xref: /openbmc/linux/include/linux/mm.h (revision aa74c44b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct user_struct;
40 struct pt_regs;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void init_mm_internals(void);
45 
46 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48 
49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 	max_mapnr = limit;
52 }
53 #else
54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56 
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
59 {
60 	return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_inc(void)
64 {
65 	atomic_long_inc(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_dec(void)
69 {
70 	atomic_long_dec(&_totalram_pages);
71 }
72 
73 static inline void totalram_pages_add(long count)
74 {
75 	atomic_long_add(count, &_totalram_pages);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 /*
102  * Architectures that support memory tagging (assigning tags to memory regions,
103  * embedding these tags into addresses that point to these memory regions, and
104  * checking that the memory and the pointer tags match on memory accesses)
105  * redefine this macro to strip tags from pointers.
106  * It's defined as noop for architectures that don't support memory tagging.
107  */
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
110 #endif
111 
112 #ifndef __pa_symbol
113 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115 
116 #ifndef page_to_virt
117 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119 
120 #ifndef lm_alias
121 #define lm_alias(x)	__va(__pa_symbol(x))
122 #endif
123 
124 /*
125  * To prevent common memory management code establishing
126  * a zero page mapping on a read fault.
127  * This macro should be defined within <asm/pgtable.h>.
128  * s390 does this to prevent multiplexing of hardware bits
129  * related to the physical page in case of virtualization.
130  */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X)	(0)
133 #endif
134 
135 /*
136  * On some architectures it is expensive to call memset() for small sizes.
137  * If an architecture decides to implement their own version of
138  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139  * define their own version of this macro in <asm/pgtable.h>
140  */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 80
143  * or reduces below 56. The idea that compiler optimizes out switch()
144  * statement, and only leaves move/store instructions. Also the compiler can
145  * combine write statements if they are both assignments and can be reordered,
146  * this can result in several of the writes here being dropped.
147  */
148 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 	unsigned long *_pp = (void *)page;
152 
153 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 	BUILD_BUG_ON(sizeof(struct page) & 7);
155 	BUILD_BUG_ON(sizeof(struct page) < 56);
156 	BUILD_BUG_ON(sizeof(struct page) > 80);
157 
158 	switch (sizeof(struct page)) {
159 	case 80:
160 		_pp[9] = 0;
161 		fallthrough;
162 	case 72:
163 		_pp[8] = 0;
164 		fallthrough;
165 	case 64:
166 		_pp[7] = 0;
167 		fallthrough;
168 	case 56:
169 		_pp[6] = 0;
170 		_pp[5] = 0;
171 		_pp[4] = 0;
172 		_pp[3] = 0;
173 		_pp[2] = 0;
174 		_pp[1] = 0;
175 		_pp[0] = 0;
176 	}
177 }
178 #else
179 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
180 #endif
181 
182 /*
183  * Default maximum number of active map areas, this limits the number of vmas
184  * per mm struct. Users can overwrite this number by sysctl but there is a
185  * problem.
186  *
187  * When a program's coredump is generated as ELF format, a section is created
188  * per a vma. In ELF, the number of sections is represented in unsigned short.
189  * This means the number of sections should be smaller than 65535 at coredump.
190  * Because the kernel adds some informative sections to a image of program at
191  * generating coredump, we need some margin. The number of extra sections is
192  * 1-3 now and depends on arch. We use "5" as safe margin, here.
193  *
194  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195  * not a hard limit any more. Although some userspace tools can be surprised by
196  * that.
197  */
198 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
199 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200 
201 extern int sysctl_max_map_count;
202 
203 extern unsigned long sysctl_user_reserve_kbytes;
204 extern unsigned long sysctl_admin_reserve_kbytes;
205 
206 extern int sysctl_overcommit_memory;
207 extern int sysctl_overcommit_ratio;
208 extern unsigned long sysctl_overcommit_kbytes;
209 
210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215 		loff_t *);
216 
217 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
218 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
219 #else
220 #define nth_page(page,n) ((page) + (n))
221 #endif
222 
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 
231 void setup_initial_init_mm(void *start_code, void *end_code,
232 			   void *end_data, void *brk);
233 
234 /*
235  * Linux kernel virtual memory manager primitives.
236  * The idea being to have a "virtual" mm in the same way
237  * we have a virtual fs - giving a cleaner interface to the
238  * mm details, and allowing different kinds of memory mappings
239  * (from shared memory to executable loading to arbitrary
240  * mmap() functions).
241  */
242 
243 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
244 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
245 void vm_area_free(struct vm_area_struct *);
246 
247 #ifndef CONFIG_MMU
248 extern struct rb_root nommu_region_tree;
249 extern struct rw_semaphore nommu_region_sem;
250 
251 extern unsigned int kobjsize(const void *objp);
252 #endif
253 
254 /*
255  * vm_flags in vm_area_struct, see mm_types.h.
256  * When changing, update also include/trace/events/mmflags.h
257  */
258 #define VM_NONE		0x00000000
259 
260 #define VM_READ		0x00000001	/* currently active flags */
261 #define VM_WRITE	0x00000002
262 #define VM_EXEC		0x00000004
263 #define VM_SHARED	0x00000008
264 
265 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
266 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
267 #define VM_MAYWRITE	0x00000020
268 #define VM_MAYEXEC	0x00000040
269 #define VM_MAYSHARE	0x00000080
270 
271 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
272 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
273 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
274 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
275 
276 #define VM_LOCKED	0x00002000
277 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
278 
279 					/* Used by sys_madvise() */
280 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
281 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
282 
283 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
284 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
285 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
286 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
287 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
288 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
289 #define VM_SYNC		0x00800000	/* Synchronous page faults */
290 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
291 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
292 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
293 
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
296 #else
297 # define VM_SOFTDIRTY	0
298 #endif
299 
300 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
301 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
302 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
303 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
304 
305 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
306 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
312 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
313 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
314 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
315 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317 
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
321 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
322 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
323 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
324 #ifdef CONFIG_PPC
325 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
326 #else
327 # define VM_PKEY_BIT4  0
328 #endif
329 #endif /* CONFIG_ARCH_HAS_PKEYS */
330 
331 #if defined(CONFIG_X86)
332 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
333 #elif defined(CONFIG_PPC)
334 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
335 #elif defined(CONFIG_PARISC)
336 # define VM_GROWSUP	VM_ARCH_1
337 #elif defined(CONFIG_IA64)
338 # define VM_GROWSUP	VM_ARCH_1
339 #elif defined(CONFIG_SPARC64)
340 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
341 # define VM_ARCH_CLEAR	VM_SPARC_ADI
342 #elif defined(CONFIG_ARM64)
343 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
344 # define VM_ARCH_CLEAR	VM_ARM64_BTI
345 #elif !defined(CONFIG_MMU)
346 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
347 #endif
348 
349 #if defined(CONFIG_ARM64_MTE)
350 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
351 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
352 #else
353 # define VM_MTE		VM_NONE
354 # define VM_MTE_ALLOWED	VM_NONE
355 #endif
356 
357 #ifndef VM_GROWSUP
358 # define VM_GROWSUP	VM_NONE
359 #endif
360 
361 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
362 # define VM_UFFD_MINOR_BIT	37
363 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
364 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365 # define VM_UFFD_MINOR		VM_NONE
366 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367 
368 /* Bits set in the VMA until the stack is in its final location */
369 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
370 
371 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
372 
373 /* Common data flag combinations */
374 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
375 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
376 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
377 				 VM_MAYWRITE | VM_MAYEXEC)
378 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
379 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
380 
381 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
382 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
383 #endif
384 
385 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
386 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
387 #endif
388 
389 #ifdef CONFIG_STACK_GROWSUP
390 #define VM_STACK	VM_GROWSUP
391 #else
392 #define VM_STACK	VM_GROWSDOWN
393 #endif
394 
395 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
396 
397 /* VMA basic access permission flags */
398 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
399 
400 
401 /*
402  * Special vmas that are non-mergable, non-mlock()able.
403  */
404 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
405 
406 /* This mask prevents VMA from being scanned with khugepaged */
407 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
408 
409 /* This mask defines which mm->def_flags a process can inherit its parent */
410 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
411 
412 /* This mask is used to clear all the VMA flags used by mlock */
413 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
414 
415 /* Arch-specific flags to clear when updating VM flags on protection change */
416 #ifndef VM_ARCH_CLEAR
417 # define VM_ARCH_CLEAR	VM_NONE
418 #endif
419 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
420 
421 /*
422  * mapping from the currently active vm_flags protection bits (the
423  * low four bits) to a page protection mask..
424  */
425 extern pgprot_t protection_map[16];
426 
427 /*
428  * The default fault flags that should be used by most of the
429  * arch-specific page fault handlers.
430  */
431 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
432 			     FAULT_FLAG_KILLABLE | \
433 			     FAULT_FLAG_INTERRUPTIBLE)
434 
435 /**
436  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
437  * @flags: Fault flags.
438  *
439  * This is mostly used for places where we want to try to avoid taking
440  * the mmap_lock for too long a time when waiting for another condition
441  * to change, in which case we can try to be polite to release the
442  * mmap_lock in the first round to avoid potential starvation of other
443  * processes that would also want the mmap_lock.
444  *
445  * Return: true if the page fault allows retry and this is the first
446  * attempt of the fault handling; false otherwise.
447  */
448 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
449 {
450 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
451 	    (!(flags & FAULT_FLAG_TRIED));
452 }
453 
454 #define FAULT_FLAG_TRACE \
455 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
456 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
457 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
458 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
459 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
460 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
461 	{ FAULT_FLAG_USER,		"USER" }, \
462 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
463 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
464 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
465 
466 /*
467  * vm_fault is filled by the pagefault handler and passed to the vma's
468  * ->fault function. The vma's ->fault is responsible for returning a bitmask
469  * of VM_FAULT_xxx flags that give details about how the fault was handled.
470  *
471  * MM layer fills up gfp_mask for page allocations but fault handler might
472  * alter it if its implementation requires a different allocation context.
473  *
474  * pgoff should be used in favour of virtual_address, if possible.
475  */
476 struct vm_fault {
477 	const struct {
478 		struct vm_area_struct *vma;	/* Target VMA */
479 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
480 		pgoff_t pgoff;			/* Logical page offset based on vma */
481 		unsigned long address;		/* Faulting virtual address */
482 	};
483 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
484 					 * XXX: should really be 'const' */
485 	pmd_t *pmd;			/* Pointer to pmd entry matching
486 					 * the 'address' */
487 	pud_t *pud;			/* Pointer to pud entry matching
488 					 * the 'address'
489 					 */
490 	union {
491 		pte_t orig_pte;		/* Value of PTE at the time of fault */
492 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
493 					 * used by PMD fault only.
494 					 */
495 	};
496 
497 	struct page *cow_page;		/* Page handler may use for COW fault */
498 	struct page *page;		/* ->fault handlers should return a
499 					 * page here, unless VM_FAULT_NOPAGE
500 					 * is set (which is also implied by
501 					 * VM_FAULT_ERROR).
502 					 */
503 	/* These three entries are valid only while holding ptl lock */
504 	pte_t *pte;			/* Pointer to pte entry matching
505 					 * the 'address'. NULL if the page
506 					 * table hasn't been allocated.
507 					 */
508 	spinlock_t *ptl;		/* Page table lock.
509 					 * Protects pte page table if 'pte'
510 					 * is not NULL, otherwise pmd.
511 					 */
512 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
513 					 * vm_ops->map_pages() sets up a page
514 					 * table from atomic context.
515 					 * do_fault_around() pre-allocates
516 					 * page table to avoid allocation from
517 					 * atomic context.
518 					 */
519 };
520 
521 /* page entry size for vm->huge_fault() */
522 enum page_entry_size {
523 	PE_SIZE_PTE = 0,
524 	PE_SIZE_PMD,
525 	PE_SIZE_PUD,
526 };
527 
528 /*
529  * These are the virtual MM functions - opening of an area, closing and
530  * unmapping it (needed to keep files on disk up-to-date etc), pointer
531  * to the functions called when a no-page or a wp-page exception occurs.
532  */
533 struct vm_operations_struct {
534 	void (*open)(struct vm_area_struct * area);
535 	/**
536 	 * @close: Called when the VMA is being removed from the MM.
537 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
538 	 */
539 	void (*close)(struct vm_area_struct * area);
540 	/* Called any time before splitting to check if it's allowed */
541 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
542 	int (*mremap)(struct vm_area_struct *area);
543 	/*
544 	 * Called by mprotect() to make driver-specific permission
545 	 * checks before mprotect() is finalised.   The VMA must not
546 	 * be modified.  Returns 0 if eprotect() can proceed.
547 	 */
548 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
549 			unsigned long end, unsigned long newflags);
550 	vm_fault_t (*fault)(struct vm_fault *vmf);
551 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
552 			enum page_entry_size pe_size);
553 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
554 			pgoff_t start_pgoff, pgoff_t end_pgoff);
555 	unsigned long (*pagesize)(struct vm_area_struct * area);
556 
557 	/* notification that a previously read-only page is about to become
558 	 * writable, if an error is returned it will cause a SIGBUS */
559 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
560 
561 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
562 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
563 
564 	/* called by access_process_vm when get_user_pages() fails, typically
565 	 * for use by special VMAs. See also generic_access_phys() for a generic
566 	 * implementation useful for any iomem mapping.
567 	 */
568 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
569 		      void *buf, int len, int write);
570 
571 	/* Called by the /proc/PID/maps code to ask the vma whether it
572 	 * has a special name.  Returning non-NULL will also cause this
573 	 * vma to be dumped unconditionally. */
574 	const char *(*name)(struct vm_area_struct *vma);
575 
576 #ifdef CONFIG_NUMA
577 	/*
578 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
579 	 * to hold the policy upon return.  Caller should pass NULL @new to
580 	 * remove a policy and fall back to surrounding context--i.e. do not
581 	 * install a MPOL_DEFAULT policy, nor the task or system default
582 	 * mempolicy.
583 	 */
584 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
585 
586 	/*
587 	 * get_policy() op must add reference [mpol_get()] to any policy at
588 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
589 	 * in mm/mempolicy.c will do this automatically.
590 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
591 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
592 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
593 	 * must return NULL--i.e., do not "fallback" to task or system default
594 	 * policy.
595 	 */
596 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
597 					unsigned long addr);
598 #endif
599 	/*
600 	 * Called by vm_normal_page() for special PTEs to find the
601 	 * page for @addr.  This is useful if the default behavior
602 	 * (using pte_page()) would not find the correct page.
603 	 */
604 	struct page *(*find_special_page)(struct vm_area_struct *vma,
605 					  unsigned long addr);
606 };
607 
608 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
609 {
610 	static const struct vm_operations_struct dummy_vm_ops = {};
611 
612 	memset(vma, 0, sizeof(*vma));
613 	vma->vm_mm = mm;
614 	vma->vm_ops = &dummy_vm_ops;
615 	INIT_LIST_HEAD(&vma->anon_vma_chain);
616 }
617 
618 static inline void vma_set_anonymous(struct vm_area_struct *vma)
619 {
620 	vma->vm_ops = NULL;
621 }
622 
623 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
624 {
625 	return !vma->vm_ops;
626 }
627 
628 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
629 {
630 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
631 
632 	if (!maybe_stack)
633 		return false;
634 
635 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
636 						VM_STACK_INCOMPLETE_SETUP)
637 		return true;
638 
639 	return false;
640 }
641 
642 static inline bool vma_is_foreign(struct vm_area_struct *vma)
643 {
644 	if (!current->mm)
645 		return true;
646 
647 	if (current->mm != vma->vm_mm)
648 		return true;
649 
650 	return false;
651 }
652 
653 static inline bool vma_is_accessible(struct vm_area_struct *vma)
654 {
655 	return vma->vm_flags & VM_ACCESS_FLAGS;
656 }
657 
658 #ifdef CONFIG_SHMEM
659 /*
660  * The vma_is_shmem is not inline because it is used only by slow
661  * paths in userfault.
662  */
663 bool vma_is_shmem(struct vm_area_struct *vma);
664 #else
665 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
666 #endif
667 
668 int vma_is_stack_for_current(struct vm_area_struct *vma);
669 
670 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
671 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
672 
673 struct mmu_gather;
674 struct inode;
675 
676 static inline unsigned int compound_order(struct page *page)
677 {
678 	if (!PageHead(page))
679 		return 0;
680 	return page[1].compound_order;
681 }
682 
683 /**
684  * folio_order - The allocation order of a folio.
685  * @folio: The folio.
686  *
687  * A folio is composed of 2^order pages.  See get_order() for the definition
688  * of order.
689  *
690  * Return: The order of the folio.
691  */
692 static inline unsigned int folio_order(struct folio *folio)
693 {
694 	return compound_order(&folio->page);
695 }
696 
697 #include <linux/huge_mm.h>
698 
699 /*
700  * Methods to modify the page usage count.
701  *
702  * What counts for a page usage:
703  * - cache mapping   (page->mapping)
704  * - private data    (page->private)
705  * - page mapped in a task's page tables, each mapping
706  *   is counted separately
707  *
708  * Also, many kernel routines increase the page count before a critical
709  * routine so they can be sure the page doesn't go away from under them.
710  */
711 
712 /*
713  * Drop a ref, return true if the refcount fell to zero (the page has no users)
714  */
715 static inline int put_page_testzero(struct page *page)
716 {
717 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
718 	return page_ref_dec_and_test(page);
719 }
720 
721 static inline int folio_put_testzero(struct folio *folio)
722 {
723 	return put_page_testzero(&folio->page);
724 }
725 
726 /*
727  * Try to grab a ref unless the page has a refcount of zero, return false if
728  * that is the case.
729  * This can be called when MMU is off so it must not access
730  * any of the virtual mappings.
731  */
732 static inline bool get_page_unless_zero(struct page *page)
733 {
734 	return page_ref_add_unless(page, 1, 0);
735 }
736 
737 extern int page_is_ram(unsigned long pfn);
738 
739 enum {
740 	REGION_INTERSECTS,
741 	REGION_DISJOINT,
742 	REGION_MIXED,
743 };
744 
745 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
746 		      unsigned long desc);
747 
748 /* Support for virtually mapped pages */
749 struct page *vmalloc_to_page(const void *addr);
750 unsigned long vmalloc_to_pfn(const void *addr);
751 
752 /*
753  * Determine if an address is within the vmalloc range
754  *
755  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
756  * is no special casing required.
757  */
758 
759 #ifndef is_ioremap_addr
760 #define is_ioremap_addr(x) is_vmalloc_addr(x)
761 #endif
762 
763 #ifdef CONFIG_MMU
764 extern bool is_vmalloc_addr(const void *x);
765 extern int is_vmalloc_or_module_addr(const void *x);
766 #else
767 static inline bool is_vmalloc_addr(const void *x)
768 {
769 	return false;
770 }
771 static inline int is_vmalloc_or_module_addr(const void *x)
772 {
773 	return 0;
774 }
775 #endif
776 
777 static inline int head_compound_mapcount(struct page *head)
778 {
779 	return atomic_read(compound_mapcount_ptr(head)) + 1;
780 }
781 
782 /*
783  * Mapcount of compound page as a whole, does not include mapped sub-pages.
784  *
785  * Must be called only for compound pages or any their tail sub-pages.
786  */
787 static inline int compound_mapcount(struct page *page)
788 {
789 	VM_BUG_ON_PAGE(!PageCompound(page), page);
790 	page = compound_head(page);
791 	return head_compound_mapcount(page);
792 }
793 
794 /*
795  * The atomic page->_mapcount, starts from -1: so that transitions
796  * both from it and to it can be tracked, using atomic_inc_and_test
797  * and atomic_add_negative(-1).
798  */
799 static inline void page_mapcount_reset(struct page *page)
800 {
801 	atomic_set(&(page)->_mapcount, -1);
802 }
803 
804 int __page_mapcount(struct page *page);
805 
806 /*
807  * Mapcount of 0-order page; when compound sub-page, includes
808  * compound_mapcount().
809  *
810  * Result is undefined for pages which cannot be mapped into userspace.
811  * For example SLAB or special types of pages. See function page_has_type().
812  * They use this place in struct page differently.
813  */
814 static inline int page_mapcount(struct page *page)
815 {
816 	if (unlikely(PageCompound(page)))
817 		return __page_mapcount(page);
818 	return atomic_read(&page->_mapcount) + 1;
819 }
820 
821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
822 int total_mapcount(struct page *page);
823 int page_trans_huge_mapcount(struct page *page);
824 #else
825 static inline int total_mapcount(struct page *page)
826 {
827 	return page_mapcount(page);
828 }
829 static inline int page_trans_huge_mapcount(struct page *page)
830 {
831 	return page_mapcount(page);
832 }
833 #endif
834 
835 static inline struct page *virt_to_head_page(const void *x)
836 {
837 	struct page *page = virt_to_page(x);
838 
839 	return compound_head(page);
840 }
841 
842 static inline struct folio *virt_to_folio(const void *x)
843 {
844 	struct page *page = virt_to_page(x);
845 
846 	return page_folio(page);
847 }
848 
849 void __put_page(struct page *page);
850 
851 void put_pages_list(struct list_head *pages);
852 
853 void split_page(struct page *page, unsigned int order);
854 void folio_copy(struct folio *dst, struct folio *src);
855 
856 unsigned long nr_free_buffer_pages(void);
857 
858 /*
859  * Compound pages have a destructor function.  Provide a
860  * prototype for that function and accessor functions.
861  * These are _only_ valid on the head of a compound page.
862  */
863 typedef void compound_page_dtor(struct page *);
864 
865 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
866 enum compound_dtor_id {
867 	NULL_COMPOUND_DTOR,
868 	COMPOUND_PAGE_DTOR,
869 #ifdef CONFIG_HUGETLB_PAGE
870 	HUGETLB_PAGE_DTOR,
871 #endif
872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 	TRANSHUGE_PAGE_DTOR,
874 #endif
875 	NR_COMPOUND_DTORS,
876 };
877 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
878 
879 static inline void set_compound_page_dtor(struct page *page,
880 		enum compound_dtor_id compound_dtor)
881 {
882 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
883 	page[1].compound_dtor = compound_dtor;
884 }
885 
886 static inline void destroy_compound_page(struct page *page)
887 {
888 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
889 	compound_page_dtors[page[1].compound_dtor](page);
890 }
891 
892 static inline bool hpage_pincount_available(struct page *page)
893 {
894 	/*
895 	 * Can the page->hpage_pinned_refcount field be used? That field is in
896 	 * the 3rd page of the compound page, so the smallest (2-page) compound
897 	 * pages cannot support it.
898 	 */
899 	page = compound_head(page);
900 	return PageCompound(page) && compound_order(page) > 1;
901 }
902 
903 static inline int head_compound_pincount(struct page *head)
904 {
905 	return atomic_read(compound_pincount_ptr(head));
906 }
907 
908 static inline int compound_pincount(struct page *page)
909 {
910 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
911 	page = compound_head(page);
912 	return head_compound_pincount(page);
913 }
914 
915 static inline void set_compound_order(struct page *page, unsigned int order)
916 {
917 	page[1].compound_order = order;
918 	page[1].compound_nr = 1U << order;
919 }
920 
921 /* Returns the number of pages in this potentially compound page. */
922 static inline unsigned long compound_nr(struct page *page)
923 {
924 	if (!PageHead(page))
925 		return 1;
926 	return page[1].compound_nr;
927 }
928 
929 /* Returns the number of bytes in this potentially compound page. */
930 static inline unsigned long page_size(struct page *page)
931 {
932 	return PAGE_SIZE << compound_order(page);
933 }
934 
935 /* Returns the number of bits needed for the number of bytes in a page */
936 static inline unsigned int page_shift(struct page *page)
937 {
938 	return PAGE_SHIFT + compound_order(page);
939 }
940 
941 void free_compound_page(struct page *page);
942 
943 #ifdef CONFIG_MMU
944 /*
945  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
946  * servicing faults for write access.  In the normal case, do always want
947  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
948  * that do not have writing enabled, when used by access_process_vm.
949  */
950 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
951 {
952 	if (likely(vma->vm_flags & VM_WRITE))
953 		pte = pte_mkwrite(pte);
954 	return pte;
955 }
956 
957 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
958 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
959 
960 vm_fault_t finish_fault(struct vm_fault *vmf);
961 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
962 #endif
963 
964 /*
965  * Multiple processes may "see" the same page. E.g. for untouched
966  * mappings of /dev/null, all processes see the same page full of
967  * zeroes, and text pages of executables and shared libraries have
968  * only one copy in memory, at most, normally.
969  *
970  * For the non-reserved pages, page_count(page) denotes a reference count.
971  *   page_count() == 0 means the page is free. page->lru is then used for
972  *   freelist management in the buddy allocator.
973  *   page_count() > 0  means the page has been allocated.
974  *
975  * Pages are allocated by the slab allocator in order to provide memory
976  * to kmalloc and kmem_cache_alloc. In this case, the management of the
977  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
978  * unless a particular usage is carefully commented. (the responsibility of
979  * freeing the kmalloc memory is the caller's, of course).
980  *
981  * A page may be used by anyone else who does a __get_free_page().
982  * In this case, page_count still tracks the references, and should only
983  * be used through the normal accessor functions. The top bits of page->flags
984  * and page->virtual store page management information, but all other fields
985  * are unused and could be used privately, carefully. The management of this
986  * page is the responsibility of the one who allocated it, and those who have
987  * subsequently been given references to it.
988  *
989  * The other pages (we may call them "pagecache pages") are completely
990  * managed by the Linux memory manager: I/O, buffers, swapping etc.
991  * The following discussion applies only to them.
992  *
993  * A pagecache page contains an opaque `private' member, which belongs to the
994  * page's address_space. Usually, this is the address of a circular list of
995  * the page's disk buffers. PG_private must be set to tell the VM to call
996  * into the filesystem to release these pages.
997  *
998  * A page may belong to an inode's memory mapping. In this case, page->mapping
999  * is the pointer to the inode, and page->index is the file offset of the page,
1000  * in units of PAGE_SIZE.
1001  *
1002  * If pagecache pages are not associated with an inode, they are said to be
1003  * anonymous pages. These may become associated with the swapcache, and in that
1004  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1005  *
1006  * In either case (swapcache or inode backed), the pagecache itself holds one
1007  * reference to the page. Setting PG_private should also increment the
1008  * refcount. The each user mapping also has a reference to the page.
1009  *
1010  * The pagecache pages are stored in a per-mapping radix tree, which is
1011  * rooted at mapping->i_pages, and indexed by offset.
1012  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1013  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1014  *
1015  * All pagecache pages may be subject to I/O:
1016  * - inode pages may need to be read from disk,
1017  * - inode pages which have been modified and are MAP_SHARED may need
1018  *   to be written back to the inode on disk,
1019  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1020  *   modified may need to be swapped out to swap space and (later) to be read
1021  *   back into memory.
1022  */
1023 
1024 /*
1025  * The zone field is never updated after free_area_init_core()
1026  * sets it, so none of the operations on it need to be atomic.
1027  */
1028 
1029 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1030 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1031 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1032 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1033 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1034 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1035 
1036 /*
1037  * Define the bit shifts to access each section.  For non-existent
1038  * sections we define the shift as 0; that plus a 0 mask ensures
1039  * the compiler will optimise away reference to them.
1040  */
1041 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1042 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1043 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1044 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1045 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1046 
1047 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1048 #ifdef NODE_NOT_IN_PAGE_FLAGS
1049 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1050 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1051 						SECTIONS_PGOFF : ZONES_PGOFF)
1052 #else
1053 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1054 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1055 						NODES_PGOFF : ZONES_PGOFF)
1056 #endif
1057 
1058 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1059 
1060 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1061 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1062 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1063 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1064 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1065 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1066 
1067 static inline enum zone_type page_zonenum(const struct page *page)
1068 {
1069 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1070 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1071 }
1072 
1073 static inline enum zone_type folio_zonenum(const struct folio *folio)
1074 {
1075 	return page_zonenum(&folio->page);
1076 }
1077 
1078 #ifdef CONFIG_ZONE_DEVICE
1079 static inline bool is_zone_device_page(const struct page *page)
1080 {
1081 	return page_zonenum(page) == ZONE_DEVICE;
1082 }
1083 extern void memmap_init_zone_device(struct zone *, unsigned long,
1084 				    unsigned long, struct dev_pagemap *);
1085 #else
1086 static inline bool is_zone_device_page(const struct page *page)
1087 {
1088 	return false;
1089 }
1090 #endif
1091 
1092 static inline bool is_zone_movable_page(const struct page *page)
1093 {
1094 	return page_zonenum(page) == ZONE_MOVABLE;
1095 }
1096 
1097 #ifdef CONFIG_DEV_PAGEMAP_OPS
1098 void free_devmap_managed_page(struct page *page);
1099 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1100 
1101 static inline bool page_is_devmap_managed(struct page *page)
1102 {
1103 	if (!static_branch_unlikely(&devmap_managed_key))
1104 		return false;
1105 	if (!is_zone_device_page(page))
1106 		return false;
1107 	switch (page->pgmap->type) {
1108 	case MEMORY_DEVICE_PRIVATE:
1109 	case MEMORY_DEVICE_FS_DAX:
1110 		return true;
1111 	default:
1112 		break;
1113 	}
1114 	return false;
1115 }
1116 
1117 void put_devmap_managed_page(struct page *page);
1118 
1119 #else /* CONFIG_DEV_PAGEMAP_OPS */
1120 static inline bool page_is_devmap_managed(struct page *page)
1121 {
1122 	return false;
1123 }
1124 
1125 static inline void put_devmap_managed_page(struct page *page)
1126 {
1127 }
1128 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1129 
1130 static inline bool is_device_private_page(const struct page *page)
1131 {
1132 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1133 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1134 		is_zone_device_page(page) &&
1135 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1136 }
1137 
1138 static inline bool is_pci_p2pdma_page(const struct page *page)
1139 {
1140 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1141 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1142 		is_zone_device_page(page) &&
1143 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1144 }
1145 
1146 /* 127: arbitrary random number, small enough to assemble well */
1147 #define folio_ref_zero_or_close_to_overflow(folio) \
1148 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1149 
1150 /**
1151  * folio_get - Increment the reference count on a folio.
1152  * @folio: The folio.
1153  *
1154  * Context: May be called in any context, as long as you know that
1155  * you have a refcount on the folio.  If you do not already have one,
1156  * folio_try_get() may be the right interface for you to use.
1157  */
1158 static inline void folio_get(struct folio *folio)
1159 {
1160 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1161 	folio_ref_inc(folio);
1162 }
1163 
1164 static inline void get_page(struct page *page)
1165 {
1166 	folio_get(page_folio(page));
1167 }
1168 
1169 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1170 struct page *try_grab_compound_head(struct page *page, int refs,
1171 				    unsigned int flags);
1172 
1173 
1174 static inline __must_check bool try_get_page(struct page *page)
1175 {
1176 	page = compound_head(page);
1177 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1178 		return false;
1179 	page_ref_inc(page);
1180 	return true;
1181 }
1182 
1183 /**
1184  * folio_put - Decrement the reference count on a folio.
1185  * @folio: The folio.
1186  *
1187  * If the folio's reference count reaches zero, the memory will be
1188  * released back to the page allocator and may be used by another
1189  * allocation immediately.  Do not access the memory or the struct folio
1190  * after calling folio_put() unless you can be sure that it wasn't the
1191  * last reference.
1192  *
1193  * Context: May be called in process or interrupt context, but not in NMI
1194  * context.  May be called while holding a spinlock.
1195  */
1196 static inline void folio_put(struct folio *folio)
1197 {
1198 	if (folio_put_testzero(folio))
1199 		__put_page(&folio->page);
1200 }
1201 
1202 /**
1203  * folio_put_refs - Reduce the reference count on a folio.
1204  * @folio: The folio.
1205  * @refs: The amount to subtract from the folio's reference count.
1206  *
1207  * If the folio's reference count reaches zero, the memory will be
1208  * released back to the page allocator and may be used by another
1209  * allocation immediately.  Do not access the memory or the struct folio
1210  * after calling folio_put_refs() unless you can be sure that these weren't
1211  * the last references.
1212  *
1213  * Context: May be called in process or interrupt context, but not in NMI
1214  * context.  May be called while holding a spinlock.
1215  */
1216 static inline void folio_put_refs(struct folio *folio, int refs)
1217 {
1218 	if (folio_ref_sub_and_test(folio, refs))
1219 		__put_page(&folio->page);
1220 }
1221 
1222 static inline void put_page(struct page *page)
1223 {
1224 	struct folio *folio = page_folio(page);
1225 
1226 	/*
1227 	 * For devmap managed pages we need to catch refcount transition from
1228 	 * 2 to 1, when refcount reach one it means the page is free and we
1229 	 * need to inform the device driver through callback. See
1230 	 * include/linux/memremap.h and HMM for details.
1231 	 */
1232 	if (page_is_devmap_managed(&folio->page)) {
1233 		put_devmap_managed_page(&folio->page);
1234 		return;
1235 	}
1236 
1237 	folio_put(folio);
1238 }
1239 
1240 /*
1241  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1242  * the page's refcount so that two separate items are tracked: the original page
1243  * reference count, and also a new count of how many pin_user_pages() calls were
1244  * made against the page. ("gup-pinned" is another term for the latter).
1245  *
1246  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1247  * distinct from normal pages. As such, the unpin_user_page() call (and its
1248  * variants) must be used in order to release gup-pinned pages.
1249  *
1250  * Choice of value:
1251  *
1252  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1253  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1254  * simpler, due to the fact that adding an even power of two to the page
1255  * refcount has the effect of using only the upper N bits, for the code that
1256  * counts up using the bias value. This means that the lower bits are left for
1257  * the exclusive use of the original code that increments and decrements by one
1258  * (or at least, by much smaller values than the bias value).
1259  *
1260  * Of course, once the lower bits overflow into the upper bits (and this is
1261  * OK, because subtraction recovers the original values), then visual inspection
1262  * no longer suffices to directly view the separate counts. However, for normal
1263  * applications that don't have huge page reference counts, this won't be an
1264  * issue.
1265  *
1266  * Locking: the lockless algorithm described in page_cache_get_speculative()
1267  * and page_cache_gup_pin_speculative() provides safe operation for
1268  * get_user_pages and page_mkclean and other calls that race to set up page
1269  * table entries.
1270  */
1271 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1272 
1273 void unpin_user_page(struct page *page);
1274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1275 				 bool make_dirty);
1276 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1277 				      bool make_dirty);
1278 void unpin_user_pages(struct page **pages, unsigned long npages);
1279 
1280 /**
1281  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1282  * @page: The page.
1283  *
1284  * This function checks if a page has been pinned via a call to
1285  * a function in the pin_user_pages() family.
1286  *
1287  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1288  * because it means "definitely not pinned for DMA", but true means "probably
1289  * pinned for DMA, but possibly a false positive due to having at least
1290  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1291  *
1292  * False positives are OK, because: a) it's unlikely for a page to get that many
1293  * refcounts, and b) all the callers of this routine are expected to be able to
1294  * deal gracefully with a false positive.
1295  *
1296  * For huge pages, the result will be exactly correct. That's because we have
1297  * more tracking data available: the 3rd struct page in the compound page is
1298  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1299  * scheme).
1300  *
1301  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1302  *
1303  * Return: True, if it is likely that the page has been "dma-pinned".
1304  * False, if the page is definitely not dma-pinned.
1305  */
1306 static inline bool page_maybe_dma_pinned(struct page *page)
1307 {
1308 	if (hpage_pincount_available(page))
1309 		return compound_pincount(page) > 0;
1310 
1311 	/*
1312 	 * page_ref_count() is signed. If that refcount overflows, then
1313 	 * page_ref_count() returns a negative value, and callers will avoid
1314 	 * further incrementing the refcount.
1315 	 *
1316 	 * Here, for that overflow case, use the signed bit to count a little
1317 	 * bit higher via unsigned math, and thus still get an accurate result.
1318 	 */
1319 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1320 		GUP_PIN_COUNTING_BIAS;
1321 }
1322 
1323 static inline bool is_cow_mapping(vm_flags_t flags)
1324 {
1325 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1326 }
1327 
1328 /*
1329  * This should most likely only be called during fork() to see whether we
1330  * should break the cow immediately for a page on the src mm.
1331  */
1332 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1333 					  struct page *page)
1334 {
1335 	if (!is_cow_mapping(vma->vm_flags))
1336 		return false;
1337 
1338 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1339 		return false;
1340 
1341 	return page_maybe_dma_pinned(page);
1342 }
1343 
1344 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1345 #define SECTION_IN_PAGE_FLAGS
1346 #endif
1347 
1348 /*
1349  * The identification function is mainly used by the buddy allocator for
1350  * determining if two pages could be buddies. We are not really identifying
1351  * the zone since we could be using the section number id if we do not have
1352  * node id available in page flags.
1353  * We only guarantee that it will return the same value for two combinable
1354  * pages in a zone.
1355  */
1356 static inline int page_zone_id(struct page *page)
1357 {
1358 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1359 }
1360 
1361 #ifdef NODE_NOT_IN_PAGE_FLAGS
1362 extern int page_to_nid(const struct page *page);
1363 #else
1364 static inline int page_to_nid(const struct page *page)
1365 {
1366 	struct page *p = (struct page *)page;
1367 
1368 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1369 }
1370 #endif
1371 
1372 static inline int folio_nid(const struct folio *folio)
1373 {
1374 	return page_to_nid(&folio->page);
1375 }
1376 
1377 #ifdef CONFIG_NUMA_BALANCING
1378 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1379 {
1380 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1381 }
1382 
1383 static inline int cpupid_to_pid(int cpupid)
1384 {
1385 	return cpupid & LAST__PID_MASK;
1386 }
1387 
1388 static inline int cpupid_to_cpu(int cpupid)
1389 {
1390 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1391 }
1392 
1393 static inline int cpupid_to_nid(int cpupid)
1394 {
1395 	return cpu_to_node(cpupid_to_cpu(cpupid));
1396 }
1397 
1398 static inline bool cpupid_pid_unset(int cpupid)
1399 {
1400 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1401 }
1402 
1403 static inline bool cpupid_cpu_unset(int cpupid)
1404 {
1405 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1406 }
1407 
1408 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1409 {
1410 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1411 }
1412 
1413 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1414 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1415 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1416 {
1417 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1418 }
1419 
1420 static inline int page_cpupid_last(struct page *page)
1421 {
1422 	return page->_last_cpupid;
1423 }
1424 static inline void page_cpupid_reset_last(struct page *page)
1425 {
1426 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1427 }
1428 #else
1429 static inline int page_cpupid_last(struct page *page)
1430 {
1431 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1432 }
1433 
1434 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1435 
1436 static inline void page_cpupid_reset_last(struct page *page)
1437 {
1438 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1439 }
1440 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1441 #else /* !CONFIG_NUMA_BALANCING */
1442 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1443 {
1444 	return page_to_nid(page); /* XXX */
1445 }
1446 
1447 static inline int page_cpupid_last(struct page *page)
1448 {
1449 	return page_to_nid(page); /* XXX */
1450 }
1451 
1452 static inline int cpupid_to_nid(int cpupid)
1453 {
1454 	return -1;
1455 }
1456 
1457 static inline int cpupid_to_pid(int cpupid)
1458 {
1459 	return -1;
1460 }
1461 
1462 static inline int cpupid_to_cpu(int cpupid)
1463 {
1464 	return -1;
1465 }
1466 
1467 static inline int cpu_pid_to_cpupid(int nid, int pid)
1468 {
1469 	return -1;
1470 }
1471 
1472 static inline bool cpupid_pid_unset(int cpupid)
1473 {
1474 	return true;
1475 }
1476 
1477 static inline void page_cpupid_reset_last(struct page *page)
1478 {
1479 }
1480 
1481 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1482 {
1483 	return false;
1484 }
1485 #endif /* CONFIG_NUMA_BALANCING */
1486 
1487 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1488 
1489 /*
1490  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1491  * setting tags for all pages to native kernel tag value 0xff, as the default
1492  * value 0x00 maps to 0xff.
1493  */
1494 
1495 static inline u8 page_kasan_tag(const struct page *page)
1496 {
1497 	u8 tag = 0xff;
1498 
1499 	if (kasan_enabled()) {
1500 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1501 		tag ^= 0xff;
1502 	}
1503 
1504 	return tag;
1505 }
1506 
1507 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1508 {
1509 	if (kasan_enabled()) {
1510 		tag ^= 0xff;
1511 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1512 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1513 	}
1514 }
1515 
1516 static inline void page_kasan_tag_reset(struct page *page)
1517 {
1518 	if (kasan_enabled())
1519 		page_kasan_tag_set(page, 0xff);
1520 }
1521 
1522 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1523 
1524 static inline u8 page_kasan_tag(const struct page *page)
1525 {
1526 	return 0xff;
1527 }
1528 
1529 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1530 static inline void page_kasan_tag_reset(struct page *page) { }
1531 
1532 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1533 
1534 static inline struct zone *page_zone(const struct page *page)
1535 {
1536 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1537 }
1538 
1539 static inline pg_data_t *page_pgdat(const struct page *page)
1540 {
1541 	return NODE_DATA(page_to_nid(page));
1542 }
1543 
1544 static inline struct zone *folio_zone(const struct folio *folio)
1545 {
1546 	return page_zone(&folio->page);
1547 }
1548 
1549 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1550 {
1551 	return page_pgdat(&folio->page);
1552 }
1553 
1554 #ifdef SECTION_IN_PAGE_FLAGS
1555 static inline void set_page_section(struct page *page, unsigned long section)
1556 {
1557 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1558 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1559 }
1560 
1561 static inline unsigned long page_to_section(const struct page *page)
1562 {
1563 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1564 }
1565 #endif
1566 
1567 /**
1568  * folio_pfn - Return the Page Frame Number of a folio.
1569  * @folio: The folio.
1570  *
1571  * A folio may contain multiple pages.  The pages have consecutive
1572  * Page Frame Numbers.
1573  *
1574  * Return: The Page Frame Number of the first page in the folio.
1575  */
1576 static inline unsigned long folio_pfn(struct folio *folio)
1577 {
1578 	return page_to_pfn(&folio->page);
1579 }
1580 
1581 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1582 #ifdef CONFIG_MIGRATION
1583 static inline bool is_pinnable_page(struct page *page)
1584 {
1585 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1586 		is_zero_pfn(page_to_pfn(page));
1587 }
1588 #else
1589 static inline bool is_pinnable_page(struct page *page)
1590 {
1591 	return true;
1592 }
1593 #endif
1594 
1595 static inline void set_page_zone(struct page *page, enum zone_type zone)
1596 {
1597 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1598 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1599 }
1600 
1601 static inline void set_page_node(struct page *page, unsigned long node)
1602 {
1603 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1604 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1605 }
1606 
1607 static inline void set_page_links(struct page *page, enum zone_type zone,
1608 	unsigned long node, unsigned long pfn)
1609 {
1610 	set_page_zone(page, zone);
1611 	set_page_node(page, node);
1612 #ifdef SECTION_IN_PAGE_FLAGS
1613 	set_page_section(page, pfn_to_section_nr(pfn));
1614 #endif
1615 }
1616 
1617 /**
1618  * folio_nr_pages - The number of pages in the folio.
1619  * @folio: The folio.
1620  *
1621  * Return: A positive power of two.
1622  */
1623 static inline long folio_nr_pages(struct folio *folio)
1624 {
1625 	return compound_nr(&folio->page);
1626 }
1627 
1628 /**
1629  * folio_next - Move to the next physical folio.
1630  * @folio: The folio we're currently operating on.
1631  *
1632  * If you have physically contiguous memory which may span more than
1633  * one folio (eg a &struct bio_vec), use this function to move from one
1634  * folio to the next.  Do not use it if the memory is only virtually
1635  * contiguous as the folios are almost certainly not adjacent to each
1636  * other.  This is the folio equivalent to writing ``page++``.
1637  *
1638  * Context: We assume that the folios are refcounted and/or locked at a
1639  * higher level and do not adjust the reference counts.
1640  * Return: The next struct folio.
1641  */
1642 static inline struct folio *folio_next(struct folio *folio)
1643 {
1644 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1645 }
1646 
1647 /**
1648  * folio_shift - The size of the memory described by this folio.
1649  * @folio: The folio.
1650  *
1651  * A folio represents a number of bytes which is a power-of-two in size.
1652  * This function tells you which power-of-two the folio is.  See also
1653  * folio_size() and folio_order().
1654  *
1655  * Context: The caller should have a reference on the folio to prevent
1656  * it from being split.  It is not necessary for the folio to be locked.
1657  * Return: The base-2 logarithm of the size of this folio.
1658  */
1659 static inline unsigned int folio_shift(struct folio *folio)
1660 {
1661 	return PAGE_SHIFT + folio_order(folio);
1662 }
1663 
1664 /**
1665  * folio_size - The number of bytes in a folio.
1666  * @folio: The folio.
1667  *
1668  * Context: The caller should have a reference on the folio to prevent
1669  * it from being split.  It is not necessary for the folio to be locked.
1670  * Return: The number of bytes in this folio.
1671  */
1672 static inline size_t folio_size(struct folio *folio)
1673 {
1674 	return PAGE_SIZE << folio_order(folio);
1675 }
1676 
1677 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1678 static inline int arch_make_page_accessible(struct page *page)
1679 {
1680 	return 0;
1681 }
1682 #endif
1683 
1684 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1685 static inline int arch_make_folio_accessible(struct folio *folio)
1686 {
1687 	int ret;
1688 	long i, nr = folio_nr_pages(folio);
1689 
1690 	for (i = 0; i < nr; i++) {
1691 		ret = arch_make_page_accessible(folio_page(folio, i));
1692 		if (ret)
1693 			break;
1694 	}
1695 
1696 	return ret;
1697 }
1698 #endif
1699 
1700 /*
1701  * Some inline functions in vmstat.h depend on page_zone()
1702  */
1703 #include <linux/vmstat.h>
1704 
1705 static __always_inline void *lowmem_page_address(const struct page *page)
1706 {
1707 	return page_to_virt(page);
1708 }
1709 
1710 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1711 #define HASHED_PAGE_VIRTUAL
1712 #endif
1713 
1714 #if defined(WANT_PAGE_VIRTUAL)
1715 static inline void *page_address(const struct page *page)
1716 {
1717 	return page->virtual;
1718 }
1719 static inline void set_page_address(struct page *page, void *address)
1720 {
1721 	page->virtual = address;
1722 }
1723 #define page_address_init()  do { } while(0)
1724 #endif
1725 
1726 #if defined(HASHED_PAGE_VIRTUAL)
1727 void *page_address(const struct page *page);
1728 void set_page_address(struct page *page, void *virtual);
1729 void page_address_init(void);
1730 #endif
1731 
1732 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1733 #define page_address(page) lowmem_page_address(page)
1734 #define set_page_address(page, address)  do { } while(0)
1735 #define page_address_init()  do { } while(0)
1736 #endif
1737 
1738 static inline void *folio_address(const struct folio *folio)
1739 {
1740 	return page_address(&folio->page);
1741 }
1742 
1743 extern void *page_rmapping(struct page *page);
1744 extern struct anon_vma *page_anon_vma(struct page *page);
1745 extern pgoff_t __page_file_index(struct page *page);
1746 
1747 /*
1748  * Return the pagecache index of the passed page.  Regular pagecache pages
1749  * use ->index whereas swapcache pages use swp_offset(->private)
1750  */
1751 static inline pgoff_t page_index(struct page *page)
1752 {
1753 	if (unlikely(PageSwapCache(page)))
1754 		return __page_file_index(page);
1755 	return page->index;
1756 }
1757 
1758 bool page_mapped(struct page *page);
1759 bool folio_mapped(struct folio *folio);
1760 
1761 /*
1762  * Return true only if the page has been allocated with
1763  * ALLOC_NO_WATERMARKS and the low watermark was not
1764  * met implying that the system is under some pressure.
1765  */
1766 static inline bool page_is_pfmemalloc(const struct page *page)
1767 {
1768 	/*
1769 	 * lru.next has bit 1 set if the page is allocated from the
1770 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1771 	 * they do not need to preserve that information.
1772 	 */
1773 	return (uintptr_t)page->lru.next & BIT(1);
1774 }
1775 
1776 /*
1777  * Only to be called by the page allocator on a freshly allocated
1778  * page.
1779  */
1780 static inline void set_page_pfmemalloc(struct page *page)
1781 {
1782 	page->lru.next = (void *)BIT(1);
1783 }
1784 
1785 static inline void clear_page_pfmemalloc(struct page *page)
1786 {
1787 	page->lru.next = NULL;
1788 }
1789 
1790 /*
1791  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1792  */
1793 extern void pagefault_out_of_memory(void);
1794 
1795 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1796 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1797 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1798 
1799 /*
1800  * Flags passed to show_mem() and show_free_areas() to suppress output in
1801  * various contexts.
1802  */
1803 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1804 
1805 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1806 
1807 #ifdef CONFIG_MMU
1808 extern bool can_do_mlock(void);
1809 #else
1810 static inline bool can_do_mlock(void) { return false; }
1811 #endif
1812 extern int user_shm_lock(size_t, struct ucounts *);
1813 extern void user_shm_unlock(size_t, struct ucounts *);
1814 
1815 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1816 			     pte_t pte);
1817 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1818 				pmd_t pmd);
1819 
1820 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1821 		  unsigned long size);
1822 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1823 		    unsigned long size);
1824 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1825 		unsigned long start, unsigned long end);
1826 
1827 struct mmu_notifier_range;
1828 
1829 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1830 		unsigned long end, unsigned long floor, unsigned long ceiling);
1831 int
1832 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1833 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1834 			  struct mmu_notifier_range *range, pte_t **ptepp,
1835 			  pmd_t **pmdpp, spinlock_t **ptlp);
1836 int follow_pte(struct mm_struct *mm, unsigned long address,
1837 	       pte_t **ptepp, spinlock_t **ptlp);
1838 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1839 	unsigned long *pfn);
1840 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1841 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1842 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1843 			void *buf, int len, int write);
1844 
1845 extern void truncate_pagecache(struct inode *inode, loff_t new);
1846 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1847 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1848 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1849 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1850 int invalidate_inode_page(struct page *page);
1851 
1852 #ifdef CONFIG_MMU
1853 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1854 				  unsigned long address, unsigned int flags,
1855 				  struct pt_regs *regs);
1856 extern int fixup_user_fault(struct mm_struct *mm,
1857 			    unsigned long address, unsigned int fault_flags,
1858 			    bool *unlocked);
1859 void unmap_mapping_pages(struct address_space *mapping,
1860 		pgoff_t start, pgoff_t nr, bool even_cows);
1861 void unmap_mapping_range(struct address_space *mapping,
1862 		loff_t const holebegin, loff_t const holelen, int even_cows);
1863 #else
1864 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1865 					 unsigned long address, unsigned int flags,
1866 					 struct pt_regs *regs)
1867 {
1868 	/* should never happen if there's no MMU */
1869 	BUG();
1870 	return VM_FAULT_SIGBUS;
1871 }
1872 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1873 		unsigned int fault_flags, bool *unlocked)
1874 {
1875 	/* should never happen if there's no MMU */
1876 	BUG();
1877 	return -EFAULT;
1878 }
1879 static inline void unmap_mapping_pages(struct address_space *mapping,
1880 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1881 static inline void unmap_mapping_range(struct address_space *mapping,
1882 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1883 #endif
1884 
1885 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1886 		loff_t const holebegin, loff_t const holelen)
1887 {
1888 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1889 }
1890 
1891 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1892 		void *buf, int len, unsigned int gup_flags);
1893 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1894 		void *buf, int len, unsigned int gup_flags);
1895 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1896 			      void *buf, int len, unsigned int gup_flags);
1897 
1898 long get_user_pages_remote(struct mm_struct *mm,
1899 			    unsigned long start, unsigned long nr_pages,
1900 			    unsigned int gup_flags, struct page **pages,
1901 			    struct vm_area_struct **vmas, int *locked);
1902 long pin_user_pages_remote(struct mm_struct *mm,
1903 			   unsigned long start, unsigned long nr_pages,
1904 			   unsigned int gup_flags, struct page **pages,
1905 			   struct vm_area_struct **vmas, int *locked);
1906 long get_user_pages(unsigned long start, unsigned long nr_pages,
1907 			    unsigned int gup_flags, struct page **pages,
1908 			    struct vm_area_struct **vmas);
1909 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1910 		    unsigned int gup_flags, struct page **pages,
1911 		    struct vm_area_struct **vmas);
1912 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1913 		    unsigned int gup_flags, struct page **pages, int *locked);
1914 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1915 		    unsigned int gup_flags, struct page **pages, int *locked);
1916 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1917 		    struct page **pages, unsigned int gup_flags);
1918 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1919 		    struct page **pages, unsigned int gup_flags);
1920 
1921 int get_user_pages_fast(unsigned long start, int nr_pages,
1922 			unsigned int gup_flags, struct page **pages);
1923 int pin_user_pages_fast(unsigned long start, int nr_pages,
1924 			unsigned int gup_flags, struct page **pages);
1925 
1926 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1927 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1928 			struct task_struct *task, bool bypass_rlim);
1929 
1930 struct kvec;
1931 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1932 			struct page **pages);
1933 struct page *get_dump_page(unsigned long addr);
1934 
1935 extern void do_invalidatepage(struct page *page, unsigned int offset,
1936 			      unsigned int length);
1937 
1938 bool folio_mark_dirty(struct folio *folio);
1939 bool set_page_dirty(struct page *page);
1940 int set_page_dirty_lock(struct page *page);
1941 
1942 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1943 
1944 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1945 		unsigned long old_addr, struct vm_area_struct *new_vma,
1946 		unsigned long new_addr, unsigned long len,
1947 		bool need_rmap_locks);
1948 
1949 /*
1950  * Flags used by change_protection().  For now we make it a bitmap so
1951  * that we can pass in multiple flags just like parameters.  However
1952  * for now all the callers are only use one of the flags at the same
1953  * time.
1954  */
1955 /* Whether we should allow dirty bit accounting */
1956 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1957 /* Whether this protection change is for NUMA hints */
1958 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1959 /* Whether this change is for write protecting */
1960 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1961 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1962 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1963 					    MM_CP_UFFD_WP_RESOLVE)
1964 
1965 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1966 			      unsigned long end, pgprot_t newprot,
1967 			      unsigned long cp_flags);
1968 extern int mprotect_fixup(struct vm_area_struct *vma,
1969 			  struct vm_area_struct **pprev, unsigned long start,
1970 			  unsigned long end, unsigned long newflags);
1971 
1972 /*
1973  * doesn't attempt to fault and will return short.
1974  */
1975 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1976 			     unsigned int gup_flags, struct page **pages);
1977 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1978 			     unsigned int gup_flags, struct page **pages);
1979 
1980 static inline bool get_user_page_fast_only(unsigned long addr,
1981 			unsigned int gup_flags, struct page **pagep)
1982 {
1983 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1984 }
1985 /*
1986  * per-process(per-mm_struct) statistics.
1987  */
1988 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1989 {
1990 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1991 
1992 #ifdef SPLIT_RSS_COUNTING
1993 	/*
1994 	 * counter is updated in asynchronous manner and may go to minus.
1995 	 * But it's never be expected number for users.
1996 	 */
1997 	if (val < 0)
1998 		val = 0;
1999 #endif
2000 	return (unsigned long)val;
2001 }
2002 
2003 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2004 
2005 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2006 {
2007 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2008 
2009 	mm_trace_rss_stat(mm, member, count);
2010 }
2011 
2012 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2013 {
2014 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2015 
2016 	mm_trace_rss_stat(mm, member, count);
2017 }
2018 
2019 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2020 {
2021 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2022 
2023 	mm_trace_rss_stat(mm, member, count);
2024 }
2025 
2026 /* Optimized variant when page is already known not to be PageAnon */
2027 static inline int mm_counter_file(struct page *page)
2028 {
2029 	if (PageSwapBacked(page))
2030 		return MM_SHMEMPAGES;
2031 	return MM_FILEPAGES;
2032 }
2033 
2034 static inline int mm_counter(struct page *page)
2035 {
2036 	if (PageAnon(page))
2037 		return MM_ANONPAGES;
2038 	return mm_counter_file(page);
2039 }
2040 
2041 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2042 {
2043 	return get_mm_counter(mm, MM_FILEPAGES) +
2044 		get_mm_counter(mm, MM_ANONPAGES) +
2045 		get_mm_counter(mm, MM_SHMEMPAGES);
2046 }
2047 
2048 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2049 {
2050 	return max(mm->hiwater_rss, get_mm_rss(mm));
2051 }
2052 
2053 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2054 {
2055 	return max(mm->hiwater_vm, mm->total_vm);
2056 }
2057 
2058 static inline void update_hiwater_rss(struct mm_struct *mm)
2059 {
2060 	unsigned long _rss = get_mm_rss(mm);
2061 
2062 	if ((mm)->hiwater_rss < _rss)
2063 		(mm)->hiwater_rss = _rss;
2064 }
2065 
2066 static inline void update_hiwater_vm(struct mm_struct *mm)
2067 {
2068 	if (mm->hiwater_vm < mm->total_vm)
2069 		mm->hiwater_vm = mm->total_vm;
2070 }
2071 
2072 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2073 {
2074 	mm->hiwater_rss = get_mm_rss(mm);
2075 }
2076 
2077 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2078 					 struct mm_struct *mm)
2079 {
2080 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2081 
2082 	if (*maxrss < hiwater_rss)
2083 		*maxrss = hiwater_rss;
2084 }
2085 
2086 #if defined(SPLIT_RSS_COUNTING)
2087 void sync_mm_rss(struct mm_struct *mm);
2088 #else
2089 static inline void sync_mm_rss(struct mm_struct *mm)
2090 {
2091 }
2092 #endif
2093 
2094 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2095 static inline int pte_special(pte_t pte)
2096 {
2097 	return 0;
2098 }
2099 
2100 static inline pte_t pte_mkspecial(pte_t pte)
2101 {
2102 	return pte;
2103 }
2104 #endif
2105 
2106 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2107 static inline int pte_devmap(pte_t pte)
2108 {
2109 	return 0;
2110 }
2111 #endif
2112 
2113 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2114 
2115 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2116 			       spinlock_t **ptl);
2117 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2118 				    spinlock_t **ptl)
2119 {
2120 	pte_t *ptep;
2121 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2122 	return ptep;
2123 }
2124 
2125 #ifdef __PAGETABLE_P4D_FOLDED
2126 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2127 						unsigned long address)
2128 {
2129 	return 0;
2130 }
2131 #else
2132 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2133 #endif
2134 
2135 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2136 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2137 						unsigned long address)
2138 {
2139 	return 0;
2140 }
2141 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2142 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2143 
2144 #else
2145 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2146 
2147 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2148 {
2149 	if (mm_pud_folded(mm))
2150 		return;
2151 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2152 }
2153 
2154 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2155 {
2156 	if (mm_pud_folded(mm))
2157 		return;
2158 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2159 }
2160 #endif
2161 
2162 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2163 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2164 						unsigned long address)
2165 {
2166 	return 0;
2167 }
2168 
2169 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2170 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2171 
2172 #else
2173 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2174 
2175 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2176 {
2177 	if (mm_pmd_folded(mm))
2178 		return;
2179 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2180 }
2181 
2182 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2183 {
2184 	if (mm_pmd_folded(mm))
2185 		return;
2186 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2187 }
2188 #endif
2189 
2190 #ifdef CONFIG_MMU
2191 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2192 {
2193 	atomic_long_set(&mm->pgtables_bytes, 0);
2194 }
2195 
2196 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2197 {
2198 	return atomic_long_read(&mm->pgtables_bytes);
2199 }
2200 
2201 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2202 {
2203 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2204 }
2205 
2206 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2207 {
2208 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2209 }
2210 #else
2211 
2212 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2213 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2214 {
2215 	return 0;
2216 }
2217 
2218 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2219 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2220 #endif
2221 
2222 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2223 int __pte_alloc_kernel(pmd_t *pmd);
2224 
2225 #if defined(CONFIG_MMU)
2226 
2227 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2228 		unsigned long address)
2229 {
2230 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2231 		NULL : p4d_offset(pgd, address);
2232 }
2233 
2234 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2235 		unsigned long address)
2236 {
2237 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2238 		NULL : pud_offset(p4d, address);
2239 }
2240 
2241 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2242 {
2243 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2244 		NULL: pmd_offset(pud, address);
2245 }
2246 #endif /* CONFIG_MMU */
2247 
2248 #if USE_SPLIT_PTE_PTLOCKS
2249 #if ALLOC_SPLIT_PTLOCKS
2250 void __init ptlock_cache_init(void);
2251 extern bool ptlock_alloc(struct page *page);
2252 extern void ptlock_free(struct page *page);
2253 
2254 static inline spinlock_t *ptlock_ptr(struct page *page)
2255 {
2256 	return page->ptl;
2257 }
2258 #else /* ALLOC_SPLIT_PTLOCKS */
2259 static inline void ptlock_cache_init(void)
2260 {
2261 }
2262 
2263 static inline bool ptlock_alloc(struct page *page)
2264 {
2265 	return true;
2266 }
2267 
2268 static inline void ptlock_free(struct page *page)
2269 {
2270 }
2271 
2272 static inline spinlock_t *ptlock_ptr(struct page *page)
2273 {
2274 	return &page->ptl;
2275 }
2276 #endif /* ALLOC_SPLIT_PTLOCKS */
2277 
2278 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2279 {
2280 	return ptlock_ptr(pmd_page(*pmd));
2281 }
2282 
2283 static inline bool ptlock_init(struct page *page)
2284 {
2285 	/*
2286 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2287 	 * with 0. Make sure nobody took it in use in between.
2288 	 *
2289 	 * It can happen if arch try to use slab for page table allocation:
2290 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2291 	 */
2292 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2293 	if (!ptlock_alloc(page))
2294 		return false;
2295 	spin_lock_init(ptlock_ptr(page));
2296 	return true;
2297 }
2298 
2299 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2300 /*
2301  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2302  */
2303 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2304 {
2305 	return &mm->page_table_lock;
2306 }
2307 static inline void ptlock_cache_init(void) {}
2308 static inline bool ptlock_init(struct page *page) { return true; }
2309 static inline void ptlock_free(struct page *page) {}
2310 #endif /* USE_SPLIT_PTE_PTLOCKS */
2311 
2312 static inline void pgtable_init(void)
2313 {
2314 	ptlock_cache_init();
2315 	pgtable_cache_init();
2316 }
2317 
2318 static inline bool pgtable_pte_page_ctor(struct page *page)
2319 {
2320 	if (!ptlock_init(page))
2321 		return false;
2322 	__SetPageTable(page);
2323 	inc_lruvec_page_state(page, NR_PAGETABLE);
2324 	return true;
2325 }
2326 
2327 static inline void pgtable_pte_page_dtor(struct page *page)
2328 {
2329 	ptlock_free(page);
2330 	__ClearPageTable(page);
2331 	dec_lruvec_page_state(page, NR_PAGETABLE);
2332 }
2333 
2334 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2335 ({							\
2336 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2337 	pte_t *__pte = pte_offset_map(pmd, address);	\
2338 	*(ptlp) = __ptl;				\
2339 	spin_lock(__ptl);				\
2340 	__pte;						\
2341 })
2342 
2343 #define pte_unmap_unlock(pte, ptl)	do {		\
2344 	spin_unlock(ptl);				\
2345 	pte_unmap(pte);					\
2346 } while (0)
2347 
2348 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2349 
2350 #define pte_alloc_map(mm, pmd, address)			\
2351 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2352 
2353 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2354 	(pte_alloc(mm, pmd) ?			\
2355 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2356 
2357 #define pte_alloc_kernel(pmd, address)			\
2358 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2359 		NULL: pte_offset_kernel(pmd, address))
2360 
2361 #if USE_SPLIT_PMD_PTLOCKS
2362 
2363 static struct page *pmd_to_page(pmd_t *pmd)
2364 {
2365 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2366 	return virt_to_page((void *)((unsigned long) pmd & mask));
2367 }
2368 
2369 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2370 {
2371 	return ptlock_ptr(pmd_to_page(pmd));
2372 }
2373 
2374 static inline bool pmd_ptlock_init(struct page *page)
2375 {
2376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377 	page->pmd_huge_pte = NULL;
2378 #endif
2379 	return ptlock_init(page);
2380 }
2381 
2382 static inline void pmd_ptlock_free(struct page *page)
2383 {
2384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2385 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2386 #endif
2387 	ptlock_free(page);
2388 }
2389 
2390 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2391 
2392 #else
2393 
2394 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2395 {
2396 	return &mm->page_table_lock;
2397 }
2398 
2399 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2400 static inline void pmd_ptlock_free(struct page *page) {}
2401 
2402 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2403 
2404 #endif
2405 
2406 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2407 {
2408 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2409 	spin_lock(ptl);
2410 	return ptl;
2411 }
2412 
2413 static inline bool pgtable_pmd_page_ctor(struct page *page)
2414 {
2415 	if (!pmd_ptlock_init(page))
2416 		return false;
2417 	__SetPageTable(page);
2418 	inc_lruvec_page_state(page, NR_PAGETABLE);
2419 	return true;
2420 }
2421 
2422 static inline void pgtable_pmd_page_dtor(struct page *page)
2423 {
2424 	pmd_ptlock_free(page);
2425 	__ClearPageTable(page);
2426 	dec_lruvec_page_state(page, NR_PAGETABLE);
2427 }
2428 
2429 /*
2430  * No scalability reason to split PUD locks yet, but follow the same pattern
2431  * as the PMD locks to make it easier if we decide to.  The VM should not be
2432  * considered ready to switch to split PUD locks yet; there may be places
2433  * which need to be converted from page_table_lock.
2434  */
2435 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2436 {
2437 	return &mm->page_table_lock;
2438 }
2439 
2440 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2441 {
2442 	spinlock_t *ptl = pud_lockptr(mm, pud);
2443 
2444 	spin_lock(ptl);
2445 	return ptl;
2446 }
2447 
2448 extern void __init pagecache_init(void);
2449 extern void __init free_area_init_memoryless_node(int nid);
2450 extern void free_initmem(void);
2451 
2452 /*
2453  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2454  * into the buddy system. The freed pages will be poisoned with pattern
2455  * "poison" if it's within range [0, UCHAR_MAX].
2456  * Return pages freed into the buddy system.
2457  */
2458 extern unsigned long free_reserved_area(void *start, void *end,
2459 					int poison, const char *s);
2460 
2461 extern void adjust_managed_page_count(struct page *page, long count);
2462 extern void mem_init_print_info(void);
2463 
2464 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2465 
2466 /* Free the reserved page into the buddy system, so it gets managed. */
2467 static inline void free_reserved_page(struct page *page)
2468 {
2469 	ClearPageReserved(page);
2470 	init_page_count(page);
2471 	__free_page(page);
2472 	adjust_managed_page_count(page, 1);
2473 }
2474 #define free_highmem_page(page) free_reserved_page(page)
2475 
2476 static inline void mark_page_reserved(struct page *page)
2477 {
2478 	SetPageReserved(page);
2479 	adjust_managed_page_count(page, -1);
2480 }
2481 
2482 /*
2483  * Default method to free all the __init memory into the buddy system.
2484  * The freed pages will be poisoned with pattern "poison" if it's within
2485  * range [0, UCHAR_MAX].
2486  * Return pages freed into the buddy system.
2487  */
2488 static inline unsigned long free_initmem_default(int poison)
2489 {
2490 	extern char __init_begin[], __init_end[];
2491 
2492 	return free_reserved_area(&__init_begin, &__init_end,
2493 				  poison, "unused kernel image (initmem)");
2494 }
2495 
2496 static inline unsigned long get_num_physpages(void)
2497 {
2498 	int nid;
2499 	unsigned long phys_pages = 0;
2500 
2501 	for_each_online_node(nid)
2502 		phys_pages += node_present_pages(nid);
2503 
2504 	return phys_pages;
2505 }
2506 
2507 /*
2508  * Using memblock node mappings, an architecture may initialise its
2509  * zones, allocate the backing mem_map and account for memory holes in an
2510  * architecture independent manner.
2511  *
2512  * An architecture is expected to register range of page frames backed by
2513  * physical memory with memblock_add[_node]() before calling
2514  * free_area_init() passing in the PFN each zone ends at. At a basic
2515  * usage, an architecture is expected to do something like
2516  *
2517  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2518  * 							 max_highmem_pfn};
2519  * for_each_valid_physical_page_range()
2520  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2521  * free_area_init(max_zone_pfns);
2522  */
2523 void free_area_init(unsigned long *max_zone_pfn);
2524 unsigned long node_map_pfn_alignment(void);
2525 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2526 						unsigned long end_pfn);
2527 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2528 						unsigned long end_pfn);
2529 extern void get_pfn_range_for_nid(unsigned int nid,
2530 			unsigned long *start_pfn, unsigned long *end_pfn);
2531 extern unsigned long find_min_pfn_with_active_regions(void);
2532 
2533 #ifndef CONFIG_NUMA
2534 static inline int early_pfn_to_nid(unsigned long pfn)
2535 {
2536 	return 0;
2537 }
2538 #else
2539 /* please see mm/page_alloc.c */
2540 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2541 #endif
2542 
2543 extern void set_dma_reserve(unsigned long new_dma_reserve);
2544 extern void memmap_init_range(unsigned long, int, unsigned long,
2545 		unsigned long, unsigned long, enum meminit_context,
2546 		struct vmem_altmap *, int migratetype);
2547 extern void setup_per_zone_wmarks(void);
2548 extern void calculate_min_free_kbytes(void);
2549 extern int __meminit init_per_zone_wmark_min(void);
2550 extern void mem_init(void);
2551 extern void __init mmap_init(void);
2552 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2553 extern long si_mem_available(void);
2554 extern void si_meminfo(struct sysinfo * val);
2555 extern void si_meminfo_node(struct sysinfo *val, int nid);
2556 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2557 extern unsigned long arch_reserved_kernel_pages(void);
2558 #endif
2559 
2560 extern __printf(3, 4)
2561 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2562 
2563 extern void setup_per_cpu_pageset(void);
2564 
2565 /* page_alloc.c */
2566 extern int min_free_kbytes;
2567 extern int watermark_boost_factor;
2568 extern int watermark_scale_factor;
2569 extern bool arch_has_descending_max_zone_pfns(void);
2570 
2571 /* nommu.c */
2572 extern atomic_long_t mmap_pages_allocated;
2573 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2574 
2575 /* interval_tree.c */
2576 void vma_interval_tree_insert(struct vm_area_struct *node,
2577 			      struct rb_root_cached *root);
2578 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2579 				    struct vm_area_struct *prev,
2580 				    struct rb_root_cached *root);
2581 void vma_interval_tree_remove(struct vm_area_struct *node,
2582 			      struct rb_root_cached *root);
2583 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2584 				unsigned long start, unsigned long last);
2585 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2586 				unsigned long start, unsigned long last);
2587 
2588 #define vma_interval_tree_foreach(vma, root, start, last)		\
2589 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2590 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2591 
2592 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2593 				   struct rb_root_cached *root);
2594 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2595 				   struct rb_root_cached *root);
2596 struct anon_vma_chain *
2597 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2598 				  unsigned long start, unsigned long last);
2599 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2600 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2601 #ifdef CONFIG_DEBUG_VM_RB
2602 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2603 #endif
2604 
2605 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2606 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2607 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2608 
2609 /* mmap.c */
2610 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2611 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2612 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2613 	struct vm_area_struct *expand);
2614 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2615 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2616 {
2617 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2618 }
2619 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2620 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2621 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2622 	struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
2623 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2624 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2625 	unsigned long addr, int new_below);
2626 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2627 	unsigned long addr, int new_below);
2628 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2629 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2630 	struct rb_node **, struct rb_node *);
2631 extern void unlink_file_vma(struct vm_area_struct *);
2632 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2633 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2634 	bool *need_rmap_locks);
2635 extern void exit_mmap(struct mm_struct *);
2636 
2637 static inline int check_data_rlimit(unsigned long rlim,
2638 				    unsigned long new,
2639 				    unsigned long start,
2640 				    unsigned long end_data,
2641 				    unsigned long start_data)
2642 {
2643 	if (rlim < RLIM_INFINITY) {
2644 		if (((new - start) + (end_data - start_data)) > rlim)
2645 			return -ENOSPC;
2646 	}
2647 
2648 	return 0;
2649 }
2650 
2651 extern int mm_take_all_locks(struct mm_struct *mm);
2652 extern void mm_drop_all_locks(struct mm_struct *mm);
2653 
2654 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2655 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2656 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2657 extern struct file *get_task_exe_file(struct task_struct *task);
2658 
2659 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2660 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2661 
2662 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2663 				   const struct vm_special_mapping *sm);
2664 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2665 				   unsigned long addr, unsigned long len,
2666 				   unsigned long flags,
2667 				   const struct vm_special_mapping *spec);
2668 /* This is an obsolete alternative to _install_special_mapping. */
2669 extern int install_special_mapping(struct mm_struct *mm,
2670 				   unsigned long addr, unsigned long len,
2671 				   unsigned long flags, struct page **pages);
2672 
2673 unsigned long randomize_stack_top(unsigned long stack_top);
2674 
2675 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2676 
2677 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2678 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2679 	struct list_head *uf);
2680 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2681 	unsigned long len, unsigned long prot, unsigned long flags,
2682 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2683 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2684 		       struct list_head *uf, bool downgrade);
2685 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2686 		     struct list_head *uf);
2687 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2688 
2689 #ifdef CONFIG_MMU
2690 extern int __mm_populate(unsigned long addr, unsigned long len,
2691 			 int ignore_errors);
2692 static inline void mm_populate(unsigned long addr, unsigned long len)
2693 {
2694 	/* Ignore errors */
2695 	(void) __mm_populate(addr, len, 1);
2696 }
2697 #else
2698 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2699 #endif
2700 
2701 /* These take the mm semaphore themselves */
2702 extern int __must_check vm_brk(unsigned long, unsigned long);
2703 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2704 extern int vm_munmap(unsigned long, size_t);
2705 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2706         unsigned long, unsigned long,
2707         unsigned long, unsigned long);
2708 
2709 struct vm_unmapped_area_info {
2710 #define VM_UNMAPPED_AREA_TOPDOWN 1
2711 	unsigned long flags;
2712 	unsigned long length;
2713 	unsigned long low_limit;
2714 	unsigned long high_limit;
2715 	unsigned long align_mask;
2716 	unsigned long align_offset;
2717 };
2718 
2719 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2720 
2721 /* truncate.c */
2722 extern void truncate_inode_pages(struct address_space *, loff_t);
2723 extern void truncate_inode_pages_range(struct address_space *,
2724 				       loff_t lstart, loff_t lend);
2725 extern void truncate_inode_pages_final(struct address_space *);
2726 
2727 /* generic vm_area_ops exported for stackable file systems */
2728 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2729 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2730 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2731 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2732 
2733 extern unsigned long stack_guard_gap;
2734 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2735 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2736 
2737 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2738 extern int expand_downwards(struct vm_area_struct *vma,
2739 		unsigned long address);
2740 #if VM_GROWSUP
2741 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2742 #else
2743   #define expand_upwards(vma, address) (0)
2744 #endif
2745 
2746 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2747 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2748 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2749 					     struct vm_area_struct **pprev);
2750 
2751 /**
2752  * find_vma_intersection() - Look up the first VMA which intersects the interval
2753  * @mm: The process address space.
2754  * @start_addr: The inclusive start user address.
2755  * @end_addr: The exclusive end user address.
2756  *
2757  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2758  * start_addr < end_addr.
2759  */
2760 static inline
2761 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2762 					     unsigned long start_addr,
2763 					     unsigned long end_addr)
2764 {
2765 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2766 
2767 	if (vma && end_addr <= vma->vm_start)
2768 		vma = NULL;
2769 	return vma;
2770 }
2771 
2772 /**
2773  * vma_lookup() - Find a VMA at a specific address
2774  * @mm: The process address space.
2775  * @addr: The user address.
2776  *
2777  * Return: The vm_area_struct at the given address, %NULL otherwise.
2778  */
2779 static inline
2780 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2781 {
2782 	struct vm_area_struct *vma = find_vma(mm, addr);
2783 
2784 	if (vma && addr < vma->vm_start)
2785 		vma = NULL;
2786 
2787 	return vma;
2788 }
2789 
2790 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2791 {
2792 	unsigned long vm_start = vma->vm_start;
2793 
2794 	if (vma->vm_flags & VM_GROWSDOWN) {
2795 		vm_start -= stack_guard_gap;
2796 		if (vm_start > vma->vm_start)
2797 			vm_start = 0;
2798 	}
2799 	return vm_start;
2800 }
2801 
2802 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2803 {
2804 	unsigned long vm_end = vma->vm_end;
2805 
2806 	if (vma->vm_flags & VM_GROWSUP) {
2807 		vm_end += stack_guard_gap;
2808 		if (vm_end < vma->vm_end)
2809 			vm_end = -PAGE_SIZE;
2810 	}
2811 	return vm_end;
2812 }
2813 
2814 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2815 {
2816 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2817 }
2818 
2819 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2820 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2821 				unsigned long vm_start, unsigned long vm_end)
2822 {
2823 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2824 
2825 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2826 		vma = NULL;
2827 
2828 	return vma;
2829 }
2830 
2831 static inline bool range_in_vma(struct vm_area_struct *vma,
2832 				unsigned long start, unsigned long end)
2833 {
2834 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2835 }
2836 
2837 #ifdef CONFIG_MMU
2838 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2839 void vma_set_page_prot(struct vm_area_struct *vma);
2840 #else
2841 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2842 {
2843 	return __pgprot(0);
2844 }
2845 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2846 {
2847 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2848 }
2849 #endif
2850 
2851 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2852 
2853 #ifdef CONFIG_NUMA_BALANCING
2854 unsigned long change_prot_numa(struct vm_area_struct *vma,
2855 			unsigned long start, unsigned long end);
2856 #endif
2857 
2858 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2859 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2860 			unsigned long pfn, unsigned long size, pgprot_t);
2861 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2862 		unsigned long pfn, unsigned long size, pgprot_t prot);
2863 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2864 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2865 			struct page **pages, unsigned long *num);
2866 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2867 				unsigned long num);
2868 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2869 				unsigned long num);
2870 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2871 			unsigned long pfn);
2872 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2873 			unsigned long pfn, pgprot_t pgprot);
2874 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2875 			pfn_t pfn);
2876 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2877 			pfn_t pfn, pgprot_t pgprot);
2878 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2879 		unsigned long addr, pfn_t pfn);
2880 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2881 
2882 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2883 				unsigned long addr, struct page *page)
2884 {
2885 	int err = vm_insert_page(vma, addr, page);
2886 
2887 	if (err == -ENOMEM)
2888 		return VM_FAULT_OOM;
2889 	if (err < 0 && err != -EBUSY)
2890 		return VM_FAULT_SIGBUS;
2891 
2892 	return VM_FAULT_NOPAGE;
2893 }
2894 
2895 #ifndef io_remap_pfn_range
2896 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2897 				     unsigned long addr, unsigned long pfn,
2898 				     unsigned long size, pgprot_t prot)
2899 {
2900 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2901 }
2902 #endif
2903 
2904 static inline vm_fault_t vmf_error(int err)
2905 {
2906 	if (err == -ENOMEM)
2907 		return VM_FAULT_OOM;
2908 	return VM_FAULT_SIGBUS;
2909 }
2910 
2911 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2912 			 unsigned int foll_flags);
2913 
2914 #define FOLL_WRITE	0x01	/* check pte is writable */
2915 #define FOLL_TOUCH	0x02	/* mark page accessed */
2916 #define FOLL_GET	0x04	/* do get_page on page */
2917 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2918 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2919 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2920 				 * and return without waiting upon it */
2921 #define FOLL_POPULATE	0x40	/* fault in pages (with FOLL_MLOCK) */
2922 #define FOLL_NOFAULT	0x80	/* do not fault in pages */
2923 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2924 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2925 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2926 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2927 #define FOLL_MLOCK	0x1000	/* lock present pages */
2928 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2929 #define FOLL_COW	0x4000	/* internal GUP flag */
2930 #define FOLL_ANON	0x8000	/* don't do file mappings */
2931 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2932 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2933 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2934 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2935 
2936 /*
2937  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2938  * other. Here is what they mean, and how to use them:
2939  *
2940  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2941  * period _often_ under userspace control.  This is in contrast to
2942  * iov_iter_get_pages(), whose usages are transient.
2943  *
2944  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2945  * lifetime enforced by the filesystem and we need guarantees that longterm
2946  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2947  * the filesystem.  Ideas for this coordination include revoking the longterm
2948  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2949  * added after the problem with filesystems was found FS DAX VMAs are
2950  * specifically failed.  Filesystem pages are still subject to bugs and use of
2951  * FOLL_LONGTERM should be avoided on those pages.
2952  *
2953  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2954  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2955  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2956  * is due to an incompatibility with the FS DAX check and
2957  * FAULT_FLAG_ALLOW_RETRY.
2958  *
2959  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2960  * that region.  And so, CMA attempts to migrate the page before pinning, when
2961  * FOLL_LONGTERM is specified.
2962  *
2963  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2964  * but an additional pin counting system) will be invoked. This is intended for
2965  * anything that gets a page reference and then touches page data (for example,
2966  * Direct IO). This lets the filesystem know that some non-file-system entity is
2967  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2968  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2969  * a call to unpin_user_page().
2970  *
2971  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2972  * and separate refcounting mechanisms, however, and that means that each has
2973  * its own acquire and release mechanisms:
2974  *
2975  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2976  *
2977  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2978  *
2979  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2980  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2981  * calls applied to them, and that's perfectly OK. This is a constraint on the
2982  * callers, not on the pages.)
2983  *
2984  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2985  * directly by the caller. That's in order to help avoid mismatches when
2986  * releasing pages: get_user_pages*() pages must be released via put_page(),
2987  * while pin_user_pages*() pages must be released via unpin_user_page().
2988  *
2989  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2990  */
2991 
2992 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2993 {
2994 	if (vm_fault & VM_FAULT_OOM)
2995 		return -ENOMEM;
2996 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2997 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2998 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2999 		return -EFAULT;
3000 	return 0;
3001 }
3002 
3003 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3004 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3005 			       unsigned long size, pte_fn_t fn, void *data);
3006 extern int apply_to_existing_page_range(struct mm_struct *mm,
3007 				   unsigned long address, unsigned long size,
3008 				   pte_fn_t fn, void *data);
3009 
3010 extern void init_mem_debugging_and_hardening(void);
3011 #ifdef CONFIG_PAGE_POISONING
3012 extern void __kernel_poison_pages(struct page *page, int numpages);
3013 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3014 extern bool _page_poisoning_enabled_early;
3015 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3016 static inline bool page_poisoning_enabled(void)
3017 {
3018 	return _page_poisoning_enabled_early;
3019 }
3020 /*
3021  * For use in fast paths after init_mem_debugging() has run, or when a
3022  * false negative result is not harmful when called too early.
3023  */
3024 static inline bool page_poisoning_enabled_static(void)
3025 {
3026 	return static_branch_unlikely(&_page_poisoning_enabled);
3027 }
3028 static inline void kernel_poison_pages(struct page *page, int numpages)
3029 {
3030 	if (page_poisoning_enabled_static())
3031 		__kernel_poison_pages(page, numpages);
3032 }
3033 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3034 {
3035 	if (page_poisoning_enabled_static())
3036 		__kernel_unpoison_pages(page, numpages);
3037 }
3038 #else
3039 static inline bool page_poisoning_enabled(void) { return false; }
3040 static inline bool page_poisoning_enabled_static(void) { return false; }
3041 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3042 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3043 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3044 #endif
3045 
3046 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3047 static inline bool want_init_on_alloc(gfp_t flags)
3048 {
3049 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3050 				&init_on_alloc))
3051 		return true;
3052 	return flags & __GFP_ZERO;
3053 }
3054 
3055 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3056 static inline bool want_init_on_free(void)
3057 {
3058 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3059 				   &init_on_free);
3060 }
3061 
3062 extern bool _debug_pagealloc_enabled_early;
3063 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3064 
3065 static inline bool debug_pagealloc_enabled(void)
3066 {
3067 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3068 		_debug_pagealloc_enabled_early;
3069 }
3070 
3071 /*
3072  * For use in fast paths after init_debug_pagealloc() has run, or when a
3073  * false negative result is not harmful when called too early.
3074  */
3075 static inline bool debug_pagealloc_enabled_static(void)
3076 {
3077 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3078 		return false;
3079 
3080 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3081 }
3082 
3083 #ifdef CONFIG_DEBUG_PAGEALLOC
3084 /*
3085  * To support DEBUG_PAGEALLOC architecture must ensure that
3086  * __kernel_map_pages() never fails
3087  */
3088 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3089 
3090 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3091 {
3092 	if (debug_pagealloc_enabled_static())
3093 		__kernel_map_pages(page, numpages, 1);
3094 }
3095 
3096 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3097 {
3098 	if (debug_pagealloc_enabled_static())
3099 		__kernel_map_pages(page, numpages, 0);
3100 }
3101 #else	/* CONFIG_DEBUG_PAGEALLOC */
3102 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3103 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3104 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3105 
3106 #ifdef __HAVE_ARCH_GATE_AREA
3107 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3108 extern int in_gate_area_no_mm(unsigned long addr);
3109 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3110 #else
3111 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3112 {
3113 	return NULL;
3114 }
3115 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3116 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3117 {
3118 	return 0;
3119 }
3120 #endif	/* __HAVE_ARCH_GATE_AREA */
3121 
3122 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3123 
3124 #ifdef CONFIG_SYSCTL
3125 extern int sysctl_drop_caches;
3126 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3127 		loff_t *);
3128 #endif
3129 
3130 void drop_slab(void);
3131 
3132 #ifndef CONFIG_MMU
3133 #define randomize_va_space 0
3134 #else
3135 extern int randomize_va_space;
3136 #endif
3137 
3138 const char * arch_vma_name(struct vm_area_struct *vma);
3139 #ifdef CONFIG_MMU
3140 void print_vma_addr(char *prefix, unsigned long rip);
3141 #else
3142 static inline void print_vma_addr(char *prefix, unsigned long rip)
3143 {
3144 }
3145 #endif
3146 
3147 int vmemmap_remap_free(unsigned long start, unsigned long end,
3148 		       unsigned long reuse);
3149 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3150 			unsigned long reuse, gfp_t gfp_mask);
3151 
3152 void *sparse_buffer_alloc(unsigned long size);
3153 struct page * __populate_section_memmap(unsigned long pfn,
3154 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3155 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3156 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3157 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3158 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3159 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3160 			    struct vmem_altmap *altmap);
3161 void *vmemmap_alloc_block(unsigned long size, int node);
3162 struct vmem_altmap;
3163 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3164 			      struct vmem_altmap *altmap);
3165 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3166 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3167 			       int node, struct vmem_altmap *altmap);
3168 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3169 		struct vmem_altmap *altmap);
3170 void vmemmap_populate_print_last(void);
3171 #ifdef CONFIG_MEMORY_HOTPLUG
3172 void vmemmap_free(unsigned long start, unsigned long end,
3173 		struct vmem_altmap *altmap);
3174 #endif
3175 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3176 				  unsigned long nr_pages);
3177 
3178 enum mf_flags {
3179 	MF_COUNT_INCREASED = 1 << 0,
3180 	MF_ACTION_REQUIRED = 1 << 1,
3181 	MF_MUST_KILL = 1 << 2,
3182 	MF_SOFT_OFFLINE = 1 << 3,
3183 	MF_UNPOISON = 1 << 4,
3184 };
3185 extern int memory_failure(unsigned long pfn, int flags);
3186 extern void memory_failure_queue(unsigned long pfn, int flags);
3187 extern void memory_failure_queue_kick(int cpu);
3188 extern int unpoison_memory(unsigned long pfn);
3189 extern int sysctl_memory_failure_early_kill;
3190 extern int sysctl_memory_failure_recovery;
3191 extern void shake_page(struct page *p);
3192 extern atomic_long_t num_poisoned_pages __read_mostly;
3193 extern int soft_offline_page(unsigned long pfn, int flags);
3194 
3195 #ifndef arch_memory_failure
3196 static inline int arch_memory_failure(unsigned long pfn, int flags)
3197 {
3198 	return -ENXIO;
3199 }
3200 #endif
3201 
3202 #ifndef arch_is_platform_page
3203 static inline bool arch_is_platform_page(u64 paddr)
3204 {
3205 	return false;
3206 }
3207 #endif
3208 
3209 /*
3210  * Error handlers for various types of pages.
3211  */
3212 enum mf_result {
3213 	MF_IGNORED,	/* Error: cannot be handled */
3214 	MF_FAILED,	/* Error: handling failed */
3215 	MF_DELAYED,	/* Will be handled later */
3216 	MF_RECOVERED,	/* Successfully recovered */
3217 };
3218 
3219 enum mf_action_page_type {
3220 	MF_MSG_KERNEL,
3221 	MF_MSG_KERNEL_HIGH_ORDER,
3222 	MF_MSG_SLAB,
3223 	MF_MSG_DIFFERENT_COMPOUND,
3224 	MF_MSG_HUGE,
3225 	MF_MSG_FREE_HUGE,
3226 	MF_MSG_NON_PMD_HUGE,
3227 	MF_MSG_UNMAP_FAILED,
3228 	MF_MSG_DIRTY_SWAPCACHE,
3229 	MF_MSG_CLEAN_SWAPCACHE,
3230 	MF_MSG_DIRTY_MLOCKED_LRU,
3231 	MF_MSG_CLEAN_MLOCKED_LRU,
3232 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3233 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3234 	MF_MSG_DIRTY_LRU,
3235 	MF_MSG_CLEAN_LRU,
3236 	MF_MSG_TRUNCATED_LRU,
3237 	MF_MSG_BUDDY,
3238 	MF_MSG_DAX,
3239 	MF_MSG_UNSPLIT_THP,
3240 	MF_MSG_UNKNOWN,
3241 };
3242 
3243 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3244 extern void clear_huge_page(struct page *page,
3245 			    unsigned long addr_hint,
3246 			    unsigned int pages_per_huge_page);
3247 extern void copy_user_huge_page(struct page *dst, struct page *src,
3248 				unsigned long addr_hint,
3249 				struct vm_area_struct *vma,
3250 				unsigned int pages_per_huge_page);
3251 extern long copy_huge_page_from_user(struct page *dst_page,
3252 				const void __user *usr_src,
3253 				unsigned int pages_per_huge_page,
3254 				bool allow_pagefault);
3255 
3256 /**
3257  * vma_is_special_huge - Are transhuge page-table entries considered special?
3258  * @vma: Pointer to the struct vm_area_struct to consider
3259  *
3260  * Whether transhuge page-table entries are considered "special" following
3261  * the definition in vm_normal_page().
3262  *
3263  * Return: true if transhuge page-table entries should be considered special,
3264  * false otherwise.
3265  */
3266 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3267 {
3268 	return vma_is_dax(vma) || (vma->vm_file &&
3269 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3270 }
3271 
3272 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3273 
3274 #ifdef CONFIG_DEBUG_PAGEALLOC
3275 extern unsigned int _debug_guardpage_minorder;
3276 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3277 
3278 static inline unsigned int debug_guardpage_minorder(void)
3279 {
3280 	return _debug_guardpage_minorder;
3281 }
3282 
3283 static inline bool debug_guardpage_enabled(void)
3284 {
3285 	return static_branch_unlikely(&_debug_guardpage_enabled);
3286 }
3287 
3288 static inline bool page_is_guard(struct page *page)
3289 {
3290 	if (!debug_guardpage_enabled())
3291 		return false;
3292 
3293 	return PageGuard(page);
3294 }
3295 #else
3296 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3297 static inline bool debug_guardpage_enabled(void) { return false; }
3298 static inline bool page_is_guard(struct page *page) { return false; }
3299 #endif /* CONFIG_DEBUG_PAGEALLOC */
3300 
3301 #if MAX_NUMNODES > 1
3302 void __init setup_nr_node_ids(void);
3303 #else
3304 static inline void setup_nr_node_ids(void) {}
3305 #endif
3306 
3307 extern int memcmp_pages(struct page *page1, struct page *page2);
3308 
3309 static inline int pages_identical(struct page *page1, struct page *page2)
3310 {
3311 	return !memcmp_pages(page1, page2);
3312 }
3313 
3314 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3315 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3316 						pgoff_t first_index, pgoff_t nr,
3317 						pgoff_t bitmap_pgoff,
3318 						unsigned long *bitmap,
3319 						pgoff_t *start,
3320 						pgoff_t *end);
3321 
3322 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3323 				      pgoff_t first_index, pgoff_t nr);
3324 #endif
3325 
3326 extern int sysctl_nr_trim_pages;
3327 
3328 #ifdef CONFIG_PRINTK
3329 void mem_dump_obj(void *object);
3330 #else
3331 static inline void mem_dump_obj(void *object) {}
3332 #endif
3333 
3334 /**
3335  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3336  * @seals: the seals to check
3337  * @vma: the vma to operate on
3338  *
3339  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3340  * the vma flags.  Return 0 if check pass, or <0 for errors.
3341  */
3342 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3343 {
3344 	if (seals & F_SEAL_FUTURE_WRITE) {
3345 		/*
3346 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3347 		 * "future write" seal active.
3348 		 */
3349 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3350 			return -EPERM;
3351 
3352 		/*
3353 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3354 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3355 		 * revert protections on such mappings. Do this only for shared
3356 		 * mappings. For private mappings, don't need to mask
3357 		 * VM_MAYWRITE as we still want them to be COW-writable.
3358 		 */
3359 		if (vma->vm_flags & VM_SHARED)
3360 			vma->vm_flags &= ~(VM_MAYWRITE);
3361 	}
3362 
3363 	return 0;
3364 }
3365 
3366 #ifdef CONFIG_ANON_VMA_NAME
3367 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3368 			  unsigned long len_in, const char *name);
3369 #else
3370 static inline int
3371 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3372 		      unsigned long len_in, const char *name) {
3373 	return 0;
3374 }
3375 #endif
3376 
3377 #endif /* __KERNEL__ */
3378 #endif /* _LINUX_MM_H */
3379