has no users)
273  */
274 static inline int put_page_testzero(struct page *page)
275 {
276 	VM_BUG_ON(atomic_read(&page->_count) == 0);
277 	return atomic_dec_and_test(&page->_count);
278 }
279 
280 /*
281  * Try to grab a ref unless the page has a refcount of zero, return false if
282  * that is the case.
283  */
284 static inline int get_page_unless_zero(struct page *page)
285 {
286 	return atomic_inc_not_zero(&page->_count);
287 }
288 
289 extern int page_is_ram(unsigned long pfn);
290 
291 /* Support for virtually mapped pages */
292 struct page *vmalloc_to_page(const void *addr);
293 unsigned long vmalloc_to_pfn(const void *addr);
294 
295 /*
296  * Determine if an address is within the vmalloc range
297  *
298  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
299  * is no special casing required.
300  */
301 static inline int is_vmalloc_addr(const void *x)
302 {
303 #ifdef CONFIG_MMU
304 	unsigned long addr = (unsigned long)x;
305 
306 	return addr >= VMALLOC_START && addr < VMALLOC_END;
307 #else
308 	return 0;
309 #endif
310 }
311 #ifdef CONFIG_MMU
312 extern int is_vmalloc_or_module_addr(const void *x);
313 #else
314 static inline int is_vmalloc_or_module_addr(const void *x)
315 {
316 	return 0;
317 }
318 #endif
319 
320 static inline void compound_lock(struct page *page)
321 {
322 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
323 	bit_spin_lock(PG_compound_lock, &page->flags);
324 #endif
325 }
326 
327 static inline void compound_unlock(struct page *page)
328 {
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 	bit_spin_unlock(PG_compound_lock, &page->flags);
331 #endif
332 }
333 
334 static inline unsigned long compound_lock_irqsave(struct page *page)
335 {
336 	unsigned long uninitialized_var(flags);
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 	local_irq_save(flags);
339 	compound_lock(page);
340 #endif
341 	return flags;
342 }
343 
344 static inline void compound_unlock_irqrestore(struct page *page,
345 					      unsigned long flags)
346 {
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 	compound_unlock(page);
349 	local_irq_restore(flags);
350 #endif
351 }
352 
353 static inline struct page *compound_head(struct page *page)
354 {
355 	if (unlikely(PageTail(page)))
356 		return page->first_page;
357 	return page;
358 }
359 
360 /*
361  * The atomic page->_mapcount, starts from -1: so that transitions
362  * both from it and to it can be tracked, using atomic_inc_and_test
363  * and atomic_add_negative(-1).
364  */
365 static inline void reset_page_mapcount(struct page *page)
366 {
367 	atomic_set(&(page)->_mapcount, -1);
368 }
369 
370 static inline int page_mapcount(struct page *page)
371 {
372 	return atomic_read(&(page)->_mapcount) + 1;
373 }
374 
375 static inline int page_count(struct page *page)
376 {
377 	return atomic_read(&compound_head(page)->_count);
378 }
379 
380 static inline void get_huge_page_tail(struct page *page)
381 {
382 	/*
383 	 * __split_huge_page_refcount() cannot run
384 	 * from under us.
385 	 */
386 	VM_BUG_ON(page_mapcount(page) < 0);
387 	VM_BUG_ON(atomic_read(&page->_count) != 0);
388 	atomic_inc(&page->_mapcount);
389 }
390 
391 extern bool __get_page_tail(struct page *page);
392 
393 static inline void get_page(struct page *page)
394 {
395 	if (unlikely(PageTail(page)))
396 		if (likely(__get_page_tail(page)))
397 			return;
398 	/*
399 	 * Getting a normal page or the head of a compound page
400 	 * requires to already have an elevated page->_count.
401 	 */
402 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
403 	atomic_inc(&page->_count);
404 }
405 
406 static inline struct page *virt_to_head_page(const void *x)
407 {
408 	struct page *page = virt_to_page(x);
409 	return compound_head(page);
410 }
411 
412 /*
413  * Setup the page count before being freed into the page allocator for
414  * the first time (boot or memory hotplug)
415  */
416 static inline void init_page_count(struct page *page)
417 {
418 	atomic_set(&page->_count, 1);
419 }
420 
421 /*
422  * PageBuddy() indicate that the page is free and in the buddy system
423  * (see mm/page_alloc.c).
424  *
425  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
426  * -2 so that an underflow of the page_mapcount() won't be mistaken
427  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
428  * efficiently by most CPU architectures.
429  */
430 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
431 
432 static inline int PageBuddy(struct page *page)
433 {
434 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
435 }
436 
437 static inline void __SetPageBuddy(struct page *page)
438 {
439 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
440 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
441 }
442 
443 static inline void __ClearPageBuddy(struct page *page)
444 {
445 	VM_BUG_ON(!PageBuddy(page));
446 	atomic_set(&page->_mapcount, -1);
447 }
448 
449 void put_page(struct page *page);
450 void put_pages_list(struct list_head *pages);
451 
452 void split_page(struct page *page, unsigned int order);
453 int split_free_page(struct page *page);
454 
455 /*
456  * Compound pages have a destructor function.  Provide a
457  * prototype for that function and accessor functions.
458  * These are _only_ valid on the head of a PG_compound page.
459  */
460 typedef void compound_page_dtor(struct page *);
461 
462 static inline void set_compound_page_dtor(struct page *page,
463 						compound_page_dtor *dtor)
464 {
465 	page[1].lru.next = (void *)dtor;
466 }
467 
468 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
469 {
470 	return (compound_page_dtor *)page[1].lru.next;
471 }
472 
473 static inline int compound_order(struct page *page)
474 {
475 	if (!PageHead(page))
476 		return 0;
477 	return (unsigned long)page[1].lru.prev;
478 }
479 
480 static inline int compound_trans_order(struct page *page)
481 {
482 	int order;
483 	unsigned long flags;
484 
485 	if (!PageHead(page))
486 		return 0;
487 
488 	flags = compound_lock_irqsave(page);
489 	order = compound_order(page);
490 	compound_unlock_irqrestore(page, flags);
491 	return order;
492 }
493 
494 static inline void set_compound_order(struct page *page, unsigned long order)
495 {
496 	page[1].lru.prev = (void *)order;
497 }
498 
499 #ifdef CONFIG_MMU
500 /*
501  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
502  * servicing faults for write access.  In the normal case, do always want
503  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
504  * that do not have writing enabled, when used by access_process_vm.
505  */
506 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
507 {
508 	if (likely(vma->vm_flags & VM_WRITE))
509 		pte = pte_mkwrite(pte);
510 	return pte;
511 }
512 #endif
513 
514 /*
515  * Multiple processes may "see" the same page. E.g. for untouched
516  * mappings of /dev/null, all processes see the same page full of
517  * zeroes, and text pages of executables and shared libraries have
518  * only one copy in memory, at most, normally.
519  *
520  * For the non-reserved pages, page_count(page) denotes a reference count.
521  *   page_count() == 0 means the page is free. page->lru is then used for
522  *   freelist management in the buddy allocator.
523  *   page_count() > 0  means the page has been allocated.
524  *
525  * Pages are allocated by the slab allocator in order to provide memory
526  * to kmalloc and kmem_cache_alloc. In this case, the management of the
527  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
528  * unless a particular usage is carefully commented. (the responsibility of
529  * freeing the kmalloc memory is the caller's, of course).
530  *
531  * A page may be used by anyone else who does a __get_free_page().
532  * In this case, page_count still tracks the references, and should only
533  * be used through the normal accessor functions. The top bits of page->flags
534  * and page->virtual store page management information, but all other fields
535  * are unused and could be used privately, carefully. The management of this
536  * page is the responsibility of the one who allocated it, and those who have
537  * subsequently been given references to it.
538  *
539  * The other pages (we may call them "pagecache pages") are completely
540  * managed by the Linux memory manager: I/O, buffers, swapping etc.
541  * The following discussion applies only to them.
542  *
543  * A pagecache page contains an opaque `private' member, which belongs to the
544  * page's address_space. Usually, this is the address of a circular list of
545  * the page's disk buffers. PG_private must be set to tell the VM to call
546  * into the filesystem to release these pages.
547  *
548  * A page may belong to an inode's memory mapping. In this case, page->mapping
549  * is the pointer to the inode, and page->index is the file offset of the page,
550  * in units of PAGE_CACHE_SIZE.
551  *
552  * If pagecache pages are not associated with an inode, they are said to be
553  * anonymous pages. These may become associated with the swapcache, and in that
554  * case PG_swapcache is set, and page->private is an offset into the swapcache.
555  *
556  * In either case (swapcache or inode backed), the pagecache itself holds one
557  * reference to the page. Setting PG_private should also increment the
558  * refcount. The each user mapping also has a reference to the page.
559  *
560  * The pagecache pages are stored in a per-mapping radix tree, which is
561  * rooted at mapping->page_tree, and indexed by offset.
562  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
563  * lists, we instead now tag pages as dirty/writeback in the radix tree.
564  *
565  * All pagecache pages may be subject to I/O:
566  * - inode pages may need to be read from disk,
567  * - inode pages which have been modified and are MAP_SHARED may need
568  *   to be written back to the inode on disk,
569  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
570  *   modified may need to be swapped out to swap space and (later) to be read
571  *   back into memory.
572  */
573 
574 /*
575  * The zone field is never updated after free_area_init_core()
576  * sets it, so none of the operations on it need to be atomic.
577  */
578 
579 
580 /*
581  * page->flags layout:
582  *
583  * There are three possibilities for how page->flags get
584  * laid out.  The first is for the normal case, without
585  * sparsemem.  The second is for sparsemem when there is
586  * plenty of space for node and section.  The last is when
587  * we have run out of space and have to fall back to an
588  * alternate (slower) way of determining the node.
589  *
590  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
591  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
592  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
593  */
594 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
595 #define SECTIONS_WIDTH		SECTIONS_SHIFT
596 #else
597 #define SECTIONS_WIDTH		0
598 #endif
599 
600 #define ZONES_WIDTH		ZONES_SHIFT
601 
602 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
603 #define NODES_WIDTH		NODES_SHIFT
604 #else
605 #ifdef CONFIG_SPARSEMEM_VMEMMAP
606 #error "Vmemmap: No space for nodes field in page flags"
607 #endif
608 #define NODES_WIDTH		0
609 #endif
610 
611 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
612 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
613 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
614 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
615 
616 /*
617  * We are going to use the flags for the page to node mapping if its in
618  * there.  This includes the case where there is no node, so it is implicit.
619  */
620 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
621 #define NODE_NOT_IN_PAGE_FLAGS
622 #endif
623 
624 /*
625  * Define the bit shifts to access each section.  For non-existent
626  * sections we define the shift as 0; that plus a 0 mask ensures
627  * the compiler will optimise away reference to them.
628  */
629 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
630 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
631 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
632 
633 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
634 #ifdef NODE_NOT_IN_PAGE_FLAGS
635 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
636 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
637 						SECTIONS_PGOFF : ZONES_PGOFF)
638 #else
639 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
640 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
641 						NODES_PGOFF : ZONES_PGOFF)
642 #endif
643 
644 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
645 
646 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
647 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
648 #endif
649 
650 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
651 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
652 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
653 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
654 
655 static inline enum zone_type page_zonenum(const struct page *page)
656 {
657 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
658 }
659 
660 /*
661  * The identification function is only used by the buddy allocator for
662  * determining if two pages could be buddies. We are not really
663  * identifying a zone since we could be using a the section number
664  * id if we have not node id available in page flags.
665  * We guarantee only that it will return the same value for two
666  * combinable pages in a zone.
667  */
668 static inline int page_zone_id(struct page *page)
669 {
670 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
671 }
672 
673 static inline int zone_to_nid(struct zone *zone)
674 {
675 #ifdef CONFIG_NUMA
676 	return zone->node;
677 #else
678 	return 0;
679 #endif
680 }
681 
682 #ifdef NODE_NOT_IN_PAGE_FLAGS
683 extern int page_to_nid(const struct page *page);
684 #else
685 static inline int page_to_nid(const struct page *page)
686 {
687 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
688 }
689 #endif
690 
691 static inline struct zone *page_zone(const struct page *page)
692 {
693 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
694 }
695 
696 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
697 static inline void set_page_section(struct page *page, unsigned long section)
698 {
699 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
700 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
701 }
702 
703 static inline unsigned long page_to_section(const struct page *page)
704 {
705 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
706 }
707 #endif
708 
709 static inline void set_page_zone(struct page *page, enum zone_type zone)
710 {
711 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
712 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
713 }
714 
715 static inline void set_page_node(struct page *page, unsigned long node)
716 {
717 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
718 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
719 }
720 
721 static inline void set_page_links(struct page *page, enum zone_type zone,
722 	unsigned long node, unsigned long pfn)
723 {
724 	set_page_zone(page, zone);
725 	set_page_node(page, node);
726 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
727 	set_page_section(page, pfn_to_section_nr(pfn));
728 #endif
729 }
730 
731 /*
732  * Some inline functions in vmstat.h depend on page_zone()
733  */
734 #include <linux/vmstat.h>
735 
736 static __always_inline void *lowmem_page_address(const struct page *page)
737 {
738 	return __va(PFN_PHYS(page_to_pfn(page)));
739 }
740 
741 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
742 #define HASHED_PAGE_VIRTUAL
743 #endif
744 
745 #if defined(WANT_PAGE_VIRTUAL)
746 #define page_address(page) ((page)->virtual)
747 #define set_page_address(page, address)			\
748 	do {						\
749 		(page)->virtual = (address);		\
750 	} while(0)
751 #define page_address_init()  do { } while(0)
752 #endif
753 
754 #if defined(HASHED_PAGE_VIRTUAL)
755 void *page_address(const struct page *page);
756 void set_page_address(struct page *page, void *virtual);
757 void page_address_init(void);
758 #endif
759 
760 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
761 #define page_address(page) lowmem_page_address(page)
762 #define set_page_address(page, address)  do { } while(0)
763 #define page_address_init()  do { } while(0)
764 #endif
765 
766 /*
767  * On an anonymous page mapped into a user virtual memory area,
768  * page->mapping points to its anon_vma, not to a struct address_space;
769  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
770  *
771  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
772  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
773  * and then page->mapping points, not to an anon_vma, but to a private
774  * structure which KSM associates with that merged page.  See ksm.h.
775  *
776  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
777  *
778  * Please note that, confusingly, "page_mapping" refers to the inode
779  * address_space which maps the page from disk; whereas "page_mapped"
780  * refers to user virtual address space into which the page is mapped.
781  */
782 #define PAGE_MAPPING_ANON	1
783 #define PAGE_MAPPING_KSM	2
784 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
785 
786 extern struct address_space swapper_space;
787 static inline struct address_space *page_mapping(struct page *page)
788 {
789 	struct address_space *mapping = page->mapping;
790 
791 	VM_BUG_ON(PageSlab(page));
792 	if (unlikely(PageSwapCache(page)))
793 		mapping = &swapper_space;
794 	else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
795 		mapping = NULL;
796 	return mapping;
797 }
798 
799 /* Neutral page->mapping pointer to address_space or anon_vma or other */
800 static inline void *page_rmapping(struct page *page)
801 {
802 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
803 }
804 
805 static inline int PageAnon(struct page *page)
806 {
807 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
808 }
809 
810 /*
811  * Return the pagecache index of the passed page.  Regular pagecache pages
812  * use ->index whereas swapcache pages use ->private
813  */
814 static inline pgoff_t page_index(struct page *page)
815 {
816 	if (unlikely(PageSwapCache(page)))
817 		return page_private(page);
818 	return page->index;
819 }
820 
821 /*
822  * Return true if this page is mapped into pagetables.
823  */
824 static inline int page_mapped(struct page *page)
825 {
826 	return atomic_read(&(page)->_mapcount) >= 0;
827 }
828 
829 /*
830  * Different kinds of faults, as returned by handle_mm_fault().
831  * Used to decide whether a process gets delivered SIGBUS or
832  * just gets major/minor fault counters bumped up.
833  */
834 
835 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
836 
837 #define VM_FAULT_OOM	0x0001
838 #define VM_FAULT_SIGBUS	0x0002
839 #define VM_FAULT_MAJOR	0x0004
840 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
841 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
842 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
843 
844 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
845 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
846 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
847 
848 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
849 
850 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
851 			 VM_FAULT_HWPOISON_LARGE)
852 
853 /* Encode hstate index for a hwpoisoned large page */
854 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
855 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
856 
857 /*
858  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
859  */
860 extern void pagefault_out_of_memory(void);
861 
862 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
863 
864 /*
865  * Flags passed to show_mem() and show_free_areas() to suppress output in
866  * various contexts.
867  */
868 #define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */
869 
870 extern void show_free_areas(unsigned int flags);
871 extern bool skip_free_areas_node(unsigned int flags, int nid);
872 
873 int shmem_lock(struct file *file, int lock, struct user_struct *user);
874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
875 int shmem_zero_setup(struct vm_area_struct *);
876 
877 extern int can_do_mlock(void);
878 extern int user_shm_lock(size_t, struct user_struct *);
879 extern void user_shm_unlock(size_t, struct user_struct *);
880 
881 /*
882  * Parameter block passed down to zap_pte_range in exceptional cases.
883  */
884 struct zap_details {
885 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
886 	struct address_space *check_mapping;	/* Check page->mapping if set */
887 	pgoff_t	first_index;			/* Lowest page->index to unmap */
888 	pgoff_t last_index;			/* Highest page->index to unmap */
889 };
890 
891 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
892 		pte_t pte);
893 
894 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
895 		unsigned long size);
896 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
897 		unsigned long size, struct zap_details *);
898 unsigned long unmap_vmas(struct mmu_gather *tlb,
899 		struct vm_area_struct *start_vma, unsigned long start_addr,
900 		unsigned long end_addr, unsigned long *nr_accounted,
901 		struct zap_details *);
902 
903 /**
904  * mm_walk - callbacks for walk_page_range
905  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
906  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
907  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
908  *	       this handler is required to be able to handle
909  *	       pmd_trans_huge() pmds.  They may simply choose to
910  *	       split_huge_page() instead of handling it explicitly.
911  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
912  * @pte_hole: if set, called for each hole at all levels
913  * @hugetlb_entry: if set, called for each hugetlb entry
914  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
915  * 			      is used.
916  *
917  * (see walk_page_range for more details)
918  */
919 struct mm_walk {
920 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
921 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
922 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
923 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
924 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
925 	int (*hugetlb_entry)(pte_t *, unsigned long,
926 			     unsigned long, unsigned long, struct mm_walk *);
927 	struct mm_struct *mm;
928 	void *private;
929 };
930 
931 int walk_page_range(unsigned long addr, unsigned long end,
932 		struct mm_walk *walk);
933 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
934 		unsigned long end, unsigned long floor, unsigned long ceiling);
935 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
936 			struct vm_area_struct *vma);
937 void unmap_mapping_range(struct address_space *mapping,
938 		loff_t const holebegin, loff_t const holelen, int even_cows);
939 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
940 	unsigned long *pfn);
941 int follow_phys(struct vm_area_struct *vma, unsigned long address,
942 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
943 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
944 			void *buf, int len, int write);
945 
946 static inline void unmap_shared_mapping_range(struct address_space *mapping,
947 		loff_t const holebegin, loff_t const holelen)
948 {
949 	unmap_mapping_range(mapping, holebegin, holelen, 0);
950 }
951 
952 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
953 extern void truncate_setsize(struct inode *inode, loff_t newsize);
954 extern int vmtruncate(struct inode *inode, loff_t offset);
955 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
956 
957 int truncate_inode_page(struct address_space *mapping, struct page *page);
958 int generic_error_remove_page(struct address_space *mapping, struct page *page);
959 
960 int invalidate_inode_page(struct page *page);
961 
962 #ifdef CONFIG_MMU
963 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
964 			unsigned long address, unsigned int flags);
965 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
966 			    unsigned long address, unsigned int fault_flags);
967 #else
968 static inline int handle_mm_fault(struct mm_struct *mm,
969 			struct vm_area_struct *vma, unsigned long address,
970 			unsigned int flags)
971 {
972 	/* should never happen if there's no MMU */
973 	BUG();
974 	return VM_FAULT_SIGBUS;
975 }
976 static inline int fixup_user_fault(struct task_struct *tsk,
977 		struct mm_struct *mm, unsigned long address,
978 		unsigned int fault_flags)
979 {
980 	/* should never happen if there's no MMU */
981 	BUG();
982 	return -EFAULT;
983 }
984 #endif
985 
986 extern int make_pages_present(unsigned long addr, unsigned long end);
987 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
988 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
989 		void *buf, int len, int write);
990 
991 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
992 		     unsigned long start, int len, unsigned int foll_flags,
993 		     struct page **pages, struct vm_area_struct **vmas,
994 		     int *nonblocking);
995 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
996 			unsigned long start, int nr_pages, int write, int force,
997 			struct page **pages, struct vm_area_struct **vmas);
998 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
999 			struct page **pages);
1000 struct page *get_dump_page(unsigned long addr);
1001 
1002 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1003 extern void do_invalidatepage(struct page *page, unsigned long offset);
1004 
1005 int __set_page_dirty_nobuffers(struct page *page);
1006 int __set_page_dirty_no_writeback(struct page *page);
1007 int redirty_page_for_writepage(struct writeback_control *wbc,
1008 				struct page *page);
1009 void account_page_dirtied(struct page *page, struct address_space *mapping);
1010 void account_page_writeback(struct page *page);
1011 int set_page_dirty(struct page *page);
1012 int set_page_dirty_lock(struct page *page);
1013 int clear_page_dirty_for_io(struct page *page);
1014 
1015 /* Is the vma a continuation of the stack vma above it? */
1016 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1017 {
1018 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1019 }
1020 
1021 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1022 					     unsigned long addr)
1023 {
1024 	return (vma->vm_flags & VM_GROWSDOWN) &&
1025 		(vma->vm_start == addr) &&
1026 		!vma_growsdown(vma->vm_prev, addr);
1027 }
1028 
1029 /* Is the vma a continuation of the stack vma below it? */
1030 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1031 {
1032 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1033 }
1034 
1035 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1036 					   unsigned long addr)
1037 {
1038 	return (vma->vm_flags & VM_GROWSUP) &&
1039 		(vma->vm_end == addr) &&
1040 		!vma_growsup(vma->vm_next, addr);
1041 }
1042 
1043 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1044 		unsigned long old_addr, struct vm_area_struct *new_vma,
1045 		unsigned long new_addr, unsigned long len);
1046 extern unsigned long do_mremap(unsigned long addr,
1047 			       unsigned long old_len, unsigned long new_len,
1048 			       unsigned long flags, unsigned long new_addr);
1049 extern int mprotect_fixup(struct vm_area_struct *vma,
1050 			  struct vm_area_struct **pprev, unsigned long start,
1051 			  unsigned long end, unsigned long newflags);
1052 
1053 /*
1054  * doesn't attempt to fault and will return short.
1055  */
1056 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1057 			  struct page **pages);
1058 /*
1059  * per-process(per-mm_struct) statistics.
1060  */
1061 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1062 {
1063 	atomic_long_set(&mm->rss_stat.count[member], value);
1064 }
1065 
1066 #if defined(SPLIT_RSS_COUNTING)
1067 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1068 #else
1069 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1070 {
1071 	return atomic_long_read(&mm->rss_stat.count[member]);
1072 }
1073 #endif
1074 
1075 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1076 {
1077 	atomic_long_add(value, &mm->rss_stat.count[member]);
1078 }
1079 
1080 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1081 {
1082 	atomic_long_inc(&mm->rss_stat.count[member]);
1083 }
1084 
1085 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1086 {
1087 	atomic_long_dec(&mm->rss_stat.count[member]);
1088 }
1089 
1090 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1091 {
1092 	return get_mm_counter(mm, MM_FILEPAGES) +
1093 		get_mm_counter(mm, MM_ANONPAGES);
1094 }
1095 
1096 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1097 {
1098 	return max(mm->hiwater_rss, get_mm_rss(mm));
1099 }
1100 
1101 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1102 {
1103 	return max(mm->hiwater_vm, mm->total_vm);
1104 }
1105 
1106 static inline void update_hiwater_rss(struct mm_struct *mm)
1107 {
1108 	unsigned long _rss = get_mm_rss(mm);
1109 
1110 	if ((mm)->hiwater_rss < _rss)
1111 		(mm)->hiwater_rss = _rss;
1112 }
1113 
1114 static inline void update_hiwater_vm(struct mm_struct *mm)
1115 {
1116 	if (mm->hiwater_vm < mm->total_vm)
1117 		mm->hiwater_vm = mm->total_vm;
1118 }
1119 
1120 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1121 					 struct mm_struct *mm)
1122 {
1123 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1124 
1125 	if (*maxrss < hiwater_rss)
1126 		*maxrss = hiwater_rss;
1127 }
1128 
1129 #if defined(SPLIT_RSS_COUNTING)
1130 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1131 #else
1132 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1133 {
1134 }
1135 #endif
1136 
1137 int vma_wants_writenotify(struct vm_area_struct *vma);
1138 
1139 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1140 			       spinlock_t **ptl);
1141 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1142 				    spinlock_t **ptl)
1143 {
1144 	pte_t *ptep;
1145 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1146 	return ptep;
1147 }
1148 
1149 #ifdef __PAGETABLE_PUD_FOLDED
1150 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1151 						unsigned long address)
1152 {
1153 	return 0;
1154 }
1155 #else
1156 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1157 #endif
1158 
1159 #ifdef __PAGETABLE_PMD_FOLDED
1160 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1161 						unsigned long address)
1162 {
1163 	return 0;
1164 }
1165 #else
1166 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1167 #endif
1168 
1169 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1170 		pmd_t *pmd, unsigned long address);
1171 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1172 
1173 /*
1174  * The following ifdef needed to get the 4level-fixup.h header to work.
1175  * Remove it when 4level-fixup.h has been removed.
1176  */
1177 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1178 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1179 {
1180 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1181 		NULL: pud_offset(pgd, address);
1182 }
1183 
1184 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1185 {
1186 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1187 		NULL: pmd_offset(pud, address);
1188 }
1189 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1190 
1191 #if USE_SPLIT_PTLOCKS
1192 /*
1193  * We tuck a spinlock to guard each pagetable page into its struct page,
1194  * at page->private, with BUILD_BUG_ON to make sure that this will not
1195  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1196  * When freeing, reset page->mapping so free_pages_check won't complain.
1197  */
1198 #define __pte_lockptr(page)	&((page)->ptl)
1199 #define pte_lock_init(_page)	do {					\
1200 	spin_lock_init(__pte_lockptr(_page));				\
1201 } while (0)
1202 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1203 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1204 #else	/* !USE_SPLIT_PTLOCKS */
1205 /*
1206  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1207  */
1208 #define pte_lock_init(page)	do {} while (0)
1209 #define pte_lock_deinit(page)	do {} while (0)
1210 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1211 #endif /* USE_SPLIT_PTLOCKS */
1212 
1213 static inline void pgtable_page_ctor(struct page *page)
1214 {
1215 	pte_lock_init(page);
1216 	inc_zone_page_state(page, NR_PAGETABLE);
1217 }
1218 
1219 static inline void pgtable_page_dtor(struct page *page)
1220 {
1221 	pte_lock_deinit(page);
1222 	dec_zone_page_state(page, NR_PAGETABLE);
1223 }
1224 
1225 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1226 ({							\
1227 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1228 	pte_t *__pte = pte_offset_map(pmd, address);	\
1229 	*(ptlp) = __ptl;				\
1230 	spin_lock(__ptl);				\
1231 	__pte;						\
1232 })
1233 
1234 #define pte_unmap_unlock(pte, ptl)	do {		\
1235 	spin_unlock(ptl);				\
1236 	pte_unmap(pte);					\
1237 } while (0)
1238 
1239 #define pte_alloc_map(mm, vma, pmd, address)				\
1240 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1241 							pmd, address))?	\
1242 	 NULL: pte_offset_map(pmd, address))
1243 
1244 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1245 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1246 							pmd, address))?	\
1247 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1248 
1249 #define pte_alloc_kernel(pmd, address)			\
1250 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1251 		NULL: pte_offset_kernel(pmd, address))
1252 
1253 extern void free_area_init(unsigned long * zones_size);
1254 extern void free_area_init_node(int nid, unsigned long * zones_size,
1255 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1256 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1257 /*
1258  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1259  * zones, allocate the backing mem_map and account for memory holes in a more
1260  * architecture independent manner. This is a substitute for creating the
1261  * zone_sizes[] and zholes_size[] arrays and passing them to
1262  * free_area_init_node()
1263  *
1264  * An architecture is expected to register range of page frames backed by
1265  * physical memory with memblock_add[_node]() before calling
1266  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1267  * usage, an architecture is expected to do something like
1268  *
1269  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1270  * 							 max_highmem_pfn};
1271  * for_each_valid_physical_page_range()
1272  * 	memblock_add_node(base, size, nid)
1273  * free_area_init_nodes(max_zone_pfns);
1274  *
1275  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1276  * registered physical page range.  Similarly
1277  * sparse_memory_present_with_active_regions() calls memory_present() for
1278  * each range when SPARSEMEM is enabled.
1279  *
1280  * See mm/page_alloc.c for more information on each function exposed by
1281  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1282  */
1283 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1284 unsigned long node_map_pfn_alignment(void);
1285 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1286 						unsigned long end_pfn);
1287 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1288 						unsigned long end_pfn);
1289 extern void get_pfn_range_for_nid(unsigned int nid,
1290 			unsigned long *start_pfn, unsigned long *end_pfn);
1291 extern unsigned long find_min_pfn_with_active_regions(void);
1292 extern void free_bootmem_with_active_regions(int nid,
1293 						unsigned long max_low_pfn);
1294 int add_from_early_node_map(struct range *range, int az,
1295 				   int nr_range, int nid);
1296 extern void sparse_memory_present_with_active_regions(int nid);
1297 
1298 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1299 
1300 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1301     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1302 static inline int __early_pfn_to_nid(unsigned long pfn)
1303 {
1304 	return 0;
1305 }
1306 #else
1307 /* please see mm/page_alloc.c */
1308 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1309 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1310 /* there is a per-arch backend function. */
1311 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1312 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1313 #endif
1314 
1315 extern void set_dma_reserve(unsigned long new_dma_reserve);
1316 extern void memmap_init_zone(unsigned long, int, unsigned long,
1317 				unsigned long, enum memmap_context);
1318 extern void setup_per_zone_wmarks(void);
1319 extern int __meminit init_per_zone_wmark_min(void);
1320 extern void mem_init(void);
1321 extern void __init mmap_init(void);
1322 extern void show_mem(unsigned int flags);
1323 extern void si_meminfo(struct sysinfo * val);
1324 extern void si_meminfo_node(struct sysinfo *val, int nid);
1325 extern int after_bootmem;
1326 
1327 extern __printf(3, 4)
1328 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1329 
1330 extern void setup_per_cpu_pageset(void);
1331 
1332 extern void zone_pcp_update(struct zone *zone);
1333 
1334 /* nommu.c */
1335 extern atomic_long_t mmap_pages_allocated;
1336 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1337 
1338 /* prio_tree.c */
1339 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1340 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1341 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1342 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1343 	struct prio_tree_iter *iter);
1344 
1345 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1346 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1347 		(vma = vma_prio_tree_next(vma, iter)); )
1348 
1349 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1350 					struct list_head *list)
1351 {
1352 	vma->shared.vm_set.parent = NULL;
1353 	list_add_tail(&vma->shared.vm_set.list, list);
1354 }
1355 
1356 /* mmap.c */
1357 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1358 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1359 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1360 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1361 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1362 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1363 	struct mempolicy *);
1364 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1365 extern int split_vma(struct mm_struct *,
1366 	struct vm_area_struct *, unsigned long addr, int new_below);
1367 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1368 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1369 	struct rb_node **, struct rb_node *);
1370 extern void unlink_file_vma(struct vm_area_struct *);
1371 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1372 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1373 extern void exit_mmap(struct mm_struct *);
1374 
1375 extern int mm_take_all_locks(struct mm_struct *mm);
1376 extern void mm_drop_all_locks(struct mm_struct *mm);
1377 
1378 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1379 extern void added_exe_file_vma(struct mm_struct *mm);
1380 extern void removed_exe_file_vma(struct mm_struct *mm);
1381 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1382 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1383 
1384 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1385 extern int install_special_mapping(struct mm_struct *mm,
1386 				   unsigned long addr, unsigned long len,
1387 				   unsigned long flags, struct page **pages);
1388 
1389 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1390 
1391 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1392 	unsigned long len, unsigned long prot,
1393 	unsigned long flag, unsigned long pgoff);
1394 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1395 	unsigned long len, unsigned long flags,
1396 	vm_flags_t vm_flags, unsigned long pgoff);
1397 
1398 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1399 	unsigned long len, unsigned long prot,
1400 	unsigned long flag, unsigned long offset)
1401 {
1402 	unsigned long ret = -EINVAL;
1403 	if ((offset + PAGE_ALIGN(len)) < offset)
1404 		goto out;
1405 	if (!(offset & ~PAGE_MASK))
1406 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1407 out:
1408 	return ret;
1409 }
1410 
1411 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1412 
1413 extern unsigned long do_brk(unsigned long, unsigned long);
1414 
1415 /* truncate.c */
1416 extern void truncate_inode_pages(struct address_space *, loff_t);
1417 extern void truncate_inode_pages_range(struct address_space *,
1418 				       loff_t lstart, loff_t lend);
1419 
1420 /* generic vm_area_ops exported for stackable file systems */
1421 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1422 
1423 /* mm/page-writeback.c */
1424 int write_one_page(struct page *page, int wait);
1425 void task_dirty_inc(struct task_struct *tsk);
1426 
1427 /* readahead.c */
1428 #define VM_MAX_READAHEAD	128	/* kbytes */
1429 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1430 
1431 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1432 			pgoff_t offset, unsigned long nr_to_read);
1433 
1434 void page_cache_sync_readahead(struct address_space *mapping,
1435 			       struct file_ra_state *ra,
1436 			       struct file *filp,
1437 			       pgoff_t offset,
1438 			       unsigned long size);
1439 
1440 void page_cache_async_readahead(struct address_space *mapping,
1441 				struct file_ra_state *ra,
1442 				struct file *filp,
1443 				struct page *pg,
1444 				pgoff_t offset,
1445 				unsigned long size);
1446 
1447 unsigned long max_sane_readahead(unsigned long nr);
1448 unsigned long ra_submit(struct file_ra_state *ra,
1449 			struct address_space *mapping,
1450 			struct file *filp);
1451 
1452 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1453 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1454 
1455 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1456 extern int expand_downwards(struct vm_area_struct *vma,
1457 		unsigned long address);
1458 #if VM_GROWSUP
1459 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1460 #else
1461   #define expand_upwards(vma, address) do { } while (0)
1462 #endif
1463 
1464 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1465 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1466 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1467 					     struct vm_area_struct **pprev);
1468 
1469 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1470    NULL if none.  Assume start_addr < end_addr. */
1471 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1472 {
1473 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1474 
1475 	if (vma && end_addr <= vma->vm_start)
1476 		vma = NULL;
1477 	return vma;
1478 }
1479 
1480 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1481 {
1482 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1483 }
1484 
1485 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1486 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1487 				unsigned long vm_start, unsigned long vm_end)
1488 {
1489 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1490 
1491 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1492 		vma = NULL;
1493 
1494 	return vma;
1495 }
1496 
1497 #ifdef CONFIG_MMU
1498 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1499 #else
1500 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1501 {
1502 	return __pgprot(0);
1503 }
1504 #endif
1505 
1506 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1507 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1508 			unsigned long pfn, unsigned long size, pgprot_t);
1509 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1510 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1511 			unsigned long pfn);
1512 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1513 			unsigned long pfn);
1514 
1515 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1516 			unsigned int foll_flags);
1517 #define FOLL_WRITE	0x01	/* check pte is writable */
1518 #define FOLL_TOUCH	0x02	/* mark page accessed */
1519 #define FOLL_GET	0x04	/* do get_page on page */
1520 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1521 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1522 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1523 				 * and return without waiting upon it */
1524 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1525 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1526 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1527 
1528 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1529 			void *data);
1530 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1531 			       unsigned long size, pte_fn_t fn, void *data);
1532 
1533 #ifdef CONFIG_PROC_FS
1534 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1535 #else
1536 static inline void vm_stat_account(struct mm_struct *mm,
1537 			unsigned long flags, struct file *file, long pages)
1538 {
1539 }
1540 #endif /* CONFIG_PROC_FS */
1541 
1542 #ifdef CONFIG_DEBUG_PAGEALLOC
1543 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1544 #ifdef CONFIG_HIBERNATION
1545 extern bool kernel_page_present(struct page *page);
1546 #endif /* CONFIG_HIBERNATION */
1547 #else
1548 static inline void
1549 kernel_map_pages(struct page *page, int numpages, int enable) {}
1550 #ifdef CONFIG_HIBERNATION
1551 static inline bool kernel_page_present(struct page *page) { return true; }
1552 #endif /* CONFIG_HIBERNATION */
1553 #endif
1554 
1555 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1556 #ifdef	__HAVE_ARCH_GATE_AREA
1557 int in_gate_area_no_mm(unsigned long addr);
1558 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1559 #else
1560 int in_gate_area_no_mm(unsigned long addr);
1561 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1562 #endif	/* __HAVE_ARCH_GATE_AREA */
1563 
1564 int drop_caches_sysctl_handler(struct ctl_table *, int,
1565 					void __user *, size_t *, loff_t *);
1566 unsigned long shrink_slab(struct shrink_control *shrink,
1567 			  unsigned long nr_pages_scanned,
1568 			  unsigned long lru_pages);
1569 
1570 #ifndef CONFIG_MMU
1571 #define randomize_va_space 0
1572 #else
1573 extern int randomize_va_space;
1574 #endif
1575 
1576 const char * arch_vma_name(struct vm_area_struct *vma);
1577 void print_vma_addr(char *prefix, unsigned long rip);
1578 
1579 void sparse_mem_maps_populate_node(struct page **map_map,
1580 				   unsigned long pnum_begin,
1581 				   unsigned long pnum_end,
1582 				   unsigned long map_count,
1583 				   int nodeid);
1584 
1585 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1586 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1587 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1588 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1589 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1590 void *vmemmap_alloc_block(unsigned long size, int node);
1591 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1592 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1593 int vmemmap_populate_basepages(struct page *start_page,
1594 						unsigned long pages, int node);
1595 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1596 void vmemmap_populate_print_last(void);
1597 
1598 
1599 enum mf_flags {
1600 	MF_COUNT_INCREASED = 1 << 0,
1601 };
1602 extern void memory_failure(unsigned long pfn, int trapno);
1603 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1604 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1605 extern int unpoison_memory(unsigned long pfn);
1606 extern int sysctl_memory_failure_early_kill;
1607 extern int sysctl_memory_failure_recovery;
1608 extern void shake_page(struct page *p, int access);
1609 extern atomic_long_t mce_bad_pages;
1610 extern int soft_offline_page(struct page *page, int flags);
1611 
1612 extern void dump_page(struct page *page);
1613 
1614 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1615 extern void clear_huge_page(struct page *page,
1616 			    unsigned long addr,
1617 			    unsigned int pages_per_huge_page);
1618 extern void copy_user_huge_page(struct page *dst, struct page *src,
1619 				unsigned long addr, struct vm_area_struct *vma,
1620 				unsigned int pages_per_huge_page);
1621 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1622 
1623 #ifdef CONFIG_DEBUG_PAGEALLOC
1624 extern unsigned int _debug_guardpage_minorder;
1625 
1626 static inline unsigned int debug_guardpage_minorder(void)
1627 {
1628 	return _debug_guardpage_minorder;
1629 }
1630 
1631 static inline bool page_is_guard(struct page *page)
1632 {
1633 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1634 }
1635 #else
1636 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1637 static inline bool page_is_guard(struct page *page) { return false; }
1638 #endif /* CONFIG_DEBUG_PAGEALLOC */
1639 
1640 #endif /* __KERNEL__ */
1641 #endif /* _LINUX_MM_H */
1642