xref: /openbmc/linux/include/linux/memcontrol.h (revision 85f856f7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_NR_STAT,
38 };
39 
40 enum memcg_memory_event {
41 	MEMCG_LOW,
42 	MEMCG_HIGH,
43 	MEMCG_MAX,
44 	MEMCG_OOM,
45 	MEMCG_OOM_KILL,
46 	MEMCG_OOM_GROUP_KILL,
47 	MEMCG_SWAP_HIGH,
48 	MEMCG_SWAP_MAX,
49 	MEMCG_SWAP_FAIL,
50 	MEMCG_NR_MEMORY_EVENTS,
51 };
52 
53 struct mem_cgroup_reclaim_cookie {
54 	pg_data_t *pgdat;
55 	unsigned int generation;
56 };
57 
58 #ifdef CONFIG_MEMCG
59 
60 #define MEM_CGROUP_ID_SHIFT	16
61 #define MEM_CGROUP_ID_MAX	USHRT_MAX
62 
63 struct mem_cgroup_id {
64 	int id;
65 	refcount_t ref;
66 };
67 
68 /*
69  * Per memcg event counter is incremented at every pagein/pageout. With THP,
70  * it will be incremented by the number of pages. This counter is used
71  * to trigger some periodic events. This is straightforward and better
72  * than using jiffies etc. to handle periodic memcg event.
73  */
74 enum mem_cgroup_events_target {
75 	MEM_CGROUP_TARGET_THRESH,
76 	MEM_CGROUP_TARGET_SOFTLIMIT,
77 	MEM_CGROUP_NTARGETS,
78 };
79 
80 struct memcg_vmstats_percpu {
81 	/* Local (CPU and cgroup) page state & events */
82 	long			state[MEMCG_NR_STAT];
83 	unsigned long		events[NR_VM_EVENT_ITEMS];
84 
85 	/* Delta calculation for lockless upward propagation */
86 	long			state_prev[MEMCG_NR_STAT];
87 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
88 
89 	/* Cgroup1: threshold notifications & softlimit tree updates */
90 	unsigned long		nr_page_events;
91 	unsigned long		targets[MEM_CGROUP_NTARGETS];
92 };
93 
94 struct memcg_vmstats {
95 	/* Aggregated (CPU and subtree) page state & events */
96 	long			state[MEMCG_NR_STAT];
97 	unsigned long		events[NR_VM_EVENT_ITEMS];
98 
99 	/* Pending child counts during tree propagation */
100 	long			state_pending[MEMCG_NR_STAT];
101 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
102 };
103 
104 struct mem_cgroup_reclaim_iter {
105 	struct mem_cgroup *position;
106 	/* scan generation, increased every round-trip */
107 	unsigned int generation;
108 };
109 
110 /*
111  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
112  * shrinkers, which have elements charged to this memcg.
113  */
114 struct shrinker_info {
115 	struct rcu_head rcu;
116 	atomic_long_t *nr_deferred;
117 	unsigned long *map;
118 };
119 
120 struct lruvec_stats_percpu {
121 	/* Local (CPU and cgroup) state */
122 	long state[NR_VM_NODE_STAT_ITEMS];
123 
124 	/* Delta calculation for lockless upward propagation */
125 	long state_prev[NR_VM_NODE_STAT_ITEMS];
126 };
127 
128 struct lruvec_stats {
129 	/* Aggregated (CPU and subtree) state */
130 	long state[NR_VM_NODE_STAT_ITEMS];
131 
132 	/* Pending child counts during tree propagation */
133 	long state_pending[NR_VM_NODE_STAT_ITEMS];
134 };
135 
136 /*
137  * per-node information in memory controller.
138  */
139 struct mem_cgroup_per_node {
140 	struct lruvec		lruvec;
141 
142 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
143 	struct lruvec_stats			lruvec_stats;
144 
145 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
146 
147 	struct mem_cgroup_reclaim_iter	iter;
148 
149 	struct shrinker_info __rcu	*shrinker_info;
150 
151 	struct rb_node		tree_node;	/* RB tree node */
152 	unsigned long		usage_in_excess;/* Set to the value by which */
153 						/* the soft limit is exceeded*/
154 	bool			on_tree;
155 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
156 						/* use container_of	   */
157 };
158 
159 struct mem_cgroup_threshold {
160 	struct eventfd_ctx *eventfd;
161 	unsigned long threshold;
162 };
163 
164 /* For threshold */
165 struct mem_cgroup_threshold_ary {
166 	/* An array index points to threshold just below or equal to usage. */
167 	int current_threshold;
168 	/* Size of entries[] */
169 	unsigned int size;
170 	/* Array of thresholds */
171 	struct mem_cgroup_threshold entries[];
172 };
173 
174 struct mem_cgroup_thresholds {
175 	/* Primary thresholds array */
176 	struct mem_cgroup_threshold_ary *primary;
177 	/*
178 	 * Spare threshold array.
179 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
180 	 * It must be able to store at least primary->size - 1 entries.
181 	 */
182 	struct mem_cgroup_threshold_ary *spare;
183 };
184 
185 #if defined(CONFIG_SMP)
186 struct memcg_padding {
187 	char x[0];
188 } ____cacheline_internodealigned_in_smp;
189 #define MEMCG_PADDING(name)      struct memcg_padding name
190 #else
191 #define MEMCG_PADDING(name)
192 #endif
193 
194 /*
195  * Remember four most recent foreign writebacks with dirty pages in this
196  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
197  * one in a given round, we're likely to catch it later if it keeps
198  * foreign-dirtying, so a fairly low count should be enough.
199  *
200  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
201  */
202 #define MEMCG_CGWB_FRN_CNT	4
203 
204 struct memcg_cgwb_frn {
205 	u64 bdi_id;			/* bdi->id of the foreign inode */
206 	int memcg_id;			/* memcg->css.id of foreign inode */
207 	u64 at;				/* jiffies_64 at the time of dirtying */
208 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
209 };
210 
211 /*
212  * Bucket for arbitrarily byte-sized objects charged to a memory
213  * cgroup. The bucket can be reparented in one piece when the cgroup
214  * is destroyed, without having to round up the individual references
215  * of all live memory objects in the wild.
216  */
217 struct obj_cgroup {
218 	struct percpu_ref refcnt;
219 	struct mem_cgroup *memcg;
220 	atomic_t nr_charged_bytes;
221 	union {
222 		struct list_head list;
223 		struct rcu_head rcu;
224 	};
225 };
226 
227 /*
228  * The memory controller data structure. The memory controller controls both
229  * page cache and RSS per cgroup. We would eventually like to provide
230  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231  * to help the administrator determine what knobs to tune.
232  */
233 struct mem_cgroup {
234 	struct cgroup_subsys_state css;
235 
236 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
237 	struct mem_cgroup_id id;
238 
239 	/* Accounted resources */
240 	struct page_counter memory;		/* Both v1 & v2 */
241 
242 	union {
243 		struct page_counter swap;	/* v2 only */
244 		struct page_counter memsw;	/* v1 only */
245 	};
246 
247 	/* Legacy consumer-oriented counters */
248 	struct page_counter kmem;		/* v1 only */
249 	struct page_counter tcpmem;		/* v1 only */
250 
251 	/* Range enforcement for interrupt charges */
252 	struct work_struct high_work;
253 
254 	unsigned long soft_limit;
255 
256 	/* vmpressure notifications */
257 	struct vmpressure vmpressure;
258 
259 	/*
260 	 * Should the OOM killer kill all belonging tasks, had it kill one?
261 	 */
262 	bool oom_group;
263 
264 	/* protected by memcg_oom_lock */
265 	bool		oom_lock;
266 	int		under_oom;
267 
268 	int	swappiness;
269 	/* OOM-Killer disable */
270 	int		oom_kill_disable;
271 
272 	/* memory.events and memory.events.local */
273 	struct cgroup_file events_file;
274 	struct cgroup_file events_local_file;
275 
276 	/* handle for "memory.swap.events" */
277 	struct cgroup_file swap_events_file;
278 
279 	/* protect arrays of thresholds */
280 	struct mutex thresholds_lock;
281 
282 	/* thresholds for memory usage. RCU-protected */
283 	struct mem_cgroup_thresholds thresholds;
284 
285 	/* thresholds for mem+swap usage. RCU-protected */
286 	struct mem_cgroup_thresholds memsw_thresholds;
287 
288 	/* For oom notifier event fd */
289 	struct list_head oom_notify;
290 
291 	/*
292 	 * Should we move charges of a task when a task is moved into this
293 	 * mem_cgroup ? And what type of charges should we move ?
294 	 */
295 	unsigned long move_charge_at_immigrate;
296 	/* taken only while moving_account > 0 */
297 	spinlock_t		move_lock;
298 	unsigned long		move_lock_flags;
299 
300 	MEMCG_PADDING(_pad1_);
301 
302 	/* memory.stat */
303 	struct memcg_vmstats	vmstats;
304 
305 	/* memory.events */
306 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
307 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
308 
309 	unsigned long		socket_pressure;
310 
311 	/* Legacy tcp memory accounting */
312 	bool			tcpmem_active;
313 	int			tcpmem_pressure;
314 
315 #ifdef CONFIG_MEMCG_KMEM
316 	int kmemcg_id;
317 	struct obj_cgroup __rcu *objcg;
318 	struct list_head objcg_list; /* list of inherited objcgs */
319 #endif
320 
321 	MEMCG_PADDING(_pad2_);
322 
323 	/*
324 	 * set > 0 if pages under this cgroup are moving to other cgroup.
325 	 */
326 	atomic_t		moving_account;
327 	struct task_struct	*move_lock_task;
328 
329 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
330 
331 #ifdef CONFIG_CGROUP_WRITEBACK
332 	struct list_head cgwb_list;
333 	struct wb_domain cgwb_domain;
334 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
335 #endif
336 
337 	/* List of events which userspace want to receive */
338 	struct list_head event_list;
339 	spinlock_t event_list_lock;
340 
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 	struct deferred_split deferred_split_queue;
343 #endif
344 
345 	struct mem_cgroup_per_node *nodeinfo[];
346 };
347 
348 /*
349  * size of first charge trial. "32" comes from vmscan.c's magic value.
350  * TODO: maybe necessary to use big numbers in big irons.
351  */
352 #define MEMCG_CHARGE_BATCH 32U
353 
354 extern struct mem_cgroup *root_mem_cgroup;
355 
356 enum page_memcg_data_flags {
357 	/* page->memcg_data is a pointer to an objcgs vector */
358 	MEMCG_DATA_OBJCGS = (1UL << 0),
359 	/* page has been accounted as a non-slab kernel page */
360 	MEMCG_DATA_KMEM = (1UL << 1),
361 	/* the next bit after the last actual flag */
362 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
363 };
364 
365 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
366 
367 static inline bool folio_memcg_kmem(struct folio *folio);
368 
369 /*
370  * After the initialization objcg->memcg is always pointing at
371  * a valid memcg, but can be atomically swapped to the parent memcg.
372  *
373  * The caller must ensure that the returned memcg won't be released:
374  * e.g. acquire the rcu_read_lock or css_set_lock.
375  */
376 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
377 {
378 	return READ_ONCE(objcg->memcg);
379 }
380 
381 /*
382  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
383  * @folio: Pointer to the folio.
384  *
385  * Returns a pointer to the memory cgroup associated with the folio,
386  * or NULL. This function assumes that the folio is known to have a
387  * proper memory cgroup pointer. It's not safe to call this function
388  * against some type of folios, e.g. slab folios or ex-slab folios or
389  * kmem folios.
390  */
391 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
392 {
393 	unsigned long memcg_data = folio->memcg_data;
394 
395 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
396 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
397 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
398 
399 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
400 }
401 
402 /*
403  * __folio_objcg - get the object cgroup associated with a kmem folio.
404  * @folio: Pointer to the folio.
405  *
406  * Returns a pointer to the object cgroup associated with the folio,
407  * or NULL. This function assumes that the folio is known to have a
408  * proper object cgroup pointer. It's not safe to call this function
409  * against some type of folios, e.g. slab folios or ex-slab folios or
410  * LRU folios.
411  */
412 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
413 {
414 	unsigned long memcg_data = folio->memcg_data;
415 
416 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
417 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
418 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
419 
420 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
421 }
422 
423 /*
424  * folio_memcg - Get the memory cgroup associated with a folio.
425  * @folio: Pointer to the folio.
426  *
427  * Returns a pointer to the memory cgroup associated with the folio,
428  * or NULL. This function assumes that the folio is known to have a
429  * proper memory cgroup pointer. It's not safe to call this function
430  * against some type of folios, e.g. slab folios or ex-slab folios.
431  *
432  * For a non-kmem folio any of the following ensures folio and memcg binding
433  * stability:
434  *
435  * - the folio lock
436  * - LRU isolation
437  * - lock_page_memcg()
438  * - exclusive reference
439  *
440  * For a kmem folio a caller should hold an rcu read lock to protect memcg
441  * associated with a kmem folio from being released.
442  */
443 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
444 {
445 	if (folio_memcg_kmem(folio))
446 		return obj_cgroup_memcg(__folio_objcg(folio));
447 	return __folio_memcg(folio);
448 }
449 
450 static inline struct mem_cgroup *page_memcg(struct page *page)
451 {
452 	return folio_memcg(page_folio(page));
453 }
454 
455 /**
456  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
457  * @folio: Pointer to the folio.
458  *
459  * This function assumes that the folio is known to have a
460  * proper memory cgroup pointer. It's not safe to call this function
461  * against some type of folios, e.g. slab folios or ex-slab folios.
462  *
463  * Return: A pointer to the memory cgroup associated with the folio,
464  * or NULL.
465  */
466 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
467 {
468 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
469 
470 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
471 	WARN_ON_ONCE(!rcu_read_lock_held());
472 
473 	if (memcg_data & MEMCG_DATA_KMEM) {
474 		struct obj_cgroup *objcg;
475 
476 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
477 		return obj_cgroup_memcg(objcg);
478 	}
479 
480 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
481 }
482 
483 /*
484  * page_memcg_check - get the memory cgroup associated with a page
485  * @page: a pointer to the page struct
486  *
487  * Returns a pointer to the memory cgroup associated with the page,
488  * or NULL. This function unlike page_memcg() can take any page
489  * as an argument. It has to be used in cases when it's not known if a page
490  * has an associated memory cgroup pointer or an object cgroups vector or
491  * an object cgroup.
492  *
493  * For a non-kmem page any of the following ensures page and memcg binding
494  * stability:
495  *
496  * - the page lock
497  * - LRU isolation
498  * - lock_page_memcg()
499  * - exclusive reference
500  *
501  * For a kmem page a caller should hold an rcu read lock to protect memcg
502  * associated with a kmem page from being released.
503  */
504 static inline struct mem_cgroup *page_memcg_check(struct page *page)
505 {
506 	/*
507 	 * Because page->memcg_data might be changed asynchronously
508 	 * for slab pages, READ_ONCE() should be used here.
509 	 */
510 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
511 
512 	if (memcg_data & MEMCG_DATA_OBJCGS)
513 		return NULL;
514 
515 	if (memcg_data & MEMCG_DATA_KMEM) {
516 		struct obj_cgroup *objcg;
517 
518 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
519 		return obj_cgroup_memcg(objcg);
520 	}
521 
522 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
523 }
524 
525 #ifdef CONFIG_MEMCG_KMEM
526 /*
527  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
528  * @folio: Pointer to the folio.
529  *
530  * Checks if the folio has MemcgKmem flag set. The caller must ensure
531  * that the folio has an associated memory cgroup. It's not safe to call
532  * this function against some types of folios, e.g. slab folios.
533  */
534 static inline bool folio_memcg_kmem(struct folio *folio)
535 {
536 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
537 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
538 	return folio->memcg_data & MEMCG_DATA_KMEM;
539 }
540 
541 
542 #else
543 static inline bool folio_memcg_kmem(struct folio *folio)
544 {
545 	return false;
546 }
547 
548 #endif
549 
550 static inline bool PageMemcgKmem(struct page *page)
551 {
552 	return folio_memcg_kmem(page_folio(page));
553 }
554 
555 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
556 {
557 	return (memcg == root_mem_cgroup);
558 }
559 
560 static inline bool mem_cgroup_disabled(void)
561 {
562 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
563 }
564 
565 static inline void mem_cgroup_protection(struct mem_cgroup *root,
566 					 struct mem_cgroup *memcg,
567 					 unsigned long *min,
568 					 unsigned long *low)
569 {
570 	*min = *low = 0;
571 
572 	if (mem_cgroup_disabled())
573 		return;
574 
575 	/*
576 	 * There is no reclaim protection applied to a targeted reclaim.
577 	 * We are special casing this specific case here because
578 	 * mem_cgroup_protected calculation is not robust enough to keep
579 	 * the protection invariant for calculated effective values for
580 	 * parallel reclaimers with different reclaim target. This is
581 	 * especially a problem for tail memcgs (as they have pages on LRU)
582 	 * which would want to have effective values 0 for targeted reclaim
583 	 * but a different value for external reclaim.
584 	 *
585 	 * Example
586 	 * Let's have global and A's reclaim in parallel:
587 	 *  |
588 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
589 	 *  |\
590 	 *  | C (low = 1G, usage = 2.5G)
591 	 *  B (low = 1G, usage = 0.5G)
592 	 *
593 	 * For the global reclaim
594 	 * A.elow = A.low
595 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
596 	 * C.elow = min(C.usage, C.low)
597 	 *
598 	 * With the effective values resetting we have A reclaim
599 	 * A.elow = 0
600 	 * B.elow = B.low
601 	 * C.elow = C.low
602 	 *
603 	 * If the global reclaim races with A's reclaim then
604 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
605 	 * is possible and reclaiming B would be violating the protection.
606 	 *
607 	 */
608 	if (root == memcg)
609 		return;
610 
611 	*min = READ_ONCE(memcg->memory.emin);
612 	*low = READ_ONCE(memcg->memory.elow);
613 }
614 
615 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
616 				     struct mem_cgroup *memcg);
617 
618 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
619 {
620 	/*
621 	 * The root memcg doesn't account charges, and doesn't support
622 	 * protection.
623 	 */
624 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
625 
626 }
627 
628 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
629 {
630 	if (!mem_cgroup_supports_protection(memcg))
631 		return false;
632 
633 	return READ_ONCE(memcg->memory.elow) >=
634 		page_counter_read(&memcg->memory);
635 }
636 
637 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
638 {
639 	if (!mem_cgroup_supports_protection(memcg))
640 		return false;
641 
642 	return READ_ONCE(memcg->memory.emin) >=
643 		page_counter_read(&memcg->memory);
644 }
645 
646 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
647 
648 /**
649  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
650  * @folio: Folio to charge.
651  * @mm: mm context of the allocating task.
652  * @gfp: Reclaim mode.
653  *
654  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
655  * pages according to @gfp if necessary.  If @mm is NULL, try to
656  * charge to the active memcg.
657  *
658  * Do not use this for folios allocated for swapin.
659  *
660  * Return: 0 on success. Otherwise, an error code is returned.
661  */
662 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
663 				    gfp_t gfp)
664 {
665 	if (mem_cgroup_disabled())
666 		return 0;
667 	return __mem_cgroup_charge(folio, mm, gfp);
668 }
669 
670 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
671 				  gfp_t gfp, swp_entry_t entry);
672 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
673 
674 void __mem_cgroup_uncharge(struct folio *folio);
675 
676 /**
677  * mem_cgroup_uncharge - Uncharge a folio.
678  * @folio: Folio to uncharge.
679  *
680  * Uncharge a folio previously charged with mem_cgroup_charge().
681  */
682 static inline void mem_cgroup_uncharge(struct folio *folio)
683 {
684 	if (mem_cgroup_disabled())
685 		return;
686 	__mem_cgroup_uncharge(folio);
687 }
688 
689 void __mem_cgroup_uncharge_list(struct list_head *page_list);
690 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
691 {
692 	if (mem_cgroup_disabled())
693 		return;
694 	__mem_cgroup_uncharge_list(page_list);
695 }
696 
697 void mem_cgroup_migrate(struct folio *old, struct folio *new);
698 
699 /**
700  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
701  * @memcg: memcg of the wanted lruvec
702  * @pgdat: pglist_data
703  *
704  * Returns the lru list vector holding pages for a given @memcg &
705  * @pgdat combination. This can be the node lruvec, if the memory
706  * controller is disabled.
707  */
708 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
709 					       struct pglist_data *pgdat)
710 {
711 	struct mem_cgroup_per_node *mz;
712 	struct lruvec *lruvec;
713 
714 	if (mem_cgroup_disabled()) {
715 		lruvec = &pgdat->__lruvec;
716 		goto out;
717 	}
718 
719 	if (!memcg)
720 		memcg = root_mem_cgroup;
721 
722 	mz = memcg->nodeinfo[pgdat->node_id];
723 	lruvec = &mz->lruvec;
724 out:
725 	/*
726 	 * Since a node can be onlined after the mem_cgroup was created,
727 	 * we have to be prepared to initialize lruvec->pgdat here;
728 	 * and if offlined then reonlined, we need to reinitialize it.
729 	 */
730 	if (unlikely(lruvec->pgdat != pgdat))
731 		lruvec->pgdat = pgdat;
732 	return lruvec;
733 }
734 
735 /**
736  * folio_lruvec - return lruvec for isolating/putting an LRU folio
737  * @folio: Pointer to the folio.
738  *
739  * This function relies on folio->mem_cgroup being stable.
740  */
741 static inline struct lruvec *folio_lruvec(struct folio *folio)
742 {
743 	struct mem_cgroup *memcg = folio_memcg(folio);
744 
745 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
746 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
747 }
748 
749 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
750 
751 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
752 
753 struct lruvec *folio_lruvec_lock(struct folio *folio);
754 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
755 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
756 						unsigned long *flags);
757 
758 #ifdef CONFIG_DEBUG_VM
759 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
760 #else
761 static inline
762 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
763 {
764 }
765 #endif
766 
767 static inline
768 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
769 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
770 }
771 
772 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
773 {
774 	return percpu_ref_tryget(&objcg->refcnt);
775 }
776 
777 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
778 {
779 	percpu_ref_get(&objcg->refcnt);
780 }
781 
782 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
783 				       unsigned long nr)
784 {
785 	percpu_ref_get_many(&objcg->refcnt, nr);
786 }
787 
788 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
789 {
790 	percpu_ref_put(&objcg->refcnt);
791 }
792 
793 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
794 {
795 	if (memcg)
796 		css_put(&memcg->css);
797 }
798 
799 #define mem_cgroup_from_counter(counter, member)	\
800 	container_of(counter, struct mem_cgroup, member)
801 
802 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
803 				   struct mem_cgroup *,
804 				   struct mem_cgroup_reclaim_cookie *);
805 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
806 int mem_cgroup_scan_tasks(struct mem_cgroup *,
807 			  int (*)(struct task_struct *, void *), void *);
808 
809 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
810 {
811 	if (mem_cgroup_disabled())
812 		return 0;
813 
814 	return memcg->id.id;
815 }
816 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
817 
818 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
819 {
820 	return mem_cgroup_from_css(seq_css(m));
821 }
822 
823 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
824 {
825 	struct mem_cgroup_per_node *mz;
826 
827 	if (mem_cgroup_disabled())
828 		return NULL;
829 
830 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
831 	return mz->memcg;
832 }
833 
834 /**
835  * parent_mem_cgroup - find the accounting parent of a memcg
836  * @memcg: memcg whose parent to find
837  *
838  * Returns the parent memcg, or NULL if this is the root or the memory
839  * controller is in legacy no-hierarchy mode.
840  */
841 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
842 {
843 	if (!memcg->memory.parent)
844 		return NULL;
845 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
846 }
847 
848 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
849 			      struct mem_cgroup *root)
850 {
851 	if (root == memcg)
852 		return true;
853 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
854 }
855 
856 static inline bool mm_match_cgroup(struct mm_struct *mm,
857 				   struct mem_cgroup *memcg)
858 {
859 	struct mem_cgroup *task_memcg;
860 	bool match = false;
861 
862 	rcu_read_lock();
863 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
864 	if (task_memcg)
865 		match = mem_cgroup_is_descendant(task_memcg, memcg);
866 	rcu_read_unlock();
867 	return match;
868 }
869 
870 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
871 ino_t page_cgroup_ino(struct page *page);
872 
873 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
874 {
875 	if (mem_cgroup_disabled())
876 		return true;
877 	return !!(memcg->css.flags & CSS_ONLINE);
878 }
879 
880 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
881 		int zid, int nr_pages);
882 
883 static inline
884 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
885 		enum lru_list lru, int zone_idx)
886 {
887 	struct mem_cgroup_per_node *mz;
888 
889 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
890 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
891 }
892 
893 void mem_cgroup_handle_over_high(void);
894 
895 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
896 
897 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
898 
899 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
900 				struct task_struct *p);
901 
902 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
903 
904 static inline void mem_cgroup_enter_user_fault(void)
905 {
906 	WARN_ON(current->in_user_fault);
907 	current->in_user_fault = 1;
908 }
909 
910 static inline void mem_cgroup_exit_user_fault(void)
911 {
912 	WARN_ON(!current->in_user_fault);
913 	current->in_user_fault = 0;
914 }
915 
916 static inline bool task_in_memcg_oom(struct task_struct *p)
917 {
918 	return p->memcg_in_oom;
919 }
920 
921 bool mem_cgroup_oom_synchronize(bool wait);
922 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
923 					    struct mem_cgroup *oom_domain);
924 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
925 
926 #ifdef CONFIG_MEMCG_SWAP
927 extern bool cgroup_memory_noswap;
928 #endif
929 
930 void folio_memcg_lock(struct folio *folio);
931 void folio_memcg_unlock(struct folio *folio);
932 void lock_page_memcg(struct page *page);
933 void unlock_page_memcg(struct page *page);
934 
935 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
936 
937 /* idx can be of type enum memcg_stat_item or node_stat_item */
938 static inline void mod_memcg_state(struct mem_cgroup *memcg,
939 				   int idx, int val)
940 {
941 	unsigned long flags;
942 
943 	local_irq_save(flags);
944 	__mod_memcg_state(memcg, idx, val);
945 	local_irq_restore(flags);
946 }
947 
948 static inline void mod_memcg_page_state(struct page *page,
949 					int idx, int val)
950 {
951 	struct mem_cgroup *memcg;
952 
953 	if (mem_cgroup_disabled())
954 		return;
955 
956 	rcu_read_lock();
957 	memcg = page_memcg(page);
958 	if (memcg)
959 		mod_memcg_state(memcg, idx, val);
960 	rcu_read_unlock();
961 }
962 
963 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
964 {
965 	return READ_ONCE(memcg->vmstats.state[idx]);
966 }
967 
968 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
969 					      enum node_stat_item idx)
970 {
971 	struct mem_cgroup_per_node *pn;
972 
973 	if (mem_cgroup_disabled())
974 		return node_page_state(lruvec_pgdat(lruvec), idx);
975 
976 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
977 	return READ_ONCE(pn->lruvec_stats.state[idx]);
978 }
979 
980 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
981 						    enum node_stat_item idx)
982 {
983 	struct mem_cgroup_per_node *pn;
984 	long x = 0;
985 	int cpu;
986 
987 	if (mem_cgroup_disabled())
988 		return node_page_state(lruvec_pgdat(lruvec), idx);
989 
990 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
991 	for_each_possible_cpu(cpu)
992 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
993 #ifdef CONFIG_SMP
994 	if (x < 0)
995 		x = 0;
996 #endif
997 	return x;
998 }
999 
1000 void mem_cgroup_flush_stats(void);
1001 
1002 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1003 			      int val);
1004 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1005 
1006 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1007 					 int val)
1008 {
1009 	unsigned long flags;
1010 
1011 	local_irq_save(flags);
1012 	__mod_lruvec_kmem_state(p, idx, val);
1013 	local_irq_restore(flags);
1014 }
1015 
1016 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1017 					  enum node_stat_item idx, int val)
1018 {
1019 	unsigned long flags;
1020 
1021 	local_irq_save(flags);
1022 	__mod_memcg_lruvec_state(lruvec, idx, val);
1023 	local_irq_restore(flags);
1024 }
1025 
1026 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1027 			  unsigned long count);
1028 
1029 static inline void count_memcg_events(struct mem_cgroup *memcg,
1030 				      enum vm_event_item idx,
1031 				      unsigned long count)
1032 {
1033 	unsigned long flags;
1034 
1035 	local_irq_save(flags);
1036 	__count_memcg_events(memcg, idx, count);
1037 	local_irq_restore(flags);
1038 }
1039 
1040 static inline void count_memcg_page_event(struct page *page,
1041 					  enum vm_event_item idx)
1042 {
1043 	struct mem_cgroup *memcg = page_memcg(page);
1044 
1045 	if (memcg)
1046 		count_memcg_events(memcg, idx, 1);
1047 }
1048 
1049 static inline void count_memcg_event_mm(struct mm_struct *mm,
1050 					enum vm_event_item idx)
1051 {
1052 	struct mem_cgroup *memcg;
1053 
1054 	if (mem_cgroup_disabled())
1055 		return;
1056 
1057 	rcu_read_lock();
1058 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1059 	if (likely(memcg))
1060 		count_memcg_events(memcg, idx, 1);
1061 	rcu_read_unlock();
1062 }
1063 
1064 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1065 				      enum memcg_memory_event event)
1066 {
1067 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1068 			  event == MEMCG_SWAP_FAIL;
1069 
1070 	atomic_long_inc(&memcg->memory_events_local[event]);
1071 	if (!swap_event)
1072 		cgroup_file_notify(&memcg->events_local_file);
1073 
1074 	do {
1075 		atomic_long_inc(&memcg->memory_events[event]);
1076 		if (swap_event)
1077 			cgroup_file_notify(&memcg->swap_events_file);
1078 		else
1079 			cgroup_file_notify(&memcg->events_file);
1080 
1081 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1082 			break;
1083 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1084 			break;
1085 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1086 		 !mem_cgroup_is_root(memcg));
1087 }
1088 
1089 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1090 					 enum memcg_memory_event event)
1091 {
1092 	struct mem_cgroup *memcg;
1093 
1094 	if (mem_cgroup_disabled())
1095 		return;
1096 
1097 	rcu_read_lock();
1098 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 	if (likely(memcg))
1100 		memcg_memory_event(memcg, event);
1101 	rcu_read_unlock();
1102 }
1103 
1104 void split_page_memcg(struct page *head, unsigned int nr);
1105 
1106 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1107 						gfp_t gfp_mask,
1108 						unsigned long *total_scanned);
1109 
1110 #else /* CONFIG_MEMCG */
1111 
1112 #define MEM_CGROUP_ID_SHIFT	0
1113 #define MEM_CGROUP_ID_MAX	0
1114 
1115 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1116 {
1117 	return NULL;
1118 }
1119 
1120 static inline struct mem_cgroup *page_memcg(struct page *page)
1121 {
1122 	return NULL;
1123 }
1124 
1125 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1126 {
1127 	WARN_ON_ONCE(!rcu_read_lock_held());
1128 	return NULL;
1129 }
1130 
1131 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1132 {
1133 	return NULL;
1134 }
1135 
1136 static inline bool folio_memcg_kmem(struct folio *folio)
1137 {
1138 	return false;
1139 }
1140 
1141 static inline bool PageMemcgKmem(struct page *page)
1142 {
1143 	return false;
1144 }
1145 
1146 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1147 {
1148 	return true;
1149 }
1150 
1151 static inline bool mem_cgroup_disabled(void)
1152 {
1153 	return true;
1154 }
1155 
1156 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1157 				      enum memcg_memory_event event)
1158 {
1159 }
1160 
1161 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1162 					 enum memcg_memory_event event)
1163 {
1164 }
1165 
1166 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1167 					 struct mem_cgroup *memcg,
1168 					 unsigned long *min,
1169 					 unsigned long *low)
1170 {
1171 	*min = *low = 0;
1172 }
1173 
1174 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1175 						   struct mem_cgroup *memcg)
1176 {
1177 }
1178 
1179 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1180 {
1181 	return false;
1182 }
1183 
1184 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1185 {
1186 	return false;
1187 }
1188 
1189 static inline int mem_cgroup_charge(struct folio *folio,
1190 		struct mm_struct *mm, gfp_t gfp)
1191 {
1192 	return 0;
1193 }
1194 
1195 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1196 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1197 {
1198 	return 0;
1199 }
1200 
1201 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1202 {
1203 }
1204 
1205 static inline void mem_cgroup_uncharge(struct folio *folio)
1206 {
1207 }
1208 
1209 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1210 {
1211 }
1212 
1213 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1214 {
1215 }
1216 
1217 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1218 					       struct pglist_data *pgdat)
1219 {
1220 	return &pgdat->__lruvec;
1221 }
1222 
1223 static inline struct lruvec *folio_lruvec(struct folio *folio)
1224 {
1225 	struct pglist_data *pgdat = folio_pgdat(folio);
1226 	return &pgdat->__lruvec;
1227 }
1228 
1229 static inline
1230 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1231 {
1232 }
1233 
1234 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1235 {
1236 	return NULL;
1237 }
1238 
1239 static inline bool mm_match_cgroup(struct mm_struct *mm,
1240 		struct mem_cgroup *memcg)
1241 {
1242 	return true;
1243 }
1244 
1245 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1246 {
1247 	return NULL;
1248 }
1249 
1250 static inline
1251 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1252 {
1253 	return NULL;
1254 }
1255 
1256 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1257 {
1258 }
1259 
1260 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1261 {
1262 	struct pglist_data *pgdat = folio_pgdat(folio);
1263 
1264 	spin_lock(&pgdat->__lruvec.lru_lock);
1265 	return &pgdat->__lruvec;
1266 }
1267 
1268 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1269 {
1270 	struct pglist_data *pgdat = folio_pgdat(folio);
1271 
1272 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1273 	return &pgdat->__lruvec;
1274 }
1275 
1276 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1277 		unsigned long *flagsp)
1278 {
1279 	struct pglist_data *pgdat = folio_pgdat(folio);
1280 
1281 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1282 	return &pgdat->__lruvec;
1283 }
1284 
1285 static inline struct mem_cgroup *
1286 mem_cgroup_iter(struct mem_cgroup *root,
1287 		struct mem_cgroup *prev,
1288 		struct mem_cgroup_reclaim_cookie *reclaim)
1289 {
1290 	return NULL;
1291 }
1292 
1293 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1294 					 struct mem_cgroup *prev)
1295 {
1296 }
1297 
1298 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1299 		int (*fn)(struct task_struct *, void *), void *arg)
1300 {
1301 	return 0;
1302 }
1303 
1304 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1305 {
1306 	return 0;
1307 }
1308 
1309 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1310 {
1311 	WARN_ON_ONCE(id);
1312 	/* XXX: This should always return root_mem_cgroup */
1313 	return NULL;
1314 }
1315 
1316 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1317 {
1318 	return NULL;
1319 }
1320 
1321 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1322 {
1323 	return NULL;
1324 }
1325 
1326 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1327 {
1328 	return true;
1329 }
1330 
1331 static inline
1332 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1333 		enum lru_list lru, int zone_idx)
1334 {
1335 	return 0;
1336 }
1337 
1338 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1339 {
1340 	return 0;
1341 }
1342 
1343 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1344 {
1345 	return 0;
1346 }
1347 
1348 static inline void
1349 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1350 {
1351 }
1352 
1353 static inline void
1354 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1355 {
1356 }
1357 
1358 static inline void lock_page_memcg(struct page *page)
1359 {
1360 }
1361 
1362 static inline void unlock_page_memcg(struct page *page)
1363 {
1364 }
1365 
1366 static inline void folio_memcg_lock(struct folio *folio)
1367 {
1368 }
1369 
1370 static inline void folio_memcg_unlock(struct folio *folio)
1371 {
1372 }
1373 
1374 static inline void mem_cgroup_handle_over_high(void)
1375 {
1376 }
1377 
1378 static inline void mem_cgroup_enter_user_fault(void)
1379 {
1380 }
1381 
1382 static inline void mem_cgroup_exit_user_fault(void)
1383 {
1384 }
1385 
1386 static inline bool task_in_memcg_oom(struct task_struct *p)
1387 {
1388 	return false;
1389 }
1390 
1391 static inline bool mem_cgroup_oom_synchronize(bool wait)
1392 {
1393 	return false;
1394 }
1395 
1396 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1397 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1398 {
1399 	return NULL;
1400 }
1401 
1402 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1403 {
1404 }
1405 
1406 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1407 				     int idx,
1408 				     int nr)
1409 {
1410 }
1411 
1412 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1413 				   int idx,
1414 				   int nr)
1415 {
1416 }
1417 
1418 static inline void mod_memcg_page_state(struct page *page,
1419 					int idx, int val)
1420 {
1421 }
1422 
1423 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1424 {
1425 	return 0;
1426 }
1427 
1428 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1429 					      enum node_stat_item idx)
1430 {
1431 	return node_page_state(lruvec_pgdat(lruvec), idx);
1432 }
1433 
1434 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1435 						    enum node_stat_item idx)
1436 {
1437 	return node_page_state(lruvec_pgdat(lruvec), idx);
1438 }
1439 
1440 static inline void mem_cgroup_flush_stats(void)
1441 {
1442 }
1443 
1444 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1445 					    enum node_stat_item idx, int val)
1446 {
1447 }
1448 
1449 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1450 					   int val)
1451 {
1452 	struct page *page = virt_to_head_page(p);
1453 
1454 	__mod_node_page_state(page_pgdat(page), idx, val);
1455 }
1456 
1457 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1458 					 int val)
1459 {
1460 	struct page *page = virt_to_head_page(p);
1461 
1462 	mod_node_page_state(page_pgdat(page), idx, val);
1463 }
1464 
1465 static inline void count_memcg_events(struct mem_cgroup *memcg,
1466 				      enum vm_event_item idx,
1467 				      unsigned long count)
1468 {
1469 }
1470 
1471 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1472 					enum vm_event_item idx,
1473 					unsigned long count)
1474 {
1475 }
1476 
1477 static inline void count_memcg_page_event(struct page *page,
1478 					  int idx)
1479 {
1480 }
1481 
1482 static inline
1483 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1484 {
1485 }
1486 
1487 static inline void split_page_memcg(struct page *head, unsigned int nr)
1488 {
1489 }
1490 
1491 static inline
1492 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1493 					    gfp_t gfp_mask,
1494 					    unsigned long *total_scanned)
1495 {
1496 	return 0;
1497 }
1498 #endif /* CONFIG_MEMCG */
1499 
1500 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1501 {
1502 	__mod_lruvec_kmem_state(p, idx, 1);
1503 }
1504 
1505 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1506 {
1507 	__mod_lruvec_kmem_state(p, idx, -1);
1508 }
1509 
1510 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1511 {
1512 	struct mem_cgroup *memcg;
1513 
1514 	memcg = lruvec_memcg(lruvec);
1515 	if (!memcg)
1516 		return NULL;
1517 	memcg = parent_mem_cgroup(memcg);
1518 	if (!memcg)
1519 		return NULL;
1520 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1521 }
1522 
1523 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1524 {
1525 	spin_unlock(&lruvec->lru_lock);
1526 }
1527 
1528 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1529 {
1530 	spin_unlock_irq(&lruvec->lru_lock);
1531 }
1532 
1533 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1534 		unsigned long flags)
1535 {
1536 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1537 }
1538 
1539 /* Test requires a stable page->memcg binding, see page_memcg() */
1540 static inline bool folio_matches_lruvec(struct folio *folio,
1541 		struct lruvec *lruvec)
1542 {
1543 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1544 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1545 }
1546 
1547 /* Don't lock again iff page's lruvec locked */
1548 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1549 		struct lruvec *locked_lruvec)
1550 {
1551 	if (locked_lruvec) {
1552 		if (folio_matches_lruvec(folio, locked_lruvec))
1553 			return locked_lruvec;
1554 
1555 		unlock_page_lruvec_irq(locked_lruvec);
1556 	}
1557 
1558 	return folio_lruvec_lock_irq(folio);
1559 }
1560 
1561 /* Don't lock again iff page's lruvec locked */
1562 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1563 		struct lruvec *locked_lruvec, unsigned long *flags)
1564 {
1565 	if (locked_lruvec) {
1566 		if (folio_matches_lruvec(folio, locked_lruvec))
1567 			return locked_lruvec;
1568 
1569 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1570 	}
1571 
1572 	return folio_lruvec_lock_irqsave(folio, flags);
1573 }
1574 
1575 #ifdef CONFIG_CGROUP_WRITEBACK
1576 
1577 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1578 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1579 			 unsigned long *pheadroom, unsigned long *pdirty,
1580 			 unsigned long *pwriteback);
1581 
1582 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1583 					     struct bdi_writeback *wb);
1584 
1585 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1586 						  struct bdi_writeback *wb)
1587 {
1588 	if (mem_cgroup_disabled())
1589 		return;
1590 
1591 	if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1592 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1593 }
1594 
1595 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1596 
1597 #else	/* CONFIG_CGROUP_WRITEBACK */
1598 
1599 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1600 {
1601 	return NULL;
1602 }
1603 
1604 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1605 				       unsigned long *pfilepages,
1606 				       unsigned long *pheadroom,
1607 				       unsigned long *pdirty,
1608 				       unsigned long *pwriteback)
1609 {
1610 }
1611 
1612 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1613 						  struct bdi_writeback *wb)
1614 {
1615 }
1616 
1617 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1618 {
1619 }
1620 
1621 #endif	/* CONFIG_CGROUP_WRITEBACK */
1622 
1623 struct sock;
1624 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1625 			     gfp_t gfp_mask);
1626 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1627 #ifdef CONFIG_MEMCG
1628 extern struct static_key_false memcg_sockets_enabled_key;
1629 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1630 void mem_cgroup_sk_alloc(struct sock *sk);
1631 void mem_cgroup_sk_free(struct sock *sk);
1632 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1633 {
1634 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1635 		return true;
1636 	do {
1637 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1638 			return true;
1639 	} while ((memcg = parent_mem_cgroup(memcg)));
1640 	return false;
1641 }
1642 
1643 int alloc_shrinker_info(struct mem_cgroup *memcg);
1644 void free_shrinker_info(struct mem_cgroup *memcg);
1645 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1646 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1647 #else
1648 #define mem_cgroup_sockets_enabled 0
1649 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1650 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1651 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1652 {
1653 	return false;
1654 }
1655 
1656 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1657 				    int nid, int shrinker_id)
1658 {
1659 }
1660 #endif
1661 
1662 #ifdef CONFIG_MEMCG_KMEM
1663 bool mem_cgroup_kmem_disabled(void);
1664 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1665 void __memcg_kmem_uncharge_page(struct page *page, int order);
1666 
1667 struct obj_cgroup *get_obj_cgroup_from_current(void);
1668 
1669 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1670 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1671 
1672 extern struct static_key_false memcg_kmem_enabled_key;
1673 
1674 extern int memcg_nr_cache_ids;
1675 void memcg_get_cache_ids(void);
1676 void memcg_put_cache_ids(void);
1677 
1678 /*
1679  * Helper macro to loop through all memcg-specific caches. Callers must still
1680  * check if the cache is valid (it is either valid or NULL).
1681  * the slab_mutex must be held when looping through those caches
1682  */
1683 #define for_each_memcg_cache_index(_idx)	\
1684 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1685 
1686 static inline bool memcg_kmem_enabled(void)
1687 {
1688 	return static_branch_likely(&memcg_kmem_enabled_key);
1689 }
1690 
1691 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1692 					 int order)
1693 {
1694 	if (memcg_kmem_enabled())
1695 		return __memcg_kmem_charge_page(page, gfp, order);
1696 	return 0;
1697 }
1698 
1699 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1700 {
1701 	if (memcg_kmem_enabled())
1702 		__memcg_kmem_uncharge_page(page, order);
1703 }
1704 
1705 /*
1706  * A helper for accessing memcg's kmem_id, used for getting
1707  * corresponding LRU lists.
1708  */
1709 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1710 {
1711 	return memcg ? memcg->kmemcg_id : -1;
1712 }
1713 
1714 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1715 
1716 #else
1717 static inline bool mem_cgroup_kmem_disabled(void)
1718 {
1719 	return true;
1720 }
1721 
1722 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1723 					 int order)
1724 {
1725 	return 0;
1726 }
1727 
1728 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1729 {
1730 }
1731 
1732 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1733 					   int order)
1734 {
1735 	return 0;
1736 }
1737 
1738 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1739 {
1740 }
1741 
1742 #define for_each_memcg_cache_index(_idx)	\
1743 	for (; NULL; )
1744 
1745 static inline bool memcg_kmem_enabled(void)
1746 {
1747 	return false;
1748 }
1749 
1750 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1751 {
1752 	return -1;
1753 }
1754 
1755 static inline void memcg_get_cache_ids(void)
1756 {
1757 }
1758 
1759 static inline void memcg_put_cache_ids(void)
1760 {
1761 }
1762 
1763 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1764 {
1765        return NULL;
1766 }
1767 
1768 #endif /* CONFIG_MEMCG_KMEM */
1769 
1770 #endif /* _LINUX_MEMCONTROL_H */
1771