xref: /openbmc/linux/include/linux/memcontrol.h (revision 3f58ff6b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 #define MEM_CGROUP_ID_MAX	USHRT_MAX
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85 
86 struct mem_cgroup_reclaim_iter {
87 	struct mem_cgroup *position;
88 	/* scan generation, increased every round-trip */
89 	unsigned int generation;
90 };
91 
92 /*
93  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94  * shrinkers, which have elements charged to this memcg.
95  */
96 struct shrinker_info {
97 	struct rcu_head rcu;
98 	atomic_long_t *nr_deferred;
99 	unsigned long *map;
100 };
101 
102 struct lruvec_stats_percpu {
103 	/* Local (CPU and cgroup) state */
104 	long state[NR_VM_NODE_STAT_ITEMS];
105 
106 	/* Delta calculation for lockless upward propagation */
107 	long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109 
110 struct lruvec_stats {
111 	/* Aggregated (CPU and subtree) state */
112 	long state[NR_VM_NODE_STAT_ITEMS];
113 
114 	/* Pending child counts during tree propagation */
115 	long state_pending[NR_VM_NODE_STAT_ITEMS];
116 };
117 
118 /*
119  * per-node information in memory controller.
120  */
121 struct mem_cgroup_per_node {
122 	struct lruvec		lruvec;
123 
124 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
125 	struct lruvec_stats			lruvec_stats;
126 
127 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 
129 	struct mem_cgroup_reclaim_iter	iter;
130 
131 	struct shrinker_info __rcu	*shrinker_info;
132 
133 	struct rb_node		tree_node;	/* RB tree node */
134 	unsigned long		usage_in_excess;/* Set to the value by which */
135 						/* the soft limit is exceeded*/
136 	bool			on_tree;
137 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
138 						/* use container_of	   */
139 };
140 
141 struct mem_cgroup_threshold {
142 	struct eventfd_ctx *eventfd;
143 	unsigned long threshold;
144 };
145 
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 	/* An array index points to threshold just below or equal to usage. */
149 	int current_threshold;
150 	/* Size of entries[] */
151 	unsigned int size;
152 	/* Array of thresholds */
153 	struct mem_cgroup_threshold entries[];
154 };
155 
156 struct mem_cgroup_thresholds {
157 	/* Primary thresholds array */
158 	struct mem_cgroup_threshold_ary *primary;
159 	/*
160 	 * Spare threshold array.
161 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 	 * It must be able to store at least primary->size - 1 entries.
163 	 */
164 	struct mem_cgroup_threshold_ary *spare;
165 };
166 
167 /*
168  * Remember four most recent foreign writebacks with dirty pages in this
169  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
170  * one in a given round, we're likely to catch it later if it keeps
171  * foreign-dirtying, so a fairly low count should be enough.
172  *
173  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174  */
175 #define MEMCG_CGWB_FRN_CNT	4
176 
177 struct memcg_cgwb_frn {
178 	u64 bdi_id;			/* bdi->id of the foreign inode */
179 	int memcg_id;			/* memcg->css.id of foreign inode */
180 	u64 at;				/* jiffies_64 at the time of dirtying */
181 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
182 };
183 
184 /*
185  * Bucket for arbitrarily byte-sized objects charged to a memory
186  * cgroup. The bucket can be reparented in one piece when the cgroup
187  * is destroyed, without having to round up the individual references
188  * of all live memory objects in the wild.
189  */
190 struct obj_cgroup {
191 	struct percpu_ref refcnt;
192 	struct mem_cgroup *memcg;
193 	atomic_t nr_charged_bytes;
194 	union {
195 		struct list_head list; /* protected by objcg_lock */
196 		struct rcu_head rcu;
197 	};
198 };
199 
200 /*
201  * The memory controller data structure. The memory controller controls both
202  * page cache and RSS per cgroup. We would eventually like to provide
203  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204  * to help the administrator determine what knobs to tune.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 
209 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
210 	struct mem_cgroup_id id;
211 
212 	/* Accounted resources */
213 	struct page_counter memory;		/* Both v1 & v2 */
214 
215 	union {
216 		struct page_counter swap;	/* v2 only */
217 		struct page_counter memsw;	/* v1 only */
218 	};
219 
220 	/* Legacy consumer-oriented counters */
221 	struct page_counter kmem;		/* v1 only */
222 	struct page_counter tcpmem;		/* v1 only */
223 
224 	/* Range enforcement for interrupt charges */
225 	struct work_struct high_work;
226 
227 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 	unsigned long zswap_max;
229 #endif
230 
231 	unsigned long soft_limit;
232 
233 	/* vmpressure notifications */
234 	struct vmpressure vmpressure;
235 
236 	/*
237 	 * Should the OOM killer kill all belonging tasks, had it kill one?
238 	 */
239 	bool oom_group;
240 
241 	/* protected by memcg_oom_lock */
242 	bool		oom_lock;
243 	int		under_oom;
244 
245 	int	swappiness;
246 	/* OOM-Killer disable */
247 	int		oom_kill_disable;
248 
249 	/* memory.events and memory.events.local */
250 	struct cgroup_file events_file;
251 	struct cgroup_file events_local_file;
252 
253 	/* handle for "memory.swap.events" */
254 	struct cgroup_file swap_events_file;
255 
256 	/* protect arrays of thresholds */
257 	struct mutex thresholds_lock;
258 
259 	/* thresholds for memory usage. RCU-protected */
260 	struct mem_cgroup_thresholds thresholds;
261 
262 	/* thresholds for mem+swap usage. RCU-protected */
263 	struct mem_cgroup_thresholds memsw_thresholds;
264 
265 	/* For oom notifier event fd */
266 	struct list_head oom_notify;
267 
268 	/*
269 	 * Should we move charges of a task when a task is moved into this
270 	 * mem_cgroup ? And what type of charges should we move ?
271 	 */
272 	unsigned long move_charge_at_immigrate;
273 	/* taken only while moving_account > 0 */
274 	spinlock_t		move_lock;
275 	unsigned long		move_lock_flags;
276 
277 	CACHELINE_PADDING(_pad1_);
278 
279 	/* memory.stat */
280 	struct memcg_vmstats	*vmstats;
281 
282 	/* memory.events */
283 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
284 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285 
286 	unsigned long		socket_pressure;
287 
288 	/* Legacy tcp memory accounting */
289 	bool			tcpmem_active;
290 	int			tcpmem_pressure;
291 
292 #ifdef CONFIG_MEMCG_KMEM
293 	int kmemcg_id;
294 	struct obj_cgroup __rcu *objcg;
295 	/* list of inherited objcgs, protected by objcg_lock */
296 	struct list_head objcg_list;
297 #endif
298 
299 	CACHELINE_PADDING(_pad2_);
300 
301 	/*
302 	 * set > 0 if pages under this cgroup are moving to other cgroup.
303 	 */
304 	atomic_t		moving_account;
305 	struct task_struct	*move_lock_task;
306 
307 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308 
309 #ifdef CONFIG_CGROUP_WRITEBACK
310 	struct list_head cgwb_list;
311 	struct wb_domain cgwb_domain;
312 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313 #endif
314 
315 	/* List of events which userspace want to receive */
316 	struct list_head event_list;
317 	spinlock_t event_list_lock;
318 
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 	struct deferred_split deferred_split_queue;
321 #endif
322 
323 #ifdef CONFIG_LRU_GEN
324 	/* per-memcg mm_struct list */
325 	struct lru_gen_mm_list mm_list;
326 #endif
327 
328 	struct mem_cgroup_per_node *nodeinfo[];
329 };
330 
331 /*
332  * size of first charge trial.
333  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334  * workload.
335  */
336 #define MEMCG_CHARGE_BATCH 64U
337 
338 extern struct mem_cgroup *root_mem_cgroup;
339 
340 enum page_memcg_data_flags {
341 	/* page->memcg_data is a pointer to an objcgs vector */
342 	MEMCG_DATA_OBJCGS = (1UL << 0),
343 	/* page has been accounted as a non-slab kernel page */
344 	MEMCG_DATA_KMEM = (1UL << 1),
345 	/* the next bit after the last actual flag */
346 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
347 };
348 
349 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released:
358  * e.g. acquire the rcu_read_lock or css_set_lock.
359  */
360 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361 {
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - lock_page_memcg()
422  * - exclusive reference
423  * - mem_cgroup_trylock_pages()
424  *
425  * For a kmem folio a caller should hold an rcu read lock to protect memcg
426  * associated with a kmem folio from being released.
427  */
428 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429 {
430 	if (folio_memcg_kmem(folio))
431 		return obj_cgroup_memcg(__folio_objcg(folio));
432 	return __folio_memcg(folio);
433 }
434 
435 static inline struct mem_cgroup *page_memcg(struct page *page)
436 {
437 	return folio_memcg(page_folio(page));
438 }
439 
440 /**
441  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442  * @folio: Pointer to the folio.
443  *
444  * This function assumes that the folio is known to have a
445  * proper memory cgroup pointer. It's not safe to call this function
446  * against some type of folios, e.g. slab folios or ex-slab folios.
447  *
448  * Return: A pointer to the memory cgroup associated with the folio,
449  * or NULL.
450  */
451 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452 {
453 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454 
455 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 	WARN_ON_ONCE(!rcu_read_lock_held());
457 
458 	if (memcg_data & MEMCG_DATA_KMEM) {
459 		struct obj_cgroup *objcg;
460 
461 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 		return obj_cgroup_memcg(objcg);
463 	}
464 
465 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467 
468 /*
469  * page_memcg_check - get the memory cgroup associated with a page
470  * @page: a pointer to the page struct
471  *
472  * Returns a pointer to the memory cgroup associated with the page,
473  * or NULL. This function unlike page_memcg() can take any page
474  * as an argument. It has to be used in cases when it's not known if a page
475  * has an associated memory cgroup pointer or an object cgroups vector or
476  * an object cgroup.
477  *
478  * For a non-kmem page any of the following ensures page and memcg binding
479  * stability:
480  *
481  * - the page lock
482  * - LRU isolation
483  * - lock_page_memcg()
484  * - exclusive reference
485  * - mem_cgroup_trylock_pages()
486  *
487  * For a kmem page a caller should hold an rcu read lock to protect memcg
488  * associated with a kmem page from being released.
489  */
490 static inline struct mem_cgroup *page_memcg_check(struct page *page)
491 {
492 	/*
493 	 * Because page->memcg_data might be changed asynchronously
494 	 * for slab pages, READ_ONCE() should be used here.
495 	 */
496 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
497 
498 	if (memcg_data & MEMCG_DATA_OBJCGS)
499 		return NULL;
500 
501 	if (memcg_data & MEMCG_DATA_KMEM) {
502 		struct obj_cgroup *objcg;
503 
504 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 		return obj_cgroup_memcg(objcg);
506 	}
507 
508 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 }
510 
511 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
512 {
513 	struct mem_cgroup *memcg;
514 
515 	rcu_read_lock();
516 retry:
517 	memcg = obj_cgroup_memcg(objcg);
518 	if (unlikely(!css_tryget(&memcg->css)))
519 		goto retry;
520 	rcu_read_unlock();
521 
522 	return memcg;
523 }
524 
525 #ifdef CONFIG_MEMCG_KMEM
526 /*
527  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
528  * @folio: Pointer to the folio.
529  *
530  * Checks if the folio has MemcgKmem flag set. The caller must ensure
531  * that the folio has an associated memory cgroup. It's not safe to call
532  * this function against some types of folios, e.g. slab folios.
533  */
534 static inline bool folio_memcg_kmem(struct folio *folio)
535 {
536 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
537 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
538 	return folio->memcg_data & MEMCG_DATA_KMEM;
539 }
540 
541 
542 #else
543 static inline bool folio_memcg_kmem(struct folio *folio)
544 {
545 	return false;
546 }
547 
548 #endif
549 
550 static inline bool PageMemcgKmem(struct page *page)
551 {
552 	return folio_memcg_kmem(page_folio(page));
553 }
554 
555 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
556 {
557 	return (memcg == root_mem_cgroup);
558 }
559 
560 static inline bool mem_cgroup_disabled(void)
561 {
562 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
563 }
564 
565 static inline void mem_cgroup_protection(struct mem_cgroup *root,
566 					 struct mem_cgroup *memcg,
567 					 unsigned long *min,
568 					 unsigned long *low)
569 {
570 	*min = *low = 0;
571 
572 	if (mem_cgroup_disabled())
573 		return;
574 
575 	/*
576 	 * There is no reclaim protection applied to a targeted reclaim.
577 	 * We are special casing this specific case here because
578 	 * mem_cgroup_protected calculation is not robust enough to keep
579 	 * the protection invariant for calculated effective values for
580 	 * parallel reclaimers with different reclaim target. This is
581 	 * especially a problem for tail memcgs (as they have pages on LRU)
582 	 * which would want to have effective values 0 for targeted reclaim
583 	 * but a different value for external reclaim.
584 	 *
585 	 * Example
586 	 * Let's have global and A's reclaim in parallel:
587 	 *  |
588 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
589 	 *  |\
590 	 *  | C (low = 1G, usage = 2.5G)
591 	 *  B (low = 1G, usage = 0.5G)
592 	 *
593 	 * For the global reclaim
594 	 * A.elow = A.low
595 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
596 	 * C.elow = min(C.usage, C.low)
597 	 *
598 	 * With the effective values resetting we have A reclaim
599 	 * A.elow = 0
600 	 * B.elow = B.low
601 	 * C.elow = C.low
602 	 *
603 	 * If the global reclaim races with A's reclaim then
604 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
605 	 * is possible and reclaiming B would be violating the protection.
606 	 *
607 	 */
608 	if (root == memcg)
609 		return;
610 
611 	*min = READ_ONCE(memcg->memory.emin);
612 	*low = READ_ONCE(memcg->memory.elow);
613 }
614 
615 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
616 				     struct mem_cgroup *memcg);
617 
618 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
619 					  struct mem_cgroup *memcg)
620 {
621 	/*
622 	 * The root memcg doesn't account charges, and doesn't support
623 	 * protection. The target memcg's protection is ignored, see
624 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
625 	 */
626 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
627 		memcg == target;
628 }
629 
630 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
631 					struct mem_cgroup *memcg)
632 {
633 	if (mem_cgroup_unprotected(target, memcg))
634 		return false;
635 
636 	return READ_ONCE(memcg->memory.elow) >=
637 		page_counter_read(&memcg->memory);
638 }
639 
640 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
641 					struct mem_cgroup *memcg)
642 {
643 	if (mem_cgroup_unprotected(target, memcg))
644 		return false;
645 
646 	return READ_ONCE(memcg->memory.emin) >=
647 		page_counter_read(&memcg->memory);
648 }
649 
650 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
651 
652 /**
653  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
654  * @folio: Folio to charge.
655  * @mm: mm context of the allocating task.
656  * @gfp: Reclaim mode.
657  *
658  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
659  * pages according to @gfp if necessary.  If @mm is NULL, try to
660  * charge to the active memcg.
661  *
662  * Do not use this for folios allocated for swapin.
663  *
664  * Return: 0 on success. Otherwise, an error code is returned.
665  */
666 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
667 				    gfp_t gfp)
668 {
669 	if (mem_cgroup_disabled())
670 		return 0;
671 	return __mem_cgroup_charge(folio, mm, gfp);
672 }
673 
674 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
675 				  gfp_t gfp, swp_entry_t entry);
676 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
677 
678 void __mem_cgroup_uncharge(struct folio *folio);
679 
680 /**
681  * mem_cgroup_uncharge - Uncharge a folio.
682  * @folio: Folio to uncharge.
683  *
684  * Uncharge a folio previously charged with mem_cgroup_charge().
685  */
686 static inline void mem_cgroup_uncharge(struct folio *folio)
687 {
688 	if (mem_cgroup_disabled())
689 		return;
690 	__mem_cgroup_uncharge(folio);
691 }
692 
693 void __mem_cgroup_uncharge_list(struct list_head *page_list);
694 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
695 {
696 	if (mem_cgroup_disabled())
697 		return;
698 	__mem_cgroup_uncharge_list(page_list);
699 }
700 
701 void mem_cgroup_migrate(struct folio *old, struct folio *new);
702 
703 /**
704  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
705  * @memcg: memcg of the wanted lruvec
706  * @pgdat: pglist_data
707  *
708  * Returns the lru list vector holding pages for a given @memcg &
709  * @pgdat combination. This can be the node lruvec, if the memory
710  * controller is disabled.
711  */
712 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
713 					       struct pglist_data *pgdat)
714 {
715 	struct mem_cgroup_per_node *mz;
716 	struct lruvec *lruvec;
717 
718 	if (mem_cgroup_disabled()) {
719 		lruvec = &pgdat->__lruvec;
720 		goto out;
721 	}
722 
723 	if (!memcg)
724 		memcg = root_mem_cgroup;
725 
726 	mz = memcg->nodeinfo[pgdat->node_id];
727 	lruvec = &mz->lruvec;
728 out:
729 	/*
730 	 * Since a node can be onlined after the mem_cgroup was created,
731 	 * we have to be prepared to initialize lruvec->pgdat here;
732 	 * and if offlined then reonlined, we need to reinitialize it.
733 	 */
734 	if (unlikely(lruvec->pgdat != pgdat))
735 		lruvec->pgdat = pgdat;
736 	return lruvec;
737 }
738 
739 /**
740  * folio_lruvec - return lruvec for isolating/putting an LRU folio
741  * @folio: Pointer to the folio.
742  *
743  * This function relies on folio->mem_cgroup being stable.
744  */
745 static inline struct lruvec *folio_lruvec(struct folio *folio)
746 {
747 	struct mem_cgroup *memcg = folio_memcg(folio);
748 
749 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
750 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
751 }
752 
753 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
754 
755 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
756 
757 struct lruvec *folio_lruvec_lock(struct folio *folio);
758 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
759 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
760 						unsigned long *flags);
761 
762 #ifdef CONFIG_DEBUG_VM
763 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
764 #else
765 static inline
766 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
767 {
768 }
769 #endif
770 
771 static inline
772 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
773 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
774 }
775 
776 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
777 {
778 	return percpu_ref_tryget(&objcg->refcnt);
779 }
780 
781 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
782 {
783 	percpu_ref_get(&objcg->refcnt);
784 }
785 
786 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
787 				       unsigned long nr)
788 {
789 	percpu_ref_get_many(&objcg->refcnt, nr);
790 }
791 
792 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
793 {
794 	percpu_ref_put(&objcg->refcnt);
795 }
796 
797 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
798 {
799 	if (memcg)
800 		css_put(&memcg->css);
801 }
802 
803 #define mem_cgroup_from_counter(counter, member)	\
804 	container_of(counter, struct mem_cgroup, member)
805 
806 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
807 				   struct mem_cgroup *,
808 				   struct mem_cgroup_reclaim_cookie *);
809 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
810 int mem_cgroup_scan_tasks(struct mem_cgroup *,
811 			  int (*)(struct task_struct *, void *), void *);
812 
813 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
814 {
815 	if (mem_cgroup_disabled())
816 		return 0;
817 
818 	return memcg->id.id;
819 }
820 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
821 
822 #ifdef CONFIG_SHRINKER_DEBUG
823 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
824 {
825 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
826 }
827 
828 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
829 #endif
830 
831 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
832 {
833 	return mem_cgroup_from_css(seq_css(m));
834 }
835 
836 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
837 {
838 	struct mem_cgroup_per_node *mz;
839 
840 	if (mem_cgroup_disabled())
841 		return NULL;
842 
843 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
844 	return mz->memcg;
845 }
846 
847 /**
848  * parent_mem_cgroup - find the accounting parent of a memcg
849  * @memcg: memcg whose parent to find
850  *
851  * Returns the parent memcg, or NULL if this is the root or the memory
852  * controller is in legacy no-hierarchy mode.
853  */
854 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
855 {
856 	return mem_cgroup_from_css(memcg->css.parent);
857 }
858 
859 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
860 			      struct mem_cgroup *root)
861 {
862 	if (root == memcg)
863 		return true;
864 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
865 }
866 
867 static inline bool mm_match_cgroup(struct mm_struct *mm,
868 				   struct mem_cgroup *memcg)
869 {
870 	struct mem_cgroup *task_memcg;
871 	bool match = false;
872 
873 	rcu_read_lock();
874 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
875 	if (task_memcg)
876 		match = mem_cgroup_is_descendant(task_memcg, memcg);
877 	rcu_read_unlock();
878 	return match;
879 }
880 
881 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
882 ino_t page_cgroup_ino(struct page *page);
883 
884 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
885 {
886 	if (mem_cgroup_disabled())
887 		return true;
888 	return !!(memcg->css.flags & CSS_ONLINE);
889 }
890 
891 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
892 		int zid, int nr_pages);
893 
894 static inline
895 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
896 		enum lru_list lru, int zone_idx)
897 {
898 	struct mem_cgroup_per_node *mz;
899 
900 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
901 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
902 }
903 
904 void mem_cgroup_handle_over_high(void);
905 
906 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
907 
908 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
909 
910 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
911 				struct task_struct *p);
912 
913 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
914 
915 static inline void mem_cgroup_enter_user_fault(void)
916 {
917 	WARN_ON(current->in_user_fault);
918 	current->in_user_fault = 1;
919 }
920 
921 static inline void mem_cgroup_exit_user_fault(void)
922 {
923 	WARN_ON(!current->in_user_fault);
924 	current->in_user_fault = 0;
925 }
926 
927 static inline bool task_in_memcg_oom(struct task_struct *p)
928 {
929 	return p->memcg_in_oom;
930 }
931 
932 bool mem_cgroup_oom_synchronize(bool wait);
933 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
934 					    struct mem_cgroup *oom_domain);
935 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
936 
937 void folio_memcg_lock(struct folio *folio);
938 void folio_memcg_unlock(struct folio *folio);
939 void lock_page_memcg(struct page *page);
940 void unlock_page_memcg(struct page *page);
941 
942 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
943 
944 /* try to stablize folio_memcg() for all the pages in a memcg */
945 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
946 {
947 	rcu_read_lock();
948 
949 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
950 		return true;
951 
952 	rcu_read_unlock();
953 	return false;
954 }
955 
956 static inline void mem_cgroup_unlock_pages(void)
957 {
958 	rcu_read_unlock();
959 }
960 
961 /* idx can be of type enum memcg_stat_item or node_stat_item */
962 static inline void mod_memcg_state(struct mem_cgroup *memcg,
963 				   int idx, int val)
964 {
965 	unsigned long flags;
966 
967 	local_irq_save(flags);
968 	__mod_memcg_state(memcg, idx, val);
969 	local_irq_restore(flags);
970 }
971 
972 static inline void mod_memcg_page_state(struct page *page,
973 					int idx, int val)
974 {
975 	struct mem_cgroup *memcg;
976 
977 	if (mem_cgroup_disabled())
978 		return;
979 
980 	rcu_read_lock();
981 	memcg = page_memcg(page);
982 	if (memcg)
983 		mod_memcg_state(memcg, idx, val);
984 	rcu_read_unlock();
985 }
986 
987 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
988 
989 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
990 					      enum node_stat_item idx)
991 {
992 	struct mem_cgroup_per_node *pn;
993 	long x;
994 
995 	if (mem_cgroup_disabled())
996 		return node_page_state(lruvec_pgdat(lruvec), idx);
997 
998 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
999 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1000 #ifdef CONFIG_SMP
1001 	if (x < 0)
1002 		x = 0;
1003 #endif
1004 	return x;
1005 }
1006 
1007 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1008 						    enum node_stat_item idx)
1009 {
1010 	struct mem_cgroup_per_node *pn;
1011 	long x = 0;
1012 	int cpu;
1013 
1014 	if (mem_cgroup_disabled())
1015 		return node_page_state(lruvec_pgdat(lruvec), idx);
1016 
1017 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1018 	for_each_possible_cpu(cpu)
1019 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1020 #ifdef CONFIG_SMP
1021 	if (x < 0)
1022 		x = 0;
1023 #endif
1024 	return x;
1025 }
1026 
1027 void mem_cgroup_flush_stats(void);
1028 void mem_cgroup_flush_stats_delayed(void);
1029 
1030 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1031 			      int val);
1032 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1033 
1034 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1035 					 int val)
1036 {
1037 	unsigned long flags;
1038 
1039 	local_irq_save(flags);
1040 	__mod_lruvec_kmem_state(p, idx, val);
1041 	local_irq_restore(flags);
1042 }
1043 
1044 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1045 					  enum node_stat_item idx, int val)
1046 {
1047 	unsigned long flags;
1048 
1049 	local_irq_save(flags);
1050 	__mod_memcg_lruvec_state(lruvec, idx, val);
1051 	local_irq_restore(flags);
1052 }
1053 
1054 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1055 			  unsigned long count);
1056 
1057 static inline void count_memcg_events(struct mem_cgroup *memcg,
1058 				      enum vm_event_item idx,
1059 				      unsigned long count)
1060 {
1061 	unsigned long flags;
1062 
1063 	local_irq_save(flags);
1064 	__count_memcg_events(memcg, idx, count);
1065 	local_irq_restore(flags);
1066 }
1067 
1068 static inline void count_memcg_page_event(struct page *page,
1069 					  enum vm_event_item idx)
1070 {
1071 	struct mem_cgroup *memcg = page_memcg(page);
1072 
1073 	if (memcg)
1074 		count_memcg_events(memcg, idx, 1);
1075 }
1076 
1077 static inline void count_memcg_folio_events(struct folio *folio,
1078 		enum vm_event_item idx, unsigned long nr)
1079 {
1080 	struct mem_cgroup *memcg = folio_memcg(folio);
1081 
1082 	if (memcg)
1083 		count_memcg_events(memcg, idx, nr);
1084 }
1085 
1086 static inline void count_memcg_event_mm(struct mm_struct *mm,
1087 					enum vm_event_item idx)
1088 {
1089 	struct mem_cgroup *memcg;
1090 
1091 	if (mem_cgroup_disabled())
1092 		return;
1093 
1094 	rcu_read_lock();
1095 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1096 	if (likely(memcg))
1097 		count_memcg_events(memcg, idx, 1);
1098 	rcu_read_unlock();
1099 }
1100 
1101 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1102 				      enum memcg_memory_event event)
1103 {
1104 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1105 			  event == MEMCG_SWAP_FAIL;
1106 
1107 	atomic_long_inc(&memcg->memory_events_local[event]);
1108 	if (!swap_event)
1109 		cgroup_file_notify(&memcg->events_local_file);
1110 
1111 	do {
1112 		atomic_long_inc(&memcg->memory_events[event]);
1113 		if (swap_event)
1114 			cgroup_file_notify(&memcg->swap_events_file);
1115 		else
1116 			cgroup_file_notify(&memcg->events_file);
1117 
1118 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1119 			break;
1120 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1121 			break;
1122 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1123 		 !mem_cgroup_is_root(memcg));
1124 }
1125 
1126 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1127 					 enum memcg_memory_event event)
1128 {
1129 	struct mem_cgroup *memcg;
1130 
1131 	if (mem_cgroup_disabled())
1132 		return;
1133 
1134 	rcu_read_lock();
1135 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1136 	if (likely(memcg))
1137 		memcg_memory_event(memcg, event);
1138 	rcu_read_unlock();
1139 }
1140 
1141 void split_page_memcg(struct page *head, unsigned int nr);
1142 
1143 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1144 						gfp_t gfp_mask,
1145 						unsigned long *total_scanned);
1146 
1147 #else /* CONFIG_MEMCG */
1148 
1149 #define MEM_CGROUP_ID_SHIFT	0
1150 #define MEM_CGROUP_ID_MAX	0
1151 
1152 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1153 {
1154 	return NULL;
1155 }
1156 
1157 static inline struct mem_cgroup *page_memcg(struct page *page)
1158 {
1159 	return NULL;
1160 }
1161 
1162 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1163 {
1164 	WARN_ON_ONCE(!rcu_read_lock_held());
1165 	return NULL;
1166 }
1167 
1168 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1169 {
1170 	return NULL;
1171 }
1172 
1173 static inline bool folio_memcg_kmem(struct folio *folio)
1174 {
1175 	return false;
1176 }
1177 
1178 static inline bool PageMemcgKmem(struct page *page)
1179 {
1180 	return false;
1181 }
1182 
1183 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1184 {
1185 	return true;
1186 }
1187 
1188 static inline bool mem_cgroup_disabled(void)
1189 {
1190 	return true;
1191 }
1192 
1193 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1194 				      enum memcg_memory_event event)
1195 {
1196 }
1197 
1198 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1199 					 enum memcg_memory_event event)
1200 {
1201 }
1202 
1203 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1204 					 struct mem_cgroup *memcg,
1205 					 unsigned long *min,
1206 					 unsigned long *low)
1207 {
1208 	*min = *low = 0;
1209 }
1210 
1211 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1212 						   struct mem_cgroup *memcg)
1213 {
1214 }
1215 
1216 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1217 					  struct mem_cgroup *memcg)
1218 {
1219 	return true;
1220 }
1221 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1222 					struct mem_cgroup *memcg)
1223 {
1224 	return false;
1225 }
1226 
1227 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1228 					struct mem_cgroup *memcg)
1229 {
1230 	return false;
1231 }
1232 
1233 static inline int mem_cgroup_charge(struct folio *folio,
1234 		struct mm_struct *mm, gfp_t gfp)
1235 {
1236 	return 0;
1237 }
1238 
1239 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1240 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1241 {
1242 	return 0;
1243 }
1244 
1245 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1246 {
1247 }
1248 
1249 static inline void mem_cgroup_uncharge(struct folio *folio)
1250 {
1251 }
1252 
1253 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1254 {
1255 }
1256 
1257 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1258 {
1259 }
1260 
1261 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1262 					       struct pglist_data *pgdat)
1263 {
1264 	return &pgdat->__lruvec;
1265 }
1266 
1267 static inline struct lruvec *folio_lruvec(struct folio *folio)
1268 {
1269 	struct pglist_data *pgdat = folio_pgdat(folio);
1270 	return &pgdat->__lruvec;
1271 }
1272 
1273 static inline
1274 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1275 {
1276 }
1277 
1278 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1279 {
1280 	return NULL;
1281 }
1282 
1283 static inline bool mm_match_cgroup(struct mm_struct *mm,
1284 		struct mem_cgroup *memcg)
1285 {
1286 	return true;
1287 }
1288 
1289 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1290 {
1291 	return NULL;
1292 }
1293 
1294 static inline
1295 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1296 {
1297 	return NULL;
1298 }
1299 
1300 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1301 {
1302 }
1303 
1304 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1305 {
1306 }
1307 
1308 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1309 {
1310 	struct pglist_data *pgdat = folio_pgdat(folio);
1311 
1312 	spin_lock(&pgdat->__lruvec.lru_lock);
1313 	return &pgdat->__lruvec;
1314 }
1315 
1316 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1317 {
1318 	struct pglist_data *pgdat = folio_pgdat(folio);
1319 
1320 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1321 	return &pgdat->__lruvec;
1322 }
1323 
1324 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1325 		unsigned long *flagsp)
1326 {
1327 	struct pglist_data *pgdat = folio_pgdat(folio);
1328 
1329 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1330 	return &pgdat->__lruvec;
1331 }
1332 
1333 static inline struct mem_cgroup *
1334 mem_cgroup_iter(struct mem_cgroup *root,
1335 		struct mem_cgroup *prev,
1336 		struct mem_cgroup_reclaim_cookie *reclaim)
1337 {
1338 	return NULL;
1339 }
1340 
1341 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1342 					 struct mem_cgroup *prev)
1343 {
1344 }
1345 
1346 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1347 		int (*fn)(struct task_struct *, void *), void *arg)
1348 {
1349 	return 0;
1350 }
1351 
1352 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1353 {
1354 	return 0;
1355 }
1356 
1357 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1358 {
1359 	WARN_ON_ONCE(id);
1360 	/* XXX: This should always return root_mem_cgroup */
1361 	return NULL;
1362 }
1363 
1364 #ifdef CONFIG_SHRINKER_DEBUG
1365 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1366 {
1367 	return 0;
1368 }
1369 
1370 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1371 {
1372 	return NULL;
1373 }
1374 #endif
1375 
1376 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1377 {
1378 	return NULL;
1379 }
1380 
1381 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1382 {
1383 	return NULL;
1384 }
1385 
1386 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1387 {
1388 	return true;
1389 }
1390 
1391 static inline
1392 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1393 		enum lru_list lru, int zone_idx)
1394 {
1395 	return 0;
1396 }
1397 
1398 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1399 {
1400 	return 0;
1401 }
1402 
1403 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1404 {
1405 	return 0;
1406 }
1407 
1408 static inline void
1409 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1410 {
1411 }
1412 
1413 static inline void
1414 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1415 {
1416 }
1417 
1418 static inline void lock_page_memcg(struct page *page)
1419 {
1420 }
1421 
1422 static inline void unlock_page_memcg(struct page *page)
1423 {
1424 }
1425 
1426 static inline void folio_memcg_lock(struct folio *folio)
1427 {
1428 }
1429 
1430 static inline void folio_memcg_unlock(struct folio *folio)
1431 {
1432 }
1433 
1434 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1435 {
1436 	/* to match folio_memcg_rcu() */
1437 	rcu_read_lock();
1438 	return true;
1439 }
1440 
1441 static inline void mem_cgroup_unlock_pages(void)
1442 {
1443 	rcu_read_unlock();
1444 }
1445 
1446 static inline void mem_cgroup_handle_over_high(void)
1447 {
1448 }
1449 
1450 static inline void mem_cgroup_enter_user_fault(void)
1451 {
1452 }
1453 
1454 static inline void mem_cgroup_exit_user_fault(void)
1455 {
1456 }
1457 
1458 static inline bool task_in_memcg_oom(struct task_struct *p)
1459 {
1460 	return false;
1461 }
1462 
1463 static inline bool mem_cgroup_oom_synchronize(bool wait)
1464 {
1465 	return false;
1466 }
1467 
1468 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1469 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1470 {
1471 	return NULL;
1472 }
1473 
1474 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1475 {
1476 }
1477 
1478 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1479 				     int idx,
1480 				     int nr)
1481 {
1482 }
1483 
1484 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1485 				   int idx,
1486 				   int nr)
1487 {
1488 }
1489 
1490 static inline void mod_memcg_page_state(struct page *page,
1491 					int idx, int val)
1492 {
1493 }
1494 
1495 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1496 {
1497 	return 0;
1498 }
1499 
1500 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1501 					      enum node_stat_item idx)
1502 {
1503 	return node_page_state(lruvec_pgdat(lruvec), idx);
1504 }
1505 
1506 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1507 						    enum node_stat_item idx)
1508 {
1509 	return node_page_state(lruvec_pgdat(lruvec), idx);
1510 }
1511 
1512 static inline void mem_cgroup_flush_stats(void)
1513 {
1514 }
1515 
1516 static inline void mem_cgroup_flush_stats_delayed(void)
1517 {
1518 }
1519 
1520 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1521 					    enum node_stat_item idx, int val)
1522 {
1523 }
1524 
1525 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1526 					   int val)
1527 {
1528 	struct page *page = virt_to_head_page(p);
1529 
1530 	__mod_node_page_state(page_pgdat(page), idx, val);
1531 }
1532 
1533 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1534 					 int val)
1535 {
1536 	struct page *page = virt_to_head_page(p);
1537 
1538 	mod_node_page_state(page_pgdat(page), idx, val);
1539 }
1540 
1541 static inline void count_memcg_events(struct mem_cgroup *memcg,
1542 				      enum vm_event_item idx,
1543 				      unsigned long count)
1544 {
1545 }
1546 
1547 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1548 					enum vm_event_item idx,
1549 					unsigned long count)
1550 {
1551 }
1552 
1553 static inline void count_memcg_page_event(struct page *page,
1554 					  int idx)
1555 {
1556 }
1557 
1558 static inline void count_memcg_folio_events(struct folio *folio,
1559 		enum vm_event_item idx, unsigned long nr)
1560 {
1561 }
1562 
1563 static inline
1564 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1565 {
1566 }
1567 
1568 static inline void split_page_memcg(struct page *head, unsigned int nr)
1569 {
1570 }
1571 
1572 static inline
1573 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1574 					    gfp_t gfp_mask,
1575 					    unsigned long *total_scanned)
1576 {
1577 	return 0;
1578 }
1579 #endif /* CONFIG_MEMCG */
1580 
1581 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1582 {
1583 	__mod_lruvec_kmem_state(p, idx, 1);
1584 }
1585 
1586 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1587 {
1588 	__mod_lruvec_kmem_state(p, idx, -1);
1589 }
1590 
1591 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1592 {
1593 	struct mem_cgroup *memcg;
1594 
1595 	memcg = lruvec_memcg(lruvec);
1596 	if (!memcg)
1597 		return NULL;
1598 	memcg = parent_mem_cgroup(memcg);
1599 	if (!memcg)
1600 		return NULL;
1601 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1602 }
1603 
1604 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1605 {
1606 	spin_unlock(&lruvec->lru_lock);
1607 }
1608 
1609 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1610 {
1611 	spin_unlock_irq(&lruvec->lru_lock);
1612 }
1613 
1614 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1615 		unsigned long flags)
1616 {
1617 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1618 }
1619 
1620 /* Test requires a stable page->memcg binding, see page_memcg() */
1621 static inline bool folio_matches_lruvec(struct folio *folio,
1622 		struct lruvec *lruvec)
1623 {
1624 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1625 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1626 }
1627 
1628 /* Don't lock again iff page's lruvec locked */
1629 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1630 		struct lruvec *locked_lruvec)
1631 {
1632 	if (locked_lruvec) {
1633 		if (folio_matches_lruvec(folio, locked_lruvec))
1634 			return locked_lruvec;
1635 
1636 		unlock_page_lruvec_irq(locked_lruvec);
1637 	}
1638 
1639 	return folio_lruvec_lock_irq(folio);
1640 }
1641 
1642 /* Don't lock again iff page's lruvec locked */
1643 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1644 		struct lruvec *locked_lruvec, unsigned long *flags)
1645 {
1646 	if (locked_lruvec) {
1647 		if (folio_matches_lruvec(folio, locked_lruvec))
1648 			return locked_lruvec;
1649 
1650 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1651 	}
1652 
1653 	return folio_lruvec_lock_irqsave(folio, flags);
1654 }
1655 
1656 #ifdef CONFIG_CGROUP_WRITEBACK
1657 
1658 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1659 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1660 			 unsigned long *pheadroom, unsigned long *pdirty,
1661 			 unsigned long *pwriteback);
1662 
1663 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1664 					     struct bdi_writeback *wb);
1665 
1666 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1667 						  struct bdi_writeback *wb)
1668 {
1669 	if (mem_cgroup_disabled())
1670 		return;
1671 
1672 	if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1673 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1674 }
1675 
1676 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1677 
1678 #else	/* CONFIG_CGROUP_WRITEBACK */
1679 
1680 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1681 {
1682 	return NULL;
1683 }
1684 
1685 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1686 				       unsigned long *pfilepages,
1687 				       unsigned long *pheadroom,
1688 				       unsigned long *pdirty,
1689 				       unsigned long *pwriteback)
1690 {
1691 }
1692 
1693 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1694 						  struct bdi_writeback *wb)
1695 {
1696 }
1697 
1698 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1699 {
1700 }
1701 
1702 #endif	/* CONFIG_CGROUP_WRITEBACK */
1703 
1704 struct sock;
1705 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1706 			     gfp_t gfp_mask);
1707 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1708 #ifdef CONFIG_MEMCG
1709 extern struct static_key_false memcg_sockets_enabled_key;
1710 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1711 void mem_cgroup_sk_alloc(struct sock *sk);
1712 void mem_cgroup_sk_free(struct sock *sk);
1713 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1714 {
1715 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1716 		return true;
1717 	do {
1718 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1719 			return true;
1720 	} while ((memcg = parent_mem_cgroup(memcg)));
1721 	return false;
1722 }
1723 
1724 int alloc_shrinker_info(struct mem_cgroup *memcg);
1725 void free_shrinker_info(struct mem_cgroup *memcg);
1726 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1727 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1728 #else
1729 #define mem_cgroup_sockets_enabled 0
1730 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1731 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1732 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1733 {
1734 	return false;
1735 }
1736 
1737 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1738 				    int nid, int shrinker_id)
1739 {
1740 }
1741 #endif
1742 
1743 #ifdef CONFIG_MEMCG_KMEM
1744 bool mem_cgroup_kmem_disabled(void);
1745 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1746 void __memcg_kmem_uncharge_page(struct page *page, int order);
1747 
1748 struct obj_cgroup *get_obj_cgroup_from_current(void);
1749 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1750 
1751 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1752 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1753 
1754 extern struct static_key_false memcg_kmem_enabled_key;
1755 
1756 static inline bool memcg_kmem_enabled(void)
1757 {
1758 	return static_branch_likely(&memcg_kmem_enabled_key);
1759 }
1760 
1761 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1762 					 int order)
1763 {
1764 	if (memcg_kmem_enabled())
1765 		return __memcg_kmem_charge_page(page, gfp, order);
1766 	return 0;
1767 }
1768 
1769 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1770 {
1771 	if (memcg_kmem_enabled())
1772 		__memcg_kmem_uncharge_page(page, order);
1773 }
1774 
1775 /*
1776  * A helper for accessing memcg's kmem_id, used for getting
1777  * corresponding LRU lists.
1778  */
1779 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1780 {
1781 	return memcg ? memcg->kmemcg_id : -1;
1782 }
1783 
1784 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1785 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1786 
1787 static inline void count_objcg_event(struct obj_cgroup *objcg,
1788 				     enum vm_event_item idx)
1789 {
1790 	struct mem_cgroup *memcg;
1791 
1792 	if (!memcg_kmem_enabled())
1793 		return;
1794 
1795 	rcu_read_lock();
1796 	memcg = obj_cgroup_memcg(objcg);
1797 	count_memcg_events(memcg, idx, 1);
1798 	rcu_read_unlock();
1799 }
1800 
1801 #else
1802 static inline bool mem_cgroup_kmem_disabled(void)
1803 {
1804 	return true;
1805 }
1806 
1807 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1808 					 int order)
1809 {
1810 	return 0;
1811 }
1812 
1813 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1814 {
1815 }
1816 
1817 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1818 					   int order)
1819 {
1820 	return 0;
1821 }
1822 
1823 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1824 {
1825 }
1826 
1827 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1828 {
1829 	return NULL;
1830 }
1831 
1832 static inline bool memcg_kmem_enabled(void)
1833 {
1834 	return false;
1835 }
1836 
1837 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1838 {
1839 	return -1;
1840 }
1841 
1842 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1843 {
1844 	return NULL;
1845 }
1846 
1847 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1848 {
1849 	return NULL;
1850 }
1851 
1852 static inline void count_objcg_event(struct obj_cgroup *objcg,
1853 				     enum vm_event_item idx)
1854 {
1855 }
1856 
1857 #endif /* CONFIG_MEMCG_KMEM */
1858 
1859 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1860 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1861 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1862 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1863 #else
1864 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1865 {
1866 	return true;
1867 }
1868 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1869 					   size_t size)
1870 {
1871 }
1872 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1873 					     size_t size)
1874 {
1875 }
1876 #endif
1877 
1878 #endif /* _LINUX_MEMCONTROL_H */
1879