xref: /openbmc/linux/include/linux/list.h (revision 929e2a61)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4 
5 #include <linux/types.h>
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/const.h>
9 #include <linux/kernel.h>
10 
11 /*
12  * Simple doubly linked list implementation.
13  *
14  * Some of the internal functions ("__xxx") are useful when
15  * manipulating whole lists rather than single entries, as
16  * sometimes we already know the next/prev entries and we can
17  * generate better code by using them directly rather than
18  * using the generic single-entry routines.
19  */
20 
21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
22 
23 #define LIST_HEAD(name) \
24 	struct list_head name = LIST_HEAD_INIT(name)
25 
26 /**
27  * INIT_LIST_HEAD - Initialize a list_head structure
28  * @list: list_head structure to be initialized.
29  *
30  * Initializes the list_head to point to itself.  If it is a list header,
31  * the result is an empty list.
32  */
33 static inline void INIT_LIST_HEAD(struct list_head *list)
34 {
35 	WRITE_ONCE(list->next, list);
36 	list->prev = list;
37 }
38 
39 #ifdef CONFIG_DEBUG_LIST
40 extern bool __list_add_valid(struct list_head *new,
41 			      struct list_head *prev,
42 			      struct list_head *next);
43 extern bool __list_del_entry_valid(struct list_head *entry);
44 #else
45 static inline bool __list_add_valid(struct list_head *new,
46 				struct list_head *prev,
47 				struct list_head *next)
48 {
49 	return true;
50 }
51 static inline bool __list_del_entry_valid(struct list_head *entry)
52 {
53 	return true;
54 }
55 #endif
56 
57 /*
58  * Insert a new entry between two known consecutive entries.
59  *
60  * This is only for internal list manipulation where we know
61  * the prev/next entries already!
62  */
63 static inline void __list_add(struct list_head *new,
64 			      struct list_head *prev,
65 			      struct list_head *next)
66 {
67 	if (!__list_add_valid(new, prev, next))
68 		return;
69 
70 	next->prev = new;
71 	new->next = next;
72 	new->prev = prev;
73 	WRITE_ONCE(prev->next, new);
74 }
75 
76 /**
77  * list_add - add a new entry
78  * @new: new entry to be added
79  * @head: list head to add it after
80  *
81  * Insert a new entry after the specified head.
82  * This is good for implementing stacks.
83  */
84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86 	__list_add(new, head, head->next);
87 }
88 
89 
90 /**
91  * list_add_tail - add a new entry
92  * @new: new entry to be added
93  * @head: list head to add it before
94  *
95  * Insert a new entry before the specified head.
96  * This is useful for implementing queues.
97  */
98 static inline void list_add_tail(struct list_head *new, struct list_head *head)
99 {
100 	__list_add(new, head->prev, head);
101 }
102 
103 /*
104  * Delete a list entry by making the prev/next entries
105  * point to each other.
106  *
107  * This is only for internal list manipulation where we know
108  * the prev/next entries already!
109  */
110 static inline void __list_del(struct list_head * prev, struct list_head * next)
111 {
112 	next->prev = prev;
113 	WRITE_ONCE(prev->next, next);
114 }
115 
116 /*
117  * Delete a list entry and clear the 'prev' pointer.
118  *
119  * This is a special-purpose list clearing method used in the networking code
120  * for lists allocated as per-cpu, where we don't want to incur the extra
121  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
122  * needs to check the node 'prev' pointer instead of calling list_empty().
123  */
124 static inline void __list_del_clearprev(struct list_head *entry)
125 {
126 	__list_del(entry->prev, entry->next);
127 	entry->prev = NULL;
128 }
129 
130 static inline void __list_del_entry(struct list_head *entry)
131 {
132 	if (!__list_del_entry_valid(entry))
133 		return;
134 
135 	__list_del(entry->prev, entry->next);
136 }
137 
138 /**
139  * list_del - deletes entry from list.
140  * @entry: the element to delete from the list.
141  * Note: list_empty() on entry does not return true after this, the entry is
142  * in an undefined state.
143  */
144 static inline void list_del(struct list_head *entry)
145 {
146 	__list_del_entry(entry);
147 	entry->next = LIST_POISON1;
148 	entry->prev = LIST_POISON2;
149 }
150 
151 /**
152  * list_replace - replace old entry by new one
153  * @old : the element to be replaced
154  * @new : the new element to insert
155  *
156  * If @old was empty, it will be overwritten.
157  */
158 static inline void list_replace(struct list_head *old,
159 				struct list_head *new)
160 {
161 	new->next = old->next;
162 	new->next->prev = new;
163 	new->prev = old->prev;
164 	new->prev->next = new;
165 }
166 
167 /**
168  * list_replace_init - replace old entry by new one and initialize the old one
169  * @old : the element to be replaced
170  * @new : the new element to insert
171  *
172  * If @old was empty, it will be overwritten.
173  */
174 static inline void list_replace_init(struct list_head *old,
175 				     struct list_head *new)
176 {
177 	list_replace(old, new);
178 	INIT_LIST_HEAD(old);
179 }
180 
181 /**
182  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
183  * @entry1: the location to place entry2
184  * @entry2: the location to place entry1
185  */
186 static inline void list_swap(struct list_head *entry1,
187 			     struct list_head *entry2)
188 {
189 	struct list_head *pos = entry2->prev;
190 
191 	list_del(entry2);
192 	list_replace(entry1, entry2);
193 	if (pos == entry1)
194 		pos = entry2;
195 	list_add(entry1, pos);
196 }
197 
198 /**
199  * list_del_init - deletes entry from list and reinitialize it.
200  * @entry: the element to delete from the list.
201  */
202 static inline void list_del_init(struct list_head *entry)
203 {
204 	__list_del_entry(entry);
205 	INIT_LIST_HEAD(entry);
206 }
207 
208 /**
209  * list_move - delete from one list and add as another's head
210  * @list: the entry to move
211  * @head: the head that will precede our entry
212  */
213 static inline void list_move(struct list_head *list, struct list_head *head)
214 {
215 	__list_del_entry(list);
216 	list_add(list, head);
217 }
218 
219 /**
220  * list_move_tail - delete from one list and add as another's tail
221  * @list: the entry to move
222  * @head: the head that will follow our entry
223  */
224 static inline void list_move_tail(struct list_head *list,
225 				  struct list_head *head)
226 {
227 	__list_del_entry(list);
228 	list_add_tail(list, head);
229 }
230 
231 /**
232  * list_bulk_move_tail - move a subsection of a list to its tail
233  * @head: the head that will follow our entry
234  * @first: first entry to move
235  * @last: last entry to move, can be the same as first
236  *
237  * Move all entries between @first and including @last before @head.
238  * All three entries must belong to the same linked list.
239  */
240 static inline void list_bulk_move_tail(struct list_head *head,
241 				       struct list_head *first,
242 				       struct list_head *last)
243 {
244 	first->prev->next = last->next;
245 	last->next->prev = first->prev;
246 
247 	head->prev->next = first;
248 	first->prev = head->prev;
249 
250 	last->next = head;
251 	head->prev = last;
252 }
253 
254 /**
255  * list_is_first -- tests whether @list is the first entry in list @head
256  * @list: the entry to test
257  * @head: the head of the list
258  */
259 static inline int list_is_first(const struct list_head *list,
260 					const struct list_head *head)
261 {
262 	return list->prev == head;
263 }
264 
265 /**
266  * list_is_last - tests whether @list is the last entry in list @head
267  * @list: the entry to test
268  * @head: the head of the list
269  */
270 static inline int list_is_last(const struct list_head *list,
271 				const struct list_head *head)
272 {
273 	return list->next == head;
274 }
275 
276 /**
277  * list_empty - tests whether a list is empty
278  * @head: the list to test.
279  */
280 static inline int list_empty(const struct list_head *head)
281 {
282 	return READ_ONCE(head->next) == head;
283 }
284 
285 /**
286  * list_del_init_careful - deletes entry from list and reinitialize it.
287  * @entry: the element to delete from the list.
288  *
289  * This is the same as list_del_init(), except designed to be used
290  * together with list_empty_careful() in a way to guarantee ordering
291  * of other memory operations.
292  *
293  * Any memory operations done before a list_del_init_careful() are
294  * guaranteed to be visible after a list_empty_careful() test.
295  */
296 static inline void list_del_init_careful(struct list_head *entry)
297 {
298 	__list_del_entry(entry);
299 	entry->prev = entry;
300 	smp_store_release(&entry->next, entry);
301 }
302 
303 /**
304  * list_empty_careful - tests whether a list is empty and not being modified
305  * @head: the list to test
306  *
307  * Description:
308  * tests whether a list is empty _and_ checks that no other CPU might be
309  * in the process of modifying either member (next or prev)
310  *
311  * NOTE: using list_empty_careful() without synchronization
312  * can only be safe if the only activity that can happen
313  * to the list entry is list_del_init(). Eg. it cannot be used
314  * if another CPU could re-list_add() it.
315  */
316 static inline int list_empty_careful(const struct list_head *head)
317 {
318 	struct list_head *next = smp_load_acquire(&head->next);
319 	return (next == head) && (next == head->prev);
320 }
321 
322 /**
323  * list_rotate_left - rotate the list to the left
324  * @head: the head of the list
325  */
326 static inline void list_rotate_left(struct list_head *head)
327 {
328 	struct list_head *first;
329 
330 	if (!list_empty(head)) {
331 		first = head->next;
332 		list_move_tail(first, head);
333 	}
334 }
335 
336 /**
337  * list_rotate_to_front() - Rotate list to specific item.
338  * @list: The desired new front of the list.
339  * @head: The head of the list.
340  *
341  * Rotates list so that @list becomes the new front of the list.
342  */
343 static inline void list_rotate_to_front(struct list_head *list,
344 					struct list_head *head)
345 {
346 	/*
347 	 * Deletes the list head from the list denoted by @head and
348 	 * places it as the tail of @list, this effectively rotates the
349 	 * list so that @list is at the front.
350 	 */
351 	list_move_tail(head, list);
352 }
353 
354 /**
355  * list_is_singular - tests whether a list has just one entry.
356  * @head: the list to test.
357  */
358 static inline int list_is_singular(const struct list_head *head)
359 {
360 	return !list_empty(head) && (head->next == head->prev);
361 }
362 
363 static inline void __list_cut_position(struct list_head *list,
364 		struct list_head *head, struct list_head *entry)
365 {
366 	struct list_head *new_first = entry->next;
367 	list->next = head->next;
368 	list->next->prev = list;
369 	list->prev = entry;
370 	entry->next = list;
371 	head->next = new_first;
372 	new_first->prev = head;
373 }
374 
375 /**
376  * list_cut_position - cut a list into two
377  * @list: a new list to add all removed entries
378  * @head: a list with entries
379  * @entry: an entry within head, could be the head itself
380  *	and if so we won't cut the list
381  *
382  * This helper moves the initial part of @head, up to and
383  * including @entry, from @head to @list. You should
384  * pass on @entry an element you know is on @head. @list
385  * should be an empty list or a list you do not care about
386  * losing its data.
387  *
388  */
389 static inline void list_cut_position(struct list_head *list,
390 		struct list_head *head, struct list_head *entry)
391 {
392 	if (list_empty(head))
393 		return;
394 	if (list_is_singular(head) &&
395 		(head->next != entry && head != entry))
396 		return;
397 	if (entry == head)
398 		INIT_LIST_HEAD(list);
399 	else
400 		__list_cut_position(list, head, entry);
401 }
402 
403 /**
404  * list_cut_before - cut a list into two, before given entry
405  * @list: a new list to add all removed entries
406  * @head: a list with entries
407  * @entry: an entry within head, could be the head itself
408  *
409  * This helper moves the initial part of @head, up to but
410  * excluding @entry, from @head to @list.  You should pass
411  * in @entry an element you know is on @head.  @list should
412  * be an empty list or a list you do not care about losing
413  * its data.
414  * If @entry == @head, all entries on @head are moved to
415  * @list.
416  */
417 static inline void list_cut_before(struct list_head *list,
418 				   struct list_head *head,
419 				   struct list_head *entry)
420 {
421 	if (head->next == entry) {
422 		INIT_LIST_HEAD(list);
423 		return;
424 	}
425 	list->next = head->next;
426 	list->next->prev = list;
427 	list->prev = entry->prev;
428 	list->prev->next = list;
429 	head->next = entry;
430 	entry->prev = head;
431 }
432 
433 static inline void __list_splice(const struct list_head *list,
434 				 struct list_head *prev,
435 				 struct list_head *next)
436 {
437 	struct list_head *first = list->next;
438 	struct list_head *last = list->prev;
439 
440 	first->prev = prev;
441 	prev->next = first;
442 
443 	last->next = next;
444 	next->prev = last;
445 }
446 
447 /**
448  * list_splice - join two lists, this is designed for stacks
449  * @list: the new list to add.
450  * @head: the place to add it in the first list.
451  */
452 static inline void list_splice(const struct list_head *list,
453 				struct list_head *head)
454 {
455 	if (!list_empty(list))
456 		__list_splice(list, head, head->next);
457 }
458 
459 /**
460  * list_splice_tail - join two lists, each list being a queue
461  * @list: the new list to add.
462  * @head: the place to add it in the first list.
463  */
464 static inline void list_splice_tail(struct list_head *list,
465 				struct list_head *head)
466 {
467 	if (!list_empty(list))
468 		__list_splice(list, head->prev, head);
469 }
470 
471 /**
472  * list_splice_init - join two lists and reinitialise the emptied list.
473  * @list: the new list to add.
474  * @head: the place to add it in the first list.
475  *
476  * The list at @list is reinitialised
477  */
478 static inline void list_splice_init(struct list_head *list,
479 				    struct list_head *head)
480 {
481 	if (!list_empty(list)) {
482 		__list_splice(list, head, head->next);
483 		INIT_LIST_HEAD(list);
484 	}
485 }
486 
487 /**
488  * list_splice_tail_init - join two lists and reinitialise the emptied list
489  * @list: the new list to add.
490  * @head: the place to add it in the first list.
491  *
492  * Each of the lists is a queue.
493  * The list at @list is reinitialised
494  */
495 static inline void list_splice_tail_init(struct list_head *list,
496 					 struct list_head *head)
497 {
498 	if (!list_empty(list)) {
499 		__list_splice(list, head->prev, head);
500 		INIT_LIST_HEAD(list);
501 	}
502 }
503 
504 /**
505  * list_entry - get the struct for this entry
506  * @ptr:	the &struct list_head pointer.
507  * @type:	the type of the struct this is embedded in.
508  * @member:	the name of the list_head within the struct.
509  */
510 #define list_entry(ptr, type, member) \
511 	container_of(ptr, type, member)
512 
513 /**
514  * list_first_entry - get the first element from a list
515  * @ptr:	the list head to take the element from.
516  * @type:	the type of the struct this is embedded in.
517  * @member:	the name of the list_head within the struct.
518  *
519  * Note, that list is expected to be not empty.
520  */
521 #define list_first_entry(ptr, type, member) \
522 	list_entry((ptr)->next, type, member)
523 
524 /**
525  * list_last_entry - get the last element from a list
526  * @ptr:	the list head to take the element from.
527  * @type:	the type of the struct this is embedded in.
528  * @member:	the name of the list_head within the struct.
529  *
530  * Note, that list is expected to be not empty.
531  */
532 #define list_last_entry(ptr, type, member) \
533 	list_entry((ptr)->prev, type, member)
534 
535 /**
536  * list_first_entry_or_null - get the first element from a list
537  * @ptr:	the list head to take the element from.
538  * @type:	the type of the struct this is embedded in.
539  * @member:	the name of the list_head within the struct.
540  *
541  * Note that if the list is empty, it returns NULL.
542  */
543 #define list_first_entry_or_null(ptr, type, member) ({ \
544 	struct list_head *head__ = (ptr); \
545 	struct list_head *pos__ = READ_ONCE(head__->next); \
546 	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
547 })
548 
549 /**
550  * list_next_entry - get the next element in list
551  * @pos:	the type * to cursor
552  * @member:	the name of the list_head within the struct.
553  */
554 #define list_next_entry(pos, member) \
555 	list_entry((pos)->member.next, typeof(*(pos)), member)
556 
557 /**
558  * list_prev_entry - get the prev element in list
559  * @pos:	the type * to cursor
560  * @member:	the name of the list_head within the struct.
561  */
562 #define list_prev_entry(pos, member) \
563 	list_entry((pos)->member.prev, typeof(*(pos)), member)
564 
565 /**
566  * list_for_each	-	iterate over a list
567  * @pos:	the &struct list_head to use as a loop cursor.
568  * @head:	the head for your list.
569  */
570 #define list_for_each(pos, head) \
571 	for (pos = (head)->next; pos != (head); pos = pos->next)
572 
573 /**
574  * list_for_each_continue - continue iteration over a list
575  * @pos:	the &struct list_head to use as a loop cursor.
576  * @head:	the head for your list.
577  *
578  * Continue to iterate over a list, continuing after the current position.
579  */
580 #define list_for_each_continue(pos, head) \
581 	for (pos = pos->next; pos != (head); pos = pos->next)
582 
583 /**
584  * list_for_each_prev	-	iterate over a list backwards
585  * @pos:	the &struct list_head to use as a loop cursor.
586  * @head:	the head for your list.
587  */
588 #define list_for_each_prev(pos, head) \
589 	for (pos = (head)->prev; pos != (head); pos = pos->prev)
590 
591 /**
592  * list_for_each_safe - iterate over a list safe against removal of list entry
593  * @pos:	the &struct list_head to use as a loop cursor.
594  * @n:		another &struct list_head to use as temporary storage
595  * @head:	the head for your list.
596  */
597 #define list_for_each_safe(pos, n, head) \
598 	for (pos = (head)->next, n = pos->next; pos != (head); \
599 		pos = n, n = pos->next)
600 
601 /**
602  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
603  * @pos:	the &struct list_head to use as a loop cursor.
604  * @n:		another &struct list_head to use as temporary storage
605  * @head:	the head for your list.
606  */
607 #define list_for_each_prev_safe(pos, n, head) \
608 	for (pos = (head)->prev, n = pos->prev; \
609 	     pos != (head); \
610 	     pos = n, n = pos->prev)
611 
612 /**
613  * list_for_each_entry	-	iterate over list of given type
614  * @pos:	the type * to use as a loop cursor.
615  * @head:	the head for your list.
616  * @member:	the name of the list_head within the struct.
617  */
618 #define list_for_each_entry(pos, head, member)				\
619 	for (pos = list_first_entry(head, typeof(*pos), member);	\
620 	     &pos->member != (head);					\
621 	     pos = list_next_entry(pos, member))
622 
623 /**
624  * list_for_each_entry_reverse - iterate backwards over list of given type.
625  * @pos:	the type * to use as a loop cursor.
626  * @head:	the head for your list.
627  * @member:	the name of the list_head within the struct.
628  */
629 #define list_for_each_entry_reverse(pos, head, member)			\
630 	for (pos = list_last_entry(head, typeof(*pos), member);		\
631 	     &pos->member != (head); 					\
632 	     pos = list_prev_entry(pos, member))
633 
634 /**
635  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
636  * @pos:	the type * to use as a start point
637  * @head:	the head of the list
638  * @member:	the name of the list_head within the struct.
639  *
640  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
641  */
642 #define list_prepare_entry(pos, head, member) \
643 	((pos) ? : list_entry(head, typeof(*pos), member))
644 
645 /**
646  * list_for_each_entry_continue - continue iteration over list of given type
647  * @pos:	the type * to use as a loop cursor.
648  * @head:	the head for your list.
649  * @member:	the name of the list_head within the struct.
650  *
651  * Continue to iterate over list of given type, continuing after
652  * the current position.
653  */
654 #define list_for_each_entry_continue(pos, head, member) 		\
655 	for (pos = list_next_entry(pos, member);			\
656 	     &pos->member != (head);					\
657 	     pos = list_next_entry(pos, member))
658 
659 /**
660  * list_for_each_entry_continue_reverse - iterate backwards from the given point
661  * @pos:	the type * to use as a loop cursor.
662  * @head:	the head for your list.
663  * @member:	the name of the list_head within the struct.
664  *
665  * Start to iterate over list of given type backwards, continuing after
666  * the current position.
667  */
668 #define list_for_each_entry_continue_reverse(pos, head, member)		\
669 	for (pos = list_prev_entry(pos, member);			\
670 	     &pos->member != (head);					\
671 	     pos = list_prev_entry(pos, member))
672 
673 /**
674  * list_for_each_entry_from - iterate over list of given type from the current point
675  * @pos:	the type * to use as a loop cursor.
676  * @head:	the head for your list.
677  * @member:	the name of the list_head within the struct.
678  *
679  * Iterate over list of given type, continuing from current position.
680  */
681 #define list_for_each_entry_from(pos, head, member) 			\
682 	for (; &pos->member != (head);					\
683 	     pos = list_next_entry(pos, member))
684 
685 /**
686  * list_for_each_entry_from_reverse - iterate backwards over list of given type
687  *                                    from the current point
688  * @pos:	the type * to use as a loop cursor.
689  * @head:	the head for your list.
690  * @member:	the name of the list_head within the struct.
691  *
692  * Iterate backwards over list of given type, continuing from current position.
693  */
694 #define list_for_each_entry_from_reverse(pos, head, member)		\
695 	for (; &pos->member != (head);					\
696 	     pos = list_prev_entry(pos, member))
697 
698 /**
699  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
700  * @pos:	the type * to use as a loop cursor.
701  * @n:		another type * to use as temporary storage
702  * @head:	the head for your list.
703  * @member:	the name of the list_head within the struct.
704  */
705 #define list_for_each_entry_safe(pos, n, head, member)			\
706 	for (pos = list_first_entry(head, typeof(*pos), member),	\
707 		n = list_next_entry(pos, member);			\
708 	     &pos->member != (head); 					\
709 	     pos = n, n = list_next_entry(n, member))
710 
711 /**
712  * list_for_each_entry_safe_continue - continue list iteration safe against removal
713  * @pos:	the type * to use as a loop cursor.
714  * @n:		another type * to use as temporary storage
715  * @head:	the head for your list.
716  * @member:	the name of the list_head within the struct.
717  *
718  * Iterate over list of given type, continuing after current point,
719  * safe against removal of list entry.
720  */
721 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
722 	for (pos = list_next_entry(pos, member), 				\
723 		n = list_next_entry(pos, member);				\
724 	     &pos->member != (head);						\
725 	     pos = n, n = list_next_entry(n, member))
726 
727 /**
728  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
729  * @pos:	the type * to use as a loop cursor.
730  * @n:		another type * to use as temporary storage
731  * @head:	the head for your list.
732  * @member:	the name of the list_head within the struct.
733  *
734  * Iterate over list of given type from current point, safe against
735  * removal of list entry.
736  */
737 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
738 	for (n = list_next_entry(pos, member);					\
739 	     &pos->member != (head);						\
740 	     pos = n, n = list_next_entry(n, member))
741 
742 /**
743  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
744  * @pos:	the type * to use as a loop cursor.
745  * @n:		another type * to use as temporary storage
746  * @head:	the head for your list.
747  * @member:	the name of the list_head within the struct.
748  *
749  * Iterate backwards over list of given type, safe against removal
750  * of list entry.
751  */
752 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
753 	for (pos = list_last_entry(head, typeof(*pos), member),		\
754 		n = list_prev_entry(pos, member);			\
755 	     &pos->member != (head); 					\
756 	     pos = n, n = list_prev_entry(n, member))
757 
758 /**
759  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
760  * @pos:	the loop cursor used in the list_for_each_entry_safe loop
761  * @n:		temporary storage used in list_for_each_entry_safe
762  * @member:	the name of the list_head within the struct.
763  *
764  * list_safe_reset_next is not safe to use in general if the list may be
765  * modified concurrently (eg. the lock is dropped in the loop body). An
766  * exception to this is if the cursor element (pos) is pinned in the list,
767  * and list_safe_reset_next is called after re-taking the lock and before
768  * completing the current iteration of the loop body.
769  */
770 #define list_safe_reset_next(pos, n, member)				\
771 	n = list_next_entry(pos, member)
772 
773 /*
774  * Double linked lists with a single pointer list head.
775  * Mostly useful for hash tables where the two pointer list head is
776  * too wasteful.
777  * You lose the ability to access the tail in O(1).
778  */
779 
780 #define HLIST_HEAD_INIT { .first = NULL }
781 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
782 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
783 static inline void INIT_HLIST_NODE(struct hlist_node *h)
784 {
785 	h->next = NULL;
786 	h->pprev = NULL;
787 }
788 
789 /**
790  * hlist_unhashed - Has node been removed from list and reinitialized?
791  * @h: Node to be checked
792  *
793  * Not that not all removal functions will leave a node in unhashed
794  * state.  For example, hlist_nulls_del_init_rcu() does leave the
795  * node in unhashed state, but hlist_nulls_del() does not.
796  */
797 static inline int hlist_unhashed(const struct hlist_node *h)
798 {
799 	return !h->pprev;
800 }
801 
802 /**
803  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
804  * @h: Node to be checked
805  *
806  * This variant of hlist_unhashed() must be used in lockless contexts
807  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
808  * various WRITE_ONCE() in hlist helpers that are defined below.
809  */
810 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
811 {
812 	return !READ_ONCE(h->pprev);
813 }
814 
815 /**
816  * hlist_empty - Is the specified hlist_head structure an empty hlist?
817  * @h: Structure to check.
818  */
819 static inline int hlist_empty(const struct hlist_head *h)
820 {
821 	return !READ_ONCE(h->first);
822 }
823 
824 static inline void __hlist_del(struct hlist_node *n)
825 {
826 	struct hlist_node *next = n->next;
827 	struct hlist_node **pprev = n->pprev;
828 
829 	WRITE_ONCE(*pprev, next);
830 	if (next)
831 		WRITE_ONCE(next->pprev, pprev);
832 }
833 
834 /**
835  * hlist_del - Delete the specified hlist_node from its list
836  * @n: Node to delete.
837  *
838  * Note that this function leaves the node in hashed state.  Use
839  * hlist_del_init() or similar instead to unhash @n.
840  */
841 static inline void hlist_del(struct hlist_node *n)
842 {
843 	__hlist_del(n);
844 	n->next = LIST_POISON1;
845 	n->pprev = LIST_POISON2;
846 }
847 
848 /**
849  * hlist_del_init - Delete the specified hlist_node from its list and initialize
850  * @n: Node to delete.
851  *
852  * Note that this function leaves the node in unhashed state.
853  */
854 static inline void hlist_del_init(struct hlist_node *n)
855 {
856 	if (!hlist_unhashed(n)) {
857 		__hlist_del(n);
858 		INIT_HLIST_NODE(n);
859 	}
860 }
861 
862 /**
863  * hlist_add_head - add a new entry at the beginning of the hlist
864  * @n: new entry to be added
865  * @h: hlist head to add it after
866  *
867  * Insert a new entry after the specified head.
868  * This is good for implementing stacks.
869  */
870 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
871 {
872 	struct hlist_node *first = h->first;
873 	WRITE_ONCE(n->next, first);
874 	if (first)
875 		WRITE_ONCE(first->pprev, &n->next);
876 	WRITE_ONCE(h->first, n);
877 	WRITE_ONCE(n->pprev, &h->first);
878 }
879 
880 /**
881  * hlist_add_before - add a new entry before the one specified
882  * @n: new entry to be added
883  * @next: hlist node to add it before, which must be non-NULL
884  */
885 static inline void hlist_add_before(struct hlist_node *n,
886 				    struct hlist_node *next)
887 {
888 	WRITE_ONCE(n->pprev, next->pprev);
889 	WRITE_ONCE(n->next, next);
890 	WRITE_ONCE(next->pprev, &n->next);
891 	WRITE_ONCE(*(n->pprev), n);
892 }
893 
894 /**
895  * hlist_add_behing - add a new entry after the one specified
896  * @n: new entry to be added
897  * @prev: hlist node to add it after, which must be non-NULL
898  */
899 static inline void hlist_add_behind(struct hlist_node *n,
900 				    struct hlist_node *prev)
901 {
902 	WRITE_ONCE(n->next, prev->next);
903 	WRITE_ONCE(prev->next, n);
904 	WRITE_ONCE(n->pprev, &prev->next);
905 
906 	if (n->next)
907 		WRITE_ONCE(n->next->pprev, &n->next);
908 }
909 
910 /**
911  * hlist_add_fake - create a fake hlist consisting of a single headless node
912  * @n: Node to make a fake list out of
913  *
914  * This makes @n appear to be its own predecessor on a headless hlist.
915  * The point of this is to allow things like hlist_del() to work correctly
916  * in cases where there is no list.
917  */
918 static inline void hlist_add_fake(struct hlist_node *n)
919 {
920 	n->pprev = &n->next;
921 }
922 
923 /**
924  * hlist_fake: Is this node a fake hlist?
925  * @h: Node to check for being a self-referential fake hlist.
926  */
927 static inline bool hlist_fake(struct hlist_node *h)
928 {
929 	return h->pprev == &h->next;
930 }
931 
932 /**
933  * hlist_is_singular_node - is node the only element of the specified hlist?
934  * @n: Node to check for singularity.
935  * @h: Header for potentially singular list.
936  *
937  * Check whether the node is the only node of the head without
938  * accessing head, thus avoiding unnecessary cache misses.
939  */
940 static inline bool
941 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
942 {
943 	return !n->next && n->pprev == &h->first;
944 }
945 
946 /**
947  * hlist_move_list - Move an hlist
948  * @old: hlist_head for old list.
949  * @new: hlist_head for new list.
950  *
951  * Move a list from one list head to another. Fixup the pprev
952  * reference of the first entry if it exists.
953  */
954 static inline void hlist_move_list(struct hlist_head *old,
955 				   struct hlist_head *new)
956 {
957 	new->first = old->first;
958 	if (new->first)
959 		new->first->pprev = &new->first;
960 	old->first = NULL;
961 }
962 
963 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
964 
965 #define hlist_for_each(pos, head) \
966 	for (pos = (head)->first; pos ; pos = pos->next)
967 
968 #define hlist_for_each_safe(pos, n, head) \
969 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
970 	     pos = n)
971 
972 #define hlist_entry_safe(ptr, type, member) \
973 	({ typeof(ptr) ____ptr = (ptr); \
974 	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
975 	})
976 
977 /**
978  * hlist_for_each_entry	- iterate over list of given type
979  * @pos:	the type * to use as a loop cursor.
980  * @head:	the head for your list.
981  * @member:	the name of the hlist_node within the struct.
982  */
983 #define hlist_for_each_entry(pos, head, member)				\
984 	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
985 	     pos;							\
986 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
987 
988 /**
989  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
990  * @pos:	the type * to use as a loop cursor.
991  * @member:	the name of the hlist_node within the struct.
992  */
993 #define hlist_for_each_entry_continue(pos, member)			\
994 	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
995 	     pos;							\
996 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
997 
998 /**
999  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1000  * @pos:	the type * to use as a loop cursor.
1001  * @member:	the name of the hlist_node within the struct.
1002  */
1003 #define hlist_for_each_entry_from(pos, member)				\
1004 	for (; pos;							\
1005 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1006 
1007 /**
1008  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1009  * @pos:	the type * to use as a loop cursor.
1010  * @n:		a &struct hlist_node to use as temporary storage
1011  * @head:	the head for your list.
1012  * @member:	the name of the hlist_node within the struct.
1013  */
1014 #define hlist_for_each_entry_safe(pos, n, head, member) 		\
1015 	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1016 	     pos && ({ n = pos->member.next; 1; });			\
1017 	     pos = hlist_entry_safe(n, typeof(*pos), member))
1018 
1019 #endif
1020